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Abstract 18 

The North China Plain (NCP) is a major agricultural region, producing 45% of China’s maize. It is also 19 

vital to the Chinese economy, encompassing the Beijing-Tianjin-Hebei megacity region. Anthropogenic 20 

factors increasingly impact crop yields on the NCP, and globally. Particulate matter (PM) pollution is a 21 

significant problem in this region, where annual average PM concentrations over three times the Chinese 22 

national air quality standard were recorded for the Beijing-Tianjin-Hebei megacity region between 2013-23 

18. PM absorbs light, reducing total shortwave radiation (SW), thereby limiting plant productivity. 24 

However, PM also scatters incoming SW, increasing the diffuse fraction, which has been shown to 25 

increase growth and biomass assimilation.  26 
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 27 

The Joint UK Land Environment Simulator (JULES) crop model was used to assess the net impact of 28 

these competing changes in light on NCP maize yields. In contrast to some previous analyses, we find 29 

that PM-associated decreases in SW outweigh any positive impact on yield from an increasing proportion 30 

of diffuse radiation.  31 

 32 

Furthermore, carbon allocation to different portions of the growing cropchanges during the development 33 

cycle.  We find significant differences between the effect on final yield of identical changes to diffuse 34 

fraction and total SW occurring during different development stages. The greatest simulated yield gains 35 

from increased SW and reduced diffuse fraction, consistent with reductions in PM, are observed during 36 

the early reproductive stage of development (July-August), when the simulated gain of yield is as much 37 

as 12.9% more than in other periods.  38 

 39 

To further assess the impact of PM-linked changes in SW and diffuse fraction on NCP crop yields, 40 

radiation profiles from different city regions were then applied across the NCP. The changes in SW 41 

associated with these city regions could increase maize yields across China by ~8 Mt. This would 42 

completely offset China’s annual maize imports, increasing both national and global food security. 43 

 44 

1. Introduction  45 

The North China Plain (NCP) is China’s largest agricultural region, accounting for 61% of the country’s 46 

wheat and 45% of its maize production (Yang et al. 2015). Today China is a major importer of wheat and 47 

maize (FAOSTAT, 2020). Increasing production in the NCP is therefore not only important for local farm 48 

economies, but also in reducing pressures on world grain markets. Maize production has risen twelvefold 49 

in the NCP over the last 6 decades(Li, 2009) and maize now comprises China’s most important feedstock 50 

for livestock production (Shihuang and Kaijian, 2010).  51 

 52 

Since the 1980s, climate change has begun to impact maize and wheat yields due to rising average 53 

temperature, only ameliorated by adoption of new crop varieties and better agronomic practices by 54 

producers (Liu YA et al., 2010, Han D. et al. 2018). The NCP includes the megacity region of Beijing-55 
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Tianjin-Hebei. Air pollution resulting from transportation, energy generation and industry in these major 56 

populations centres is known to affect crop yields (Feng et al., 2015; Masutomi et al., 2018)⁠. One 57 

important component of air pollution is particulate matter (PM), which persists at high concentrations over 58 

the NCP. Annual average concentrations of PM2.5, i.e. particles with diameter ≤ 2.5 μm, of 108 ± 34 μg 59 

m-3 were recorded in Beijing-Tianjin-Hebei for 2013-18 (Zhai et al., 2019)⁠. This far exceeds the 60 

international and national air quality guidelines for an average mean concentration of 10 μg/m-3 (WHO, 61 

2015)⁠ and 35 μg/m-3 (China: Air Quality Standards | Transport Policy, 2013) respectively. Such high 62 

levels of PM2.5 strongly affect both the intensity of short-wave (SW) radiation and the ratio of diffuse to 63 

direct SW radiation reaching the Earth’s surface. PM occurs at high concentrations, not just in the NCP, 64 

but in many key crop growing regions around the world, particularly in developing nations. For example, 65 

the Indo-Gangetic Plain produces ~50% of India’s food (Dhillon et al, 2010, Timsina J, 2012). However, 66 

PM pollution in this region can reach 100 μg m-3 (Ojha N., et al. 2020), and is predicted to significantly 67 

reduce crop yields (Mina U. et al. 2018). The global nature of PM pollution, and its ubiquity and increase 68 

in key areas of global crop production has implications for global food security, making it critical to better 69 

quantify its impacts on crop yields.  70 

 71 

PM is a heterogeneous mix of airborne particles, with highly variable chemical and physical properties. 72 

The particle composition, size distribution and altitude of aerosol govern how it interacts with SW 73 

radiation. For example, highly light absorbing particles, such as soot and black carbon from combustion of 74 

coal for heat in the winter, directly reduce total SW levels at the Earth’s surface (Moosmüller, Chakrabarty 75 

and Arnott, 2009; Cohan et al., 2002)⁠. 76 

 77 

For well managed and watered crops, there is a linear relationship between absorbed SW radiation and 78 

crop biomass accumulation (Monteith, 1977; Dohleman & Long, 2009); any reduction in incoming SW will 79 

therefore lower production. Reductions, such as those caused by PM, are exacerbated in so-called haze 80 

events, where atmospheric inversion results in an accumulation of pollutant at low altitude, strongly 81 

reducing surface SW (Aziz et al., 2019). Such haze events are a key cause of reduced visibility and 82 

surface SW in the North China Plains (Z. An et al., 2019; Han et al., 2012; Guo et al., 2014). Although 83 

most common in December and January, 5-6 haze days per month are also observed from April to 84 

September, the main period of maize production (Chen & Wang, 2015).  85 
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 86 

