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We determine the transmission of light through a planar atomic array beyond the limit of low light
intensity that displays optical bistability in the mean-field regime. We develop a theory describing
the intrinsic optical bistability, which is supported purely by resonant dipole-dipole interactions in
free space, showing how bistable light amplitudes exhibit both strong cooperative and weak single-
atom responses and how they depend on the underlying low light intensity collective excitation
eigenmodes. Similarities of the theory with optical bistability in cavities are highlighted, while
recurrent light scattering between atoms takes on the role of cavity mirrors. Our numerics and
analytic estimates show a sharp variation in the extinction, reflectivity, and group delays of the
array, with the incident light completely extinguished up to a critical intensity well beyond the low
light intensity limit. Our analysis paves a way for collective nonlinear optics with cooperatively
responding dense atomic ensembles.

I. INTRODUCTION

Optical bistability is a intriguing nonlinear phenomena
for atoms, where two possible states of a system coexist
for the same parameters. It has been studied theoreti-
cally for a long time in the regime where atoms couple
to a single cavity mode and atomic positions and spa-
tial dependence of interactions do not play a role [1–9].
It has also been observed experimentally [10–15], some-
times alongside a rich phenomenology of other optically-
induced phases [16–19]. However, bistability can also be
found less commonly in systems where it is intrinsic, gen-
erated only by interactions within the sample, and has so
far been observed in Yb3+ ions in solid-state crystals at
cryogenic temperatures [20] and in highly-excited Ryd-
berg atoms in the microwave regime [21]. Intrinsic bista-
bility was thought to be unachievable for atoms in the op-
tical regime, but recent theoretical studies of many-body
systems suggest that interaction-mediated bistability is
more generic and possible in a variety of systems with
short- and long-range interactions [22–24]. In particular,
we recently demonstrated [25] that intrinsic bistability
and optically-induced phases emerge in arrays of atoms at
sufficiently high densities, due to resonant light-mediated
dipole-dipole (DD) interactions and that these could be
identified in coherently and incoherently scattered light.

Several experiments on interactions of light with
atomic ensembles have in recent years achieved such cold
temperatures and high atom densities [26–35] that the
collective optical responses can start deviating [30, 36]
from those of thermal or low-density samples. The rel-
evant density scale is the number of atoms per cubic
wavenumber k of the resonant light, which takes nonneg-
ligible values also for atoms in optical lattices. In par-
ticular, a Mott-insulator state of 87Rb atoms was now
studied [37] in an optical lattice with near unit filling,
where a subradiant eigenmode with a spatially uniform
phase profile was driven by the incident field in the limit
of low light intensity (LLI), and observed in a narrowed
transmission resonance for light. Collective interaction of
light with closely related arrays of atoms has attracted

considerable theoretical interest [25, 38–76].

Here we analyze transmission of light through a dense
planar array of cold atoms beyond the limit of LLI, when
the atoms respond nonlinearly to light. We formulate a
theory for optical bistability of free-space atomic arrays
that in general depends on the underlying LLI mode, ex-
panding our earlier analysis of Ref. [25]. In some cases,
the theory can be solved even analytically, with suffi-
ciently small atomic separations (ka) < (π/3)1/2 needed
for bistability of spatially uniform modes. The bistabil-
ity threshold ka ∼ 1 applies even for the case of just two
atoms and equals the separation at which the single-atom
linewidth γ becomes less than the collective line shift,
originating from recurrent scattering where the light is
scattered more than once by the same atom [77–82].

We find that the transmitted light exhibits a
bistable solution of both “cooperative” and “single-
atom” branches, which we obtain approximate analytic
solutions for at high atomic densities. The coopera-
tive branch represents a collective response where atoms
strongly absorb the incident light, with high extinction
and weak incoherent scattering, while the single-atom
branch represents an independent response with atoms
weakly absorbing the incident field, with low extinction
and strong incoherent scattering. In particular, the co-
operative branch can completely extinguish the incident
light up to a large critical intensity, Ic/Isat ' 155, well
beyond the LLI limit. Beyond this intensity, a sharp
change in the transmission behavior of the array occurs,
as light begins to transmit through the lattice. By vary-
ing the frequency and intensity of the incident light, we
find hysteresis between the branches can occur, which is
observable by jumps in the extinction, reflectivity and
phase shifts of the light. We also find the loss of one of
the branches at the edge of the bistability region is asso-
ciated with a first order phase transition, resulting in a
divergence of the group delay and critical slowing, where
increasingly long times are needed to reach the steady
state.

The emergence of optical bistability in a collectively re-
sponding system of regularly spaced array of atoms has
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a surprisingly close analogy with the optical bistability
in cavities. The presence of closely spaced atoms and
strong DD interactions modify the effective Purcell fac-
tors of atoms, due to substantial recurrent light scatter-
ing. This is reminiscent of the effect of a cavity in which
case a cooperative response results from an atom repeat-
edly scattering the same photon that bounces between
the cavity mirrors. The recurrent scattering in cavities
is quantified by a cooperativity parameter C = g2/2γκ,
which depends on the cavity linewidth κ and atom-cavity
coupling g. For specific parameter values the analogy
between bistability in the two systems becomes direct,
with the same equations governing the relationship be-
tween the incident and total light field, in which case we
can define a cooperativity parameter for atomic arrays as
C = γ̃/2γ, for the collective linewidth γ+γ̃. The bistabil-
ity in both systems then emerges for a sufficiently strong
cooperative response when C > 4.

The layout of this paper is as follows. In Sec. II, we
present the model. In Sec. III, we present the theoretical
description of optical bistability in 2D planar arrays, be-
fore studying transmission properties in Sec. IV. Finally,
in Sec. V, we discuss our results and draw conclusions. In
Appendices A and B, we give further details on the com-
parison between bistability in cavities and atom arrays,
and on the transmission results, respectively.

II. MODEL

A. Atoms and light fields

We consider a system of N two-level cold atoms in-
teracting with light and trapped in a two-dimensional
(2D) array with one atom per site. The electrodynam-
ics are expressed in the length-gauge, obtained by the
Power-Zienau-Woolley transformation [83–85], where the
basic dynamical variable for light is the electric displace-
ment vector, D̂(r) = D̂+(r) + D̂−(r). The positive

frequency component is D̂+(r) =
∑
q ζâqe

iq·rêq, with

D̂−(r) = [D̂+(r)]†, where ζ =
√

~ωqε0/2V , and we have
introduced the mode frequency, ωq, polarization êq, pho-
ton annihilation operator, âq and mode volume, V . The
polarization of the atoms is expressed through the polar-
ization vector with positive frequency component,

P̂+(r) =
∑
l

δ(r− rl)dgeσ̂
−
l . (1)

The atoms are at fixed lattice sites rl, and we have in-
troduced the dipole moment, dge, and the lowering op-
erator σ̂−l = |g〉ll〈e| = (σ̂+

l )†, with |e〉l and |g〉l de-
noting the excited and ground state of the two-level
atom on site l, respectively. We assume the atoms
are illuminated by a near monochromatic incident field,
D̂+
F (r) = ε0E+(r) where E+(r) = E0êeik·r, with wavevec-

tor k and frequency ω = c|k| = ck, and express ob-
servables in terms of slowly varying field amplitudes and

atomic variables, D̂+eiωt → D̂+ and σ̂−l e
iωt → σ̂−l . The

incident light is expressed through the Rabi frequency,
Rl = d∗ge · E+(rl)/~ acting on an atom at lattice site l,
and the incident and saturation intensity,

Il
Isat

= 2
|Rl|2

γ2
, Isat = ~c

4π2γ

3λ3
. (2)

Throughout the paper, we assume dge = Dê, where D is
the reduced dipole matrix element.

Integrating over all space, the system Hamiltonian
is [81]

Ĥ =
∑
q

~ωqâ†qâq +
∑
l

∆lσ̂
ee
l

+
1

2ε0

∫
P̂(r) · P̂(r)d3r− 1

ε0

∫
D̂(r) · P̂(r)d3r.

(3)

The first term is the Hamiltonian of the free electromag-
netic field. The second term is the laser frequency de-
tuning from the atomic resonance, ∆l = ω − ωleg, where

ωleg is the transition frequency of an atom on site l, and

σ̂eel = σ̂+
l σ̂
−
l . The third term is the self-polarization,

which is zero for nonoverlapping point atoms. The fi-
nal term is the interaction of the electric displacement
field with the atomic polarization. After carrying out
the spatial integration, we also make a rotating wave ap-
proximation in the Hamiltonian, Eq. (3), to remove the
fast co-rotating terms.

