Potential for Chemistry in Multidisciplinary, Interdisciplinary, and Transdisciplinary Teaching Activities in Higher Education

John G. Hardy,1,2,* Stephanie Sdepanian,3,* Alison F. Stowell,4,5 Amal D. Aljohani,1,6 Michael J. Allen,7,8 Ayaz Anwar,9 Dik Barton,10 John V. Baum,1 David Bird,11 Adam Blaney,12 Liz Brewster,13 David Cheneler,2,14 Olga Efremova,15 Michael Entwistle,16 Reza N. Esfahani,17 Melike Firlak,1,18 Alex Foito,19 Leandro Forciniti,20 Sydney A. Geissler,21 Feng Guo,22 Rania M. Hathout,23 Richard Jiang,24 Punarja Kevin,1 David Leese,25 Wan Li Low,26 Sarah Mayes,27 Masoud Mozafari,28 Samuel T. Murphy,2,14 Hieu Nguyen,29 Chifundo N. M. Ntola,30 George Okafo,31 Adam Partington,32 Thomas A. K. Prescott,33 Stephen P. Price,34 Sherif Soliman,22 Papri Sutar,1 David Townsend,1,35 Patrick Trotter,36 Karen L. Wright37

1Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, England, UK
2Materials Science Institute, Lancaster University, Lancaster, LA1 4YB, England, UK
4Department of Organisation, Work and Technology, Lancaster University Management School, Lancaster University, Lancaster, LA1 4YX, England, UK
5The Pentland Centre for Sustainability in Business, Lancaster University, Lancaster, LA1 4YX, England, UK
6Department of Chemistry (Female Section), Faculty of Science, King Abdulaziz University, 21589 Jeddah-Rabbigh, Saudi Arabia
7Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon, PL1 3DH, England, UK
8College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 4QD, England, UK
9Department of Biological Sciences, Sunway University, 47500 Selangor Darul Ehsan, Malaysia
10ArmaTrex Ltd., 19 Main St, Ponteland, Newcastle upon Tyne, NE20 9NH, England, UK
11Centre for Process Innovation (CPI), The Neville Hamlin Building, Thomas Wright Way, Sedgefield, County Durham, TS21 3FG, England, UK
12Lancaster Institute for Contemporary Arts, Lancaster University, Lancaster, LA1 4ZA, England, UK
13Lancaster Medical School, Lancaster University, Lancaster, LA1 4AT, England, UK
14Department of Engineering, Lancaster University, Lancaster, LA1 4YW, England, UK
15NeuDrive Ltd., Daresbury Laboratory, Sci-Tech, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK
16Partnerships and Business Engagement Team, Faculty of Science and Technology, Science and Technology Building, Lancaster University, Lancaster, LA1 4YR, England, UK
17The Manufacturing Technology Centre, Ansty Business Park, Coventry, CV7 9JU, England, UK
18Department of Chemistry, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
19The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
20Becton Dickinson, Technology Development, 1 Becton Drive, J324b, Franklin Lakes NJ 07417, USA
212113 W 18th Pl, Chicago, IL 60608, USA
22Matregenix, 5270 California Ave#300 Irvine, CA 92617, USA
23Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
24School of Computing and Communications, InfoLab21, South Dr, Lancaster University, Bailrigg, Lancaster, LA1 4WA, England, UK
25Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, High Peak, SK23 0PG, England, UK
26School of Pharmacy, Wulfruna Building, University of Wolverhampton, Wolverhampton, WV1 1LY, England, UK
27Alafair Biosciences Inc., Suite 2-225, 6101 W Courtyard Dr, Austin, TX 78730, USA
ABSTRACT
For some professionally-, vocationally-, or technically-oriented careers, curricula delivered in higher education establishments may focus on teaching material related to a single discipline. By contrast, multidisciplinary, interdisciplinary, and transdisciplinary teaching (MITT) results in improved affective and cognitive learning and critical thinking, offering learners/students the opportunity to obtain a broad general knowledge base. Chemistry is a discipline that sits at the interface of science, technology, engineering, mathematics, and medicine (STEMM) subjects (and those aligned with or informed by STEMM subjects). This article discusses the significant potential of inclusion of chemistry in MITT activities in higher education and the real-world importance in personal, organizational, national, and global contexts. It outlines the development and implementation challenges attributed to legacy higher education infrastructures (that call for creative visionary leadership with strong and supportive management and administrative functions), curriculum design that ensures inclusivity, collaboration, and is pitched and balanced appropriately. It concludes with future possibilities, notably highlighting that chemistry, as a discipline, underpins industries that have multibillion dollar turnovers and employ millions of people across the world.
GRAPHICAL ABSTRACT

KEYWORDS
First-Year Undergraduate / General, Second-Year Undergraduate, Upper-Division Undergraduate, Curriculum, History/Philosophy, Interdisciplinary/Multidisciplinary, Laboratory Instruction, Problem Solving/Decision Making, Applications of Chemistry, Learning Theories

INTRODUCTION
National education systems vary in structure and curricula content, which renders it difficult to accurately benchmark performance and monitor progress towards national and international goals. The International Standard Classification of Education (ISCED) is the standard framework used to categorize and report internationally comparable education statistics. The ISCED 2011 classification was adopted by the United Nations Educational, Scientific and Cultural Organization (UNESCO), spanning education at pre-school, primary, secondary, and tertiary levels (summarized in Table 1). Studies emphasize the importance of starting career-related education in the 3–11 age group (early
and primary education)\(^2\) to expose learners/students to a wide range of possible occupations (challenging diversity stereotypes, e.g., gendered perspectives of career prospects)\(^3-9\) and gradually build on their knowledge by increasing the sophistication of the activities (e.g., role play at early stages, thereafter discussion of guardians’ or family members’ jobs, and at later stages other activities, including CV workshops, mentoring from external speakers (e.g., work experience of guardians, family members, others, etc.)); such interventions broaden the aspirations of children, helping them develop social and non-cognitive skills.\(^9\) As the workplace is ever evolving, many employers want children in the 3–11 age group to begin to develop science, technology, engineering, and mathematics (STEM) skills alongside high priority soft skills (e.g., listening, creativity, teamwork).\(^10\) At a secondary level, the shift from a teacher-centered classroom to a learner/student-centered classroom facilitates collaboration and creativity; placing the emphasis on the teacher being the “facilitator” and potentially fusing some activities with other subjects (e.g., art, technology).

Table 1. International Standard Classification of Education Levels and Descriptions

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Early childhood education (i.e., prior to primary education)</td>
</tr>
<tr>
<td>1</td>
<td>Primary education</td>
</tr>
<tr>
<td>2</td>
<td>Lower secondary education</td>
</tr>
<tr>
<td>3</td>
<td>Upper secondary education</td>
</tr>
<tr>
<td>4</td>
<td>Post-secondary non-tertiary education</td>
</tr>
<tr>
<td>5</td>
<td>Short-cycle tertiary education</td>
</tr>
<tr>
<td>6</td>
<td>Bachelor’s or equivalent level</td>
</tr>
<tr>
<td>7</td>
<td>Master’s or equivalent level</td>
</tr>
<tr>
<td>8</td>
<td>Doctoral or equivalent level</td>
</tr>
<tr>
<td>9</td>
<td>Not elsewhere classified</td>
</tr>
</tbody>
</table>

When introduced effectively, “integrated” STEMM curricula help learners/students contextualize the real world importance of STEMM subjects. The manifestation of such integrated curricula varies dependent on the school system, examples of which include the UK “integrated science” general certificate of secondary education awarded by many schools,\(^11\) or the Montessori system found in many countries across the world that has been found to successfully integrate academic subjects in meaningful ways for the learners/students, better reflecting real-life situations and providing a more holistic education.\(^12-16\) The general consensus among teachers of the effectiveness of teaching integrated curricula (particularly project-based tasks) is supported by increases in academic achievement. A great deal of interest emerged in integrated curriculums and many studies have been conducted dating back to the 1990s.\(^17,18\) Most research on interdisciplinary programs is qualitative or anecdotal, the evidence collected is generally positive, highlighting the potential for increased student achievement and the development of an engaging, relevant curriculum.\(^19\) More than 200 studies have been carried out to assess the effectiveness of the various forms of integrative curriculum and instruction,\(^20\) and several authors have reported that students participating in interdisciplinary or integrated curriculums do as well as or better than, students in conventional program.\(^19,21,22\) While there is an appreciation for obstacles to implementation, studies show that teachers believe in the effectiveness of integrated curriculums,\(^23,24\) The benefits of integration are recognized internationally; a number of countries high in the PISA rankings are adopting policies for curriculum integration.\(^25,26\) Application of these includes a shift toward project-based learning,\(^16\) which combined with a real-world inquiry focus are naturally interdisciplinary in nature.\(^25\) Although research has been undertaken into teacher perception and the implementation of integrated curriculums, Shriner et al. argue that the question of whether or not teachers’ attitudes toward curriculum integration can be modified has not been addressed.\(^27\) Other advantages of integrated science teaching approaches
include: improved learner/student cooperation (concomitantly reducing disruptive behavior); improved learning and understanding; improved ability to apply concepts and engage in creative big picture thinking; improved reading, writing and mathematics skills; greater personal growth, self-confidence, motivation, and citizenship.13,25,28–31