Other PM aerosol components such as sulphate are more reflective (Ramanathan et al., 2001)⁠, 87 

scattering light instead of absorbing it. Intercepted light may be scattered in all directions by PM, both 88 

reducing SW reaching the surface and altering its angular distribution, increasing the proportion which is 89 

diffuse (Huang et al., 2014). Well-managed crops will typically form about a dense canopy of 5-7 m2 of 90 

leaves per m2 of ground. Direct beam sunlight is therefore largely intercepted by the uppermost leaves of 91 

crop plants, with most leaves below in shade (Wickens and Horn, 1972). In full sunlight, upper leaves 92 

intercept more light than they can use in photosynthesis, while photosynthesis is light-limited in the lower 93 

canopy (Ort et al. 2015)⁠. Diffuse SW reaches the surface from all angles of the hemisphere, enabling it 94 

to penetrate deeper into crop canopies and allowing increased photosynthesis by the light-limited lower 95 

leaves. This more even distribution of radiation through the canopy under high levels of diffuse light 96 

reduces the risk of oversaturation and thus photo-inhibition in the upper canopy. This redistribution of light 97 

to other canopy layers increases radiation use efficiency (RUE) for the plant overall, improving the rates 98 

of carbon fixation, net canopy photosynthesis, and hence, gross primary production (GPP) in forest 99 

ecosystems (Roderick et al., 2001; Niyogi et al., 2004; Kanniah et al., 2012; Rap et al., 2015)⁠ and is 100 

known as “diffuse light fertilisation” (Gu et al., 2002). 101 

 102 

Variations in PM composition mean that changes in PM concentration do not strictly map to changes in 103 

surface radiation. This is compounded by variations in PM size distribution and meteorology which further 104 

affect how PM interacts with incoming radiation. Evidence for this can be seen in the widely fluctuating 105 

PM concentration over the year on the NCP. As PM concentration increases during the winter and 106 

declines in the summer, one would perhaps expect a relatively simple relationship where increased PM 107 

concentration directly maps to reduced radiation intensity at the earth’s surface. However, aerosol optical 108 

depth (AOD), a key measure of the impact of total column aerosol on incoming radiation, peaks instead in 109 

late summer (Qu, Wang, Zhang, Sheng, & Wang, 2016) due to the prevailing meteorological conditions at 110 

that time of year. Furthermore in winter, PM composition becomes increasingly black and organic carbon 111 

heavy, as combustion based power stations increasingly burn coal to provide heating during the winter 112 

months. This provides a marked difference in PM composition profile to the summer months when highly 113 

reflective nitrate aerosols dominate (Qu, Wang, Zhang, Sheng, & Wang, 2016)⁠, leading to different 114 

impacts on surface SW. These factors limit the power of PM concentration alone to explain changes in 115 
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surface radiation. 116 

 117 

Both field (Alton, North, & Los, 2007; Gu et al., 2002; Niyogi et al., 2004; Strada, Unger, & Yue, 2015)⁠ 118 

and modelling (Mercado et al., 2009; Rap et al., 2015; Roderick, Farquhar, Berry, & Noble, 2001; Xie et 119 

al., 2020)⁠ studies have attempted to quantify the impacts of PM on vegetation, providing strong 120 

evidence to support an increase in forest productivity, through increased surface diffuse light levels. A 121 

smaller number of studies suggest a similar result for crops (Cheng et al., 2015; Gu et al., 2002; Li & 122 

Yang, 2015)⁠. However, the magnitude of the benefit of increased proportions of diffuse light to 123 

croplands is disputed. While some studies suggest increased diffuse fraction due to air pollution (Cheng 124 

et al., 2015; Gu et al., 2002; Wang et al., 2015)⁠ increases gross primary production of crops, others 125 

have found a reduction in predicted yields (Alton, 2008; Strada et al., 2015)⁠. Greenwald et al. (2006), for 126 

example, predicted that crop yields may be reduced in a number of locations worldwide due to reductions 127 

in total radiation offsetting gains in RUE from a higher diffuse fraction.  128 

 129 

A range of factors may account for the varying results in the studies outlined above, and these merit 130 

further investigation. One example is that the timing of changes in total SW and diffuse fraction relative to 131 

crop development stage may impact yields. Crops progress through a series of characteristic 132 

developmental stages; from sowing, to vegetative growth, to seed filling to harvest, with carbon allocated 133 

in different proportions to different plant functions at each stage. Hence interventions to curb pollution, 134 

including PM, may be more or less impactful at different times within the crop life cycle. 135 

 136 

Here, the Joint UK Land Environment Simulator-crop (JULES-crop) model is used to explore the effect of 137 

PM-mediated changes in light on maize yields across the NCP, and the sensitivity of the crops to the 138 

timing of these changes. As discussed above, the interaction of PM with surface radiation is complex, 139 

with concentration, composition and size distribution of the heterogenous mixture of PM particles all 140 

contributing to the eventual impacts of PM on surface SW. We therefore study the effects of changes in 141 

radiation directly, rather than considering fixed changes in PM concentration to determine how PM-142 

associated changes in total magnitude and temporal variability of SW (light intensity) and diffuse fraction 143 

affect maize yields.  144 

 145 
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Novelly, we conduct a range of sensitivity tests to explore the response of simulated maize yield to 146 

changes in total and diffuse SW, such as could result from policy interventions to reduce PM, at different 147 

crop development stages. This facilitates understanding of how PM pollution affects yield differently when 148 

it occurs at different development stages of our modelled crop. We then use time series of total SW and 149 

diffuse fraction from other large global cities with differing PM pollution to investigate the impacts of 150 

potential reductions in PM in the Beijing-Tianjin-Hebei region. Measurements of aerosol optical depth 151 

(AOD) and total cloud cover are then used to demonstrate that changes in diffuse fraction and total SW 152 

are linked to changes in PM. Furthermore, whilst previous authors (e.g. Greenwald et al., 2006)⁠ have 153 

focused on cloud interactions with light, we use an average climatology to remove interannual variation in 154 

cloud cover, allowing us to focus on the influence of PM under more stable cloud conditions. We achieve 155 

this by manipulating SW and diffuse fraction, which we have shown to be strongly linked to aerosol optical 156 

depth and therefore PM pollution in this region.  157 

 158 

This paper therefore aims to explore how radiation profiles associed with levels of PM found in other city 159 

regions may affect crop yields on the NCP, and to establish how targeted reductions in PM must take 160 

account of the crop life cycle to achieve improvements in yield. Exploration of the developmental state 161 

dependence of crop responses to PM linked radiation changes is key to ameliorating the impacts of PM 162 

on crop production.  163 

  164 

2. Materials and Methods  165 

2.1 Model Set-Up 166 

JULES-crop has been demonstrated to accurately simulate maize yields at several well-characterized 167 

sites in the USA (Williams et al., 2017)⁠, although it has not previously been tested in the NCP. The 168 

study domain (31.0 ˚N, 113.0 ˚E to 43.0 ˚N, 123.0 ˚E) spans a majority of the NCP including the Beijing-169 