The total electric field Ê+(r) = E+(r) + Ê+
s (r) is ob-

tained using D̂(r) = ε0Ê(r) + P̂(r) from the scattered
field,

ε0Ê
+
s (r) =

∑
l

G(r− rl)dgeσ̂
−
l , (4)

where the field satisfies Maxwell’s wave equation with an
atomic polarization source [81] and the dipole radiation
kernel acting on a dipole located at the origin, with r =
|r| and r̂ = r/r, is given by the familiar dipole radiation
pattern [86, 87]

G(r)d = −dδ(r)

3
+
k3

4π

{
(r̂× d)× r̂

eikr

kr

− [3r̂ (r̂ · d)− d]

[
i

(kr)2
− 1

(kr)3

]
eikr

}
. (5)

B. Mean-field approximation

1. Mean-field equations

We now describe the dynamical evolution of the atomic
coherences and excited level population in the mean-
field regime where quantum fluctuations between differ-
ent atoms [73] are ignored. The dynamics of the sys-
tem are obtained by solving the Heisenberg equations of
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Figure 1. Transmission through an array of atoms. An inci-
dent field drives a large collective response at low intensities
and a weak single-atom response at high intensities. For in-
termediate intensities, bistability between the two responses
is possible.

motion for the atomic operators σ̂eel and σ̂−l , assuming
a Born-Markov approximation to eliminate the electric
field operators, âq. A Gutzwiller mean-field approxima-
tion is then implemented, corresponding to the factoriza-
tion of internal level correlations,

〈σ̂αi σ̂
β
j 〉 ≈ 〈σ̂

α
i 〉〈σ̂

β
j 〉, i 6= j (6)

where, because atoms are at fixed positions with no po-
sition fluctuations, there are no light-induced correla-
tions [73, 88] between the atoms after the factorization.
The system dynamics are then described by the following
nonlinear equations

ρ̇(l)
ge = (i∆l − γ) ρ(l)

ge

− i(2ρ(l)
ee − 1)

[
Rl +

∑
j 6=l

(Ωjl + iγjl)ρ
(j)
ge

]
, (7a)

ρ̇(l)
ee =− 2γρ(l)

ee + 2Im[R∗l ρ(l)
ge ]

+ 2Im
[∑
j 6=l

(Ωjl − iγjl)ρ
(l)
ge (ρ(j)

ge )∗
]
, (7b)

where we define ρ
(l)
ge = 〈σ̂−l 〉 and ρ

(l)
ee = 〈σ̂eel 〉. The sum-

mation terms in Eqs. (7) describe light-mediated inter-
actions between a discrete atoms at fixed points l and j
in a lattice. The DD interaction terms Ωjl and γjl de-
pend on the relative positions between the atoms in the
lattice, and are given by the real and imaginary part of
the dipole radiation kernel, Eq. (5),

Ωjl =
1

~ε0
Re
[
d∗ge · G(rj − rl)dge

]
,

γjl =
1

~ε0
Im
[
d∗ge · G(rj − rl)dge

]
,

(8)

where γjj = γ = D2k3/(6πε0~) is the single-atom
linewidth. DD interactions result in recurrent and cor-
related light scattering between the atoms with a strong
collective response from the array. The contact term of
the scattered light field in Eq. (5) is inconsequential in the
atomic interaction coefficients of Eqs. (7) and is the ori-
gin of the local field shift of light inside the medium [89].

In the absence of DD interactions, Eqs. (7) reduce to the
usual independent-atom optical Bloch equations. Mean-
field equations based on related principles as those in
Eqs. (7) have also been used to describe systems with and
without spatial fluctuations [34, 88, 90–92]. Other tran-
sitions can be included, such as the m = ±1 states of the
|J = 0,m = 0〉 → |J = 1,m = 0,±1〉 transition, and the
corresponding general form of Eqs. (7) with arbitrary in-
ternal atomic levels is given in Ref. [88], with the specific
case of three-level system simulated in Ref. [34]. How-
ever, this quickly increases the complexity of the system.
By application of a magnetic field, the m = ±1 states
can be tuned far off-resonance so an effective two-level
system can be obtained with the m = 0 states.

2. Low light intensity

In the limit of LLI, atoms occupy the ground state,
with changes to the coherence, ρge, linearly proportional

to the incident light field amplitude, E+. The LLI
limit [81, 88] then constitutes deriving the equations first
order in light field amplitude by keeping the terms that
include at most one of the amplitudes ρge or E+, and no
ρee. Equations (7) then reduce to a linear set of equations
describing N dipole-coupled oscillators

ρ̇(l)
ge = i

∑
j

Hjlρ(j)
ge + iRl,

Hjl = (∆ + iγ)δjl + (Ωjl + iγjl)(1− δjl).
(9)

The LLI collective excitation eigenmodes are given by
the eigenmodes of H, which satisfy biorthogonality re-
lations, with complex eigenvalues δα + iυα, where δα
and υα describe the collective line shift (from the res-
onance of the isolated atom) and linewidth, respec-
tively [40, 42, 44, 88, 93–96]. Modes with υα > γ
(υα < γ) are termed superradiant (subradiant). For
an infinite lattice, the eigenmodes of the system are de-
scribed by plane waves with wavevector q. The eigenval-
ues are now Ω̃(q) + i[γ̃(q) + γ] where

Ω̃(q) =
∑
j 6=l

Ωjle
iq·rj , γ̃(q) =

∑
j 6=l

γjle
iq·rj , (10)

are the Fourier transforms of the real and imaginary parts
of the dipole kernel, Eq. (8), respectively (excluding the
self-interaction j = l). The plane waves are given by

v(+)
q (rl) = Aq cos(q · rl), (11)

v(−)
q (rl) = Aq sin(q · rl), (12)

where Aq =
√

2/N except for Aq=0,(π/a,π/a) = 1/
√
N .

For the infinite system, the two-level transition resonance
wavelength defines the light cone, ka/

√
2, where any

mode with |q| > k/
√

2 results in γ̃(q) = −γ and the
corresponding mode is then completely dark.
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3. Solutions to the mean-field equations

We now solve the dynamics of Eqs. (7) to obtain the
steady-state solutions by considering uniform level shifts,
∆l = ∆. For the incident plane with the wave vector
k, a phase varying Rabi frequency, Rl = Reiq·rl , can
be obtained by tilting the angle of incidence, such that
q = k − (ẑ · k)ẑ. A general solution to Eqs. (7) is then

given by ρ
(l)
ee = ρee and ρ

(l)
ge = ρgee

iq·rl , with

ρge =
iRZ

i
[
∆− ZΩ̃(q)

]
− [γ − Zγ̃(q)]

, (13)

where

Z = 2ρee − 1. (14)

However, modes with q lying near to or outside the light
cone cannot directly be excited by incident light due to
the rapid phase variation required, and instead must be
driven by applying symmetry-breaking fields to the lat-
tice [25]. Such a symmetry-breaking level shifts could be
generated, for example, by ac Stark shifts [97] of lasers.

The population difference, Z, obeys the cubic equation

p(Z) =
[
γ̃(q)2 + Ω̃(q)2

]
Z3 + (∆2 + γ2)

+
[
γ̃(q)2 + Ω̃(q)2 − 2∆Ω̃(q)− 2γγ̃(q)

]
Z2

+
[
∆2 + γ2 + 2|R|2 − 2∆Ω̃(q)− 2γγ̃(q)

]
Z

= 0.

(15)

When |R|2 ≈ 0, Eq. (15) admits the solution ρee = 0,
with the coherence, Eq. (13), now describing the LLI
eigenmode of the infinite system with a wave vector q.
However, for nonzero incident fields, Eq. (15) can have up
to three real solutions, of which two are dynamically sta-
ble, resulting in optical bistability. Cases where solutions
become unstable can result in the emergence of a typi-
cally rich phase diagram of different solutions, exhibiting
a dependence on the intensity and laser frequency [25].

