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Abstract—The use of Aerial Base Stations (ABSs) has received
a great deal of attention in academia and industry as a means to
support the cellular communication traffic growth. In this article,
we focus on obtaining the optimal altitude of an ABS using two
criteria - maximum cell coverage area and minimum Symbol
Error Rate (SER). Our study is done by using a probabilistic
air-to-ground channel model, developed for low altitude aerial
platforms via simulations on a commercial ray tracing software,
for different scenarios like Urban High Rise, Urban, and Sub-
urban. The probability distributions of the received power of
the ground users and of the power delay profile at optimal
ABS altitude are provided as a function of the size of the cell
area. For the SER analysis, we present a system model based on
Generalized Frequency Division Multiplexing (GFDM), in a time-
frequency grid that is compatible with Long Term Evolution, by
implementing parameters for low latency communication at the
physical layer. The impact of “Better than Nyquist” pulses on the
GFDM system is evaluated in terms of SER performance. From
the presented results, a significant improvement is demonstrated
compared to the traditional Nyquist pulses.

Index Terms—Aerial Base Station, Generalized Frequency
Division Multiplexing (GFDM), Air-to-Ground channel, Symbol
Error Rate (SER), Optimal Altitude, Pulse shaping filters.

I. INTRODUCTION

THE unmanned aerial vehicles (UAVs1), commonly known
as drones, have received a rapid proliferation in various

applications due to their progress in payload capacity and
prolonged battery life [2]. With initial development for military
applications, such as surveillance and reconnaissance, UAVs
have been also extended to civil sectors such as remote
sensing, search and rescue, film making, weather detection,
wildlife, agriculture monitoring and smart/secure lockdown
monitoring in pandemic [3], [4]. Due to the recent advances
in wireless communications, UAVs with low-cost transceivers
mounted on board are envisioned to reform the paradigm
of next generation networks [5], operating as low altitude
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Fig. 1. Wireless cellular network architecture with integrated aerial base
stations (ABSs).

aerial base stations (ABSs) and integrated with current cellular
architecture [6], as shown in Fig. 1. An ABS can provide
on-demand cellular coverage and enhanced data rates to the
ground mobile users in a heterogeneous network (HetNet). In
this regards, the third generation partnership group (3GPP)
provided a technical report, entitled, “Enhanced LTE support
for aerial vehicles” in September 2019 with four crucial
requirements, as discussed with detail in [7]; listed as UAV
traffic requirements; channel modeling to characterize air-
to-ground (A2G) propagation; possibility to reuse the cur-
rent LTE framework for aerial vehicles; and definition of
enhancements in LTE Release 17 to assist UAV network.
An overview of UAV-aided wireless communications, with
three use cases: UAV-aided coverage, UAV-aided relaying, and
UAV-aided information dissemination is provided in [8], [9].
Further, such architectures are optimized for enhancing the
UAVs performance with respect to various quality-of-service
(QoS) parameters such as UAV positioning, cellular coverage,
energy optimization, cooperative communication, and routing
protocols.

The ABS network architecture has a lot of research liter-
ature and experimental measurements available for channel
characterization, power consumption analysis, placement and
mobility optimization, fronthauling and backhauling etc. Here,
we address the relevant literature on the aspects of UAV
channel modeling, cellular coverage, and waveform analysis
based on our motivation and contributions, provided later
in this section. Many researchers have presented different
methods to tackle some of these issues, as discussed in the
following section.
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A. Motivation

Despite the vast literature, to the best of our knowledge,
there are no articles that consider the generalized waveforms
and evaluate their impact on UAV-enabled communication
to support low latency and high data rate requirements of
ground mobile users, apart from our previous contribution
in [1]. In the latter, the symbol-error-rate (SER) analysis was
conducted for Generalized Frequency Division Multiplexing
(GFDM) based A2G communication with variation of UAV
altitude and “Better than Nyquist” (BTN) pulse shaping filters
in urban high rise, urban, and suburban environments. In the
present article, we further supplement our contribution by
adding mobility to the UAV and obtaining an optimal UAV
altitude under minimum SER. Also, we evaluate GFDM and
OFDM SER for static and moving ABS under various Nyquist
and BTN pulse shaping filters.

B. Relevant Works

A comprehensive survey on channel characterization and
modeling for UAV communications, with deterministic and
stochastic approaches and measurement campaigns, is pro-
vided in [10], as a low altitude aerial platform (LAP). The
results of measurement campaigns are described for narrow
and wide-band channel sounders, IEEE 802.11 transceivers,
and cellular connected UAVs operating at either unlicensed
frequency bands or respective bands, according to the consid-
ered technology. Furthermore, measurement results are shown
for A2G and air-to-air (A2A) characterization with large scale
parameters (LSP), such as path loss and shadowing, and
small scale parameters (SSP), such as angular spread, delay
spreads, and Ricean factor. With focus on similar aspects,
reference [11] describes A2A and A2G aeronautical and
UAV channel fading statistics, where aeronautical channels
suggest the flight altitude of the aircraft is much higher
as compared with that of the UAV considered as an LAP.
Furthermore, classification of UAVs, timeline of civil aircrafts
and UAV channel modeling campaigns are provided along
with link budget, channel impulse response, antenna diver-
sity, spatial multiplexing, and multiple-input-multiple-output
(MIMO) characteristics over rural, urban, and over the sea
environments. Another relevant survey is [12], which describes
in detail the impact of the Doppler effect and of the multi-
path channel propagation in different types of environments.
Further, antenna configurations, channel sounding waveforms,
effects of elevation angles are extensively elaborated. Since
A2G and A2A channels are highly sensitive to line-of-sight
(LoS) transmission, the elevation angle plays a significant role
in defining the path loss dependence between the transmitter
and the receiver. As the impact of elevation angle varies with
the antenna directivity, in case of highly directional antennas,
such as those used for communications at millimeter waves,
the alignment of transmitter and receiver beams has negli-
gible effect on communication for varying elevation angle.
However, for omnidirectional or isotropic antennas the effect
of the elevation angle can be significant [12], [13]. In [14],
the ABS network employs both ultra-high frequency (UHF)
and S-bands to provide connectivity to ground users, thus

combining the advantages of small path loss in low frequency
bands with that of large bandwidth in high frequency bands.
Measurements results conducted in rural, suburban, and urban
areas are shown with horizontal distance up to 70 Km from
the airship and altitude up to 950 m. Similarly, [15] reports
measurements carried out at 3.9 GHz in suburban environment
with an omnidirectional antenna installed on a small UAV
flying at an altitude of 40 m. The results of LSP and SSP from
the measurements show reasonable agreement when compared
with ray tracing simulations for the same scenario. There are
several MIMO based UAV channel models, which can be
found in [10]–[12]. However, UAV-MIMO channel is out of
the scope of this paper.