Tianjin-Hebei region. The MODIS AQUA-TERRA land cover product MCD12C1 was used to determine 170 

the cropped area of the NCP, which we assumed to be entirely given over to the major summer crop of 171 

this region, maize. JULES-crop, within the Joint UK Land Environment Simulator (JULES) model version 172 

5.3 was used to simulate yields across the cropped area (Best et al., 2011; Clark et al., 2011; Osborne et 173 
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al., 2015). We used the JULES-crop maize parameterization (Williams et al., 2017) with sowing dates 174 

taken from Sacks et al. (2010). Crops were assumed to be well irrigated in all simulations. Following the 175 

methodologies of Osborne et al. (2015),Williams et al. (2017) and Kimball et al. 2019, we convert the 176 

carbon allocated to the harvestable portion of the simulated maize crop to yield (dry t ha-1) . 177 

 178 

Meteorological data of SW, downward long wave radiation, 2-m air temperature, precipitation, specific 179 

humidity, surface pressure and wind speed were taken from ERA-5 (European Reanalysis 5th Generation) 180 

for 1981-2017 at an hourly timestep and 0.25° spatial resolution (Copernicus Climate Change Service 181 

(C3S), 2017). Diffuse radiation was calculated for each grid cell as the difference between the total and 182 

the direct incoming SW radiation at the surface as given by ERA-5. Just over 45% the grid-cells in the 183 

domain were assigned as maize using MODIS-terra land fraction products as given by ERA-5. 184 

 185 

2.2 BASE Simulation  186 

A climatological average driving dataset was obtained by calculating the mean of each meteorological 187 

variable of the ERA-5 driving data at an hourly timestep for each grid cell for 1981-2017. This was used to 188 

generate our baseline simulation (BASE) of maize production across the region. This average climatology 189 

reduces interannual variability in SW and diffuse fraction, and allows us to focus on average variations in 190 

SW and diffuse fraction and their relationship with one another. Perturbations are thereby compared to a 191 

more stable average baseline. Linear and multi-linear regression were used to derive the relationships 192 

between simulated yields and meteorological variables, and determine the relationships of diffuse fraction 193 

and total SW radiation with one another and with simulated yield. 194 

 195 

To assess whether increased diffuse fraction increases maize yield across the NCP independent of 196 

changes in SW (as seen in previous studies; Rap et al., 2015; Roderick, Farquhar, Berry, & Noble, 197 

2001b; Wickens & Horn, 1972), sensitivity tests were conducted in which the diffuse fraction was set to a 198 

constant value throughout the year, ranging from 0 and 1, in increments of 0.1. The above sensitivity tests 199 

and baseline results were used to generate relationships between total SW, diffuse fraction and maize 200 

yield. These calculated relationships (Figure 1) greatly informed the experiments detailed below.  201 
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2.3 Driving Factors for Changes in SW and Diffuse Fraction 202 

PM acts on incoming radiation in numerous and complex ways. Changes in concentration alone cannot 203 

be used as predictors of changes in radiation. Instead, the influence of PM speciation, size distribution, 204 

hygroscopicity and altitude, as well as meteorology must be considered both individually and in 205 

combination. Aerosol Optical Depth (AOD) on the other hand, has been demonstrated to be strongly 206 

linked to PM concentration (van Donkelaar, Martin, & Park, 2006)⁠, whilst also incorporating the 207 

interaction of PM and meteorology, thus providing a better indicator of the net impact of PM on surface 208 

radiation where concentration alone may lead to erroneous conclusions (Qu, Wang, Zhang, Sheng, & 209 

Wang, 2016).  AOD provides a measure of total column PM and its impact upon surface radiation (van 210 

Donkelaar et al., 2013; Just et al., 2015; Qu et al., 2016; Qin et al., 2018)⁠. Least squares multilinear 211 

regression was applied (using the SKLearn python toolkit version 0.23.2) to AOD and total cloud cover 212 

(TCC), taken from the C3S meteorological datasets, to assess whether observed changes in SW and 213 

diffuse fraction on the NCP are driven by PM, cloud or both. The inclusion of TCC accounts for the 214 

impacts of PM on cloud formation, important given the contribution made by PM to cloud condensation, 215 

and thereby indirectly on incoming radiation. Our regression analysis was conducted using growing 216 

season average grid cell values of AOD, TCC, mean hourly daytime diffuse fraction for the growing 217 

season, mean hourly daytime downward SW radiation for the growing season, and final yield for the 218 

years 1997-2010.  219 

2.4 Sensitivity at Different Development Stages 220 

Varying meteorology and PM composition over the course of the year alter average total SW and diffuse 221 

fraction profiles across the NCP. The maize crop progresses through a series of development stages, 222 

characterised by different rates of photosynthesis and carbon allocation between roots, stems, leaves and 223 

reproductive structures. The impact of varying profiles of SW and diffuse fraction can therefore affect crop 224 

yields differently depending on when during the season perturbations to light occur. We conducted a 225 

range of sensitivity tests to assess how the timing of changes to the diffuse fraction and intensity of light 226 

relative to crop development stage affects final yield.  227 

 228 

Post emergence, the crop develops through the vegetative stage and reproductive stage, each 229 
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subdivided into early and late in JULES, giving four stages overall. Increased levels of PM during each 230 

development stage were simulated by elevating the diffuse fraction of our BASE simulation by 50% for a 231 

given stage, and decreased levels of PM by reducing diffuse fraction by 50%. The relationship shown in 232 

Figure 1. was then used to deduce the total SW for each timestep consistent with the altered diffuse 233 

fraction. We refer to total SW modified in this manner as “diffuse-corrected” SW. All other driving variables 234 

remain unchanged from BASE. The statistical significance of yield results were determined by related t-235 

test using the SciPy Stats module ttest_rel function across the cropped area of the model domain. 236 

2.5 Impact of City Radiation Profiles on Yields 237 

To investigate timing effects further, and as a proxy for potential future changes in PM concentration and 238 

composition, we studied the impacts on NCP crop yields of light profiles from the regions surrounding four 239 

global cities (New York, Madrid, Delhi, and Cairo), and one city in the NCP (Beijing). 240 

 241 

These cities were chosen for their differing PM profiles and locations. Beijing experiences higher PM2.5 242 

pollution (108 ± 34 μg m-3 for 2013-18, Zhai et al., 2019) than Madrid (12.1 μg m-3 for the urban 243 

background from 2004-2009, Karanasiou et al., 2014) and New York (12.3 μg m-3 for the period 2005-244 