An academic discipline is a branch of knowledge that can be taught throughout primary, secondary and tertiary/higher education, and researched in higher education establishments (however, researchers of higher education suggest that the concept of a discipline is nuanced).32–37 The terms multidisciplinary, interdisciplinary and transdisciplinary are used in the literature, however, they can be ambiguously or interchangeably used (in part because of the ambiguity of the term “discipline” and evolution of new disciplines); nevertheless, disciplinary approaches were defined by Stember38 as follows:

- Monodisciplinary or intradisciplinary: working within a single discipline.
- Cross-disciplinary: viewing one discipline from the perspective of another.
- Multidisciplinary: people from different disciplines working together, each drawing on their disciplinary knowledge.
- Interdisciplinary: integrating knowledge and methods from different disciplines, using a real synthesis of approaches.
- Transdisciplinary: understanding the unity of intellectual frameworks beyond the disciplinary perspectives.

Some curricula delivered in higher education establishments worldwide focus on monodisciplinary/intradisciplinary teaching, which enables the learners/students to demonstrate depth of knowledge and expertise in practice upon completion of their course. However, multidisciplinary,39–41 interdisciplinary33,35,42–44 and transdisciplinary13,33,35,43–47 teaching (MITT) is reported to positively impact affective/cognitive learning and critical thinking,12,13,15,48,49 enabling learners/students the opportunity to obtain a broad general knowledge base. Such broad based curricula are appealing to some employers because they demonstrate that the job candidate is well-rounded and capable of adapting to the changing workplace.46,50–57

McClaskey offers a clear distinction between students and learners: a student undertakes formal elements of teaching in an educational institution or affiliated industry partner workplace environment such as an industry laboratory or plant, with a specific course curriculum to be awarded a higher education qualification; whereas, a learner may not follow a prescribed curriculum nor seek the award of a qualification (Table 2),58 and the continually changing workplace is motivation for students and graduates to transition to being learners at some point in their lives.59 While all learners/students can benefit from MITT activities, the focus of this article is on the potential for inclusion of chemistry in MITT activities in a higher education context,31 and therefore for the avoidance of ambiguity, the term “student” will be used for the remainder of the article.

| Table 2. Examples Highlighting Differences between Students and Learners |
|-----------------------------------|-----------------------------------|
| A Student | A Learner |
| Learns in a classroom | Learns anywhere, anywhere |
| Is directed by their teacher | Directs and supports their own learning |
| Works within a defined time | Works at their own pace |
| Is motivated by grades | Is motivated by the mastery of skills |
| Follows goals that are set and monitored by the teacher | Develops their own learning goals and monitors their own progress |
| Achieves by listening and following instruction | Achieves by active collaboration and feedback with others |
| Experiences teacher-designed activities and projects | Designs learning experiences based on passions and interests |

Adapted with permission from an infographic designed by Kathleen McClaskey,58 co-author of Make Learning Personal60 and How to Personalize Learning.61
Educational research suggests that MITT promotes significant learning through the engagement of students with classroom experiences that offer opportunities to develop a range of skills important for employability, including: communication, IT literacy, numeracy, project and time management, and scientific and technical knowledge. MITT enables students to enhance their foundational knowledge of various disciplines through the acquisition and understanding of information and ideas. It also creates an opportunity for students to learn how and when to apply specific skills, to connect ideas and approaches from different disciplines, to integrate their knowledge base, and perhaps most importantly to learn how to learn, and thereby develop an appreciation of metacognition. This enables the integration and application of knowledge as part of the bigger picture which leads to more critical thinking and fosters the development of foresight to consider potential consequences of an action, thereby leading to recognition of ethical concerns (e.g. potential environmental and health impacts if a chemical entity is released). MITT involving academics from different disciplines offers students heterogeneous learning experiences and assessment strategies that mirror the heterogeneity of individual’s learning styles, and are therefore more inclusive in terms of the backgrounds, experiences, interests and talents of the staff and students involved in MITT environments, which enhances student engagement and therefore learning. MITT also offers opportunities for students to work as teams on multidisciplinary, interdisciplinary and transdisciplinary projects (e.g., problem-based and research-based learning activities), which is essential for many real-world applications of STEMM and other disciplines (e.g. development of chemicals [e.g., natural/synthetic drugs and/or polymers] for technical applications [e.g. computing, construction, engineering, textiles] and medical applications [e.g. pharmaceutical formulations, diagnosis and therapy]). This is recognized by governments and learned/professional bodies as a key skill for graduates, as it underpins their employability in sectors that support economies.

MITT involving chemistry taught in combination with industry, product design [e.g., materials science and engineering], innovation, law and business/management science may facilitate the development of new technologies by reducing technical and market risk, thereby increasing the probability of success; such MITT offerings will help address the market need for people with scientific and technical skills, in addition to having business acumen, facilitating economies that employ graduates from the courses to become more competitive. Furthermore, MITT training has the potential to help employers to build agile teams to solve problems, differentiate levels of instruction necessary for individual team members, and to evaluate performance more authentically; likewise, MITT could offer training that helps graduates in industry draw on their foundational knowledgebase to rotate between multiple teams, contribute ideas and contribute more broadly to the success of the employer and progress more swiftly in their careers.

The skills required by new chemistry graduates and their development in courses have been the subject of studies co-authored by academics and a variety of Professional, Statutory and Regulatory Bodies (PSRBs) including learned bodies (some of which approve, recognize and accredit higher education programmes). Examples of such PSRBs include (but are not limited to): the American Chemical Society (ACS), the American Institute of Chemical Engineers (AIChE), Die Gesellschaft Deutscher Chemiker (GDCh), the Institution of Chemical Engineers (IChemE), the Institute of Materials, Minerals and Mining (IOM3), the International Union of Pure and Applied Chemistry (IUPAC), the Materials Research Society (MRS) and the Royal Society of Chemistry (RSC). This article discusses the potential for chemistry in MITT activities in higher education by illustrating their real-world importance in a variety of contexts (personal, organizational, national, and global), and some of the challenges of developing and implementing chemistry in MITT curricula that will deliver graduates to support economies across the world.

MITT GROUPS ARE NEEDED TO STUDY COMPLEX AUTHENTIC PROBLEMS WITH REAL-WORLD IMPORTANCE

A variety of complex problems currently encountered in the real-world need to be addressed carefully using the intervention of smart, creative and innovative solutions. Multidisciplinary, interdisciplinary and transdisciplinary perspectives offer opportunities to solve such complex problems when monodisciplinary/intradisciplinary approaches may be limited; particularly for globally important issues such as climate change, employment, health and medicine, migration, pollution,
Multidisciplinary, interdisciplinary and transdisciplinary approaches are additive, interactive, and holistic, respectively. When the nature of involvement of multiple disciplines is unknown (or unspecified), multidisciplinary is the most appropriate term to use to avoid ambiguity.

The success of chemistry as a lens to understand the natural world has resulted in it being subsumed into a variety of biological subjects. Molecular biology, biochemistry, pharmacology and pharmacy in particular draw heavily from chemistry but have long since moved to being independent disciplines in their own right. Their emphasis on observing biological processes as systems makes teaching every aspect from a detailed chemical viewpoint impractical. For example, gene expression in bacteria is largely dependent upon binding interactions of certain macromolecules and DNA, but it would simply take too long to teach and understand gene expression at this level of detail. The practical value of these chemistry related bioscience subjects has made them heavily integrated into other areas of biology, bioengineering and biomedicine curricula.

The Sustainable Development Goals (SDGs, also known as Global Goals) have been adopted by all United Nations (UN) member states with the aim of ending poverty, protecting the planet and ensuring all people enjoy peace and prosperity by 2030. There are 17 SDGs that, if acted upon in a knowledgeable and creative fashion, will enhance social, environmental and economic sustainability for the good of the world. The SDGs are complex real-world problems, and chemistry has the potential to play an important role in multidisciplinary, interdisciplinary and transdisciplinary solutions to these challenges, thereby improving the lives of millions of people across the world.

Table 3 displays the potential involvement of chemistry at the interface of other disciplines in solutions to address the SDGs.

