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Abstract 

High-frequency intraday financial data are commonly used in stock market volatility 

estimation and forecasting because they produce accurate results. However, little work to 

date has focused on the stylised facts of high-frequency returns, such as their tail properties, 

autocorrelations and leverage effects. One of the most discussed features of high-frequency 

returns is intraday periodicity, yet it is not well known how this feature operates in returns 

from data with different sampling schemes and frequencies. In addition, macroeconomic 

news announcements have been shown to have a large impact on first-moment and second-

moment responses in financial markets. However, few existing models consider the effect 

of news on volatility estimation and forecasting, and those that do tend to treat it as a 

dummy variable, limiting its analytical power.  

This thesis addresses these issues by reporting a study of the stylised facts of returns from 

S&P 500 stocks and the SPY index, and standardised returns from the latter, using various 

volatility measures in different financial regimes (i.e. before, during and after the 2008 

financial crisis). It presents a comparison of the intraday patterns, jump frequencies, jump 

components and volatility forecasting of stock returns from calendar-time and business-

time sampling schemes, as well as how these features are affected by intraday periodicity. 

It assesses the direct impact of macroeconomic news announcements on volatility 

estimation and forecasting for stock returns by incorporating significant news 

announcements as an index to identify the jumps caused by news in heterogeneous 

autoregressive (HAR) class models. 
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The results suggest that absolute intraday returns for high-frequency data exhibit 

autocorrelations and that aggregated returns display heavy tails. Standardising the returns 

of the SPY index using eleven different volatility measures produces distributions that are 

closer to a normal distribution. We find that various volatility measures are significantly 

correlated with trading volume, and hence that HAR-class models that include trading 

volume yield better volatility forecasting results than existing models. However, this effect 

may be limited to data from the relatively non-volatile pre-crisis and post-crisis periods. 

High-frequency returns based on business-time sampling have smaller jump frequencies, 

jump components and intraday periodicity patterns, than calendar-time data, which may be 

useful for volatility analysis. Intraday periodicity has a notable impact on jumps for both 

sampling schemes, however, and adjusting for intraday periodicity produces fewer jumps 

for all returns and smaller jump components for the majority. We also find that the 

forecasting results for less volatile data, such as healthcare stocks and data from the post-

crisis period, improved after filtering for intraday periodicity. Finally, macroeconomic 

news announcements can affect jump components, and considering news outlets in HAR 

models can improve the forecasting results. The thesis thus contributes to our understanding 

of the factors affecting stock market volatility by providing evidence in support of including 

trading volume, efficient intraday periodicity estimators and news surprise in volatility 

estimation and forecasting models. 
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Chapter 1 

In this chapter, we review the development of financial asset volatility estimation and 

forecasting methods in academic literature in light of the increasing availability of intraday 

data in recent decades. The most popular parametric and non-parametric models used for 

high-frequency asset return estimation and forecasting are the conditional volatility 

GARCH and HAR models respectively. The generalised autoregressive conditional 

heteroscedasticity (GARCH) model was introduced initially to estimate yearly and monthly 

asset returns and was then extended to fit intraday returns. The heteroscedastic 

autoregressive (HAR) model was introduced based on the notion that the non-parametric 

volatility measure known as realised variance (RV) has a long-term dependence and that 

lagged daily, weekly and monthly RV can provide useful information about current 

volatility.  

Dramatic changes in intraday return volatility – known as jump components – have been 

used together with bi-power variation (BV) to separate the jump and continuous 

components from RV. This method has been incorporated into HAR-class models in recent 

years, which often yield better results than the traditional GARCH model. Since then, 

studies have integrated more advanced jump component measurements such as (corrected) 

threshold bi-power variation (TBV and CTBV) into HAR models, further improving their 

performance. Research on the stylised facts of intraday returns such as their long-memory 

properties and intraday periodicity has also contributed to improvements in estimation and 

forecasting for HAR and GARCH models. Finally, some studies have considered in their 

modelling a range of factors that are suspected to cause dramatic changes in asset returns, 
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most notably announcements of macroeconomic news. It is clear that news announcements 

are likely to play a major role in stock market volatility, and so better integration of this 

phenomenon into volatility estimation and forecasting models using high-frequency data is 

a priority for future research in the field. 

 

Chapter 2 

This chapter investigates the stylised facts of high-frequency returns, together with eleven 

different volatility measures, in different financial regimes. We find autocorrelations for 

absolute intraday returns and volatility measures, and heavy tails for aggregated returns. 

Aggregated returns are not normally distributed, yet standardising returns for the SPY index 

using the set of volatility measures results in distributions that are significantly closer to 

normal. We also find a significant correlation between various volatility measures and 

trading volume, and thus that the inclusion of trading volume in HAR-class models 

produces better RV forecasting results, at least for the relatively non-volatile post-crisis 

period.  

 

Chapter 3 

In this chapter, we examine the volatility patterns for high-frequency returns, using 

business-time sampling and calendar-time sampling, along with the performances of 

different non-parametric intraday periodicity estimators for these two sampling schemes 

for stocks and the SPY index in different financial regimes. We also study the impact of 
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intraday periodicity on jump frequency, jump components and volatility forecasting. The 

results provide empirical evidence that business-time sampling returns have fewer jumps, 

smaller jump components and less marked intraday periodicity patterns than calendar-time 

sampling returns. Filtering for intraday periodicity reduces jump frequency for both 

calendar-time and business-time returns and it reduces jump components for most returns. 

Finally, we find that HAR-class models perform better at RV forecasting for less volatile 

data, such as healthcare stocks and data from the post-crisis period, after filtering for 

intraday periodicity. We conclude that business-time sampling may be more useful for 

volatility analysis by virtue of its lower jump frequency, jump components and intraday 

periodicity, and that filtering for intraday periodicity is most effective for less volatile data. 

 

Chapter 4 

This chapter investigates the impact of different macroeconomic news announcements on 

the jump components of returns from twenty-one stocks with high trading volumes and low 

jump frequencies from 2000 to 2016. It also assesses the impact of news announcements 

on co-jumps between stocks. The results show that positive news surprises from the 

Consumer Price Index and Initial Jobless Claims sources, and negative news surprises from 

the University of Michigan Consumer Sentiment Index, have the biggest effects on stock 

jump components in the pre-crisis and post-crisis period respectively. We also find that 

treating the jump components that are caused by news separately in the HAR model can 

improve the model’s forecasting performance. Co-jumps also have a significant effect on 

jump components, yet the number of news announcements that they capture is limited. Co-

jumps are too few to have a significant impact on the HAR model when they are used as 



13 

 

an index to separate news-related jumps from jumps caused by other factors. Finally, we 

do not find significant evidence that the effect of macroeconomic news announcements on 

stock jump components is related to their trading volumes or jump frequencies. 
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Introduction 

Study overview 

Financial market volatility (henceforth ‘volatility’) refers to the dispersion of financial 

returns for assets, security and market indices, which is widely used in risk management, 

portfolio allocation and asset pricing. Volatility can provide useful information for financial 

market participants, investment bankers, regulators and government agencies. In this thesis, 

we investigate how the stylised facts of high-frequency returns and the consideration of 

announcements of macroeconomic news can improve volatility estimation and forecasting.  

High-frequency intraday data has in recent decades become available for financial analysis 

and has emerged as a key feature of stock volatility. However, the stylised facts of high-

frequency returns, such as autocorrelation and leverage effects, are rarely discussed in 

previous literature. In Chapter 2 of this thesis, we examine the stylised facts (distribution 

properties, autocorrelation and leverage effects) of high-frequency intraday returns in 

different financial regimes and after being standardised using eleven different volatility 

measures.  

One of the most widely discussed stylised facts of stock returns is intraday periodicity. The 

most recent and popular non-parametric intraday periodicity estimation methods are the 

Weighted Standard Deviation estimator (WSD; Boudt et al. 2011b) and the Shortest Half 

scale estimator (Short-H; Rousseeuw & Leroy 1988). They share some methodological 

similarities with the earlier Standard Deviation periodicity estimator (SD; Taylor & Xu 

1997), which uses the standard deviation of standardised returns from the same local 
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window. The Short-H and WSD estimators, however, consider order statistics and weights 

in the estimations, and are thus more robust to the presence of jumps; this represents an 

advantage compared to the SD estimator. Boudt et al. (2011b) use simulation results to 

demonstrate that the WSD estimator is more robust to jumps than Short-H; however, they 

do not provide evidence from empirical data. In Chapter 3, we discuss the impact of the 

SD, WSD and Short-H estimators on jump frequency and volatility components in different 

financial regimes, using intraday returns measured using both business-time and calendar-

time sampling.  

The increasing availability of high-frequency data has enabled researchers to explore fine-

grained patterns in financial data. A major innovation is Barndorff-Nielsen and Shephard’s 

(2004) development of a non-parametric method which can separate the volatility caused 

by large changes in returns in one day from the total volatility. The high volatility caused 

by large changes in returns within one day is known as the jump component, and the 

remaining variation in returns in that day is known as the continuous component. 

Barndorff-Nielsen and Shephard’s (2004) volatility measures are bi-power variation (BV), 

which estimates the volatility of the continuous components, and realised variance (RV), 

which estimates the volatility of all returns (both jump and continuous components). 

Therefore, separating BV from RV leaves only the volatility caused by the large 

discontinuous returns (the jump components). This is further developed by Corsi et al.’s 

(2010) threshold bi-power variation (TBV) measure, which helps mitigate estimation bias, 

and their corrected threshold bi-power variation measure (CTBV), which helps account for 

the over-estimations produced by TBV. The stylised facts of returns standardised using 

these four volatility measures, along with seven other bias-corrected volatility measures, 
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are studied in Chapter 2, together with their correlations with trading volume. In Chapter 3, 

we use BV, TBV and CTBV in our estimation of jump components to examine how they 

are affected by intraday periodicity. The relative performances of these three non-

parametric methods are also compared in Chapter 4 as part of our study of the impact of 

macroeconomic news announcements on volatility.  

Previous work typically uses two models that incorporate intraday asset returns for 

volatility estimation and forecasting – these are the parametric (Generalised) 

Autoregressive Conditional Heteroscedasticity (GARCH) model (Engle, 1982) and the 

non-parametric Heterogeneous Autoregressive (HAR) model (Corsi, 2009). The GARCH 

model was initially used for modelling monthly or yearly rather than intraday data (e.g. 

Akgiray, 1989), as only low-frequency data were widely available until the early 1990s. 

Since then, many scholars have adapted the GARCH model to fit intraday financial data 

(e.g. Andersen & Bollerslev 1997, 1998; Walsh & Tsou 1998; Andersen et al, 1999, 2003; 

Engle & Sokalska, 2012). Heterogeneous Autoregressive (HAR)-family models (Corsi, 

2009) are non-parametric volatility estimation and forecasting models based on the non-

parametric RV and BV volatility measures from Barndorff-Nielsen and Shephard (2004). 

The original HAR model uses lagged daily, weekly and monthly RV, while the 

Heterogeneous Autoregressive model with Jumps (HAR-J) variant uses both RV and BV. 

By considering the continuous and jump components separately in the model via BV, 

Andersen et al. (2007a) find that the HAR-J model produces better results than the original. 

Corsi et al. (2010) later apply TBV and CBTV to the HAR-J model, which yields further 

improvements. In Chapter 2 of this thesis, we adapt the HAR model by considering trading 

volume as a term in light of its positive relationship with eleven different volatility 
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measures. In Chapter 3, we compare the forecasting performances of HAR-class models 

before and after filtering for intraday periodicity in order to investigate the impact of 

intraday periodicity on volatility forecasting for both calendar-time sampling and business-

time sampling data. In Chapter 4, we further extend HAR-family models by differentiating 

between the jump components caused by macroeconomic news announcements and those 

caused by other factors. 

The data we use in this thesis are 30-second, 60-second, 150-second and 300-second (5-

minute) calendar-time sampling returns (Chapters 2, 3 and 4) and 300-second business-

time sampling returns (Chapter 3) for S&P 500 stocks and the SPY index. The data are 

from 2000 to 2016, which can be divided into three financial regimes: the pre-financial 

crisis period (2000-2007), the crisis period (January 2008 to June 2009) and the post-crisis 

period (July 2009 to December 2016). We consider the whole data set in our analysis of 

the stylised facts of high-frequency returns (Chapter 2), our comparison of volatility and 

intraday periodicity patterns between different sampling schemes (Chapter 3) and the effect 

of news announcements on stock market volatility forecasting (Chapter 4), as well as data 

broken down by different regimes. Of particular interest in these analyses are stocks from 

the information technology (IT) sector, which have undergone a dramatic increase in 

volumes and prices over the last three decades due to rapid technological developments. IT 

stocks’ high sensitivity to market forces thus make them excellent candidates for the study 

of returns’ stylised facts and the impact of intraday periodicity and announcements of 

macroeconomic news on financial return volatility.  

The aim of this thesis, therefore, is to help progress our understanding of the stylised facts 

of high-frequency stock returns and the factors affecting stock market volatility, namely 
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the use of different sampling schemes, the impact of trading volumes, intraday periodicity, 

news announcements and jumps, so that more effective ways of improving models for 

forecasting stock volatility can be developed. 

 

Thesis outline 

In Chapter 1, we discuss the development in the literature of two families of intraday return 

volatility models: the parametric GARCH family and the non-parametric HAR family. In 

particular, we focus on the importance of further study of the stylised facts of high-

frequency data and how to extend HAR-family models by incorporating different intraday 

periodicity estimators and macroeconomic news announcements.  

Chapter 2 discusses the stylised facts of high-frequency intraday returns and aggregated 

high-frequency returns standardised using eleven different volatility measures. We also 

study the correlations between various volatility measures and trading volume in different 

financial regimes. Finally, the performance of a new extension to the HAR model that 

incorporates trading volume is compared with other HAR-family models in different 

financial regimes.  

Chapter 3 presents a discussion of different volatility patterns for high-frequency data using 

business-time sampling and calendar-time sampling. We also investigate the impact of 

three non-parametric intraday periodicity estimators – SD, WSD and Short-H – on jump 

frequency, jump components and volatility forecasting in different financial regimes.   

Chapter 4 studies the impact of macroeconomic news announcements on volatility 

measures and on HAR-class models. We first discuss how news affects the jump 
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components estimated via BV, TBV and CTBV during different financial regimes. We then 

analyse the relationship between the co-jumps caused by news announcements and the 

daily jump components of various stocks. Finally, we examine the performance of HAR-

class models that incorporate the effect of news announcements. 

This is followed by a short concluding chapter which summarises the findings and offers 

some suggestions for future research.  
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Chapter 1 – The effect of jumps, intraday 

periodicity and news announcements on 

financial market volatility: A review 

 

1.1 Overview 

The first two sections of this chapter review the development of methods for estimating the 

important features of intraday returns, namely intraday periodicity and jumps. Section 1.3 

discusses how volatility estimation and forecasting models can be improved by using high-

frequency intraday data. We particularly focus on the development of parametric GARCH-

family models and non-parametric HAR-family models. We then discuss the importance 

of considering news announcements’ effects on the volatility of financial markets, as shown 

in previous literature. The final section of this chapter sets forth how this thesis makes an 

original contribution to the field by addressing some of the gaps in our understanding 

identified in the preceding sections.  

 

1.2 Stylised facts of intraday data 

1.2.1 Autocorrelation and distributional properties for intraday data 

High-frequency intraday data can be used to study market microstructures (e.g. Goodhart 

& O’Hara, 1997; O’Hara, 2015) and can be employed in volatility estimation and 

forecasting (e.g. Andersen, 1997; Corsi et al., 2010). High-frequency data have unique 
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stylised facts compared to low-frequency data, such as autocorrelations and leverage effects, 

but these differences are considered by few previous studies. Guillaume et al. (1997) find 

evidence that distributions of price changes in high-frequency foreign exchange rates are 

symmetric and fat-tailed with decreasing leptokurtosis. Shakeel and Srivastava (in press) 

investigate the autocorrelation and distributional properties for tick-by-tick S&P CNX 

NIFTY futures index data and find that high-frequency returns are positively skewed and 

have leptokurtic distribution. They also find that intraday returns display a slow decay in 

autocorrelations, with significant correlations at the first two lags. This thesis contributes 

to our knowledge of the properties of high-frequency data by investigating the 

autocorrelations, tail properties and leverage effects of intraday returns in different 

financial regimes in Chapter 2. The chapter also examines changes in the stylised facts of 

intraday returns when they are standardised using different volatility measures. 

 

1.2.2 Intraday periodicity 

Intraday periodicity refers to the systematic patterns of intraday return volatility over the 

course of a trading day, which are mainly caused by variation in trading volumes and bid-

ask spreads. The intraday periodicity components that are observed in high-frequency data 

are mainly induced by regular trading patterns, such as the openings and closings of markets 

(Andersen & Bollerslev, 1997; Erdemlioglu et al., 2015). Andersen et al. (1998, 2003, 

2007a) find a significant increase in market volatility immediately after macroeconomic 

news is announced. Bollerslev et al. (2008) report that the peak of the intraday pattern of 

realised variation tends to occur at 10am EST, which is when news announcements are 

usually scheduled to be released. Previous studies document that the presence of periodicity 
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in financial data has an impact on intraday volatility estimation and forecasting (Andersen 

& Bollerslev, 1998), co-volatility estimation of multivariate price processes (Boudt et al., 

2011a) and intraday jump detection (Boudt et al., 2011b). In Chapter 3 of this thesis, we 

study the impact of periodicity on jumps and volatility forecasting using data from different 

sampling schemes. 

 

1.2.3 Periodicity estimation 

Estimation methods for intraday periodicity in previous literature can be divided into 

parametric and non-parametric methods. One of the best-known parametric intraday 

periodicity estimators is the Flexible Fourier form (Andersen & Bollerslev, 1997). The 

authors use this estimator to filter intraday periodicity for exchange returns and equity 

returns. By fitting these filtered returns in the autoregressive conditional heteroskedasticity 

(GARCH) model, they find that the intraday periodicity-adjusted Deutsche Mark/US 

Dollar exchange rate and Standard and Poor’s 500 (S&P 500) returns fit the GARCH model 

better. This highlights the fact that accurately measuring intraday periodicity can improve 

the efficiency of volatility estimation. It also shows the complexity of intraday volatility, 

which demands robust measurement methods. 

Non-parametric periodicity estimators are a product of the scale estimate of the 

standardised returns that have the same periodicity factor – that is, those that share similar 

daily patterns. Taylor and Xu (1997) developed the SD periodicity estimator, which is 

based on the standard deviation (SD) of standardised returns. However, if jumps are 

present, SD produces inaccurate results (Boudt et al., 2011b). The Shortest Half (Short-H) 
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estimator (Rousseeuw & Leroy, 1988) attempts to deal with jumps by taking into account 

order statistics. This method is more robust than SD even when jumps are present, and in 

their comparison of a variety of scale estimators, Martin and Zamar (1993) find that Short-

H produces the smallest possible maximum bias. However, although Shortest Half is a 

relatively robust estimator of periodicity when jumps are present, it has only 37% efficiency 

when they are absent. In order to mitigate this bias caused by jumps, later work introduced 

more robust scale estimators. Boudt et al.’s (2011b) Weighted Standard Deviation (WSD) 

is one such method, which includes a weight function in the estimation based on the 

standardised return and the Shortest Half estimate. Boudt et al. (2011b) argue that the WSD 

is not only highly robust when estimating periodicity of returns in the presence of jumps, 

but also in the absence of jumps. 

This thesis contributes to the literature on periodicity estimation by comparing the SD, 

WSD and Short-H estimators when filtering for intraday periodicity in intraday stock 

returns using calendar-time and business-time sampling data in Chapter 3. It also 

investigates the impact of intraday periodicity on volatility forecasting and jumps in 

intraday returns. 
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1.3 The relationship between intraday periodicity, 

volatility and jumps 

1.3.1 Non-parametric volatility measures 

Early studies (e.g. French et al. 1987; Schwert 1989, 1990) use standard deviations or 

variances as model-free volatility measures because they summarise the probability of 

extreme values of returns. Large standard deviations or variances indicate a high probability 

of extreme values. Schwert (1989, 1990) measures monthly volatility using the variance of 

monthly returns and by summing the square of daily returns. French et al.’s (1987) 

alternative method of measuring monthly volatility involves calculating the product of the 

sum of squared daily returns and the sum of the product of adjacent returns. They suggest 

that monthly volatility are more accurate than other volatility measures such as twelve-

month rolling estimates at estimating risk premiums (Officer, 1973).  

The availability of high-frequency data makes it possible to observe price movements at 

very fine intervals of time. This in turn has led to the development of daily measures that 

are calculated from high-frequency data. For example, Barndorff-Nielsen and Shephard’s 

(2002) realised daily variance (RV) method uses continuously recorded transaction prices. 

Because the realised volatility in multivariate context is a product of the realised variance 

and covariance of intraday high-frequency returns (Zhao and Li, 2010) and in univariate 

context is the square root of realised variance, this measure is able to adequately 

characterise the distributional properties of stock return volatility. In addition, these model-

free volatility measures are also easy to implement in high dimensional contexts because 
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they are better at characterising the distributional and dynamic properties of correlations 

compared to the traditional multivariate Autoregressive Conditional Heteroscedasticity 

(ARCH) models (Engle, 1982). 

Moreover, many asset pricing models (such as the option pricing model) are based on 

continuous-time models. Therefore, GARCH models, which are based on discrete-time 

formulation, are unable to construct good volatility measures for these pricing models. Hull 

and White (1987) find that the distribution of integrated volatility of an underlying asset is 

the determinant of the option price. Realised volatility converges to the integrated volatility 

when the sampling frequency for the intraday returns is close to zero (Barndorff-Nielsen & 

Shephard, 2002). Therefore, realised volatility is commonly used to estimate integrated 

volatility in asset pricing models.  

 

1.3.2 Estimation of jumps 

Since the increase in availability of intraday data in financial analysis, more studies find 

the evidence of the presence of jumps and find the importance of jumps as they are larger 

and more visible in the high-frequency intraday data. Given that jumps are among the main 

factors that contribute to the observed excess kurtosis in unconditional distributions of 

prices or returns, identifying jumps is central in risk pricing and estimation. Previous work 

highlights the importance of jumps in volatility. For example, Carr and Wu (2003) find 

strong evidence for the presence of jump components and continuous components in the 

S&P 500 index. They find that the decline of jump components in volatility can increase 

the slope of the OTM S&P 500 index option plot, therefore affecting the pricing for the 
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S&P 500 index option. Eraker et al. (2003) also find strong evidence for the presence of 

jumps in both volatility and returns for option data; they argue that including jumps in 

volatility estimation affects derivative pricing because the misspecification problems in the 

stochastic volatility (SV) models are removed when considering jumps. In this section, we 

discuss how to incorporate jumps in volatility estimation and forecasting for different 

financial assets. 

Two early studies are Merton (1976) and Hull and White (1987), who show that it is 

important to consider the impact of jumps in the pricing of options. Since the millennium, 

the number of studies that find evidence that jumps play an important role in asset volatility 

has increased dramatically, especially those that use high-frequency data. This is because 

the increased availability of high-frequency intraday financial data since the 1990s has 

allowed many scholars to examine financial market volatility to an intraday level, thus 

enabling them to find more visible evidence of the presence of jumps in intraday volatility. 

Much of this work has demonstrated the importance of incorporating jumps into intraday 

volatility models when estimating and forecasting different assets. For example, Andersen 

et al. (2002) and Chernov et al. (2003) agree that financial volatility models (e.g. stochastic 

volatility models) provide satisfactory estimation of option prices if the models allow for 

both time-varying volatility and jump effects. Duffie et al. (2000) propose the Stochastic 

Volatility Model with Simultaneous and Correlated Jumps in Returns and Volatility (SVJJ) 

model, which allows for finite jumps in both volatility and prices. They find that the over-

pricing problems present in Bakshi et al.’s (1997) Stochastic Volatility Model with Jumps 

in returns (SV-J) are alleviated when the model considers jumps in volatility for out-of-the-

money (OTM) calls. 
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By further investigating the features of jumps, many studies (e.g. Barndorff-Nielsen & 

Shephard, 2004, 2006) suggest that separating the variation of the financial assets into the 

parts that are and are not caused by jumps will be useful for volatility analysis. Before the 

era of high-frequency data, estimation of jump components was a rather tedious task 

because smaller-sized jumps in low-frequency financial data (e.g. weekly and monthly 

data) are harder to detect. High-frequency data makes it possible to decompose the total 

daily return variation into its continuous and discontinuous components. 

Realised variance (RV), which is the sum of squares of the intraday returns of a given day, 

contains both continuous and discontinuous components. Three methods of splitting the 

components of RV into its two components (continuous and jump components) are 

typically used. The first method provides an estimate of a realised measure known as Bi-

power Variation (BV; Barndorff-Nielsen & Shephard, 2004, 2006).  Bi-power variation is 

estimated based on the sum of the same day absolute intraday returns at time t multiplied 

by the absolute returns collected at the previous time. The number of intraday returns (the 

number of ts) depends on the chosen sampling frequency. Corsi et al. (2010) argue that BV 

is biased and tends to over-estimate the continuous components, prompting them to propose 

the so-called Threshold Bi-power Variation (TBV) method, which adds a threshold to BV 

in order reduce the bias that it causes. Aït-Sahalia and Jacod (2012) present an alternative 

framework to measure the presence of the relative components of the quadratic variation 

process, which involves defining the jump components using a discretely sampled semi-

martingale beyond its volatility. 

Aït-Sahalia and Xiu (2016) find that co-movements in asset volatility can be separated into 

continuous and jump co-movements. They suggest that separating the continuous and 
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discontinuous components of assets is important in portfolio optimisation settings, 

especially during financial crises. During a financial crisis, more macroeconomic news is 

released into the market, and so the correlations between asset classes increase. The 

increase in co-movement of assets can be explained by the increase in co-movement of 

either the continuous part or the jump part of those assets. Knowing the source of increased 

correlations between assets is critical in making optimal hedging decisions, thus it is 

important to separate the continuous components from the jump components to find out 

how unusual shocks affect the co-movements of asset classes. Aït-Sahalia and Xiu (2016) 

find that co-movements in the continuous components contribute more to the correlation 

between two asset returns than co-movements in the jump components. 

To conclude, recent studies have demonstrated the importance of jumps in volatility 

estimation based on high-frequency data. Scholars have suggested methods to improve 

volatility estimation and forecasting by introducing more advanced methods of detecting 

and estimating the variations in jumps and taking them into account in volatility models. 

 

1.3.3 Testing for jumps 

In order to examine the extent to which jumps have a notable effect on financial market 

volatility, tests are used to detect the frequency and nature of jumps. Barndorff-Nielsen and 

Shephard (2006) and Jiang and Oomen (2008) introduce two early non-parametric jump 

tests (referred to as BN-S and JO respectively) whose results are robust to the presence of 

leverage effects and to infinite jump activity and macroeconomic noise respectively. 

Barndorff-Nielsen and Shephard (2006) test the presence of jumps in a time interval by 
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differentiating between realised variance and the continuous components, the latter of 

which are measured using bi-power variation. Jiang and Oomen (2008) adapt BN-S by 

using swap variance instead of bi-power variation. Barnorff-Nielsen and Shephard’s 

method (2004, 2006) is able to detect the presence of jumps in exchange rates, while 

Andersen et al. (2007a) use it on fixed income and equity data and conclude that there are 

many jumps in the data. 

However, Corsi et al. (2010) find that the BN-S method with bi-power variation tends to 

overestimate the jump components. They introduce a threshold into the non-parametric 

measures and produce threshold multi-power variation. Although the BN-S test with 

threshold multi-power variation performs better than multi-power variation in detecting 

jump components, Theodosiou and Zikes’ (2011) simulation study finds that the choice of 

threshold affects the results of the jump test, and that its performance is dependent on the 

trade-off between size and power. A test with a low threshold is able to detect jumps more 

precisely, yet it may also increase the probability of detecting the presence of infinite jumps 

from a no-jump series. In addition, because both the JO test and BN-S test are based on 

integrated quantities, they are unable to detect the number of jumps accurately. They are 

also unable to test the size and time of jumps. Lee and Mykland (2007) introduce another 

jump detection test which is based on the returns scaled by the estimate of a local volatility 

measure known as contiguous intraday returns. The authors find that this new jump test 

out-performs the BN-S and JO tests in simulation studies by producing less biased detection 

rates. Lee and Mykland’s (2007) jump test does not suffer from the same problem that the 

BN-S and JO jump tests do as it is not based on the integrated quantities, which make the 
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tests unable to distinguish the difference between two small jumps and one large jump in 

volatility.  

Dumitru and Urga (2012) compare various jump testing procedures and conclude that no 

single test is uniformly powerful at a specific sampling frequency. As such, they suggest a 

combination of tests to be employed at different sampling frequencies. However, jumps 

appear to change in nature with the sampling frequency, which makes interpreting average 

jump statistics over sampling frequencies unreliable. Aït-Sahalia and Jacod (2012) provide 

an estimate of the so-called beta index of jump activity, which mostly reflects the 

concentration of small jumps. At high sampling frequencies they find that jumps are 

characterised by infinite levels of activity and finite levels of activity at low frequencies. 

Thus, averaging frequencies in jump tests might not be the ideal approach to follow given 

the changing nature of jumps. 

 

1.3.4 The impact of intraday periodicity on jumps  

According to Andersen and Bollerslev (1997), it is important to consider jumps and 

intraday periodicity in non-parametric volatility forecasting. However, they consider the 

impacts of jumps and intraday periodicity on return volatility separately, while later work 

has argued that intraday periodicity and jumps affect each other when estimating and 

forecasting volatility. For example, Aït-Sahalia and Xiu (2016) find that jumps and co-

jumps between assets have intraday patterns. They report that a large proportion of jumps 

can be observed in predicted time, because those jumps are the results of the surprise in 

scheduled news announcements. Some scheduled news announced before the openings of 
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the US market tends to have a larger impact on European trading markets and causes larger 

jumps. Scheduled news announcements from the US Energy Information Administration 

also tends to produce large jumps on Wednesday at 10.30 am EST during US trading time. 

Boudt et al. (2011b) show that allowing for intraday periodicity can reduce bias in detecting 

jumps, while neglecting the presence of jumps can cause bias. Additionally, Erdemlioglu 

et al. (2015) find that the presence of intraday periodicity has an impact on the truncation 

mechanism in truncated power variation, which is commonly used in detecting the jump 

components in returns’ volatility. Therefore, in order to improve the jump detection, they 

filter out the intraday periodicity from returns by using the periodicity component estimator 

known as Weighted Standard Deviation (WSD). They find that the WSD-filtered jump test 

performs better than other conventional tests at detecting jumps. 

The most efficient intraday periodicity estimators introduced in recent decades, including 

the WSD estimator (Boudt et al., 2011b) are discussed in Section 1.2.2.  However, they are 

mainly used to show the improved intraday periodicity pattern estimations for different 

assets. In this thesis, we incorporate these efficient intraday periodicity estimators into a 

volatility estimation and forecasting model and investigate how they affect volatility 

estimation and forecasting of stock returns.   
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1.4 Volatility forecasting models 

1.4.1 Early forecasting models 

Forecasting models were initially developed to estimate and forecast low-frequency data 

such as daily, weekly and monthly data. The extreme value volatility estimator was an early 

method for forecasting used and advocated by Taylor (1987) and Wiggins (1992). Taylor 

(1987) finds that the weighted average composite forecast performs best when forecasting 

1- to 20-day Deutsche Mark/US dollar future volatility using high, low and closing prices. 

Alford and Boatsman (1995) use weekly and monthly data to improve five-years-ahead 

volatility forecasting by using the historical volatility based on the standard deviation of 

past returns in a fixed interval, which is called the HIS method. In order to improve the 

forecast returns, they used an HIS adjusted with the ‘Shrinkage’ forecasting method. This 

method adjusts the historical volatility based on the volatility estimated comparable firms 

from the same industrial sector. Figlewski (1997) finds that the volatility mean reversion is 

difficult to adjust when using daily data to forecast long-term volatility. They hence argue 

for the use of long horizontal historical data for forecasting using monthly data. This early 

work showed the potential of using volatility for forecasting using low-frequency data but 

was limited by the unavailability of intraday data, which only emerged in the late 1980s 

and early 1990s. 
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1.4.2 GARCH model 

As one of the most popular conditional volatility models since the late 1980s, the ARCH 

model was first introduced by Engle (1982) to estimate UK economic inflation data. The 

advantage of this model compared to previous methods (e.g. Taylor, 1987; Wiggins, 1992) 

is that it allows the weights of past error variance to be estimated based on the data, but not 

under the assumption that the square residuals for every day in the past provides equal 

information for the conditional variance in the future. The ARCH model assumes that the 

square residuals follow an autoregressive (AR) pattern because more recent days are more 

relevant to future variance. This model can then be used to estimate and forecast the 

conditional variance of financial asset returns. Taylor (1986) uses ARCH family models in 

volatility estimation for various financial data, including 23 spot prices and 17 future prices. 

The average forecasting results for the conditional variation for those spot prices and future 

prices are best when using two modified ARCH processes versus the benchmark forecast 

that uses the natural estimate of the time series volatility. In the same year, the generalised 

ARCH (GARCH) model was proposed by Bollerslev (1986) for conditional variance 

forecasting and economic analysis. The weights for the past square residuals in this model 

are not only estimated based on the data, but also the weights can never go to zero, as the 

error variances are assumed to follow an autoregressive moving average (ARMA) model. 

Bollerslev (1986) finds that the GARCH (1,1) model has a better lag structure and performs 

better at describing inflation rates than the ARCH (8) model (Engle & Kraft 1983). Later, 

Akigray (1989) uses both the ARCH (2) and GARCH (1,1) to forecast the conditional 

variance of value-weighted and equal-weighted indices from the US Center for Research 

in Security Prices. He finds that the GARCH model out-performs the Exponentially 
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Weighted Moving Average (EWMA), HIS and ARCH models in monthly conditional 

variance forecasting. Akigray (1989) also suggests that the GARCH model can provide 

useful information for understanding the relationship between asset returns and volatility. 

This study is the first time that the GARCH model was used in financial volatility 

forecasting, and since then it has become one of the most popular volatility estimators and 

forecasting models for financial asset returns up to the present day.  

 

1.4.3 Extensions for GARCH models  

There are different extensions for GARCH models that capture different features of asset 

volatility. One of the early extensions for GARCH models is the integrated GARCH 

(IGARCH; Engle & Bollerslev 1986). The authors argue that if the sum of the 

persistent parameters for the first lag of the squared residuals and the first lag of the 

conditional variance is equal to 1 in the GARCH (1,1) model, then that indicates that the 

conditional variance has a unit root. This also means that the current shock will persistently 

affect the conditional variance forecast. Therefore, Engle & Bollerslev (1986) introduce the 

IGARCH model, which adds a restriction to the GARCH model in order to make the 

GARCH process a unit root process.  

Choudhry (1995) also uses the IGARCH model to test the monthly stock returns from five 

European countries from 1919 to 1936 and finds that the persistence measurements for a 

few stocks in certain periods are significantly less than 1 (i.e. not persistent). Therefore, he 

concludes that the shocks have a persistent impact for stock volatility for most stocks in 

most of the periods he studied. Baillie et al. (1996) further extend the IGARCH model to 
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the Fractional Integrated Generalised Auto-Regressive Conditionally Heteroscedastic 

(FIGARCH) model because they find that the impact of shocks is not permanent on the 

GARCH process, as assumed in the IGARCH model. Instead, the impact of shocks on 

conditional variance will die out in long-term forecasting. Therefore, they modify the 

IGARCH model by considering the features of the fractional order of integration in the 

mean equation in order to capture the slow hyperbolic rate of decay for the lagged squared 

residuals for the GARCH process. They use fractionally integrated GARCH (FIGARCH), 

IGARCH and GARCH models to fit the daily Deutsche Mark/US dollar spot exchange 

rates and find that the FIGARCH model out-performs the other two models at describing 

the data.  

Another two extensions for the GARCH model are the GARCH-in-mean (GARCH-M) 

model and the exponential generalised autoregressive conditional heteroscedastic 

(EGARCH) model, which are introduced in Engle et al. (1987) and Nelson (1991) 

respectively. The GARCH-M model extends the GARCH model by adding a 

heteroscedasticity term into the mean equation in order to assume that the series is linearly 

affected by conditional variance. The parameter of the conditional variance term in the 

mean equation is called the risk premium parameter, which reflects how much the returns 

of an asset are expected to exceed the returns of a risk-free asset. The GARCH-M model 

fixes the problem encountered by the original GARCH model that the latter is unable to 

capture the linear impact of the risk as measured by conditional variance on the time series.  

The EGARCH model extends the GARCH model by assuming the lagged squared 

innovation term as a function of standard normal variable or a variable from a generalised 

error distribution. Additionally, logarithm transformations for conditional variance are 
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considered to overcome some shortfalls of the GARCH model, such as the fact that its 

estimated coefficients always violate its constraints imposed in the parameters. Also, it is 

difficult to interpret the persistence of shocks on future volatility in the GARCH model. 

Nelson (1991) applies the EGARCH model to CRSP Value-Weighted Market Index data 

from 1962 to 1987 and finds that the EGARCH model fits the conditional variance data 

very well. Both the GARCH-M and EGARCH model are mainly used in asset pricing 

contexts to find out the relationship between series with risk premia.  

Bera and Higgins (1992) propose the Nonlinear Asymmetric GARCH (1,1) (NGARCH) 

model, which captures the leverage effect of the returns on future volatility. The model 

imposes a parameter which makes sure the impact of the negative returns is larger on future 

volatility than positive returns. In addition, since the standard GARCH model is unable to 

describe the asymmetric effects of negative and positive shock conditional volatility, other 

GARCH extensions since the early 1990s have attempted to account for these the 

asymmetric effects of shocks. The most notable extensions include the Glosten-

Jagannathan-Runkle GARCH (GJR-GARCH), Threshold GARCH (TGARCH), Quadratic 

GARCH (QGARCH) and Family GARCH (FGARCH) models, suggested by Glosten et al. 

(1993), Zakoïan (1994), Sentana (1995) and Hentschel (1995) respectively. 

The asymmetric effects of shocks are taken into account by the GJR-GARCH model by 

adding an extra term if the lagged innovation is smaller than zero. This term is the lagged 

squared residual multiplied by a dummy variable with a value of 1. Glosten et al. (1993) 

find that the negative monthly excess returns have a larger impact on the volatility of the 

CRSP value-weighted stock index portfolio than the positive monthly excess returns, as the 

asymmetric parameters are statistically significant. The structure of the Threshold GARCH 
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(TGARCH) model is slightly different to the other GARCH models as it has the conditional 

standard deviation equation instead of conditional variance equation in the model. The 

TGARCH model has the equation of the current conditional standard deviation on (i) the 

lagged conditional standard deviation, (ii) the lagged positive innovation and (iii) the 

lagged negative innovation. Zakoïan (1994) finds that the negative lagged residuals have a 

significantly larger impact on the current conditional volatility than the positive lagged 

residual for daily French ACA stock index data from January 1976 to July 1990. The 

Quadratic GARCH (QGARCH) model incorporates the lagged innovation in the 

conditional variance equation to capture the asymmetric effects of the shocks. The 

QGARCH model appeared to perform efficiently when used to capture the conditional 

variance and risk premia for daily US and monthly UK stock returns in Sentana (1995). 

The family GARCH model introduced by Hentschel (1995) nests a variety of asymmetric 

GARCH models including EGARCH, NGARCH, TGARCH, GJR-GARCH and absolute 

value of GARCH(AVGARCH), and a variety of symmetric GARCH models including 

Bollerslev’s (1986) GARCH model and GARCH-M family models. He also finds evidence 

that negative shocks have more of an impact on conditional variance than positive shocks 

when the models are applied to daily US stock returns from 1926 to 1990 in the omnibus 

model he proposes.  

 

1.4.4 High-frequency data used in GARCH models  

High-frequency data were first estimated and forecasted in GARCH models in Andersen 

and Bollerslev (1997). They estimate the 5-minute returns for DM/$ and S&P 500 equities, 

yet distortions are found from the model when they apply it to high-frequency data. They 
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also find that the distortions from the GARCH model can be eliminated if the intraday 

returns for the DM/$ exchange rate and S&P 500 equities are filtered or standardised by 

the intraday periodicity estimated from the Flexible Fourier form. The 5-minute returns for 

the DM/$ and ¥/$ exchange rates and the hourly returns for Australian indices have been 

tested using GARCH models by Andersen and Bollerslev (1998) and Walsh and Tsou 

(1998). Andersen and Bollerslev (1998) find that the GARCH (1,1) model better fits the 

higher-frequency data as the R2 for the 5-minute intraday data is higher than that for the 

daily data. However, Walsh and Tsou (1998) find that the estimating hourly conditional 

variance for Australian indices with a large number of stocks using GARCH (1,1) is 

challenging because the large diversity of stocks in the index causes more apparent non-

synchronous trading problems in higher-frequency data. 

Many scholars have used GARCH-family models to fit high-frequency intraday returns for 

different types of financial data since the late 1990s. Andersen and Bollerslev (1999) use 

GARCH (1,1) to test 5-minute DM/$ Reuters quote data and find that the forecasted 

conditional variance improves for longer horizons when using high-frequency data. 

Andersen et al. (2003) use the GARCH-family models GARCH and the FIEGARCH model 

(Bollerslev & Mikkelsen, 1996) to estimate 30-minute tick data for ¥/$ and DM/$ Reuters 

FXFX quotes. They find that the long-memory Gaussian vector autoregression for the 

realised logarithmic volatilities (VAR-RV) model is better at forecasting than the GARCH 

model. However, they argue that the improvements gained by using VAR-RV do not render 

the GARCH model obsolete because it is the use of high-frequency data and its volatility 

measure RV in the VAR-RV model that contributes the most to improvements in 

forecasting rather than the model itself.  
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Another important extension of GARCH models takes into account the intraday patterns in 

the data. Andersen and Bollerslev (1997) find that the GARCH (1,1) model performs well 

at capturing the intraday volatility dynamics of exchange rates when their returns are 

filtered by intraday periodicity. They also suggest that intraday periodicity-adjusted returns 

give a cleaner picture of asset return volatilities. 

Engle and Sokalska (2012) propose the Multiplicative Component GARCH (MC-GARCH) 

model, which considers intraday periodicity estimated via a non-parametric method. 

Intraday periodicity in the MC-GARCH model is estimated by using the average value of 

the squared intraday returns standardised by daily volatility. The authors find that this new 

model performs better at forecasting for less liquid stocks. Additional extensions of 

GARCH models which combine volatility measures from high-frequency data will be 

reviewed at the end of the next section.   