The literature on UAV cellular coverage is broadly cat-
egorized into optimization of various parameters of archi-
tectures with single or multiple ABSs. However, there are
limited contributions with respect to single ABS coverage.
In [16], an analytical analysis is done to maximize the ABS
coverage with an optimal altitude, which is a function of
path loss and statistical parameters of the urban environment.
An LoS path loss model is also derived from the ITU-R
mathematical steps, which is used in this paper. In [17],
the optimal UAV altitude to establish a reliable maximum
coverage is addressed using A2G cooperative communication.
Further under a specific scenario with low transmit power, an
optimal altitude of 1300 m is shown without relaying, which
varies between 700 m to 2000 m with relaying. In [18] the
UAV flying altitude and the antenna beamwidth are jointly
optimized for throughput maximization for downlink multi-
casting, broadcasting, and uplink multiple access multiuser
communication models. Similarly, the joint optimization of
UAV altitude, user association, and transmission direction to
improve the system sum-rate with prior knowledge of ground
users’ location is addressed in [19]. Also, there are many
articles proposing an optimal deployment strategy of multiple
UAVs’ network to maximize the cellular coverage, with the
constraints on downlink coverage probability, UAV placement,
and minimum transmit power by each UAV. However, we do
not refer to those articles in the present paper since we analyze
the parameters of a single ABS.

The research on PHY information transmission in ABS is
limited. Reference [20], provides the candidate waveforms
considering different operating requirements for UAV such as
use of control and non-payload communication channel during
high altitude cruise, taxing and take-off. Further, it also ad-
dresses constraints on UAV size, weight, and power. However,
unlike this work, appropriate A2G channel models are not used
and the UAV altitude is not taken into account by the authors,
thereby discouraging the implementation of new waveforms
for information transmission. Also in [21], the authors analyze
the growth of UAV industry and spectrum requirements and
discuss spectrum sharing as a possible solution to integrate the
UAV network into the current cellular infrastructure. They use
orthogonal frequency division multiplexing (OFDM) as the
most suitable waveform. However, they only consider LoS
A2G links in the channel model and ignore the multipath
propagation effects, which are included in our simulation
results in the range of the same UAV altitudes. In [22], the
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TABLE I
SUMMARY OF SYMBOLS AND THEIR DESCRIPTIONS.

Symbols Descriptions Symbols Descriptions
d Vector of high data-rate stream. h Channel impulse response vector of size Sx1.
N Total number of symbols. H Circulant matrix of size SxS based on h.
K Total number of sub-carriers. w Noise vector of size Sx1.
M Total number of sub-symbols. yeq Equalized signal in time-domain.
(·)T Transpose operator. BMF Modulator matrix of matched filter.
dk,m mth complex sub-symbol transmitted on kth sub-

carrier of the block.
A Vector for pulse shaping filter.

Ts Duration of the sub-symbol. d̂ Estimated data vector.
gk,m[n] Pulse shaping filter. ∆ Roll-off factor of pulse shaping filter.
g [n] Prototype filter. sech Hyperbolic secant function.

mod modulo N operation. arcsech Inverse hyperbolic secant function.
NCP Length of the cyclic prefix. h Height of ABS.
η Path loss exponent. R Radius of an area used for normalizing ABS cell

area.
ϕ Distance between ground receiver and ABS. erf Error function.
ϕ0 Reference distance. Pth Received power threshold of ground users to main-

tain ABS link connectivity.
Xσ Log-normal shadowing. PTX Transmitted power by ABS.
σ Standard deviation on log-normal shadowing. GT Gain of ABS transmitting antenna.
PLLoS Path loss of line-of-sight link. GR Gain of users receiving antenna.
PLNLoS Path loss of non-line-of-sight link. PL0 Reference path loss at distance r0 from the ABS.
PL Average Path loss from LoS and NLoS link. Ω Solid angle.
PLoS Probability of LoS link. d 3D distance or the slant height formed from the

geometry.
ω and ε Parameters of the LoS curve from [16]. A Cell area covered by ABS.
α, β and γ Environment structuring variables as described in

Sec. IV.
n̂ Unit vector.

φ Elevation angle between ABS and ground user. θ Azimuth angle between ABS and ground user.
h [n] Channel impulse response. PRX Received power by the ground user.
hυ υth complex Ricean fading coefficient. Pth Threshold of received power.
x Vector of transmitted signal. r 2D distance between the ABS and the user.

performance of an IEEE 802.11a compatible OFDM for UAV
downlink with large Doppler shift and inter-carrier interference
(ICI) is analyzed. Similarly, the effect of ICI and inter-
symbol interference from multi-path propagation are analyzed
in [23] for OFDM based UAV data link communication in
urban environment. The fast Fourier transform (FFT) size
of OFDM is increased to improve system performance with
synchronization requirements. Realistic end-to-end ray tracing
simulations are shown considering an A2G channel. In [24],
an OFDM waveform design using software defined radio is
considered.

As previously mentioned, only [1] describes the impact of
adopting GFDM in UAV downlink transmission. However,
GFDM has been researched for other use-cases and communi-
cation systems. In [25], the authors implement spread spectrum
GFDM for integrated satellite-terrestrial communication and
conduct performance analysis with SER and peak-to-average-
power-ratio. Similar analysis is done with the same perfor-
mance indicators and spectral efficiency in [26] for underwater
acoustic channels considering different pulse shaping filters.
Further, DC biased Optical GFDM has been proposed for visi-
ble light communication in [27] with performance analysis un-
der double sided clipping. For improving the energy efficiency
of internet-of-things (IOT) devices, radio resource allocation
with wireless information and power transfer scheme has been
addressed for multiuser GFDM system model in [28].