<table>
<thead>
<tr>
<th>Sustainable Development Goals</th>
<th>Potential Solutions Involving Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 End poverty</td>
<td>Creation of jobs involving chemistry integrated with biology, engineering, mathematics, physics, etc.</td>
</tr>
<tr>
<td>2 Zero hunger</td>
<td>Improved agricultural processes employing novel agrochemicals and chemical biology techniques, resulting in higher crop yields, nutritional value, food security and lowering the cost of food production</td>
</tr>
<tr>
<td>3 Global health and well-being</td>
<td>Production of affordable medications and/or materials for medical interventions, education about principles of chemistry in an MITT health context</td>
</tr>
<tr>
<td>4 Quality education</td>
<td>Development and delivery of affordable, accessible and inclusive educational resources for lifelong learners/students involving chemistry in an MITT context, such as pharmacodynamics</td>
</tr>
<tr>
<td>5 Gender equality</td>
<td>Achieving equality of representation and salaries for all gender identities across the industries involving chemistry, as well as negation or reduction of labor intensive traditional gender roles, such as palm oil production, waste management, etc. and thereby improving opportunities</td>
</tr>
<tr>
<td>6 Clean water and sanitation</td>
<td>Development of green and affordable water filtration and purification processes capable of deployment in a variety of environments, because only 3% of the world’s water is fresh water, and the fact that 2.4 billion people worldwide lack access to fresh and clean water, has been identified as the most understated global security risk.</td>
</tr>
<tr>
<td>7 Affordable and clean energy</td>
<td>Development of affordable, reliable, and sustainable materials for energy harvesting and storage</td>
</tr>
<tr>
<td>8 Decent work and economic growth</td>
<td>Creation of jobs involving chemistry integrated with other disciplines across the globe</td>
</tr>
<tr>
<td>9 Industry, innovation and infrastructure</td>
<td>Supporting jobs involving chemistry integrated with other disciplines across the globe, particularly entrepreneurship, invention, innovation, leadership, management, etc.</td>
</tr>
<tr>
<td>10 Reduced inequalities</td>
<td>Achieving equality of representation and salaries for all diversity groups across the industries involving chemistry and reduce inequality between countries (concomitantly supporting global security)</td>
</tr>
<tr>
<td>11 Sustainable cities and communities</td>
<td>Development of cities and communities utilizing sustainable sources of energy, food, housing, transport, water, etc. (all of which involve chemistry in some way)</td>
</tr>
<tr>
<td>12 Responsible consumption and production</td>
<td>Consumption and production of goods integrated within a circular economy</td>
</tr>
</tbody>
</table>

Note: The Table 3 includes examples of the Sustainable Development Goals (SDGs) and their corresponding potential solutions involving chemistry. The SDGs are complex real-world problems, and chemistry has the potential to play an important role in multidisciplinary, interdisciplinary, and transdisciplinary solutions. The table highlights the potential involvement of chemistry across various industries and solutions to address the SDGs.
Industries have evolved to address real-world problems, and chemistry (and its integration with biology, engineering, mathematics, physics, etc.) plays an important role in each of the different economic sectors which have multibillion-dollar turnovers and employ millions of people across the world (Table 4). Employability plays a role in league table rankings of universities (which has an impact on their financial viability), consequently imparting an appreciation of the complex real-world problems faced by industry and the application of multidisciplinary, interdisciplinary and transdisciplinary approaches to solving those problems (and their financial impact on the businesses) is fundamentally important. It is therefore logical that recognized year-long industrial or professional placements are becoming increasingly common in chemistry related undergraduate degree programs.

<table>
<thead>
<tr>
<th>Economic Sector</th>
<th>Industries and Processes That Potentially Involve Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Involves the extraction and production of raw materials, including natural resources isolated from agricultural, marine or mining activities, with an increasing emphasis on ensuring the sustainability of supplies.</td>
</tr>
<tr>
<td>Secondary</td>
<td>The secondary economic sector involves manufacturing, including construction, electronics, plastics and textiles, all of which involve materials chemistry.</td>
</tr>
<tr>
<td>Tertiary</td>
<td>Services such as: distribution and transport (e.g., energy and fuel, packaging, security), healthcare (e.g., biomaterials, drugs, pharmacology), sustainable waste management and recycling (e.g., analysis, separation, purification, reformulation or repurposing).</td>
</tr>
<tr>
<td>Quaternary</td>
<td>Intellectual/knowledge services, including consultation, education, information technology, research, and development.</td>
</tr>
<tr>
<td>Quinary</td>
<td>Specialized services delivered by the highest level of decision or policy makers in government or industry.</td>
</tr>
</tbody>
</table>

The necessity of working in MITT groups involving chemistry to solve complex problems encountered in the real-world can also be viewed through the lens of Maslow’s hierarchy of needs. Problems related to our physiological needs involve chemistry at the interface of other disciplines (including biology, engineering, mathematics, physics, etc.) and the industries that provide the population with sustainable resources to satisfy our need for food, rest, water, and warmth (i.e., basic quality of life). Problems related to our safety and security needs involve MITT groups developing chemicals, materials and methods (including quantum technologies) for health (e.g., medication, personal protective equipment for clinic-, laboratory-, warfare-based activities) or counter terrorism (e.g., communication, sensors, etc.). Problems related to our belongingness and love needs involve...
MITT groups developing chemicals, devices, materials, methods to facilitate or to enable intimate relationships (including contraceptives, fertility treatments, lubricants, perfumes, etc.) and/or platonic friendships (including food, drinks, drugs [alcohol, antidepressants, etc.]), being members of communities that potentially include membership of interdisciplinary learned and professional societies involving chemistry (including the American Chemical Society; American Institute of Chemical Engineers; Institution of Chemical Engineers; Institute of Materials Minerals and Mining; Materials Research Society; Royal Society of Chemistry; Society of Chemical Industry, etc.). Our esteem needs (prestige, status and feeling of accomplishment) for engagement in MITT activities can be met via awards, honors, prizes and other recognition of successful administration, leadership, management, research, and teaching; conference presentations, keynotes, named lectures and publications; editorial activity (journals, books, and other publications); engagement, partnership and collaboration nationally and internationally with other groups, institutions, industries and organizations; income from grants, teaching, commercialization; influence on industry, government, public policy, community and cultural organizations; membership of national and international committees (e.g. governmental, industrial, institutional or organizational); membership and fellowship of learned/professional academies and societies; publication of books, patents, registered designs, reports, research papers, reviews, etc. Our self-actualization needs (i.e., achieving one’s full potential, including creative activities [which may concomitantly release dopamine, a neurotransmitter involved in thinking, planning and pleasure]) can be met by participation in activities with interdisciplinary and transdisciplinary teams and engagement in activities where our inherent disciplinary expertise can play a useful role in finding creative solutions to complex problems. Higher education institutions benefit from adopting this approach, providing students a holistic learning environment.

While an exhaustive listing of examples of MITT groups managing complex problems of real-world importance is outside the scope of this article, we hope that the summary presented here offers insights into their importance in a variety of contexts (global, national, organizational, and personal).

MITT CURRICULUM DEVELOPMENT AND IMPLEMENTATION IS A CHALLENGE

As highlighted above, individuals capable of working in multidisciplinary, interdisciplinary and transdisciplinary teams are needed to address real-world problems in all economic sectors (Table 3), helping to deliver the UN SDGs.\(^{104,125,126}\) MITT offers individuals the opportunity to develop a range of skills necessary to work in such teams, including both hard skills (such as computer, instrumentation, operational skills; management skills; reporting and writing skills; monodisciplinary/intradisciplinary analytical and problem solving skills), and soft skills (cognitive flexibility and adaptability, collaboration, communication, critical thinking, curiosity, emotional intelligence, empathy, leadership, team working, time management), all of which are recognized and valued by industry. Those with MITT experience are well positioned for higher-skilled roles as one who has a more comprehensive perspective is more likely to efficiently identify and prioritize existing and future problems (however, extrapolation of this conclusion is not possible for all countries, due to the complexity of job markets).\(^{86,139,140}\) The results of studies by PSRBs, learned bodies and consultation with industrial partners help inform policy developed by governments to ensure a pipeline of highly skilled workers to meet economy demands. For example, the UK government developed frameworks to assess the performance of universities, namely, the Research Excellence Framework (REF),\(^{141}\) Knowledge Exchange Framework (KEF)\(^{142}\) and Teaching Excellence and Student Outcomes Framework (TEF),\(^{143}\) each of which have the potential to encourage higher education establishments to develop MITT activities (e.g., research-based learning activities, knowledge exchange activities with non-academic parties).\(^{144,145}\) These frameworks are each assessed via metrics and accompanying narratives which help to describe their specific situation (geography, socioeconomics, etc.) and efforts towards meeting the goals of each assessment. The results of the assessments yield publicly accessible reports and league tables that potentially guide and mentor other departments and institutions to improve performances via reflective practice, interdisciplinarity is emphasized in these assessments, particularly the more established REF assessments.\(^{146-148}\) Furthermore, the Times Higher Education Impact Rankings offer global performance tables assessing universities against the UN SDGs (comparing research, outreach and stewardship) which encourages the development of MITT activities within higher education establishments.
Integrative learning involves combining subject matter traditionally taught as separate curricula. This approach enables students to connect with and to apply theoretical/practical knowledge and skills developed in various settings (e.g., lecture theatres, tutorials, laboratories, and potentially industrial settings). This approach benefits from problem-, question-, theme-based integrative learning experiences in a thoughtfully structured MITT curriculum with a number of core courses that include interdisciplinary and transdisciplinary concepts, methods and theories. The development and delivery of coherent, effective and strongly MITT curricula offers a variety of challenges to higher education establishments. The most obvious barriers to the development and delivery of MITT curricula are organizational, particularly the traditional structures of university departments and faculties and their teaching and training programs, which tend to be focused on the necessity to guarantee standards of training and to secure externally recognized accreditation for the program of study. A direct consequence of this structure is that staff may not be encouraged to venture away from the safe ground of their disciplinary borders; which is mirrored by the historical scope of journals, and peer review models for research grants and outputs (books, conference proceedings, papers, reports, etc.). Other challenges include leadership (ideation, communication, championing change), management (change management, financial and human resource allocation for course development, staff support and training (e.g., practice sharing events)), administration (timetabling, credit-/finance-sharing between departments, etc.) and curriculum design (fundamental composition and balance of disciplinary content, accreditation, etc.).