 

1.4.5 HAR model and its extensions 

The increasing availability of high-frequency data has resulted in the development of 

volatility measures such as realised variance (RV), which describes the unconditional 

volatility for asset returns. Estimation and forecasting models have been developed that use 

several non-parametric volatility measures. The non-parametric volatility measure RV is 

added to different parametric volatility estimation and forecasting models such as GARCH, 

SV and vector autoregression (VAR) models in order to improve their performance at 

volatility estimation and forecasting. Andersen et al. (2003) include RV in the VAR models 

by using 30-minute tick data for ¥/$ and DM/$ Reuters FXFX quotes, and they find that 
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VAR-RV model outperform the traditional GARCH model. Koopman et al. (2005) 

introduces the GARCH-RV, SV-RV and ARFIMA-RV models, which add the RV 

volatility measure to the GARCH, SV and autoregressive fractionally integrated moving 

average (ARFIMA) models. They test these models using 5-minute returns from the S&P 

500 index and they find that not only the GARCH-RV model, but also the SV-RV and 

ARFIMA-RV models are superior than traditional volatility models. They conclude that 

RV, which is estimated from high-frequency intraday data, plays an important role in 

volatility forecasting, which supports the conclusions from Andersen et al. (2003).  

Based on RV’s effectiveness at capturing asset volatility, more research has been done to 

develop volatility estimation and forecasting models using non-parametric volatility 

measures including RV. The first volatility model based on RV is the Heterogeneous Auto-

Regressive (HAR) model (Corsi. 2009), which uses the lagged RV, lagged weekly RV and 

lagged monthly RV to describe current volatility. They use the HAR model to test the tick-

by-tick series for USD/CHF, S&P 500 Futures and 30-year US Treasury Bond Futures and 

find that this model is more accurate at forecasting than AR models and yields similar 

results to the ARFIMA model. However, they suggest that the advantage of the HAR model 

is that it is much easier to estimate than the ARFIMA model. Ma et al. (2014) compare the 

performance of different volatility RV models using Model Confidence Set (MCS) tests 

and find that the HAR-RV model outperforms the ARFIMA-RV model as well as its 

variants based on realised bi-power variation (ARFIMA-RBV) and multifractal volatility 

(ARFIMA-MFV) in all loss functions. 

There are many extensions of HAR-RV models which aim to improve its forecasting ability 

for different financial data. Andersen et al. (2007a) find that the HAR model can be further 
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improved by considering the jump components and continuous components separately 

based on Barndorff-Nielsen and Shephard’s (2006) BV volatility measure. The new 

extensions HAR-RV-J and HAR-RV-CJ models are better at forecasting than the HAR-RV 

model from Corsi (2009) using tick-by-tick data for the DM/$ exchange rate, the S&P 500 

market index, and the 30-year US Treasury bond yield (Andersen et al., 2007a). Andersen 

et al. (2011) and Corsi et al. (2010) propose extensions to the HAR family by considering 

the overnight variance and jump components respectively using more accurate non-

parametric estimators. Andersen et al. (2011) find that over 16% of the variation in the S&P 

500 and US daily variation data are caused by changes in stock prices from the closing 

prices of the previous day to the opening prices of the current day. Therefore, they suggest 

a HAR-RV-CNJ model which includes the overnight return variability in the HAR model. 

By using the new model to test the five-minute S&P 500 futures (SP) and 30-year US 

treasury bond futures, they find that the HAR-CNJ models outperforms the HAR-RV and 

GARCH-class models at both in-sample and out-of-sample forecasting. Wang and Xu 

(2015) further extend the concept not only to account for the overnight returns, but also to 

include the lunch-break returns, trading volumes and the leverage effects in the HAR model 

to fit the 5-minute data for the Shanghai Stock Exchange Composite Index (SHCI) and the 

Shenzhen Composite Index (SZCI). Both the DM test and the R2 values from the Mincer-

Zarnowitz regression are better for the new model than for HAR-RV, which is attributed to 

the significant impact of negative lunch-break returns and negative overnight returns.  

Corsi et al. (2010) find evidence that BV underestimates jump components, so they 

introduce threshold bi-power variation (TBV) to reduce the bias. In order to avoid the 

possibility that TBV overestimates the jump components, they also put forward a corrected 
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TBV (CTBV) estimator to improve the accuracy of jump components further. Based on the 

new advanced jump component estimators, Corsi et al. (2010) improve the HAR-RV-J and 

HAR-RV-CJ models, resulting in the HAR-TJ and HAR-CTJ models. By using the new 

models and a standard HAR-RV model to test 5-minute 30-year US Treasury Bond futures 

data, they find both new models are better at forecasting than the standard HAR-RV model. 

Duong and Swanson (2015) also improve HAR models by considering asymmetric 

information provided by the jump components (HAR-RV-C-APJ) or truncated large jumps 

(HAR-RV-C-UDJ).  They use 5-minute S&P 500 futures data to test these models and find 

that the HAR-RV-C-APJ model shows more obvious improvements than the HAR-RV-C-

UDJ model, with respective 8% and 7.5% increases in R2 compared to the HAR-RV-C 

model at forecasting horizons of 1 and 5.  

Pu et al. (2016) argue that past jumps caused by negative price changes may have a different 

impact on current volatility from past jumps caused by positive price changes. They hence 

attempt to account for the realised semi-variance (RS) estimators introduced by Barndorff-

Nielsen et al. (2010) as an additional explanatory variable in a HAR model on 1-minute 

high-frequency data from the Shanghai Stock Exchange Composite (SSEC) Index. The RS 

estimator calculates the jump variation by subtracting the variation from negative price 

changes (𝑅𝑆−) from the variation from positive price changes (𝑅𝑆+). From the forecasting 

results and mode confidence set (MCS) tests, they find that the models with the RS 

estimators are most accurate at forecasting. This is especially so for the HAR-RV-TJ-SJV-

D, which adds the polarity of the jump variations to the HAR-RV-TJ model. 

Market transactions caused by different traders are heterogeneous and this is the main 

reason for market volatility (Müller et al. 1993). Dong and Feng (2018) use daily, weekly 
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and monthly RV to capture these heterogeneous trading characteristics, which are the short-

term, medium-term and long-term market transactions respectively. By applying the new 

model to 1-minute data from the CSI 300 index, the authors find that the expected increase 

on long-term speculative behaviour has a negative impact on the market and triggers market 

volatility. Gong and Lin (2018) following Bandi and Russell (2008), suggest that RV shows 

bias when estimating volatility because of microstructure noise. Therefore, they use 

realised range-based variance (RRV; Christensen & Podolskij, 2007; Martens & van Dijk, 

2007) to replace RV in the HAR model, the former of which is claimed to be five times 

better than RV (Christensen & Podolskij, 2007). Gong and Lin (2018) dub their RRV-based 

HAR models HAR-RRV and HAR-RRV-SC, which respectively exclude and include 

structural change. The forecasting and DM test results based on 5-minute S&P 500 index 

data show that the model that takes structural changes into account performs better than 

one that does not. This highlights the importance of considering structural changes when 

forecasting volatility. However, there is no direct evidence from the study for the 

superiority of HAR models that use RRV rather than RV in forecasting.  

Peng et al. (2018) test the impact of 5-minute index data from G7 countries on volatility 

forecasting via RV estimated from the Shanghai Stock Exchange Composite Index (SSEC). 

Their method takes into account the RV estimated from the S&P 500, FTSE 100, Nikkei 

225, DAX, CAC 40, FTSEMIB and S&P/TSX composite indices as news variables in a 

HAR-RV model, both individually and together. From the in-sample and out-of-sample 

forecasting results, they find that the indices from the Japanese and US markets have a 

positive impact on future volatility for the Chinese market. They also find that the model 

which incorporates all of the G7 stock markets provides more accurate forecasting for one-
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day volatilities of the Chinese stock market than the standard HAR-RV model. Therefore, 

the information from G7 stock markets has an impact on Chinese stock market forecasting.   

Unlike the traditional way of separating the continuous and jump component using 

continuous component estimators such as BV or TBV, Gong and Li (2018) attempt to 

improve the HAR-RV-CJ model by applying the ensemble EMD method to separate the 

RV into several intrinsic mode function components and one non-oscillatory trend 

component. They also add the impact of high-frequency, low-frequency and trend volatility 

as well as leverage effects in the models, which result in the HAR-RV-HLT and LHAR-

RV-HLT models. They conclude that the 5-minute S&P 500 data favour these models 

compared to other HAR models including the traditional HAR-RV, HAR-RV-J and HAR-

RV-CJ models regarding one-month future volatility forecasting.  

Bollerslev et al.’s (2016) full HARQ (HARQ-F) model includes the lagged realised 

quarticity (RQ) and lagged weekly and monthly RQ in the HAR model in order to correct 

the heteroscedastic measurement errors in the model. This is because take the RQs into 

account can lead to faster mean reversion for the model when measurement errors are large. 

The authors claim that the weekly and monthly lags for RQ in the HARQ-F model do not 

play a large role in correcting bias compared to the lagged RQ; therefore, they propose the 

HARQ model, which only considers lagged RQ. The authors also propose the CHARQ 

model, HARQ-J model and SHARQ models, which account for the following elements: 

the continuous components only; the continuous and jump components; and the RV 

estimated from the negative and positive returns separately. They apply these extended 

HAR models to tick-by-tick S&P 500 data and find that the data favour the HARQ model 



45 

 

the most among all the new models. They also find that the HARQ model is better at 

estimating risk premia and volatility forecasting than the HAR and HAR-J models. 

Bekierman and Manner (2018) suggest that the realised quarticity (RQ) is a noisy estimator 

of Integrated Quarticity (IQ), which may cause bias in the HARQ model. In order to avoid 

this bias, they introduce a state-space HAR model (HARS) which includes a state equation 

in the model. This makes the autoregressive parameter a time-varying parameter driven by 

a latent Gaussian process. Also, the RQ is included in the state equation for the HARSQ 

model, which combines the state equation with the HARQ model. They also propose HARL 

and HARSL models, which replace the RV from the HAR and HARS models with the 

logarithm of RV. They compare the forecasting results of these two models based on 40 

stocks’ 5-minute returns from the S&P 500 index with those from the HAR, HARQ, HARS 

and HARSQ models. They find evidence that the HARL and HARSL models provide more 

accurate forecasting than the other models. 

Some work has also attempted to combine GARCH and HAR models. Corsi et al. (2008) 

extend the HAR model by assuming that the error term follows the GARCH process. They 

find that their 5-minute S&P 500 index data favour the HAR-GARCH model, especially 

the model with a Normal-Inverse Gaussian (NIG)-distributed innovation on in-sample 

estimation. They argue that it is important for the model to incorporate the GARCH 

specification as it is able to accommodate fat-tailed and/or skewed distributions. Models 

combining GARCH and HAR are also used in Vale-at-Risk forecasting. Będowska-Sójka 

(2015) forecasts the Value-at-Risk (VaR) for 5-minute EUR/PLN exchange rate data using 

hybrid models, which combine different methodologies including HAR-class and GARCH-

class models. The models she uses include HAR-RV, HAR-RV-J, GARCH, EGARCH and 
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FIGARCH. She finds that the combination of HAR- and GACRH-class models is better at 

forecasting VaR when the accuracy test results are not considered, because they offer firm 

loss functions. However, by comparing the accuracy test results, the various GARCH-class 

models are generally better at VaR forecasting.  

It is clear from previous literature that there are numerous ways of extending HAR-family 

models by considering different factors, such as improving the methods of estimating the 

jump and continuous components, and combined the model with parametric volatility 

methods. However, despite the wealth of scholarly work described in this section, few 

studies have considered extending the HAR model by incorporating macroeconomic news 

announcements. We therefore help fill this gap in Chapter 4 by extending non-parametric 

volatility models to include information given by news announcements and examining how 

they affect the forecasting performance of HAR-family models. In the next section, we 

discuss the importance of the impact of news announcements and why they should be 

incorporated into HAR models. 

 

 

 

1.5 The impact of news announcements on asset 

return volatility 

1.5.1 Market responses towards news announcements 
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The announcement of macroeconomic news often results in immediate changes in financial 

asset prices and volatility (Andersen & Bollerslev, 1998; Balduzzi et al., 2001; Huang, 

2018). Changes in asset prices are defined as first-moment market responses, and changes 

in their volatility are known as second-moment market responses. The changing patterns 

of financial asset prices and volatility in response to macroeconomic news announcements 

is important, especially in estimation and forecasting (Andersen & Bollerslev, 1998; 

Balduzzi et al., 2001; Andersen et al., 2007a). In this section, we review previous studies 

of first- and second-moment market responses of financial assets to macroeconomic news 

announcements and how taking these announcements into account can prove advantageous 

for volatility estimation and forecasting.  

 

1.5.1.1 First-moment market responses 

Evidence from early studies of the impact of news announcements on market responses is 

limited as they typically analyse monthly or weekly data. In the late 1980s and early 1990s, 

information regarding market responses to news became clearer as intraday data became 

available. Early work mainly focuses on changes in asset prices (first-moment market 

responses). For example, Jain (1988) finds that stock price adjustments in response to news 

announcements can take place within an hour. Ederington and Lee (1993) find that the 

market’s first-moment responses for Treasury bond (T-bond), Euro-dollar, and Deutsche 

Mark futures to the announcement of news can be completed within a minute, while bigger 

changes in volatility may last longer (up to 15-30 minutes). Recent work on first-moment 

responses by Bollerslev et al. (2018) using high-frequency S&P 500 and US Treasury 
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bonds data finds evidence that large price jumps are influenced by news announcements 

from the US Federal Open Market Committee (FOMC). 

 

1.5.1.2 Second-moment market responses 

Early research on second-moment market responses to macroeconomic news 

announcements mainly focuses on the observable patterns of asset volatility caused by the 

release of news. One such study is Ederington and Lee (1993), who find that treasury bond 

futures have a high volatility between 8.30 am and 8.35 am after the release of monthly 

economic news announcements. Bollerslev et al. (2000) also find two spikes in volatility 

at 8.30 am and 10.00 am on treasury bond futures provoked by regular scheduled news 

announcements. Meanwhile, Balduzzi et al. (2001) examine the differences between first-

moment and second-moment market responses to news. They find that there are three 

phases of market responses to news announcements on bond markets. Price adjustment 

typically happens immediately after a news announcement and before any changes in 

volume and volatility because they are driven by public information. Volatility and volume 

then increase in the second phase for up to 15 minutes as they are partly driven by informed 

trading. In the third phase, liquidity trading tends to drive volume and volatility back to 

normal.  

In addition, studies find evidence that the announcement of macroeconomic news has an 

impact on overseas markets. Wongswan (2006) finds that the announcement of American 

and Japanese news can result in a 30-minute change of volatility in Korean and Thai equity 

markets. However, Kleinnijenhuis et al. (2013) find that the announcement of negative 
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financial news in the Netherlands not only causes short-lived changes in market responses 

because of the actions taken by Dutch investors, but it can also cause panic in global 

players. This can lead these traders to conduct massive sales, which can affect the market 

for a whole month.  

 

1.5.1.3 Regression analysis of news on market responses 

Given the importance of macroeconomic news announcements on second-moment market 

responses, statistical methods have been suggested to find out the quantitative relationship 

between the two variables. Andersen and Bollerslev (1998) find that regularly scheduled 

macroeconomic news announcements can produce daily patterns in second-moment 

responses, suggesting that news can affect returns’ intraday patterns. They therefore include 

the impact of news announcements as a dummy variable in the intraday periodicity 

estimation, which contributes to the volatility of the returns. By applying the model to the 

5-minute Deutsche Mark/US Dollar spot exchange rate, they find clear evidence that news 

announcements can affect exchange rate volatility. 

Instead of using a dummy variable to model the arrival of macroeconomic news 

announcements, Balduzzi et al. (2001) introduce a very useful measure, the z-type 

standardised measure, in order to transform the released value of news into a variable called 

standardised news surprise (see Section 4.3.1 for further methodological details). They use 

a linear regression to test the impact of standardised news surprise on returns 30 minutes 

after the announcement of news and find that at least ten news announcements significantly 

affect the prices of T-bill, two-year notes, ten-year notes and 30-year bonds. This method 
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allows researchers to test the impact of news on volatility components more rigorously than 

with a dummy variable or via impressionistic observation of graphs. 

Balduzzi et al.’s (2001) method of calculating news surprise is used in many later studies 

as well. For example, Wongswan (2006) tests the impact of macroeconomic news from 

developed countries such as the USA and Japan on the equity markets of emerging 

economies such as South Korea and Thailand. He does so by running regressions on the 

estimated pattern effects of news announcements from the USA and Japan on intraday 

volatility and intraday trading volumes for the Korean and Thai equity markets. He 

accounts for macroeconomic news effects using both the dummy variable method from 

Andersen and Bollerslev (1998) as well as standardised news surprise (Balduzzi et al., 

2001), together with the dispersion of expectations for news announcements to describe the 

pattern effects. Wongswan (2006) finds that US and Japanese news items significantly 

affect the volatility of Korean and Thai equity markets 30 minutes after they are announced, 

in contrast to domestic news, which does not appear to have a significant effect. He suggests 

that this may be because the domestic information was leaked before the official 

announcements. 

In a similar vein, Andersen et al. (2007b) run a regression of returns from nine futures 

markets from the USA, UK and Germany on the lags of returns and lags of different news 

surprises using the method from Balduzzi et al. (2001). They find clear evidence that the 

news contributes to large changes in returns for those futures. Also, Huang (2018) tests the 

impact of US news announcements on American equity and bond markets using 5-minute 

returns for S&P 500 futures and 30-year US Treasury bond futures. He uses the 

standardised measure from Balduzzi et al. (2001) and calculates standardised news 
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surprises based on the released values of news and disagreement about the news, estimated 

by taking the standard deviation of the survey forecasts. He regresses the transformed jump 

components and continuous components on standardised news surprise and disagreement, 

which reflects how agents feel about their forecasts of upcoming news. The regression 

results indicate that both news surprises and the disagreement about the news affects 

second-moment market responses.  

Instead of using the standard news surprises (Balduzzi et al., 2001), later studies introduce 

other methods to test the impact of macroeconomic news announcements on financial 

market volatility (second-moment market responses). Lee and Mykland (2007) test the 

impact of market-level news and company-level news on three stocks and the S&P 500 

Index by observing the relationship between news arrivals and the frequency and size of 

jumps. Their results show that the jumps for the Walmart (WMT), IBM (IBM) and General 

Electric (GE) stocks are more influenced by company-related scheduled and unscheduled 

news such as reports of earnings, while the S&P 500 as a whole is affected more by market-

level news such as Federal Open Market Committee (FOMC) reports. Lee (2011) 

investigates how market-level and company news affects the prediction of jumps using her 

own jump prediction test. Her analysis of 23 stocks from the US market shows that 

macroeconomic news announcements such as initial jobless claims significantly affects the 

occurrence of jumps, especially in the short horizon of 30 minutes. 

It is clear from the literature discussed in this section that macroeconomic news 

announcements have an impact on financial markets, especially in the second-moment 

market responses, as shown in a range of financial assets. Some news, such as that from 

the FOMC, is particularly influential on market volatility. In this analysis in Chapter 4, we 
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consider the more rigorous news surprise value (Balduzzi et al., 2001) for the release of 

news rather than incorporating them as dummy variables to examine the impact of news on 

financial assets. In addition, our analysis takes into account a wide range of news outlets, 

some of which are not considered in previous work. We also contribute to the literature by 

incorporating the information from the significant news announcements in a non-

parametric volatility forecasting model (HAR model).  

 

1.5.2 News announcements and co-jumps 

News announcements may produce similar changes across a range of financial asset returns 

at the same time, which are known as co-jumps. Most previous studies of co-jumps are 

done using logit or probit models. Dungey et al. (2009) examine the impact of 

macroeconomic news announcements on US bond markets using a panel logit model and 

find that co-jumps of bonds of different maturities are strongly affected by news about US 

interest-rate term structure. Lahaye et al. (2011) use a probit model to test the relationship 

between co-jumps and news announcements for USD exchange rates, US Treasury bond 

futures, and US equity futures. From the regression results, they find that news 

announcements significantly affect the co-jumps between different financial returns. By 

calculating the conditional probably of news on co-jumps, they find that macroeconomic 

news announcements more strongly influence co-jumps for the equity and bond markets 

than those for the exchange market. The impact of news announcements on co-jumps for 

the US Treasury market are examined using a panel logit model by Dungey and Hvozdyk 

(2012). Their model regresses on a joint jump day or a conflicting day with news 

announcements as dummy variables, the estimation results indicating a significant positive 
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effect of news announcements on the probability of co-jumps. The authors also find that 

announcements of non-farm payrolls, consumer price index (CPI), gross domestic product 

(GDP) and retail sales have more of an impact than other news on the probability of co-

jumps. Chatrath et al. (2014) run a probit regression on the negative and positive co-jumps 

for news surprises for four currencies – pound sterling, euro, Japanese yen and Swiss franc. 

They find that macroeconomic news has a significant impact on co-jumps. They also find 

that positive and negative news surprises increase the probability of negative and positive 

co-jumps respectively.  

Instead of investigating the impact of news on the co-movements between financial asset 

returns, some literature (e.g. Maio et al., 2014; Gilder et al., 2014) examines the impact of 

news announcements on systematic co-jumps for portfolios and provide evidence for a 

significant effect of macroeconomic news on systematic co-jumps. One of the most recent 

is Chan et al. (2017), who examine the impact of macroeconomic news announcements on 

co-jumps of book-to-market (B/M) portfolios, based on their B/M price ratio and market 

capitalisation. They do this using probit and tobit regression of the probability and 

magnitude of systematic co-jumps on the standardised announcement surprises. They find 

a significant effect for various types of news, including announcements regarding the 

Federal Funds target rate, nonfarm payroll statistics, the unemployment rate, the producer 

price index and the Institute for Supply Management index, on systematic co-jumps.  

The impact of news surprises on asset returns are discussed in previous literature, and it is 

clear that news announcements play an important role on the volatility of asset returns. 

However, not many volatility models from previous work consider the impact of news 

announcements. Andersen and Bollerslev (1997) is one of the few studies that includes the 
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impact of news announcements in a volatility model, but the authors only treat news as a 

dummy variable of intraday periodicity to explain volatility with a GARCH model. To our 

knowledge, there are also no studies that consider news announcements to be an important 

factor for volatility forecasting using non-parametric HAR-class models. Therefore, this 

thesis helps fill the gap in the literature by accounting for news announcements in non-

parametric HAR-class volatility models and examining how news may contribute to 

volatility forecasting using such models.  

 

1.6 This thesis’s original contribution 

It is clear from the literature discussed in this chapter that high-frequency stock market data 

have been studied extensively, yet the stylised facts of such data, such as their leverage 

effects and tail properties, are less well understood. This thesis directly investigates the 

stylised facts of high-frequency data using intraday asset returns, while also examining how 

these facts vary when intraday returns are standardised using different volatility measures. 

In addition, much of the literature discussed in this chapter has highlighted the importance 

of intraday periodicity patterns in intraday returns (e.g. Andersen & Bollerslev, 1997, 

1998). Efficient non-parametric intraday periodicity estimation methods have been 

developed, such as standard deviation (SD), weighted standard deviation (WSD; Boudt et 

al., 2011b) and Shortest Half (Short-H; Rousseeuw & Leroy, 1988). However, few studies 

have compared the performance of different estimators on data using different sampling 

schemes. We therefore compare the performance of the SD, WSD and Shortest Half 

intraday periodicity estimators on high-frequency stock returns using business-time 
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sampling and calendar-time sampling in different financial regimes, which allows us to 

assess their impact on volatility forecasting.  

Macroeconomic news announcements are another factor which evidence suggests 

significantly contributes to the volatility of asset returns. However, it has not been 

considered in volatility models using rigorous methods such as standardised news surprise 

(Balduzzi et al., 2001), especially as part of non-parametric HAR-class models. Therefore, 

we extend HAR-class models by considering the impact of macroeconomic news on jump 

components and how such models can be improved by incorporating news announcements 

using news surprise. This will help deepen our understanding of the factors influencing 

market volatility and how best to forecast volatility patterns using high-frequency data. 
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Chapter 2 – The stylised facts of high-

frequency returns and volatility measures 

 

2.1 Introduction 

Modelling intraday volatility has been a popular topic over the last two decades, as high-

frequency time-series data are widely used in financial analysis. Non-parametric 

Heterogeneous Auto-Regressive (HAR) models (Corsi, 2009) are typically used to forecast 

realised variation (RV). Non-parametric measures, such as bi-power variation (BV) and 

threshold bi-power variation (TBV), are included in HAR-family models to generate 

continuous and jump components in order to describe and forecast the realised variance of 

financial returns.  

Understanding the statistical properties of stocks is essential for stock volatility estimation 

and forecasting. The stylised facts of financial assets can be defined as the consistent 

statistical findings for financial time series within a particular market or time period. 

Stylised facts are helpful for us to understand the quantitative properties of financial time 

series, such as their distribution properties and tail properties, which can inform the 

selection of appropriate methods of asset analysis and potential improvements in statistical 

estimations. 

In this chapter, we discuss stylised facts such as linear dependence, leverage effects and 

tail properties (for aggregated returns) for stocks and stock market indices across different 

sampling frequencies in different financial conditions (pre-crisis, crisis or post-crisis 

periods). We also study the linear dependence and long-memory properties of many 
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different volatility measures, which have not been compared in previous literature. In 

addition, we examine how volatility measures correlate with trading volume and how they 

standardise returns across different financial regimes. We then compare the performances 

of different HAR-class models that consider trading volume across different regimes.  

The remainder of the chapter is structured as follows. In Section 2.2, we introduce the data 

used in the analysis. This is complemented in Section 2.3 by an overview of the methods 

for different measures for estimating volatility, together with a description of HAR 

volatility models. Section 2.4 presents the empirical results of several stylised facts of 

stocks and the SPY index, including autocorrelation, tail properties and standardised returns. 

In Section 2.5, the volatility measures’ long-memory properties and correlations with 

trading volume, as well as the leverage effects of the returns and standardised returns, are 

discussed. Section 2.6 provides an analysis the volatility forecasting. Section 2.7 compares 

the above properties across different regimes. Section 2.8 concludes the main findings of 

this chapter. 

 

2.2 Data 

The data used in this chapter are high-frequency stock returns from the NASDAQ index 

from 2000 to 2016. There are four stocks from two different industrial sectors: PFE and 

JNJ from the healthcare (HC) sector; and AAPL and MSFT from the information 

technology (IT) sector. We also include the SPDR S&P 500 exchange-traded fund (SPY) 

in this chapter, as it helps provide a picture for the stock market as a whole. We include 

four sampling frequencies in our analysis, which includes 30-second, 60-second, 150-
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second and 300-second data. We also examine the stylised facts of volatility measures in 

different regimes by separating the 2000-2016 data into three parts: pre-crisis (01/01/2000 

to 30/12/2007), crisis (01/01/2008 to 30/06/2009) and post-crisis (01/07/2009 to 

30/12/2016) periods. 

[Insert Figures 2.1 to 2.5 here] 

Figures 2.1 to 2.5 show that the stocks and the SPY index show the most significant changes 

in prices from 2008 to 2009, which also causes the biggest change in volatility across all 

frequencies for both calendar-time and business-time sampling data. This result is caused 

by the global financial crisis of 2008 to 2009. There are also dramatic changes in prices 

from 2000 to 2002, which may be part of the bear market that began in 2000. This bear 

market affected the IT companies AAPL and MSFT to a greater degree than the healthcare 

stocks because of the burst of the tech bubble in 2000. In addition, we can see that these 

big shocks in the stock market have a relatively small impact on the volatility of SPY 

compared to individual stocks. For example, the burst of the tech bubble caused the RV of 

each stock to exceed 10 for 30-second returns at the end of 2002, but the RV of SPY only 

reached 5 at the same time.  

Figures 2.1 to 2.5 also show that the volatility of stocks and SPY has the highest peak 

during the financial crisis period (2008 to 2009), with a dramatic increase in trading volume 

at the same time for most stocks and SPY (with the exception of MSFT) as investors’ fears 

over the financial crisis led to increased trading. However, during the small peak in 

volatility from 2000 to 2002 caused by the burst of the tech bubble, the amount of trading 

volume does not rise significantly for stocks or SPY. This shows that the volatility of stocks 

and SPY are not only affected by trading volume, but also affected by the types of trade 
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orders. The trading volumes from 2000 to 2002 are not particularly high, yet the large 

number of sell orders with relatively few buy orders resulted in high volatility after the 

burst of the tech bubble.  

[Insert Table 2.1 here] 

Table 2.1 shows the descriptive statistics for returns and conditional variances for 300-

second stocks and the SPY index. The conditional variances are estimated from the 

GARCH (1,1) model with normally distributed error terms. The standard deviations for 

returns and the mean conditional variance are higher in the crisis period, followed by the 

pre-crisis period, and the average returns for stocks and SPY are much more negative 

during the crisis. The findings show the impact of the financial crisis and the burst of the 

tech bubble, which are in line with the results in Figures 2.1 and 2.5. In addition, the stocks 

from the IT sector are more volatile in all periods than stocks from the HC sector. This is 

because the companies in the IT sector grew dramatically due to the development of cloud 

computing, mobile computing and big data and they have capacity to alter their operations 

and innovations frequently. News announcements related to these companies, especially 

their quarterly earnings reports, are watched closely by investors and often result in 

fluctuations in investor sentiment. Companies from the HC sector are less volatile as they 

are less sensitive to economic cycles and are typically regarded as defensive stocks when 

market is going down. 
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2.3 Methodology 

2.3.1 Volatility estimation measures 

In this chapter, we use different volatility measures to estimate quadratic variation (QV), 

which describes the variation in financial time series. Andersen and Bollerslev (1998) use 

realised variance (RV) to estimate QV, as shown in equation (2.1). The RV of a given 

trading day can be calculated using equation 2.1.  

RV =∑ (Δi
nX)2M

i=1

𝑝𝑙𝑖𝑚
→

𝑀 → ∞
QVt,    ∆n(≡ 1/M)→ 0                            (2.1) 

Where Δi
nX =X(t+iΔ)-X(t+(i-1)Δ), which are the equally spaced intraday returns from a 

financial time series. (Δi
nX)2 is the ith squared returns of the trading day at stage n.  RVt 

converges in probability to the QVt. M is the number of sampled observations per trading 

day.  

Hansen and Lunde (2004) use bias-corrected realised variance (𝑅𝑉𝐴𝐶 ), which can be 

calculated using equation (2.2). 

𝑅𝑉𝐴𝐶=∑ (Δi
nX)2M

i=2 +2∑
𝑀

𝑀−ℎ
∑ (Δi

nX)(Δi+h
n X)M−h

i=2
qM
i=2                           (2.2) 

Δi+h
n X  refers to the (i+h)th return of a given trading day. This approach eliminates 

microeconomic noise in realised variation estimation by correcting for the first qM 

autocorrelations. Huang and Tauchen (2005) argue that the presence of microeconomic 

noise seriously contaminates jump detections, so eliminating the noise may improve jump 

test accuracy.   
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Barndoff-Nielsen and Shephard (2004) use bi-power variation (BV), which is robust to 

jumps and can be written as: 

𝐵𝑉=μ1
−2 M

M−1
∑ |Δi

nX|rM
i=2 |Δi−1

n X|s
𝑝𝑙𝑖𝑚
→

𝑀 → ∞
 ∫ σs

2t

0
ds,  r=s=1                         (2.3) 

Where µ1= E(µ) = √2/Γ(
1

2
) ≈ 0.7978, and r and s are the powers of the absolute return and 

its first lag respectively. ∫ σs
2t

0
𝑑𝑠 corresponds to the integrated variance (IV). They also 

employ tri-power variation (TPV) and quad-power variation (QPV) by adding one or two 

extra adjacent returns in the estimation respectively, in order to make the estimators more 

robust to microeconomic noise. These are shown in equations (2.4) and (2.5) respectively. 

TPV=  μ3/2
−3 M

M−2
∑ |Δi

nX|rM
i=3 |Δi−1

n X|s|Δi−2
n X|q

𝑝𝑙𝑖𝑚
→

𝑀 → ∞
∫ σs

2t

0
ds,  r=q=s=2/3.       (2.4) 

QPV= μ1/2
−4 M

M−3
∑ |Δi

nX|rM
i=4 |Δi−1

n X|s|Δi−2
n X|q|Δi−3

n X|u
𝑝𝑙𝑖𝑚
→

𝑀 → ∞
∫ σs

2t

0
ds,  r=t=q=u=1/2   (2.5) 

Where µ1= E(µ) = √2/Γ(
1

2
) ≈ 0.7978 and q and u are the powers of the absolute values of 

the 2nd and 3rd lags of a given return. TPV keeps the rule that the sum of the exponents must 

equal 2. The QPV estimator is more robust to microeconomic noise but less efficient than 

TPV.       

Another estimator is skipped bi-power variation (SBV; Huang & Tauchen, 2005). SBV is 

a BV estimator that is robust to microeconomic noise by adding a more distant adjacent 

return term in the estimation. SBV also adopts the rule that the sum of the exponents must 

equal 2.  
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 SBV=μ1
−2 M

M−2
∑ |Δi

nX|rM
i=3 |Δi−1

n X|s|Δi−2
n X|q

𝑝𝑙𝑖𝑚
→

𝑀 → ∞
 ∫ σs

2t

0
ds,  r=q=1, s=0               (2.6) 

Threshold bi-power variation (TBV; Corsi et al., 2010), adds a threshold parameter to make 

the estimator more robust to large jumps. TBV can be written as: 

TBV=μ1
−2 M

M−1
∑ |Δi

nX|rM
i=2 |Δi−1

n X|s1
{|Δi−1

n X|
2
≤ϑi}

1
{|Δi−1

n X|
2
≤ϑi−1}

𝑝𝑙𝑖𝑚
→

𝑀 → ∞
 ∫ σs

2t

0
ds     (2.7) 

 r=t=1, s=0. The threshold parameter ϑ=cϑ
2·Vt̂ is estimated with c𝜕=3 and V̂ is an auxiliary 

estimator of σ2. 

Andersen et al. (2012) introduce the minRV and medRV estimators, which take the 

minimum and the median over the adjacent returns respectively in order to eliminate the 

jumps in the estimators.  

minRV=
π

π−2

M

M−1
∑ min⁡(|Δi

nX|, |Δi−1
n X|)2M

i=2

𝑝𝑙𝑖𝑚
→

𝑀 → ∞
 ∫ σs

2t

0
ds                        (2.8) 

MedRV =
π

6−4√3+π

M

M−2
∑ min⁡(|Δi

nX|, |Δi−1
n X|, |Δi−2

n X|)2M
i=3

𝑝𝑙𝑖𝑚
→

𝑀 → ∞
 ∫ σs

2t

0
ds            (2.9) 

 

2.3.2 HAR-class models 

Corsi et al. (2010) introduced the HAR-J and HAR-TJ models, which are shown in 

equations (2.10) and (2.11) respectively. The HAR-J model can be written as:  

RVt:t+h−1=β0 + βdĈt−1 + βwĈt−5:t−1 + βmĈt−22:t−1 + βjĴt−1 + εt                      (2.10) 
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RV𝑡1:𝑡2 =
1

𝑡2−𝑡1+1
∑ 𝑅𝑉𝑡
𝑡2
𝑡=𝑡1

, with 𝑡1≤𝑡2. The error term is an independent and identically 

distributed (i.i.d.) random variable with mean 0 and variance 𝜎2. The jump and continuous 

components in equation (2.10) can be expressed as Ĵt = I{zt>ϕα}∙⁡max⁡[(RVt − BVt), 0] and 

Ĉt=RVt − Ĵt respectively. The HAR-TJ model can be expressed as: 

RVt:t+h−1=β0 + βdTĈt−1 + βwTĈt−5:t−1 + βmTĈt−22:t−1 + βjTĴt−1+εt               (2.11) 

with the jump and continuous components TĴt = I{zt>ϕα} ∙ ⁡max⁡[(RVt − TBVt), 0]  and 

TĈt=RVt − TĴt in equation (2.11). The error term εt is an i.i.d. random variable with mean 

0 and variance 𝜎2. 

In this thesis, we present new models, HAR-J-Vol and HAR-J-Vol, which consider trading 

volume. This is because volatility measures are significantly correlated with trading volume, 

as discussed in Sections 2.5.3 and 2.7.3. In addition, we use LASSO regression to examine 

the relationship between trading volume lags and realised variance. We find that the first 

lags of trading volume have a significant impact on RV for most stocks, and so they are 

considered in the HAR-J-Vol and HAR-TJ-Vol models, as shown in equations (2.12) and 

(2.13). Higher lags are not significant for most stocks and hence are not included. 

The HAR-J-Vol and HAR-TJ-Vol models can be written as: 

RVt:t+h−1=β0 + βdĈt−1 + βwĈt−5:t−1 + βmĈt−22:t−1 + βjĴt−1 + βvVolt−1 + εt       (2.12) 

RVt:t+h−1=β0 + βdTĈt−1 + βwTĈt−5:t−1 + βmTĈt−22:t−1 + βjTĴt−1 + βvVolt−1 + εt       (2.13) 

Where the error terms are i.i.d. random variables with mean 0 and variance 𝜎2. 



64 

 

 

2.4 Stylised facts of intraday returns 

In this section, we investigate the stylised facts of intraday returns from stock market assets 

using the SPY index for the whole data set from 2000 to 2016, as SPY reflects the average 

movements of the stocks in the market for the whole period.   

 

2.4.1 Autocorrelations 

Figure 2.6 shows that there are no autocorrelations for intraday returns across different 

frequencies. Figure 2.7 shows a slow decay in autocorrelations for SPY’s absolute intraday 

returns, which suggests that they are likely to have long-term dependence.  

 [Insert Figures 2.6 to 2.8 here] 

The autocorrelation plot for the volatility measures in Figure 2.8 shows that they have 

positive partial autocorrelations for the majority of the lags, suggesting that high-volatility 

events tend to follow one other in rapid succession. This can be easily observed from the 

changes in returns during the financial crisis period (2008-2009) in Figure 2.1, as many 

high-volatility events occurred during this period. In addition, the partial autocorrelation 

results in Figure 2.8 show that the RV and BV volatility measures are AR (9) processes 

because the partial autocorrelations cut off after the ninth lag. This indicates that stock 

volatility can have a long-term impact (up to nine days). Also, the CTBV partial 

autocorrelations have large correlations for lags 11, 15 and 20 in Figure 2.8. This suggests 
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that long-range dependence also differs between different volatility measures calculated 

from the same set of intraday returns. 

 

2.4.2 Unconditional and conditional heavy tails 

Figure 2.9 shows quantile-quantile (Q-Q) plots for SPY returns. 

[Insert Figure 2.9 here] 

It is obvious that the returns have a heavy tail because they have a large number of outliers. 

The Q-Q plots are all S-shaped, with small values on the left side of the x-axis quantiles 

and large values on the right side compared to the theoretical quantile. 

[Insert Figure 2.10 here] 

The Q-Q plot for the residuals of the GARCH (1,1) model is shown in Figure 2.10. This 

model corrects the volatility clustering for daily returns. Comparing these two figures 

shows that SPY’s conditional heavy tails are smaller than its unconditional heavy tails.  

 

2.4.3 Standardised returns 

By comparing the descriptive statistics for SPY returns in Table 2.1 with those for returns 

standardised by different volatility measures shown in Table 2.2, we can see that 

standardising returns using volatility measures does not have a dramatic impact on the mean 

of the returns. 

[Insert Table 2.2 here] 
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However, the standardisation does produce a fall in the absolute values of the minimum 

and maximum values, as well as the skewness and kurtosis of their distributions. In addition, 

the results of the Jarque-Bera (JB) test for normality for the standardised returns are 

generally closer to a normal distribution across different frequencies. Volatility measures 

from different sampling frequencies have different effects on standardising returns for SPY, 

as shown in Table 2.2. SPY returns are more likely to be normally distributed when 

standardising volatility measures using 30-second sampling frequencies than for lower 

frequencies. For example, we fail to reject the null hypothesis at the 5% significance level 

after performing the JB test on SPY’s daily returns after standardising all the volatility 

measures estimated using 30-second intraday returns. This is likely because the volatility 

measures estimated using higher-frequency data (e.g. 30-second data) can more easily 

capture the large volatility caused by large changes in stock returns. Therefore the extreme 

values in the return distributions can be standardised more easily with 30-second data. 

However, when the estimation uses 300-second intraday returns, this effect only holds for 

QPV, minRV and TBV.    

 

2.5 Leverage effects and long-memory properties 

In the previous section, we discussed some of the stylised facts (e.g. autocorrelation and 

heavy tails) of calendar-time intraday returns using the graphs in Figures 2.6 to 2.10. The 

use of graphs for analyses necessitated restricting the discussion to SPY as representative 

of the whole market. In this section, however, we investigate volatility forecasting using 

results from stocks, as well as SPY, for the whole data set (2000-2016). We examine stocks’ 
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leverage effects, long-memory properties and the correlations between trading volume and 

volatility measures, which are important considerations in volatility estimation and 

forecasting. The stocks considered in this section are AAPL and MSFT (IT sector), and JNJ 

and PFE (healthcare sector). These were chosen because IT is the most volatile sector due 

to the rise of cloud computing, big data and mobile computing, while healthcare is 

relatively stable.  

 

2.5.1 Leverage effects 

Table 2.3 shows the leverage effects estimated from the EGARCH (1,1) model for the 

stocks and the SPY index. We choose the minRV volatility measure because it is one of 

the most effective at standardising returns, as discussed in Section 2.4.3. The EGARCH 

model is used because previous literature finds that negative shocks have a bigger effect on 

the future volatility of stocks than positive shocks (e.g. Chou, 1988; Baillie & De Gennaro, 

1990; Tiwar et al., 2019). It is clear from Table 2.3 that the stocks and SPY have leverage 

effects with significant negative coefficients. 

[Insert Table 2.3 here] 

The leverage effects for SPY are much higher than those for individual stocks, with an 

absolute value of -0.115 for SPY compared to a range of -0.069 to -0.027 for stocks. Also, 

the leverage effects fall after standardising returns when using the minRV volatility 

measure, especially for lower-frequency stock returns. For example, the leverage effect 

coefficients for 60-second, 150-second and 300-second standardised intraday stock returns 

are not significant, as shown in Table 2.3. By observing the 30-second standardised stock 
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returns, we can see that the leverage effects for AAPL and MSFT are not significant, while 

those for JNJ and PFE are significant at the 5% level but with smaller absolute values for 

the estimated parameters. In addition, the estimated leverage effect parameters for SPY’s 

standardised returns are either non-significant (150 seconds), or significant but with much 

smaller absolute values (30 seconds, 60 seconds and 300 seconds).  