2016 (Peltier et al., 2011)), but is located at a comparable latitude (Beijing: 39.9 ºN; New York: 40.7 ºN; 245 

Madrid: 40.4 ºN). Conversely, Delhi experiences seasonally higher levels of PM pollution than Beijing 246 

(varying from a minimum concentration of 46 μg m-3 to a maximum of 279 μg m-3 over the year; Gorai. A, 247 

et al. 2018) but is located at a considerably lower latitude than Beijing. We therefore use Cairo (30.0 ºN) 248 

as a comparator for Delhi (28.7 ºN) due to its similar latitude but lower PM pollution (51 μg m-3 in 2013, 249 

Boman et al., 2013), serving to illustrate how the meteorology and pollution profiles over Delhi city region 250 

limit the potential surface SW in the region. Whilst the levels of PM in New York and Madrid are 251 

substantially lower than those for Beijing and the NCP, large scale PM reductions across the NCP are 252 

likely and possible given the trajectory of PM concentrations over the last 7 years. We therefore present 253 

this city analysis as a way to explore how SW and diffuse fraction and therefore crop yields could change 254 

in the near future. They should be seen as an exploration of possibility space in terms of the outcomes of 255 

PM linked changes to SW and diffuse fraction, not an explicit prediction for what the future will definitively 256 

look like. 257 

 258 
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Average hourly diffuse fractions (taken from the 37-year ERA-5 dataset) from each city, were used to 259 

drive JULES-Crop over the model domain. The resulting yields on the model domain using SW and 260 

diffuse fraction profiles from four global city regions were compared to those obtained using the diffuse 261 

fraction for Beijing, and to our climatological average BASE case. The climatological average total SW for 262 

each city region was then applied in conjunction with the climatological average diffuse fraction time 263 

series to simulate the net effects of these different city PM regimes on NCP maize yields.  264 

 265 

To disentangle the opposing effects of changes in SW and diffuse fraction on yield, we ran two further 266 

simulations for each city to demonstrate: 1) the levels of SW that would be found to occur in each city 267 

given the diffuse fraction at that time in the NCP, 2) the potential impacts of an altered relationship 268 

between SW and diffuse fraction, which can be partially attributed to changing levels of PM. In the first 269 

simulation, the mean diffuse fractions for the NCP domain were applied to each grid cell (as per BASE), 270 

with the total SW for that grid cell, derived from the relationship between diffuse and total SW for that city 271 

(named CITY_mod_SW simulations). In the second simulation, mean total SW for the NCP domain was 272 

applied to each grid cell (as per BASE), and the diffuse fraction for that grid cell was derived from the 273 

relationship between diffuse and total SW for that city (CITY_mod_Diff simulations). These simulations 274 

superimpose the relationship between SW and diffuse fraction in other city regions over the NCP. As this 275 

relationship between total and diffuse SW is strongly linked to levels of cloud and aerosol, if can be 276 

considered a proxy to describe the effects of changing profiles of SW and diffuse fraction over the year on 277 

the NCP. 278 

3. Results 279 

3.1 Aerosol Optical Depth (AOD) Results 280 

We found the strongest correlation between changes in AOD and total cloud cover (TCC) with diffuse 281 

fraction (R2=0.90), whilst changes in AOD and TCC explained just under 40% of variation in total SW. 282 

AOD alone was found to explain 80% of changes in diffuse fraction but only 15% of changes in total SW. 283 

This suggests that of the variability in SW resulting from changes to cloud and aerosol, an average of 284 

38% comes from aerosol alone (R2 for aerosol alone divided by R2 for aerosol + total cloud cover). We 285 

conclude that whilst the observed changes in light intensity in the domain are mainly driven by cloud 286 
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cover, changes to AOD, linked to PM pollution, make a non-negligible contribution to light intensity, and a 287 

large contribution to changes in diffuse fraction. Further sensitivity tests presented here, in which we 288 

modify light intensity (SW) and/or diffuse fraction, should therefore be seen as an exploration of potential 289 

changes in maize yields if PM concentrations were to change across the NCP. 290 

3.2 The BASE Simulation 291 

3.2.1 Relationships  292 

We found light to be the most critical meteorological variable for predicting simulated maize yield in our 293 

baseline simulation (BASE). Yield was positively correlated with mean hourly SW such that a 10% 294 

increase in light intensity correlated with an 8% increase in yield (R2=0.54, Figure 1.i). However, we found 295 

yield to be negatively correlated with mean hourly diffuse fraction with a 10% increase in diffuse light 296 

reducing yield by 9% (R2=0.49, Figure 1.ii). While this may initially appear counterintuitive, it is driven by 297 

the strong negative logarithmic relationship between grid cell average total SW and diffuse fraction 298 

(R2=0.85) for the domain during the growing season (Figure 1.iii.), therefore reproducing the negative 299 

impacts of reduced SW from increased PM cover reported in previous studies (Gu, Wang, Zhuang, & 300 

Han, 2018; Zhou, Chen, & Tian, 2018). A 10% increase in the mean growing season diffuse fraction (i.e. 301 

from 0.49 to 0.54) on the NCP corresponds to a reduction in average SW of 72 W m-2.  302 

 303 

Figure 1) i) Maize yield versus BASE average hourly SW in grid cells with saturated soil, ii) BASE average hourly diffuse fraction vs 304 

yield in saturated soil grid cells iii) BASE SW vs diffuse fraction for all grid-cells. 305 

The relationship between diffuse fraction and yield was non-linear for constant total SW. Increasing 306 

diffuse fraction by 10% relative to the growing season mean increased simulated maize yield by 0.007 t 307 

ha-1, while a 10% decrease reduced yield by 0.035 t ha-1.These changes, associated with changing 308 

diffuse fraction, represent less than a 0.1% change in yield, whereas a 10% increase in average total SW 309 
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led to a yield gain of 1.05 t ha-1, a change 150 times greater. We conclude therefore that the diffuse light 310 

fertilisation effect is insignificant in comparison to the effects of reducing total SW. 311 

3.2.2 Yields  312 

The average yield predicted across the NCP was 11.9 ± 0.5 t ha-1 , using the 37-year climatological 313 

average driving data derived from ERA-5. In 2011, the recorded yield for maize in China was 5.75 t ha-1 314 