III. BISTABILITY IN ARRAYS OF ATOMS

A. General formalism

We now establish the formalism used to determine the
parameter ranges where bistability is possible for an ar-

ray of atoms. To do this, we substitute ρ
(l)
ee = ρee and

ρ
(l)
ge = ρgee

iq·rl into Eqs. (7), and rewrite as

ρ̇ge = (i∆− γ) ρge − i(2ρee − 1)Reff , (16a)

ρ̇ee =− 2γρee + 2Im [R∗effρge] , (16b)

where we have defined

Reff = R+ [Ω̃(q) + iγ̃(q)]ρge, (17)

which is the total external electric field (incident plus
scattered field from all the other atoms, given in terms
of the Rabi frequency) driving an arbitrary atom l in
the ensemble. Solving Eqs. (16) gives the coherence and
excited level population in terms of Reff [25],

ρge = Reff
−∆ + iγ

∆2 + γ2 + 2|Reff |2
, (18a)

ρee =
|Reff |2

∆2 + γ2 + 2|Reff |2
. (18b)

These solutions have a similar form to the solutions of
the optical Bloch equations, but now with the Rabi fre-
quency, R, replaced byReff . Using Eq. (18a) to eliminate
ρge from Eq. (17) gives

R = Reff +Reff
2C(∆2 + γ2)

∆2 + γ2 + 2|Reff |2
, (19)

where we have defined the cooperativity parameter [25],

C =
1

2

Ω̃(q) + iγ̃(q)

∆ + iγ
, (20)

which is a measure of the collective behavior in the ar-
ray and plays an important role in describing bistabil-
ity. Finally, by taking the absolute value of both sides of
Eq. (19), we obtain

I

Isat
=

2|Reff |2

γ2

1

(η2 + 2|Reff |2)2

{
4η4Im[C]2

+
[
η2(1 + 2Re[C]) + 2|Reff |2

]2}
,

(21)

where

η2 = ∆2 + γ2, (22)

and I/Isat is given by Eq. (2) (where the intensity is now
the same for all sites, l). Equation (21) is a cubic equa-
tion in |Reff |2, with either one or two dynamically stable
real solutions, and the bistability region found when the
discriminant is zero as a function of I/Isat and ∆. Equa-
tion (15) can also be used to determine bistability in
the system. However, introduction of the effective field
and cooperativity parameter in Eq. (21) recasts the equa-
tions in the same notation used for bistability in cavity
systems [3], making the two systems easier to compare.

For large enough lattice spacings, there is only a single
solution to Eq. (21), and hence no bistability for any
intensity or detuning. To determine the minimal lattice
spacing for the array to support bistability, we consider
I/Isat as a function of |Reff |2 in Eq. (21), and find the
lattice spacing where two minima develop, which involves
solving dI/d|Reff |2 = 0, explicitly given by

4|Reff |2
(
η2 + 2|Reff |2

) (
η2 + 2|Reff |2 + 2η2Re[C]

)
+
(
η2 − 2|Reff |2

) [(
η2 + 2|Reff |2 + 2η2Re[C]

)2]
+ 4η4Im[C]2

(
η2 − 2|Reff |2

)
= 0.

(23)
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B. Analytic bistable solutions

For closely-packed arrays where Ω̃(q), γ̃(q) � ∆, γ,
Eq. (21) has two well-separated minima and the bistable
solutions can be approximated. For low intensities
[Ω̃(q)/γ, γ̃(q)/γ � I/Isat], we obtain |Reff | from Eq. (21)
using

(η2 + 2|Reff |2 + 2η2Re[C])2 ≈ 4η4Im[C]2

+ 4|Reff |2η2(2Re[C] + 1) + (1 + 2Re[C])2η4,
(24)

and use Eq. (19) to obtain the phase. For high intensi-

ties [I/Isat � Ω̃(q)/γ, γ̃(q)/γ,∆2/γ2], Reff is found from
Eq. (19) by ignoring the ∆2+γ2 term in the denominator.
The approximate solutions for low and high intensities
are then, respectively, given by

Rcoop
eff =

√
2R

2C + 1

[
1− 4|R|2

η2|2C + 1|2

+

√
1 + (1− |2C|2)

8|R|2
η2|2C + 1|4

]−1/2

,

(25a)

RSA
eff =

R
2

[
1− 2iη2Im[C]

|R|2

+

√
1− 4η2Re[C]

|R|2
−
(

2η2Im[C]

|R|2

)2]
,

(25b)

where we have labeled the solutions as the “cooperative”
and “single-atom” due to their very different responses to
the incident light1, in an analogy with a similar terminol-
ogy in optical cavities [3]. For the cooperative solution,
Eq. (25a), the atoms behave collectively, creating a field
that counteracts the incident light and resulting in the
atoms absorbing strongly, especially at higher atom den-
sities. This is demonstrated most clearly in the LLI limit,
where Rcoop

eff ≈ R/(2C + 1), where we can see how the
effective field scales inversely with C, with strongly col-
lective behavior resulting in a small Reff . For the single-
atom solution, Eq. (25b), the atoms now saturate and
absorption is weak, with the medium becoming trans-
parent as the atoms react to the incident light almost
independently. The effective field scales linearly with the
incident field for high intensities, where RSA

eff ≈ R and
there is no dependence on C as collective behavior be-
tween the atoms is lost.

The cooperative and single-atom solutions only de-
scribe the system response for the intensity ranges

I

Isat
<

η2

4γ2

|2C + 1|4

|2C|2 − 1
, (26a)

4η2

γ2
(Re[C] + |C|) < I

Isat
, (26b)

1 Note the cooperative solution presented here is more accu-
rate approximation than the solution presented in our previous
work [25].

respectively, and serve as approximate lower and upper
intensity bound of the bistability region. However, a
more accurate analytic approximation for the upper in-
tensity bound can be found using Eq. (23) in the limit

that Ω̃(q), γ̃(q)� ∆, γ by expanding the cubic solutions
to Eq. (23) about small η2 that yields

4η2

γ2
(Re[C] + |C|) < I

Isat
<
η2

γ2
|C + 1|2. (27)

C. Analytic thresholds

Finding the thresholds for bistability by solving
Eq. (23) can usually only be done numerically. How-
ever, there are two cases where analytic solutions can be
easily obtained [25]. The first case is for real C when

∆/γ = Ω̃(q)/γ̃(q), where Eq. (23) gives a threshold of

γ̃(q) > 8γ. (28)

The second case is for imaginary C when ∆/γ =

−γ̃(q)/Ω̃(q), where Eq. (23) forms a cubic equation
where two positive real solutions and bistability are pos-
sible when

[Ω̃(q)]2 > 27γ2. (29)

1. Two atom bistability

The analytic results reveal high density thresholds for
the emergence of optical bistability. This can already be
seen in the simplest possible case of two closely spaced
atoms within the mean-field approximation [73] and un-
der uniform illumination. The condition γ̃ = γ12 > 8γ
cannot be met as γ12 → γ in the limit of zero separation.
However, the threshold Ω̃ = Ω12 >

√
27γ can be satis-

fied, and a simple dimensional analysis for Ω12 ∼ 1/(ka)3

yields the threshold ka . 1. This value also equals the
separation required for the collective shift to exceed the
single-atom linewidth Ω12 & γ; a condition at which cor-
relations due to light-mediated interactions lead to sub-
stantial deviations from standard continuous medium op-
tics [36]. A more accurate calculation gives the bistability
threshold ka . 0.94 (corresponding to a lattice spacing
of a . 0.15λ) and ka . 0.63 (a . 0.10λ) for atoms po-
larized parallel or perpendicular to the separation axis,
respectively.

2. Arrays of atoms

Analytic expressions for the optical bistability can be
obtained for planar arrays for ∆/γ = Ω̃(q)/γ̃(q), when

the solutions no longer depend on Ω̃(q). The collective
radiative linewidth for the uniform LLI eigenmode with
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atomic dipoles polarized in the lattice plane γ̃(0) +γ has
a simple analytic form [98] (see also Ref. [52])

γ̃(0) = −γ +
3πγ

(ka)2
. (30)

The bistability threshold γ̃(0) > 8γ is then met when
ka < (π/3)1/2 (a . 0.163λ). Note that for the uniform
LLI for which the dipoles point normal to the array plane,
γ̃(0) = −γ [44], and so γ̃(0) 6> 8γ and bistability is not
possible. Similar bistability threshold can also be evalu-
ated analytically for an infinite 1D chain of atoms [25],
giving ka < π/6 or ka < π/12 for dipoles parallel and
perpendicular to the chain, respectively.

3. Analogy with optical cavities

Analytic solutions for ∆/γ = Ω̃(q)/γ̃(q), for which
case the cooperativity parameter becomes real, with C =
γ̃(q)/2γ, provide a special case where the precise anal-
ogy of the optical bistability in atomic arrays and optical
cavities [1–5, 9] can be established (see Appendix A).
The cooperativity parameter C = Ng2/2γκ for an opti-
cal cavity [3, 99], as well as the incident and total fields
then satisfy exactly the same formulaic relation, with the
condition 2C > 1 corresponding to the strong coupling
regime of optical cavities. Moreover, in the limit of a
vanishing κ, C = Ng/2γ, and γ̃(q) takes the role of the
atom-cavity coupling coefficient Ng. Large C in optical
cavities represents many recurrent scattering events of
an atom with light reflecting between the cavity mirrors,
while in arrays in free space it represents recurrent scat-
tering events with neighboring atoms at high densities
with ka ∼ 1.