 

2.5.2 Long-memory properties 

The long-memory properties for the intraday returns for SPY and stocks can be estimated 

using an autoregressive fractionally integrated moving average (ARFIMA) model, which 

is shown in Table 2.4. 

[Insert Table 2.4 here] 

The long-memory results in Table 2.4 show that the long-memory properties for TRV and 

TBV are higher on average than other volatility measures, while those for 𝑅𝑉𝑎𝑐 are lower 

than others on average. In addition, the table shows that the volatility measures estimated 

from highly volatile stocks (i.e. AAPL and MSFT) have higher average long-memory 

properties than those estimated from less volatile stocks (i.e. JNJ and PFE). This is because 

the stocks from the IT sector tend to have stronger volatility clustering after the burst of the 

tech bubble (2000 to 2002) and during the financial crisis (2008 to 2009), as the large 

changes in prices for stocks cluster together, as shown in Figures 2.1 to 2.5. Therefore, this 

high persistence in price change magnitudes for IT stocks results in larger long-memory 

properties for their volatility measures.  
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2.5.3 Trading volume and volatility correlation 

Table 2.5 shows the correlation between volatility measures and trading volume for stocks 

and SPY using correlation coefficients. Trading volume is the aggregated number of shares 

traded during a given day. The correlation coefficients between the same-day volatility 

measures and trading volume (i.e. both at time t) are calculated and reported in Table 2.5. 

The results in show that, on average, two of the bias-corrected volatility measures, namely 

Quad-Power Variation (QPV) and realised variance (𝑅𝑉𝐴𝐶), have stronger correlations with 

trading volume (0.385 and 0.383 respectively) than the other measures, including 

uncorrected measures such as RV. 

[Insert Table 2.5 here] 

Also, the bias-corrected Skipped Bi-power Variation (SBV), Threshold Bi-power Variation 

(TBV) and Corrected Threshold Bi-power Variation (CTBV) measures shows a higher 

correlation with trading volume than their uncorrected equivalent, BV (average correlations 

of 0.364, 0.371 and 0.378 versus 0.351 respectively). However, among the bias-corrected 

measures, QPV is more correlated with trading volume than SBV, suggesting that both the 

jump and continuous components in realised variance are closely correlated with trading 

volume. These results demonstrate the value of examining the impact of the lag of trading 

volume on realised variance estimation and forecasting. 
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2.6 Volatility forecasting 

The long-memory results in the previous section show that long-memory properties are 

present in the volatility measures estimated from intraday returns, and that volatility 

measures are significantly correlated with trading volume. It is therefore a worthy 

endeavour to study the impact of trading volume on forecasting realised variances and 

compare the performance of the trading volume model with other HAR-family models. We 

use lasso regressions to examine the impact of 100 lags of trading volume on realised 

variance, shown in Figure 2.11. We first chose the best tuning parameter using 10-fold 

cross-validation in the lasso regression. Then the best tuning parameters were used in the 

lasso regression with 10,000 iterations to select the relevant lags for predicting RVt+1 . 

Figure 2.11 shows that the first lag for trading volume is an important predictor for RV for 

most stocks across different frequencies, hence why it was chosen for inclusion in our HAR 

forecasting model.  

[Insert Figure 2.11 here] 

Table 2.6 reports the regression results for HAR family models using price data from the 

SPY ETF that tracks the S&P 500 index. The table also includes the MAE ratio, which 

compares the forecasting performance of the HAR-J-Vol and HAR-TJ-Vol models versus 

the HAR-J and HAR-TJ models. The Diebold and Mariano (DM) test results also reported 

in Table 2.6 show whether the inclusion of the first lag of trading volume in the HAR-J and 

HAR-TJ models yields significant improvements in forecasting. The alternative hypothesis 

for the DM test is that the HAR family models with the first lag of trading volumes perform 

better than those without it.   



71 

 

 [Insert Table 2.6 here] 

The regression results for HAR family models in Table 2.6 show that the estimated 

coefficient of the first lag of trading volume is significant. Although the estimated 

coefficients are small, they improve the value of R-squared for the HAR-J and HAR-TJ 

models.  

Table 2.6 also shows that considering the first lag of volume improves the forecasting 

performance for HAR-J across all stocks and frequencies. This result holds for the majority 

of stocks for the HAR-TJ model. The DM test results show that these improvements are 

significant at the 5% level for more than half of the cases. The results suggest that the HAR-

J-Vol model is better at forecasting than the HAR-J model, as its MAE ratio is smaller than 

the latter’s across different stocks and frequencies. This improvement is significant at the 

5% significance level for the PFE and JNJ stocks across all frequencies, and for AAPL and 

MSFT at certain sampling frequencies. The DM results show that the improvement in 

forecasting is significant for SPY using 30-second and 60-second sampling frequencies at 

the 10% significance level. The MAE ratios for the HAR-TJ-Vol model versus the HAR-

TJ model are less than 1 for SPY, JNJ and MSFT across all frequencies and for AAPL and 

PFE at certain frequencies. The DM test results show that the gains of the HAR-TJ-Vol 

model are significant for JNJ and MSFT at the 1% significance level across all frequencies, 

while the improvements for SPY, AAPL and PFE are significant at the 1% and/or 5% 

significance levels for some of the frequencies. In summary, then, it is clear that adding the 

first lag of trading volume to HAR models can significantly improve stock volatility 

forecasting in the majority of cases. 
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2.7 Stylised facts of stock returns in different 

regimes 

Previous sections discussed the stylised facts of the high-frequency aggregated SPY return 

and realised volatility measures, followed by the impact of these measures on standardising 

the return. In addition, we analysed the correlation between trading volume and volatility 

measures and how they affect unconditional volatility forecasting for stocks and SPY. In 

this section, we discuss the impact of volatility measures affecting the high frequency SPY 

returns in the pre-crisis, crisis and post-crisis periods. We also examine the correlation 

between volatility measures and trading volume, and the impact of the latter on volatility 

forecasting for stocks and SPY in different regimes.  

 

2.7.1 Standardised SPY returns 

Tables 2.7 to 2.9 show the descriptive statistics for SPY returns standardised using different 

realised measures in the pre-crisis (Table 2.7), crisis (Table 2.8) and post-crisis (Table 2.9) 

periods.  

[Insert Tables 2.7 to 2.9 here] 

The changes in maximum and minimum values of standardised returns, as well as the 

skewness and kurtosis of returns’ distributions, all decrease across different regimes, which 

is in line with the changes in the returns of the whole data set (2000-2016) discussed in 

Section 2.4.3. In addition, the JB test results also show that standardising returns with 

volatility measures results in more normal distributions across different regimes, which is 
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in line with the results for the 2000-2016 returns. Comparing the JB tests for the three 

periods, we find standardising returns is more effective in the most volatile period (2008 to 

2009), as the returns all fail to reject the null hypothesis during this period (i.e. the returns 

follow a normal distribution). For the less volatile periods, the 300-second returns reject 

the null hypothesis for some of the volatility measures: three for the pre-crisis period (RV, 

SBV and RVac) and only one for the post-crisis period (RVac). This is because the returns 

for SPY display volatility clustering during the financial crisis, which results in much 

bigger changes in prices during this period than before or after the crisis. These big changes 

in prices can easily be captured by volatility measures. Therefore, standardising returns 

with volatility measures can help eliminate the impact of large changes in returns and can 

yield return distributions that are closer to a normal distribution.  

 

2.7.2 Leverage effects 

Tables 2.10 to 2.12 show the leverage effects for returns and standardised returns for stocks 

and SPY in the pre-crisis, crisis and post-crisis periods.  

[Insert Tables 2.10 to 2.12 here] 

The results in Tables 2.10 and 2.12 show that leverage effects are present in the 2000-2016 

returns (as shown in Section 2.5.1), but they are also significant in returns for most stocks 

in the pre-crisis, crisis and post-crisis periods. (The exceptions to this are AAPL before the 

crisis and PFE during it.) When standardising returns using volatility measures, the 

leverage effects either fall dramatically or became non-significant across different regimes, 

which is in line with the returns for the data set as a whole. For the assets that do exhibit 
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leverage effects during the crisis (that is, all except PFE), the effects are much larger during 

the crisis than in the pre-crisis and post-crisis periods, as the estimated parameters are all 

below -1.3. 

 

2.7.3 Trading volume and volatility correlation 

The results from Tables 2.13 to 2.15 show that the bias-corrected BV measures (SBV, TBV 

and CTBV) have higher correlations with trading volume than BV across different regimes, 

which is in line with the 2000-2016 data shown in Section 2.5.3.  

[Insert Tables 2.13 to 2.15 here] 

By comparing the correlation results in different regimes, we find that the volatility 

measures have, on average, the highest correlations with trading volume during the 

financial crisis. This is because investors tend to trade more frequently in response to fears 

of a crisis, as shown in Section 2.2. The correlation between the volatility measures and 

trading volume are particularly low on average in the pre-crisis period. Some volatility 

measures are even negatively or not significantly correlated with trading volume for the 

AAPL and PFE stocks and the SPY index. This indicates that although the burst of the tech 

bubble (2000-2002) affected the volatility of stocks dramatically, this large volatility was 

not necessarily caused by high trading volume; rather, the cause may be the large amount 

of sell orders compared to buy orders (see Section 2.2). Therefore, the correlation between 

volatility measures and trading volume may not always be significant or positive.  
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2.7.4 Volatility forecasting 

Tables 2.16 to 2.18 show the regression results for HAR family models and their one-day 

ahead forecasting results using the pre-crisis (2000-2007), crisis (2007-2009) and post-

crisis (2010-2016) data respectively. The results show that the coefficients for the first lag 

of trading volume are significant for both the HAR-J-Vol and HAR-TJ-Vol models across 

all frequencies for SPY for the post-crisis period in Table 2.18. However, the coefficients 

for trading volume are not significant for the pre-crisis and crisis periods. Considering 

trading volume also improves the R-squared values for both HAR models in the post-crisis 

period, though changes in R-squared are negligible for the pre-crisis period and mixed for 

the crisis period.  

This suggests that the impact of trading volume on RV in regression varies for different 

financial regimes, which is reflected in the forecasting results. The HAR-J-Vol and HAR-

TJ-Vol models perform better at forecasting RV, as their MAE ratios are less than 1 for all 

stocks in the post-crisis period (Table 2.18) across different frequencies with only one 

exception (SPY at 300 sec for the HAR-J-Vol versus the HAR-J model). The biggest 

improvement is for AAPL as its MAE ratios are all less than 0.8, with some of them close 

to 0.5 (e.g. 0.511 for HAR-J-Vol versus HAR-J using 30-second sampling). The 

improvements are significant for all stocks at the 5% significance level across all 

frequencies with only two exceptions. In line with the results for the full data set (2000-

2016) discussed in Section 2.6, the DM test results show fewer significant improvements 

for SPY across different sampling frequencies in the post-crisis period compared to stocks. 

The forecasting results in Table 2.16 show that the MAEs are smaller for the models that 

consider the first lag of trading volume for most cases in the pre-crisis period. However, 
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most of the improvements are not significant for the HAR-J-Vol model, while the 

significant improvements for the HAR-TJ-Vol model can be found for stocks AAPL and 

PFE at the 1% significance level, but not for JNJ, MSFT and SPY. Table 2.17 shows that 

including the first lag of trading volume does not produce any obvious improvements for 

most stocks and frequencies in the crisis period. In sum, the findings suggest that trading 

volume has a more significant impact on estimating and forecasting volatility in the less 

volatile periods such as the post-crisis period.  

  

2.8 Conclusion 

In this chapter, we have examined the stylised facts of high-frequency returns and volatility 

measures from stock markets. We find that the intraday returns for the SPY index do not 

display autocorrelations across different frequencies, yet the opposite is true for their 

absolute values. By investigating the stylised facts of high-frequency aggregated returns, 

we find that high-frequency daily returns have both unconditional and conditional heavy 

tails, the latter of which are smaller than the former. In addition, we find that the volatility 

measures of intraday returns have autocorrelations and long-memory properties, the latter 

of which are tested using eleven measures, some of which have not been considered in 

previous literature. The bias-corrected volatility measures based on RV and BV have higher 

long-memory properties than the original uncorrected measures. In addition, long-memory 

properties are higher for RV (which captures both the continuous and jump components) 

than for BV (which only captures the continuous components). This shows that both jump 

components and continuous components have long-memory properties. We also find that 
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long-memory properties are higher for volatility measures estimated from more volatile 

stocks such as MSFT and AAPL.  

Our examination of the correlation between trading volume and eleven volatility measures 

reveals that correlations are present for both the whole data set and the data from the crisis 

and post-crisis periods. The highest correlation between trading volume and volatility 

measures are in during the crisis. However, the negative and non-significant correlations 

between trading volume and volatility for AAPL, PFE and the SPY index during the burst 

of the tech bubble highlight the fact that high volatility is not always caused by trading 

volume only, but may also be affected by the type of trading orders.  

By standardising SPY returns using volatility measures, we find that the standardised 

returns are closer to normal distributions. The impact of volatility measures on returns is 

more obvious for returns during the financial crisis than for the pre- and post-crisis periods. 

We also find evidence that intraday returns have leverage effects and that standardising 

returns using the minRV volatility measure can help eliminate or decrease the leverage 

effects for the data from 2000-2016 and from different regimes. In addition, the leverage 

effects for most asset returns (except PFE) tend to be higher during the crisis than before 

or after it. 

In this chapter, we also examined volatility forecasting for stocks and SPY across different 

sampling frequencies using HAR-family models. The forecasting results show that the 

HAR-J-Vol and HAR-TJ-Vol models performs better than HAR-J and HAR-TJ models 

across the whole period under study (2000-2016) as well as the post-crisis period. This 

indicates that trading volume may be helpful for volatility forecasting. This improvement 

of forecasting with using the first lag of volumes results in more number of significant 
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results in the post-crisis periods, suggesting the impact of past trading volumes on stock 

volatility are reduced in more volatile period. Future work may wish to explore and assess 

how various volatility measures, such as the eleven studied in this thesis, can be used in 

volatility estimation and forecasting. This particularly applies to parametric methods, 

which would represent a step beyond the non-parametric methods used to date. 
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Appendix 

Figures 

Figure 2.1: Price, volatility and trading volume for the SPY index. Volatility is measured using 21-day and 

252-day moving average realised variance (RV), estimated with 30-second, 60-second, 150-second and 300-

second returns.  

 

Figure 2.2: Price, volatility and trading volume for the AAPL stock (IT sector). Volatility is measured using 

21-day and 252-day moving average realised variance (RV), estimated with 30-second, 60-second, 150-

second and 300-second returns.  
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Figure 2.3: Price, volatility and trading volume for the MSFT stock (IT sector). Volatility is measured using 

21-day and 252-day moving average realised variance (RV), estimated with 30-second, 60-second, 150-

second and 300-second returns. 

 

Figure 2.4: Price, volatility and trading volume for the PFE stock (healthcare sector). Volatility is measured 

using 21-day and 252-day moving average realised variance (RV), estimated with 30-second, 60-second, 150-

second and 300-second returns. 



81 

 

 

Figure 2.5: Price, volatility and trading volume for the JNJ stock (healthcare sector). Volatility is measured 

using 21-day and 252-day moving average realised variance (RV), estimated with 30-second, 60-second, 150-

second and 300-second returns. 

 

Figure 2.6: Partial autocorrelations for intraday returns for the SPY index, using 30-second, 60-second, 150-

second and 300-second returns. 
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Figure 2.7: Partial autocorrelations for absolute intraday returns for the SPY index, using 30-second, 60-

second, 150-second and 300-second returns. 
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Figure 2.8: Partial autocorrelations for 300-second returns for the SPY index using RV, BV, CTBV and SBV. 
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Figure 2.9: Quantile-quantile (Q-Q) plot for the daily returns for the SPY index. 
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Figure 2.10: Quantile-quantile (Q-Q) plot for the daily returns for the SPY index after correcting for volatility 

clustering using the GARCH (1,1) model. 
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Figure 2.11: Lags for trading volumes selected by LASSO regression for RV predictions using the best tuning 

parameters. Each blue cell represents one lag selected by the regression model. 
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Tables 

Table 2.1 Descriptive statistics for daily returns and conditional variance 

 AAPL JNJ PFE MSFT SPY 

 Return GARCH Return GARCH Return GARCH Return GARCH Return GARCH 

     2000-2016     

Mean -0.012 4.922 0.020 1.086 -0.011 1.879 0.009 2.440 0.000 1.033 

STD. DEV. 2.205 4.767 1.035 1.328 1.379 1.492 1.571 2.585 1.024 1.568 

Median 0.015 3.326 0.017 0.691 0.000 1.315 0.000 1.440 0.048 0.576 

Max 12.540 42.173 7.921 16.290 6.925 10.623 11.050 20.098 8.124 20.936 

Min -12.201 0.620 -7.486 0.209 -6.812 0.428 -7.753 0.406 -8.270 0.149 

Skewness 0.048 2.540 0.057 4.729 0.113 2.121 0.207 2.933 -0.077 6.049 

Kurtosis 6.256 11.861 9.047 33.559 5.719 8.336 7.081 13.985 10.326 51.016 

JB Test 1891 18590 6519 182360 1327 8281 2998 27637 9569 436940 

p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

     Pre-crisis     

Mean 0.009 6.911 0.033 1.361 -0.022 2.292 -0.017 2.997 -0.020 0.961 

STD. DEV. 2.656 3.849 1.160 1.237 1.527 1.414 1.726 2.966 0.983 0.809 

Median 0.000 5.442 0.031 0.955 -0.068 1.712 -0.037 1.798 0.024 0.656 

Max 12.285 21.536 7.921 8.598 6.925 6.976 11.050 21.700 8.124 7.029 

Min -11.405 2.441 -7.486 0.218 -6.192 0.686 -7.753 0.361 -4.894 0.229 

Skewness 0.117 1.391 0.125 2.593 0.292 1.023 0.268 1.877 0.251 2.597 

Kurtosis 4.550 4.335 6.694 11.229 4.935 2.979 6.080 7.533 6.978 13.543 

JB Test 206 798 1148 7923 342 350 819 2901 1347 11567 

p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

     Crisis     

Mean -0.035 8.618 -0.061 2.123 -0.114 4.168 -0.085 5.755 -0.036 4.025 

STD. DEV. 2.955 7.097 1.482 2.773 2.007 2.727 2.406 4.056 2.001 4.135 

Median 0.147 6.365 -0.039 1.115 -0.281 3.488 -0.267 4.404 -0.015 2.417 

Max 12.540 49.416 7.487 18.382 6.667 12.998 10.890 21.156 7.349 24.857 

Min -12.201 2.610 -7.450 0.516 -6.812 1.045 -7.565 2.131 -8.270 0.663 

Skewness -0.257 3.028 0.054 3.244 -0.058 1.422 0.357 1.921 -0.108 2.318 

Kurtosis 5.206 13.683 8.807 14.576 4.224 4.273 4.951 6.166 5.332 8.535 

JB Test 81 2369 530 2766 24 153 68 389 86 819 

p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

     Post-crisis     

Mean -0.030 1.779 0.022 0.569 0.022 1.025 0.055 1.263 0.028 0.551 

STD. DEV. 1.329 0.900 0.745 0.360 1.011 0.428 1.122 0.386 0.741 0.473 

Median 0.014 1.577 0.015 0.467 0.031 0.886 0.021 1.166 0.069 0.407 

Max 8.348 12.712 5.023 4.044 4.313 3.773 4.727 4.388 3.599 5.591 

Min -6.845 0.729 -5.280 0.234 -5.734 0.461 -6.067 0.747 -4.281 0.168 

Skewness -0.050 3.914 -0.129 3.923 -0.107 1.823 -0.172 2.309 -0.417 4.079 

Kurtosis 4.786 33.434 6.997 27.373 4.505 7.552 4.863 12.077 6.093 27.812 

JB Test 252 77767 1264 51630 182 2678 283 8167 808 53722 

p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Note: This table reports the descriptive statistics and the results of the Jarque-Bera test for normality for returns and conditional variance for 

four stocks (AAPL, JNJ, PFE and MSFT) and the SPY index in different financial regimes.   
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Table 2.2 Descriptive statistics for SPY daily returns standardised by volatility measures 
 𝒓𝒕

√𝑹𝑽𝒕
 

𝒓𝒕

√𝑩𝑽𝒕
 

𝒓𝒕

√𝑻𝑹𝑽𝒕
 

𝒓𝒕

√𝑸𝑷𝑽𝒕
 

𝒓𝒕

√𝑻𝑷𝑽𝒕
 

𝒓𝒕

√𝒎𝒊𝒏𝑹𝑽𝒕
 

𝒓𝒕

√𝒎𝒆𝒅𝑹𝑽𝒕
 

𝒓𝒕

√𝑺𝑩𝑽𝒕
 

𝒓𝒕

√𝑻𝑩𝑽𝒕
 

𝒓𝒕

√𝑪𝑻𝑩𝑽𝒕
 

𝒓𝒕

√𝑹𝑽𝒂𝒄𝒕
 

    30 seconds      

Mean 0.055 0.059 0.066 0.070 0.064 0.060 0.060 0.061 0.069 0.062 0.062 

STD. DEV. 0.957 1.000 1.020 1.106 1.048 1.002 0.997 1.010 1.079 1.009 1.009 

Median 0.074 0.076 0.076 0.087 0.082 0.076 0.075 0.077 0.081 0.075 0.077 

Max 3.305 3.385 3.611 3.687 3.509 3.425 3.384 3.495 3.822 3.487 3.502 

Min -3.076 -3.270 -3.515 -3.802 -3.414 -3.298 -3.204 -3.330 -3.675 -3.276 -3.467 

Skewness -0.014 -0.003 0.035 0.016 0.005 0.001 0.001 0.003 0.031 0.006 0.008 

Kurtosis 2.939 2.915 2.977 2.907 2.901 2.933 2.929 2.924 3.000 2.950 2.881 

JB test 0.811 1.294 0.984 1.724 1.782 0.810 0.895 1.046 0.699 0.479 2.579 

p-value 0.500 0.500 0.500 0.411 0.400 0.500 0.500 0.500 0.500 0.500 0.273 

    60 seconds      

Mean 0.057 0.062 0.070 0.071 0.067 0.063 0.063 0.064 0.072 0.064 0.066 

STD. DEV. 0.972 1.005 1.032 1.074 1.037 1.015 1.014 1.016 1.080 1.016 1.011 

Median 0.074 0.077 0.080 0.084 0.082 0.079 0.077 0.080 0.083 0.077 0.080 

Max 3.322 3.410 3.468 3.582 3.508 3.476 3.605 3.534 3.771 3.437 3.300 

Min -3.113 -3.370 -3.670 -4.103 -3.762 -3.526 -3.430 -3.443 -4.028 -3.425 -3.018 

Skewness -0.005 0.009 0.043 0.028 0.021 0.016 0.018 0.014 0.037 0.017 0.019 

Kurtosis 2.894 2.900 2.948 2.924 2.912 2.932 2.935 2.915 2.973 2.915 2.788 

JB test 2.044 1.855 1.815 1.588 1.682 1.006 1.002 1.413 1.116 1.511 8.261 

p-value 0.354 0.386 0.394 0.440 0.420 0.500 0.500 0.487 0.500 0.459 0.017** 

    150 seconds      

Mean 0.063 0.069 0.077 0.078 0.074 0.073 0.072 0.071 0.083 0.073 0.067 

STD. DEV. 0.996 1.037 1.062 1.089 1.063 1.064 1.056 1.041 1.127 1.052 1.035 

Median 0.077 0.078 0.080 0.080 0.079 0.079 0.080 0.078 0.084 0.078 0.087 

Max 3.256 3.648 3.551 3.906 3.823 3.977 3.786 3.592 3.916 3.707 3.137 

Min -3.135 -3.164 -3.194 -3.182 -3.198 -3.255 -3.203 -3.160 -3.224 -3.175 -2.946 

Skewness 0.005 0.039 0.071 0.066 0.055 0.057 0.042 0.034 0.091 0.052 0.008 

Kurtosis 2.814 2.866 2.895 2.909 2.886 2.922 2.900 2.854 2.962 2.871 2.642 

JB test 6.198 4.291 5.584 4.602 4.485 3.410 3.061 4.599 6.179 4.921 22.891 

p-value 0.045** 0.115 0.061 0.098 0.104 0.178 0.213 0.098 0.045** 0.084 0.001*** 

    300 seconds      

Mean 0.065 0.071 0.078 0.080 0.075 0.075 0.074 0.074 0.085 0.074 0.064 

STD. DEV. 1.015 1.059 1.082 1.107 1.083 1.095 1.081 1.059 1.162 1.079 1.054 

Median 0.082 0.084 0.084 0.085 0.084 0.084 0.084 0.083 0.086 0.085 0.088 

Max 3.227 3.270 3.837 3.555 3.382 3.699 3.525 3.185 4.501 3.416 3.717 

Min -2.960 -3.294 -3.894 -3.404 -3.381 -3.423 -3.220 -3.082 -3.487 -3.315 -2.981 

Skewness 0.004 0.021 0.060 0.042 0.033 0.039 0.042 0.037 0.088 0.031 -0.020 

Kurtosis 2.718 2.785 2.852 2.844 2.809 2.883 2.798 2.754 2.982 2.796 2.607 

JB test 14.184 8.521 6.482 5.587 7.303 3.499 8.501 11.759 5.619 8.134 27.885 

p-value 0.001*** 0.015** 0.039** 0.061 0.027** 0.171 0.015** 0.004*** 0.060 0.018** 0.001*** 

Note: This table reports the descriptive statistics and the results of the Jarque-Bera test for normality for eleven different volatility measures for the 

SPY index using 30-second, 60-second, 150- second and 300-second returns. The superscript asterisks *, ** and *** denote statistical significance at the 

10%, 5% and 1% levels. 

 

 



89 

 

 

Table 2.3 Leverage effects estimated from the EGARCH (1,1) model (2000-2016) 

 Return (𝒓𝒕) 

𝒓𝒕

√𝒎𝒊𝒏𝑹𝑽𝒕
 

  30 sec 60 sec 150 sec 300 sec 

  AAPL (IT)  

Leverage -0.027 0.004 0.008 0.004 0.019 

S.E. 0.006 0.003 0.023 0.003 0.023 

T-statistics -4.323 1.309 0.350 1.321 0.809 

p-value 0.000 0.190 0.726 0.186 0.418 

  JNJ (HC)  

Leverage -0.069 -0.034 -0.002 -0.006 -0.003 

S.E. 0.008 0.012 0.008 0.007 0.007 

T-statistics -9.083 -2.742 -0.261 -0.786 -0.376 

p-value 0.000 0.006 0.794 0.432 0.707 

  PFE (HC)  

Leverage -0.032 -0.008 -0.003 0.002 -0.015 

S.E. 0.005 0.004 0.020 0.021 0.021 

T-statistics -6.938 -2.324 -0.129 0.093 -0.728 

p-value 0.000 0.020 0.898 0.926 0.466 

  MSFT (IT)  

Leverage -0.035 0.003 0.015 0.011 -0.027 

S.E. 0.006 0.003 0.015 0.014 0.022 

T-statistics -5.507 0.989 0.994 0.755 -1.232 

p-value 0.000 0.323 0.320 0.450 0.218 

   SPY   

Leverage -0.115 -0.064 -0.062 -0.041 -0.046 

S.E. 0.007 0.023 0.022 0.022 0.022 

T-statistics -15.600 -2.840 -2.781 -1.850 -2.053 

p-value 0.000 0.005 0.005 0.064 0.040 

      

Mean -0.056 -0.020 -0.009 -0.006 -0.015 

Note. This table shows the leverage effects estimated from the EGARCH (1,1) model for four stocks (AAPL, JNJ, 

PFE and MSFT) and the SPY index for the whole data set (2000-2016) using 30-second, 60-second, 150-second and 

300-second returns. 
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Table 2.4 Long-memory properties for stocks’ and SPY’s volatility measures (2000-2016) 

Sampling  

Frequency 

(Seconds) 

 

𝑹𝑽𝒕 𝑩𝑽𝒕 𝑻𝑹𝑽𝒕 𝑸𝑷𝑽𝒕 𝑻𝑷𝑽𝒕 𝒎𝒊𝒏𝑹𝑽𝒕 𝒎𝒆𝒅𝑹𝑽𝒕 𝑺𝑩𝑽𝒕 𝑻𝑩𝑽𝒕 𝑪𝑻𝑩𝑽𝒕 𝑹𝑽𝒂𝒄𝒕 Mean 

       AAPL (IT)      
30 d 0.474 0.429 0.499 0.363 0.386 0.468 0.480 0.433 0.498 0.489 0.341 0.442 

 S.E. 0.040 0.049 0.001 0.053 0.051 0.047 0.042 0.045 0.004 0.035 0.051 0.038 

60 d 0.432 0.420 0.490 0.404 0.405 0.455 0.455 0.426 0.484 0.471 0.372 0.438 

 S.E. 0.041 0.038 0.026 0.041 0.039 0.036 0.037 0.040 0.042 0.046 0.041 0.039 

150 d 0.427 0.412 0.467 0.399 0.403 0.412 0.427 0.425 0.477 0.451 0.372 0.425 

 S.E. 0.035 0.034 0.041 0.037 0.036 0.034 0.036 0.037 0.045 0.041 0.034 0.037 

300 d 0.396 0.387 0.414 0.387 0.383 0.372 0.384 0.399 0.459 0.425 0.361 0.397 

 S.E. 0.036 0.039 0.039 0.038 0.037 0.040 0.039 0.034 0.052 0.042 0.036 0.039 

       JNJ HC)      
30 d 0.289 0.301 0.422 0.391 0.368 0.306 0.307 0.397 0.391 0.396 0.333 0.355 

 S.E. 0.060 0.062 0.086 0.094 0.072 0.060 0.060 0.076 0.089 0.094 0.076 0.075 

60 d 0.277 0.318 0.417 0.351 0.351 0.350 0.326 0.334 0.463 0.415 0.310 0.356 

 S.E. 0.054 0.058 0.087 0.070 0.064 0.059 0.059 0.068 0.086 0.087 0.061 0.068 

150 d 0.261 0.257 0.404 0.334 0.304 0.234 0.224 0.339 0.412 0.427 0.373 0.324 

 S.E. 0.062 0.062 0.081 0.061 0.058 0.062 0.055 0.062 0.070 0.087 0.047 0.064 

300 d 0.232 0.248 0.399 0.364 0.373 0.181 0.257 0.385 0.420 0.417 0.396 0.334 

 S.E. 0.058 0.058 0.063 0.055 0.050 0.051 0.056 0.054 0.065 0.059 0.046 0.056 

       PFE (HC)      
30 d 0.359 0.359 0.469 0.353 0.359 0.376 0.373 0.399 0.459 0.435 0.332 0.388 

 S.E. 0.042 0.051 0.076 0.068 0.060 0.051 0.049 0.057 0.095 0.081 0.052 0.062 

60 d 0.381 0.394 0.448 0.382 0.385 0.406 0.401 0.388 0.436 0.412 0.351 0.399 

 S.E. 0.057 0.077 0.084 0.099 0.092 0.071 0.070 0.082 0.104 0.092 0.071 0.082 

150 d 0.349 0.339 0.401 0.335 0.332 0.316 0.324 0.350 0.479 0.369 0.359 0.359 

 S.E. 0.071 0.077 0.075 0.082 0.078 0.069 0.074 0.081 0.065 0.086 0.061 0.074 

300 d 0.368 0.377 0.404 0.368 0.376 0.373 0.376 0.390 0.447 0.420 0.331 0.385 

 S.E. 0.046 0.062 0.069 0.059 0.065 0.072 0.063 0.062 0.108 0.090 0.034 0.066 

       MSFT (IT)      
30 d 0.487 0.481 0.496 0.472 0.479 0.484 0.483 0.489 0.493 0.487 0.433 0.480 

 S.E. 0.055 0.063 0.013 0.072 0.066 0.056 0.061 0.050 0.037 0.058 0.076 0.055 

60 d 0.458 0.447 0.481 0.434 0.441 0.444 0.447 0.457 0.462 0.456 0.440 0.452 

 S.E. 0.068 0.071 0.067 0.079 0.077 0.068 0.071 0.076 0.080 0.076 0.056 0.072 

150 d 0.456 0.449 0.479 0.436 0.442 0.444 0.452 0.452 0.488 0.462 0.416 0.452 

 S.E. 0.063 0.061 0.052 0.065 0.064 0.053 0.049 0.063 0.036 0.062 0.041 0.055 

300 d 0.435 0.437 0.475 0.429 0.433 0.438 0.450 0.447 0.481 0.455 0.380 0.442 

 S.E. 0.043 0.049 0.042 0.047 0.050 0.048 0.044 0.044 0.039 0.048 0.035 0.044 

       SPY      
30 d 0.405 0.389 0.452 0.395 0.389 0.370 0.392 0.406 0.429 0.407 0.386 0.402 

 S.E. 0.087 0.085 0.120 0.093 0.087 0.080 0.086 0.091 0.116 0.093 0.114 0.095 

60 d 0.406 0.400 0.437 0.381 0.387 0.400 0.406 0.390 0.418 0.405 0.402 0.403 

 S.E. 0.113 0.114 0.124 0.115 0.116 0.105 0.114 0.116 0.128 0.118 0.110 0.116 

150 d 0.399 0.378 0.444 0.372 0.374 0.356 0.371 0.396 0.472 0.409 0.378 0.395 

 S.E. 0.108 0.111 0.118 0.122 0.119 0.102 0.110 0.124 0.114 0.120 0.086 0.112 

300 d 0.403 0.417 0.469 0.429 0.429 0.406 0.409 0.421 0.496 0.461 0.394 0.430 

 S.E. 0.074 0.074 0.084 0.087 0.082 0.061 0.072 0.093 0.015 0.088 0.070 0.073 

Note: This table shows the leverage effect coefficients (d) and their standard errors (SE) estimated from the ARFIMA model for volatility 

measures for four stocks (AAPL, JNJ, PFE and MSFT) and the SPY index for the whole data set (2000-2016) using 30-second, 60-second, 150-

second and 300-second returns. 
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Table 2.5 Correlations between trading volume and volatility measures (2000-2016) 
Sampling  

Frequency 

(Seconds)  
𝑹𝑽𝒕 𝑩𝑽𝒕 𝑻𝑹𝑽𝒕 𝑸𝑷𝑽𝒕 𝑻𝑷𝑽𝒕 𝒎𝒊𝒏𝑹𝑽𝒕 𝒎𝒆𝒅𝑹𝑽𝒕 𝑺𝑩𝑽𝒕 𝑻𝑩𝑽𝒕 𝑪𝑻𝑩𝑽𝒕 𝑹𝑽𝒂𝒄𝒕 

      AAPL (IT)     
30 Estimate 0.203 0.243 0.201 0.355 0.305 0.193 0.188 0.260 0.316 0.300 0.274 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.251 0.279 0.249 0.354 0.318 0.248 0.245 0.289 0.334 0.325 0.294 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.284 0.291 0.277 0.329 0.309 0.271 0.285 0.306 0.334 0.332 0.321 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.301 0.316 0.298 0.343 0.331 0.305 0.306 0.320 0.348 0.352 0.322 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

      JNJ (HC)     
30 Estimate 0.325 0.351 0.361 0.438 0.413 0.336 0.331 0.398 0.370 0.376 0.403 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.344 0.381 0.388 0.423 0.412 0.389 0.376 0.392 0.398 0.406 0.387 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.332 0.326 0.392 0.394 0.372 0.301 0.298 0.394 0.389 0.402 0.415 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.303 0.317 0.398 0.409 0.408 0.247 0.326 0.408 0.383 0.402 0.424 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

      PFE (HC)     
30 Estimate 0.139 0.168 0.092 0.275 0.224 0.098 0.095 0.167 0.155 0.161 0.313 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.214 0.244 0.186 0.303 0.275 0.193 0.196 0.244 0.228 0.236 0.295 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.260 0.276 0.250 0.292 0.287 0.258 0.258 0.272 0.239 0.264 0.281 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.282 0.294 0.264 0.316 0.305 0.273 0.269 0.288 0.256 0.270 0.301 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

      MSFT (IT)     
30 Estimate 0.526 0.523 0.518 0.494 0.511 0.523 0.523 0.519 0.557 0.565 0.507 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.520 0.510 0.513 0.485 0.499 0.509 0.513 0.510 0.556 0.563 0.518 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.520 0.517 0.514 0.501 0.508 0.517 0.517 0.511 0.560 0.569 0.519 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.518 0.513 0.511 0.502 0.507 0.504 0.510 0.512 0.553 0.563 0.501 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

       SPY      
30 Estimate 0.406 0.420 0.419 0.468 0.445 0.394 0.397 0.430 0.390 0.396 0.495 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.461 0.464 0.463 0.472 0.466 0.455 0.451 0.455 0.453 0.462 0.488 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.474 0.454 0.480 0.450 0.450 0.434 0.448 0.464 0.468 0.479 0.482 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.485 0.487 0.499 0.492 0.492 0.482 0.488 0.495 0.501 0.510 0.502 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Mean Estimate 0.340 0.351 0.346 0.385 0.373 0.330 0.334 0.364 0.371 0.378 0.383 

Note: This table shows the correlation coefficients (estimates) and their significance levels (p-values) for different volatility measures and 

trading volumes for four stocks (AAPL, JNJ, PFE and MSFT) and the SPY index for the whole data set (2000-2016) using 30-second, 60-

second, 150-second and 300-second sampling data. 
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Table 2.6: Estimation and out-of-sample forecasting losses (mean absolute errors) us-

ing the whole data set (2000-2016) (forecast horizon h=1) 

 
  HAR-J   HAR-TJ  

  30 60 150 300 30 60 150 300 
 β0 0.125*** 0.125*** 0.119*** 0.103*** 0.193*** 0.179*** 0.167*** 0.130*** 

 s.e. 0.032 0.031 0.031 0.030 0.031 0.030 0.029 0.029 
 βd 0.226*** 0.227*** 0.208*** 0.246*** 0.279*** 0.232*** 0.414*** 0.478*** 

 s.e. 0.019 0.019 0.019 0.019 0.022 0.020 0.024 0.025 
 β𝑤 0.468*** 0.479*** 0.493*** 0.432*** 0.487*** 0.512*** 0.482*** 0.413*** 

 s.e. 0.033 0.032 0.032 0.032 0.035 0.033 0.036 0.037 
 β𝑚 0.228*** 0.211*** 0.205*** 0.242*** 0.213*** 0.196*** 0.114*** 0.138*** 

 s.e. 0.029 0.028 0.029 0.029 0.030 0.029 0.030 0.031 
 β𝑗 0.049 -0.591*** 0.116 0.083 -0.078 0.008 -0.303*** -0.125*** 

 s.e. 0.245 0.200 0.238 0.127 0.058 0.063 0.039 0.029 

 
         

 �̅�2 0.545 0.541 0.518 0.509 0.552 0.543 0.553 0.548 

 
  HAR-J-Vol   HAR-TJ-Vol  

SPY β0 -0.010 -0.016 -0.033 -0.042 0.061 0.025 0.018 0.029 

 s.e. 0.040 0.039 0.039 0.039 0.040 0.039 0.037 0.037 
 βd 0.205*** 0.203*** 0.182*** 0.220*** 0.257*** 0.205*** 0.382*** 0.453*** 

 s.e. 0.019 0.020 0.019 0.019 0.022 0.020 0.025 0.025 
 β𝑤 0.460*** 0.471*** 0.483*** 0.422*** 0.479*** 0.503*** 0.475*** 0.410*** 

 s.e. 0.033 0.032 0.032 0.032 0.035 0.033 0.036 0.037 
 β𝑚 0.229*** 0.206*** 0.197*** 0.231*** 0.214*** 0.191*** 0.107*** 0.131*** 

 s.e. 0.029 0.028 0.028 0.029 0.030 0.029 0.030 0.031 
 β𝑗 -0.063 -0.571*** -0.022 0.072 -0.085 -0.022 -0.321*** -0.132*** 

 s.e. 0.245 0.199 0.237 0.126 0.058 0.063 0.039 0.029 
 β𝑣 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.001*** 

 s.e. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 
         

 �̅�2 0.548 0.545 0.522 0.514 0.554 0.547 0.557 0.550 

 
       

MAE ratio 0.906* 0.911* 0.923 0.942 0.893*** 0.888*** 0.923 0.956 

MAE ratio (stocks) 
       

AAPL  0.834*** 0.996 0.995 0.941*** 1.537 1.251 1.055 0.986*** 

PFE  0.969*** 0.983** 0.972** 0.992*** 1.034 1.010 0.989 0.994** 

JNJ  0.756** 0.735** 0.712** 0.730** 0.876*** 0.876*** 0.790*** 0.830*** 

MSFT  0.941 0.879** 0.899** 0.894* 0.885*** 0.854*** 0.875*** 0.906*** 

Note. This table reports the estimated coefficients and adjusted R-squared for the HAR-J, HAR-TJ, HAR-J-Vol and HAR-

TJ-Vol models. Bold numbers indicate the adjusted R-squared values that are higher for models that include the lag of 

trading volume in the regression compared to the equivalent models without the lag of trading volume. The MAE ratio 

panel reports the ratio of the losses from the HAR-J-Vol, HAR-TJ-Vol versus the HAR-J and HAR-TJ models respectively. 