Apart from academic research, industrial experiments were
performed by various companies to provide cellular and inter-

net connectivity through aerial platforms. Qualcomm was able
to demonstrate smooth handovers with zero link failures with
autonomous drone control over LTE network [29]. Facebook
Aquila project conducted successful flights with solar powered
drones to provide internet connectivity in suburban areas at an
altitude of 18− 20 Km with pre-defined waypoints to provide
a cell coverage area of nearly 100 Km [30]. Aquila used free
space optical links to ground access points which further
connected to mobile users using Wi-Fi or LTE technology.
Also, Nokia worked on the project of “Connected UAVs” to
implement a swarm and collision avoidance technology, which
has multiple use cases in smart cities, transportation, search
and rescue, etc [31].

C. Contributions

The main contributions of this paper are as follows:
• We compute an optimal altitude of the ABS for minimum

SER and maximum ABS cell coverage in different envi-
ronments. The optimal altitude is obtained from a static
ABS by performing ray tracing simulations at different
heights. However, the three dimensional propagation en-
vironment makes the channel results site-specific. We
have eliminated this limitation by creating generalized
environments, which are described in Sec. IV. Therefore,
our results can be implemented for any realistic environ-
ments.

• We implement GFDM in our system model for ABS
downlink performance analysis, as being considered the
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most suitable and compatible waveform for LTE, LTE-
A, and LTE-Pro hybrid systems [32] due to its backward
compatibility with the forth generation (4G) frame struc-
ture. We use parameters of low latency communication
(higher sub-carrier spacing and lower symbol duration)
of physical layer (PHY) as given in Table III.

• We use A2G channel parameters for SER calculations
in the GFDM model. We also provide the power delay
profiles for A2G channel in different environments at the
optimal altitude. For obtaining the A2G channel, similar
ray tracing simulations were performed with static and
moving ABS. Further, the distribution of the received
power for ground receivers in different environments is
also computed using the optimal ABS altitude, which
supplements to find the variation of optimal altitude with
cell radius.

• Finally, we implement various BTN pulse shaping filters
in the GFDM transceiver to obtain SER at optimal ABS
altitude and show significant performance gains as com-
pared to Nyquist pulse shaping filters. These simulations
were conducted for both static and moving ABS, to
analyze the effect of Doppler shift on SER.

The rest of the article is organized as follows. In Sec. II,
we address the GFDM system model for LAP A2G chan-
nel model. Section IV, describes the ray tracing simulation
setup developed with various environmental and transceiver
parameters. In Sec. V, we perform a trade-off analysis to
obtain optimal ABS altitude for maximum cell coverage and
minimum SER. We also provide the analytical expression of
optimal altitude, the power delay profile, and the parameters
of the received power distribution of ground users. Further,
in Sec. VI we report various pulse shaping filters and present
results to obtain the minimum SER in different environments.
To the best of our knowledge, this article presents a unique
study of performance analysis for ABS with different optimal
altitude determination criterion, which has not been addressed
in the existing literature. The symbols and the notation used
in this paper are addressed in Table I for quick reference.

II. SYSTEM MODEL

In the context of vehicular communication systems, both
LTE vehicle-to-everything (V2X) [33] and the Wi-Fi based
IEEE 802.11p [34] solutions implement OFDM modulation,
which is characterized by high out-of-band (OOB) emission.
In case of transmission over highly time and frequency selec-
tive fading channels, the performance of OFDM is severely
impaired by channel estimation and synchronization errors.
Therefore, OFDM may not be a desirable waveform for UAV
communications in terms of inefficient usage of time and
frequency resources [35]. Thus far, it is well known that
GFDM is one of the multi-carrier schemes under consideration
for the future networks architectures. Due to its low OOB
emission obtained by circular pulse shaping filter, GFDM
improves the spectral efficiency in short data burst transmis-
sion with ultra low latency scenario [32]. A characteristic of
GFDM is that of being backward compatible with OFDM and
single-carrier frequency division multiple access (SC-FDMA).

Fig. 2. GFDM modulator block diagram [36].

Hence, we implement GFDM in our simulations. In the GFDM
transmission scheme [36], the high data-rate stream in vector
d contains N elements, which can be further decomposed
into low symbol-rate streams of K sub-carriers with M sub-
symbols each, by applying d to the GFDM modulator. As
shown in Fig. 2, the input of the GFDM modulator is given
by

d=[d0, d1, . . . ...,dK−1]
T
,

where
dk=[dk,0, dk,1, . . . ..,dk,M−1]

T
,

with (·)T being the transpose operator and dk,m the mth

complex sub-symbol transmitted on kth sub-carrier of the
block. The total number of symbols is N = KM . The sub-
carrier spacing is equal to 1/Ts and time-period of each data
block dk is MTs, where Ts is sub-symbol duration.

The transmitted signal at the discrete-time index n is given
by

x [n] =

K−1∑
k=0

M−1∑
m=0

dk,mgk,m [n],n= 0, 1, . . . . . .KM − 1, (1)

where gk,m[n] is the corresponding pulse shaping filter

gk,m [n] =g [(n−mK) modN ] e
−j2πkn
K ,

with g [n] representing the prototype filter and mod denot-
ing the modulo N operation, which makes gk,m [n] a circularly
shifted version of gk,0 [n]. The exponential function performs
the frequency shifting operation and n is the sampling index.

By collecting N samples of gk,m[n] in the matrix form, the
vector representation of (1) can be written as

x = A d, (2)

where x = [x[0], x[1], · · ·, x[N − 1]]T , and A =[
g0,0 · · · gK−1,0 g0,1 gK−1,1 g0,M−1 . . . .gK−1,M−1

]
.