D. Numerical solutions

1. Uniform incident field

For a uniformly illuminated two-atom system, the
bistability region, obtained from Eq. (21), is shown in
Fig. 2(a), and the emergence of multiple solutions of
Reff/γ as a function of I/Isat in Fig. 2(b). Similar plots
for a planar array are shown in Figs. 3(a,b), with the
corresponding cooperative and single-atom approxima-
tions [Eqs. (25a) and (25b) respectively]. The effective
field Reff is small for the cooperative solution due to the
collective nature of the solution, while the single-atom
solution scales linearly with the incident field at high in-
tensities as the atoms saturate and behave independently.
Upon varying the detuning or intensity in experiments,
the system will jump between the cooperative and single-
atom solutions within the region of bistability. This will
result in hysteresis in the transmission properties of the
lattice, addressed in more detail in Sec. IV. As the lat-
tice spacing is increased, the size of the bistability region

-10 -5 0 5 10
0

20

40

60

80

100

20 30 40 50 60
0

10

20

30

40

Figure 2. Bistability of two atoms separated by 0.1λ with
the dipoles polarized parallel to the separation axis. (a) The
region of bistability from Eq. (21) (solid blue line) and (b)
|Reff/γ|2 for ∆/γ = −γ12/Ω12 [blue dashed line in (a)]. The
intensity thresholds, Eq. (27) (red-dotted and orange-dot-
dashed line) are also shown in both (a,b).

shrinks as recurrent scattering between the atoms, and
hence C, decreases, with bistability completely lost for a
lattice spacing of a ' 0.165λ, very close to the analytic
value ka = (π/3)1/2, or a ' 0.163λ.

2. Nonuniform incident fields

Numerical solutions to Ω̃(q) and γ̃(q) from Eqs. (10)
can be obtained efficiently by computing the sum in mo-
mentum space [39, 50, 54, 100]. Figures 3(c,d) show the
bistability region for a checkerboard-pattern excitation
q = (π/a, π/a) for which the corresponding LLI eigen-
mode is subradiant. Bistability occurs within a smaller
detuning range and at lower intensities than for the su-
perradiant q = 0 mode. We find this to be a gen-
eral feature for all subradiant modes, due in part to a
smaller γ̃(q) and hence smaller C. The emergence of
bistability is also related to the nonlinear response of
the LLI eigenmodes, which has been shown to depend
on their linewidth [101], with a smaller linewidth result-
ing in lower intensities for a nonlinear response. As for
q = 0, the bistability region decreases in size with in-
creased lattice spacing. However, some modes cross the
light cone which leads to large changes in the bistability
region. An example of this is shown in Fig. 4(e-f) for
the mode q = (π/4a, π/4a). At small lattice spacings,
this mode lies outside the light cone, with a highly asym-
metric bistability region at low intensities. However, the
mode crosses inside the light cone at the lattice spacing
a ' 0.177λ, with γ̃(q) increasing drastically, resulting
in a highly symmetric bistability region at much higher
intensities.

The lattice spacing where optical bistability vanishes
depends on the corresponding LLI eigenmode, shown in
Fig. 4(a). The loss of bistability for modes inside the
light cone is well described by the threshold γ̃(q) > 8γ,
with γ̃(q) plotted in Fig. 4(b). At the light cone, γ̃(q)
becomes large, so there is always a mode that satisfies
γ̃(q) > 8γ, and the light cone therefore acts as an up-
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Figure 3. Optical bistability in a planar array of atoms.
(a) Region of bistability from Eq. (21) (solid blue line) for
q = 0, a = 0.1λ and ê = (1, 1, 0)/

√
2. (b) |Reff/γ|2 for

∆/γ = Ω̃(0)/γ̃(0) [blue dashed line in (a)] with approximate
cooperative (lower black dashed line) and single-atom (upper
black dashed line) solutions, Eqs. (25). (c) Bistability region

and (d) |Reff/γ|2 for ∆/γ = −γ̃(q)/Ω̃(q) [blue dashed line in
(c)] with approximate cooperative and single-atom solutions
for the mode q = (π/a, π/a). (e) Bistability region crossing
the light cone for the mode q = (π/4a, π/4a) at the lattice
spacings a = 0.17λ and (f) a = 0.18λ. In all plots, the inten-
sity thresholds Eqs. (27) (red-dotted and orange-dot-dashed
lines) are shown. In (b,d), the cooperative solution intensity
threshold Eq. (26a) (gray dashed line) is also shown.

per bound for bistability loss in Fig 4(a). Outside the
light cone, γ̃(q) = −γ, and loss of bistability is deter-

mined purely by changes in Ω̃(q). For other orientations
of the atomic transition within the lattice plane, e.g.,
ê = (1, 0, 0), the variation of the collective linewidth γ̃(q)
with q changes, and γ̃(q) no longer diverges at the light
cone. This means γ̃(q) > 8γ is not always satisfied for
modes at the light cone and bistability of these modes do
not always persist to larger lattice spacings or undergo
sharp changes if the mode crosses the light cone. How-
ever, in general, bistability of subradiant modes persists
to larger lattice spacings than superradiant modes.

IV. TRANSMISSION

The bistable solutions, Eqs. (25), exhibit very different
optical responses. We now analyze how this modifies
the transmission of light through the array and focus on

Figure 4. Loss of optical bistability with lattice spacing. (a)
Modes that lose bistability (blue dots) as a function of lattice
spacing for q = q(1, 1), which are divided into two groups by
the light cone (black dashed line). (b) Collective radiative

couplings Ω̃(q) and γ̃(q) [Eqs. (10)] for a lattice with ka =
0.2π. For q = 0, Eq. (30) gives γ̃(0) ' 22.9γ.

uniform incident fields normal to the array with q = 0.

Experiments on transmission through a 14×14 optical
lattice of 87Rb atoms with near unit filling have recently
been performed in the LLI limit [37]. The lattice spac-
ing of a = 0.68λ exhibits a subradiant eigenmode with
a spatially uniform phase profile and (in the absence of
position uncertainty) collective linewidth γ + γ̃ ' 0.52γ
[Eq. (30)] that was driven by the incident field and ob-
served in a narrowed transmission resonance for light in
a dramatic demonstration of subradiance. While gener-
ating subradiance does not necessarily require very dense
atomic ensembles [102], the advantage of the lattice sys-
tem is that a significant fraction of the atoms can occupy
the same subradiant eigenmode, providing at the same
time also a close analogy to subradiance in metasurfaces
of fabricated resonators [103]. In addition to optical lat-
tice experiments, atoms in optical tweezer arrays are now
illuminated with resonant light [104].

In our bistability study, we analyze the light trans-
mission beyond the LLI, while coupling to the same LLI
eigenmode as in the transmission experiment of Ref. [37].
The smaller lattice spacing a = 0.1λ, however, trans-
forms this LLI eigenmode to a superradiant one with the
collective linewidth γ + γ̃ ' 23.9γ [Eq. (30)], but sur-
prisingly we find that many of the similar transmission
properties can persist well beyond the limit of LLI. Dif-
ferent spacings can be experimentally achieved by differ-
ent laser angles and, e.g., by different atomic species and
transitions, such as the 3P0 → 3D1 transition in 88Sr [41],
exhibiting a resonance wavelength of λ ' 2.6µm and
achievable spacing of 206.4nm, with the effective lattice
spacing a ' 0.08λ. We also analyze hysteresis of light
transmission by varying the detuning over a timescale of
τ = 250/γ during the dynamics. For instance, for Rb
atoms, this gives a timescale of τ = 1.3× 10−5s – signif-
icantly shorter than typical trapping times of atoms in
the optical lattices.
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A. Extinction and reflectivity

We consider coherent light transmission through the
array with the transmission and reflection amplitudes,

t =

∫
ê ·E+(r)dS∫
ê · E+(r)dS

, r =

∫
ê ·E+

s (−r)dS∫
ê · E+(r)dS

, (31)

which, due to the symmetry, satisfy

t = 1 + r. (32)

The (power) transmission and reflectivity of the lattice
are defined by T = |t|2 and R = |r|2. For a large sub-
wavelength 2D array, only the zeroth order Bragg peak
remains for the far-field light. The light is then scattered
purely in the forward and backward direction, and, for
an excitation with a spatially uniform phase profile, the
coherently transmitted light at a point (0, 0, z) can be
approximated by [52, 60, 105, 106]

Ê+(z) = E0êeikz +
ikD
2Aε0

∑
l

[ê− (ẑ · ê)ẑ]eikzσ̂−l , (33)

when λ . ξ �
√
A, where A is the total area of the

array. Note that this zeroth-order diffraction is valid for
any incident plane wave field, not just those normal to
the lattice plane that we consider here. Using Eqs. (33)
and (30), we obtain for the q = 0 mode,

r = i(γ + γ̃)
ρge
R
. (34)

Inserting the coherence from Eq. (13) gives the reflection
amplitude as a function of the excited level population.
In fact, for a uniform excitation, Eq. (33) coincides with
the incident and scattered light for a single-atom in 1D
scalar electrodynamics [107], as the light is scattered only
in the forward and backward directions, and the spatially
uniform mode behaves as a single “superatom”. In the
LLI limit, ρee = 0 in Eq. (13) and, at the resonance of

the q = 0 eigenmode (∆ = −Ω̃), ρge = iR/(γ + γ̃),
resulting in the total reflection r = −1, analogously to
the total reflection of a resonant atom in 1D electrody-
namics [108]. The total resonance reflection from a pla-
nar array of linear dipole scatterers goes back to early
electrodynamics [109], but has more recently been inves-
tigated in nanophotonics [98, 100, 110], with close to
100% experimental realizations [111, 112], and has now
similarly been highlighted for atoms [43, 44, 48].