Ratios smaller than 1 indicate that the HAR-J-Vol and HAR-TJ-Vol models outperform the models without trading volume 

lag. *, ** and *** highlight the models with trading volume whose losses are significantly lower than the equivalent original 

model based on the Diebold and Mariano test at the 10%, 5% and 1% levels, respectively. 
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Table 2.7 Descriptive statistics for SPY’s standardised returns (pre-crisis) 

 

𝒓𝒕

√𝑹𝑽𝒕
 

𝒓𝒕

√𝑩𝑽𝒕
 

𝒓𝒕

√𝑻𝑹𝑽𝒕
 

𝒓𝒕

√𝑸𝑷𝑽𝒕
 

𝒓𝒕

√𝑻𝑷𝑽𝒕
 

𝒓𝒕

√𝒎𝒊𝒏𝑹𝑽𝒕
 

𝒓𝒕

√𝒎𝒆𝒅𝑹𝑽𝒕
 

𝒓𝒕

√𝑺𝑩𝑽𝒕
 

𝒓𝒕

√𝑻𝑩𝑽𝒕
 

𝒓𝒕

√𝑪𝑻𝑩𝑽𝒕
 

𝒓𝒕

√𝑹𝑽𝒂𝒄𝒕
 

     30 seconds     
Mean 0.008 0.009 0.013 0.015 0.011 0.008 0.009 0.011 0.015 0.011 0.011 

STD. DEV. 0.928 0.972 0.981 1.109 1.033 0.965 0.960 0.985 1.045 0.977 1.007 

Median 0.024 0.026 0.027 0.031 0.028 0.025 0.025 0.026 0.027 0.026 0.029 

Max 3.171 3.315 3.412 3.677 3.454 3.370 3.367 3.343 3.684 3.341 3.362 

Min -2.851 -2.999 -2.946 -3.235 -3.077 -3.005 -2.953 -2.919 -3.151 -3.041 -3.260 

Skewness 0.017 0.024 0.058 0.050 0.036 0.025 0.026 0.037 0.063 0.033 0.039 

Kurtosis 2.952 2.911 3.001 2.877 2.880 2.946 2.955 2.921 3.050 2.976 2.863 

JB test 0.287 0.855 1.124 2.101 1.632 0.447 0.390 0.971 1.527 0.412 2.082 

p-values 0.500 0.500 0.500 0.341 0.427 0.500 0.500 0.500 0.451 0.500 0.344 

     60 seconds     
Mean 0.009 0.012 0.016 0.017 0.014 0.012 0.013 0.013 0.018 0.013 0.016 

STD. DEV. 0.958 0.992 1.011 1.078 1.032 0.997 0.993 1.003 1.065 1.001 1.004 

Median 0.026 0.025 0.028 0.029 0.027 0.026 0.026 0.027 0.029 0.027 0.031 

Max 3.095 3.196 3.405 3.476 3.383 3.229 3.312 3.367 3.652 3.276 2.962 

Min -3.015 -3.120 -3.079 -3.299 -3.208 -3.136 -3.039 -3.090 -3.204 -3.140 -2.962 

Skewness 0.027 0.045 0.074 0.061 0.055 0.056 0.054 0.046 0.073 0.049 0.055 

Kurtosis 2.885 2.885 2.966 2.896 2.892 2.925 2.920 2.907 2.964 2.907 2.759 

JB test 1.343 1.796 1.911 2.146 1.996 1.512 1.523 1.427 1.885 1.522 5.860 

p-values 0.500 0.394 0.373 0.334 0.359 0.455 0.452 0.478 0.378 0.452 0.052 

     150 seconds     
Mean 0.012 0.016 0.020 0.022 0.019 0.018 0.017 0.017 0.024 0.019 0.017 

STD. DEV. 0.981 1.018 1.040 1.074 1.044 1.040 1.034 1.024 1.106 1.032 1.037 

Median 0.029 0.032 0.031 0.032 0.032 0.032 0.032 0.031 0.034 0.032 0.032 

Max 2.976 3.333 3.534 3.582 3.501 3.552 3.340 3.262 3.796 3.337 2.998 

Min -2.911 -2.868 -3.043 -3.043 -2.970 -2.858 -2.923 -3.029 -3.128 -2.879 -2.723 

Skewness 0.036 0.069 0.087 0.091 0.082 0.084 0.066 0.058 0.119 0.081 0.067 

Kurtosis 2.783 2.833 2.895 2.886 2.851 2.888 2.877 2.832 2.972 2.842 2.584 

JB test 4.389 3.918 3.461 3.880 4.112 3.434 2.752 3.479 4.789 4.307 15.959 

p-values 0.107 0.136 0.171 0.138 0.123 0.173 0.245 0.169 0.088 0.112 0.001 

     300 seconds     
Mean 0.014 0.017 0.020 0.021 0.019 0.018 0.018 0.019 0.025 0.019 0.012 

STD. DEV. 1.009 1.052 1.071 1.102 1.076 1.086 1.071 1.051 1.157 1.072 1.063 

Median 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.031 0.035 0.032 0.036 

Max 3.227 3.270 3.837 3.476 3.366 3.616 3.525 3.162 4.501 3.416 2.953 

Min -2.860 -3.294 -2.938 -3.404 -3.381 -3.423 -3.220 -3.082 -3.315 -3.315 -2.981 

Skewness 0.053 0.051 0.083 0.054 0.053 0.054 0.064 0.065 0.117 0.061 0.023 

Kurtosis 2.688 2.761 2.818 2.821 2.786 2.856 2.777 2.727 3.036 2.777 2.566 

JB test 9.083 5.624 5.076 3.654 4.795 2.723 5.533 7.646 4.705 5.418 15.954 

p-values 0.013 0.059 0.077 0.155 0.088 0.249 0.061 0.023 0.092 0.065 0.001 

Note: This table reports the descriptive statistics and the results of the Jarque-Bera test for normality for eleven different volatility 

measures for the SPY index using 30-second, 60-second, 150- second and 300-second returns for the pre-crisis period. The superscript 

asterisks *, ** and *** denote statistical significance at the 10%, 5% and 1% levels. 
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Table 2.8 Descriptive statistics for SPY’s standardised returns (crisis) 

 

𝒓𝒕

√𝑹𝑽𝒕
 

𝒓𝒕

√𝑩𝑽𝒕
 

𝒓𝒕

√𝑻𝑹𝑽𝒕
 

𝒓𝒕

√𝑸𝑷𝑽𝒕
 

𝒓𝒕

√𝑻𝑷𝑽𝒕
 

𝒓𝒕

√𝒎𝒊𝒏𝑹𝑽𝒕
 

𝒓𝒕

√𝒎𝒆𝒅𝑹𝑽𝒕
 

𝒓𝒕

√𝑺𝑩𝑽𝒕
 

𝒓𝒕

√𝑻𝑩𝑽𝒕
 

𝒓𝒕

√𝑪𝑻𝑩𝑽𝒕
 

𝒓𝒕

√𝑹𝑽𝒂𝒄𝒕
 

          

     30 seconds     
Mean -0.021 -0.018 -0.015 -0.017 -0.018 -0.017 -0.018 -0.018 -0.016 -0.017 -0.024 

STD. DEV. 1.049 1.085 1.101 1.149 1.115 1.098 1.089 1.091 1.158 1.094 1.073 

Median -0.010 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010 -0.009 

Max 2.733 2.866 2.968 2.957 2.914 2.938 2.853 2.826 3.011 2.868 2.678 

Min -2.423 -2.406 -2.473 -2.486 -2.426 -2.399 -2.417 -2.434 -2.515 -2.420 -2.601 

Skewness 0.065 0.079 0.104 0.095 0.087 0.077 0.076 0.083 0.091 0.082 0.072 

Kurtosis 2.622 2.624 2.661 2.666 2.644 2.622 2.614 2.642 2.639 2.624 2.638 

JB test 2.509 2.615 2.491 2.331 2.463 2.609 2.710 2.451 2.571 2.651 2.385 

p-values 0.253 0.237 0.256 0.281 0.260 0.238 0.225 0.262 0.243 0.233 0.272 

     60 seconds     
Mean -0.023 -0.019 -0.016 -0.017 -0.018 -0.020 -0.021 -0.021 -0.016 -0.018 -0.025 

STD. DEV. 1.054 1.078 1.104 1.118 1.098 1.092 1.094 1.089 1.144 1.087 1.091 

Median -0.009 -0.009 -0.010 -0.009 -0.009 -0.009 -0.009 -0.009 -0.010 -0.009 -0.010 

Max 2.685 2.800 3.027 2.973 2.924 2.892 2.890 2.890 3.315 2.848 2.768 

Min -2.523 -2.570 -2.523 -2.678 -2.654 -2.617 -2.678 -2.655 -2.616 -2.572 -2.666 

Skewness 0.071 0.089 0.113 0.103 0.097 0.091 0.092 0.080 0.118 0.097 0.081 

Kurtosis 2.629 2.639 2.663 2.669 2.663 2.652 2.661 2.657 2.677 2.646 2.661 

JB test 2.486 2.548 2.575 2.382 2.373 2.432 2.347 2.249 2.513 2.559 2.218 

p-values 0.256 0.247 0.243 0.273 0.274 0.265 0.278 0.294 0.252 0.245 0.299 

     150 seconds     
Mean -0.026 -0.022 -0.013 -0.018 -0.020 -0.016 -0.017 -0.018 -0.008 -0.018 -0.032 

STD. DEV. 1.076 1.117 1.129 1.156 1.138 1.153 1.140 1.117 1.193 1.131 1.101 

Median -0.010 -0.010 -0.010 -0.010 -0.010 -0.011 -0.010 -0.010 -0.011 -0.010 -0.009 

Max 2.682 2.843 3.056 2.988 2.929 3.151 2.862 2.768 3.569 2.865 2.578 

Min -2.632 -2.732 -2.737 -2.977 -2.831 -2.821 -2.827 -2.809 -2.847 -2.763 -2.575 

Skewness 0.067 0.090 0.132 0.093 0.096 0.124 0.095 0.084 0.170 0.109 0.016 

Kurtosis 2.625 2.679 2.699 2.729 2.708 2.762 2.703 2.675 2.801 2.696 2.546 

JB test 2.491 2.125 2.520 1.703 1.914 1.850 1.952 2.112 2.443 2.202 3.256 

p-values 0.256 0.314 0.251 0.390 0.350 0.362 0.343 0.316 0.263 0.301 0.167 

     300 seconds     
Mean -0.026 -0.027 -0.023 -0.023 -0.024 -0.028 -0.025 -0.019 -0.022 -0.028 -0.036 

STD. DEV. 1.091 1.135 1.142 1.171 1.155 1.174 1.164 1.135 1.218 1.151 1.114 

Median -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.011 -0.010 -0.010 

Max 2.598 2.776 3.218 3.140 2.903 2.879 2.959 2.874 3.613 2.879 2.733 

Min -2.604 -2.871 -2.604 -3.008 -2.972 -2.777 -2.650 -2.620 -2.889 -2.889 -2.519 

Skewness 0.047 0.033 0.084 0.054 0.052 0.043 0.069 0.097 0.082 0.035 -0.015 

Kurtosis 2.601 2.639 2.707 2.736 2.694 2.688 2.710 2.697 2.781 2.655 2.434 

JB test 2.644 2.117 1.797 1.279 1.643 1.645 1.616 2.037 1.182 1.954 5.056 

p-values 0.234 0.315 0.372 0.500 0.403 0.402 0.408 0.329 0.500 0.343 0.069 

Note: This table reports the descriptive statistics and the results of the Jarque-Bera test for normality for eleven different volatility measures 

for the SPY index using 30-second, 60-second, 150- second and 300-second returns for the crisis period. The superscript asterisks *, ** 

and *** denote statistical significance at the 10%, 5% and 1% levels. 
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Table 2.9 Descriptive statistics for SPY’s standardised returns (post-crisis) 

 

𝒓𝒕

√𝑹𝑽𝒕
 

𝒓𝒕

√𝑩𝑽𝒕
 

𝒓𝒕

√𝑻𝑹𝑽𝒕
 

𝒓𝒕

√𝑸𝑷𝑽𝒕
 

𝒓𝒕

√𝑻𝑷𝑽𝒕
 

𝒓𝒕

√𝒎𝒊𝒏𝑹𝑽𝒕
 

𝒓𝒕

√𝒎𝒆𝒅𝑹𝑽𝒕
 

𝒓𝒕

√𝑺𝑩𝑽𝒕
 

𝒓𝒕

√𝑻𝑩𝑽𝒕
 

𝒓𝒕

√𝑪𝑻𝑩𝑽𝒕
 

𝒓𝒕

√𝑹𝑽𝒂𝒄𝒕
 

     30 seconds     

Mean 0.120 0.128 0.139 0.146 0.137 0.129 0.129 0.131 0.144 0.132 0.133 

STD. DEV. 0.965 1.007 1.040 1.089 1.046 1.018 1.012 1.016 1.094 1.021 0.993 

Median 0.121 0.128 0.132 0.137 0.134 0.129 0.129 0.128 0.139 0.130 0.127 

Max 3.305 3.385 3.611 3.687 3.509 3.425 3.384 3.495 3.822 3.487 3.502 

Min -3.076 -3.270 -3.515 -3.802 -3.414 -3.298 -3.204 -3.330 -3.675 -3.276 -3.467 

Skewness -0.067 -0.053 -0.013 -0.029 -0.043 -0.049 -0.049 -0.051 -0.020 -0.044 -0.028 

Kurtosis 3.006 2.995 3.022 3.021 3.000 2.988 2.976 3.005 3.044 3.005 2.976 

JB test 1.417 0.886 0.093 0.303 0.575 0.765 0.813 0.820 0.274 0.623 0.293 

p-value 0.481 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

     60 seconds     

Mean 0.124 0.132 0.143 0.147 0.139 0.134 0.134 0.135 0.146 0.135 0.138 

STD. DEV. 0.966 0.999 1.036 1.056 1.027 1.014 1.014 1.010 1.079 1.012 0.999 

Median 0.123 0.125 0.133 0.134 0.130 0.127 0.125 0.127 0.137 0.128 0.133 

Max 3.322 3.410 3.468 3.582 3.508 3.476 3.605 3.534 3.771 3.437 3.300 

Min -3.113 -3.370 -3.670 -4.103 -3.762 -3.526 -3.430 -3.443 -4.028 -3.425 -3.018 

Skewness -0.052 -0.042 -0.004 -0.013 -0.027 -0.039 -0.034 -0.030 -0.016 -0.031 -0.024 

Kurtosis 2.981 2.998 3.011 3.039 3.015 3.026 3.030 3.003 3.074 3.004 2.861 

JB test 0.871 0.561 0.016 0.174 0.242 0.546 0.439 0.293 0.516 0.312 1.709 

p-value 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.410 

     150 seconds     

Mean 0.134 0.144 0.156 0.158 0.151 0.149 0.147 0.146 0.164 0.148 0.140 

STD. DEV. 0.992 1.037 1.068 1.086 1.063 1.067 1.057 1.040 1.130 1.053 1.016 

Median 0.131 0.133 0.139 0.139 0.136 0.136 0.136 0.137 0.142 0.135 0.138 

Max 3.256 3.648 3.551 3.906 3.823 3.977 3.786 3.592 3.916 3.707 3.137 

Min -3.135 -3.164 -3.194 -3.182 -3.198 -3.255 -3.203 -3.160 -3.224 -3.175 -2.946 

Skewness -0.038 -0.001 0.040 0.038 0.020 0.015 0.006 0.000 0.045 0.012 -0.043 

Kurtosis 2.900 2.950 2.946 2.981 2.968 2.998 2.973 2.925 3.006 2.949 2.744 

JB test 1.237 0.196 0.728 0.475 0.207 0.067 0.069 0.444 0.639 0.247 5.732 

p-value 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.056 

     300 seconds     

Mean 0.138 0.148 0.159 0.162 0.155 0.155 0.153 0.151 0.171 0.152 0.141 

STD. DEV. 1.001 1.047 1.076 1.095 1.070 1.083 1.070 1.047 1.150 1.066 1.028 

Median 0.132 0.136 0.140 0.143 0.143 0.140 0.136 0.136 0.146 0.139 0.140 

Max 2.967 3.210 3.761 3.555 3.382 3.699 3.435 3.185 4.316 3.235 3.717 

Min -2.960 -3.048 -3.894 -3.077 -2.991 -3.395 -2.985 -3.080 -3.487 -3.051 -2.706 

Skewness -0.047 -0.003 0.037 0.038 0.018 0.032 0.023 0.002 0.069 0.010 -0.052 

Kurtosis 2.793 2.849 2.929 2.892 2.861 2.956 2.840 2.803 2.981 2.852 2.700 

JB test 4.077 1.805 0.838 1.367 1.633 0.480 2.179 3.063 1.517 1.749 7.922 

p-value 0.125 0.392 0.500 0.498 0.426 0.500 0.328 0.209 0.453 0.402 0.021 

Note: This table reports the descriptive statistics and the results of the Jarque-Bera test for normality for eleven different volatility measures 

for the SPY index using 30-second, 60-second, 150- second and 300-second returns for the post-crisis period. The superscript asterisks *, 

** and *** denote statistical significance at the 10%, 5% and 1% levels. 

 

 



96 

 

 

 

Table 2.10 Leverage effects estimated from the EGARCH (1,1) model (pre-crisis) 

 Return (𝒓𝒕) 

𝒓𝒕

√𝒎𝒊𝒏𝑹𝑽𝒕
 

  30 sec 60 sec 150 sec 300 sec 

  AAPL (IT)  

Leverage -0.010 0.011 0.043 0.041 0.051 

S.E. 0.010 0.007 0.034 0.033 0.034 

T-statistics -1.054 1.665 1.260 1.244 1.482 

p-value 0.292 0.096 0.208 0.214 0.138 

  JNJ (HC)  

Leverage -0.063 -0.052 -0.052 -0.024 -0.020 

S.E. 0.011 0.020 0.022 0.013 0.013 

T-statistics -5.631 -2.581 -2.371 -1.871 -1.553 

p-value 0.000 0.010 0.018 0.061 0.121 

  PFE (HC)  

Leverage -0.021 -0.013 -0.011 0.034 -0.023 

S.E. 0.004 0.005 0.005 0.025 0.031 

T-statistics -4.857 -2.671 -2.096 1.369 -0.737 

p-value 0.000 0.008 0.036 0.171 0.461 

  MSFT (IT)  

Leverage -0.044 0.005 0.025 0.005 0.004 

S.E. 0.010 0.005 0.026 0.019 0.004 

T-statistics -4.303 0.951 0.962 0.277 1.044 

p-value 0.000 0.342 0.336 0.782 0.296 

  SPY  

Leverage -0.096 -0.103 -0.094 -0.086 -0.077 

S.E. 0.009 0.033 0.034 0.032 0.033 

T-statistics -10.200 -3.096 -2.785 -2.645 -2.302 

p-value 0.000 0.002 0.005 0.008 0.021 

      

Mean -0.047 -0.030 -0.018 -0.006 -0.013 

Note: This table shows the leverage effects estimated from the EGARCH (1,1) model for four stocks (AAPL, JNJ, PFE 

and MSFT) and the SPY index for the pre-crisis period using 30-second, 60-second, 150-second and 300-second 

returns. 

 

 

 

 

 

 

 



97 

 

 

 

Table 2.11 Leverage effects estimated from the EGARCH (1,1) model (crisis) 

 Return (𝒓𝒕) 

𝒓𝒕

√𝒎𝒊𝒏𝑹𝑽𝒕
 

  30 sec 60 sec 150 sec 300 sec 

  AAPL (IT)  

Leverage -0.143 0.100 0.011 0.095 0.064 

STD. DEV. 0.030 0.072 0.020 0.073 0.068 

T-statistics -4.778 1.398 0.541 1.298 0.952 

p-value 0.000 0.162 0.589 0.194 0.341 

  JNJ (HC)  

Leverage -0.178 -0.124 -0.096 -0.091 -0.088 

STD. DEV. 0.034 0.066 0.066 0.071 0.065 

T-statistics -5.242 -1.866 -1.454 -1.277 -1.359 

p-value 0.000 0.062 0.146 0.202 0.174 

  PFE (HC)  

Leverage -0.040 0.196 0.185 0.167 0.150 

STD. DEV. 0.030 0.067 0.068 0.069 0.068 

T-statistics -1.321 2.923 2.699 2.423 2.204 

p-value 0.187 0.003 0.007 0.015 0.028 

  MSFT (IT)  

Leverage -0.139 - -0.014 0.092 0.024 

STD. DEV. 0.030 - 0.067 0.081 0.078 

T-statistics -4.696 - -0.206 1.137 0.305 

p-value 0.000 - 0.837 0.255 0.760 

  SPY  

Leverage -0.148 0.023 0.045 0.015 0.016 

STD. DEV. 0.031 0.076 0.073 0.071 0.076 

T-statistics -4.837 0.308 0.612 0.208 0.206 

p-value 0.000 0.758 0.541 0.835 0.837 

      

Mean -0.130 0.049 0.026 0.056 0.033 

Note: This table shows the leverage effects estimated from the EGARCH (1,1) model for four stocks (AAPL, JNJ, PFE 

and MSFT) and the SPY index for the crisis period using 30-second, 60-second, 150-second and 300-second returns. 
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Table 2.12 Leverage effects estimated from the EGARCH (1,1) model (post-crisis) 

 Return (𝒓𝒕) 

𝒓𝒕

√𝒎𝒊𝒏𝑹𝑽𝒕
 

  30 sec 60 sec 150 sec 300 sec 

  AAPL (IT)  

Leverage -0.111 -0.015 -0.020 -0.026 -0.018 

STD. DEV. 0.019 0.029 0.010 0.012 0.011 

T-statistics -5.939 -0.513 -1.972 -2.171 -1.699 

p-value 0.000 0.608 0.049 0.030 0.089 

  JNJ (HC)  
Leverage -0.063 -0.013 -0.012 -0.010 -0.027 

STD. DEV. 0.012 0.017 0.018 0.012 0.018 

T-statistics -5.103 -0.754 -0.668 -0.802 -1.485 

p-value 0.000 0.451 0.504 0.422 0.137 

  PFE (HC)  
Leverage -0.065 -0.037 -0.038 -0.025 -0.043 

STD. DEV. 0.012 0.029 0.028 0.029 0.031 

T-statistics -5.229 -1.271 -1.342 -0.860 -1.405 

p-value 0.000 0.204 0.180 0.390 0.160 

  MSFT (IT)  
Leverage -0.038 -0.057 -0.052 -0.046 -0.059 

STD. DEV. 0.014 0.032 0.032 0.033 0.034 

T-statistics -2.648 -1.779 -1.599 -1.363 -1.728 

p-value 0.008 0.075 0.110 0.173 0.084 

  SPY  
Leverage -0.146 -0.067 -0.065 -0.061 -0.062 

STD. DEV. 0.014 0.022 0.022 0.034 0.034 

T-statistics -10.270 -2.988 -2.941 -1.775 -1.826 

p-value 0.000 0.003 0.003 0.076 0.068 

      

Mean -0.085 -0.038 -0.037 -0.034 -0.042 

Note: This table shows the leverage effects estimated from the EGARCH (1,1) model for four stocks (AAPL, JNJ, PFE 

and MSFT) and the SPY index for the post-crisis period using 30-second, 60-second, 150-second and 300-second returns. 
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Table 2.13 Correlations between trading volume and volatility measures (pre-crisis) 

Sampling  

Frequency 

(Seconds)  
𝑹𝑽𝒕 𝑩𝑽𝒕 𝑻𝑹𝑽𝒕 𝑸𝑷𝑽𝒕 𝑻𝑷𝑽𝒕 𝒎𝒊𝒏𝑹𝑽𝒕 𝒎𝒆𝒅𝑹𝑽𝒕 𝑺𝑩𝑽𝒕 𝑻𝑩𝑽𝒕 𝑪𝑻𝑩𝑽𝒕 𝑹𝑽𝒂𝒄𝒕 

      AAPL (IT)     

30 Estimate -0.045 -0.016 -0.032 0.086 0.028 -0.022 -0.031 -0.008 -0.013 -0.039 -0.013 

 p-value 0.042 0.467 0.146 0.000 0.202 0.314 0.166 0.728 0.562 0.082 0.575 

60 Estimate -0.032 -0.014 -0.033 0.045 0.013 -0.018 -0.021 -0.003 -0.012 -0.028 0.029 

 p-value 0.149 0.530 0.139 0.044 0.555 0.422 0.337 0.905 0.605 0.210 0.187 

150 Estimate -0.004 0.007 -0.011 0.042 0.025 0.000 0.007 0.022 -0.008 -0.013 0.070 

 p-value 0.873 0.753 0.621 0.059 0.265 0.994 0.755 0.332 0.709 0.563 0.002 

300 Estimate 0.030 0.052 0.022 0.080 0.069 0.048 0.041 0.051 0.012 0.021 0.093 

 p-value 0.172 0.020 0.316 0.000 0.002 0.030 0.063 0.022 0.578 0.355 0.000 

      JNJ (HC)     

30 Estimate 0.279 0.289 0.238 0.328 0.310 0.260 0.255 0.286 0.201 0.215 0.325 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.300 0.304 0.258 0.319 0.312 0.288 0.287 0.299 0.225 0.243 0.353 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.334 0.325 0.297 0.321 0.325 0.314 0.314 0.321 0.246 0.269 0.370 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.361 0.349 0.333 0.346 0.345 0.340 0.346 0.342 0.257 0.293 0.375 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

      PFE (HC)     
30 Estimate -0.018 -0.001 -0.168 0.093 0.035 -0.041 -0.043 -0.047 -0.164 -0.154 0.161 

 p-value 0.422 0.971 0.000 0.000 0.116 0.064 0.052 0.037 0.000 0.000 0.000 

60 Estimate -0.015 -0.007 -0.128 0.040 0.007 -0.059 -0.041 -0.014 -0.117 -0.097 0.123 

 p-value 0.505 0.770 0.000 0.072 0.770 0.008 0.066 0.525 0.000 0.000 0.000 

150 Estimate 0.072 0.112 0.009 0.131 0.132 0.109 0.094 0.081 -0.091 -0.033 0.127 

 p-value 0.001 0.000 0.688 0.000 0.000 0.000 0.000 0.000 0.000 0.144 0.000 

300 Estimate 0.119 0.125 0.053 0.162 0.138 0.069 0.050 0.097 -0.048 -0.019 0.196 

 p-value 0.000 0.000 0.018 0.000 0.000 0.002 0.026 0.000 0.032 0.407 0.000 

      MSFT (IT)     

30 Estimate 0.424 0.426 0.409 0.414 0.424 0.414 0.418 0.424 0.410 0.417 0.430 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.428 0.427 0.418 0.412 0.421 0.421 0.423 0.423 0.418 0.425 0.432 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.434 0.430 0.422 0.423 0.425 0.428 0.429 0.429 0.425 0.433 0.442 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.436 0.433 0.424 0.424 0.429 0.420 0.430 0.431 0.422 0.440 0.422 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

       SPY      
30 Estimate -0.139 -0.105 -0.163 -0.055 -0.079 -0.111 -0.128 -0.117 -0.184 -0.173 -0.052 

 p-value 0.000 0.000 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.020 

60 Estimate -0.107 -0.099 -0.121 -0.068 -0.084 -0.107 -0.114 -0.101 -0.132 -0.126 -0.037 

 p-value 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.098 

150 Estimate -0.068 -0.071 -0.077 -0.064 -0.068 -0.075 -0.075 -0.071 -0.093 -0.089 0.000 

 p-value 0.002 0.001 0.001 0.004 0.002 0.001 0.001 0.002 0.000 0.000 0.989 

300 Estimate -0.029 -0.028 -0.027 -0.022 -0.025 -0.030 -0.029 -0.025 -0.046 -0.040 0.020 

 p-value 0.199 0.204 0.218 0.319 0.267 0.185 0.194 0.256 0.040 0.069 0.368 

Mean Estimate 0.131 0.140 0.101 0.165 0.151 0.126 0.124 0.134 0.081 0.093 0.184 

Note: This table shows the correlation coefficients (estimates) and their significance levels (p-values) for different volatility measures and trading 

volumes for four stocks (AAPL, JNJ, PFE and MSFT) and the SPY index for the pre-crisis period using 30-second, 60-second, 150-second and 300-

second sampling data. 
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Table 2.14 Correlations between trading volume and volatility measures (crisis) 

Sampling  

Frequency 

(Seconds)  
𝑹𝑽𝒕 𝑩𝑽𝒕 𝑻𝑹𝑽𝒕 𝑸𝑷𝑽𝒕 𝑻𝑷𝑽𝒕 𝒎𝒊𝒏𝑹𝑽𝒕 𝒎𝒆𝒅𝑹𝑽𝒕 𝑺𝑩𝑽𝒕 𝑻𝑩𝑽𝒕 𝑪𝑻𝑩𝑽𝒕 𝑹𝑽𝒂𝒄𝒕 

      AAPL (IT)     
30 Estimate 0.669 0.675 0.701 0.680 0.678 0.676 0.678 0.676 0.788 0.780 0.667 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.677 0.693 0.707 0.700 0.699 0.694 0.697 0.699 0.795 0.791 0.706 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.678 0.673 0.718 0.686 0.686 0.672 0.674 0.698 0.772 0.781 0.688 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.681 0.659 0.684 0.677 0.664 0.633 0.652 0.690 0.771 0.778 0.667 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

      JNJ (HC)     
30 Estimate 0.656 0.656 0.652 0.655 0.658 0.650 0.652 0.659 0.732 0.749 0.616 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.628 0.662 0.667 0.655 0.662 0.674 0.652 0.634 0.747 0.756 0.610 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.633 0.642 0.669 0.655 0.654 0.628 0.601 0.644 0.740 0.761 0.685 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.682 0.682 0.659 0.657 0.669 0.676 0.674 0.660 0.720 0.737 0.675 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

      PFE (HC)     
30 Estimate 0.549 0.547 0.562 0.527 0.539 0.547 0.550 0.559 0.594 0.605 0.559 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.549 0.550 0.561 0.532 0.540 0.550 0.557 0.545 0.609 0.617 0.552 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.527 0.522 0.557 0.505 0.512 0.510 0.510 0.522 0.598 0.613 0.522 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.547 0.550 0.542 0.551 0.552 0.538 0.545 0.551 0.572 0.598 0.508 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

      MSFT (IT)     
30 Estimate 0.591 0.593 0.583 0.595 0.594 0.590 0.587 0.590 0.592 0.600 0.596 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.600 0.593 0.592 0.586 0.590 0.590 0.592 0.593 0.606 0.610 0.612 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.601 0.605 0.602 0.602 0.604 0.603 0.604 0.601 0.611 0.619 0.595 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.602 0.601 0.601 0.598 0.600 0.596 0.603 0.606 0.603 0.612 0.580 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

       SPY      
30 Estimate 0.789 0.784 0.788 0.777 0.782 0.780 0.784 0.785 0.888 0.890 0.760 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.773 0.766 0.785 0.748 0.752 0.768 0.767 0.751 0.887 0.890 0.777 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.775 0.744 0.792 0.727 0.731 0.720 0.737 0.752 0.887 0.890 0.771 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.798 0.800 0.810 0.793 0.799 0.787 0.798 0.795 0.884 0.891 0.789 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Mean Estimate 0.619 0.619 0.630 0.615 0.617 0.613 0.615 0.620 0.685 0.694 0.616 

Note: This table shows the correlation coefficients (estimates) and their p-values for different volatility measures and trading volumes for 

four stocks (AAPL, JNJ, PFE and MSFT) and the SPY index for the crisis period using 30-second, 60-second, 150-second and 300-second 

sampling data. Top three average estimate values are in bold. 
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Table 2.15 Correlations between trading volume and volatility measures (post-crisis) 

Sampling  

Frequency 

(Seconds)  
𝑹𝑽𝒕 𝑩𝑽𝒕 𝑻𝑹𝑽𝒕 𝑸𝑷𝑽𝒕 𝑻𝑷𝑽𝒕 𝒎𝒊𝒏𝑹𝑽𝒕 𝒎𝒆𝒅𝑹𝑽𝒕 𝑺𝑩𝑽𝒕 𝑻𝑩𝑽𝒕 𝑪𝑻𝑩𝑽𝒕 𝑹𝑽𝒂𝒄𝒕 

      AAPL (IT)     

30 Estimate 0.325 0.282 0.541 0.276 0.273 0.274 0.289 0.307 0.635 0.623 0.234 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.332 0.356 0.535 0.361 0.344 0.414 0.356 0.337 0.628 0.632 0.283 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.438 0.393 0.515 0.379 0.377 0.361 0.413 0.417 0.629 0.632 0.379 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.458 0.457 0.498 0.448 0.449 0.425 0.459 0.450 0.611 0.617 0.399 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

      JNJ (HC)     

30 Estimate 0.202 0.218 0.466 0.413 0.321 0.220 0.221 0.365 0.472 0.484 0.377 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.214 0.254 0.480 0.327 0.308 0.284 0.272 0.314 0.501 0.503 0.279 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.190 0.182 0.481 0.293 0.237 0.162 0.167 0.317 0.514 0.513 0.337 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.176 0.191 0.497 0.434 0.404 0.152 0.200 0.449 0.507 0.519 0.433 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

      PFE (HC)     

30 Estimate 0.410 0.431 0.660 0.473 0.473 0.474 0.489 0.539 0.673 0.687 0.503 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.566 0.589 0.652 0.546 0.566 0.605 0.584 0.556 0.659 0.670 0.490 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.599 0.598 0.644 0.581 0.589 0.588 0.598 0.597 0.646 0.666 0.575 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.567 0.548 0.622 0.562 0.559 0.523 0.532 0.590 0.633 0.657 0.579 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

      MSFT (IT)     

30 Estimate 0.548 0.533 0.550 0.494 0.514 0.528 0.528 0.527 0.578 0.599 0.496 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.505 0.475 0.505 0.457 0.471 0.463 0.483 0.496 0.564 0.588 0.508 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.517 0.506 0.511 0.469 0.483 0.505 0.499 0.479 0.572 0.597 0.499 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.498 0.503 0.500 0.486 0.488 0.507 0.482 0.472 0.551 0.573 0.502 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

       SPY      

30 Estimate 0.725 0.664 0.817 0.638 0.647 0.635 0.694 0.699 0.877 0.878 0.736 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

60 Estimate 0.755 0.740 0.801 0.711 0.729 0.741 0.751 0.741 0.878 0.884 0.748 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

150 Estimate 0.756 0.762 0.785 0.746 0.745 0.748 0.751 0.733 0.876 0.883 0.691 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

300 Estimate 0.688 0.656 0.731 0.704 0.677 0.596 0.641 0.719 0.870 0.879 0.726 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Mean Estimate 0.451 0.445 0.561 0.467 0.460 0.438 0.448 0.481 0.613 0.623 0.466 

Note: This table shows the correlation coefficients (estimates) and their p-values for different volatility measures and trading volumes for four 

stocks (AAPL, JNJ, PFE and MSFT) and the SPY index for the post-crisis period using 30-second, 60-second, 150-second and 300-second 

sampling data. Top three average estimate values are in bold. 
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Table 2.16: Estimation and out-of-sample forecast losses (mean absolute errors) for 

the pre-crisis period (forecast horizon h=1) 

   HAR-J   HAR-TJ  

  30 60 150 300 30 60 150 300 

 β0 0.131*** 0.099*** 0.104*** 0.135*** 0.166*** 0.134*** 0.132*** 0.131*** 

 s.e. 0.046 0.031 0.035 0.042 0.044 0.029 0.032 0.039 

 βd 0.209*** 0.466*** 0.277*** 0.257*** 0.690*** 0.676*** 0.551*** 0.558*** 

 s.e. 0.028 0.030 0.028 0.029 0.052 0.035 0.037 0.040 

 β𝑤 0.321*** 0.250*** 0.358*** 0.258*** 0.143*** 0.125*** 0.173*** 0.082 

 s.e. 0.053 0.048 0.048 0.052 0.071 0.053 0.056 0.064 

 β𝑚 0.398*** 0.230*** 0.275*** 0.374*** 0.226*** 0.207*** 0.259*** 0.364*** 

 s.e. 0.049 0.042 0.043 0.051 0.059 0.043 0.047 0.057 

 β𝑗 -0.424 -0.790*** 0.349 -0.255* -0.468*** -0.223*** 0.036 -0.006 

 s.e. 0.295 0.133 0.293 0.138 0.063 0.047 0.035 0.032 

          

 �̅�2 0.480 0.625 0.517 0.374 0.526 0.655 0.555 0.425 

   HAR-J-Vol   HAR-TJ-Vol  

SPY β0 0.155* 0.167*** 0.143*** 0.182*** 0.223*** 0.202*** 0.185*** 0.232*** 

 s.e. 0.085 0.055 0.059 0.071 0.081 0.052 0.056 0.066 

 βd 0.210*** 0.470*** 0.279*** 0.259*** 0.694*** 0.681*** 0.555*** 0.565*** 

 s.e. 0.028 0.031 0.029 0.029 0.052 0.036 0.037 0.040 

 β𝑤 0.322*** 0.252*** 0.360*** 0.259*** 0.146*** 0.128*** 0.175*** 0.084 

 s.e. 0.053 0.048 0.048 0.052 0.071 0.053 0.056 0.064 

 β𝑚 0.392*** 0.210*** 0.264*** 0.362*** 0.209*** 0.186*** 0.243*** 0.334*** 

 s.e. 0.052 0.044 0.045 0.053 0.062 0.046 0.049 0.059 

 β𝑗 -0.423 -0.800*** 0.352 -0.255*** -0.470*** -0.223*** 0.037 -0.006 

 s.e. 0.295 0.133 0.293 0.138 0.063 0.047 0.035 0.032 

 β𝑣 -0.001 -0.002 -0.001 -0.001 -0.001 -0.002 -0.001 -0.002* 

 s.e. 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 

          

 �̅�2 0.480 0.625 0.517 0.374 0.526 0.655 0.555 0.426 

        

MAE ratio 1.012 0.972 0.994 0.997 0.943 0.927 0.930 0.906 

MAE ratio (Stocks)        

AAPL  0.971 0.982 0.982* 0.990*** 0.920*** 0.950*** 0.961*** 0.978*** 

PFE  0.888* 0.893 0.928 0.930 0.884*** 0.842*** 0.882*** 0.832*** 

JNJ  0.995** 1.013 1.055 1.031 1.011 1.028 1.054 1.038 

MSFT  0.997 0.991 0.990 0.988 1.001 0.991 0.983 0.986 

Note. This table reports the estimated coefficients and adjusted R-squared for the HAR-J, HAR-TJ, HAR-J-Vol and HAR-

TJ-Vol models. Bold numbers indicate the adjusted R-squared values that are higher for models that include the lag of 

trading volume in the regression compared to the equivalent models without the lag of trading volume. The MAE ratio 

panel reports the ratio of the losses from the HAR-J-Vol, HAR-TJ-Vol versus the HAR-J and HAR-TJ models respectively. 

Ratios smaller than 1 indicate that the HAR-J-Vol and HAR-TJ-Vol models outperform the models without trading volume 

lag. *, ** and *** highlight the models with trading volume whose losses are significantly lower than the equivalent 

original model based on the Diebold and Mariano test at the 10%, 5% and 1% levels, respectively. 
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Table 2.17: Estimation and out-of-sample forecast losses (mean absolute er-

rors) for the crisis period (forecast horizon h=1) 

   HAR-J   HAR-TJ  

  30 60 150 300 30 60 150 300 

 β0 0.297** 0.282** 0.285** 0.272** 0.300** 0.263** 0.298** 0.203* 

 s.e. 0.122 0.120 0.124 0.113 0.120 0.116 0.120 0.117 

 βd 0.665*** 0.651*** 0.584*** 0.382*** 0.691*** 0.750*** 0.592*** 0.381*** 

 s.e. 0.085 0.087 0.090 0.098 0.100 0.116 0.092 0.129 

 β𝑤 0.109 0.144 0.219* 0.411*** 0.125 0.143 0.217 0.556*** 

 s.e. 0.120 0.123 0.131 0.136 0.133 0.147 0.144 0.184 

 β𝑚 0.017 -0.004 -0.024 -0.046 0.003 -0.011 -0.023 -0.066 

 s.e. 0.103 0.100 0.104 0.097 0.113 0.109 0.110 0.115 

 β𝑗 -0.071 0.000 0.296 1.255*** 0.480 0.310 0.514** 0.621*** 

 s.e. 0.804 0.768 0.399 0.245 0.365 0.229 0.207 0.116 

          

 �̅�2 0.528 0.532 0.482 0.500 0.526 0.540 0.480 0.486 

SPY   HAR-J-Vol   HAR-TJ-Vol  

 β0 0.154 0.189 0.180 -0.041 0.171 0.230 0.174 -0.022 

 s.e. 0.214 0.217 0.225 0.195 0.214 0.216 0.221 0.201 

 βd 0.614*** 0.616*** 0.547*** 0.225* 0.644*** 0.734*** 0.548*** 0.244 

 s.e. 0.105 0.111 0.112 0.126 0.119 0.144 0.113 0.163 

 β𝑤 0.090 0.133 0.201 0.364*** 0.106 0.140 0.194 0.522*** 

 s.e. 0.122 0.126 0.135 0.137 0.135 0.149 0.148 0.185 

 β𝑚 0.046 0.013 -0.007 0.014 0.031 -0.005 -0.001 -0.013 

 s.e. 0.109 0.106 0.109 0.101 0.119 0.115 0.115 0.121 

 β𝑗 -0.145 -0.001 0.292 1.230*** 0.444 0.306 0.476** 0.564*** 

 s.e. 0.810 0.770 0.400 0.243 0.369 0.231 0.215 0.123 

 β𝑣 0.001 0.001 0.001 0.002* 0.001 0.000 0.001 0.002 

 s.e. 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

          

 �̅�2 0.527 0.530 0.480 0.510 0.525 0.537 0.478 0.489 

          

MAE ratio 0.999 0.997 0.990 1.019 0.974 0.974 1.014 0.995 

MAE ratio (Stocks)        

AAPL  0.969 0.992 0.957 0.957 0.942 0.958 0.958 0.947 

PFE  1.046 1.041 1.038 1.017 1.027 1.019 1.030 1.014 

JNJ  1.026 1.029 1.012 0.992 0.988 1.071 0.957 0.938 

MSFT  0.975 0.986 1.012 1.001 0.965 0.965 0.993 0.970 

Note. This table reports the estimated coefficients and adjusted R-squared for the HAR-J, HAR-TJ, HAR-J-Vol 

and HAR-TJ-Vol models. Bold numbers indicate the adjusted R-squared values that are higher for models that 

include the lag of trading volume in the regression compared to the equivalent models without the lag of trading 

volume. The MAE ratio panel reports the ratio of the losses from the HAR-J-Vol, HAR-TJ-Vol versus the HAR-

J and HAR-TJ models respectively. Ratios smaller than 1 indicate that the HAR-J-Vol and HAR-TJ-Vol models 

outperform the models without trading volume lag. *, ** and *** highlight the models with trading volume whose 

losses are significantly lower than the equivalent original model based on the Diebold and Mariano test at the 

10%, 5% and 1% levels, respectively. 
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Table 2.18: Estimation and out-of-sample forecast losses (mean absolute errors) for 

the post-crisis period (forecast horizon h=1) 

   HAR-J    HAR-TJ   

  30 60 150 300 30 60 150 300 

 β0 0.132*** 0.115*** 0.111*** 0.143*** 0.134*** 0.126*** 0.100*** 0.137*** 

 s.e. 0.030 0.027 0.027 0.033 0.031 0.026 0.027 0.032 

 βd 0.451*** 0.509*** 0.506*** 0.396*** 0.457*** 0.646*** 0.654*** 0.754*** 

 s.e. 0.027 0.027 0.027 0.028 0.028 0.036 0.044 0.046 

 β𝑤 0.099** 0.084** 0.095** 0.120** 0.079* 0.037 0.097 -0.032 

 s.e. 0.046 0.043 0.043 0.047 0.047 0.051 0.059 0.063 

 β𝑚 0.277*** 0.245*** 0.237*** 0.261*** 0.301*** 0.221*** 0.190*** 0.177*** 

 s.e. 0.050 0.046 0.047 0.055 0.055 0.050 0.056 0.062 

 β𝑗 -0.120 -0.144 -0.064 -0.084 0.514** 0.153*** 0.266*** 0.028 

 s.e. 0.431 0.395 0.294 0.408 0.201 0.059 0.049 0.042 

          

 �̅�2 0.360 0.416 0.408 0.289 0.357 0.432 0.422 0.339 

   

HAR-J-

Vol    HAR-TJ-Vol  

SPY β0 -0.264*** -0.233*** -0.250*** -0.345*** -0.291*** -0.177*** -0.212*** -0.198*** 

 s.e. 0.050 0.047 0.047 0.056 0.050 0.048 0.048 0.058 

 βd 0.300*** 0.359*** 0.350*** 0.248*** 0.306*** 0.479*** 0.454*** 0.561*** 

 s.e. 0.031 0.031 0.031 0.030 0.031 0.042 0.050 0.053 

 β𝑤 0.028 0.030 0.043 0.034 0.010 0.017 0.078 -0.045 

 s.e. 0.045 0.043 0.043 0.046 0.046 0.050 0.058 0.063 

 β𝑚 0.167*** 0.160*** 0.139*** 0.111*** 0.207*** 0.148*** 0.107*** 0.088 

 s.e. 0.050 0.046 0.047 0.055 0.054 0.050 0.056 0.063 

 β𝑗 -0.925** -0.643* -0.358 -0.539 -0.553** 0.104* 0.207*** 0.008 

 s.e. 0.426 0.390 0.289 0.397 0.219 0.058 0.049 0.042 

 β𝑣 0.005*** 0.004*** 0.004*** 0.006*** 0.005*** 0.004*** 0.004*** 0.004*** 

 s.e. 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.001 

          

 �̅�2 0.395 0.442 0.437 0.333 0.398 0.451 0.442 0.357 

          

MAE ratio 0.897 0.928 0.950 1.015 0.791** 0.793 0.850 0.845 

MAE ratio (Stocks)        

AAPL  0.511*** 0.530*** 0.695*** 0.773*** 0.576*** 0.599*** 0.658*** 0.734*** 

PFE  0.838** 0.919* 0.929** 0.895*** 0.950*** 0.920*** 0.919*** 0.927*** 

JNJ  0.666** 0.678** 0.650** 0.643** 0.900* 0.909*** 0.923*** 0.856*** 

MSFT  0.984** 0.932*** 0.962** 0.944** 0.948*** 0.944*** 0.961*** 0.977*** 

Note. This table reports the estimated coefficients and adjusted R-squared for the HAR-J, HAR-TJ, HAR-J-Vol and HAR-

TJ-Vol models. Bold numbers indicate the adjusted R-squared values that are higher for models that include the lag of 

trading volume in the regression compared to the equivalent models without the lag of trading volume. The MAE ratio 

panel reports the ratio of the losses from the HAR-J-Vol, HAR-TJ-Vol versus the HAR-J and HAR-TJ models respectively. 