Before transmitting over the A2G channel, the cyclic prefix
(CP) of length NCP is added to create the vector given as

x̂ =
[
x (N −NCP : N − 1)

T
, xT
]T
. (3)

The CP length is taken equal as the number of taps in the
channel for our simulations, i.e, 10 as reported in Table II.
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Further, transmission with propagation effects such as path
loss and large scale fading effects over A2G probabilistic
channel [13] can be modeled as

PLLoS(ϕ)[dB]=20 log10

(
4πϕ0

λ

)
+10ηLoS log10(ϕ)+Xσ,LoS,

(4)

PLNLoS(ϕ)[dB]=20log10

(
4πϕ0

λ

)
+10ηNLoS log10(ϕ)+Xσ,NLoS,

(5)

where LoS and NLoS denote line-of-sight and non-LoS,
respectively, with η being the path loss exponent (PLE), PL
representing the path loss, ϕ denoting the distance between
ground receiver and ABS with ϕ0 as the reference distance,
assumed here as ϕ0 = 1. Xσ represents the log-normal
shadowing where σ is the standard deviation which includes
the large scale fading effects. Thus far, the average PL model
can be obtained as

PL(ϕ)[dB] = PLoS · PLLoS(ϕ) + (1− PLoS) · PLNLoS(ϕ), (6)

where PLoS is the LoS probability of the link [16] which is
modeled as

PLoS =
1

1 + ω exp(−ε[φ− ω])
, (7)

being ω and ε the parameters of the LoS curve, depending
on the environment structuring variables, α, β and γ as given
in Sec. IV and φ being the elevation angle between the ABS
and the ground user, depending on the type of antenna used
as shown in Fig. 1. The channel parameters such as PL and
Xσ in different environments and UAV altitudes were obtained
from ray tracing simulations, as will be explained in Sec. IV.
However, this model does not include the small scale fading
effects.

The coefficients of the discrete-time channel impulse re-
sponse h [n] are usually modeled as Ricean for A2G chan-
nel [37]. In fact, h [n] can be derived via stochastic methods
through empirical data, simulations, and geometric analy-
sis [37]. Here, we implement the map-based approach to obtain
the data and model h [n] as

h [n] =

Π−1∑
υ=0

hυδ [n− υ] , (8)

where δ[n] is the Kronecker delta and hυ is the υth complex
Ricean fading coefficient, which is evaluated via ray tracing
channel propagation data as PG = −(PLtot(ϕ)[dB] − (PLoS ·
PLLoS(ϕ) + (1 − PLoS) · PLNLoS(ϕ))) and Π represents the
number of channel taps. PG denotes the channel power gain
for each channel tap and PLtot(ϕ)[dB] shows the total PL
including both shadowing and multipath fading effects. At
the GFDM receiver, we scrutinize the CP length should be
greater than the maximum delay spread of the A2G channel,
i.e, NCP ≥ Π. Under such presumption and after removing
the CP, the received signal vector can be written as

y = Hx+w, (9)

where H denotes the circulant matrix of size N×N based

TABLE II
RECEIVED POWER DELAY PROFILE WITH DELAY IN "NS" AND POWER IN

"DB" AT OPTIMAL ALTITUDE FOR 10 TAP CHANNEL

Suburban scenario Urban scenario Urban High Rise scenario
Delay Power Delay Power Delay Power
2100 -66.44 1450 -23.51 2023 151.09
2530 -51.51 1496 14.35 2131 111.76
2595 25.67 1645 6.98 2324 80.49
2826 -19.77 1703 -56.25 2429 76.64
2836 -57.51 1752 -38.87 2732 92.23
3085 -31.31 1784 -71.12 2745 135.52
3390 22.59 1935 -56.66 2916 115.11
3463 28.87 2055 -41.83 3027 112.40
3870 -48.47 2191 -39.72 3105 82.96
3951 -34.55 2346 -63.87 3138 79.16

0 50 100 150 200 250 300 350 400
n

0

0.05

0.1

0.15

g
 [

n
]

Fsech

Farsech

Dirichlet

R-Farsech

RRC

Xia

Fig. 3. Frequency response of the employed pulse shaping filters.

on h, which is (N×1) vector where first Π elements represent
channel impulse response and the remaining N−Π are null.
Further, w represents the noise vector of size N×1 where
every element is an independent and identically distributed
Gaussian random variable with zero mean and variance σ2

w.
Under the consideration of Matched Filter (MF); the equalized
signal in time domain using the modulator matrix BMF =
(AH A)−1AH , the estimated data vector is

d̂ = BMFyeq = BMFAd + BMFH
−1w (10)

where yeq is the equalized signal in time-domain and MF
receiver maximizes the Signal to Noise-Ratio (SNR) per sub-
carrier.

The spectral efficiency of the GFDM system is affected by
the pulse shaping filter g[n]. Thus, we use BTN pulse shaping
filters as reported in [38] and shown in Fig. 3. A standard
approach for choosing the pulse shaping filter is to sample a
continuous-time impulse response g(t) windowed as

gw (t) =

 gwdown (t) , 1 ≤ t ≤ KTs,
gwup (t) , (MK −K)Ts ≤ t ≤ (MK)Ts,

0, otherwise,
(11)

where gwup(t)=gpulse(t), gwdown(t)=1-gpulse(t) and Ts symbol
interval, being gpulse(t) one of the different types of pulse
shaping filters reported below.

To evaluate the performance of our system, we will address
a trade-off analysis in Sec. V to obtain the optimal altitude
of the UAV. This will be based on the maximum cellular
coverage with A2G probabilistic channel parameters obtained
via ray tracing simulations in Sec. IV and minimum SER with
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GFDM transmission scheme. Moreover, to address the impact
on the SER performance of different BTN pulse shaping filters,
in Sec. III we will show their time-domain expressions and
in Sec. VI we will evaluate the performance by means of
computer simulations.

III. PULSE SHAPING FILTER

In this section, the pulse shaping filters used for perfor-
mance assessment of the GFDM system model are addressed.
Their time-domain expressions are given in the sub-sections
that follows.