Using Eqs. (13), (34), and (32), the extinction 1 − T
and reflectivity R can be obtained

1− T = −Z(γ + γ̃) [2(γ − Zγ̃) + Z(γ + γ̃)]

(∆− ZΩ̃)2 + (γ − Zγ̃)2
, (35a)

R =
Z2(γ + γ̃)2

(∆− ZΩ̃)2 + (γ − Zγ̃)2
. (35b)

We also define the normalized flux through the array,

F =

∫
〈Ê−(r) · Ê+(r)〉dS∫
|E+(r)|2dS

, (36)

where the incident flux is given by
∫
|E+(r)|2dS =

Na2|E0|2 and the expectation value of the total field
product can be expanded as

〈Ê−(r) · Ê+(r)〉 = |E+(r)|2 + E−(r) · 〈Ê+
s (r)〉+

〈Ê−s (r)〉 · E+(r) + |〈Ê−s (r)〉|2 + 〈δÊ−s (r) · δÊ+
s (r)〉.

(37)

The first term in Eq. (37) contributes to the incident
light intensity, while the next three terms are the coher-
ently scattered light. The last term, 〈δÊ−s (r) · δÊ+

s (r)〉 =

〈Ê−s (r) · Ê+
s (r)〉 − 〈Ê−s (r)〉 · 〈Ê+

s (r)〉, is due to incoherent
scattering by position and quantum fluctuations. Be-
cause we consider atoms at fixed positions, it is here
solely due to quantum fluctuations. The normalized flux
for the incoherent light is given by

Finc =

∫
〈δÊ−s (r) · δÊ+

s (r)〉dS∫
|E+(r)|2dS

=

N∑
l

(
ρ(l)
ee − |ρ(l)

ge |2
) ∫ |G(r− rl)dge|2dS∫

|E+(r)|2dS
,

(38)

where all the quantum correlations between different
atoms vanish in the last line due to the mean-field ap-
proximation we are using. This expression differs from
the usual semiclassical scattering description (which for
the incoherent contribution would vanish for fixed atomic
positions) due to the inclusion of the single-atom quan-

tum contribution from the ρ
(l)
ee terms. Collecting all the

incoherently scattered light over a closed surface, the in-

coherent flux [substituting ρ
(l)
ee = ρee and ρ

(l)
ge = ρge] is

Finc = 2γ(γ + γ̃)

(
ρee
|R|2

−
∣∣∣ρgeR ∣∣∣2

)
= 2(γ + γ̃)Im

[ρge
R

]
− 2(γ + γ̃)2

∣∣∣ρgeR ∣∣∣2 ,
(39)

where in the last line, we have used Eq. (7b) to elimi-
nate the excited level population. Summing up the in-
cident, coherent and incoherent normalized fluxes equals
to one, as it should, implying that our model conserves
energy. When driving a single spatially uniform mode
in the large lattice limit where there is only the exact
forward and backward scattering, and the total elec-
tric field is given by Eq. (33), the integration order in
Eqs. (31) can be changed when calculating R and T , with
|
∫
ê · E+(r)dS|2 =

∫
|E+(r)|2dS. The normalized fluxes

for the incident and coherently scattered light can then
be replaced by R and T [Eqs. (32) and (34)], and we have

R+ T + Finc = 1, (40)

which also follows from energy conservation, withR+T <
1 indicating the presence of incoherent scattering.
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1. Transmission of cooperative and single-atom solutions

In Fig. 5(a), we analyze the extinction of light as a
function of intensity at ∆ = 0 for an array with lattice
spacing a = 0.1λ and ê = (1, 1, 0)/

√
2, showing also the

analytic approximate bistable solutions, Eqs. (25), which
agree well with the numerics. The inset of Fig. 5(a)
shows an example of hysteresis by solving the dynam-
ics of Eqs. (7) for the spatially uniform mode when the
detuning is varied from an initial value of ∆/γ = −8
(∆/γ = 8) to ∆ = 0, indicated by the right (left) arrows.
We can see clearly the different behaviors of the extinc-
tion, which will result in observable changes in the light
when the system jumps between the bistable solutions.
The extinction of light from the cooperative solution is
nearly constant, only changing by δ(1− T ) ∼ 10−2 from
I = 0 to I/Isat = 260, as the atoms behave collectively
and reflect the incident light. Using the cooperative so-
lution, Eq. (25a), to obtain ρge [Eq. (18a)], an analytic
low intensity expansion of the extinction and reflectivity
in powers of |R|2/|2C + 1|2 is given by

1− T ≈ (γ + γ̃)2

(γ + γ̃)2 + (∆ + Ω̃)2

(
1− 4|R|4

η4

Re[2C + 1]2

|2C + 1|8

)
,

(41a)

R ≈ (γ + γ̃)2

(γ + γ̃)2 + (∆ + Ω̃)2

(
1− 4|R|2

η2

Re[2C + 1]

|2C + 1|4

)
.

(41b)

For |R|2 = 0, the extinction and reflectivity are equal
and both given by a Lorentzian centered on the collective
line shift, ∆ = −Ω̃, with maximum values of 1 − T = 1
and R = 1, respectively, and vanishing incoherent scat-
tering, Finc = 0. As the intensity increases, the extinc-
tion and reflectivity begin to deviate. The extinction re-
mains constant until the next leading order term, which is
quadratic in intensity, while the reflectivity has a linear
decrease with intensity as the excited level population
increases and atoms start scattering light incoherently.
Next order corrections scale inversely with the atomic
density through C, highlighting how the cooperative na-
ture of the atoms heavily suppress the transmitted and
incoherently scattered light, and how even beyond the
LLI, total extinction and reflection of light are possible.
Conversely, for the single-atom solution, the extinction
and reflectivity both decrease with intensity as the atoms
saturate and collective behavior is lost. Expanding the
single-atom solution in powers of γ2/|R|2 gives an ap-
proximate extinction and reflectivity at high intensities
of

1− T ≈ (γ + γ̃)

|R|2

[
γ +

η2 (γ̃ − γ)

4|R|2

]
, (42a)

R ≈ (γ + γ̃)2η2

4|R|4
. (42b)

The extinction decays inversely with the intensity, with
the next leading order term recovering a quadratic depen-

dence on the detuning. For large detunings, the single-
atom solution no longer remains valid and previous stud-
ies in less densely packed arrays have shown how the
lineshape will exhibit two symmetric peaks, analogously
to the vacuum Rabi splitting in optical cavities [73]. The
reflectivity decays more rapidly with intensity than the
extinction, indicating that some light is lost due to inco-
herent scattering.

2. Maximum extinction

In Fig. 5(b), we analyze the maximum extinction of
light, (1 − T )max, as a function of intensity, with the
detuning of the maximum plotted in Fig. 5(c) (see Ap-
pendix B for similar analysis of the reflectivity). Two
extinction solutions emerge, where below a critical inten-
sity Ic/Isat ' 155, the first extinction solution is nearly
constant when the detuning is resonant with the modified
collective line shift, ∆ = (2ρee−1)Ω̃, with (1−T )max ' 1
at I = 0 and (1− T )max − 1 ∼ 10−3 at Ic. A second ex-
tinction solution appears when crossing the bistability
region, with maximum values at ∆ = (2ρee − 1)Ω̃, but
with different ρee. This solution initially extinguishes
only ∼ 80% of the light, but counter-intuitively extin-
guishes more of the incident field as intensity increases,
with (1−T )max− 1 ∼ 10−2 at Ic. For I > Ic, the extinc-
tion of both solutions decreases and the lattice starts to
become transparent.