Ratios smaller than 1 indicate that the HAR-J-Vol and HAR-TJ-Vol models outperform the models without trading volume 

lag. *, ** and *** highlight the models with trading volume whose losses are significantly lower than the equivalent 

original model based on the Diebold and Mariano test at the 10%, 5% and 1% levels, respectively. 
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Chapter 3 – The impact of intraday 

periodicity on stock volatility components 

and forecasting using different sampling 

schemes 

 

3.1 Introduction 

The importance of intraday periodicity in estimating and forecasting volatility is widely 

recognised. Andersen and Bollerslev (1998) and Andersen et al. (2003, 2007a) find that the 

announcement of news has a significant impact on financial market prices, while Bollerslev 

et al. (2008) suggest that the peak of realised variation is caused by scheduled 

announcements of news. In addition, intraday periodicity has an impact on detecting jumps 

and co-jumps (Boudt et al., 2011b; Aït-Sahalia & Xiu, 2016). Boudt et al. (2011b) find that 

detecting jump components without considering intraday periodicity is likely to produce 

biased results, and Aït-Sahalia and Xiu (2016) suggest that jumps and co-jumps have 

intraday patterns and that a large proportion of jumps can be predicted. In this chapter, we 

examine the impact of intraday periodicity on the frequency of intraday jumps, the 

proportion of volatility components and on volatility forecasting. We do this by studying 

the effects of intraday periodicity on the volatility of stocks and the SPY index in different 

financial regimes (the pre-crisis, crisis and post-crisis periods) and using different sampling 

schemes (calendar-time and business-time sampling schemes). 
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Non-parametric volatility measures, which are generated from high-frequency data, are 

able to separate the continuous and jump components of volatility. Filtering by intraday 

periodicity within these measures makes it possible to examine the volatility components 

in the absence or presence of intraday periodicity. The non-parametric volatility measures 

realised volatility (RV), realised bi-power variation (BV), threshold bi-power variation 

(TBV) and corrected threshold bi-power variation (CTBV) are constructed from the 

intraday returns of four stocks and the SPY index, which are sampled at 30, 60, 150 and 

300 seconds based on calendar-time sampling schemes. The 300-second data are compared 

with equivalent data using business-time sampling, which has yet to be studied in previous 

literature. Non-parametric volatility measures play an important role in HAR class 

volatility forecasting models, thus allowing us to consider the impact of intraday periodicity 

on volatility forecasting.  

This chapter contains six further sections. The data are described in Section 3.2 and the 

methodology is explained Section 3.3. The empirical results are discussed in Sections 3.4 

to 3.6, beginning with the impact of intraday periodicity on the stylised facts of returns and 

volatility measures. Sections 3.5 and 3.6 present the effect of intraday periodicity on jump 

frequency, the proportion of volatility components and volatility forecasting in different 

regimes based on data from calendar-time and business-time sampling schemes 

respectively. Section 3.7 provides a conclusion and suggestions for future research.  
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3.2 Data 

The empirical analysis in this research is carried out using high frequency stocks. We 

consider two active stocks from the highly volatile IT sector, MSFT and AAPL, as stocks 

in this sector have grown dramatically in recent years due to the rise of cloud computing, 

big data and mobile computing. We also include two stocks from a less active sector, 

namely healthcare (JNJ and PFE), because companies from this sector have a stable 

demand and are less sensitive to economic cycles. The SPY index is also considered in our 

analysis as it reflects the general trends of the stock market. The sampling period ranges 

from 2000 to 2016, which can be separated into three different regimes: the period before 

the 2008 financial crisis (01/01/2000 to 30/12/2007), the period during the crisis 

(01/01/2008 to 30/06/2009) and the period after the crisis (01/07/2009 to 30/12/2016). The 

trading day is 9:30am-4:00pm. We sample prices at tick level down to 30, 60, 150 and 300 

seconds. 

 

3.3 Methodology 

High-frequency data are usually described using the Brownian Semi-Martingale with Finite 

Activity Jumps (BSMFAJ) model (Lee & Mykland, 2008; Boudt et al, 2011a; Erdemlioglu 

et al., 2015). In the BSMFAJ model, the logarithmic price process p(t) in continuous time 

is governed by a semi-martingale with jumps. This can be defined as 

𝑑𝑝(𝑠) = 𝑢(𝑠)𝑑𝑠 + 𝜎(𝑠)𝑑𝑤(𝑠) + 𝜅(𝑠)𝑑𝑞(𝑠)⁡                                  (3.1) 
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where the u(s)ds and σ(s)ds are the mean and standard deviation of a conditional random 

normal process and w(t) is a standard Brownian motion. The finite activity counting process 

dq(s) is used for capturing jumps occurrence, while κ(s) represents the size of the jumps. 

According to Boudt et al. (2011b), the discrete model followed by BSMFAJ for 

representing data can be defined as: 

𝑟𝑖 = 𝑓𝑖𝑠𝑖𝑢𝑖 + 𝑎𝑖                                                  (3.2) 

where the return 𝑟𝑖 is a normal random variable with mean 𝑢𝑖 and standard deviation 𝜎𝑖. 

The occurrence of jumps is governed by 𝑎𝑖. The standard deviation 𝜎𝑖=𝑓𝑖𝑠𝑖, where 𝑠𝑖 is an 

average local factor and 𝑓𝑖 is a deterministic component. The mean of the average local 

volatility, which is the squared periodicity factor, is constant over a local window. The 

robust estimate of the average volatility of the rjs are in the same local window as ri, which 

can be defined based on realised bi-power variation as: 

�̂�𝑖=√
𝜋

2

1

[
𝜆

∆
]
∑ 𝖨𝑟𝑙𝖨𝖨𝑟𝑙−1𝖨
𝑗+[

𝜆

∆
]

𝑙=𝑗+2
                                          (3.3) 

where 𝑟𝑗+1, … , 𝑟
𝑗+[

𝜆

∆
]
 are [ 

𝜆

∆
]⁡returns, which are in the same local window as 𝑟𝑖, and λ is the 

length of the local window. 

 

3.3.1 Intraday periodicity estimation 

The SD non-parametric intraday periodicity estimator was first introduced by Taylor and 

Xu (1997). It can be defined as  
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𝑓𝑖
𝑆�̂� =

𝑆𝐷𝑖

√
1

[
𝜆
∆
]
∑ 𝑆𝐷𝑗

2
𝑗∊𝑁𝑖

                                                     (3.4) 

 with 𝑆𝐷𝑖 = √
1

𝑛𝑖
∑ �̅�𝑗,𝑖

2𝑛𝑖
𝑗=1  .  �̅�𝑖,1, �̅�𝑖,2, … , �̅�𝑖,𝑗⁡  are standardised returns that have the same 

periodicity factor as �̅�𝑖. However, the SD intraday periodicity estimator produces biased 

results when jumps are present, and so the Shortest Half estimator was proposed by 

Rousseeuw and Leroy (1988). The Shortest Half estimator is based on the length of all 

‘halves’ of the order statistics, which can be defined as: 

𝑆ℎ𝑜𝑟𝑡𝐻𝑖 = 0.741 ∙ min⁡{�̅�(𝑛𝑖),1 − �̅�(1),𝑖, … , �̅�(𝑛𝑖),1 − �̅�(𝑛𝑖−ℎ𝑖+1),1}               (3.5) 

The ‘halves’ consist of ℎ𝑖 = [
𝑛𝑖

2
] + 1 and the order statistics satisfy the condition that �̅�(1),𝑖 ≤

�̅�(2),𝑖 ≤ �̅�(𝑛𝑖),𝑖.  

The Shortest Half estimator can be defined as  

𝑓𝑖
𝑆ℎ𝑜𝑟𝑡𝐻 =

𝑆ℎ𝑜𝑟𝑡𝐻𝑖

√
1

[
𝜆
∆
]
∑ 𝑆ℎ𝑜𝑟𝑡𝐻𝑗

2
𝑗∊𝑁𝑖

                                              (3.6) 

However, Rousseeuw and Leroy (1988) find that the efficiency of the Shortest Half 

estimator is lacking. A more efficient estimator, which also robust to jumps, is obtained 

using weighted standard deviation (WSD). This estimator can be defined as  

         𝑓𝑖
𝑊𝑆�̂� =

𝑊𝑆𝐷𝑖

√
1

[
𝜆
∆
]
∑ 𝑊𝑆𝐷𝑗

2
𝑗∊𝑁𝑖

                                            (3.7) 

and                                                     𝑊𝑆𝐷𝑖=√1.08 ∙
∑ 𝑤𝑙,𝑗�̅�𝑙,𝑗

2𝑛𝑖
𝑖=1

∑ 𝑤𝑙,𝑗

𝑛𝑗
𝑙=1
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The 𝑤𝑙,𝑗  is the weight of the standardised return �̅�𝑙,𝑗 and can be given by 𝑤𝑙,𝑗 =

𝑤(�̅�𝑙,𝑗/𝑓𝑗
𝑆ℎ𝑜𝑟𝑡𝐻). Ni denotes the number of observations per trading day. 

 

3.3.2 Volatility estimation 

There are three different methods of evaluating the continuous components of the quadratic 

variation process. The first method is attributed to Barndorff-Nielsen and Shephard (2004, 

2006) which provides an estimate of a realised metric known as bi-power variation. Corsi 

et al. (2010) argue that bi-power variation (BV) is biased and tends to over-estimate the 

continuous component, and so they propose threshold bi-power variation (TBV). Aït-

Sahalia and Jacod (2012) present an alternative apparatus to measure the presence of the 

relative components of the quadratic variation process. Below we outline this method and 

provide some illustrative examples to highlight their differences.  

An early way of detecting jumps in the high frequency series was introduced by Barndorff-

Nielsen and Shephard (2004, 2006). Their basic methodology consists of constructing a 

measure of variance that is robust to jumps; the difference between this measure and 

realised variance can be used to detect the present of jumps. Realised variance is the sum 

of the squared intraday high frequency returns, which can be defined as  

 𝑅𝑉𝑡 = ∑ 𝑟𝑡,𝑗
2𝑁

𝑗=1 → ∫ 𝜎𝜇
2𝑑𝜇

𝑡

0
+ ∑ 𝐽𝑗

2𝑁𝑖
𝑗=1 , 𝑗 = 1,… ,𝑁                         (3.8) 

Where N shows the equally spaced time points while 𝑟𝑡,𝑗=𝑝𝑡,𝑗 − 𝑝𝑡,𝑗−1, 𝑡 = 1,… , 𝑇 is the jth 

intraday return. Barndorff-Nielsen and Shephard (2006) also propose realised bi-power 

variation, which is defined as 
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                         𝐵𝑉𝑡 =
𝜋

2
∑ |𝑟𝑡,𝑗−1||𝑟𝑡,𝑗| ⁡→ ∫ 𝜎𝜇

2𝑑𝜇
𝑡

0
𝑁
𝑗=2 , 𝑗 = 1,… , 𝑁                            (3.9) 

RV and BV converge to the quadratic variation and integrated variation respectively at a 

rate of √𝑁 as N→ ∞ when they are under weak regularity conditions. Since BV constitutes 

the continuous part of the quadratic variation, and RV constitutes both the continuous and 

discontinuous parts, differentiating between BV and RV can separate the quadratic 

variation into continuous and jump components and thus the impact of jumps can be 

measured.  

Corsi et al. (2010) suggest that estimation bias is caused by the presence of jumps when 

volatility measures are used in forecasting. The authors argue that jumps are underestimated 

in previous studies since bi-power variation is biased, particularly when continuous jumps 

are present in multi-power variation. If |𝑟𝑡,𝑖| contains a jump and 𝛿 is finite, |𝑟𝑡,𝑗−1| and 

|𝑟𝑡,𝑗+1|, which are multiplied in bi-power variation, do not disappear. Therefore, bi-power 

variation produces positive bias, which increases as |𝑟𝑡,𝑗| increases.  

Threshold realised variance (Mancini 2009) is defined as:  

 ⁡𝑇𝑅𝑉𝑡 = ∑ |𝑟𝑡,𝑗|
2
𝐼
{|𝑟𝑡,𝑗|

2
≤Ѳ(𝛿)}

𝑁
𝑗=1                                    (3.10) 

Where the Ѳ(𝛿)⁡and 𝐼{∙}  are the threshold and indicator functions respectively, and the 

threshold function has to satisfy  

lim
𝛿→0

Ѳ(𝛿) = 0 

lim
𝛿→0

𝛿 log
1

𝛿

Ѳ(𝛿)
 = 0 
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Let⁡𝛾1, … , 𝛾𝑀 > 0. Realised threshold multi-power variation (TMPV) can be defined as  

 𝑇𝑀𝑃𝑉[𝛾1,…,𝛾𝑀] = 𝛿1−
1
2
(𝛾1+⋯+𝛾𝑀) ∑п𝑘=1

𝑀 |𝑟𝑡,𝑗−𝑘+1|
𝛾𝑘𝐼{|𝑟𝑡,𝑗−𝑘+1|2≤𝜈𝑗−𝑘+1}

𝑁

𝑗=𝑀

 (3.11) 

where 𝜈𝑗−𝑘+1 is a strictly positive random threshold function. M is the number of absolute 

returns raised to a non-negative power. N denotes equally spaced time points within a day. 

A special simple case of TMPV is threshold bi-power variation (TBV) with 𝛾1 = 𝛾2=1, 

given by 

 𝑇𝐵𝑉 =
𝜋

2
𝑇𝑀𝑃𝑉[1,1] =⁡

𝜋

2
∑ |𝑟𝑡,𝑗−1||𝑟𝑡,𝑗|𝐼{|𝑟𝑡,𝑗−1|2≤𝜈𝑗−1}𝐼{|𝑟𝑡,𝑗|2≤𝜈𝑗}
𝑁
𝑗=2            (3.12)   

TBV will correct the bias in bi-power variation since the indicator function vanishes when 

jumps are present (Corsi et al., 2010). The jump test used in Corsi et al.’s study is defined 

as z=𝛿−
1

2
(𝑅𝑉𝑡−𝐵𝑃𝑉𝑡)∙𝑅𝑉𝑡

−1

√�̅�max⁡{1,
𝑇𝑟𝑖𝑃𝑉𝑡
(𝐵𝑃𝑉𝑡)

2}
 with �̅� =

𝜋2

4
+ 𝜋 − 5 , where TriPV is one of the fourth-power 

counterparts of the estimates of BV. Corrected threshold bi-power variation (CTBV) 

corrects the problem caused by TBV when 𝛿 is finite.  

 

3.3.3 HAR-class models 

Andersen et al. (2007a) find that realised volatility is strongly temporally dependent, and 

so they introduce the ABD model to describe RV’s slow-decaying autocorrelations. 

However, the ABD model does not the separate the jump components and continuous 

components of quadratic variation. Corsi et al. (2008, 2010) and Corsi (2009) extend the 
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ABD model to the HAR-J, HAR-TJ, HAR-CJ and HAR-TCJ models, which can separate 

the jump parts and the continuous parts when forecasting realised volatility. The basic HAR 

model introduced by Corsi (2009) is defined as:   

RVt:t+h−1=β0 + βdRVt−1 + βwRVt−5:t−1 + βmRVt−22:t−1 + εt 

RV𝑡1:𝑡2 =
1

𝑡2−𝑡1+1
∑ 𝑅𝑉𝑡
𝑡2
𝑡=𝑡1

,with 𝑡1≤𝑡2                                             (3.13) 

RVt−1, RVt−5:t−1  and RVt−22:t−1  are the daily, weekly and monthly lags of realised 

volatility, which are used for capturing the long-memory dynamic dependence of RV. The 

error term is an independent and identically distributed (i.i.d.) random variable with mean 

0 and variance 𝜎2 . Based on the basic HAR model, the HAR-J and HAR-CJ models 

introduce a way to separate the continuous and jump parts in volatility forecasting by using 

threshold bi-power variation. The HAR-J model can be presented as  

RVt:t+h−1=β0 + βdRVt−1 + βwRVt−5:t−1 + βmRVt−22:t−1 + 𝛽𝑗𝐽𝑡−1 + εt              (3.14) 

and the HAR-CJ model is defined as 

RVt:t+h−1=β0 + βd�̂�t−1 + βw�̂�t−5:t−1 + βm�̂�t−22:t−1 + 𝛽𝑗𝐽𝑡−1 + εt              (3.15) 

The jump parts in (3.14) and (3.15) can be expressed as  𝐽𝑡 = I{zt>ϕα} ∙ ⁡max⁡[(RVt −

BVt), 0] and the continuous parts as �̂�𝑡=𝑅𝑉𝑡 − 𝐽𝑡.  𝛽𝑑, 𝛽𝑤, 𝑎𝑛𝑑⁡𝛽𝑚 are the parameters for 

the daily, weekly and monthly lags of the continuous components of quadratic variation, 

while 𝛽𝑗 is the parameter for the daily lag of the jump components. However, Corsi et al. 

(2010) show that bi-power variation underestimates the jump components, which leads to 

biased forecasting results using HAR-CJ. Therefore, they introduce the HAR-TJ and HAR-
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TCJ models, which use threshold bi-power variation to separate the jump components from 

the quadratic variation. The HAR-TJ and HAR-TCJ models can be read as 

RVt:t+h−1=β0 + βdRVt−1 + βwRVt−5:t−1 + βmRVt−22:t−1 + 𝛽𝑗TĴ𝑡−1 + εt            (3.16) 

RVt:t+h−1=β0 + βd𝑇�̂�t−1 + βw𝑇�̂�t−5:t−1 + βm𝑇�̂�t−22:t−1 + 𝛽𝑗𝑇�̂�𝑡−1 + εt           (3.17) 

The jump part 𝑇�̂�t and continuous part 𝑇�̂�t can be expressed as 𝑇�̂�𝑡 = I{zt>ϕα} ∙ max⁡[(RVt −

TBVt), 0]⁡𝑎𝑛𝑑⁡⁡𝑇�̂�𝑡=𝑅𝑉𝑡 − 𝑇�̂�𝑡 respectively, where Φα is the cumulative distribution function 

of the normal distribution at confidence level α and x+ = max(x, 0). In addition, ⁡𝑇�̂�t−1, 

𝑇�̂�t−5:t−1  and  𝑇�̂�t−22:t−1  are the daily, weekly and monthly lags of the continuous 

components. The error terms in these HAR-family models are i.i.d. random variables with 

mean 0 and variance 𝜎2. 

 

3.3.4 Volatility estimation models with leverage effects 

We use the Glosten-Jagannathan-Runkle GARCH model (GJR) model to estimate the 

conditional variance of intraday returns. This is because we find leverage effects in intraday 

returns, which can be captured in the GJR model. The GJR (1,1) with a Gaussian error term 

distribution can be written as: 

rt,n=μ+εt,n where εt = σtzt                                          (3.18) 

σt,n
2 = γ1σt,n−1

2 + α1εt,n−1
2 + ξ1I[εt,n−1 < 0]εt,n−1

2 , where n=1,…,M, t=1,…,T          (3.19) 

The intraday returns rt,n that we use here refer to the nth return in day t. In our analysis, we 

use the intraday periodicity-filtered and unfiltered returns, with the SD, WSD and Short-H 
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estimators as intraday periodicity filters, in order to compare how different filters can affect 

estimation in GJR models.  

 

3.4 Impact of intraday periodicity on stylised facts 

of returns and volatility measures 

This section first examines the impact of intraday periodicity on the autocorrelations for 

SPY returns and its realised measures, together with its unconditional and conditional tail 

properties and leverage effects for returns. The returns and volatility generated from 

business-time and calendar-time sampling schemes for the SPY index are used in this 

section, as this index can reflect the average movements of the stocks in the market.  

 

3.4.1 Autocorrelations 

[Insert Figures 3.1 to 3.3 here] 

Figures 3.1 and 3.2 show that filtering by intraday periodicity does not have a significant 

impact on the autocorrelations for SPY returns. Comparing Figures 3.1 and 3.3, we can 

also see that the autocorrelations are absent for both calendar-time sampling and business-

time sampling returns.  

 [Insert Figures 3.4 to 3.6 here] 

Figures 3.4 and 3.5 show that both the intraday periodicity-filtered and unfiltered absolute 

returns have a slow decay in autocorrelations, and that the partial autocorrelation values are 
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not notably different between the two types of returns. In addition, the partial 

autocorrelation values for lags 15 to 20 for 300-second business-time absolute intraday 

returns are greater than zero, while the equivalent values for the calendar-time absolute 

intraday returns in Figure 3.6 are comparatively much closer to zero. This indicates that the 

autocorrelations for business-time sampling intraday returns decay more slowly than those 

for calendar-time sampling intraday returns.  

[Insert Figures 3.7 to 3.8 here] 

The partial autocorrelation results in Figures 3.7 and 3.8 show that the RV and BV realised 

measures are AR (9) processes, because the partial autocorrelations cut off after the ninth 

lag. This shows that a given day’s volatility can have a significant impact on its volatility 

up to nine days later, implying that past stock volatility can be useful in forecasting future 

volatility. However, the intraday periodicity-filtered and business-time RV and BV show 

larger correlations at lags 15 and 20. This indicates that the realised measures have different 

long-range dependencies when using different sampling schemes or when filtering by 

intraday periodicity.  

 

3.4.2 Conditional and unconditional heavy tails 

Figures 3.9 to 3.10 show quantile-quantile (Q-Q) plots for intraday periodicity-filtered and 

unfiltered returns. 

[Insert Figures 3.9 to 3.10 here] 
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It is evident that the returns have a heavy tail, whether filtering by intraday periodicity or 

not. Filtering by intraday periodicity does not have a significant impact on the heavy tails 

for SPY’s daily returns. 

[Insert Figures 3.11 to 3.12 here] 

 

The Q-Q plot for the residuals of the GARCH (1,1) model in Figures 3.11 to 3.12 shows 

that intraday periodicity does not have a significant impact on SPY’s conditional heavy 

tails either.  

 

3.4.3 Leverage effects 

Table 3.1 shows the leverage effects estimated from the GJR (1,1) model for intraday 

periodicity-filtered and unfiltered returns for the AAPL, MSFT, JNJ and PFE stocks and 

SPY. 

[Insert Table 3.1 here] 

From the GRJ (1,1) estimation results shown in Table 3.1, we can see that the leverage 

effects for intraday returns are higher for lower-frequency data (with one exception, 

discussed below). For example, the leverage effect parameters in the GJR (1,1) models are 

the highest for 300-second intraday returns for both MSFT (0.01591) and SPY (0.03573). 

The only exception is that the leverage effects for 150-second PFE is 0.01535, which is 

larger than the equivalent 300-second data (0.01517). However, the difference between the 

estimated coefficients using these two sampling frequencies is very small at 0.00018.  
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It is clear that the leverage effects fall after adjusting for intraday periodicity for most 

frequencies. For example, the leverage effect coefficients for 300-second intraday returns 

for MSFT and SPY fall from 0.01591 and 0.03573 to 0.00978 and 0.02725 respectively.  

Table 3.1 also shows that adjusting for intraday periodicity does not have a significant 

impact on the volatility persistence of the intraday returns. However, the impact on a given 

day’s volatility of past volatility (γ1) and past innovations (α1) are stronger and weaker 

respectively after adjusting for intraday periodicity.         

 

3.5 Impact of intraday periodicity on volatility 

from calendar-time sampling data 

In this section, we test the impact of intraday periodicity on the number of intraday jumps 

(based on the LM jump test) and the volatility components (the jump and continuous 

components) estimated via BV, TBV and CTBV. Threshold bi-power variation (TBV) is 

used in our analysis as Corsi et al. (2010) suggests that it performs better than bi-power 

variation (BV) at separating the jump components from the quadratic variation. Here, the 

threshold⁡𝑣𝑡 in equation (5.13) is defined as  𝑣𝑡 = 𝑐𝑣
2�̂�𝑡, where  𝑐𝑣 = 3 and the �̂�𝑡 is local 

spot variance, which is generated from return data.  
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3.5.1 Jumps and jump components 

We first examine the impact of intraday periodicity on stock volatility, followed by the 

jump components estimated using different volatility measures (BV and TBV) from 

financial assets. Table 3.2 shows the realised volatility and conditional variance of stocks 

and SPY from 2000 to 2016, with and without filtering for intraday periodicity. 

[Insert Table 3.2 here] 

On average, the volatility of the two stocks from the IT sector is higher than that of the 

stocks from the healthcare sector and the SPY index. One of the main reasons for this result 

is that the burst of the tech bubble in 2000 had a bigger effect on the IT sector compared to 

other sectors. Andersen et al. (2010) report that the price of the index for the IT sector in 

the S&P 500 decreased by 50% in 2000, and by August 2002 had fallen by 80% from its 

highest point. In addition, the lower unconditional and conditional volatility for SPY shows 

that this index is less sensitive to market shocks than individual stocks.  

It is also apparent from Table 3.2 that regardless of the estimation method used for intraday 

periodicity filtering, the changes in both RV and conditional volatility are all under 15%. 

Filtering by intraday periodicity results in a rise in RV for all stocks across different 

frequencies, but for conditional variance, intraday periodicity filtering has mixed effects. 

In addition, the impact of the WSD estimator on RV and conditional variance is closer to 

that of the SD estimator across different frequencies than the Shortest Half estimator. This 

is because the Shortest Half estimator is estimated using order statistics, which are not used 

in the SD and WSD estimators.  

[Insert Figure 3.13 here] 
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The different patterns of intraday periodicity estimated using different methods are very 

clear in Figure 3.13. The graph shows that the Shortest Half estimator is slightly higher 

than the SD and WSD estimators at the beginning of day, but it falls below them in the 

middle of the day. These differences produce the differing effects of filtering on RV and 

conditional variance as seen in Table 3.1. In addition, we can also see that all three 

estimators are less smooth when they are estimated from higher frequency data, showing 

that they are more likely to be affected by jumps using higher frequency estimation. Also, 

the SD estimator tends to have larger spikes than WSD and Shortest Half, which suggests 

that SD is most dramatically affected by the presence of jumps.  

Table 3.3 reports the number of intraday jumps estimated from the Lee and Mykland (2007) 

jump test for intraday periodicity-filtered and unfiltered returns. The LM test statistic is 

defined as:  

𝑇𝐿𝑀,𝑡 = 
(max⁡(�̃�𝐿𝑀,𝑡𝑖

)−𝐶𝑀

𝑆𝑀
  where �̃�𝐿𝑀,𝑡𝑖

 = 
|𝑟𝑡𝑖|

√𝑉𝑡𝑖

                          (3.20) 

Where 𝐶𝑀 = 
(2𝑙𝑜𝑔𝑀)1/2

0.8
 -  

𝑙𝑜𝑔𝜋+log⁡(𝑙𝑜𝑔𝑀)

1.6(2𝑙𝑜𝑔𝜋)1/2
  and 𝑆𝑀 = 

1

0.6(2𝑙𝑜𝑔𝜋)1/2
 . 𝑟𝑡𝑖 is the ith return at day t 

and where M is the number of sampled observations per trading day. �̂�𝑡𝑖 denotes the local 

variance estimate. The null hypothesis for the test is that no jumps are present in the price 

series.  

[Insert Table 3.3 here] 
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Table 3.3 shows that the number of estimated intraday jumps is higher when using higher 

frequency sampling data. However, we can also see from the table that although the 

intraday periodicity patterns are different, the number of intraday jumps for each stock and 

for SPY are all lower after filtering for intraday periodicity. In addition, large shocks have 

a smaller impact on volatility for SPY than for individual stocks (i.e. it has low volatility, 

as shown in Table 3.1), therefore the number of intraday jumps is lower for SPY than for 

stocks. We also find that intraday periodicity has less of an impact on reducing jump 

frequency for SPY than for stocks.  

[Insert Table 3.4 here] 

Intraday periodicity has a similar impact on daily jump components, as shown in Table 3.4. 

The continuous components estimated using BV, TBV and CTBV are all larger after 

filtering for intraday periodicity for 150-second and 300-second realised measures, which 

means that the jump components are smaller. However, the intraday periodicity estimators 

give mixed results for the continuous components for 30 seconds and 60 seconds. This is 

probably caused by the fact that these three estimators are more sensitive to the presence 

of jumps when using higher frequency data.  

SPY in Table 3.1 has a lower RV and daily conditional variance compared to the individual 

stocks, both before and after filtering for intraday periodicity. It also has a higher proportion 

of continuous components than for each individual stock before filtering in Table 3.4. This 

is because the volatility of SPY is affected by the collective performance of many 

companies, rather than just one, and hence reflects general trends in the whole financial 

market. While individual stocks may have extreme values caused by major events related 
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to specific companies, SPY has less extreme fluctuations and therefore has smaller jump 

components and RV.  

[Insert Figure 3.14 here] 

Figure 3.14 shows the comparison of intraday periodicity between SPY and stocks using 

300-second sampling frequency data.  The WSD estimator is used to estimate intraday 

periodicity as Boudt et al. (2011b) show that it is more robust to the present of jumps than 

the ShortH estimator. The difference in intraday periodicity between SPY and stocks is 

clear, as the results for stocks have a strong L-shaped pattern, while the result for SPY is 

more U-shaped. In other words, the intraday periodicity for stocks all start at or close to 3 

at the beginning of the trading day, while that for SPY starts at a value close to 1.5, with 

similar end-points for both. Therefore, SPY’s intraday periodicity shows a less dramatic 

change over the course of the day, which results in a smaller impact on jumps and volatility 

compared to stocks.  

 

3.5.2 Volatility forecasting 

Table 3.5 shows the impact of intraday periodicity on volatility forecasting using HAR-

family models. 

[Insert Table 3.5 here] 

The results in Table 3.5 show that filtering by intraday periodicity improves the 

performance of HAR-family models for the JNJ, PFE, MSFT stocks and the SPY index. 

This indicates that the decrease in jump frequency caused by filtering discussed in Section 

3.5.1 produces better forecasting results. In addition, the impact of intraday periodicity on 
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SPY volatility forecasting is not as significant as that on these three stocks, as the changes 

in MSE for volatility forecasting for SPY are minor and are restricted to the SD and WSD 

estimators. This is because intraday periodicity has less of an effect on the jumps for SPY 

than for stocks, as shown in Section 3.5.1, therefore resulting in a weaker impact on 

volatility forecasting for stocks and SPY. We also find that filtering by intraday periodicity 

fails to improve forecasting results for AAPL. Because AAPL has more than double the 

RV of other stocks and SPY, as shown in the previous section, it poses difficulties for 

intraday periodicity estimators to capture the intraday periodicity patterns for this highly 

volatile stock, and therefore produces biased forecasting results.  

 

3.5.3 Volatility in different regimes 

Table 3.6 shows the number of intraday jumps for different stocks and SPY in different 

regimes.  

[Insert Table 3.6 here] 

The results show that the stocks have more jumps for higher frequency intraday returns and 

that filtering reduces the number of jumps in each regime, which is in line with the results 

for the data set as a whole, discussed in Section 3.5.1. 

[Insert Tables 3.7 to 3.9 here] 

Tables 3.7 to 3.9 show the impact of intraday periodicity on the continuous components for 

stocks and SPY in the pre-crisis, crisis and post-crisis periods respectively. The results 

show that filtering by intraday periodicity increases the continuous components for stocks 

and SPY across different frequencies in the post-crisis period when using the SD and WSD 

estimators. However, intraday periodicity filtering raises the continuous components 
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(hence producing falls in the jump components) when using low-frequency (150 and 300 

second) data and has a mixed impact on high-frequency (30 and 60 second) volatility 

components in the pre-crisis and crisis periods. This may be because the stock returns are 

highly volatile between 2000 and 2002 in the pre-crisis period, and between 2008 and mid-

2009 in the crisis period, caused by the burst of the tech bubble and the financial crisis 

respectively. These volatile periods cause difficulties for intraday periodicity estimators 

when capturing high frequency (30 second and 60 second) return patterns with higher 

volatility and many intraday jumps (as discussed in Section 3.5.1). This has an effect on 

the performance of intraday periodicity-filtered volatility measures, and therefore affects 

the estimation of the volatility components.  

[Insert Tables 3.10 to 3.12 here] 

Tables 3.10 to 3.12 show the impact of intraday periodicity on volatility forecasting across 

different regimes. The MSE results show that the performance of HAR-class models at 

volatility forecasting is worse during the crisis than in the pre-crisis and post-crisis periods. 

Periods of high volatility produce difficulties in volatility forecasting. In addition, the MSE 

results for forecasting are higher for AAPL than other stocks in both the pre-crisis and post-

crisis periods. APPL exhibits higher volatility after the burst of the tech bubble (2000-2002) 

and during the financial crisis compared to other stocks and SPY, and is thus the hardest 

stock for volatility forecasting.  

The MSEs in the forecasting results also show that filtering by intraday periodicity fails to 

improve the performance of HAR-family models for AAPL due to its high volatility, which 

is in line with the 2000-2016 results presented in Section 3.5.2. Filtering by intraday 
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periodicity has a positive impact on volatility forecasting across different frequencies for 

the less volatile stocks JNJ and PFE in the crisis and post-crisis periods. For the volatile 

stocks MSFT and SPY, however, the improvements are present overall yet are not 

consistent across different frequencies. On the other hand, filtering by intraday periodicity 

has a negative impact on volatility forecasting for SPY and all stocks except PFE in the 

pre-crisis period. This is because the high volatility caused by the burst of the tech bubble 

from 2000 to 2002 may create difficulties for intraday periodicity estimators to capture the 

intraday periodicity patterns, leading to potentially biased intraday periodicity-filtered 

volatility measures in forecasting for highly volatile data. 

 

3.6 Impact of intraday periodicity on volatility 

from business-time sampling data 

3.6.1 Jumps and jump components 

This section examines the impact of intraday periodicity on assets’ jump frequencies, 

volatility components and volatility forecasting based on returns generated from business-

time sampling with 78 returns per trading day, which is equivalent to 300-second calendar-

time sampling. First, we compare the differences between stocks estimated using calendar-

time sampling (Figure 3.14) and business-time sampling (Figure 3.15), both with the WSD 

intraday periodicity estimator.  

[Insert Figure 3.15 here] 



126 

 

The intraday periodicity patterns estimated using business-time sampling have smaller 

values at both the beginning and end of the day compared to the calendar-time sampling 

returns. The values in Figure 3.15 are close to or smaller than 2.5 and 1 at the beginning 

and end of the day respectively, while the values for calendar-time sampling in Figure 3.14 

are close to 3 and 1.5 respectively. This shows that business-time sampling can better 

reduce the impact of intraday periodicity compared to calendar-time sampling. 

Table 3.13 shows the average unconditional and conditional volatility for intraday 

periodicity-filtered and unfiltered returns using intraday periodicity estimated via business-

time sampling.  

[Insert Table 3.13 here] 

Unconditional volatility and conditional volatility are highest for the two stocks from the 

IT sector (AAPL and MSFT) for business-time returns, which is in line with the results for 

calendar-time returns. In addition, filtering by intraday periodicity produces higher RV for 

stocks and SPY.  

[Insert Table 3.14 here] 

The effect of intraday periodicity on the number of intraday jumps for business-time 

sampling data is shown in Table 3.14. The results show that business-time sampling returns 

have much fewer intraday jumps than calendar-time sampling returns for each stock in 

different financial regimes (pre-crisis, crisis and post-crisis periods). The drop in the 

number of intraday jumps when using business-time data is clearest for AAPL and SPY, 

which drop from 704 and 300 with calendar-time sampling to 103 and 62 with business-
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time sampling. Filtering by intraday periodicity reduces the number of intraday jumps 

across different periods, which reflects the results from the calendar-time sampling data.  

[Insert Table 3.15 here] 

Table 3.15 shows the impact of intraday periodicity on jump components for business-time 

sampling returns. By comparing the results in Table 3.15 with those discussed in Section 

3.5.1, we can see that the continuous components estimated using business-time sampling 

are higher than those using calendar-time sampling for each stock across different financial 

conditions. This means that business-time sampling has a lower proportion of jump 

components, which gives it an advantage over calendar-time sampling. In addition, filtering 

by intraday periodicity increases stocks’ continuous components (hence reducing their 

jump components) in the pre-crisis, crisis and post-crisis periods across most frequencies 

using different intraday periodicity estimators. The intraday periodicity-filtered volatility 

measures produce very large continuous components with values all above 96%, 83% and 

88% using the BV, TBV and CTBV volatility measures respectively for all time periods. 

This suggests that filtering by intraday periodicity has a more consistent impact on 

business-time returns and is more efficient at reducing the jump components in this type of 

data compared to calendar-time data. 

 

3.6.2 Volatility forecasting 

Table 3.16 shows the impact of intraday periodicity on volatility forecasting for business-

time sampling data in different financial regimes.  

[Insert Table 3.16 here] 
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The MSE results in Table 3.16 show that the HAR-family models are better at forecasting 

RV in less volatile periods (the pre-crisis and post-crisis periods) or when using the whole 

sample from 2000-2016. The HAR-family models have difficulties in forecasting volatility 

during the financial crisis, as stocks and SPY are very volatile during this period. The HAR-

TJ model produces similar MSE results to the other models in the pre-crisis and post-crisis 

periods, but it outperforms them for the most volatile crisis period, which indicates that 

threshold bi-power variation is superior to bi-power variation for data obtained from 

business-time sampling in volatile periods. Filtering by intraday periodicity decreases the 

MSEs for the stocks from the less active healthcare sector (JNJ and PFE) in the pre-crisis 

and post-crisis periods, while it produces mixed results for the volatile IT stocks AAPL and 

MSFT. This shows that filtering by intraday periodicity can reduce the number of jumps 

and jump components (thus increasing the continuous components), but that these 

improvements in forecasting may be limited to low-volatility data. These results are in line 

with the calendar-time sampling data results in Section 3.5. 

 

3.7 Conclusion 

This chapter has analysed the impact of intraday periodicity on jumps and volatility 

forecasting in different financial regimes (before, during and after the 2008 financial crisis) 

using different sampling schemes (calendar-time sampling and business-time sampling). 

We first examined the impact of intraday periodicity on the stylised facts of the SPY index, 

including the autocorrelation of returns, absolute returns, volatility measures, and the 

unconditional and conditional tail properties and leverage effects for daily returns. Second, 

we compared the usefulness of calendar-time sampling and business-time sampling data by 
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examining the impact of filtering by intraday periodicity on data using both sampling 

schemes. We did this by studying the effect of intraday periodicity filtering on assets’ 

conditional and unconditional volatility, jump frequency, volatility components (estimated 

using BV, TBV and CTBV) and volatility forecasting using HAR-class models in different 

regimes for different sampling schemes.  

The results show that filtering by intraday periodicity lowers jump frequency and leverage 

effects of daily returns for stocks and SPY in different regimes. However, it only reduces 

the jump components and improves forecasting for less volatile data, such as low volatility 

stocks or the less volatile post-crisis period. Highly volatile data such as IT stocks and crisis 

data present difficulties for intraday periodicity estimators in capturing intraday patterns.   