A. Root raised cosine (RRC)

For the given roll-off factor ∆, the time domain equation
of the root raised cosine (RRC) filter is given as

gRRC (t) =
√
gRC (t). (12)

where

gRC (t)=

1, |t| ≤ (1−∆)Ts
2 ,

1
2 [1+ cos (πQRC (t))] , (1−∆)Ts

2 < |t| ≤ (1+∆)Ts
2 ,

0, otherwise,
(13)

where QRC (t) is the inner argument of cos, as given in [39].

B. Flipped-hyperbolic secant (Fsech)

As proposed in [38], we implement the BTN pulse shaping
filter, Fsech, which is defined as

g (t)=


1, |t| ≤ (1−∆)Ts

2 ,

1−sech (ρP1Fsech (t)) , (1−∆)Ts
2 < |t| ≤Ts2 ,

sech (ρP2Fsech (t)) , Ts
2 < |t| ≤ (1+∆)Ts

2 ,

0, (1+∆)Ts
2 < |t| ,

(14)

where sech being the hyperbolic secant function, ρ =
ln
(√

3 + 2
)
/∆× Ts

2 , P1Fsech (t) and P2Fsech (t) are the
inner arguments of sech as provided in [39].

C. Flipped-inverse hyperbolic secant (Farcsech)

Furthermore, as proposed in [38], another implemented
BTN pulse shaping filter is Farcsech, which is defined as

g (t)=


1, |t| ≤ (1−∆)Ts

2 ,

arcsech
(

1
ρ P1Farcsech (t)

)
, (1−∆)Ts

2 < |t| ≤Ts2 ,

1−arcsech
(

1
ρ P2Fsech (t)

)
, Ts2 < |t| ≤

(1+∆)Ts
2

0, (1+∆)Ts
2 < |t| ,

(15)

where arcsech represents the inverse sech function,
P1Farcsech (t) and P2Fsech (t) are the inner arguments of
arcsech as provided in [39].

Fig. 4. Urban High Rise Scenario with moving ABS altitude of 600 m in
Wireless InSite.

IV. RAY TRACING SIMULATION SETUP

The customized simulation setup was created to obtain
the attributes of LAPs’ A2G channel model with different
ABS transmitting powers and altitudes. We develop three
environments, i.e. Urban High Rise, Urban, and Suburban,
on 3DS MAX, a Computer-Aided-Design (CAD) software,
according to the parameters provided by ITU-R [40]:
• α = Proportion of field area covered by the infrastructure

to the total area (dimensionless).
• β = Average number of buildings per unit area (building/

sq km).
• γ = Variable to address the height distribution of the

buildings. A Rayleigh distribution is proposed by ITU-
R.

The values of α, β and γ along with other city layout
parameters, such as number of buildings, street width, building
size, and material, are given in [13]. The CAD environments
were of area 2000×2000 m2, from which ray tracing was done
over 1000×1000 m2 at various points. Two set of simulations
were performed - moving and static ABSs. For static ABS, it
was presented at the center of the snapshot, with approximately
33, 000 receivers spread uniformly over the entire surface of
the environment with 5 m spacing from each other. There were
no receivers inside buildings, since outdoor propagation was
studied to support flash crowds. For moving ABS, a circular
trajectory of ABS was considered, as shown in Fig. 4. The
buildings’ height and density were most in Urban High Rise
environment and least in the Suburban. Also, conventional
earth materials and concrete were implemented for terrain
and buildings, respectively. The ray tracing simulation was
conducted in Wireless InSite 3.0.1 [41], a commercial software
radio wave propagation. The accuracy of practical measure-
ments from the software is well defined in [42]. The simu-
lations were performed in the 2.4 GHz unlicensed band with
20 MHz bandwidth for UAV heights up to 2000 m altitude,
with step of 100 m, and transmission power in the range from
18 to 46 dBm, at every 2 dBm interval. The simulations were
conducted in sub-6 GHz as it was preferred in 3GPP [7],
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TABLE III
PARAMETERS FOR GFDM SIMULATION WITH LTE GRID [32]

Parameter Normal mode
Subframe duration 1 ms or 30.720 samples

GFDM symbol duration 66.67 µs or 2048 samples
Subsymbol duration 4.17 µs or 128 samples
Subcarrier spacing 240 KHz

Subcarrier bandwidth 240 KHz
Sampling freq. (clock) 30.72 MHz

Subcarrier spacing factor N 128
Subsymbol spacing K 128
active subcarriers Non 75

Subsymbols per GFDM symbol M 15
GFDM symbols per subframe 15

CP length 4.17 µs or 128 samples

where many field trials were conducted by industries. The
unlicensed spectrum of LTE was adopted due to unavailability
of dedicated spectrum for such ABS architecture. The average
of results from various snapshots at each UAV height were
taken to improve the accuracy of the results. The receivers
outside the buildings were only considered for the simulation.
Figure 4 shows a snapshot of the simulation in Urban High
Rise environment. Further, Table II, refers to the received
power delay profile of ground user at optimal altitude of the
ABS. The antenna on the UAV was taken to be isotropic with
2 dB gain to remove directivity effects on the A2G channel
measurements.

V. TRADE-OFF ANALYSIS FOR OPTIMAL ALTITUDE OF
ABS

In this section, we obtain the optimum altitude of an ABS
by focusing on two different parameters - minimum SER and
maximum ABS cell coverage area. For obtaining the SER,
we use a flexible multi-carrier modulation scheme, GFDM,
where the sub-carriers are individually pulse-shaped in a block
structure of K sub-carriers and M sub-symbols.

A. Optimal Altitude for Maximum Cell Coverage by ABS

Here, we derive a closed-form expression for the optimal
altitude of the ABS. The variation of the cell coverage with
height of ABS is given in Fig. 5(a), where 300 − 400 m
was observed as an optimal altitude for the same ray tracing
simulations, in different environments. Reference [43] con-
siders a generic received power threshold approach, where
the cell coverage depends on the distance between the ABS
and ground users receiving power, greater than the threshold
required to maintain connectivity with the ABS. However,
such an approach is implementable for any power source to
define its boundaries. Therefore, we report a novel equation
using a solid angle approach, taking into account A2G channel,
antenna characteristics, ABS altitude, transmission power, and
elevation angle with respect to users.