The near-complete extinction of the incident light and
sharp change at the critical intensity are surprising, as
Ic is well beyond the LLI limit where we would expect
the atoms to saturate and the extinction to smoothly
decrease. To explain this, we analyze the extinction,
Eq. (35a), which reaches maximum values for a given
intensity when

d(1− T )

d∆
=

2(γ + γ̃)(∆− ZΩ̃)f(Z)

p′(Z)[(∆− ZΩ̃)2 + (γ − Zγ̃)2]2
= 0, (43)

where p′(Z) is the derivative of Eq. (15) with respect to
Z, and f(Z) is a quartic in Z (see Appendix B). For

I < Ic (I > Ic), ∆ = ZΩ̃ corresponds to an extinction
maximum (minimum), while there is no minimum for
I < Ic and solutions to f(Z) = 0 give the maximum for

I > Ic. Substituting ∆ = ZΩ̃ into Eq. (35a) gives the
maximum extinction for I < Ic,

1− T = −Z(γ + γ̃) [2γ(1− Z) + Z(γ + γ̃)]

(γ − Zγ̃)2
. (44)

For a small excited level population, (γ + γ̃)Z � 2γ for
closely spaced atoms where (γ + γ̃) � γ, and Eq. (44)
gives 1 − T = 1. For larger collective linewidths,
the excited level population can take larger values with
(γ+γ̃)Z � 2γ still being satisfied, and therefore 1−T ≈ 1
holds for greater intensities. The complete extinction of
incident light can be understood by considering the col-
lective uniform response of the array as a superatom. A
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Figure 5. Extinction of light from a 2D planar array. (a)
Extinction of light, 1 − T , for an array with lattice spac-
ing a = 0.1λ at ∆ = 0 for the cooperative (blue circles)
and single-atom (orange squares) solutions with approximate
cooperative (black dashed line) and single-atom (dot-dashed
line) solutions also shown. The inset shows hysteresis in the
extinction from a negative (left arrow) and positive (right ar-
row) detuning sweep, resulting in a jump of the reflectivity.
(b) Maximum extinction of light, (1−T )max, at any detuning.
At the critical intensity (gray line), the extinction undergoes
a sharp change in behavior. (c) Detuning and intensity val-
ues of the extinction maximum for the solutions in (b). The
maximum extinction of the single-atom solution lies along the
edge of the bistability region (dotted region with black dashed
line). The array completely extinguishes the incident light on

resonance with the modified line shift, ∆ = (2ρee−1)Ω̃ below
a critical intensity, Ic/Isat ' 155. (d) Maximum extinction
for arrays with different lattice spacings.

large collective linewidth indicates that the atoms quickly
re-emit the absorbed light to counteract the incident
field, resulting in the array becoming highly reflective,
and meaning the atoms have to be driven more strongly
to saturate and for light to pass through. Maximum ex-
tinction of the incident field is on resonance with the
collective mode line shift where the atoms can absorb
most strongly, with changes in the excited level popula-
tion shifting the collective mode resonance.

Increases in the excited level population eventually
cause the collective behavior to break down at a critical
intensity [found when the sign of d2(1−T )/d∆2 changes],

Ic
Isat

=
(γ + γ̃)3(γ̃ − 2γ)2

4γ2(γ − γ̃)2(γ̃ − 3γ)
≈ 1 +

(γ̃ + 2γ)2

4γ2
. (45)

In the last term we have expanded for γ̃ � γ and can see
the critical intensity grows quadratically with the collec-
tive linewidth. The excited level population at I = Ic
and ∆ = ZΩ̃ is

ρee =
1

4

(γ + γ̃)

(γ̃ − γ)
≈ 1

4
, (46)

which is halfway towards the atoms being completely
saturated. For I > Ic, ρee gradually increases from
ρee ≈ 1/4 to ρee ≈ 1/2 for the extinction maximum

when f(Z) = 0, but rapidly increases to ρee ≈ 1/2 for

∆ = ZΩ̃. The extinction then becomes a minimum as
the atoms have saturated and cannot absorb anymore of
the incident light. Spontaneous emission from incoherent
scattering also reaches maximum values, with Finc drop-
ping to zero and therefore most light passes through the
array.

The sharp change in the extinction can only occur for
sufficiently closely-packed lattices, with no positive solu-
tion to Eq. (45) when γ̃ ≤ 3γ. Using Eq. (30), the critical

lattice spacing is ac ' 0.244λ. For a > ac, ∆ = ZΩ̃ al-
ways gives the maximum extinction, which smoothly de-
creases with intensity, and can be seen in Fig. 5(d), with
the region of 1−T ≈ 1 moving to smaller intensities as the
lattice spacing is increased. Eventually, for larger atom
spacings, the strong superradiant contribution to the ex-
tinction is lost and the array begins to become transpar-
ent even at low intensities [73]. For small lattice spac-
ings where bistability emerges, the maximum extinction
at I = Ic can be found to coincide with the tri-critical
point of the bistability region, as seen in Fig. 5(c). Find-

ing when the discriminant of Eq. (15) is zero for ∆ = ZΩ̃
gives intensity bounds for the bistability region of

I

Isat
=
γ̃2 + 20γγ̃ − 8γ2

8γ2
±
√

(γ̃ − 8γ)3γ̃

8γ2
, (47)

where the threshold γ̃ > 8γ from Eq. (28) naturally
arises for the intensity to be real. In the limit γ̃ � γ,
the upper bound of Eq. (47) is approximately I/Isat ≈
1 + (γ̃ + 2γ)2/4γ2, which agrees with Eq. (45), and so
the maximum extinction changes when reaching the tri-
critical point of the bistability region.

B. Group Delay

Transmission of light through a lattice also results in a
phase shift, which can be quantified by the group delay

τg(∆) =
d arg[t(∆)]

d∆
. (48)

Strong group delays represent significant phase shifts in
the incident light, leading to large delays in the ampli-
tude envelope of a pulse traveling through the lattice.
Collective interactions in arrays have been shown to lead
to particularly large group delays in the LLI limit when
coupled to narrow subradiant LLI eigenmodes [44, 98],
with possible applications in enhanced sensing.

1. Group delay of cooperative and single-atom solutions

Figure 6(a) shows an example of the group delay for
both bistable solutions at ∆/γ = −3.5, with the inset
showing hysteresis by evolving Eqs. (7) in time for the
spatially uniform phase, varying the detuning from an
initial value of ∆/γ = −8 (∆/γ = 8) to ∆/γ = −3.5,
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indicated by the right (left) arrows. We find the coop-
erative and single-atom solutions give positive and neg-
ative group delays, respectively, which will result in a
sharp phase change in light transmitted through the lat-
tice when the system jumps between the bistable solu-
tions. For low intensities, where Reff ≈ R/(2C + 1), the
group delay is approximately

τg ≈
(γ + γ̃)

[
(∆ + Ω̃)2 − 2|R|2

]
4|R|4 + (∆ + Ω̃)2

[
4|R|2 + (γ + γ̃)2 + (∆ + Ω̃)2

] ,
(49)

while at large intensities whereReff ≈ R, the group delay
is approximately

τg ≈
−(γ + γ̃)[2|R|2 + γ(γ − γ̃)− η2]

4|R|4 + 4|R|2[η2 − γ(γ + γ̃)] + η2(∆2 + γ̃2)
, (50)

which vanishes as |R|2 → 0 as the atoms saturate and
the array becomes transparent.

At the upper and lower boundaries of the bistability re-
gion, the group delay diverges for the vanishing solution.
The sign of the divergence changes with detuning, and is
negative (positive) for the cooperative (single-atom) solu-
tion when −1.62 . ∆/γ . −0.99, and the divergences for
both solutions are negative (positive) when ∆/γ & −0.99
(∆/γ . −1.62). Small shifts in the intensity and de-
tuning lead to large changes in the group delay in the
vicinity of the divergence, e.g., changing ∆/γ = −3.5
to ∆/γ = −3.499 results in a drop of τgγ ' 1.34 to
τgγ ' 0.3 in the vicinity of the divergence at I/Isat ' 200
in Fig. 6(a). As a function of Z, the group delay is given
by

τg =
(γ + γ̃)Q(Z)

[∆′2 + γ′2][∆′2 + γ2(1 + Z)2]p′(Z)
, (51)

where

γ′ = γ − Zγ̃, ∆′ = ∆− Z∆̃, (52)

and

Q(Z) = Zp′(Z)[∆′2 − γγ′(1 + Z)]− 2(1 + Z)∆′×
[γγ′∆′ + (γ2∆′ − γγ′∆)(1 + Z) + ∆∆′2].

(53)

Crucially, Eq. (51) depends on the derivative of Eq. (15)
with respect to Z, p′(Z), which goes to zero at the bista-
bility boundary and results in the group delay divergence.