The comparison of business-time sampling and calendar-time sampling data revealed that 

the absolute returns from business-time sampling have autocorrelations that decay more 

slowly and have lower volatility persistence in a GJR model than calendar-time sampling 

data. In addition, intraday periodicity patterns are weaker in business-time sampling data 

than calendar-time sampling data. Also, volatility for business-time sampling has fewer 

jumps and a smaller proportion of jumps than for calendar-time sampling data. Filtering by 

intraday periodicity consistently reduces the number of jumps for all stocks for data using 

both sampling schemes, but business-time sampling shows more consistent jump 

component reductions than calendar-time data using the SD and WSD estimators. Finally, 

filtering by intraday periodicity improves RV forecasting for less volatile business-time 

data such as healthcare stocks and data from the post-crisis period, which is in line with the 

results from the calendar-time sampling data. 
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In sum, the findings suggest that business-time sampling data may be more useful for 

volatility analysis than calendar-time data. Future work could conduct further comparisons 

of business-time and calendar-time sampling schemes by replicating the present study with 

new data. As stock markets currently undergo notable volatility as a result of the Covid-19 

pandemic, future researchers will have a new set of volatile stock market data with which 

to make useful comparisons between different sampling schemes for stock market volatility 

analysis. 
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Appendix 

Figures 

 

Figure 3.1: Partial autocorrelations for intraday returns for the SPY index, using 30-second, 60-second, 150-

second and 300-second returns. 
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Figure 3.2: Partial autocorrelations for intraday periodicity-adjusted intraday returns for the SPY index using 

the WSD intraday periodicity estimator. 30-second, 60-second, 150-second and 300-second returns are 

shown. 
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Figure 3.3: Partial autocorrelations for 300-second business-time sampling returns for the SPY index.  
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Figure 3.4: Partial autocorrelations for absolute intraday returns for the SPY index using 30-second, 60-

second, 150-second and 300-second returns. 
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Figure 3.5: Partial autocorrelations for absolute intraday periodicity-adjusted returns for the SPY index using 

30-second, 60-second, 150-second and 300-second returns. The filtered returns are estimated using the WSD 

intraday periodicity estimator. 
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Figure 3.6: Partial autocorrelations for absolute 300-second business-time sampling returns for the SPY 

index. 
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Figure 3.7: Partial autocorrelations for RV, BV, CTBV and SBV for 300-second calendar-time sampling 

returns for SPY index. 
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Figure 3.8: Partial autocorrelations for RV and BV estimated using intraday periodicity-filtered returns (top 

panels) and business-time returns (bottom panels), The filtered returns are estimated using the WSD intraday 

periodicity estimator. 
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Figure 3.9: Quantile-quantile (Q-Q) plot for high-frequency aggregated returns for the SPY index.  
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Figure 3.10: Quantile-quantile (Q-Q) plots for intraday periodicity-adjusted high-frequency aggregated 

returns for the SPY index using 30-second, 60-second, 150-second and 300-second returns, filtered using the 

WSD intraday periodicity estimator. 
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Figure 3.11: Quantile-quantile (Q-Q) plot for high-frequency aggregated returns for the SPY index after 

correcting for volatility clustering using the GARCH (1,1) model. 
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Figure 3.12: Quantile-quantile (Q-Q) plots for intraday periodicity-filtered returns for the SPY index using 

30-second, 60-second, 150-second and 300-second returns, after correcting for volatility clustering using the 

GARCH (1,1) model. The returns are filtered using the WSD intraday periodicity estimator. 
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Figure 3.13: Intraday periodicity-filtered returns for the SPY index with 30-second, 60-second, 150-second 

and 300-second returns using the SD, Shortest Half, WSD intraday periodicity estimators. 
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Figure 3.14: 300-second intraday periodicity-filtered returns for four stocks (AAPL, MSFT, JNJ and PFE) 

and the SPY index using the WSD estimator. 
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Figure 3.15: WSD Intraday periodicity estimator using 300-second business-time sampling returns for stocks. 
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Tables 

Table 3.1 GJR (1,1) model results for SPY and MSFT 

𝑟t,n=μ+εt,n where εt = σtzt 

σt,n
2 = 𝛽0 + γ1σt,n−1

2 + α1εt,n−1
2 + ξ1I[εt,n−1 < 0]εt,n−1

2  

 AAPL PFE JNJ MSFT SPY AAPL PFE JNJ MSFT SPY 

 Intraday periodicity unfiltered 

  Calendar time sampling (30 sec)   Calendar time sampling (150 sec)  

𝛽0 0.00001*** 0.00001*** 0.00001*** 0.00002*** 0.00000*** 0.00018*** 0.00021*** 0.00016*** 0.00019*** 0.00002*** 

s.e. 4.5E-09 1.8E-09 1.3E-09 2.1E-08 6.6E-09 4.9E-07 2.9E-07 2.5E-07 6.4E-07 8.3E-08 

𝛾1 0.94037*** 0.95448*** 0.93168*** 0.94231*** 0.96164*** 0.87996*** 0.87132*** 0.83917*** 0.87277*** 0.91878*** 

s.e. 5.6E-05 4.0E-06 1.4E-05 9.4E-05 3.4E-05 2.4E-04 1.2E-04 2.5E-04 3.9E-04 2.0E-04 

𝛼1 0.05482*** 0.03944*** 0.06490*** 0.05171*** 0.03368*** 0.10708*** 0.11579*** 0.14962*** 0.11536*** 0.06750*** 

s.e. 9.6E-05 4.5E-05 4.5E-05 1.2E-04 6.9E-05 4.0E-04 2.7E-04 4.8E-04 5.3E-04 2.4E-04 

𝝃1 0.00962*** 0.00714*** 0.00333*** 0.00446*** 0.00936*** 0.02592*** 0.01535*** 0.00998*** 0.01250*** 0.02744*** 

s.e. 1.2E-04 8.0E-05 7.0E-05 1.6E-04 1.2E-04 4.9E-04 4.9E-04 4.8E-04 6.7E-04 3.7E-04 

  Calendar time sampling (300 sec)   Business time sampling  

𝛽0 0.00073*** 0.00079*** 0.00055*** 0.00071*** 0.00007*** 0.00014*** 0.00035*** 0.00035*** 0.00018*** 0.00001*** 

s.e. 3.5E-06 2.3E-06 1.4E-06 4.0E-06 4.6E-07 2.1E-06 1.8E-06 1.8E-06 2.8E-06 4.2E-07 

𝛾1 0.83670*** 0.82110*** 0.77206*** 0.82154*** 0.90043*** 0.93201*** 0.91171*** 0.86424*** 0.93243*** 0.95566*** 

s.e. 5.1E-04 2.3E-04 5.7E-04 7.2E-04 2.1E-04 4.0E-04 3.1E-04 5.5E-04 5.0E-04 3.8E-04 

𝛼1 0.14391*** 0.15997*** 0.21274*** 0.16023*** 0.08102*** 0.05770*** 0.07065*** 0.11515*** 0.05745*** 0.03190*** 

s.e. 8.2E-04 5.0E-04 1.0E-03 8.5E-04 3.9E-04 5.6E-04 4.7E-04 7.3E-04 5.8E-04 4.9E-04 

𝝃1 0.03878*** 0.01517*** 0.01471*** 0.01591*** 0.03573*** 0.02043*** 0.01647*** 0.00701*** 0.00884*** 0.02444*** 

s.e. 1.0E-03 9.6E-04 1.0E-03 1.2E-03 7.4E-04 8.7E-04 5.2E-04 8.5E-04 7.7E-04 7.1E-04 

Intraday periodicity filtered 

  Calendar time sampling (30 sec)   Calendar time sampling (150 sec)  

𝛽0 0.00000*** 0.00001*** 0.00000*** 0.00001*** 0.00000*** 0.00004*** 0.00004*** 0.00002*** 0.00004*** 0.00001*** 

s.e. 1.2E-08 1.1E-09 6.0E-09 1.4E-08 9.2E-09 4.3E-07 4.4E-07 1.7E-07 4.6E-07 4.9E-08 

𝛾1 0.96039*** 0.96933*** 0.95876*** 0.96353*** 0.97074*** 0.94225*** 0.95184*** 0.94869*** 0.95577*** 0.95604*** 

s.e. 6.1E-05 8.5E-06 3.2E-05 8.0E-05 2.4E-05 1.3E-04 7.1E-05 5.0E-05 6.6E-05 1.4E-04 

𝛼1 0.03512*** 0.02613*** 0.03928*** 0.03126*** 0.02423*** 0.04895*** 0.04072*** 0.04715*** 0.03918*** 0.03270*** 

s.e. 9.5E-05 5.7E-05 7.0E-05 1.0E-04 5.9E-05 2.5E-04 2.1E-04 1.8E-04 2.6E-04 1.6E-04 

𝝃1 0.00897*** 0.00483*** 0.00148*** 0.00433*** 0.01007*** 0.01761*** 0.01064*** 0.00530*** 0.00690*** 0.02207*** 

s.e. 1.3E-04 1.0E-04 1.1E-04 1.5E-04 1.1E-04 3.6E-04 3.6E-04 2.6E-04 4.0E-04 2.6E-04 

  Calendar time sampling (300 sec)   Business time sampling  

𝛽0 0.00013*** 0.00010*** 0.00006*** 0.00010*** 0.00002*** 0.00083*** 0.00008*** 0.00005*** 0.00008*** 0.00001*** 

s.e. 2.1E-06 2.0E-06 8.7E+00 1.8E-06 2.0E-07 4.8E-05 2.2E-06 1.1E-06 2.5E-06 4.4E-07 

𝛾1 0.93282*** 0.94433*** 0.93818*** 0.94618*** 0.95253*** 0.93907*** 0.94537*** 0.93718*** 0.94751*** 0.95556*** 

s.e. 2.9E-04 2.4E-04 2.0E-04 3.0E-04 1.8E-04 1.2E-03 3.6E-04 4.4E-04 5.1E-04 4.0E-04 

𝛼1 0.05651*** 0.04621*** 0.05557*** 0.04667*** 0.03340*** 0.05328*** 0.04518*** 0.05770*** 0.04556*** 0.03196*** 

s.e. 4.0E-04 4.1E-04 4.2E-04 4.9E-04 2.1E-04 1.5E-03 5.7E-04 5.8E-04 6.0E-04 5.1E-04 

𝝃1 0.02134*** 0.01437*** 0.00864*** 0.00978*** 0.02725*** 0.00625*** 0.01527*** 0.00612*** 0.00996*** 0.02467*** 

s.e. 5.5E-04 5.2E-04 5.1E-04 6.6E-04 4.6E-04 2.0E-03 5.7E-04 7.3E-04 7.0E-04 7.1E-04 

Note: This table shows the coefficients (Estimate) and their standard errors (SE) estimated using the GJR (1,1) model for the 

SPY index and for the MSFT stock, for calendar-time and business-time sampling schemes, using 30-second, 60-second, 150-

second and 300-second returns. The calendar-time results are shown for both unfiltered data and data filtered using the WSD 

estimator. The coefficients and their standard errors (SE) for GARCH lag (γ1), ARCH lag (α1) and leverage effect (ξ1) are 

shown in the table. The bold leverage effect coefficients (ξ1) indicate that the leverage effects are highest when using business-

time data. 
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Table 3.2 Average realised variance (RV) and conditional volatility for stocks and 

SPY (2000-2016) 
Sampling  

Frequency 

(Seconds) 

r r/𝒇𝑺𝑫 r/𝒇𝑺𝒉𝒐𝒓𝒕 r/𝒇𝑾𝑺𝑫 r r/𝒇𝑺𝑫 r/𝒇𝑺𝒉𝒐𝒓𝒕 r/𝒇𝑾𝑺𝑫 

Realised Variance (RV) GARCH 

    AAPL (IT)    

30 6.823 7.352 7.365 7.795 

4.922 

4.821 4.828 5.076 

60 6.156 6.604 6.615 6.975 4.863 4.871 5.111 

150 5.579 5.912 5.922 6.256 4.878 4.885 5.135 

300 5.292 5.543 5.549 5.880 4.873 4.879 5.156 

    JNJ (HC)    

30 1.603 1.664 1.640 1.639 

1.086 

1.086 1.069 1.048 

60 1.478 1.530 1.521 1.484 1.089 1.081 1.054 

150 1.432 1.476 1.469 1.465 1.100 1.095 1.089 

300 1.385 1.418 1.415 1.427 1.102 1.099 1.107 

    PFE (HC)    

30 3.369 3.408 3.381 3.407 

1.879 

1.758 1.744 1.750 

60 2.809 2.840 2.827 2.895 1.792 1.784 1.805 

150 2.475 2.509 2.501 2.504 1.830 1.823 1.822 

300 2.332 2.361 2.357 2.389 1.854 1.850 1.873 

    MSFT (IT)    

30 3.065 3.140 3.142 3.191 

2.440 

2.291 2.292 2.315 

60 2.887 2.969 2.972 2.978 2.316 2.317 2.316 

150 2.746 2.833 2.834 2.864 2.348 2.348 2.369 

300 2.679 2.751 2.752 2.847 2.365 2.366 2.439 

    SPY    

30 1.213 1.233 1.234 1.287 

1.033 

0.991 0.992 1.023 

60 1.143 1.166 1.166 1.204 0.994 0.995 1.018 

150 1.081 1.099 1.100 1.128 0.993 0.993 1.014 

300 1.037 1.051 1.052 1.073 0.995 0.996 1.014 

Note. This table shows the realised volatility (RV) and conditional variance (GARCH(1,1)) of four stocks 

(AAPL, JNJ, PFE and MSFT) and SPY from 2000 to 2016, with and without filtering for intraday periodicity, 

using 30-second, 60-second, 150-second and 300-second returns. The columns for r, r/𝑓𝑆𝐷, r/𝑓𝑆ℎ𝑜𝑟𝑡  and 

r/𝑓𝑊𝑆𝐷 show the results for the unfiltered returns and the returns filtered using the SD, Shortest Half and 

WSD estimators respectively. The r column for GARCH only has one value per stock because the aggregated 

daily returns used for the GARCH (1,1) are same across different frequencies, which result in the same 

conditional variance.  
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Table 3.3 Number of intraday jumps estimated using the Lee-Mykland intraday 

jump test (2000-2016) 
Sampling  

Frequency 

 (Seconds) 

r r/𝒇𝑺𝑫 r/𝒇𝑺𝒉𝒐𝒓𝒕 r/𝒇𝑾𝑺𝑫 

 AAPL (IT)  

30 4692 2231 2293 2239 

60 3173 1241 1250 1240 

150 1486 475 490 476 

300 704 292 304 293 

  JNJ (HC)  

30 6134 2827 3336 2845 

60 3929 1357 1451 1354 

150 1747 411 429 411 

300 869 226 227 226 

  PFE (HC)  

30 3982 1880 2070 1897 

60 2850 1052 1124 1050 

150 1390 366 364 364 

300 709 195 203 195 

  MSFT (IT)  

30 3604 1644 1682 1640 

60 2613 949 979 952 

150 1246 315 315 314 

300 554 162 168 163 

  SPY  

30 2484 1983 2062 1987 

60 1555 1113 1194 1122 

150 641 460 497 464 

300 300 242 254 245 

Note: This table shows that the number of estimated intraday jumps using the Lee-Mykland (2008) jump test 

for four stocks (AAPL, JNJ, PFE and MSFT) and SPY before and after filtering for intraday periodicity, using 

30-second, 60-second, 150-second and 300-second returns. The columns for r, r/𝑓𝑆𝐷, r/𝑓𝑆ℎ𝑜𝑟𝑡 and r/𝑓𝑊𝑆𝐷 

show the results for the unfiltered returns and the returns filtered using the SD, Shortest Half and WSD 

estimators respectively. 
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Table 3.4 Contribution of continuous components to QV (%) for stocks and SPY (2000-2016) 

Sampling  

Frequency 

(Seconds) 

 BV   TBV   CTBV  

r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 

      AAPL (IT)      

30 91.011 87.902 87.675 87.898 75.195 73.490 72.995 73.489 79.453 76.250 75.869 76.236 

60 94.421 93.850 93.742 93.856 78.724 79.452 79.064 79.429 86.189 85.810 85.226 85.723 

150 96.787 97.629 97.536 97.628 80.200 83.847 83.370 83.799 90.681 93.381 93.081 93.345 

300 96.620 98.081 97.966 98.073 77.619 84.930 84.498 84.853 90.339 94.238 93.903 94.293 

      JNJ (HC)      

30 87.465 86.713 86.195 86.694 65.624 68.714 67.721 68.668 68.872 71.279 70.001 71.240 

60 91.296 92.899 92.672 92.878 69.824 75.675 75.192 75.554 76.795 82.452 81.924 82.361 

150 94.838 97.435 97.324 97.420 72.785 82.208 81.894 82.271 83.583 91.730 91.390 91.711 

300 95.132 98.370 98.299 98.365 72.067 84.323 83.825 84.222 84.104 94.237 94.111 94.264 

      PFE (HC)      

30 86.052 86.668 86.246 86.631 69.359 73.002 72.282 72.957 71.243 74.429 73.859 74.340 

60 89.950 91.733 91.334 91.689 72.619 77.424 77.002 77.434 79.166 83.466 82.782 83.393 

150 93.969 96.589 96.474 96.563 75.168 83.359 82.983 83.280 86.224 92.350 92.059 92.318 

300 93.951 97.583 97.511 97.581 72.974 84.263 83.912 84.223 85.647 93.072 93.266 93.066 

      MSFT (IT)      

30 91.843 91.754 91.629 91.759 77.574 79.336 78.962 79.325 81.907 83.231 82.866 83.196 

60 95.430 95.889 95.779 95.872 81.564 83.846 83.439 83.831 89.030 90.722 90.356 90.719 

150 96.725 97.997 97.972 97.989 82.626 87.622 87.578 87.666 91.884 95.510 95.359 95.493 

300 96.296 98.493 98.396 98.490 80.569 88.486 88.284 88.490 91.478 96.396 96.334 96.385 

      SPY      

30 97.193 93.328 93.124 93.325 87.215 82.567 82.157 82.506 92.740 87.838 87.426 87.834 

60 98.242 97.692 97.594 97.681 89.924 89.140 88.649 89.061 95.342 94.491 94.191 94.463 

150 98.099 98.532 98.445 98.519 87.805 88.866 88.638 88.775 94.270 94.960 94.696 94.898 

300 97.839 98.371 98.322 98.371 86.796 88.173 87.652 88.149 93.562 93.985 93.778 93.959 

Note: The table reports the estimated percentage of the contribution of the continuous components to 𝑄𝑉 before and after filtering 

for intraday periodicity using different realised measures (BV, TBV and CTBV) and sampling frequencies (30-second, 60-second, 

150-second and 300-second returns) for four stocks (AAPL, JNJ, PFE and MSFT) and SPY for the whole data set (2000-2016). 

The columns for r, r/𝑓𝑆𝐷, r/𝑓𝑆ℎ𝑜𝑟𝑡 and r/𝑓𝑊𝑆𝐷 show the results for the unfiltered returns and the returns filtered using the SD, 

Shortest Half and WSD estimators respectively. The values in bold text indicate cases where the percentage of continuous 

components is larger after filtering for intraday periodicity. 
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Table 3.5 MSE results for HAR-family models (2000-2016) (forecast horizon h=1) 

Sampling  

Frequency 

(Seconds) 

 r   r/𝒇𝑺𝑫   r/𝒇𝑺𝒉𝒐𝒓𝒕   r/𝒇𝑾𝑺𝑫  
HAR-

RV 

HAR-

Vol 

HAR-

J 

HAR-

TJ 

HAR-

RV 

HAR-

Vol 

HAR-

J 

HAR-

TJ 

HAR-

RV 

HAR-

Vol 

HAR-

J 

HAR-

TJ 

HAR-

RV 

HAR-

Vol 

HAR-

J 

HAR-

TJ 

        AAPL (IT)        

30 0.345 0.344 0.418 0.363 0.412 0.435 0.507 0.465 0.475 0.500 0.595 0.541 0.415 0.438 0.518 0.471 

60 0.401 0.377 0.391 0.443 0.481 0.476 0.515 0.547 0.548 0.532 0.587 0.637 0.486 0.477 0.520 0.554 

150 0.507 0.489 0.508 0.543 0.550 0.542 0.550 0.587 0.621 0.609 0.621 0.668 0.552 0.543 0.551 0.588 

300 0.693 0.648 0.697 0.708 0.724 0.675 0.729 0.718 0.807 0.747 0.813 0.798 0.725 0.676 0.730 0.706 

        JNJ (HC)        

30 0.594 0.582 0.616 0.580 0.199 0.196 0.206 0.218 0.178 0.175 0.185 0.192 0.194 0.191 0.200 0.211 

60 0.368 0.359 0.372 0.359 0.116 0.112 0.124 0.132 0.112 0.109 0.119 0.128 0.115 0.111 0.123 0.130 

150 0.366 0.350 0.366 0.340 0.119 0.114 0.120 0.134 0.116 0.111 0.117 0.127 0.118 0.113 0.119 0.131 

300 0.405 0.383 0.410 0.372 0.131 0.126 0.131 0.136 0.129 0.123 0.128 0.135 0.131 0.125 0.130 0.135 

        PFE (HC)        

30 0.859 0.815 0.899 0.892 0.483 0.474 0.489 0.544 0.477 0.468 0.486 0.531 0.477 0.467 0.483 0.537 

60 0.969 0.937 0.965 0.989 0.505 0.495 0.511 0.539 0.497 0.487 0.503 0.528 0.501 0.491 0.507 0.536 

150 1.461 1.422 1.464 1.375 0.646 0.632 0.653 0.730 0.638 0.625 0.646 0.689 0.642 0.629 0.649 0.717 

300 1.443 1.429 1.436 1.352 0.775 0.763 0.780 0.816 0.762 0.748 0.768 0.777 0.771 0.758 0.775 0.811 

        MSFT (IT)        

30 0.339 0.331 0.333 0.375 0.283 0.274 0.271 0.337 0.289 0.281 0.279 0.347 0.283 0.275 0.272 0.338 

60 0.390 0.378 0.394 0.414 0.337 0.325 0.349 0.378 0.338 0.325 0.351 0.383 0.339 0.326 0.351 0.379 

150 0.431 0.422 0.435 0.488 0.413 0.402 0.418 0.445 0.421 0.410 0.426 0.455 0.413 0.403 0.418 0.447 

300 0.589 0.582 0.570 0.610 0.522 0.512 0.512 0.528 0.547 0.536 0.539 0.546 0.523 0.513 0.514 0.529 

        SPY        

30 0.038 0.035 0.040 0.049 0.037 0.035 0.037 0.048 0.042 0.038 0.041 0.053 0.038 0.035 0.037 0.048 

60 0.041 0.039 0.044 0.050 0.041 0.039 0.044 0.049 0.044 0.042 0.047 0.053 0.041 0.039 0.044 0.050 

150 0.048 0.046 0.049 0.053 0.043 0.042 0.044 0.048 0.045 0.044 0.046 0.051 0.043 0.042 0.044 0.049 

300 0.045 0.045 0.046 0.047 0.044 0.043 0.045 0.045 0.047 0.045 0.047 0.048 0.044 0.043 0.045 0.045 

Note: This table shows the mean squared errors (MSE) for forecasting filtered and unfiltered RVs using HAR-class models (HAR-RV, HAR-Vol, HAR-J and HAR-TJ models) 

for four stocks and SPY. RVs are sampled using 30-second, 60-second, 150-second and 300-second returns. The panels for r, r/𝑓𝑆𝐷, r/𝑓𝑆ℎ𝑜𝑟𝑡 and r/𝑓𝑊𝑆𝐷 show the results for 

the unfiltered returns and the returns filtered using the SD, Shortest Half and WSD estimators respectively. The bold MSEs indicate the best HAR class model (i.e. the lowest 

MSE) for that particular stock and sampling frequency. 
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Table 3.6 Number of intraday jumps estimated using the Lee-Mykland intraday jump test for 

different financial regimes 
Sampling  

Frequency 

(Seconds) 

r r/𝒇𝑺𝑫 r/𝒇𝑺𝒉𝒐𝒓𝒕 r/𝒇𝑾𝑺𝑫 r r/𝒇𝑺𝑫 r/𝒇𝑺𝒉𝒐𝒓𝒕 r/𝒇𝑾𝑺𝑫 r r/𝒇𝑺𝑫 r/𝒇𝑺𝒉𝒐𝒓𝒕 r/𝒇𝑾𝑺𝑫 

 Pre-crisis   Crisis   Post-crisis  

      AAPL (IT)      

30 2395 1454 1529 1458 183 85 89 88 2114 692 675 693 

60 1440 732 731 727 149 59 60 60 1584 450 459 453 

150 630 228 238 227 85 35 38 35 771 212 214 214 

300 284 133 136 133 35 18 19 18 385 141 149 142 

      JNJ (HC)      

30 2604 1738 1867 1745 549 203 267 206 2980 886 1202 894 

60 1471 765 810 763 390 112 127 110 2067 480 514 481 

150 590 217 231 215 216 39 40 37 941 155 158 159 

300 336 117 117 117 98 15 14 15 435 94 96 94 

      PFE (HC)      

30 1778 1145 1204 1158 284 108 126 109 1920 627 740 630 

60 1115 620 659 620 230 77 77 76 1505 355 388 354 

150 543 234 230 232 111 19 22 20 736 113 112 112 

300 300 120 128 120 54 13 13 13 355 62 62 62 

      MSFT (IT)      

30 1291 821 850 821 194 95 95 95 2119 728 737 724 

60 843 468 477 470 168 59 58 58 1602 422 444 424 

150 365 158 162 158 83 17 16 16 798 140 137 140 

300 159 77 85 78 38 11 11 11 357 74 72 74 

      SPY      

30 995 859 899 859 162 140 146 140 1327 984 1017 988 

60 574 478 522 482 106 84 92 85 875 551 580 555 

150 251 198 217 200 41 26 31 26 349 236 249 238 

300 128 104 109 105 20 14 16 14 151 124 128 126 

Note: This table shows the number of estimated intraday jumps using the Lee-Mykland (2008) jump test for four stocks 

(AAPL, JNJ, PFE and MSFT) and SPY before and after filtering for intraday periodicity, using 30-second, 60-second, 150-

second and 300-second returns. The columns for r, r/𝑓𝑆𝐷, r/𝑓𝑆ℎ𝑜𝑟𝑡 and r/𝑓𝑊𝑆𝐷 show the results for the unfiltered returns and 

the returns filtered using the SD, Shortest Half and WSD estimators respectively. 
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Table 3.7 Contribution of continuous components to QV (%) for stocks and SPY (pre-crisis) 

Sampling  

Frequency 

(Seconds) 

 BV   TBV   CTBV  

r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 

      AAPL (IT)      

30 88.558 84.623 84.366 84.619 72.364 69.905 69.382 69.909 75.632 71.486 71.072 71.506 

60 92.869 91.976 91.860 91.983 76.491 76.537 76.116 76.535 84.038 82.825 82.271 82.731 

150 96.336 97.199 97.062 97.199 79.596 82.593 82.073 82.560 90.967 93.249 92.915 93.207 

300 96.251 97.747 97.598 97.741 76.940 84.098 83.824 84.075 89.993 94.431 93.959 94.416 

      JNJ (HC)      

30 83.586 82.102 81.743 82.089 63.316 63.203 62.528 63.193 64.590 63.883 63.170 63.868 

60 88.686 89.965 89.770 89.960 68.682 71.412 71.098 71.328 74.742 76.904 76.487 76.787 

150 94.380 96.593 96.522 96.570 75.315 80.978 80.614 80.988 87.267 91.059 90.793 91.094 

300 95.547 98.274 98.274 98.268 75.378 83.971 83.574 83.825 88.466 95.303 95.268 95.299 

      PFE (HC)      

30 83.778 84.463 84.110 84.417 66.972 70.280 69.685 70.224 68.149 70.980 70.304 70.887 

60 87.822 89.728 89.354 89.688 70.156 74.431 74.022 74.426 75.831 79.605 79.142 79.532 

150 93.355 95.581 95.467 95.547 74.272 80.930 80.597 80.887 84.752 90.759 90.483 90.741 

300 93.392 96.942 96.899 96.949 72.008 81.701 81.400 81.670 85.152 91.967 91.915 91.975 

      MSFT (IT)      

30 90.917 90.540 90.427 90.548 77.310 78.115 77.766 78.103 80.783 81.405 81.100 81.386 

60 94.981 94.996 94.878 94.973 81.675 82.227 81.852 82.168 88.716 88.954 88.586 88.955 

150 96.829 97.603 97.593 97.594 83.547 86.414 86.268 86.447 92.352 94.676 94.494 94.677 

300 96.472 98.295 98.169 98.287 82.311 88.129 87.550 88.109 92.566 95.643 95.557 95.604 

      SPY      

30 97.639 90.159 89.901 90.148 87.864 79.615 79.247 79.580 93.859 84.345 83.948 84.331 

60 98.048 96.768 96.641 96.752 89.869 88.305 87.861 88.201 95.120 93.453 93.144 93.418 

150 98.306 98.673 98.589 98.659 88.860 89.602 89.244 89.575 94.271 94.929 94.625 94.830 

300 97.888 98.296 98.244 98.290 86.880 88.092 87.807 88.028 92.983 93.018 92.771 92.955 

Note: The table reports the estimated percentage of the contribution of the continuous components to 𝑄𝑉 before and after filtering 

for intraday periodicity using different realised measures (BV, TBV and CTBV) and sampling frequencies (30-second, 60-second, 

150-second and 300-second returns) for four stocks (AAPL, JNJ, PFE and MSFT) and SPY for the pre-crisis period. The columns 

for r, r/𝑓𝑆𝐷, r/𝑓𝑆ℎ𝑜𝑟𝑡 and r/𝑓𝑊𝑆𝐷 show the results for the unfiltered returns and the returns filtered using the SD, Shortest Half and 

WSD estimators respectively. The values in bold text indicate cases where the percentage of continuous components is larger after 

filtering for intraday periodicity. 
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Table 3.8 Contribution of continuous components to QV (%) for stocks and SPY (crisis) 
Sampling  

Frequency 

(Seconds) 

 BV   TBV   CTBV  

r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 

      AAPL (IT)      

30 98.936 99.197 99.194 99.198 87.526 88.867 88.686 88.938 94.091 95.447 95.557 95.367 

60 98.729 99.661 99.564 99.665 89.224 91.552 91.743 91.509 94.208 97.565 96.990 97.555 

150 98.803 99.069 99.136 99.065 85.745 89.280 88.983 89.256 90.987 94.784 94.574 94.749 

300 98.335 99.230 99.188 99.205 83.698 87.568 86.362 87.229 92.926 93.393 93.628 93.858 

      JNJ (HC)      

30 93.484 96.146 95.307 96.111 72.826 80.046 78.555 79.926 79.708 87.455 84.652 87.388 

60 93.818 97.486 97.224 97.395 74.807 83.137 82.562 82.913 81.810 91.458 91.042 91.478 

150 95.582 98.957 98.784 98.944 73.283 84.715 84.699 85.112 81.924 94.619 94.180 94.564 

300 94.652 98.363 98.070 98.365 76.727 86.277 85.542 86.243 86.288 94.202 94.002 94.381 

      PFE (HC)      

30 89.133 91.253 90.494 91.224 74.586 79.031 78.026 79.084 76.910 81.785 82.231 81.642 

60 93.018 95.502 95.037 95.471 77.659 83.994 83.835 84.098 84.719 91.357 90.184 91.241 

150 94.747 98.332 98.236 98.319 77.202 87.736 87.268 87.759 90.373 96.122 95.899 96.102 

300 93.514 97.960 97.831 97.954 76.802 88.586 88.303 88.548 87.541 95.138 94.957 95.130 

      MSFT (IT)      

30 94.141 94.624 94.533 94.636 81.007 83.209 82.765 83.211 87.266 89.016 88.672 88.902 

60 96.974 97.519 97.452 97.517 85.109 88.027 87.399 88.047 92.483 94.564 94.161 94.570 

150 97.363 98.673 98.649 98.663 85.888 91.752 91.808 91.693 94.570 97.441 97.332 97.351 

300 97.359 99.230 99.145 99.229 84.784 90.538 90.654 90.542 94.272 99.121 99.009 99.120 

      SPY      

30 97.747 97.664 97.573 97.674 89.545 88.534 88.208 88.474 94.564 94.089 93.771 94.090 

60 99.113 98.984 98.926 98.977 93.286 92.790 92.233 92.716 97.226 96.520 96.313 96.525 

150 98.477 98.695 98.589 98.680 89.481 90.161 90.365 89.926 96.630 96.914 96.809 96.922 

300 97.858 98.375 98.313 98.386 88.292 89.289 88.658 89.287 94.720 95.319 95.233 95.351 

Note: The table reports the estimated percentage of the contribution of the continuous components to 𝑄𝑉 before and after filtering 

for intraday periodicity using different realised measures (BV, TBV and CTBV) and sampling frequencies (30-second, 60-second, 

150-second and 300-second returns) for four stocks (AAPL, JNJ, PFE and MSFT) and SPY for the crisis period. The columns for 

r, r/𝑓𝑆𝐷, r/𝑓𝑆ℎ𝑜𝑟𝑡 and r/𝑓𝑊𝑆𝐷 show the results for the unfiltered returns and the returns filtered using the SD, Shortest Half and 

WSD estimators respectively. The values in bold text indicate cases where the percentage of continuous components is larger after 

filtering for intraday periodicity. 
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Table 3.9 Contribution of continuous components to QV (%) for stocks and SPY (post-crisis) 

Sampling  

Frequency 

(Seconds) 

 BV   TBV   CTBV  

r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 

      AAPL (IT)      

30 98.220 98.440 98.318 98.429 80.169 81.715 81.202 81.600 88.270 88.529 88.019 88.349 

60 98.647 98.930 98.865 98.924 80.330 83.983 83.160 83.850 89.916 91.159 90.369 91.012 

150 97.104 98.474 98.455 98.477 77.650 84.932 84.488 84.771 88.821 92.557 92.343 92.555 

300 96.753 98.598 98.579 98.595 74.839 86.468 86.050 86.399 89.451 94.142 93.906 94.121 

      JNJ (HC)      

30 93.165 94.035 93.127 93.990 66.355 77.417 75.637 77.295 72.081 82.168 80.085 82.048 

60 95.630 97.671 97.311 97.658 68.771 81.938 80.938 81.789 77.902 91.199 90.120 91.083 

150 95.358 98.572 98.390 98.577 66.397 83.628 83.197 83.561 76.097 91.223 90.739 91.075 

300 94.522 98.640 98.552 98.633 61.411 83.742 83.142 83.710 72.750 91.333 91.022 91.327 

      PFE (HC)      

30 89.643 89.411 89.022 89.394 71.691 76.116 75.229 76.028 75.066 78.584 77.518 78.546 

60 92.392 93.678 93.286 93.617 74.331 79.611 78.975 79.592 82.434 86.732 85.911 86.698 

150 94.676 97.519 97.387 97.499 75.510 85.460 85.055 85.221 86.168 93.022 92.645 92.948 

300 95.412 98.680 98.592 98.660 72.148 86.543 86.035 86.484 85.272 93.903 94.911 93.869 

      MSFT (IT)      

30 92.169 92.458 92.273 92.453 75.460 79.204 78.821 79.185 80.261 83.038 82.498 83.033 

60 95.184 96.706 96.576 96.691 78.449 84.255 83.959 84.320 86.937 91.801 91.467 91.778 

150 95.963 98.400 98.337 98.398 77.830 87.026 87.153 87.193 88.602 95.920 95.811 95.922 

300 95.039 98.363 98.329 98.375 73.168 87.626 88.121 87.693 86.725 95.972 96.016 96.024 

      SPY      

30 95.411 95.528 95.308 95.529 82.675 82.056 81.404 81.928 87.719 88.307 87.716 88.322 

60 97.525 97.989 97.900 97.982 85.710 86.080 85.559 86.051 93.380 94.049 93.640 93.992 

150 97.190 98.018 97.948 98.013 83.501 85.584 85.031 85.553 91.205 92.388 91.978 92.307 

300 97.722 98.514 98.489 98.513 84.723 86.858 86.011 86.885 93.185 94.130 93.842 94.104 

Note: The table reports the estimated percentage of the contribution of the continuous components to 𝑄𝑉 before and after filtering 

for intraday periodicity using different realised measures (BV, TBV and CTBV) and sampling frequencies (30-second, 60-second, 

150-second and 300-second returns) for four stocks (AAPL, JNJ, PFE and MSFT) and SPY for the post-crisis period. The columns 

for r, r/𝑓𝑆𝐷, r/𝑓𝑆ℎ𝑜𝑟𝑡 and r/𝑓𝑊𝑆𝐷 show the results for the unfiltered returns and the returns filtered using the SD, Shortest Half and 

WSD estimators respectively. The values in bold text indicate cases where the percentage of continuous components is larger after 

filtering for intraday periodicity. 
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Table 3.10 MSE for volatility forecasting using HAR-class models for the pre-crisis period (forecast horizon h=1)) 

Sampling  

Frequency 

(Seconds) 

 r   r/𝒇𝑺𝑫   r/𝒇𝑺𝒉𝒐𝒓𝒕   r/𝒇𝑾𝑺𝑫  
HAR-

RV 

HAR-

Vol 
HAR-J 

HAR-

TJ 

HAR-

RV 

HAR-

Vol 
HAR-J 

HAR-

TJ 

HAR-

RV 

HAR-

Vol 
HAR-J 

HAR-

TJ 

HAR-

RV 

HAR-

Vol 
HAR-J 

HAR-

TJ 

        AAPL (IT)        

30 25.412 25.244 24.931 26.644 41.605 41.258 40.046 43.115 52.901 52.489 50.859 55.163 42.349 42.001 40.769 43.922 

60 32.222 32.140 32.282 32.924 53.341 53.180 53.065 55.241 67.618 67.446 67.175 69.973 54.440 54.281 54.138 56.589 

150 19.439 19.380 19.590 20.015 32.488 32.369 32.596 33.473 40.070 39.932 40.202 41.135 33.256 33.137 33.367 34.273 

300 22.514 22.459 22.654 22.879 37.106 37.021 37.243 36.717 46.088 45.992 46.298 45.724 37.587 37.501 37.725 37.157 

        JNJ (HC)        

30 0.203 0.204 0.208 0.208 0.181 0.183 0.195 0.207 0.183 0.185 0.195 0.208 0.176 0.178 0.190 0.202 

60 0.183 0.184 0.180 0.178 0.169 0.174 0.180 0.182 0.161 0.166 0.170 0.175 0.167 0.173 0.178 0.182 

150 0.190 0.197 0.186 0.192 0.181 0.198 0.179 0.190 0.182 0.198 0.180 0.192 0.180 0.196 0.177 0.190 

300 0.229 0.234 0.237 0.239 0.156 0.182 0.156 0.165 0.160 0.187 0.160 0.171 0.155 0.181 0.156 0.164 

        PFE (HC0        

30 0.417 0.449 0.429 0.423 0.330 0.372 0.334 0.401 0.344 0.382 0.342 0.416 0.329 0.370 0.332 0.401 

60 0.370 0.397 0.360 0.343 0.349 0.371 0.347 0.365 0.383 0.401 0.383 0.402 0.348 0.370 0.347 0.364 

150 0.377 0.403 0.379 0.380 0.385 0.411 0.392 0.400 0.393 0.418 0.401 0.405 0.383 0.409 0.390 0.396 

300 0.404 0.446 0.403 0.440 0.466 0.505 0.474 0.518 0.486 0.522 0.493 0.526 0.464 0.502 0.471 0.514 

        MSFT (IT)        

30 0.956 0.958 0.978 0.959 1.297 1.298 1.309 1.331 1.436 1.437 1.460 1.470 1.307 1.308 1.321 1.344 

60 1.097 1.099 1.090 1.075 1.480 1.486 1.482 1.536 1.570 1.576 1.557 1.629 1.506 1.511 1.507 1.560 

150 1.083 1.084 1.101 1.085 1.708 1.715 1.713 1.723 1.863 1.870 1.869 1.840 1.727 1.735 1.733 1.739 

300 0.820 0.824 0.785 0.809 1.091 1.097 1.081 1.136 1.233 1.239 1.226 1.277 1.094 1.100 1.085 1.140 

        SPY        

30 0.289 0.290 0.287 0.249 0.330 0.335 0.329 0.313 0.384 0.392 0.383 0.368 0.332 0.338 0.332 0.316 

60 0.289 0.295 0.281 0.288 0.339 0.347 0.334 0.339 0.399 0.408 0.391 0.404 0.348 0.356 0.340 0.347 

150 0.280 0.284 0.277 0.268 0.341 0.345 0.339 0.339 0.385 0.390 0.382 0.371 0.344 0.348 0.342 0.341 

300 0.347 0.351 0.341 0.340 0.446 0.447 0.445 0.435 0.488 0.488 0.486 0.475 0.450 0.451 0.448 0.439 

Mean 5.356 5.346 5.349 5.497 8.689 8.665 8.612 8.906 10.836 10.806 10.731 11.116 8.847 8.822 8.767 9.079 

Note: This table shows the mean squared errors (MSE) for forecasting filtered and unfiltered RVs using HAR-class models (HAR-RV, HAR-Vol, HAR-J and HAR-TJ models) for four stocks 

and SPY for the pre-crisis period. RVs are sampled using 30-second, 60-second, 150-second and 300second returns. The panels for r, r/𝑓𝑆𝐷, r/𝑓𝑆ℎ𝑜𝑟𝑡 and r/𝑓𝑊𝑆𝐷 show the results for the unfiltered 

returns and the returns filtered using the SD, Shortest Half and WSD estimators respectively. The bold mean MSEs indicate the best HAR class model (i.e. the lowest MSE) for each estimator. 
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Table 3.11 MSE for volatility forecasting using HAR-class models for the crisis period (forecast horizon h=1) 

Sampling  

Frequency 

(Seconds) 

 r   r/𝒇𝑺𝑫   r/𝒇𝑺𝒉𝒐𝒓𝒕   r/𝒇𝑾𝑺𝑫  
HAR-

RV 
HAR-

Vol 
HAR-J 

HAR-

TJ 
HAR-

RV 
HAR-

Vol 
HAR-J 

HAR-

TJ 
HAR-

RV 
HAR-

Vol 
HAR-J 

HAR-

TJ 
HAR-

RV 
HAR-

Vol 
HAR-J 

HAR-

TJ 

        AAPL (IT)        

30 214.990 217.930 223.160 242.720 206.750 209.760 205.180 240.620 232.940 236.160 231.840 289.450 208.200 211.190 206.630 239.530 