(Hu and Zimmer, 2013), just under half the modelled yield produced in our BASE simulation. Without 315 

irrigation however, the modelled average yield is 6.73 t ha-1. Furthermore, we made the assumption that 316 

maize is grown across all cropped land in the model domain, whereas in reality the most favourable areas 317 

for crop production are currently reserved for other crops. This results in a further positive skew of 318 

average maize yield in our simulations. 319 

  320 

To ensure that light effects are not confounded with other environmental limitations, we continue to apply 321 

irrigation in all simulations comparing results against the (irrigated) BASE simulation. The projected yields 322 

for all model simulations are shown in Table 1. The cropped area and yields for BASE, along with the 323 

average SW and diffuse fraction across the domain, are shown in Figure 2. Table 1 provides a reference 324 

for the wide range of potential yields that might be expected under the SW and diffuse fraction scenarios 325 

explored in this work. 326 

 327 
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 328 
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Figure 2) i) Cropped region of the NCP in model, ii) BASE model yield output (t ha-1), iii) Average Growing Season Day time Hourly 329 

SW (W m-3), iv) Average Growing Season Day Time Hourly Diffuse Fraction 330 

 331 

Spatial variation in maize yield across the NCP in BASE was highly related to the strong negative 332 

logarithmic relationship between SW and diffuse fraction. In the BASE_Diff simulations, where diffuse 333 

fraction was increased without a change in total SW, maize yield slightly increased due to the diffuse light 334 

fertilisation effect, as reported for a variety of crops in previous modelling and observational studies 335 

(Mercado et al., 2009; Brodersen and Vogelmann, 2010; K. Huang et al., 2014; Rap et al., 2015, 2018; 336 

Yue and Unger, 2017)⁠. However, as shown in Figure 1, this relationship is not observed for our BASE 337 

case (Figure 1.i.). This is due to the observed reduction of SW with increasing diffuse fraction In Figure 338 

1.iii. 339 

 340 
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 341 

Table 1. Summary of key model results from simulations. Average yield is colour coded such that the average yield for BASE is the 342 

midpoint, with 0% change as the mid-point, red for decreasing yield, and blue for increasing. The percentage difference from base is 343 

colour coded 0% difference from BASE as white and the largest difference as the most purple. 344 

 345 
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Key: 346 

BASE simulations provide a climatological average for comparison of sensitivity tests to a reasonable baseline scenario. 347 

 348 

 BASE - a simulation using the climatological average meteorological driving data 349 

 350 

BASE_Diff_x – Uses climatological average meteorological driving data, excepting diffuse fraction, which was set to a fixed fraction 351 

(x). This baseline scenario provides a benchmark to demonstrate the effects of diffuse fraction modification alone. 352 

 353 

BJG , MAD, New York, DEL, CAI – Beijing, Madrid, New York City, Delhi, Cairo 354 

 355 

CITY simulations are used to illustrate potential future scenarios for yield on the NCP with changing SW radiation profiles. 356 

 357 

CITY, Diff – As BASE, but with diffuse fraction from CITY across all grid cells for each timestep. 358 

 359 

CITY_SW, Diff – As BASE, but with SW and diffuse fraction from CITY across all grid cells for each timestep 360 

 361 

CITY_Mod simulations are used to present the relationship between diffuse fraction and SW found at CITY in the context of the 362 

NCP as a proxy for the differing conditions and PM profiles found at each CITY region. 363 

 364 

CITY_Mod_Diff - As BASE, but with diffuse fraction derived from NCP SW using the relationship between SW and diffuse fraction 365 

found at the CITY. 366 

 367 

CITY_Mod_SW – As BASE, but with SW derived from NCP diffuse fraction using the relationship between SW and diffuse fraction 368 

found at the CITY. 369 

 370 

DEV simulations test crop sensitivity to changes in SW and diffuse fraction during different crop development stages. 371 

 372 

DEV1 , DEV2, DEV3, DEV4 – Early vegetative phase, late vegetative phase, early reproductive phase, late reproductive phase 373 

 374 

DEVZ_0.5 – As BASE, but with diffuse fraction decreased by 50% for development stage Z, with SW set to “diffuse corrected” SW. 375 

 376 

DEVZ_1.5 – As BASE, but with diffuse fraction increased by 50% for development stage Z, with SW set to “diffuse corrected” SW. 377 

3.3 Sensitivity at Different Development Stages 378 

The timing of the changes in SW and diffuse fraction made significant differences to final maize yield. We 379 

found maize to be most sensitive to changes in SW intensity and diffuse fraction during the early 380 
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reproductive stage (DEV3). Increased diffuse fraction and reduced SW (representative of an increase in 381 

PM concentrations) during this period have the most significant effect, reducing yields by an average 37% 382 

compared to BASE (Paired t-test, t=-5.73, p=0.001). Conversely, reducing diffuse fraction and increasing 383 

SW (simulating reduced PM) during DEV3 led to a 28% increase in average yield (Paired t-test, t=-6.46, 384 

p=0.001). Applying the same changes to light intensity (total SW) and diffuse fraction during other 385 

development stages had a lower impact. For example, simulating reduced PM during the early vegetative 386 

stage (DEV1) increased yields by only 7%,  less than one-fifth of the impact for DEV3 (again, the 387 

difference here is significant, t=-5.78, p=0.001). However, the difference between yields when diffuse 388 

fraction is reduced in the early and late reproductive phase was not found to be significant (t=-2.49, 389 

p=0.139), and neither was the difference between increasing diffuse fraction in the vegetative or early 390 

reproductive phase. This indicates that changes in radiation during the early reproductive phase produce 391 

the most sizable increases in maize yields, but that increasing ambient SW radiation by reducing the level 392 

of PM during the late reproductive phase would also be beneficial. 393 

3.4 Impact of City Radiation Profiles on Yields 394 

The global city regions used to simulate crop yields if PM was to change across the NCP, are 395 

summarised in Table 2 below. 396 

 397 



18 

 398 

 399 

Table 2. Indicative values for average SW, diffuse fraction and PM2.5 concentration for NCP study region and for city regions 400 

studied. 401 

Average hourly SW and diffuse fraction are taken from the climatology (generated from 1979-2017 ERA-5 meteorological data) used 402 

to drive all city runs for the growing season of modelled maize crop. 403 

 404 

AOD is an average value, taken from the C3S climate data store meteorological dataset for aerosol optical depth, for the city 405 

containing grid cell, for the months April to September (inclusive of growing season), from 1997-2010 406 