Tellingly, high profile MITT activities, such as the increasingly popular and lauded International Genetically Engineered Machine (iGEM) competition, take place over the summer months and out of term time, and are usually viewed as extra-curricular, added-value propositions for a limited numbers of students.

MITT Requires Effective Leadership, Management, and Administration

Leadership in the design and implementation of MITT offerings requires a combination of knowledge and creative vision (identifying an opportunity and having the confidence and interpersonal skills to develop a team to deliver that vision). In addition, effective management and administration skills, particularly planning and humility to acknowledge challenges and barriers and to develop mutually agreeable solutions, and effective communication skills are crucial in effective leadership of MITT offerings. Communication underpins the success of our daily lives, which is equally true regarding all aspects of curriculum design, implementation (leadership, management and administration), and delivery by staff. The staff may be experts in specific disciplines with a working knowledge of the language of different disciplines, including challenges presented by the same term being used with different meanings in distinct contexts. Effective communication is the key to convincing faculty members and senior management of the benefits of MITT (e.g., relative advantage, compatibility, complexity, trialability [i.e. opportunity for the initiative to be implemented in steps], and observability [i.e., opportunity for the initiative to strengthen the identity of the departments involved]). Lacking evidence of the benefits is likely to result in the conclusion that the status quo is better (i.e., maintaining disciplinary silos). In addition, adoption of innovation in curricula requires effective communication of:

- Knowledge of the educational innovation (e.g., evidence in the education research literature to suggest this change will be an improvement)
- Persuasiveness of the educational innovation (e.g., evidence to suggest feasibility and improvement for the institution).
- Evidence-informed decision to adopt or to reject the innovation (e.g., based on evidence from points 1 and 2).
- Evidence-informed implementation (i.e., adapt and adopt, communicating to staff and students why and how).
- Evidence-informed confirmation (i.e., determine the future use of the innovation based on improvements in assessments, outcomes and student satisfaction).
Management of the design and implementation of MITT offerings requires: the interpersonal skills necessary to build trust and strong working relationships within the team; forward/strategic planning; “commercial” awareness (i.e. strategic fit at an institutional, regional, national and/or international level, identification of unique selling points, key differentiators, etc.); stakeholder mapping at an institutional, regional, national and/or international level; understanding the strengths, weaknesses, opportunities and threats to the endeavor (SWOT analysis), etc.; decision-making regarding organization and delegation of responsibilities within the team (e.g., motivation of staff from various departments, faculties and/or institutes to contribute); availability and accessibility for individual and team meetings to ensure project progress; facilitating and contributing to discussions; problem solving (e.g. dealing with disagreements; acknowledgement of professional challenges/barriers and the development of mutually agreeable solutions); and mentoring (e.g., facilitation of staff development via training provision, recognition of effective contributions [potentially via encouragement of membership and fellowship of relevant education-oriented learned/professional academies and societies], etc.).

Financial and human resource allocation for course development (including staff support and training, e.g., practice sharing events) is a challenge for higher education establishments, particularly in resource constrained environments (e.g., institutions in developing and emerging economies). Such challenges/barriers within UN SDG 4 [quality education] may impact global economic inequality in years to come (i.e., UN SDG 10, reduce inequality). One potential solution is the collaborative development and delivery of MITT offerings involving staff and institutions in developed and developing and emerging economies, which has significant global impact, and is aligned with UN SDG 17 [partnership to achieve the goals]. This highlights the complex interrelated nature of the UN SDGs.

Administration of the design and implementation of MITT offerings requires an appropriate mechanism for sharing credit and associated finances between contributors (i.e., departments, faculties, institutes) to ensure support from the various contributors and thereby success of the MITT activity. MITT activities involving chemistry within STEMM teaching must be underpinned by generic good teaching practice applicable to all teaching activities to ensure student, staff and employer satisfaction.166,167 From an administrative perspective good teaching practice necessitates an effective mechanism for timetabling of synchronous and asynchronous elements of teaching in a face-to-face or online environment, often employing a course management system and online learning platform such as Moodle (popular because it is free and open source, thereby supporting UN SDG 4).104,125,126 This requires staff training for academic and non-academic/support staff across the institution to ensure high quality teaching and subsequently achieve positive student outcomes and feedback.160 Moreover, assessment of an individual university’s contribution to the UN SDGs based on metrics associated with research, outreach, and stewardship and compiled within the Times Higher Education Impact Rankings is available. Global level metrics compiled by the UN assess international progress towards the UN SDGs which may be of interest to students and staff alike. Clearly, initiatives to support diversity, equity and inclusion will play an increasingly important role in the economy and society in years to come, as will effective engagement with and delivery of the UN SDGs.104,125,126,168–173

MITT Curriculum Design in Higher/Tertiary Education

The development of MITT curricula requires attention to detail (appropriate assessments, disciplinary balance, encouraging creativity, involving external collaboration [e.g., industry, NGOs, etc.], real-world problems, societal trends, etc.)174 to deliver a product that is appealing to students and supports economies across the world. While the individual PSRBs and learned societies may require elements of MITT embedded in curricula, there are some degrees that are accredited by more than one PSRB/learned society thereby ensuring the curricula do not “sacrifice” the original disciplinary content in the course (for a non-exhaustive list see Table 5). It is also noteworthy that qualification awarding higher education institutions are themselves subject to oversight by national and international higher education quality assurance agencies (examples in Table 6).
Table 5. Non-Exhaustive List of Examples of Dual Accredited MITT Degrees with Chemistry Content

<table>
<thead>
<tr>
<th>University/Universities</th>
<th>Degree</th>
<th>Accrediting Bodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newcastle University (England)</td>
<td>Chemical Engineering (BEng)</td>
<td>Institution of Chemical Engineers and the Institute of Measurement and Control</td>
</tr>
<tr>
<td>Swansea University (Wales) and Trent University (Canada)</td>
<td>BEng Chemical Engineering and BSc Chemistry Dual Degree</td>
<td>Canadian Society for Chemistry and the Institution of Chemical Engineers</td>
</tr>
<tr>
<td>University of Bristol (England)</td>
<td>Chemical Physics (BSc and MSci)</td>
<td>Royal Society of Chemistry and the Institute of Physics</td>
</tr>
<tr>
<td>University of Edinburgh (Scotland)</td>
<td>Chemical Physics (BSc and MChemPhys)</td>
<td>Royal Society of Chemistry and the Institute of Physics</td>
</tr>
<tr>
<td>University of Strathclyde (Scotland)</td>
<td>Chemistry with Teaching (MChem)</td>
<td>Royal Society of Chemistry-accredited MChem course with professionally-accredited teacher training (Professional Graduate Diploma in Education, Secondary)</td>
</tr>
</tbody>
</table>

Table 6. Non-Exhaustive List of Examples of National or International Higher Education Quality Assurance Agencies.