60 200.140 202.550 196.050 228.960 214.870 218.350 214.720 217.190 243.100 246.910 245.860 247.110 215.970 219.460 215.810 218.380 

150 210.260 212.250 210.670 396.010 283.510 288.550 289.010 360.030 330.030 336.510 337.100 417.170 285.230 290.340 290.810 361.460 

300 225.020 228.910 228.350 464.690 378.260 386.730 386.750 617.420 453.600 464.230 465.270 727.340 378.910 387.410 387.430 610.270 

        JNJ (HC)        

30 140.110 189.780 190.470 80.699 76.142 92.745 78.535 111.630 62.328 72.294 63.853 109.160 73.630 89.667 75.900 108.210 

60 152.300 176.670 100.410 92.168 66.273 70.853 52.154 71.673 60.275 64.135 51.532 67.391 64.928 69.340 51.497 71.147 

150 370.180 461.180 381.440 399.050 115.100 137.310 129.080 105.000 105.010 124.500 109.450 98.642 113.410 135.340 125.750 104.910 

300 34.924 36.706 36.743 63.502 42.143 43.997 42.894 53.780 42.748 44.562 43.821 53.639 41.932 43.800 42.685 53.730 

        PFE (HC)        

30 92.671 91.432 100.680 109.970 64.917 65.115 74.631 56.294 62.782 63.150 72.046 56.385 63.797 63.988 73.336 55.195 

60 90.769 90.616 92.076 117.170 55.661 56.310 56.985 81.338 55.581 56.249 57.004 63.276 55.018 55.660 56.336 80.085 

150 152.680 152.150 162.620 79.129 73.019 73.695 72.222 58.376 71.044 71.652 70.361 58.165 72.304 72.973 71.550 57.796 

300 50.583 51.072 50.901 72.843 49.010 49.376 49.067 63.123 49.883 50.273 49.967 63.366 48.849 49.212 48.903 62.962 

        MSFT (IT)        

30 60.574 61.021 67.164 65.587 53.946 54.285 52.888 56.491 53.975 54.342 52.893 56.532 53.925 54.258 52.871 56.395 

60 71.233 72.457 72.900 81.730 62.013 62.406 63.272 66.956 62.826 63.174 64.045 72.051 62.049 62.440 63.299 66.952 

150 68.301 68.617 70.822 62.770 62.555 62.973 62.239 69.572 63.772 64.220 63.437 70.950 62.478 62.899 62.124 69.514 

300 53.120 53.199 54.137 53.200 58.791 58.875 59.177 62.156 64.147 64.222 64.647 68.074 58.784 58.870 59.173 62.157 

        SPY        

30 54.953 59.644 58.038 78.839 48.405 50.100 50.423 67.199 50.799 51.191 52.992 67.608 48.316 49.934 50.433 66.479 

60 75.664 82.272 76.036 84.630 59.592 59.951 60.075 65.251 60.294 59.690 60.707 65.664 59.295 59.599 59.781 64.985 

150 70.049 74.387 74.957 58.919 53.794 53.599 56.576 59.461 54.194 53.505 56.898 71.948 53.720 53.545 56.522 59.241 

300 44.317 44.259 45.731 40.457 39.467 37.721 39.799 39.307 40.722 38.792 41.373 41.043 39.453 37.715 39.776 39.500 

Mean 121.642 131.355 124.668 143.652 103.211 106.635 104.784 126.143 111.003 113.988 112.755 138.248 103.010 106.382 104.531 125.445 

Note: This table shows the mean squared errors (MSE) for forecasting filtered and unfiltered RVs using HAR-class models (HAR-RV, HAR-Vol, HAR-J and HAR-TJ models) for four stocks and SPY 

for the crisis period. RVs are sampled using 30-second, 60-second, 150-second and 300-second returns. The panels for r, r/𝑓𝑆𝐷, r/𝑓𝑆ℎ𝑜𝑟𝑡 and r/𝑓𝑊𝑆𝐷 show the results for the unfiltered returns and the 

returns filtered using the SD, Shortest Half and WSD estimators respectively. The bold mean MSEs indicate the best HAR class model (i.e. the lowest MSE) for each estimator. 
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Table 3.12 MSE for volatility forecasting using HAR-class models for the post-crisis period (forecast horizon h=1) 

Sampling  

Frequency 

(Seconds) 

 r   r/𝒇𝑺𝑫   r/𝒇𝑺𝒉𝒐𝒓𝒕   r/𝒇𝑾𝑺𝑫  
HAR-

RV 
HAR-

Vol 
HAR-

J 
HAR-

TJ 
HAR-

RV 
HAR-

Vol 
HAR-

J 
HAR-

TJ 
HAR-

RV 
HAR-

Vol 
HAR-

J 
HAR-

TJ 
HAR-

RV 
HAR-

Vol 
HAR-

J 
HAR-

TJ 

        AAPL (IT)        

30 0.522 0.293 0.528 0.371 0.687 0.360 0.688 0.475 0.801 0.416 0.799 0.547 0.697 0.363 0.695 0.479 

60 0.547 0.321 0.547 0.389 0.715 0.395 0.868 0.520 0.844 0.448 1.041 0.592 0.730 0.398 0.890 0.526 

150 0.507 0.401 0.516 0.477 0.594 0.432 0.602 0.526 0.676 0.487 0.689 0.592 0.596 0.433 0.604 0.525 

300 0.646 0.565 0.644 0.621 0.671 0.562 0.664 0.635 0.750 0.620 0.741 0.699 0.672 0.562 0.665 0.635 

        JNJ (HC)        

30 0.583 0.559 0.586 0.590 0.192 0.187 0.194 0.190 0.171 0.165 0.171 0.171 0.187 0.181 0.188 0.186 

60 0.366 0.339 0.378 0.368 0.111 0.105 0.111 0.116 0.108 0.102 0.108 0.113 0.111 0.105 0.111 0.115 

150 0.364 0.330 0.365 0.379 0.116 0.106 0.116 0.148 0.112 0.103 0.112 0.134 0.115 0.105 0.115 0.141 

300 0.408 0.364 0.407 0.374 0.130 0.117 0.130 0.137 0.129 0.114 0.128 0.134 0.130 0.116 0.130 0.135 

        PFE (HC)        

30 0.857 0.752 0.866 0.814 0.448 0.423 0.449 0.474 0.444 0.420 0.445 0.464 0.442 0.417 0.444 0.467 

60 0.953 0.902 0.946 0.980 0.488 0.452 0.493 0.519 0.481 0.446 0.482 0.506 0.484 0.449 0.489 0.515 

150 1.446 1.389 1.471 1.375 0.630 0.571 0.632 0.667 0.626 0.563 0.628 0.630 0.627 0.569 0.629 0.659 

300 1.409 1.342 1.472 1.309 0.796 0.681 0.797 0.774 0.785 0.668 0.788 0.724 0.791 0.677 0.793 0.769 

        MSFT (IT)        

30 0.332 0.329 0.332 0.362 0.271 0.272 0.281 0.282 0.278 0.279 0.287 0.289 0.271 0.272 0.282 0.283 

60 0.384 0.372 0.384 0.396 0.321 0.320 0.324 0.327 0.321 0.320 0.326 0.326 0.322 0.321 0.325 0.328 

150 0.418 0.411 0.430 0.410 0.395 0.392 0.393 0.393 0.402 0.399 0.408 0.401 0.395 0.392 0.393 0.393 

300 0.577 0.568 0.601 0.603 0.497 0.493 0.555 0.498 0.520 0.517 0.576 0.524 0.498 0.494 0.556 0.500 

        SPY        

30 0.031 0.035 0.033 0.032 0.032 0.036 0.036 0.034 0.037 0.040 0.041 0.038 0.033 0.036 0.036 0.034 

60 0.034 0.038 0.035 0.035 0.035 0.037 0.036 0.036 0.038 0.041 0.039 0.039 0.035 0.037 0.036 0.036 

150 0.041 0.047 0.042 0.041 0.037 0.042 0.038 0.038 0.040 0.044 0.041 0.040 0.037 0.042 0.038 0.038 

300 0.042 0.054 0.043 0.042 0.039 0.047 0.040 0.039 0.041 0.049 0.042 0.042 0.039 0.047 0.040 0.039 

Mean 0.523 0.471 0.531 0.498 0.360 0.302 0.372 0.341 0.380 0.312 0.395 0.350 0.361 0.301 0.373 0.340 

Note: This table shows the mean squared errors (MSE) for forecasting filtered and unfiltered RVs using HAR-class models (HAR-RV, HAR-Vol, HAR-J and HAR-TJ models) for 

four stocks and SPY for the post-crisis period. RVs are sampled using 30-second, 60-second, 150-second and 300-second returns. The panels for r, r/𝑓𝑆𝐷, r/𝑓𝑆ℎ𝑜𝑟𝑡 and r/𝑓𝑊𝑆𝐷 show 

the results for the unfiltered returns and the returns filtered using the SD, Shortest Half and WSD estimators respectively. The bold mean MSEs indicate the best HAR class model 

(i.e. the lowest MSE) for each estimator.



158 

 

Table 3.13 Average realised variance (RV) and conditional variance for business-

time sampling data (2000-2016) 

 r r/𝒇𝑺𝑫 r/𝒇𝑺𝒉𝒐𝒓𝒕 r/𝒇𝑾𝑺𝑫 r r/𝒇𝑺𝑫 r/𝒇𝑺𝒉𝒐𝒓𝒕 r/𝒇𝑾𝑺𝑫 

 Realised Variance (RV) GARCH 

AAPL (IT) 5.290 5.469 5.470 5.576 4.912 4.866 4.867 4.981 

JNJ (HC) 1.373 1.445 1.436 1.384 1.089 1.121 1.113 1.065 

PFE (HC) 2.416 2.444 2.422 2.359 1.879 1.878 1.860 1.803 

MSFT (IT) 2.689 2.783 2.783 2.756 2.442 2.453 2.453 2.437 

SPY 1.041 1.049 1.049 1.053 1.033 1.057 1.057 1.066 

Note: This table shows the realised volatility (RV) and conditional variance (GARCH(1,1)) for four stocks 

(AAPL, JNJ, PFE and MSFT) and SPY using 300-second business-time sampling data for the whole data set 

(2000-2016), with and without filtering for intraday periodicity. The columns for r, r/𝑓𝑆𝐷 , r/𝑓𝑆ℎ𝑜𝑟𝑡  and 

r/𝑓𝑊𝑆𝐷 show the results for the unfiltered returns and the returns filtered using the SD, Shortest Half and 

WSD estimators respectively. 
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Table 3.14 Number of intraday jumps estimated using the Lee-Mykland intraday 

jump test for business-time sampling data 

 r r/𝒇𝑺𝑫 r/𝒇𝑺𝒉𝒐𝒓𝒕 r/𝒇𝑾𝑺𝑫 

 2000-2016 

AAPL (IT) 103 51 53 51 

JNJ (HC) 608 132 191 134 

PFE (HC) 430 131 190 134 

MSFT (IT) 182 43 49 43 

SPY 62 56 57 54 

 Pre-crisis 

AAPL (IT) 46 25 26 25 

JNJ (HC) 225 71 97 73 

PFE (HC) 226 98 124 99 

MSFT (IT) 42 24 26 24 

SPY 33 30 33 30 

 Crisis 

AAPL (IT) 7 3 3 3 

JNJ (HC) 77 7 18 7 

PFE (HC) 31 6 6 5 

MSFT (IT) 10 1 1 1 

SPY 2 2 1 0 

 Post-crisis 

AAPL (IT) 50 23 24 23 

JNJ (HC) 306 54 76 54 

PFE (HC) 173 27 60 30 

MSFT (IT) 130 18 22 18 

SPY 27 24 23 24 

Note: This table shows the number of estimated intraday jumps using the Lee-Mykland (2008) jump test for 

four stocks (AAPL, JNJ, PFE and MSFT) and SPY before and after filtering for intraday periodicity for the 

whole data set (2000-2016) and in different financial regimes. The columns for r, r/𝑓𝑆𝐷, r/𝑓𝑆ℎ𝑜𝑟𝑡 and r/𝑓𝑊𝑆𝐷 

show the results for the unfiltered returns and the returns filtered using the SD, Shortest Half and WSD 

estimators respectively. 
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Table 3.15 Contribution of continuous components to QV (%) for stocks and SPY using business-time 

sampling data for different financial regimes 

  BV   TBV   CTBV  

 r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 r r/𝐟𝐒𝐃 r/𝐟𝐒𝐡𝐨𝐫𝐭 r/𝐟𝐖𝐒𝐃 

      2000-2016      

AAPL 98.769 99.090 98.639 99.090 92.671 94.164 93.027 94.134 96.727 97.291 96.714 97.278 

JNJ 96.310 98.803 98.300 98.793 79.102 88.804 87.591 88.759 90.818 96.935 96.023 96.923 

PFE 94.452 98.024 97.080 97.941 79.329 88.336 86.400 88.246 88.224 94.667 93.755 94.560 

MSFT 98.689 99.232 99.136 99.231 92.311 95.479 95.173 95.481 97.275 98.430 98.257 98.430 

SPY 99.534 99.577 99.524 99.573 95.417 95.583 95.647 95.576 98.004 98.040 97.951 98.021 

      Pre-crisis      

AAPL 98.781 99.113 98.886 99.113 93.357 94.603 93.538 94.580 97.577 98.298 97.933 98.298 

JNJ 96.143 98.393 97.838 98.381 79.404 87.181 86.000 87.125 91.676 95.633 94.689 95.618 

PFE 93.004 97.370 96.194 97.319 75.937 85.066 83.457 84.990 86.182 93.818 92.280 93.740 

MSFT 98.852 99.016 99.065 99.013 94.054 95.105 94.983 95.113 97.730 98.095 98.050 98.094 

SPY 99.194 99.296 99.208 99.289 95.206 95.466 95.357 95.449 97.520 97.525 97.403 97.503 

      Crisis      

AAPL 99.577 99.773 99.696 99.772 95.167 97.544 96.838 97.543 99.150 99.740 99.456 99.739 

JNJ 96.368 99.539 99.143 99.538 80.591 92.478 90.990 92.460 91.996 99.386 98.481 99.384 

PFE 95.626 99.258 98.312 99.107 86.293 93.754 91.251 93.688 94.070 96.778 97.799 96.575 

MSFT 98.838 99.551 99.137 99.550 92.305 96.098 95.720 96.076 97.728 98.765 98.410 98.765 

SPY 99.825 99.804 99.802 99.804 96.338 96.133 96.555 96.136 99.760 99.769 99.659 99.770 

      Post-crisis      

AAPL 97.926 98.294 96.401 98.296 87.030 88.657 86.782 88.575 90.395 89.989 88.147 89.906 

JNJ 96.686 99.352 98.884 99.339 77.165 90.333 89.176 90.293 87.714 98.576 97.683 98.559 

PFE 96.571 98.489 98.016 98.387 81.169 91.234 88.914 91.091 88.106 94.871 93.753 94.774 

MSFT 98.190 99.503 99.316 99.503 88.306 95.890 95.177 95.897 95.853 98.989 98.650 98.990 

SPY 99.785 99.797 99.743 99.797 94.613 95.072 94.980 95.069 96.618 96.703 96.701 96.664 

Note: The table reports the estimated percentage of the contribution of the continuous components to 𝑄𝑉 before and after filtering for 

intraday periodicity using different realised measures (BV, TBV and CTBV) for four stocks (AAPL, JNJ, PFE and MSFT) and SPY 

for the whole data set (2000-2016) and for different financial regimes. The columns for r, r/𝑓𝑆𝐷, r/𝑓𝑆ℎ𝑜𝑟𝑡 and r/𝑓𝑊𝑆𝐷 show the results 

for the unfiltered returns and the returns filtered using the SD, Shortest Half and WSD estimators respectively. The values in bold text 

indicate cases where the percentage of continuous components is larger after filtering for intraday periodicity. 
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Table 3.16 MSE results for HAR-class models with business-time sampling data (forecast horizon h=1) 

  r   r/𝒇𝑺𝑫   r/𝒇𝑺𝒉𝒐𝒓𝒕   r/𝒇𝑾𝑺𝑫  

HAR- RV Vol J TJ RV Vol J TJ RV Vol J TJ RV Vol J TJ 

        2000-2016        

AAPL 0.545 0.455 0.545 0.456 0.588 0.484 0.592 0.494 0.614 0.500 0.618 0.506 0.591 0.486 0.595 0.496 

JNJ 0.311 0.307 0.314 0.318 0.157 0.152 0.159 0.166 0.157 0.153 0.158 0.155 0.156 0.151 0.157 0.164 

PFE 1.316 1.316 1.331 1.482 1.224 1.225 1.232 1.352 1.195 1.196 1.206 1.232 1.201 1.202 1.211 1.327 

MSFT 0.471 0.471 0.475 0.501 0.440 0.440 0.441 0.445 0.429 0.429 0.429 0.432 0.440 0.440 0.441 0.445 

SPY 0.045 0.045 0.045 0.044 0.046 0.046 0.046 0.044 0.046 0.046 0.046 0.045 0.046 0.046 0.046 0.044 

        Pre-crisis        

AAPL 28.181 28.082 28.224 28.168 35.580 35.465 35.637 35.196 37.176 37.055 37.211 37.229 35.613 35.498 35.670 35.248 

JNJ 0.206 0.205 0.200 0.205 0.177 0.174 0.181 0.207 0.168 0.166 0.170 0.194 0.175 0.172 0.179 0.204 

PFE 0.478 1.477 0.495 0.439 0.391 0.684 0.393 0.411 0.369 0.651 0.372 0.384 0.383 0.668 0.385 0.402 

MSFT 1.197 1.662 1.195 1.211 1.453 1.978 1.456 1.474 1.417 1.902 1.420 1.431 1.452 1.981 1.455 1.473 

SPY 0.321 0.321 0.323 0.330 0.340 0.341 0.344 0.348 0.344 0.344 0.348 0.353 0.341 0.341 0.344 0.349 

        Crisis        

AAPL 170.670 171.370 174.380 204.980 199.320 200.020 203.550 217.440 205.830 206.560 210.100 223.300 199.340 200.040 203.590 217.560 

JNJ 100.260 100.150 104.430 59.004 95.079 95.091 95.925 82.769 82.646 82.667 83.755 72.636 93.285 93.297 94.123 81.435 

PFE 127.840 129.210 133.900 60.261 155.360 156.690 155.270 76.304 154.330 155.560 154.590 684.580 151.640 152.940 150.940 75.260 

MSFT 77.754 77.472 78.601 60.536 65.593 65.238 66.115 71.641 64.282 63.974 64.539 70.149 65.578 65.224 66.090 71.568 

SPY 87.175 87.163 87.172 47.248 91.195 91.181 91.210 47.089 92.441 92.428 92.456 47.940 91.071 91.057 91.086 47.062 

        Post-crisis        

AAPL 0.743 0.717 0.750 0.435 0.850 0.821 0.856 0.473 0.896 0.864 0.900 0.497 0.855 0.827 0.861 0.474 

JNJ 0.293 0.293 0.293 0.314 0.150 0.150 0.150 0.157 0.148 0.148 0.147 0.150 0.148 0.149 0.149 0.156 

PFE 1.309 1.309 1.313 1.478 1.211 1.211 1.203 1.358 1.180 1.180 1.180 1.217 1.188 1.188 1.183 1.337 

MSFT 0.462 0.462 0.465 0.528 0.424 0.424 0.423 0.439 0.415 0.414 0.414 0.431 0.424 0.424 0.423 0.439 

SPY 0.043 0.043 0.043 0.041 0.044 0.044 0.044 0.042 0.045 0.045 0.044 0.043 0.044 0.045 0.044 0.042 

Mean 29.981 30.127 30.725 23.399 32.481 32.593 32.761 26.892 32.206 32.314 32.505 57.145 32.199 32.309 32.449 26.774 

Note: This table shows the mean squared errors (MSE) for forecasting filtered and unfiltered RVs using HAR-class models (HAR-RV, HAR-Vol, HAR-J and HAR-TJ models) for four stocks (AAPL, PFE, 

JNJ, MSFT) and SPY with business-time sampling data for the whole data set (2000-2016) and for different financial regimes. RVs are sampled using 30-second, 60-second, 150-second and 300-second 

returns. The panels for r, r/𝑓𝑆𝐷, r/𝑓𝑆ℎ𝑜𝑟𝑡 and r/𝑓𝑊𝑆𝐷 show the results for the unfiltered returns and the returns filtered using the SD, Shortest Half and WSD estimators respectively. The bold mean MSEs 

indicate the best HAR class model (i.e. the lowest MSE) for each estimator. 



162 

 

Chapter 4 – The impact of co-jumps and 

news announcements on stock volatility  

 

4.1 Introduction 

This chapter discusses how co-jumps and news affect the continuous and jump components 

of stocks and the realised volatility of forecasting returns before and after the 2008 financial 

crisis. Previous literature has investigated how the announcement of news stories has an 

influence on financial markets, particularly their first-moment responses to these stories 

(e.g. Ederington & Lee 1993; Balduzzi et al. 2001; Andersen & Bollerslev 1998). Recent 

work focuses on the market’s second-moment responses to macro-economic news (e.g. 

Andersen & Bollerslev, 1998; Balduzzi et al., 2001; Huang 2018). However, no studies to 

date have looked at the impact of news announcements on non-parametric volatility 

forecasting models such as HAR-family models. Furthermore, the effect of news 

announcements on the volatility of stocks from different industrial sectors, and how the 

market’s second-moment responses may vary in different financial regimes, are yet to be 

investigated. Therefore, in this chapter we look at the effect of the market’s second-moment 

responses to news announcements on stock price volatility before and after the 2008 

financial crisis. 

Jumps are significant discontinuities in financial variables (Lee & Mykland 2007). High 

volatility caused by notable changes in financial asset returns within a given day is known 

as the jump component, and the remaining variation in returns in that day is known as the 
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continuous component. Some of this volatility occurs between multiple assets at the same 

time, known as co-jumps. Co-jumps are closely related to macroeconomic news 

announcements (e.g. Lahaye et al, 2011; Dungey & Hvozdyk, 2012; Chatrath et al., 2014) 

and are caused by the co-movements of volatilities between different stocks, which is why 

we also investigate the impact of co-jump-related news surprise on jump components. 

Bollerslev et al. (2008) argue that jumps in stocks are generated by firm-specific news or 

market-level news. Co-jumps, in particular, are jumps generated by market-level news 

across different stocks. The mean cross-product (MCP) co-jump test, introduced by 

Bollerslev et al. (2008), tests for the presence of co-jumps. However, there is no evidence 

for a direct relationship between co-jumps, news and single-stock jumps. Hence, we 

examine how news affects the jump components for realised volatility, as well as the 

relationship between (i) co-jumps and jumps and (ii) co-jumps and market-level news. We 

investigate the extent to which co-jumps are preceded by macro-economic news 

announcements and whether co-jumps capture all of the volatility co-movement caused by 

news announcements. To further examine the impact of news announcements on volatility, 

we also investigate how news announcements, particularly those that co-occur with co-

jumps, affect the performance of HAR models, which are commonly used to forecast 

realised volatility.  

In this thesis, we first investigate how news affects jump components, using three different 

estimation methods –bi-power variation, threshold bi-power variation and corrected 

threshold bi-power variation (Barndorff-Nielsen & Shephard 2004; Corsi et al. 2010). 

Second, we focus on how co-jumps that are caused by market-level news affect realised 
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volatility. Finally, we examine how macro-economic news and co-jumps affect forecasting 

in HAR models. 

 

4.2 Data 

4.2.1 Data subsets used in the analysis 

The announcement of major macroeconomic news typically results in high trading volumes 

for stocks, as investors respond to the news by rearranging their investments. Therefore, 

stocks with high trading volumes are important to consider in this analysis. Macroeconomic 

news announcements also cause around one third of the jumps in stock volatility and 

contribute to a notable proportion of jump components (Evans, 2011). In order to focus on 

jumps caused by macroeconomic announcements, we examine returns from stocks with 

few intraday jumps, as this minimises the impact of jumps caused by other factors.  

[Insert Tables 4.1 and 4.2 here] 

The stocks included in the data set are those with either a high volume of jumps or relatively 

few jumps from five industrial sectors: Healthcare (HC), Information Technology (IT), 

Telecommunication Services (TS), Consumer Staples (CS) and Utilities from the S&P 100 

index. We use two subsets of stocks from these five sectors in our analysis. The stocks with 

the six highest volumes before and after the financial crisis are included in the first data 

subset; these include AAPL, MSFT, CSCO, INTC, ORCL and GILD, and INTC, VOD, 

CSCO, MSFT, IBM and YHOO. INTC is the lowest jump-frequency stock in the pre-crisis 

period in Table 4.1, followed by VOD, CSCO, MSFT, IBM and YHOO. The lowest jump-
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frequency stock in the post-crisis period (Table 4.2) is VOD, followed by stocks BT, TEF, 

UL, AAPL and XRX. These stocks are also included in the first subset. 

As the stocks with the six highest volumes and lowest jump frequencies are mainly from 

the IT sector (i.e. AAPL, CSCO, INTC, MSFT, ORCL, IBM, XRX, YHOO), we consider 

the stocks with the highest volume and lowest jump frequency from each sector separately 

as a second subset in order to examine how the news and co-jumps affect high-volume and 

low-jump-frequency stocks across different sectors. The stocks with the highest volumes 

in each sector before and after the 2008 financial crisis are GILD, AAPL, T, KO and EXC, 

and PFE, AAPL, T, KO and EXC respectively. As shown in Tables 4.1 and 4.2, the stocks 

with the fewest jumps in each sector before and after the crisis are AMGN, INTC, VOD, 

KO and AEE, and BSX, AAPL, VOD, UL and CNP respectively. 

Therefore, as shown in Table 4.3, 21 stocks are considered here: GILD, PFE, AMGN and 

BSX from HC; AAPL, INTC, MSFT, CSCO, ORCL, IBM, YHOO and XRX from IT; T, 

VOD, BT and, TEF from TS; KO and UL from CS; and EXC, AEE and CNP from Utilities.  

[Insert Table 4.3 here] 

We use five-minute high-frequency data because studies such as Liu et al. (2015) find little 

evidence that five-minute realised variance outperforms other volatility measures such as 

1- and 5-second realised kernels. Data from 01/01/2000 to 31/12/2007 indicate the pre-

crisis period, while data from 01/07/2009 to 30/12/2016 is the post-crisis period. 
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4.2.2 News outlets used in the analysis 

[Insert Table 4.4 here] 

As seen in Table 4.4, 62 news outlets were used in the analysis. Each outlet was included 

in the regression as both a positive and a negative news surprise calculated according to 

equation (4.1), which meant that 124 independent variables were initially used in the 

regression in equation (4.2) before non-significant variables were removed. Many of the 

news outlets, such as Initial Jobless Claims (INJCJC) and Change in Nonfarm Payrolls 

(NFP TCH), have been used in previous research (e.g. Balduzzi et al. 2001; Huang 2018), 

but we also include other news outlets not previously studied that are closely related to 

economic performance (e.g. the University of Michigan Consumer Sentiment Index 

[CONSSENT]). The survey data and released values for the 63 news outlets were obtained 

from Bloomberg (2018) for the period from 2000 to 2016.  

Table 4.4 also shows the descriptive statistics for the absolute values of positive and 

negative news surprise for each news outlet. The news surprise values are calculated from 

survey data and released values for news, which can be used to describe the positive and 

negative impact of each news outlet on the financial market. In the regression analysis in 

this chapter, the absolute values of positive and negative news surprise are used to examine 

the impact of news on stock volatility. Further details regarding these calculations are 

described in Section 4.3.  

The descriptive statistics in Table 4.4 reveal that the mean absolute values for positive and 

negative news surprise range between 0.55 and 1.60. The majority of the maximum 
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absolute values are smaller than 5. Thus, the descriptive statistics do not show large 

differences between absolute positive and negative news surprise for each news outlet.  

 

4.3 Methodology 

4.3.1 News surprise 

In order to examine the relationship between news announcements and market response, 

we first follow the method from Balduzzi et al. (2001) to calculate the standardised news 

surprise by using release values and survey data for news. This offers a mathematical 

measure of how ‘surprising’ a particular news item is. Standardised news surprise can be 

calculated using equation (4.1):  

 𝑆𝑘𝑡=
𝐴𝑘𝑡−𝐸𝑘𝑡

�̂�𝑘
                                                        (4.1) 

where Akt is the released value for a news outlet k at a point in time t, and Ekt is the median 

of its survey forecast values. �̂�𝑘 is the sample standard deviation of 𝐴𝑘𝑡 − 𝐸𝑘𝑡 and is used to 

standardise the news surprises in order to make the calculated surprises for different news 

outlets more comparable. 

In order to find out how news affects the market’s second-moment response for each stock, 

we follow the regressions in Huang (2018) and regress the jump components estimated 

using each stock on the news surprises calculated from equation (4.1). The regression for 

jump components on individual news outlets is shown as:  

𝑙𝑜𝑔(𝐽𝑡 + 1) =𝛽𝐽,𝑘,𝑝|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡≥0)+𝛽𝐽,𝑘,𝑛|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡<0) +𝜀𝑡                   (4.2) 
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where  𝐽𝑡 are the jump components for each stock and 𝑆𝑘𝑡 is the standardised news surprise 

for news outlet k at time t. The jump components are estimated using realised variance (RV) 

and corrected threshold bi-power variation (CTBV) and are defined as 𝐽𝑡 = 𝐼{𝑧𝑡>𝜙𝛼} ∙

max⁡[(RVt − CTBVt), 0]. Positive and negative news surprises have asymmetrical effects on 

financial markets, so we consider them as separate variables in the regression. Second-

moment market responses are non-negative, so the absolute value of news surprise is 

considered in equation (4.2).  

We also aim to examine the impact of same-sign (positive or negative) news surprises on 

jump components. The regression of jump components that co-occur with co-jumps on all 

news can be described as:  

𝑙𝑜𝑔(𝐽𝑡
𝑐 + 1) =𝛽𝐽,𝑝|𝑆𝑡

+| + 𝛽𝐽.𝑛 |𝑆𝑡
−| +𝜀𝑡                         (4.3) 

Where 𝐽𝑡
𝑐 denotes the jump components in days with co-jumps and 𝑆𝑡

+ and 𝑆𝑡
−⁡refers to the 

same-sign (positive or negative) news surprise for all news outlets on day t, calculated 

based on 𝑆𝑘𝑡 in equation (4.1). 𝑆𝑡
+ = ∑ |𝑆𝑘𝑡|1(

𝑘=𝑛
𝑘=1 𝑆𝑘𝑡 ≥ 0) and 𝑆𝑡

− = ∑ |𝑆𝑘𝑡|1(
𝑘=𝑛
𝑘=1 𝑆𝑘𝑡 <

0) represent the aggregated impact of positive and negative news surprise respectively on 

day t. n refers to the number of news outlets. We consider the aggregated impact of news 

surprise on a given day t instead of individual news outlets in order to avoid the issue of 

sparse data given that the number of days with co-jumps is relatively small. The error terms 

in these two equations follow 𝜀𝑡 ~ i.i.d. N (0,𝜎2). 
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4.3.2 HAR models 

The heterogeneous autoregressive (HAR) models used in this study are shown in equations 

(4.4) to (4.6). The standard HAR model (Corsi, 2009) is shown in equation (4.4). The HAR 

model with TBV-related jump components (HAR-TJ) in equation (4.5) is developed by 

Corsi et al. (2010), who also proposes the HAR model with CTBV-related jump 

components (HAR-CTJ), as shown in equation (4.6). 

RVt:t+h−1=β0 + βdRVt−1 + βwRVt−5:t−1 + βmRVt−22:t−1 + εt                       (4.4) 

RVt:t+h−1=β0 + βdRVt−1 + βwRVt−5:t−1 + βmRVt−22:t−1 + 𝛽𝑗𝑇�̂�𝑡−1 + εt              (4.5) 

RVt:t+h−1=β0 + βdRVt−1 + βwRVt−5:t−1 + βmRVt−22:t−1 + 𝛽𝑗𝐶𝑇�̂�𝑡−1 + εt           (4.6) 

Where RV𝑡1:𝑡2 =
1

𝑡2−𝑡1+1
∑ 𝑅𝑉𝑡
𝑡2
𝑡=𝑡1

,with 𝑡1≤𝑡2. 

RVt−1, RVt−5:t−1 and RVt−22:t−1 are the daily, weekly and monthly lags of realised volatility, 

which are used to capture the long-memory dynamic dependence of RV. The jump parts in 

(4.5) and (4.6) are estimated based on bi-power variation and threshold bi-power variation, 

which are expressed as 𝑇�̂�𝑡 = 𝐼{𝑧𝑡>𝜙𝛼} ∙ max⁡[(RVt − TBVt), 0]⁡ and 𝐶𝑇�̂�𝑡 =

𝐼{𝑧𝑡>𝜙𝛼} ∙ max⁡[(RVt − CTBVt), 0]⁡ respectively. The error terms are independent and 

identically distributed (i.i.d.) random variables with mean 0 and variance 𝜎2. 

Based on the HAR-TJ and HAR-CTJ models, we propose a new HAR model that separates 

the jump components into two parts: (i) a part with jumps affected by significant news or 

captured by co-jumps; and (ii) a part which is not affected by significant news or captured 

by co-jumps. The co-jumps are estimated based on the MCP co-jump test (Bollerslev et al. 

2008). The same separation method is used for RV in the HAR model. By separating the 
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jumps related to the news announcements from the other jumps, the new models have an 

additional variable which encompasses only the jump components that are related to news, 

reflecting the seasonal patterns of macroeconomic news announcements. 

The new models can be written as follows:  

RVt:t+h−1=β0 + βd1RVt−11(𝑆𝑡
𝐴 ⁡> 0) + βd2RVt−11(𝑆𝑡

𝐴 ⁡= 0) + βwRVt−5:t−1 

+βmRVt−22:t−1 + εt                                                 (4.7) 

RVt:t+h−1=β0 + βdRVt−1 + βwRVt−5:t−1 + βmRVt−22:t−1 + 𝛽𝑗1𝑇�̂�𝑡−11(𝑆𝑡
𝐴 ⁡> 0) 

         +𝛽𝑗2𝑇�̂�𝑡−11(𝑆𝑡
𝐴 ⁡= 0) + εt                                       (4.8) 

RVt:t+h−1=β0 + βdRVt−1 + βwRVt−5:t−1 + βmRVt−22:t−1 + 𝛽𝑗𝐶𝑇�̂�𝑡−11(𝑆𝑡
𝐴 ⁡> 0) 

+𝛽𝑗2𝐶𝑇�̂�𝑡−11(𝑆𝑡
𝐴 ⁡= 0) + εt                                     (4.9) 

Where 𝑆𝑡
𝐴 = 𝑆𝑡

++𝑆𝑡
+ = ∑ |𝑆𝑘𝑡|

𝑘=𝑛
𝑘=1  refers to the aggregated impact of positive and negative 

news surprise on day t for each stock, as well as the news surprise that leads to jumps. n 

refers to the number of news outlets. The error terms are i.i.d. random variables with mean 

0 and variance 𝜎2. Instead of considering the positive and negative news surprise separately 

as in equations (4.2) and (4.3), we use 𝑆𝑡
𝐴 , defined as the days where news surprise is 

present (both negative and positive) in equations (4.8) and (4.9). This is because this 

method can better separate the seasonal patterns of jumps that co-occur with news 

announcements.  Therefore, the jump components 𝑇�̂�𝑡−11(⁡𝑆𝑡
𝐴 > 0) and 𝐶𝑇�̂�𝑡−11(⁡𝑆𝑡

𝐴 > 0) 

are those that are related to news announcements and share their seasonal patterns. 
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4.4 Results 

4.4.1 Descriptive statistics for stocks 

4.4.1.1 Comparison of stocks with and without extreme jumps 

This section discusses the descriptive statistics for the two data subsets: that is, the six 

stocks with either the highest volumes or the lowest number of jumps for the pre-crisis and 

post-crisis periods (subset one); and the stocks which have the highest trading volume and 

the fewest jumps in each of the five industrial sectors before and after the financial crisis 

(subset two). It is important to observe stocks’ trading volumes and jump frequencies as 

they are closely related to stock volatility. The descriptive statistics for trading volume and 

jumps help to classify the differences between stocks, so that the effect of news 

announcements on stocks with different properties can be analysed in the following 

sections. 

Previous literature suggests that macroeconomic news affects trading volumes and 

volatility spikes of financial assets. For example, Balduzzi et al. (2001) find that 

macroeconomic news increases volatility and trading volume for Treasury bonds. The spike 

in volatility caused by the announcements observed in the Treasury bonds are the 

discontinuous part of the stock returns (i.e. jumps). Therefore, it is worthwhile to look at 

the impact of news announcements on the trading volumes of stocks from different sectors 

by considering the stocks with the highest trading volumes overall (subset one) and per 

sector (subset two). Stocks with few jumps (i.e. those that are less sensitive to shocks) are 

also considered, as they allow us to find out whether the primary cause of jumps is the 

announcement of macroeconomic news. 
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The impact of news can also be compared between less sensitive stocks and sensitive stocks 

with high trading volumes. Studies suggest that asset returns show different levels of 

volatility in different financial regimes. For example, Manda (2010) finds that the average 

value of the VIX volatility measures from 2005 to 2009 are the highest during the 2008 

financial crisis from 17-Mar-08 to 31-Mar-09, followed by the post-crisis period (1-Apr-

09 to 30-Nov-09) and pre-crisis period (3-Jan-05 to 16-Mar-08). Our analysis considers a 

longer period of time either side of the crisis, including the burst of the dot-com bubble 

period from 2000 to 2002, and the European sovereign debt crisis period starting at the end 

of 2009, which means we can compare the average volatility level before and after the 

financial crisis over long horizons. By observing the average volatility level and jump 

frequency for different stocks, we can see how they are affected by news announcements 

(see discussion in Sections 4.4.2 and 4.4.3).  

Panels A and B in Table 4.5 show the stocks with few jumps and high average volumes 

respectively before and after the financial crisis, while Panel C is comprised of stocks with 

both high average volumes and few jumps. From Table 4.5, we can observe that the AAPL 

stock from the IT sector has the largest trading volume, which is much larger than most of 

the other stocks before and after the financial crisis. On the other hand, BT from the TS 

sector has a relatively low trading volume compared to stocks from the other sectors during 

both periods. In addition, we find that TEF and BT from the TS sector have the fewest 

jumps before and after the financial crisis. Stocks with high volumes typically have many 

jumps per day, which are more frequent than the average value across different stocks (0.08 

for the pre-crisis period and 0.12 for the post-crisis period).  
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It is also clear that the number of jumps per day is different in the two periods. For example, 

the number of jumps per day for the GILD and EXC stocks increases from 0.14 and 0.11 

to 0.16 and 0.14 respectively. However, the change in the jump frequency per day for stocks 

with few jumps overall is mixed. For example, BT and TEF have 0.01 jumps per day, which 

is the lowest amount of the 21 stocks before the financial crisis, which increases to 0.05 

jumps per day after the financial crisis. The number of jumps per day for the UL stock 

decreases from 0.11 to 0.5.  

[Insert Table 4.5 here] 

From Table 4.5, it is also clear that stocks with high volumes and low jump frequencies are 

primarily from the Information Technology sector: AAPL, MSFT, INTC and CSCO. This 

suggests that although there are generally fewer jumps for the stocks in the IT sector, the 

jumps that are present are caused by large trading volumes in response to market-level or 

company-level news, and thus may be larger than the jumps for other stocks. We also find 

that the number of jumps for all stocks with high volumes increases to more than 0.10 

jumps per day from the pre-crisis period to the post-crisis period. 

In addition, the table shows that the number of jumps per day for most IT sector stocks 

increases dramatically after the financial crisis because they are active stocks with high 

trading volumes. For example, the respective number of jumps per day for the stocks INTC, 

CSCO, MSFT, IBM and YHOO are 0.04, 0.05, 0.06, 0.07 and 0.07 before the financial 

crisis, increasing to 0.13, 0.14, 0.13, 0.14 and 0.15 after the crisis. This dramatic rise may 

be because investors had excessively optimistic expectations, resulting in larger changes in 

market returns. Arnott et al. (2018) argue that this pattern is a sign of another tech bubble 

that may burst in the future, just as in 2000, when tech giants such as Microsoft, Cisco, 
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Intel, IBM, AOL, Oracle, Dell, Sun, Qualcomm and HP failed to meet investors’ 

excessively optimistic expectations. 

 

4.4.1.2 Jump components 

In this section, we investigate the size of jump components estimated using BV and TBV 

in different regimes (the pre-crisis and post-crisis periods) by examining the descriptive 

statistics for jump components with and without the highest 10% of the values, and 

observing plots generated from the data. This helps us understand the differences in jump 

size for different stocks in different financial regimes and how they are related to news 

announcements. This section also considers which types of news (company-related news 

or market-related news) are the main causes of extreme jumps for each stock.  We plot the 

jump components estimated using TBV in Figures 4.1 to 4.6. The descriptive statistics for 

jump components estimated using BV and TBV are calculated in Tables 4.6 to 4.9. TBV is 

a frequently used volatility measure in recent studies (e.g. Haugom & Ullrich, 2012; 

Vortelinos & Saha, 2016; Hizmeri et al., 2019), so we include the descriptive statistics of 

jump components estimated using TBV to compare the different volatility measures when 

estimating jump components. The CTBV method is similar to TBV, but it includes some 

modifications to reduce bias. Unsurprisingly, then, the descriptive statistics of the jump 

components estimated using CTBV share a similar pattern to those estimated using TBV, 

but with lower values and fewer significant jump days for both the pre- and post-crisis 

periods. More detailed evidence is shown in Section 4.4.1.4. In order to avoid repetitive 

comparisons based on similar values, we did not include the descriptive statistics tables for 

the jump components estimated using CTBV. 
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[Insert Figures 4.1 to 4.6 here] 

Figures 4.1 to 4.6 and Tables 4.8 and 4.9 show the features of jump components estimated 

using TBV for stocks with high volumes and low jump frequencies in the pre-crisis and 

post-crisis periods. Results are shown for the full dataset for each stock (left-hand panel) 

and the data up to the 90th percentile, with extreme values in the top decile excluded (right-

hand panel). From Figures 4.1 to 4.3, we can see that most of the stocks, especially those 

in the IT sector, have volatile jump components between 2000 and 2002. This was caused 

by the burst of the dot-com bubble, which corrected the unusual valuation of stocks caused 

by a decade-long bull market before 2000. Also, we find that the jump components from 

2003 to 2007 in the pre-crisis period are relatively stable, and that they are not visibly larger 

than in the post-crisis period (as seen in Figures 4.4 to 4.6). There are some large jumps at 

the end of 2009 caused by the European debt crisis; however, the number and size of the 

jumps are lower when compared to those caused by the burst of the dot-com bubble, which 

was mainly centred around American companies. This suggests that shocks in the US stock 

market that originate from overseas economies are more limited compared to domestic 

equivalents. 