PM2.5 data is taken from a range of ground-based studies conducted during the timeframe of this modelling study. Though the PM 407 

concentrations are not always overlapping in time in many cases, this serves as an indicator of representative values within the 408 

period of the climatology. 409 

a). Yao. L, et al., 2016 (range given for average seasonal values) b). Zhai. S, et al., 2019, c). Santurtun, A, et al., 2015, d). Shmoo, 410 

J.L.C., et al., 2016, e). Jain, S.L., et al., 2005, (range given for average seasonal values) f). Khoder, M.I., et al., 2009 411 

 412 

 When values of SW and diffuse fraction taken from Beijing city were applied across the domain, yields 413 

did not differ significantly from those obtained using SW and diffuse fraction for the whole of the NCP 414 

domain. All other city comparison runs discussed in this section are compared to yields from Beijing 415 

(BJG) simulations rather than BASE, because the different spatial distribution of SW and diffuse fraction 416 

in BASE would make such comparison inappropriate.  417 

 418 

The greatest change from our Beijing-based simulations was found in applying values for Cairo to the 419 

NCP. CAI_Diff (i.e. NCP domain SW but Cairo diffuse fraction) simulated yields 34% lower than those of 420 

BJG_Diff (Figure 3.e.i), mostly attributable to average diffuse fraction in Cairo being 35% lower than that 421 

in Beijing during the growing season. Application of diffuse fractions from New York, Madrid and Delhi to 422 

the NCP (New York_Diff, MAD_Diff, DEL_Diff simulations) reduced yields by an average of 1, 5 and 1% 423 

respectively due to slightly lower annual average diffuse fractions (0.42, 0.37 and 0.44, respectively) 424 

reducing diffuse light fertilisation effects.  425 
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 426 

However, when both diffuse and total SW were modified to reflect the average conditions in each city, the 427 

higher average annual SW at New York, Madrid and Cairo more than compensates for their relatively 428 

lower diffuse fraction, with yields increases in New York_SW_Diff, MAD_SW_Diff and CAI_SW_Diff 429 

simulations by 3%, 26% and 30% respectively (Figure 3.c,e,ii). Although SW and diffuse fraction are 430 

substantially different at Delhi from Beijing, DEL_Diff and DEL_SW_Diff (described in section 2.5) show 431 

little change in yield from BJG_Diff (-1%) and BJG_SW_Diff (-3%) respectively. 432 

Figure 3) a) Yields (t ha-1) for city radiation profile simulations i. BJG_Diff and ii. BJG_SW_Diff. Fig1.b-e) percentage difference 433 

between i. <CITY>_Diff and BJG_Diff, and ii. <CITY_ SW_Diff and BJG_SW_Diff, for b) New York, c) Madrid, d) Delhi and e) Cairo. 434 

 435 

Simulations using city-modified diffuse fractions (i.e. those generated using the relationship between total 436 

SW and diffuse fraction at each city, Figure 4.c-f.i.) showed a negligible reduction in yield compared to 437 

BJG_mod_Diff (Figure 4.c-f.ii.). Furthermore, yields simulated using SW derived from the relationships for 438 

Madrid, Cairo and Delhi (Figure 4.d-f.ii), are lower than those for BJG_mod_SW, with reductions of 35, 32 439 

and 18% respectively. This can be explained in each case by lower total SW in that location for the 440 

diffuse fractions found on the NCP. In contrast to the other city regions, modified SW from New York 441 

increased yields by an average of 5.9% (Figure 4.c.ii). as SW in New York is higher for a given diffuse 442 

fraction in the NCP. 443 
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Figure 4.a.i-v) Relationships between SW and Diffuse fraction for each city, with data points in blue and quadratic regression line in 444 

orange. 445 

Figure 4) b) Yields for CITY_MOD radiation profile simulation. BJG_Mod_SW and ii. BJG_Mod_Diff 446 

Figure 4.c-f) percentage difference between i. <CITY>_Mod_Diff and BJG-Mod_Diff and ii.<CITY>_Mod_SW and BJG_Mod_SW, 447 

for c) New York, d) Madrid, e) Delhi and f) Cairo. 448 

4. Discussion 449 

4.1 PM influences Maize Yields  450 

The timing of changes in radiation relative to the developmental stage has the greatest impact during the 451 

early reproductive phase. This result has key implications for the nature and timing of emission reductions 452 

which may have greatest impact for yield crop yields on the NCP. In line with field observations, the 453 

photosynthetic capacity and hence carbon assimilation rate of maize in JULES-crop increases with leaf 454 

area during the vegetative development stage, peaking during the late vegetative stage , and remaining 455 
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high during the early reproductive stage. However, at the start of the early reproductive phase, the maize 456 

plant has matured, and therefore carbon allocation is diverted from stem, leaf and root to the harvestable 457 

portion. Our analyses demonstrate that the maize crop is most sensitive to reductions in SW (linked to 458 

elevated diffuse fraction) during the early reproductive phase (DEV3_1.5) (see Table 1). Similarly, the 459 

greatest predicted increase in yield results from reductions in diffuse fraction (i.e. reduced PM) in the early 460 

reproductive phase (simulation DEV3_0.5, Table 1), which occurs during July in our modelled maize 461 

season. As discussed earlier, at this time of year, PM concentration is at a minimum but AOD reaches a 462 

maximum in the NCP due to prevailing meteorology interacting with PM pollution to produce haze (Qu et 463 

al., 2016). Whilst this indicates a smaller contribution from AOD to SW variability during this period, our 464 

analyses demonstrated that aerosol still contributes 32% of the total variability in SW during the early 465 

reproductive phase, i.e. PM still exerts an important influence on SW during this period. The remaining 466 

variation not due to cloud and aerosol simply originates from variations in latitude and altitude across the 467 

NCP, alongside seasonal variation in incoming radiation. The relatively small change in the AOD – SW 468 

relationship between seasons despite large changes in PM concentration and composition highlights the 469 

importance of using AOD as a measure of the impact of PM, rather than simply using PM concentration. 470 