<table>
<thead>
<tr>
<th>Accrediting Agency</th>
<th>Focus: National or International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egyptian National Authority for Quality Assurance and Accreditation of Education (NAQAAE)</td>
<td>National</td>
</tr>
<tr>
<td>Higher Education Accreditation and Evaluation Agency of Portugal</td>
<td>National</td>
</tr>
<tr>
<td>Higher Education Accreditation Commission (HEAC) of Jordan</td>
<td>National</td>
</tr>
<tr>
<td>Iranian Ministry of Science, Research and Technology (MSRT)</td>
<td>National</td>
</tr>
<tr>
<td>Italian Ministry of University and Research (MIUR)</td>
<td>National</td>
</tr>
<tr>
<td>Ministry of Education of the People’s Republic of China</td>
<td>National</td>
</tr>
<tr>
<td>Ministry of Higher Education of Saudi Arabia</td>
<td>National</td>
</tr>
<tr>
<td>Russian Federal Service for Supervision in Education and Science (Rosobrnadzor)</td>
<td>National</td>
</tr>
<tr>
<td>Swiss Agency of Accreditation and Quality Assurance (AAQ)</td>
<td>National</td>
</tr>
<tr>
<td>UK Quality Assurance Agency for Higher Education (QAA)</td>
<td>National</td>
</tr>
<tr>
<td>US Council for Higher Education Accreditation (CHEA)</td>
<td>National</td>
</tr>
<tr>
<td>African Quality Assurance Network (AfriQAN)</td>
<td>International</td>
</tr>
<tr>
<td>Asia-Pacific Quality Network (APQN)</td>
<td>International</td>
</tr>
<tr>
<td>Association of QA Agencies of the Islamic World (IQA/AQAAIW)</td>
<td>International</td>
</tr>
<tr>
<td>European Association for Quality Assurance in Higher Education (ENQA)</td>
<td>International</td>
</tr>
<tr>
<td>European Quality Assurance Register for Higher Education (EQAR)</td>
<td>International</td>
</tr>
<tr>
<td>International Network for Quality Assurance Agencies in Higher Education (INQAAHE)</td>
<td>International</td>
</tr>
</tbody>
</table>

Higher education establishments should aim to ensure their programs meet societal needs and trends in terms of industrial requirements of graduates.175–178 However, ensuring higher education curricula meet societal needs and trends requires a significant amount of foresight, and sometimes a willingness of the institution not to capture short term gains (via increased recruitment, and hence revenue) in response to short term trends. An example of this practice that negatively affected graduate employability in the UK, was the rapid implementation of forensic science degrees at some higher education institutions led by a surge in popularity due to the proliferation of TV shows focusing on crime scene investigation, which in turn led to an increase in the number of forensic science graduates that far exceeded the capacity of the forensic science sector. The drive to capitalize on this demand led to degrees that were not fit for purpose, having been formulated too quickly and not designed with an MITT approach, with graduates often requiring significant in-employment training, even within the specialism.179,180 However, some trends are difficult to predict, but show that higher
education establishments need to be able to adapt quickly, and to ensure graduates receive a sufficiently broad education that doesn’t preclude them from pursuing a career away from their initially intended specialty. For instance, since the disaster at the Fukushima Daiichi Power Plant in 2011, Germany is undergoing a transition towards low-carbon energy production that no longer relies on nuclear power, which has a dramatic influence on the prospects of nuclear engineering graduates in Germany, who increasingly must look abroad for employment.181 In contrast to these examples there are exciting successful examples of interdisciplinarity in the Higher Education sector, including: the Dyson Institute of Engineering and Technology (a private institution of higher education in England, founded in 2017 by James Dyson) with initial cohorts of students awarded Bachelor of Engineering (BEng) degrees in partnership with the University of Warwick, and it was recently awarded its own degree-awarding powers from 2021 onwards;182 and the London Interdisciplinary School (a new university that aims to give students the knowledge and skills needed to address social and global problems in an increasingly interconnected world) with degree-awarding powers from 2021 onwards, initially offering a BASc degree in Interdisciplinary Problems & Methods.183

Changes in policies and societal trends can often be anticipated through consultation with governments and industrial partners. The use of industrial advisory boards is increasingly prevalent in the sciences, and commonplace within engineering disciplines. However, it is important to ensure diversity in the board membership (e.g., gender, ethnicity, etc., ideally in line with national census statistics, for example England and Wales184 or the USA);185 to attempt to ensure global geographical representation and reach of the board membership (i.e., avoiding over-representation of local employers that are most convenient to connect with); to remove bias towards any one industry, and to adhere to national and international accreditation requirements.

Academic and non-academic/support staff working in STEMM departments, faculties, institutes often have an element of chemical training (e.g. undergraduate/postgraduate study or postdoctoral experience), suggesting opportunities for institutions to deliver engaging MITT involving chemistry in inherently MITT STEMM curricula (e.g. biochemistry, engineering, forensic sciences, geology, liberal arts, materials science, natural sciences, etc.);42,92,109,186–188 and potentially specialist elements of other curricula (e.g. arts and humanities [e.g. archaeology and architecture,189,190 art and design,191 patent law], business and management,153 technician support, etc.). However, effective MITT curriculum design is a challenge, particularly achieving the appropriate balance of monodisciplinary/intradisciplinary content and integrated MITT options192 that ensure students have the opportunity to develop both in-depth knowledge of monodisciplinary subject matter193 and insight into different disciplinary approaches to problem solving.57 A notable barrier to MITT curriculum design is ensuring curricular coherence and integration,192 especially when there are disagreements between staff from different disciplines about the specific content and methodology of delivery.194 A potential solution to issues of curricular coherence and integration is to ensure interactions between academics during all stages of curriculum design with regular meetings with module leaders presenting module plans to ensure awareness of the curriculum structure (potentially including modules taught by a multidisciplinary team of academics talking about a particular phenomenon, e.g. enzyme binding as a cross-cutting example of structure and function in biology, biochemistry and chemistry).118 This broad awareness offers opportunities for constructive overlaps between modules, thereby ensuring the best eventual outcome for staff and students who may find it challenging to make a connection between their background knowledge and its relation to other topics, topic sequencing for students from different backgrounds, and effective communication in multidisciplinary teams.195

Another challenge is the development of robust, cross-disciplinary assessment criteria to ensure fair assessments are used to encourage student engagement.174 Clearly at the highest level of MITT education (as the highest skill order) assessment in the traditional sense (e.g., exams) would be difficult, and assessment akin to postgraduate project evaluation would be more appropriate, however, project-based evaluation is time consuming, especially for courses with high student numbers. Project-based evaluation does offer opportunities for involvement of all department staff, and trains students to be assessors, which is good for employability. Moreover, depending on the structure of the curricula, particularly at the postgraduate level, there may be challenges teaching students from diverse disciplinary backgrounds and balancing the depth of material presented to ensure the
appropriate assimilation of knowledge and skills. However, the presence of students with diverse disciplinary backgrounds also has advantages that can be manifested via peer-to-peer learning during interactive activities in which students work together in teams on problem solving activities. It is noteworthy that the development of hard and soft skills (e.g., problem solving and team working) are some of the most important learning outcomes of courses at undergraduate and postgraduate levels, and MITT offers a variety of opportunities to enhance such learning experiences subject to what is possible at different higher education institutions (which may inadvertently introduce a bias/privilege gap based on the demographics of the students/staff and universality of adoption of MITT) and thereby employability.37,174,197

MITT offers students teaching activities that can encourage creativity and improve critical thinking. Such activities enable students to learn to understand multiple viewpoints on a single topic (potential barriers to which include the communication skills of instructors and students) and to appreciate the differences between the techniques and/or data (factual information) and approaches (procedural knowledge) each discipline use to solve problems and draw informed conclusions; the complexity of such activities should develop over the duration of the course to ensure holistic understanding of concepts that transcend traditional disciplinary boundaries due to the holistic design of the curriculum. An interesting example of an engaging learning experience called the “Chemistry Connections Challenge” highlights the real-world applications of an introductory organic chemistry course via a combination of instructor-directed material in lectures and self-directed learning exercises (with students submitting work on the real-world application of organic chemistry to a variety of topics including: biological processes, botany, chemical warfare, cosmetics, gastronomy, materials, medical applications, natural products, pharmaceuticals and zoology). This engaging self-directed learning activity stimulates creative thinking and a personal connection with the subject matter, is adaptable to courses in other institutions and has overwhelmingly positive student feedback; moreover, it helps students develop expertise in the discipline of choice and in the application of disciplinary expertise to other disciplines, thereby preparing them to work in MITT groups.