2. Critical slowing

Bistability is associated with the presence of a first-
order phase transition and critical slowing, where in-
creasingly longer times are needed to reach the steady
state [3, 21, 113, 114] at the edge of the bistability

Figure 6. Group delay and critical slowing of a pulse through
an array of atoms with lattice spacing a = 0.1λ, ê = (1, 0, 0)
and ∆/γ = −3.5. (a) Group delay of the spatially uni-
form mode for the cooperative (blue circles) and single-atom
(orange squares) solutions with analytic estimates Eq. (49)
(black-dashed) and Eq. (50) (blue-dot-dashed). The group
delay divergences at the bistability region edge. The inset
shows hysteresis in the group delay from a negative (left ar-
row) and positive (right arrow) detuning sweep. (b) Longest
decay time, τ = −1/Re[λ], for the dynamics to settle to the
steady state for the cooperative and single-atom solutions.
Critical slowing occurs at the edge of the bistability region,
with a diverging decay time.

region. Critical slowing can be shown by linearizing
Eqs. (7) about the spatially uniform stationary state,
resulting in a matrix equation δρ̇ = Mδρ where δρ =
(δSx, δSy, δρee), with Sx + iSy = ρge and

M =

 −γ′ −∆′ 2Sxγ̃ + 2SyΩ̃

∆′ −γ′ 2Syγ̃ − 2SxΩ̃− 2R
−4Sxγ̃ −4Syγ̃ + 2R −2γ

 .

(54)

The eigenvalues of this matrix obey

λ3 + a2λ
2 + a1λ+ a0 = 0, (55)

with coefficients [simplified using Eqs. (13) and (15)]

a2 = 2γ + 2γ′,

a1 =
γ′2 + ∆′2 + (Z − 1)γγ′ − (Z + 1)(2γ2 + ∆∆′)

Z2
,

a0 = −2γp′(Z)

Z
.

(56)

The sign of the real part of the eigenvalues determines
whether fluctuations about a steady-state decay (Re[λ] <
0) or grow (Re[λ] > 0), indicating instability. The last
coefficient, a0, vanishes at the edge of the bistability re-
gion where p′(Z) = 0, which also results in the group
delay divergence (Sec. IV B 1). With a0 = 0, λ = 0 is an
eigenvalue, leading to critical slowing where small fluctu-
ations from the steady state take an infinitely long time
to relax, with a decay time of τ = −1/Re[λ], as illus-
trated in Fig. 6(b). The decay time is sensitive to small
changes in intensity and detuning in the vicinity of the
divergence, e.g., for I/Isat = 200 in Fig. 6(b), changing
∆/γ = −3.5 to ∆/γ = −3.499 results in a 5-fold decrease
of τ from τγ ' 151 to τγ ' 30. This significant drop in
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the decay times means only a small parameter change is
needed to avoid critical slowing, which therefore makes
measuring observables such as the group delay experi-
mentally easier as the system no longer takes a long time
to relax to the steady state. However, as discussed in
Sec. IV B 1, changing ∆/γ = −3.5 to ∆/γ = −3.499 also
results in a near 5-fold decrease in the group delay, with
τgγ = 1.34 dropping to τgγ = 0.3, and therefore it may
be challenging to avoid critical slowing and obtain large
group delay values simultaneously.

V. CONCLUDING REMARKS

We analyzed the mean-field behavior of a closely
packed array of atoms, where intrinsic optical bistabil-
ity emerges between steady-state solutions with different
spatially uniform excited level populations. We devel-
oped a theory for optical bistability that provides thresh-
old conditions, in some cases even analytically, for the lat-
tice spacings, intensities and detunings needed for bista-
bility to emerge. Our theory bears strong similarities to
the theory of bistability in optical cavity systems, where
for a specific detuning, a direct analogy between cooper-
ativity due to the cavity mirrors and cooperativity due to
the radiative long-range DD interactions in a free-space
atomic arrays is established. While the emphasis was
on uniform systems, we also found that bistability de-
pends on the collective linewidths of the underlying LLI
eigenmodes of the excitations, with interesting possibil-
ities even to study bistabilities between a superradiant
and subradiant mode [25]. The edges of the bistabil-
ity regions are associated with phase transitions, criti-
cal slowing down, and large group delays. Moreover, we
showed that driving the spatially uniform LLI eigenmode
leads to the array completely extinguishing the incident
field up to a critical intensity, Ic/Isat ' 155, which ex-
tends LLI results [37, 43, 44, 48, 98, 100, 109–112] to the
nonlinear regime at much higher intensities.

In our model we solved the nonlinear optical response
by including the full internal level dynamics of each in-
dividual atom and the scattering processes between the
atoms, based on their discrete spatial positions, but ig-
nored light-induced quantum correlations between the
different atoms. Although we considered two-level atoms
at fixed lattice sites, the general semiclassical theory [88]
incorporates the full multilevel structure and fluctuations
of the atomic positions, and it has been applied, e.g.,
to the simulations of optical pumping between different
electronic ground levels in a trapped dense atomic en-
semble [34]. An obvious advantage is that the number
of equations scales linearly with the atom number N ,
while the size of the density matrix for the full quantum
solution ∼ 22N quickly becomes intractable for larger
systems. There is, however, also a more fundamen-
tal difference: the evolution of the full quantum many-
body density matrix is linear and cannot exhibit nonlin-
ear bistable behavior that is inherently a classical phe-

nomenon. Classical nonlinear phenomena, such as bista-
bilities and dynamical instabilities, emerge from a quan-
tum system due to decoherence [115–117] or continuous
quantum measurement-induced back-action [118, 119].
While in pristine experimental conditions quantum en-
tanglement between the atoms could be preserved, noise,
e.g., from magnetic fields or continuous monitoring of
scattered light could quickly drive the system to the clas-
sical mean-field regime to display bistability. Control-
ling the experimental noise or changing the measurement
scheme in such systems could potentially even be utilized
for investigating quantum-classical interface and decoher-
ence, and the emergence of classical nonlinear dynamics
from a quantum system.
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Appendix A COMPARISON WITH CAVITIES

We consider N cooperatively coupled two-level atoms
in a single-mode cavity experiencing the same field [120],
with the master equation

˙̂ρ =− i

~
[Ĥ, ρ̂] + κ(2âρ̂â† − â†âρ̂− ρ̂ââ†)

+Nγ(2σ̂−ρ̂σ̂+ − σ̂−σ̂+ρ̂− ρ̂σ̂−σ̂+),
(57)

where â is a photon annihilation operator for the cav-
ity mode, κ the cavity linewidth, and γ the free-space
linewidth. The Hamiltonian is

Ĥ = ~∆câ
†â+ ~ζ(â† + â) + ~∆Nσ̂+σ̂−

+ ~gN(σ̂−â† + σ̂+â) + ~N(Rσ̂+ +R∗σ̂−),
(58)

where ∆c (∆) is the detuning of the cavity field (atom)
from the laser frequency, both of which we now set to
zero, g is the cavity-atom coupling, ζ is the field driving
the cavity mode and R represents coherent transverse
field driving the atoms. The equations of motion with
the decorrelation approximation 〈âσ̂−〉 ≈ 〈â〉〈σ̂−〉 yield
[〈σ̂z〉 = 2ρee − 1, 〈σ̂−〉 = ρge]

ρ̇ee = −2γρee + 2Im[(R∗ + g〈â†〉)ρge], (59a)

ρ̇ge = (i∆− γ) ρge − i(2ρee − 1)(R+ g〈â〉), (59b)

〈 ˙̂a〉 = −κ〈â〉+ iNgρge + iζ. (59c)

Comparison with Eqs. (16) allows us to identify a new
effective field

R′eff = R+ g〈â〉. (60)

The solutions of ρee and ρge from Eqs. (59) in terms of
R′eff are the same as Eqs. (18). From Eq. (59c) we obtain
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a relationship between the input field and effective field

R′eff

[
−κ− Ng2γ

γ2 + 2|R′eff |2

]
= −igζ − κR. (61)

This can be simplified to the relationship between the
incident and internal field in a cavity

y = x

(
1 +

2C

1 + |x|2

)
, (62)

where we have defined the variables

x =

√
2R′eff

γ
, y =

√
2R
γ
− ig

κ

√
2ζ

γ
, (63)

and introduced the cooperativity parameter

C =
Ng2

2κγ
, (64)

which is the standard cooperativity parameter for a cav-
ity [3, 99]. Equation (21) in the main text can also exactly

be cast in the form of Eq. (62) when ∆/γ = Ω̃(q)/γ̃(q)
by substituting

R → y
γ

γ̃(q)

√
γ̃(q)2 + Ω̃(q)2

2
,

Reff → x
γ

γ̃(q)

√
γ̃(q)2 + Ω̃(q)2

2
,

(65)

and the cooperativity parameter C = γ̃(q)/2γ. In the
limit that κ = 0, we can instead obtain for the cavity

y′ =
2C ′x

1 + |x|2
, (66)

with y′ = −i
√

2ζ/γ, with a new cooperativity parameter
C ′ = Ng/2γ. By comparison with the array, we find that
γ̃(q) plays a similar role to the atom-cavity coupling Ng.