Lemma 1: The expression of cell area covered by an ABS
is given by

A =
2h2

R
(sec (φmax)− 1)[(

1− erf(a)

2

)
− 1

2
exp

(
1− 4ab

4b2

)[
erf

(
1

2b
− a
)
− 1

]]
,

(16)

where h is the height of ABS, R is the radius of an area used
for normalizing ABS cell area, erf is the error function, a and
b are substitution parameters, given as

a=
1

σ
√

2
(Pth[dB]−PTX [dB]−GT [dB]−GR[dB]+PL0[dB]

+10η log10(R/r0)) , (17)

b =
10η log10(e)

σ
√

2
, (18)

with Pth is the received power threshold of ground users
to maintain ABS link connectivity, PTX is the transmitted
power by ABS, GT and GR are the transmitting and receiving
antenna gains, respectively, PL is further written as a function
of reference path loss PL0, at distance r0 from the transmitter,
as per close-in reference distance path loss model [44].

Proof: In order to obtain (16) we utilize a solid angle
approach, where solid angle (Ω) [45] is a 3D analogue of
an angle, enclosed by a conical surface at the apex as shown
in Fig. 1. The solid angle subtended by an element on the
ground at ABS is given by

dΩ =
~dA

d2
· n̂, (19)

where d is the 3D distance or the slant height of the cone
formed from the geometry and n̂ is the unit vector from the
origin. From (19) we have dA = sinφd2 dθ dφ, where dθ
and dφ are azimuth and elevation angles, respectively. This
relationship is only based on geometrical aspects. Therefore,
the probability parameter P(PRX(r) ≥ Pth) is added to the
above expression. This produces the actual coverage by the
ABS. This parameter denotes the probability that the received
power by the ground user PRX(r) is greater than Pth and r
is the 2D distance between the ABS and the user. Thus, we
have

dA = sinφd2 P(PRX(r) ≥ Pth) dθ dφ dr. (20)

Thereby, integrating (20) under respective integral limits for
minimum and maximum of each variable and normalizing the
cell coverage, we have

A =
d2

AC

∫ φ=φmax

φ=0

sin φdφ

∫ θ=2π

θ=0

dθ

∫ R

0

P(PRX(r) ≥ Pth)dr,

(21)
where R corresponds to φmax. AC = πR2 is the cell area
used to normalize the final cell coverage A. Thus, from (21)
we have

A =
2πh2

AC

∫ φ=φmax

φ=0

sin φ

cos2 φ
dφ

∫ R

0

P(PRX(r) ≥ Pth)dr.
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TABLE IV
PROBABILITY DISTRIBUTION PARAMETERS OF RECEIVED POWER AT OPTIMAL ALTITUDE

Environment Optimal Altitude [m] Distribution type Distribution parameters
µ (location) σ (scale) ν (degrees of freedom) k (shape)

Suburban 600 t location-scale −94.9520 2.5348 1.7666 -
Urban 400 Extreme Value −75.7450 6.0756 - -

Urban High Rise 600 Generalized Extreme Value −95.5724 15.5478 - −0.5446

Now integration of each part is shown separately as

A =
2πh2

AC
I1I2 (22)

where

I1 =

∫ φ=φmax

φ=0

sin φ

cos2 φ
dφ = sec(φmax)− 1 (23)

and

I2 =

∫ R

0

P(PRX(r) ≥ Pth)dr. (24)

The term I2 can be calculated using Q-function as
P(PRX(r) ≥ Pth) = Q

(
Pth−PRX(r)

σ

)
. The Q-function is

defined in the form of error function as

Q(x) =

∫ ∞
x

1√
2π

exp

(
−y

2

2

)
dy =

1

2

[
1− erf

(
x√
2

)]
.

By replacing x with
(
Pth−PRX(r)

σ

)
,

Q

(
Pth − PRX(r)

σ

)
=

1

2

[
1− erf

(
Pth − PRX(r)√

2σ

)]
.

By further substitution with log-distance path loss model (in
dB), PRX(r) = PTX +GT +GR − PL, and by substituting
for PL, we have,

PRX(r) = PTX +GT +GR −
(
PL0 + 10η log10

(
r

r0

))
,

where PTX is the transmitted power, GT and GR are the
transmitting and receiving antenna gain, respectively, PL is the
path loss which is further written as a function of reference
path loss PL0, at distance r0 from the transmitter, and path
loss exponent η. Therefore, we have

P(PRX(r) ≥ Pth) =
1

2

[
1− erf(

Pth −
[
PTX +GT +GR −

[
PL0 + 10η log10

(
r
r0

)]]
σ
√

2

)]
,

where we substitute the following for clarity

a =

(
Pth − PTX −GT −GR + PL0 + 10η log10(R/r0)

σ
√

2

)

and b =
10η log10(e)

σ
√

2
.

Therefore, we represent

P(PRX(r) ≥ Pth) =
1

2
− 1

2
erf
(
a+ b ln

r

R

)
and

I2 =

∫ R

0

P(PRX(r) ≥ Pth)dr =∫ R

0

1

2
− 1

2
erf
(
a+ b ln

r

R

)
dr. (25)

Replacing t = a+ b ln r
R

I2 =
R

2
− R

2b

∫ a

−∞
exp

(
t− a
b

)
erf(t)dt.

Integrating by parts, we obtain

I2 = R

[(
1− erf(a)

2

)
− 1

2
exp

(
1− 4ab

4b2

)
[
erf

(
1

2b
− a
)
− 1

]
.

Now substituting for I1,I2 and AC in (22), we finally get (16).
From (22), the optimal height of ABS for maximum coverage
can be obtained as dA

dh = 0. Therefore,

h =
R2

4 I1 I2
(26)

h=
R

4 (sec (φmax)−1)
[(

1−erf(a)
2

)
−1

2exp
(

1−4ab
4b2

)[
erf
(

1
2b−a

)
−1
]]

(27)
By implementing the parameters of simulations as given
in [43], the curves of cell coverage with respect to ABS
altitude from (16) were found to be similar. Therefore, we
acknowledge 300 − 400 m as the optimal altitude of ABS in
different environments as shown in Fig 5 (a).