MITT curricula offer opportunities to present cross-cutting concepts (e.g., energy for biology, and electronics) in real-world scenarios (e.g., biology, engineering) that reinforce the relevance to students, via different methodologies (lectures, tutorials/workshops, and/or labs). MITT curricula also permit an efficiency of resource by encouraging the reuse of multidisciplinary facilities (e.g., additive manufacturing or computing for machine learning and augmented reality in chemistry and engineering), making programmes more flexible and sustainable. Drennan and co-workers described the creation of an interdisciplinary introductory chemistry course without time-intensive curriculum changes (overcoming a significant barrier to development and implementation of new curricula). The initiative equipped students with the skills to recognize underlying chemical principles in other disciplines and to solve interdisciplinary problems without "sacrificing" the original chemistry content in the course, using examples from biology and medicine to demonstrate applications of chemical principles in the lectures (see Table 7). Examples that highlight the importance of the recognition of the underlying chemical principles in other disciplines include supramolecular interactions in biological processes (e.g., protein assembly, gene expression, etc.) that could be included in molecular biology and biochemistry curricula. Drennan and co-workers’ interdisciplinary introductory chemistry course resulted in increases in student assessment that the course instructors “inspired interest” in chemistry and “used good examples” (old curriculum: 5.50 ± 1.29, new curriculum: 6.36 ± 0.97) and increases in the overall course rating (old curriculum: 5.15 ± 1.29, new curriculum: 5.99 ± 1.22). Frey and co-workers described interdisciplinary, application-oriented tutorials covering chemistry in the context of biology, engineering and environmental sciences, enhancing the students appreciation of chemistry in the world around them (with improvements in exam scores; old curriculum: ca. 69, new curriculum: ca. 74). Baranger and co-workers described a green chemistry focused general chemistry laboratory curriculum incorporating over 30 new experiments that introduced students to green chemistry principles to explore and to solve real-world problems (summarized in Table 8), which resulted in measurable improvements in students’ understanding of green chemistry principles in 6 out of 7 responses to the question “In your own words, define green chemistry”, and offers students an
opportunity to learn the 12 principles of green chemistry221–223 and to understand potential connections to the future courses and professions (another potential complementary/tangentially related topic include regulatory issues [e.g. environmental, health and safety, medical devices, etc.])82,207,224 Another exciting initiative is the Freshman Research Initiative (FRI)225,226 wherein students participate in an interdisciplinary, inquiry-based research methods course, followed by two semesters of research; this integrates training in mandatory/accredited general chemistry skill sets with open-ended research experiences, and results in students who are trained in research methods and capable of contributing to peer-reviewed publications, presentation of research and winning awards at regional/national conferences. The success of this initiative was demonstrated by a number of variables with students with comparable grade point averages, with improvements in probability of graduating within 6 years (non-FRI curriculum: 66%, FRI curriculum: 83%), and with improvements in probability of graduating with a STEM degree (non-FRI curriculum: 71%, FRI curriculum: 94%).

<table>
<thead>
<tr>
<th>Chemistry Lecture Topics</th>
<th>Biology-Related Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and course overview</td>
<td>Chemical principles in research at MIT</td>
</tr>
<tr>
<td>Wave-particle duality of light and matter</td>
<td>Quantum dot research at MIT</td>
</tr>
<tr>
<td>Periodic trends</td>
<td>Atomic size: sodium ion channels in neurons</td>
</tr>
<tr>
<td>Covalent bonds, Lewis structures</td>
<td>Cyanide ion in cassava plants, cigarettes. Thionyl chloride for the synthesis of novacaine</td>
</tr>
<tr>
<td>Exceptions to Lewis structure rules</td>
<td>Free radicals in biology: role in DNA damage and essential for life; Nitric oxide (NO) in vasodilation (and Viagra)</td>
</tr>
<tr>
<td>Polar covalent bonds, ionic bonds</td>
<td>Water-soluble versus fat-soluble vitamins: comparing folic acid and vitamin A</td>
</tr>
<tr>
<td>VSEPR theory</td>
<td>Molecular shape in enzyme-substrate complexes</td>
</tr>
<tr>
<td>Valence bond theory and hybridization</td>
<td>Restriction of rotation around double bonds: application to drug design; Hybridization example: ascorbic acid (vitamin C)</td>
</tr>
<tr>
<td>Determining hybridization in complex molecules</td>
<td>Identifying molecules that follow the “morphine rule”</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>Glucose oxidation: harnessing energy from plants</td>
</tr>
<tr>
<td>Free energy and control of spontaneity</td>
<td>ATP-coupled reactions in biology; Thermodynamics of H-bonding; DNA replication</td>
</tr>
<tr>
<td>Chemical equilibrium, Le Châtelier’s principle</td>
<td>Maximizing the yield of nitrogen fixation: inspiration from bacteria; Le Châtelier’s principle and blood-oxygen levels</td>
</tr>
<tr>
<td>Acid-base equilibrium, buffers, and titrations</td>
<td>pH and blood: effects from vitamin B\textsubscript{12} deficiency</td>
</tr>
<tr>
<td>Balancing redox equations, electrochemical cells</td>
<td>Oxidative metabolism of drugs</td>
</tr>
<tr>
<td>Oxidation/reduction reactions</td>
<td>Reduction of vitamin B\textsubscript{12} in the body</td>
</tr>
<tr>
<td>Transition metals</td>
<td>Metal chelation in the treatment of lead poisoning; Geometric isomers and the anticancer drug cisplatin</td>
</tr>
<tr>
<td>Crystal field theory, metals in biology</td>
<td>Inspiration from metalloenzymes for the reduction of greenhouse gases</td>
</tr>
<tr>
<td>Rate laws</td>
<td>Kinetics of glucose oxidation in the body</td>
</tr>
<tr>
<td>Nuclear chemistry and elementary reactions</td>
<td>Medical applications of radioactive decay (99Tc)</td>
</tr>
<tr>
<td>Reaction mechanism</td>
<td>Reaction mechanism of ozone decomposition</td>
</tr>
<tr>
<td>Enzyme catalysis</td>
<td>Enzymes as the catalysts of life, inhibitors as drugs</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>The methionine synthase case study</td>
</tr>
</tbody>
</table>

aAdapted with permission from ref 188.
Table 8. Experimental Module, Chemistry Principles, and Green Chemistry Principles for Each Redesigned Experiment Used in the General Chemistry Laboratory Course at UC–Berkeley

<table>
<thead>
<tr>
<th>Module (Number of Weeks)</th>
<th>General Chemistry Principles</th>
<th>Green Chemistry Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>How the Nose Knows (1)</td>
<td>Functional groups, physical properties, formal charges, bond-line notation, VSEPR</td>
<td>Designing safer chemicals, renewable feedstocks</td>
</tr>
<tr>
<td>Polymers: Properties and Applications (1)</td>
<td>Functional groups, density, solubility, structure–function relationship, dissolution, hydrolysis</td>
<td>Waste prevention, designing safer chemicals, design for degradation</td>
</tr>
<tr>
<td>Polymers: Cross-Linking and Toy Design (2)</td>
<td>Cross-linking reactions, intermolecular interactions, bonding, mass ratios in mixtures</td>
<td>Inherently safer chemistry, safer solvents, renewable feedstocks, atom economical</td>
</tr>
<tr>
<td>Polymers: Density of Liquids and Solids (2)</td>
<td>Precision and accuracy, systematic and random error, solubility, experimental design, polymer structure</td>
<td>Waste prevention, designing safer chemicals, and designing for degradation</td>
</tr>
<tr>
<td>Biofuels (3)</td>
<td>Transesterification, combustion and calorimetry, solubility, extraction, Cal and ΔHcomb</td>
<td>Designing safer chemicals, renewable feedstocks, catalysis, safer solvent, atom economical, inherently safer chemistry, energy efficiency</td>
</tr>
<tr>
<td>Spectroscopy: Food Dyes and Riboflavin in Beverages (1)</td>
<td>UV–vis and fluorescence spectroscopy, Beer’s law, extinction coefficients, calibration curves, error propagation</td>
<td>Inherently safer chemistry</td>
</tr>
<tr>
<td>Extraction of Curcumin and Spectroscopic Analysis (1)</td>
<td>Transmission, absorbance, extraction and separation, calibration curves, linearity of data</td>
<td>Safer solvent, energy efficiency, waste prevention</td>
</tr>
<tr>
<td>Equilibrium (1)</td>
<td>Solubility, acid/base equilibria, gases, Le Châtelier’s principle, pH measurements</td>
<td>Renewable feedstocks, safe solvents and auxiliaries, designed for degradation</td>
</tr>
<tr>
<td>Depolymerization and Titration (2)</td>
<td>Ester hydrolysis, dimensional analysis, ICE tables, indicator and potentiometric titrations</td>
<td>Renewable feedstocks, designed for degradation</td>
</tr>
<tr>
<td>Acids in the Environment (3)</td>
<td>Solubility equilibria, acid/base titrations, gases and equilibrium, Le Châtelier’s principle, buffers</td>
<td>Real-time analysis for pollution prevention, less hazardous chemical syntheses, waste prevention</td>
</tr>
<tr>
<td>Extraction from Thyme Leaves (2)</td>
<td>Extraction, IMFs, polarity, chromatography, diffusion, extraction, standard addition, uncertainty</td>
<td>Waste prevention, design for degradation, use of renewable feedstocks</td>
</tr>
<tr>
<td>Extraction and Analysis of Limonene (2)</td>
<td>Chromatography, boiling points, sublimation, triple point, polarity, mass spectrometry, standard calibration curves, uncertainty</td>
<td>Pollution prevention, safer solvents, energy efficiency, renewable feedstocks, design for degradation, safer chemistry and solvents</td>
</tr>
<tr>
<td>Methanol/Glucose Fuel Cells and Dye-Sensitized Solar Cells (2)</td>
<td>Electrochemistry, galvanic cells and batteries, catalysis and enzymes, cell potentials, net free energy calculations</td>
<td>Energy efficiency, catalysis, renewable feedstocks, design for degradation, inherently safer chemistry</td>
</tr>
<tr>
<td>Kinetics: Bleaching Organic Dyes and H₂O₂ Decomposition (2)</td>
<td>Catalysis, reaction rates, kinetics, reaction order, method of initial rates, visible spectroscopy, Beer’s law</td>
<td>Catalysis, designing safer chemicals, inherently safer chemistry</td>
</tr>
<tr>
<td>Computational and Experimental Investigation of Pesticides (2)</td>
<td>MO theory, computer-based molecular modeling, solubility, UV-vis and fluorescence spectroscopy</td>
<td>Waste prevention, designing safer chemicals, real-time analysis for pollution prevention</td>
</tr>
</tbody>
</table>