The complex interplay of PM and meteorology, alongside factors such as PM speciation and size 471 

distribution, it impossible to predict how increases or decreases in bulk PM concentration will affect crop 472 

yield. PM pollution at a given time of year can thus have a disproportionate impact relative to its 473 

concentration. To increase crop yields, then, policymakers should make targeted emission reductions 474 

during the early reproductive phase of regional crops when reduced PM concentrations may be expected 475 

to have a far greater impact on yields than at other times of year.  476 

 477 

PM concentration in the NCP fell by ~30% between 2013 and 2017 (Zhai et al., 2019) following the 478 

Chinese Government’s introduction of the “Action Plan on the Prevention and Control of Air Pollution” in 479 

2013. Despite these reductions, annual average PM2.5 concentrations for the Beijing-Tianjin-Hebei 480 

region were still well above national and international annual mean guidelines of 35 μg m-3 and 10 μg m-3 481 

respectively (China: Air Quality Standards | Transport Policy, 2013; WHO, 2015), whilst recurrent haze 482 

events remain a pressing issue limiting visibility and reducing total SW at the surface (Guo et al., 2014; 483 

An et al., 2019; Zeng et al., 2019). Although PM pollution is decreasing on the NCP, our simulations 484 

suggest that the relatively high PM concentrations still present will continue to limit potential maize yield. 485 
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Several factors contribute to the impact of PM on crops, and these are discussed below.  486 

 487 

4.2 Radiation from Comparable Cities alters Maize Yields 488 

Average maize yield increased by as much as 29% (Figure 3b-c, e.ii., Table 1) when the climatological 489 

average total SW and diffuse fraction at Madrid, New York or Cairo, which have lower average PM 490 

concentrations than Beijing, are applied across the NCP. Conversely, when light conditions from Delhi are 491 

applied, average maize yields remain virtually unchanged. We ascribe these effects to the combination of 492 

the magnitude and seasonality of changes in SW and diffuse fraction at each city (see Figure 5 below). 493 

 494 

 495 

Figure 5. i) Average monthly diffuse fraction for Beijing, Madrid, New York, Delhi and Cairo. ii) Average 496 

hourly downward SW radiation per month for Beijing, Madrid, New York, Delhi and Cairo. 497 

 498 

Heavy cloud cover associated with the Indian monsoon reduces total SW in Delhi in July and August 499 

(Figure 5.i.). Although partially compensated by a large increase in diffuse fraction, the net effect is still a 500 

reduction in maize yields across the NCP. The higher SW and lower diffuse fraction seen during the rest 501 

of the year do not fully compensate the changes in light profile during this critical period. Whilst the 502 

changes at Delhi are driven by seasonal increases in cloud cover, modelling studies suggest that despite 503 

the increase in wet deposition from increased rainfall in this time period, anthropogenic and natural 504 

aerosol do contribute to the reduction in total SW (Kuhlmann and Quaas, 2010). This reduction during the 505 

period corresponding to the early and late reproductive phase has greater impact on maize yield than the 506 

higher SW during the rest of the growing season, in line with the results from our development stage 507 
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simulations. Results presented in the wider literature suggest that reductions in light intensity on the NCP 508 

during late summer may result from PM-linked haze events (Chameides et al., 1999; Zhou et al., 2019)⁠. 509 

Reducing aerosol pollution at this time of year would therefore increase light intensity for crop 510 

photosynthesis. Interventions during less developmentally critical stages may have smaller effects than a 511 

similar magnitude of intervention carried out during the early crop reproductive stage. 512 

4.3 How PM might change Radiation in the Future  513 

Despite similar annual mean PM concentrations in Madrid and New York (Karanasiou et al., 2014; Peltier 514 

et al., 2011), there are large differences in yield between simulations driven with SW and diffuse fraction 515 

from Madrid (MAD_Diff_SW) and New York (New York_Diff_SW). This yield gap is the result of ~20% 516 

higher mean SW in Madrid than New York during the growing season (Figure 5) which is driven by 517 

differences in meteorology, including cloud cover, between the two locations. The meteorology of the 518 

NCP encourages formation of fog as well as haze, driven by the high relative humidity (Quan et al., 2011; 519 

Gao et al., 2015; Yang et al., 2020). Given the higher average ambient SW at Madrid than in the NCP 520 

throughout the entire year, it is likely that yield increase is not solely attributable to PM, and that reduced 521 

NCP PM concentrations would result in more modest yield gains than those seen in MAD_SW_Diff. Given 522 

New York’s more comparable SW profile during the growing season, excepting the critical months of July 523 

and August, application of New York SW and diffuse fraction (New York_SW_Diff) may provide a more 524 

realistic future scenario for the NCP if July and August AOD could be reduced through reductions in PM 525 

concentrations. Though such increases would be relatively small, as differences in daylength and cloud 526 

cover have more substantive effects, the 3% rise in yields seen for New York_SW_Diff would equate to a 527 

gain of approximately 8 Mt of maize nationwide, sufficient to offset the maize annually imported by China 528 

(FAOSTAT 2020), so increasing both national and global food security while increasing economic well-529 

being of NCP farmers. 530 

 531 

Contrastingly, if PM pollution intensifies across the NCP during the late vegetative or early reproductive 532 

phase, yields may further decline. As seen from simulations using Delhi SW and diffuse fraction, the drop 533 

in light intensity during July and August reduces yields, despite a ~12% higher average growing season 534 

SW in Delhi than Beijing. Although Delhi’s annual decrease in light intensity during DEV3 is mainly 535 

attributed to cloud cover, two key lessons can be learnt from the case of Delhi. Firstly, if reductions in SW 536 
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radiation, similar in magnitude to the seasonal reduction in SW seen in Delhi, were to occur in the NCP, it 537 

would be detrimental to crop yields in the region. Secondly, although reductions in SW radiation have 538 

most impact during DEV3, they also reduce plant growth at other development stages, as found in 539 

simulations DEV1_1.5 and DEV2_1.5. It is likely that increasing PM concentrations in Delhi and its 540 

surrounding regions have reduced crop yields in the Indo-Gangetic Plains in recent years (Burney and 541 

Ramanathan, 2014; Mina et al., 2018b). Any reversion to higher PM emissions on the NCP would likely 542 

have a similar effect. 543 

 544 

Furthermore, the Delhi and New York simulations demonstrate that reductions in PM during the 545 

vegetative or late reproductive phases would likely have little impact on yields overall. Increased SW in 546 