Remark 1: From (26), I1 and I2 cannot be equal to zero,
for the equation to hold. Therefore, analytically from (23),
secφmax−1 6= 0⇒ φmax 6= nπ

2 , where n ⊂ Z (set of integer
values) and since φ is the elevation angle, max(φ) = π

2 . Also
from (24),
P(PRX(r) ≥ Pth) = Q

(
Pth−PRX(r)

σ

)
6= 0.

⇒
(
Pth−PRX(r)

σ

)
≤ 3 or Pth ≤ 3σ + PRX , since

limx≥3Q(x) → 0. Therefore, the threshold received power
should not be greater than received power by three times the
standard deviation of log-normal shadowing for (26) to be
valid.

Remark 2: For mobile operators to use ABS network, they
have to tune the parameters such as Pth, PTX , GT and GR
depending on the SER, height and ABS cell coverage required.
From Fig. 5 (a) and (b), we can infer that at the desired value
of SER, SERth, a corresponding ABS altitude hth can be
obtained, depending on the type of environment and waveform
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Fig. 5. Trade-off between maximum cell coverage and minimum SER to
obtain optimal altitude.

used for transceiver. Therefore, a geometrical coverage area A′

can be obtained excluding channel propagation effects as

A′ = πR′2 = π (hth tan (φmax))
2

where R′ is the radius of ABS cell coverage. From (16), A
can be replaced by A′, and reorganized as follows

A′R

2h2 (sec (φmax)− 1)
=[(

1− erf(a)

2

)
− 1

2
exp

(
1− 4ab

4b2

)[
erf

(
1

2b
− a
)
− 1

]]
(28)

It is important to mention from (17) and (18), if c =
1√
2

(
10η log10(e)− 10η log10

(
R
r0

))
from Lemma 1, it will

imply that a = b, where c = Pth−PTX−GT−GR+PL0√
2

. Also, for
special case R = e × r0, b from (18) can be rewritten in the
form of a defined in (17) as

b = a− c

σ
. (29)
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(b) Urban Environment at ABS altitude of 400 m
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Fig. 6. Received power distribution of ground receivers in different environ-
ments at optimal ABS altitude.

Therefore, (28) can be rewritten as

F (a)− Y = 0, (30)
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where F(a) can be obtained by substituting b from (29) into
Right Hand Side (RHS) of (28) and Y = A′R

2h2(secφmax−1) . We
can easily find the root of (30), which will give us the value
of a. The channel parameters such as η and σ can be obtained
at different altitudes from [13].

B. Optimal Altitude for minimum SER by ABS

In order to obtain the optimal altitude for the minimum SER,
a GFDM transceiver system on an LTE grid was implemented
by considering a low latency scenario. The parameters of the
simulation have been taken from [32], and are provided in
Table III. Reference [32] also describes the implementation
of GFDM for a low latency scenario, where the main ap-
proach is to reduce the GFDM symbol duration and add a
single cyclic prefix for the M sub-symbols. Here, the GFDM
symbol duration was kept to 1 ms subframe duration. Based
on these parameters, SER simulations were carried out for
Suburban, Urban, and Urban High Rise environments to obtain
optimal ABS altitude, with different power delay profiles
at different altitudes. These profiles were obtained from ray
tracing simulations for probabilistic A2G LoS channel model.
We consider a Ricean fading model since LoS probability
increases with increase in ABS altitude [16]. In Fig. 5(b),
we plot the SER versus the ABS altitude for the considered
environments as discrete values and obtain a curve fit to show
the variation. We observe less variation of SER with altitude
for Suburban scenario as compared to Urban and Urban High
rise scenarios, which is probably due to the higher LoS
probability in Suburban than Urban and Urban High Rise [16].
This implies that the ground users would receive an LoS
ray component of the Ricean channel with higher probability,
which also increases with the ABS altitude, thereby producing
lower variation in SER with ABS height. Conversely, in Urban
and Urban High Rise scenarios, the SER variation is high due
to low LoS probability, which tend to increase the effect of
scattered components of multipath. Also the range in y-axis is
limited in Fig. 5(b) due to the frequency-flat fading scenario
observed for ABS. As can be seen from Fig. 5(b), the optimal
altitude for minimum SER is as follows: Suburban - 800 m,
Urban - 400 m and Urban high Rise - 800 m.

C. Optimal Altitude with varying Cell Radius for different
Received Power Thresholds

As observed in Secs. V-A and V-B, the optimal altitude
of ABS has to be a trade-off for maximum coverage and
minimum SER which we report in Table IV. In this section
we address the probability distributions of the received power
of ground users at optimal altitude of ABS, which are given in
Fig. 6. The received power has been obtained from ray tracing
simulations as described in Sec. IV. The received power was
fitted with several probability distributions such as Normal,
Nakagami, Rayleigh, Ricean, Exponential, Beta, Birnbaum-
Saunders, Extreme value, Generalized extreme value, Gamma,
t location-scale, Weibull, Logistic, Gaussian etc. From all these
distributions the closest and best fit distribution is shown in
Fig. 6. The parameters of the distributions are provided in
Table IV. With such parameters, the received power can be

extracted as random values without performing ray tracing
simulations or practical measurements. These values were used
to obtain the variation of optimal ABS altitude h with respect
to cell radius R for all considered environments as shown in
Fig. 7. The behavior of the curves expects to follow (27),
where h depends on R and substitution parameter a, which
also depends on R. However, [16] shows a linear variation of
the optimal LAP altitude with the radius of the cell when
constrained on maximum allowed path loss, which is the
threshold value for maintaining the link connectivity. This is
different from our approach since we consider minimum SER
and maximum cell coverage constraints for obtaining optimal
altitude. Here, we also show the variation with received power
threshold of ground users. We observe, for higher thresholds, a
high optimal altitude is required to cover the same cell radius
with minimum SER. Also, the optimal altitudes for Suburban
and Urban High Rise are higher than Urban, as shown in Fig. 7
and Table IV.