Adapted with permission from ref 207.

Advancements in computer hardware and software over the last few decades have revolutionized our understanding of chemistry and developed new sub-fields offering opportunities for inclusion in curricula worldwide. The enhanced computer and technology literacy of students is reducing barriers...
to learning computational aspects of chemistry and its implementation in MITT,227–232 also driven by the necessity to deliver increased levels of engaging online teaching.233–238 Chemoinformatics,239–246 lies at the interface of chemistry and computer sciences, involving the: storage; classification and indexing; searching, mining, retrieving of information about chemical compounds (e.g. software developed for chemical analysis equipment, illustration of synthetic pathways, visualization of molecular docking of compounds with protein receptors, molecular dynamics simulations); and is particularly useful for dealing with large datasets (e.g. via data mining and statistical analysis) using mathematical techniques (e.g. machine learning [ML] and artificial intelligence [AI]).247–251 In pharmaceutical R&D, advances in genetics and molecular biology have revealed potential new targets for developing medicines and deciding which target to pursue is challenging and an area in which there is opportunity to increase productivity. ML/AI approaches such as deep learning correlation analysis252–257 can be used to accelerate identification of biological pathways and targets in disease biology, to find potential drug molecules, to understand the biological effects of the compound and help design clinical trials to ensure the best outcomes are achieved. Clearly a multitude of other opportunities exist for inclusion of computational studies in a variety of disciplinary contexts (e.g., agrochemical/drug delivery/design,258,259 catalysis,260 materials chemistry,261 medical imaging and analysis,262,263 etc.). Computational chemistry can help engage students learning about important concepts such as kinetics and thermodynamics, molecular descriptors (i.e. constitutional, electronic, physico-chemical, topological), stereochemistry and 3D structures in an interactive virtual learning environment; and moreover, provides various platforms to study intramolecular and intermolecular interactions that can be used for research and development in a safe and cost effective fashion (e.g. informing the selection of candidates to bind to biological receptors or pharmaceutical carriers for drug delivery, while minimizing resource utilization and exposure to chemicals).264 Aspects of computational chemistry can be taught through inclusion of mathematics and computational skills (e.g. programming) in chemistry curricula, and computational chemistry for biologists, pharmacists, programmers, etc. in MITT curricula. This takes into account the student’s background and ensures that the teaching is done at an appropriate level for the audience, thereby helping to facilitate communication of concepts underpinning computational chemistry to various audiences in preparation for real-life multidisciplinary teamwork in various economic sectors (i.e., better educational outcomes).

Research projects at various points throughout curricula (particularly Capstone projects) offer academics an opportunity to contribute to MITT activities in (potentially niche) topics of direct interest to themselves and/or the students (i.e. student-centered learning, which helps students to direct their learning of course material towards an outcome that is directly relevant to them [e.g. project management skills]).265–278 Such MITT research projects embedded in curricula can deliver positive short and long term impacts, including: increased collaborative research,42,56,57,73,77,191,279–287 increased research impact,43,77,78,80,164,281,288–290 increased grant income,80,279,280,291,292 increased student employability by training the next generation of research-active academics to comfortably work at disciplinary interfaces;51,52,144 societal impact by delivering graduates comfortable in the changing workplace,128,153,279,289,293 and economic impact by supporting the economies they contribute to (e.g., by generation of intellectual property).12,51,52,72,78,278 Metrics associated with these factors have the potential to make the course and/or university more attractive to students and/or staff, which may have beneficial effects on the student and/or staff demographics, particularly when supported by mentoring initiatives (e.g. the US NSF Research Experience and Mentoring program).80,288,289

As noted above, industries have evolved to address complex real-world problems that are interdisciplinary in nature and support the employment of millions of people across the world. Industries are also engaged with learned/professional societies and PSRBs to offer guidance on the skills needed by graduates. There are a multitude of opportunities for the involvement of industrial partners in elements of MITT. These interactions vary depending on the scope of interaction between the higher education institution and industrial partner, including guest lectures about industrial/commercialization best practice,131 opportunities for industry-based internships (during summer vacations or an entire academic year of study) and research projects in collaboration with industry partners ranging from short term projects such as consultancy. This can involve undergraduate and postgraduate researchers, to long term projects such as PhD studentships. These interactions offer students opportunities for research oriented individual or team-based learning.
activities such as students learning about research processes and methodologies, invention and innovation and project management. Of particular importance is how to align a technical academic solution to a problem or need early on, thereby enabling an early go/no go decision, and helping to deliver sustainable commercial success.82,131

However, there are many challenges to industry engagement. Perhaps the most obvious challenge is the resources required to foster relationships with potential industry partners (and vice versa), which may necessitate the appointment of dedicated staff in academia and industry to facilitate introductions, cultivate collaborative relationships, deal with any communication issues between industry partners and students/academics, setting expectations (of companies, students, supervisors, funding bodies and administrators), planning projects, negotiate contracts, deal with intellectual property, mitigate risks, manage reputation, etc. Nevertheless, the engagement of industrial partners in educational activities offers many benefits for students, staff, institutions and industry partners alike. This engagement and the direct/indirect involvement of industry partners in the delivery of MITT activities involving chemistry in many departments in STEM faculties12,92,186 (e.g., forensic science,294 liberal arts, materials science, natural sciences, pharmacy, etc.) and beyond (e.g., arts and humanities [e.g., archaeology and architecture,189 art and design,191,295,296 patent law], business/management,153 etc.) involving staff from other departments via experiential learning elements, problem-based and research-based learning activities related to real world problems.128,145,279,297 The skills developed while undertaking MITT curricula offer enhanced engagement, learning, and employability, and ultimately beneficially impacts the economy and society across the developed, developing and emerging economies of the world, and enable us to deliver on the promises of the UN SDGs,168–173

ANALYSIS OF THE OUTCOMES OF MITT IN HIGHER/TERTIARY EDUCATION

The analysis of the outcomes of MITT in higher education institutions is often qualitative, however, examples of quantitative analysis offer educators insights into what to expect when contemplating new interdisciplinary undertakings (e.g., potential benefits, effect size, etc.). It can be challenging to quantify the outcomes of MITT initiatives,174,298 however, a selection of initiatives reporting quantitative outcomes are summarized hereafter. An initiative to offer general chemistry in just one semester for life science majors resulted in significant improvements in exam scores (out of 200 points) for organic chemistry I (old curriculum: 155.75 ± 33.21, new curriculum: 170.69 ± 27.49) and II (old curriculum: 153.16 ± 31.17, new curriculum: 167.84 ± 27.31).300 An adapted version at another institution offer general chemistry in just one semester for all majors resulted in increases in the percentage of successful completions (old curriculum: 71.7%, new curriculum: 87.7%), with students achieving similar scores on a full-year ACS general chemistry exam (out of 70 points; old curriculum: 41.6 ± 9.7, new curriculum: 39.8 ± 10.3); there was also a subsequent increase in the enrollment in organic chemistry (36% in Organic Chemistry I and 39% in Organic Chemistry II) and a 33% increase in the number of chemistry majors (old curriculum: 16.8 ± 1.0, new curriculum: 22.3 ± 4.6).301 Another initiative to develop allied health courses with an entry level allied health chemistry course for non–majors showed enhanced student learning after 6 semesters (final exam score; old curriculum: 58.3 ± 16.1, new curriculum: 64.8 ± 14.2).109 An interdisciplinary introductory chemistry course resulted in increases in student assessment that the course instructors “inspired interest” in chemistry and “used good examples” (old curriculum: 5.50 ± 1.29, new curriculum: 6.36 ± 0.97) and increases in the overall course rating (old curriculum: 5.15 ± 1.29, new curriculum: 5.99 ± 1.22).188 Introducing an interdisciplinary guided-inquiry experience in chemistry and biology to the first year of a curriculum for forensic science students resulted in a significant decrease in fails and concomitant increase in distinctions and higher distinctions, and significant increases in the perception of the benefits in working in teams (old curriculum: 40%, new curriculum: >75%).302 Replacing junior- and senior-level laboratory curriculum with 2, 2-semester long, student-led research projects as part of an ACS-accredited program was observed to enhance student perceptions of learning (old curriculum: ca. 5.8, new curriculum: ca. 6.4),303 which is understood to improve overall academic achievement, skills acquisition/performance and motivation for learning.304 The Freshman Research Initiative (FRI)225,226 involving students in interdisciplinary research results in measurable improvements in their
probability of graduating within 6 years (non-FRI curriculum: 66%, FRI curriculum: 83%), and their probability of graduating with a STEM degree (non-FRI curriculum: 71%, FRI curriculum: 94%).