Appendix B EXTINCTION AND
REFLECTIVITY

The maximum of the extinction is found when Eq. (43)

is obeyed. For I < Ic (I > Ic), ∆ = ZΩ̃ gives the
maximum (minimum) extinction, while f(Z) = 0 gives
the maximum for I > Ic, where

f(Z) = 2|R|2Z [3γ − Zγ − γ′] +

[(2 + 3Z)γ′ + 3γZ(1 + Z)] [∆′2 + γ′2],
(67)

where ∆′ and γ′ are given by Eq. (52).
Figure 7(a) shows the maximum reflectivity as a func-

tion of intensity, with the corresponding detuning in
Fig. 7(b). The maximum reflectivity is on resonance

with the collective lineshift below a critical intensity,

Figure 7. Reflectivity of a 2D planar array. (a) Maximum
reflectivity, Rmax, at any detuning for the cooperative (blue
circles) and single-atom (orange squares) solutions. At the
critical intensity (gray line), the reflectivity undergoes a sharp
change in behavior. The inset shows the reflectivity, R, at
∆ = 0 and approximate cooperative (black dashed line) and
single-atom (dot-dashed line) solutions. (b) Detuning and
intensity values of the reflectivity maximum for the two so-
lutions in (a). The maximum reflectivity of the single-atom
solution lies along the edge of the bistability region (dotted
region with black dashed line). The array reflects a signifi-
cant portion of the incident light on resonance with the mod-
ified line shift, ∆ = (2ρee − 1)Ω̃ below a critical intensity,
IRc /Isat ' 154.

IRc , decreasing from R ' 1 at I = 0 to R ' 0.939 at
IRc /Isat ' 154. The inset in Fig. 7(a) shows the reflec-
tivity at ∆ = 0. Similar to the extinction in Fig. 5(a), at
low intensities the reflectivity is nearly constant, decreas-
ing slightly with intensity as shown in Eq. (41), with a
change of δR ∼ 10−2 from I = 0 to I/Isat = 260, while
decaying very quickly at high intensities due to the 1/|R|4
term seen in Eq. (42). The maximum reflectivity is found
when

dR

d∆
= −2(γ + γ̃)2∆′

Zh(Z)

p′(Z)[γ′2 + ∆′2]2
= 0, (68)

where h(Z) is a cubic,

h(Z) =2|R|2Z + (2 + 3Z)[γ′2 + ∆′2]. (69)

For I < IRc (I > IRc ), ∆ = ZΩ̃ is a minimum (maximum),
while solutions to h(Z) = 0 give the maximum for I >
IRc . The critical intensity for the reflectivity, found when
the sign of d2R/d∆2 changes, is

IRc
Isat

=
(γ̃ + 2γ)2

4γ2
, (70)

which differs from Eq. (45), but with both values simi-

lar for closely-spaced arrays. Substituting ∆ = ZΩ̃ into
Eq. (35) gives the maximum reflectivity for I < IRc ,

R =
Z2(γ + γ̃)2

(γ − Zγ̃)2
. (71)

For small excited level populations, R ≈ 1, provided γ̃ �
γ and γ − Zγ̃ ≈ Zγ̃.



14

[1] Luigi A. Lugiato, “II Theory of Optical Bistability,”
(Elsevier, 1984) pp. 69 – 216.

[2] R. Bonifacio and L.A. Lugiato, “Cooperative effects and
bistability for resonance fluorescence,” Optics Commu-
nications 19, 172 – 176 (1976).

[3] R. Bonifacio and L. A. Lugiato, “Optical bistability
and cooperative effects in resonance fluorescence,” Phys.
Rev. A 18, 1129–1144 (1978).

[4] H J Carmichael and D F Walls, “Hysteresis in the spec-
trum for cooperative resonance fluorescence,” Journal
of Physics B: Atomic and Molecular Physics 10, L685–
L691 (1977).

[5] G. P. Agrawal and H. J. Carmichael, “Optical bistabil-
ity through nonlinear dispersion and absorption,” Phys.
Rev. A 19, 2074–2086 (1979).

[6] P D Drummond and D F Walls, “Quantum theory of
optical bistability. I. Nonlinear polarisability model,”
Journal of Physics A: Mathematical and General 13,
725–741 (1980).

[7] P. D. Drummond and D. F. Walls, “Quantum theory of
optical bistability. II. Atomic fluorescence in a high-Q
cavity,” Phys. Rev. A 23, 2563–2579 (1981).

[8] C.M. Savage and H.J. Carmichael, “Single atom optical
bistability,” IEEE J. Quantum Electron. 24, 1495–1498
(1988).

[9] H.J. Carmichael, “”Theory of Quantum Fluctuations in
Optical Bistability”,” in Front. Quantum Opt. (Adam
Hilger, Bristol, 1986) pp. 120–203.

[10] H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan,
“Differential Gain and Bistability Using a Sodium-Filled
Fabry-Perot Interferometer,” Phys. Rev. Lett. 36, 1135–
1138 (1976).

[11] A. T. Rosenberger, L. A. Orozco, and H. J. Kimble,
“Observation of absorptive bistability with two-level
atoms in a ring cavity,” Phys. Rev. A 28, 2569–2572
(1983).

[12] L. A. Orozco, A. T. Rosenberger, and H. J. Kimble,
“Intrinsic Dynamical Instability in Optical Bistability
with Two-Level Atoms,” Phys. Rev. Lett. 53, 2547–
2550 (1984).

[13] G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee,
and H. J. Kimble, “Optical bistability and photon statis-
tics in cavity quantum electrodynamics,” Phys. Rev.
Lett. 67, 1727–1730 (1991).

[14] Hannes Gothe, Tristan Valenzuela, Matteo Cristiani,
and Jürgen Eschner, “Optical bistability and nonlinear
dynamics by saturation of cold yb atoms in a cavity,”
Phys. Rev. A 99, 013849 (2019).

[15] A. Lambrecht, E. Giacobino, and J.M. Courty, “Optical
nonlinear dynamics with cold atoms in a cavity,” Opt.
Commun. 115, 199–206 (1995).

[16] Santiago F. Caballero-Benitez and Igor B. Mekhov,
“Quantum Optical Lattices for Emergent Many-Body
Phases of Ultracold Atoms,” Phys. Rev. Lett. 115,
243604 (2015).

[17] Renate Landig, Lorenz Hruby, Nishant Dogra, Manuele
Landini, Rafael Mottl, Tobias Donner, and Tilman
Esslinger, “Quantum phases from competing short- and
long-range interactions in an optical lattice,” Nature
532, 476–479 (2016), 1511.00007.

[18] D. A. Ivanov, T. Yu. Ivanova, S. F. Caballero-Benitez,
and I. B. Mekhov, “Feedback-Induced Quantum Phase
Transitions Using Weak Measurements,” Phys. Rev.
Lett. 124, 010603 (2020).

[19] Juan A. Muniz, Diego Barberena, Robert J. Lewis-
Swan, Dylan J. Young, Julia R. K. Cline, Ana Maria
Rey, and James K. Thompson, “Exploring dynamical
phase transitions with cold atoms in an optical cavity,”
Nature 580, 602–607 (2020).

[20] M. P. Hehlen, H. U. Güdel, Q. Shu, J. Rai, S. Rai,
and S. C. Rand, “Cooperative bistability in dense, ex-
cited atomic systems,” Phys. Rev. Lett. 73, 1103–1106
(1994).

[21] C. Carr, R. Ritter, C. G. Wade, C. S. Adams, and K. J.
Weatherill, “Nonequilibrium Phase Transition in a Di-
lute Rydberg Ensemble,” Phys. Rev. Lett. 111, 113901
(2013).
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[92] Sebastian Krämer and Helmut Ritsch, “Generalized
mean-field approach to simulate the dynamics of large
open spin ensembles with long range interactions,” Eur.
Phys. J. D 69, 282 (2015).

[93] Marian Rusek, Arkadiusz Or lowski, and Jan
Mostowski, “Localization of light in three-dimensional
random dielectric media,” Phys. Rev. E 53, 4122–4130
(1996).

[94] I. M. Sokolov, D. V. Kupriyanov, and M. D. Havey,
“Microscopic theory of scattering of weak electromag-
netic radiation by a dense ensemble of ultracold atoms,”
Journal of Experimental and Theoretical Physics 112,
246–260 (2011).

[95] Stewart D. Jenkins and Janne Ruostekoski, “Theoret-
ical formalism for collective electromagnetic response
of discrete metamaterial systems,” Phys. Rev. B 86,
085116 (2012).

[96] S. D. Jenkins, J. Ruostekoski, J. Javanainen, S. Jen-
newein, R. Bourgain, J. Pellegrino, Y. R. P. Sortais,
and A. Browaeys, “Collective resonance fluorescence in
small and dense atom clouds: Comparison between the-
ory and experiment,” Phys. Rev. A 94, 023842 (2016).

[97] Fabrice Gerbier, Artur Widera, Simon Fölling, Olaf
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