In this section, the considered trade-off is between ABS
cellular coverage and SER in GFDM transmission, as the
fundamental key performance indicators of our system model.
However, to improve it further, more complex optimization
problems can be developed by including other parameters,
which are described as a part of our future work in Sec. VII.

VI. PERFORMANCE EVALUATION WITH “BETTER THAN
NYQUIST” PULSE SHAPING FILTERS

The choice of pulse shaping filters strongly affect the spec-
tral properties of a signal. The most commonly used Nyquist
pulse is raised cosine pulse. Here, we have implemented BTN
pulses such as Flipped-hyperbolic secant (Fsech), Flipped-
inverse hyperbolic secant (Farcsech) and Reverse-Farcsech
(R-Farcsech) pulse shaping filters which enables GFDM to
achieve better SER performance as compared to raised-cosine
pulse [39]. These filters were proposed in [46] to improve
sensitivity to timing jitter in the context of single-carrier
modulation. We compare results of these filters with Root-
raised cosine and Xia pulses.

Figure 8 shows the SER analysis using the BTN filters
for the three considered environments at optimal altitude
of static ABS. We use the power delay profile given in
Table II and Ricean factors given in [13], as A2G channel
parameters for this simulation. We observe that ABS downlink
at 2.4 GHz frequency band, follows a frequency-flat fading
channel. Also, SER was found to be lower for all SNR
values, for ABS downlink communication as compared to
terrestrial one [38]. From Fig. 8, we also observe that SER is
higher for Suburban environment, lower for Urban and least
for Urban High Rise environment, for optimal altitude. This
can also be addressed from Fig. 5(b). This is probably due
to higher optimal altitude in Suburban scenario than Urban
environments, chosen according to two different criterion as
mentioned in previous sections. Therefore, this addresses for
an effective use of ABS in Urban environments. We also
address the results with moving ABS with maximum Doppler
shift of 3,704 Hz, as shown in Fig. 10, which implies the
ABS is cruising with very high speed relative to the ground
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Fig. 7. Optimal ABS altitude variation with cell radius.

users. With such fast mobility, the coherence time of the
multipath channel is expected to decrease and Doppler shift
to increase. However, we did not observe large variations in
moving ABS as compared to static ABS due to frequency-
flat fading scenario, although SER values were found to be
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Fig. 10. GFDM SER analysis for moving ABS.

higher. Further, we implement a circular trajectory of the
ABS to achieve uniformity in its motion, to eradicate any
possible inaccuracy in the received power of the ground users
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in ray tracing simulations due to sharp trajectory deviations.
Also, homogeneity of ITU-R specified environments ensure
the certainty of the results. Therefore, even with complex
trajectories, similar channel measurements and SER results are
expected.

It is possible to obtain the OFDM waveform from the
GFDM one, by setting the number of sub-carriers to K = 64
and the number of sub-symbols to M = 1 with Dirichlet pulse
shaping filter. We have performed simulations with static and
moving ABS with the same maximum Doppler shift consid-
ered in GFDM system, as shown in Fig. 9. The simulation
parameters were taken from [22], considering the maximum
relative movement between the ABS and user. We observe that
a similar behavior was obtained as reported in [22] with certain
deviation since we use realistic A2G channel parameters
obtained from ray tracing. This also provides insight to the
validation of our OFDM and GFDM simulations. It is also
significant to scrutinize that Wi-Fi also operates at 2.4 GHz
carrier frequency. However, Wi-Fi based PHY is challenging
to provide reliability in vehicular communication [35]. Also,
as shown in [35], GFDM performs better than OFDM with
Wi-Fi parameters due to higher throughput and better spectral
and temporal characteristics. This implies GFDM has a better
performance than OFDM at 2.4 GHz band.

To summarize, we enhance the performance of ABS down-
link communication system by addressing its optimal altitude
for maximum coverage and minimum SER with implemen-
tation of GFDM waveform and BTN pulse shaping filters.
Our solution can be implemented in real-time, where mobile
operators can deploy ABS network, either as independent
ABSs or to support the terrestrial network, with defined alti-
tudes, waveforms, and suitable pulse-shaping to optimize the
performance based on different data requirements of ground
users. The main advantage is the possibility of relaying on
closed-form expressions of ABS cellular coverage, BTN pulse-
shaping filters, GFDM transmission scheme with simulation
and channel parameters.

VII. CONCLUSION AND FUTURE WORK

In this article, we have shown the Symbol Error Rate
(SER) analysis of LTE-Compatible GFDM, under low-latency
scenario with GFDM symbol duration of 66.67 µs and “Better
than Nyquist” pulse shaping filters for a static and moving
Aerial Base Station (ABS) providing cellular connectivity to
ground users. We also address the SER results for OFDM.
We have performed these simulations in different generalized
environments- Suburban, Urban, and Urban High Rise, de-
veloped according to ITU-R parameters, at optimal altitude
of ABS. The optimal altitude was defined based on two
criterion’s’- maximum cell coverage and minimum SER. Also,
Air-to-Ground channel parameters were used to obtain SER
simulation results, obtained from ray tracing results on a com-
mercial radio propagation software. The power delay profile
and probability distribution parameters of received power were
also provided at the optimal altitude to reproduce the entire
set of results without redoing the whole stack of operations.
This also supplemented to show the variation of optimal

altitude with cell area. For future works, we resort to hardware
implementation for quantitative analysis to generate proof
of concepts for algorithms implemented in this article. We
also realise the importance to include other possible tradeoffs
and their dependency on metrics such as energy efficiency,
millimeter wave transmission, and directional antenna models
to define a more complex optimization problem to find the
ABS optimal altitude. Further, we plan to evaluate the features
of other waveforms such as Universal Filtered Multi-Carrier
(UFMC) and Filter Bank Multi-carrier (FBMC) modulations
for various UAV use-case scenarios in heterogeneous network.
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