Delhi, and decreased SW in New York during these time periods does not outweigh the impact of 547 

changes in SW during the early reproductive phase. The particular timing of changes in PM then, is 548 

especially impactful. Increased total SW during the crop vegetative stage or the late reproductive stage 549 

would not be sufficient to significantly increase yields if PM pollution remained high during the early 550 

reproductive phase. Similarly, we see in New York that elevated SW during the early reproductive phase 551 

may be sufficient to compensate, or even increase, yields if PM remained high at other times of year.  552 

4.4 Comparison to previous studies 553 

Our results highlight the key role of the timing of changes to PM pollution relative to crop development 554 

stage, while adding further evidence to a growing body of research describing the net negative impact of 555 

PM pollution upon crop yields. Whilst a number of modelling studies suggest there exists an optimum 556 

diffuse fraction for growth and yield, we do not see this for the range of diffuse fractions realistic of those 557 

observed across the NCP. We attribute this to the strength of the non-linear negative relationship 558 

between diffuse fraction and total SW, and further link this to changes in AOD and PM.  559 

 560 

The timing of changes in PM concentration, size distribution and composition is an understudied aspect of 561 

PM impacts on crop yield. We find that the effect from increased SW is greatest during the early 562 

reproductive stage, when crops allocate carbon to seed. Our analysis of light profiles from a range of city 563 

regions further emphasises the time dependency of PM impacts. This novel analysis stresses the need 564 

for targetted intervention by policy makers trying to achieve higher yields by reducing PM, and highlights 565 
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the necessity of further field studies to characterise PM burden at times of year corresponding with the 566 

early reproductive stage for crops in different world regions.  567 

 568 

4.5 Uncertainties and Future of Maize Yields on the NCP  569 

Factors other than light intensity and the ratio of diffuse to direct light influence crop production. To 570 

remove water stress, a key environmental stressor, as a confounding factor we assumed the region 571 

irrigated as reported to be the predominant practice (Yang et al. 2015). This assumption enables us to 572 

study light effects in isolation. Additional validation of modelled yields against reported harvests for the 573 

NCP would enable maize in JULES-Crop to be parameterised for region-specific maize varieties and 574 

agronomic practice, e.g. irrigation regimes and crop losses during harvesting, increasing confidence in 575 

our model projections of actual yield. Whilst JULES-crop includes a general parameterisation for crop 576 

response to changes in the diffuse fraction of SW radiation, future research is required to establish the 577 

specific response of a maize canopy. However, given the dominance of the impact of changes in SW on 578 

crop yields over changes in diffuse fraction seen here, we would expect only minor changes in projected 579 

crop loss as a result.  580 

 581 

Similarly, our analysis relies upon the strength of the reanalysis data provided by ERA-5. Whilst a 582 

significant proportion of these data are model- rather than observation- derived, this dataset represents a 583 

significant step forward from similar reanalysis datasets (Copernicus Climate Change Service (C3S), 584 

2017; Urraca et al., 2018)⁠, and provides radiation data comparable to satellite retrievals. A recent review 585 

identifies an underestimate of diffuse light by ERA-5 compared to some satellite retrievals (Jiang, Yang, 586 

Wang, Bai, & Bai, 2020)⁠ but the sparse ground measurement sites used within that study demonstrate 587 

the need for large-scale reanalysis data to be used for modelling studies addressing a large geographical 588 

region. Only two ground stations used by these authors lie within our model domain. Given our use of 589 

climatologically averaged data to drive our model, we feel confident that the ERA-5 dataset represents 590 

the most useful assessment of surface radiation for our purposes and is suitable for use over the 591 

geographical and temporal scales of our simulations.  592 

 593 

A positive contribution from diffuse radiation to plant photosynthesis rates has been well documented for 594 
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tree species (Roderick et al., 2001; Niyogi et al., 2004; Mercado et al., 2009; Kanniah et al., 2012; Rap et 595 

al., 2015), but the net impact on crop yields of increased diffuse fraction at the expense of light intensity is 596 

less well understood. We find that the decrease in total SW associated with increasing PM concentrations 597 

far outweighs any possible fertilisation effect of increased diffuse fraction. Breeding programmes have 598 

already delivered substantial increases in leaf angles in the upper canopy of maize, increasing light 599 

penetration to the lower canopy such that maize might be expected to benefit less from diffuse light 600 

fertilisation than tree species (Hammer et al. 2009; Zhu et al. 2010). We find that the decrease in total SW 601 

associated with increasing PM concentrations far outweighs any possible fertilisation effect of increased 602 

diffuse fraction. Elevated PM during the early reproductive stage (i.e. flowering and pod filling) would be 603 

particularly detrimental to crop development, with a 50% increase in diffuse fraction during this period 604 

reducing yield by an average of 37% due to the accompanying reduction in SW. Although cloud cover 605 

plays a greater role in the attenuation of SW radiation than PM, our analysis of AOD and total cloud cover 606 

demonstrates that aerosol contributes a third of the observed change in SW. Our sensitivity analyses 607 

based on light intensity and diffuse fraction over New York suggests that an increase in maize yields of up 608 

to 3.5% may be realistic for NCP if PM concentrations were to be reduced to those of New York. This will, 609 

however, depend on the concomitant changes in particle size and composition, which further affect the 610 

relationship between diffuse fraction and total SW, and which require fuller investigation for future 611 

emission reduction scenarios 612 

 613 

One of the largest causes of uncertainty over future maize yields on the NCP is the interaction of PM and 614 

ozone pollution. As PM pollution has decreased in the NCP, ozone pollution has increased (Zeng et al., 615 

2019), and while this principally reflects a reduction in NOx emissions, it has also been partly attributed to 616 

increased light intensity increasing the rate of photochemical formation of ozone (Li et al., 2019). Elevated 617 

concentrations of ozone were estimated to have decreased maize yields across the USA by ~10% 618 

between 1980 and 2011 (McGrath et al., 2015). Yield gains from reductions in PM pollution in the NCP 619 

may therefore be offset or outweighed by losses due to rising ozone concentrations, and it will be critical 620 

to determine how the two interact. It is imperative that future emissions reduction strategies address PM 621 

and ozone pollution together. 622 
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