The direct comparison of these quantitative analyses is itself challenging due to differences in curricula/innovation, socioeconomic factors of the student cohort and/or location of the higher education institution, however, it offers evidence to inform decision makers in higher education institutions of the costs/benefits of MITT initiatives enabling them to determine the future use of the innovation based on improvements in assessments, outcomes and student satisfaction. A few examples of the application of topics discussed in the paper (real world problems addressed, curriculum development and implementation, administration, and outcomes/feedback) to common elements of curricula (lectures/tutorials, instructed lab work and research) are highlighted in Table 9, with an interesting example of course design from scratch from McGill and coworkers also touching on these topics.192 Engagement with MITT activities in well-designed curricula should equip students with a 21st-century skills set28,72,305,306 that underpins their employability.

| Table 9. Examples Highlighting the Application of Topics Discussed in This Work |
|---------------------------------|---------------------------------|---------------------------------|
| Topics | Interdisciplinary Introductory Chemistrya | Green Chemistry Focused Laboratoryb | Freshman Research Initiativec,d |
| Real-world problems addressed | Biology, health and medicine | Green chemistry, energy, environment, health/safety issues | Dependent on staff involvement, including health and medicine, sensing, catalysis/green chemistry, energy harvesting/storage, computational chemistry/biochemistry |
| Curriculum development and implementation | Lectures, problems and assessments use biological examples within a framework of chemistry | Labs use energy, environment, health/safety examples to integrate general chemistry and green chemistry principles | Interdisciplinary, inquiry-based research methods course, followed by two semesters of research |
| Administration | Financially supported by the institution | Financially supported by the institution | Initially financially supported by Howard Hughes Medical Institute and the National Science Foundation; thereafter, supported by the institution and research income |
| Outcomes/feedback | Increase in the overall course rating; Increase in student assessment that the course instructors “Inspired interest” in chemistry and “used good examples” | Improvements in students’ understanding of green chemistry principles in 6 out of 7 responses to the question “In your own words, define green chemistry.” | Improved probability of graduating with a STEM degree |
| | | | Improved probability of graduating within 6 years |
| | | | Potential co-authorship of research papers; Potential to participate in research conferences and win awards |

aSee ref 188. bSee ref 207. cSee ref 225. dSee ref 226.
CONCLUSION
Chemistry can serve as a bridge between various fields of knowledge offering students of MITT programs opportunities to develop hard and soft skills, and the ability to communicate ideas between these fields. Chemistry is therefore an important discipline to incorporate into MITT activities, because chemistry integrated with other fields of knowledge plays an important role in potential multidisciplinary, interdisciplinary and transdisciplinary solutions to the complex real-world problems encountered by each of the different economic sectors and in the UN SDGs.

Effectively establishing and delivering MITT at a higher education institution requires creative and visionary leadership, supportive management and administration that fosters an environment for creative curriculum design. The curriculum design itself requires collaboration (staff, students, externals [e.g., government, industry, etc.]), creativity, and a well balanced approach (balancing disciplinary input and other issues relevant to curriculum design, e.g., assessment). All of this is important because chemistry as a discipline underpins the global success by supplying employers with graduates, enriching the graduates experience (as they care about the world) and equipping them with a 21st-century skill set that underpins their employability.

AUTHOR INFORMATION
Corresponding Authors
*E-mail: j.g.hardy@lancaster.ac.uk (J.G.H.) or sdepanians@rsc.org (S.S.)

ACKNOWLEDGMENTS
J.G.H. thanks the colleagues and students who he has worked alongside during the years he has learned to engage in multidisciplinary, interdisciplinary and transdisciplinary teaching and research (and about the pedagogy underpinning them), and Dr Ann-Marie Houghton of the Educational Development team and Department of Educational Research at Lancaster University, and the reviewers and editors for constructive criticism that improved the scope and quality of this article.

S.S. thanks the Royal Society of Chemistry for provision of opportunities to engage in interesting continuing professional development activities.

We thank Geoff Akien, Maryam A. Almirabi, Nizar Almirabi, Mark Ashton, Sara Baldock, Nathan Hal covitch, Garry R. Harper, Mathew J. Haskew and David Rochester for insightful discussions and willingness to engage in MITT activities at Lancaster University. We thank Johannes Voges (GVS Filter Technology UK Ltd., Morecambe, UK), Andrew Dodd (Bonds Precision Castings Ltd., Alston, UK) and Daniela Presa (Lhasa Limited, Leeds, UK) for insightful discussions during the preparation of the article. We thank various industry partners for opportunities to undertake internships and engage in collaborative research, and the Business Partnerships and Enterprise Team for efforts to facilitate this.

We thank the various funding bodies that have supported this via grants for various activities, specifically UK Research and Innovation: BBSRC [BB/L013738/1, BB/L013762/1, BB/L013819/1, BB/L013797/1 [and POCVS18_03, POCVS18_04, POCVS18_05, POCVS18_06]], EPSRC [EP/K03099X/1; EP/R003823/1; EP/R511560/1; EP/R512564/1, 2065445; EP/R513076/1, 2145109; EP/S004505/1], ESRC [ES/T501943/1, BEA7639], MRC [MC_PC_17192]; the Royal Society [A103355, NF151479, RG160449] and the Royal Society of Chemistry (RM1601-2703). We thank the Ministry of Education of Saudi Arabia and the Saudi Cultural Bureau for support for A.D.A., and the University Cooperative Society of the University of Texas at Austin for supporting a number of Undergraduate Research Fellowships for students to undertake interdisciplinary projects that led to co-authorship of a number of collaborative research papers.

REFERENCES

57. Fowler, D. A.; Arroyave, R.; Ross, J.; Malak, R.; Banerjee, S. Looking Outwards from the “Central Science”: An Interdisciplinary Perspective on Graduate Education in Materials Chemistry. In Educational and Outreach Projects from the Cottrell Scholars Collaborative Undergraduate and Graduate Education Volume 1, American Chemical Society: 2017; Vol. 1248, pp 65-89.
64. Taber, K. S. Progressing chemistry education research as a disciplinary field. Disciplinary and Interdisciplinary Science Education Research 2019, 1, 5.
87. Grant, L. Lab skills of new undergraduates.
89. Open for Business. A chemistry department perspective on university–business engagement.
90. Overton, T.; McGarvey, D. J. Development of key skills and attributes in chemistry. Chemistry Education Research and Practice 2017, 18 (3), 401-402.

114. Low, W. L.; Martin, C.; Kenward, M. A. Approaches to controlled release of antimicrobial tea tree oil (TTO) and silver ions (Ag+) by liposome encapsulation. Journal of Pharmacy and Pharmacology 2010, 62 (10), 1250-1251.

141. Research Excellence Framework (REF). https://www.ref.ac.uk (accessed 2021-02-02).

146. REF 2021: Overview of arrangements for submission and assessment of interdisciplinary research. https://www.ref.ac.uk/media/1114/idr-overview-document.pdf (accessed 2021-02-02).

158. Ma, G., Sparking interdisciplinary: let’s take framing students as customers in higher education seriously. *Interdisciplinary Science Reviews* **2019**, 1-16.
166. Ayuob, N. N.; Eldreek, B. S.; Alsaba, A. F. Interdisciplinary Integration of the CVS Module and Its Effect on Faculty and Student Satisfaction as Well as Student Performance. *BMC Medical Education* 2012, 12 (1), 50.