[Insert Tables 4.6 to 4.9 here] 

Tables 4.8 and 4.9 show the jump components for stocks estimated using threshold bi-

power variation (TBV) for different stocks. By comparing the BV-based results in Tables 

4.6 and 4.7 with those in Tables 4.8 and 4.9, we find that the jump components estimated 

using TBV are normally higher than those using BV. This is in line with Corsi et al.’s (2010) 

suggestion that BV underestimates jump components. They also argue that the bias for BV 

is more obvious for large jumps, which is supported by our results since the stocks with 
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large maximum values are much larger when estimated using TBV. For example, the 

estimated jump components for the CNP stock are 124.86 and 23.323 in the pre-crisis and 

post-crisis periods using BV, while their estimated values are 377.450 and 765.330 when 

using TBV. The jump components produced by these two estimators show similar volatility 

levels for particular stocks. For example, GILD and BSX are the stocks with the highest 

jump components on average in the pre-crisis and post-crisis periods, regardless of the 

estimator used. 

Table 4.6 describes the descriptive statistics for stocks’ jump components in the pre-crisis 

period. The descriptive statistics shows that the XRX stock has a large jump component on 

19/6/2003. This large jump component is primarily caused by the announcement of the 

Initial Jobless Claims Index in the middle of the day. The Jobless Claims index was 

announced to be 421,000 at 1.30pm on 19/6/2003, which was the lowest figure for four 

weeks. The announcement of the news led to an increase in returns from 0.475 to 1.131, 

contributing to the large jump component that day. This news also resulted in a dramatic 

change in returns for the AMGN, UL and GILD stocks on the same day at the same time, 

which made the majority of the contribution to those stocks’ jump components that day. 

The returns for ANGN, UL and GILD increased from 0.101 to 0.247, from 0.027 to 0.054 

and from 0.285 to 0.360 respectively. 

The descriptive statistics also show that the CNP stock has one large jump component that 

occurred on 11/10/2002. This large jump is mainly caused by company news – namely, 

Standard & Poor lowered CenterPoint Energy’s corporate credit rating from BBB+ to BBB 

on 11/10/2002 because of its large debt. This announcement resulted in a dramatic fall in 

its stock price from 2.198 at the end of 10/10/2002 to -2.153 at the end of 11/10/2002. 
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However, the announcement of negative news for CNP does not seem to cause large 

fluctuations in prices for other stocks. Therefore, although announcements in both 

macroeconomic news and company-related news produces jumps in stock returns, the 

impact of macroeconomic news is wider as it normally affects more than one stock. The 

impact of macroeconomic news is more predictable, as announcements are usually made 

seasonally; company-related news, however, typically comes as unpredictable one-off 

announcements.  

The variance in jump size for the XRX stock is the largest and the second largest in Tables 

4.6 and 4.8 (96.395 and 145.800 respectively). Similarly, XRX’s mean is the second largest 

among all the stocks in both Tables 4.6 and 4.8, and many of its daily jump components 

are over 50 in Figure 4.1. This indicates that XRX is an extremely volatile stock with 

relatively large jump components and high variance compared to other stocks. However, 

CNP is less volatile than XRX despite its high maximum jump components (124.86 and 

377.450). (These are visible in the left-hand panels of Tables 4.6 and 4.8.) As can be seen 

from the mean and mode of CNP’s jump size, most of its jump components are much 

smaller than its maximum value, as the mean jump size is only 2.2. Its mean, variance, 

mode and maximum value for 90th percentile jump components are smaller than many 

stocks in Table 4.6, and most of its daily jump components (see Figure 4.1) are under 5. 

The mean and mode of the jump size for stock GILD are the largest in Table 4.6, and this 

stock’s maximum value and variance are above average in the left panel, showing that it is 

volatile. The mean, mode, variance and the maximum value of the 90th percentile jump 

components for GILD (the right side of the table) are the highest, with 2.864, 0.213, 6.718 

and 10.323, reflecting the results for the full data set (the left side of the table). In addition, 
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the scatter plot for GILD (see Figure 4.2) shows that the daily jump components displayed 

the most volatility in 2000, with many TBV-estimated jumps over 50 occurring that year. 

The top 10% jump sizes for the XRX, TEF and CNP stocks would appear to be large in the 

pre-crisis period, as their variance fell by more than 95% when excluding the top 10% 

extreme values in Tables 4.6 and 4.8.  

In the post-crisis period results in Table 4.7 (BV), the jump components with the highest 

maximum value and variance are from AEE, yet the jump components decreased 

dramatically from 70.683 and 18.169 to 1.084 and 0.052 before and after the crisis 

respectively when excluding the 10% most extreme values. Similar patterns can be found 

for TBV in Table 4.9 and Figure 4.4. Most of the jump components for AEE are under 2, 

although it has a few daily jumps close to 10 (see Figure 4.4).  

In Tables 4.7 and 4.9 (BV and TBV), the BSX stock has the largest mean jump component 

values (1.208 and 1.799) in the left panel, and the largest maximum values (2.107 and 

3.272), average values (0.833 and 1.192) and variance (0.214 and 0.523) for the jump 

components in the right panel. This is also visible in Figure 4.4. 

It is clear that the maximum value, mean and variance for the jump components for the UL 

stock are the smallest in both the full and 90th-percentile data using BV, which are 0.882, 

0.161, 0.020 and 0.288, 0.122, 0.004 (see Table 4.7). Also, UL’s jump components 

estimated via TBV have the lowest maximum, mean and mode values the 10% extreme 

values are excluded, as shown in the right-hand panel of Table 4.9. Furthermore, Figure 4.4 

shows that the UL has the most stable and smallest jumps among all the stocks on average 

(see Figures 4.4 to 4.6). The top decile for the AEE, CNP, EXC, T and XRX stocks appear 

to be have volatile jump components in the post-crisis period, as the variance for these 



179 

 

stocks decreases by more than 95% when taking out the 10% most extreme values (see 

Tables 4.7 and 4.9).  

The tables and figures in both the current and previous sections show that the stocks from 

the IT sector are on average more volatile than the stocks from other sectors, especially in 

the pre-crisis period. In the next sub-section, we compare the volatility levels for stocks in 

different financial regimes in order to examine the factors that contribute to high volatility. 

The impact of news announcements on stocks with different volatility levels (IT sector 

stocks versus other sector stocks) are compared in the remainder of Section 4.4.1 and in 

Section 4.4.2. 

 

4.4.1.3 Comparison of stocks in different time periods 

In this section, we compare in detail the descriptive statistics for the jump components 

estimated using BV and TBV in different years. By comparing the jump components in 

different years, we can investigate how market-level and company-related news 

announcements affect the jump components in different market conditions (e.g. the bear 

market caused by the burst of the tech bubble). In Figures 4.1 to 4.3, there are more jumps 

for most stocks in 2000-2002 and 2007. This is because a large financial market correction 

started in 2000 for the unusually high stock evaluations caused by the bull market in the 

late 1990s. The correction started with the bankruptcy of the energy company Enron and 

many internet-based companies such as Webvan, Exodus Communications and Pets.com 

in 2001. The bear market reached its low point in 2002, with the Dow Jones Industrial 

Average and Nasdaq reaching 7286.27 and 1114.11 in October 2002. In addition, the 
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terrorist attacks on 11 September 2001 resulted in a heavy downturn in the stock market as 

investors were unsure about the impact of the attack on the American economy.   

The 2008 financial crisis developed from problems in the subprime mortgage market in 

2007. The subprime mortgage market crisis began with the bankruptcy of the American 

real-estate investment trust New Century in April 2007, causing the Federal Reserve to 

supply short-term credit to banks with sub-prime mortgages. On 15 September 2008, the 

subprime mortgage market crisis developed into an international financial crisis as the 

Lehmann Brothers investment bank went bankrupt. Stock prices changed dramatically in 

2007 due to the impact of the subprime mortgage crisis. Therefore, we examine the years 

with large jumps separately, such as the bear market from 2000 to 2002 and the year of the 

sub-prime mortgage crisis in 2007, as the stock returns are more volatile in these years. The 

jump components estimated using BV and TBV for different periods in the pre-crisis period 

are shown in Tables 4.10 and 4.12 respectively.  

For the post-crisis period, the global financial crisis is regarded as having come to an end 

in June 2009, as the recession, which began in December 2007, reached its end and financial 

stocks began recovering from their dramatic drops during the crisis. However, the European 

sovereign debt crisis occurred at the end of 2009, caused by the failure to repay, or refinance, 

government debts for some members of the European Union. The debt crisis was only 

pronounced in a handful of Eurozone countries such as Greece, Cyprus, Ireland, Italy, 

Portugal and Spain before 2011, but it resurfaced in May 2011 and started affecting the 

whole Eurozone because of rising concerns about the Greek government debt crisis. 

European Union leaders agreed on bailout programmes to help countries with debt crises, 

especially Greece. The first, second and third economic adjustment programmes for Greece 
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were implemented between May 2010 and February 2012; March 2012 and June 2015; and 

July 2015 and August 2018. Although some literature (e.g. Allegret et al. 2017) suggests 

that the impact of the European debt crisis on US stock markets was limited, some effects 

were certainly present given that the European Union is the second largest economic union 

in the world and is closely linked to the US economy (BBC, 2011). Therefore, we examine 

the descriptive statistics for jump components estimated using BV and TBV in Tables 4.11 

and 4.13 for two time periods: (i) the recovery from the financial crisis despite concerns 

about the European sovereign debt crisis from July 2009 to June 2010; and (ii) the 

resurfacing of the crisis in the whole Eurozone and the implementation of bailout 

programmes in the EU from July 2010 to December 2016.  

[Insert Tables 4.10 to 4.13 here] 

Tables 4.10 and 4.11 show the descriptive statistics for jump components estimated using 

BV for different stocks for the pre-crisis and post-crisis periods. Tables 4.12 and 4.13 do 

the same for TBV. Tables 4.10 and 4.12, illustrated in Figures 4.1 to 4.3, show that the 

jumps are larger for all stocks from 2000 to 2002 than for the pre-crisis period as a whole. 

In the years immediately following the millennium, the stock market was in the process of 

correcting for the unusually high stock evaluations that characterised the dot-com bubble. 

The four stocks with the largest jump components in the pre-crisis period are GILD, XRX, 

YHOO and AAPL with 4.388, 3.771, 2.844 and 2.466 respectively, as shown in Table 4.10. 

They have much higher jump components between 2000 and 2002, with 7.535, 5.715, 6.058 

and 4.585 respectively. This indicates that investors may have been more sensitive to news 

announcements during the most uncertain period in the stock market after the dot-com crash. 

XRX, YHOO and AAPL are from the Information Technology sector, which has relatively 
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large jump components as a whole. The burst of the dot-com bubble had the biggest effect 

on IT companies (Andersen et al. 2010), which is reflected in the sector’s high jump 

components. 

As shown in Table 4.11, after the financial crisis, the stock prices of XRX and YHOO 

continued to have high average jump components (1.122 and 1.081), while other IT 

companies stabilised. These two stocks’ mean jump components are only exceeded by 

those of BSX (healthcare). This may be because the two companies faced significant 

declines in profits between 2009 and 2016 compared with firms in the same sector such as 

AAPL (Macrotrends.net 2020). Table 4.13 shows that the equivalent results for the 

threshold bi-power variation method are the same. 

In addition, when using the BV method (as shown in Tables 4.6, 4.7, 4.10, and 4.11), GILD 

and BSX are the most volatile in the pre-crisis and post-crisis periods. GILD’s large average 

jump components in the pre-crisis period are mainly the result of a dramatic increase in its 

stock prices from -0.093 to 6.422, which occurred between 1.10 pm and 1.20 pm on 3rd 

January 2001 after the announcement of US interest rate cuts. The most volatile period for 

BSX during the post-crisis period occurred between 20th October to 8th November 2010. 

BSX’s stock price increased dramatically from -2.31 to 1.76, likely as a result of the 

announcement of the company’s strong performance during the third fiscal quarter on 19th 

October 2010. However, the positive impact of this announcement was not long, as BSX’s 

returns dropped to -0.94 the following day. This may be due to the announcement from the 

Initial Jobless Claims index on 2first October that the US unemployment rate had increased 

to more than 9.5%. This continued to have a negative impact on the firm’s stock prices until 

the Initial Jobless Claims announcement on 29th October 2010. This suggests that 
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macroeconomic news announcements may have a notable and lasting impact on stock 

market volatility. These effects may be predictable due to the scheduled weekly and 

monthly announcements of news from various sources.  

Tables 4.11 and 4.13 show that stocks’ average jump components are generally higher 

between July 2009 to June 2010 for most companies, with the exception of GILD. Although 

the US National Bureau of Economic Research (NBER) announced in June 2009 that the 

US recession had ended and thus that the financial crisis was considered to be over, the 

market did not stabilise until January 2010. Many stock prices fluctuated during the 

recovery stage prior to January 2010, resulting in large jump components. GILD has high 

average jump components compared to other stocks from July 2009 to June 2010, which 

may be a result of the company’s acquisition of several other pharmaceutical firms during 

this time. 

 

4.4.1.4 Comparison of daily jump component size 

While TBV is more frequently used in recent literature (e.g. Haugom & Ullrich, 2012; 

Vortelinos & Saha, 2016; Clinet & Potiron 2017; Hizmeri et al., 2019), its jump 

components show similar patterns in different financial regimes to CTBV. Corsi et al. (2010) 

suggest that CTBV is less biased at estimating jump components compared to TBV; 

therefore, the remainder of this chapter focuses on results estimated using CTBV. In this 

section, we compare the size of the jump components for different stocks in different 

financial regimes so that this information can be incorporated into the analysis of the effect 

of news announcements on different stocks in the following sections. Table 4.14 presents 



184 

 

the size of the jump components estimated using corrected threshold bi-power variation 

(CTBV). The results show that the average daily jump components for most stocks (with 

the exception of AEE) are higher before the financial crisis than afterwards; this is similar 

to the results in Tables 4.6 to 4.13 and Figures 4.1 to 4.3. For AEE, days with high jump 

components, some of which approach 10, are more frequent after the crisis. This can also 

be seen in the TBV scatter plots for AEE (see Figures 4.1 and 4.4).  The jump components 

in the post-crisis period in Figure 4.4 are generally larger and more frequent than those in 

the pre-crisis period in Figure 4.1.  

[Insert Table 4.14 here] 

In addition, KO is the only stock in Table 4.14 with no daily jump components greater than 

5 before the financial crisis, and it has only one daily jump greater than 5 in the post-crisis 

period. The equivalent results for TBV, as shown in Figures 4.3 and 4.6, are similar. 

However, KO’s maximum jump components estimated using TBV (10.904 and 8.540 for 

the pre-crisis and post-crisis periods respectively) in Tables 4.8 and 4.9 are slightly higher 

than the CTBV values (less than 5 and 10 respectively) shown in Table 4.14. This result is 

in line with Corsi et al.’s (2010) claim that the TBV tends to overestimate jump components. 

The authors developed CTBV in order to correct the biases present in TBV.  

The CTBV jump components in Table 4.14 also reveal that the XRX, YHOO and BSX 

stocks are the most volatile stocks before the crisis, as they each have at least eight days 

with jump components over 5. These stocks are even more volatile after the financial crisis, 

as the days with large jump components become more frequent. GILD is also more volatile 

compared to other stocks in the post-crisis period as it has 32 days with jump components 

higher than 5; its pre-crisis volatility, however, is less pronounced than that of XRX, YHOO 
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and BSX. This indicates that the patterns observed for TBV, such as IT sector stocks’ 

behaviour in response to the burst of the dot-com bubble, are also present in estimations 

produced by CTBV. The main difference between the two estimators is that TBV tends to 

produce higher values, which are mitigated in CTBV (Corsi et al. 2010). 

 

4.4.1.5 Section summary 

In this section, we examined the impact of news on jumps and trading volume for stocks in 

different financial regimes. The results show that IT sector stocks tend to have higher 

trading volumes and volatility, likely caused by news announcements, but that they also 

have a relatively small number of jumps. In addition, the IT sector stocks XRX and YHOO 

have more extreme jumps than most stocks (Section 4.4.1.4). This provides evidence that 

market-level news announcements may not produce large numbers of jumps; rather, such 

announcements may cause dramatic changes in volatility, at least for IT sector stocks 

(Section 4.4.1.1). In addition, we find that jump components estimated using TBV fall after 

the method’s bias has been corrected (i.e. when using CTBV), as shown in Section 4.4.1.4, 

which is in line with Corsi et al.’s (2010) findings. By examining the impact of news on 

jump components, we find that macroeconomic market-level news has a longer (Section 

4.4.1.3), wider and more seasonal (Section 4.4.1.2) impact on stock volatility compared to 

company-related news, which tends to have a one-off impact on fewer stocks (Section 

4.4.1.2). Throughout this section, we have studied the descriptive statistics and size of jump 

components in different financial regimes and individual years. We have found that the 

jump components from 2000 to 2002 are larger than average for the pre-crisis period, which 

suggests that investors respond to news more strongly when the market is uncertain. 
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4.4.2 Second-moment market responses to news 

4.4.2.1 The effect of macroeconomic news 

In this section, we first examine the impact of news on the market’s second-moment 

responses by testing how news surprise from individual news outlets affects stocks’ jump 

components in different financial regimes. We then test the impact of macroeconomic news 

as a whole (from all news outlets) on individual stocks by examining the descriptive 

statistics for jump components that co-occur with macroeconomic news. The impact of 

individual news outlets is examined based on equations (4.2) and (4.3) from Section 4.3.1, 

which show the regressions of the jump components on individual news outlets and all 

news outlets respectively. The jump components are estimated via corrected threshold bi-

power variation (CTBV) of realised volatility. CTBV is used here as Corsi et al. (2010) 

suggest that it improves the performance of threshold bi-powder variation (TBV) in 

estimating jump components. 

[ Insert Tables 4.15 and 4.16 here] 

Tables 4.15 and 4.16 show the p-values for the realised jump components for high-volume 

and low-jump-frequency stocks regressed on news surprise, measured according to 

individual news outlets (as shown in equation (4.2) in Section 4.3.1) before and after the 

financial crisis respectively. Variables that were not significant at the p < 0.05 level for any 

of the stocks were removed from the tables, leaving only news sources for which at least 

one stock has a significant p-value for positive or negative news surprise.  

Tables 4.15 and 4.16 show that there are more stocks that are significantly affected by 

positive news surprises from Capacity Utilisation (CPTICHNG) and Initial Jobless Claims 
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(INJCJC) news than other types of news in the pre-crisis period. The jump components for 

17 out of 21 stocks are significantly affected by these two news surprises. The jump 

components for the BT stock are the most affected by positive surprises from CPTICHNG 

and INJCJC, with coefficient values of 0.730 and 0.305 respectively for these two news 

outlets. The jump components for XRX, CNP, BT and BSX are affected to a greater degree 

by news surprises than those for other stocks. For example, the jump components for XRX 

are affected by many news surprises, including positive news surprises from NAPMPM 

and GDP PIQQ (estimated coefficients of 0.588 and 0.924 respectively) and negative news 

surprises from NHSPSTOT and NAPMPMI (estimated coefficients of 0.480 and 0.421 

respectively). The positive surprises from the news outlets CPTICHNG, LEI CHNG and 

CONSSENT and the negative surprises from MAPMNMAN and PITLCHNG have a 

significant impact on CNP’s jump components, with coefficients all larger than 0.4. In 

addition, positive surprise from the outlet CPTICHNG on BT and negative surprise from 

GDPCTOT on BSX have significant effects, with coefficients of 0.730 and 0.841 

respectively.  

Comparing Tables 4.15 and 4.16, it is apparent that the jump components for stocks in the 

post-crisis period are affected by a wider range of news than those in the pre-crisis period. 

For example, the jump components of the AAPL and CSCO stocks are significantly 

affected by three and four news surprises respectively in the pre-crisis period, yet this 

increases to 15 and 19 news surprises respectively in the post-crisis period. The negative 

surprise for the University of Michigan Consumer Sentiment Index (CONSSENT) has a 

significant impact on the jump components for 17 stocks in the post-crisis period, the 

highest coefficient being that for YHOO (0.210). UL is influenced by news surprise the 
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least, as its jump components are only affected by positive surprises for NAPMPMI and 

PCE CMOM, and negative surprise for CHPMINDX, with respective estimated 

coefficients of 0.061, 0.050 and 0.042, all of which are smaller than 0.1.  

The jump components for XRX, YHOO and BSX, however, are noteworthy as they are 

affected by a large range of news surprises in the post-crisis period, but also to a sizeable 

degree. They are significantly affected by 18, 21 and 22 news surprises respectively, and 

five, four and nine of their respective estimated surprise coefficients are greater than 3. 

Similarly, the jump components for AEE are affected by more types of news surprises (24) 

than any other stock, and only two of the news surprises within those 24 are smaller than 

0.1. The results also show that the announcement of news does not have a different impact 

on high-volume stocks such as PFE and EXC compared to low-jump stocks such as BT and 

TEF.  

In summary, the findings indicate that the jump components of high-volume and/or low-

jump-frequency stocks are significantly affected by positive surprises from the Consumer 

Price Index (CPI CHNG) and Initial Jobless Claims (INJCJC) index before the financial 

crisis, and by negative surprises from the University of Michigan Consumer Sentiment 

Index (CONSSENT) in the post-crisis period. XRX and BSX’s jump components are more 

likely to be affected compared to those of other stocks. In addition, jump components are 

sensitive to a wider variety of news announcements after the financial crisis than prior to 

it. Finally, we did not find significant evidence that the announcement of news has a 

different impact on high-volume stocks compared to low-jump-frequency stocks.  

[Insert Figures 4.7 to 4.14 here] 
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Observation of the figures reveals that the jump components vary considerably between 

2000 and 2002 in the pre-crisis period due to the burst of the dot-com bubble. It is clear 

that many jumps during this period occur on the same day as news announcements. There 

are also more co-occurrences of jumps and news in 2009-2010 than for the whole period 

after the financial crisis, as this is when US financial markets were recovering from the 

crisis and subsequent recession. 

However, the number of daily jump components that may be affected by co-jump-related 

news (see Figures 4.7 to 4.14) is limited. As reported in previous literature, different types 

of stocks are affected by different news outlets. For example, Boyd et al. (2005) find that 

utility stocks and cyclical stocks have different responses to announcements of 

unemployment rates. In the present study, co-jumps occur relatively infrequently across the 

entire 16-year span of the data set, and they are concentrated in particular periods of time. 

Specifically, the largest concentrations of co-jumps occur between 2000 and 2002 in the 

pre-crisis period, and between June 2009 and July 2010 in the post-crisis period. This 

suggests that there are more news-related co-movements when the market is not very stable, 

such as during the burst of the dot-com bubble or the post-recession recovery. In addition, 

the figures show that there are some co-jumps that do not appear to be related to 

announcements of macroeconomic news. This indicates that there are other factors that may 

cause co-movements between stock prices. These factors will be discussed in the following 

section.  

[Insert Table 4.17 here] 

In the pre-crisis period, the stock AEE has the smallest mean value and variance for jumps 

that are related to news (as seen in Table 4.17). The proportion of its jump components that 
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co-occur with news is the third smallest in the data set at 0.028. This reflects the overall 

jump results from Figure 4.1 and Table 4.8; the latter shows that 90% of the jump 

components estimated via TBV for AEE are lower than 1.831. Similarly, news is related to 

a relatively small proportion of jumps for the stock CNP at 0.024, which is the smallest 

proportion in the data set for the pre-crisis period. However, its news-related jumps’ mean 

value and variance are 1.146 and 0.819, which are relatively large. Similar effects can be 

seen for this stock’s jumps as a whole in Table 4.8, where the average jump size for CNP 

in the pre-crisis period is 3.616. This is relatively large compared to the majority of stocks. 

In summary, both AEE and CNP have small proportions of news-related jumps, but CNP 

appears to be affected by news announcements to a greater degree because of its larger 

jump components. 

In addition, the PFE has the highest proportion of jumps caused by news (0.257) in the pre-

crisis period, while BSX has the highest jump size mean and variance (2.941 and 23.154). 

Similar figures can be found for the jump components as a whole in Table 4.14 and Figures 

4.7 and 4.10. For example, BSX has 18 daily jump components estimated via CTBV that 

are greater than 5 in Table 4.14, while PFE only has two days with jump components greater 

than 5. In Figures 4.7 and 4.10, most of the jumps caused by news for BSX are more volatile 

than for PFE, especially in 2000-2002. This suggests that the three factors are not 

completely correlated. 

In the post-crisis period, it is clear that IBM has the lowest proportion of jumps explained 

by news (0.011). YHOO has the highest mean and variance for news-related jumps (1.299 

and 9.969), but its proportion of news-related jumps falls close to the middle of the range 

(0.193). This is because YHOO has many days with large jump components, as shown in 
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Table 4.14, and many of them co-occur with news in the post-crisis period (see Figure 4.12). 

VOD has the highest proportion of jumps caused by news in the post-crisis period at 0.352, 

but its mean jump value and variance are fairly low at 0.251 and 0.044 (see Table 4.17). As 

shown in the right-hand panel of Table 4.14, VOD’s daily overall jump components 

estimated via CTBV are mostly less than 5, and their mean size and variance when related 

to news are not as large as those for YHOO (as shown in Table 4.17 and Figure 4.12). This 

again indicates that the proportion of news-related jumps is not necessarily correlated with 

jump size and variance, and that different stocks show different levels of sensitivity to news 

announcements. That is, some stocks frequently respond to market shocks, including news 

announcements, while others do so rarely but on a larger scale. 

 

4.4.2.2 The effect of co-jumps and other types of news 

In this section, we first address some of the factors other than news surprise that may cause 

co-jumps and may influence jump components. Second, we investigate how co-jump-

related news affects jump components by examining the descriptive statistics. Figure 4.15 

shows how company news and overseas market news can affect the jump components 

estimated by CTBV from the first half of 2016. The surprising success of the ‘Leave’ 

campaign in the UK referendum on leaving the European Union (Brexit) resulted in 

dramatic movements in financial markets on 23rd June 2016, whose effects have persisted 

to the present. The price of pound sterling fell to a low point on 6th July 2016, which also 

led to a decrease in the price of stocks for many global companies such as AAPL, INTC 

and IBM. These jumps can be seen in Figure 4.15.  
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[Insert Figure 4.15 here] 

In addition, stock prices are not only affected by overseas news, but also by domestic news 

related to specific companies within a particular sector. For example, Apple’s (AAPL) 

impressive performance in Q2 2016, reported by the firm on 27/7/2016, resulted in an 

increase in stock prices for other IT sector companies like INTC and IBM, as seen in Figure 

4.15. Although the jumps that co-occur with major overseas news and company news can 

cause co-jumps across different stocks, the number of co-jumps related to US 

macroeconomic news (that is, the type of news outlets analysed in this chapter and shown 

in Figures 4.7 to 4.14) tend to have predictable, seasonal patterns, as they are usually 

announced either weekly or monthly. In contrast, co-jumps caused by overseas and 

company news are normally the result of a one-off co-movement between different stocks. 

In the remainder of this section, we look at how news, including market-level news and 

company-related news, may occur with co-jumps in different stocks, and how these co-

jumps may help explain jump components. In the next section, the impact of news-related 

co-jumps on volatility estimation and forecasting for different stocks is considered.  

[Insert Tables 4.18 and 4.19 here] 

Tables 4.18 and 4.19 show the jump components that display co-movement estimated using 

CTBV before and after the financial crisis for the six lowest-jump-frequency and highest-

volume stocks overall (data subset one) and the most extreme for each sector (data subset 

two). Each vertical panel within the tables (i.e. the overall top six and sector-specific stocks 

in terms of high volume and low jump frequency) represents a different co-jump test using 

a different configuration of stocks. The co-jumps are tested via the MCP co-jump test 
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(Bollerslev et al. 2008). AAPL, EXC, GILD, KO and T are the stocks with the highest 

volume in each sector during the pre-crisis period and AAPL, EXC, PFE, KO and T are the 

same for the post-crisis period – six stocks in total (see Table 4.19). We are interested in 

how jumps for stocks in one sector move simultaneously with those in other sectors, hence 

we estimate the co-jumps for the six stocks referred to above, which represent each sector 

of the market. 

From Figures 4.7 to 4.14 and Tables 4.18 and 4.19, we can see that co-jumps can capture a 

greater proportion of changes in stock prices if they are primarily estimated based on stocks 

from the same sector. For example, the proportion of jumps that co-occur with co-jumps 

for AAPL in the pre-crisis period in Panel B of Table 4.18 is 0.106. This panel also includes 

the other six stocks from the IT sector. This proportion is higher than the results for AAPL 

in the same period in Panel A in Table 4.18, which contains fewer other stocks from the IT 

sector. Equivalent effects occur for CSCO and MSFT. Similarly, the results in Table 4.19 

show that co-jumps can capture a greater proportion of changes in stock prices when more 

stocks from the same sector are included. This is despite the fact that the majority of the 

stocks in this subset are from other sectors (e.g. the proportion for AAPL in the pre-crisis 

period in Panel B is higher than that in Panel A). In other words, including more stocks 

from the same sector seems to improve the results, regardless of the number of stocks from 

other sectors that are included. This suggests that co-movements exist between stocks 

caused by macroeconomic news announcements whose effects are more localised to a 

particular sector compared to others; this is more likely to be captured when including more 

stocks from the same sector. The results from Section 4.4.2.1 reinforce this, as we found 

that negative surprise from the news outlets SPCS20SM and MTIBCHNG had a significant 
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impact on many stocks in the IT sector in the post-crisis period, but had little effect on 

stocks from other sectors. 

Alternatively, it is possible that company-specific news plays a bigger role in influencing 

stock prices of many firms in the same sector. It is understandable that news announcements 

from one company will have a major effect on firms that rely on that company for parts or 

systems, or that compete with it for market share. However, the data discussed above also 

show that company news is often unpredictable, and that its effects do not last for a long 

time in comparison to regular, periodic macroeconomic news announcements, potentially 

restricting the usefulness of company news for volatility forecasting. In the remaining 

sections of this chapter, we will limit our analysis to co-jumps that co-occur with regular 

macroeconomic news announcements.  

 

4.4.2.3 The effect of news-related co-jumps 

In the previous section, shocks from both regular macroeconomic news and irregular 

company news were considered. In this section, we focus only on regular macroeconomic 

news, the results for which are shown in Tables 4.20 and 4.21. These tables describe the 

results for the jump component regressions on news surprises which co-occur with co-

jumps. Co-jumps are generated using the MCP co-jump test (Bollerslev et al. 2008). Thus 

far, we have seen that the number of co-jumps between stocks that occur at the same time 

as macroeconomic news announcements is relatively small. In order to study this type of 

co-jump, we use the regression in equation (4.3) to estimate the coefficients (see Section 

4.3.1). In equation (4.3), the positive and negative same-sign news surprises for the 
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significant news outlets in Tables 4.15 to 4.16 are combined into two independent variables: 

positive and negative news surprise. This helps avoid the problem that the number of 

observations of news surprise captured by co-jumps for a single news outlet are too few to 

be considered as a separate independent variable. The estimated regression coefficients for 

the pre-crisis and post-crisis data are shown in Tables 4.20 and 4.21.  

[Insert Tables 4.20 and 4.21 here] 

In Panel B of Table 4.20, positive news surprise contributes to the jump components of 

AAPL and INTC from the IT sector when they are considered as the top two stocks from 

this sector, with estimated coefficients of 0.167 and 0.110 in the pre-crisis period and 0.066 

and 0.093 in the post-crisis period. These coefficients are higher than those generated in 

the overall top-six stocks calculation in both panels of Table 4.21. This suggests that the 

co-jumps are more likely to co-occur with positive news surprise when they are estimated 

together with a diverse range of stocks from different industrial sectors (Table 4.20; stocks 

from each sector) instead of only with stocks mainly from the IT sector (Table 4.21; overall 

top six stocks).  

This finding is in line with Bollerslev et al. (2008), who suggest that co-jumps based on 

stocks from a diverse range of industrial sectors are good at capturing the impact of macro-

economic news announcements. However, this appears to contradict the results from the 

previous section, in which the proportion of co-jump-related jump components were higher 

for IT stocks when considered together with a number of other stocks from that sector. We 

interpreted this in the previous section by comparing the possible influence of regular 

macroeconomic news to that of one-off company news. The results here make a stronger 

case for the effect of company news. In the previous section, all co-jumps were considered, 
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but here, the data are restricted only to co-jumps that co-occur with macroeconomic news. 

The strong results for the cluster of IT sector stocks in the previous section are not borne 

out in the more limited data set here, suggesting that the findings from the earlier analysis 

likely cannot be attributed to the effect of regular macroeconomic news that has a greater 

impact on certain sectors. This raises the question of the potential impact of other factors 

on co-jumps such as one-off company-specific news. This kind of news may have a 

stronger but more localised influence on stock prices within a particular sector. 

The generally larger coefficients in the left-hand column of Table 4.20 indicate that news 

surprises captured by co-jumps are better at explaining the jump components for the pre-

crisis period than for the post-crisis period. This is the case for the vast majority of stocks, 

with the exception of AEE (Utilities). This complements the data from Table 4.15, which 

shows that there are fewer news outlets with a significant impact on stocks’ jump 

components in the pre-crisis period compared to the post-crisis period. For example, there 

are only three estimated news surprise coefficients for AAPL in the pre-crisis period that 

are significant (see Table 4.15), but this figure is 19 for the post-crisis period (Table 4.16). 

However, all of these post-crisis coefficients are smaller or equal to 1.80, yet the three pre-

crisis coefficients are all greater than 2.4. Table 4.20 acts as an aggregate of the co-jump-

related news surprises, and it is clear that the collective effect of the co-jumps that occur 

with news surprises is higher before the crisis than after it. In other words, similarly to 

Table 4.15, the co-jump-related collective impact of news surprises is greater before the 

crisis than after it. 

The one exception to this pattern, AEE, has a small number of very large jumps captured 

by co-jumps after the crisis (e.g. daily jump components of 70.683 [Table 4.7; BV] and 
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82.358 [Table 4.9; TBV] on 17/11/2015), which increases the significance value of the 

estimated coefficient dramatically. This finding is important when considering the impact 

of news surprise on stock market volatility during different periods of time and market 

conditions, as the data suggest that the relationship between co-jumps and news surprise 

differs between periods with different economic conditions. 

 

4.4.3 The impact of news and co-jumps on forecasting models 

In this section, we examine the impact of news and co-jumps on the modified HAR, HAR-

TJ and HAR-CTJ volatility forecasting models, which were shown in equations (4.7), (4.8) 

and (4.9) in Section 4.3.2. We do this by comparing the results to those of the standard 

HAR, HAR-J and HAR-TJ models, shown in equations (4.4), (4.5) and (4.6) in Section 

4.3.2, which we use as a benchmark. Table 4.22 presents the forecasting results for the 

standard HAR, HAR-J and HAR-TJ models. It shows that the forecasting results for almost 

all stocks are better in the post-crisis period than in the pre-crisis period. This may be due 

to the fact that the high volatility caused by the burst of the dot-com bubble in the pre-crisis 

period is unusual and does not continue into later years. This suggests that the data from 

2000 to 2002 is less useful for forecasting, as it affects the results for the whole of the pre-

crisis period. 

An example of this issue can be seen in AAPL, which is one of the most active IT 

companies and whose value is closely related to the development of new technology 

compared to firms from other industrial sectors. AAPL has the worst forecasting results 

before the financial crisis, shown by its high mean standard error (MSE) values, probably 
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because it is affected the most by the burst of the tech bubble. This can also be seen in its 

trading volume, shown in the left-hand panel of Table 4.5 in Section 4.4.1.1, which is the 

highest among all the stocks in the pre-crisis period. Large trading volumes often cause 

dramatic changes in volatility, presenting difficulties for the HAR model’s ability to predict 

stocks’ future volatility. As shown in the right-hand panel of Table 4.5, AAPL’s trading 

volume falls after the financial crisis, resulting in a more stable volatility pattern and 

yielding better forecasting results. Similar forecasting patterns can be found for the other 

IT sector stocks YHOO and ORCL, as they have large MSEs in the pre-crisis period (8.100 

and 7.388 respectively for the standard HAR-TJ model), but these fall to 1.951 and 0.346 

in the post-crisis period. 

[Insert Tables 4.22 and 4.23 here] 

By comparing the results in Tables 4.22 and 4.23, it is clear that considering the impact of 

news in forecasting models can improve predictions for many stocks. More than half of the 

stocks have better forecasting results in the pre-crisis period from the modified HAR-TJ 

model, which considers news-related jump components separately, than from the standard 

HAR-TJ model. Nine out of 21 stocks show better forecasting results from the modified 

HAR-TJ model in the post-crisis period. The HAR-TJ model shows the greatest 

improvements after modification, but similar results can be seen for the HAR-TCJ model. 

Nearly half of the forecasting results in the pre-crisis period from the HAR-TCJ model 

improve after modification. The gains in forecasting accuracy are particularly pronounced 

for stocks with very large news-related jump components. For example, most stocks from 

the IT sector, such as XRX, YHOO, ORCL, AAPL and INTC, have relatively large jumps 

overall from 2000 to 2002, as shown in Figures 4.1 to 4.3 from Section 4.4.1.2. This 



199 

 

indicates that considering news announcements in HAR-class models can improve the 

usefulness of data from highly volatile periods for forecasting, helping to solve the problem 

identified in the benchmark models above. 

These results are reflected in IT stocks’ large average news-related jumps (typically higher 

than 1) in the pre-crisis period, as shown in Table 4.17 in Section 4.4.2.1. Table 4.23 shows 

that separating stocks’ jump components based on whether they co-occur with news 

surprises improves the pre-crisis forecasting results for all these stocks in at least one of the 

three HAR-family models. In addition, YHOO and BSX have relatively large average 

news-related jumps in the post-crisis period (see the right-hand panel of Table 4.17); the 

forecasting results for these stocks also improve in the modified version of the HAR-TJ 

model. Therefore, the forecasting results in Table 4.23 suggest that for many stocks, 

especially those with large news-related jump components, the modified versions of the 

HAR-family models that consider these large news-related jump components separately 

from other jump components yield better forecasting results. 

[Insert Tables 4.24 and 4.25 here] 

Comparing the results in Table 4.22 (benchmark HAR-family models) to those in Tables 

4.24 and 4.25 (HAR-family models modified to account for the impact of news that co-

occurs with co-jumps), we see that the modified models do not yield significant gains in 

forecasting, as the MSE results for most of the stocks in the three tables are similar to one 

another. We showed in Section 4.4.2.3 that co-jump-related news surprises have a 

significant effect on jump components; however, including this information in HAR 

models does not seem to improve forecasting. This may be because the number of co-

movements that co-occur with announcements of news is relatively small. In addition, the 



200 

 

announcement of news (or news-related co-jumps) does not seem to have a different effect 

on forecasting for high-volume stocks such as PFE and EXC compared to low-jump stocks 

such as BT and TEF.  

 

4.5 Conclusion 

In this chapter, we have examined the impact of news and co-jumps on the market’s second-

moment responses. Our results show that market-level news announcements have a 

significant impact on second-market responses for all stocks examined in this study, 

supporting previous literature that looks at similar issues in the S&P 500 index futures, US 

Treasury bond futures and long- and short-term US interest rates (e.g. Ederington & Lee 

1993; Balduzzi et al. 2001; Wongswan 2006; Huang 2018).  

Some stocks, such as BSX and XRX, are significantly affected by a wider variety of news 

announcements, while other stocks, such as VOD in the pre-crisis period and UL in the 

post-crisis period, are influenced by announcements from a narrower range of news outlets. 

We also find that positive surprises from the Consumer Price Index (CPI CHNG) and Initial 

Jobless Claims (INJCJC) index before the financial crisis, and negative surprise for the 

University of Michigan Consumer Sentiment Index (CONSSENT) in the post-crisis period, 

have a significant impact on most stocks’ jump components. The jump components of the 

XRX and BSX stocks are more likely to be affected by macroeconomic news surprises 

compared to those of other stocks. In addition, news announcements from a wider range of 

outlets have a significant impact on jump components after the financial crisis compared to 

before it.  
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When considering co-jump-related news, we find that news surprises significantly affect 

the jump components of each stock when positive and negative news surprises for different 

news outlets are combined. In addition, we find that the co-jumps estimated from stocks 

from a diverse range of sectors are better at capturing the impact of market-level positive 

news surprises. However, some important negative market-level news surprises for IT 

sector stocks are better captured by the co-jumps estimated for these stocks only, as this 

sector seems to be highly sensitive to negative news from the SPCS20SM and MTIBCHNG 

outlets. Also, co-jump-related news has a bigger impact on stocks in the pre-crisis period 

than in the post-crisis period. This can be seen in the relatively large co-movements of 

stocks from 2000 to 2002 caused by the burst of the dot-com bubble. This period is marked 

by the announcement of market-level news that significantly affects the jump components 

for many stocks. Finally, there is little difference between stocks with large trading volumes 

and those with low jumps. 

The benchmark forecasting results from the standard HAR models showed lower mean 

standard errors for the more stable post-crisis period than the relatively volatile pre-crisis 

period. By separating the large macroeconomic news-related jump components from 2000-

2002 from those not related to macroeconomic news, and by incorporating these two 

variables into the (modified) HAR models, forecasting is notably improved for many stocks, 

especially BSX and most of those in the IT sector. This is because the jumps that co-occur 

with macroeconomic news in this period are large and have regular patterns, which means 

they can contribute significantly to forecasting models when considered separately. This 

can improve the usefulness of highly volatile data for forecasting, which may be a potential 

solution for the problem with benchmark models discussed in Section 4.4.3. However, we 
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find that considering co-jump-related news surprises separately does not result in 

significant improvements for most of the forecasting results, since co-jumps are not able to 

capture the majority of market-level news that contributes to jump components.  

The positive and negative news surprises for all news outlets together are significant in 

explaining the jump components; separating the jump components based on this combined 

news surprise value does not significantly improve the forecasting model. This is because 

the impact of news captured by co-jumps is limited, and so these separated jump 

components minimally contribute to the forecasting models.  

This chapter contributes to the literature on stock volatility forecasting by incorporating 

information from macroeconomic news announcements into non-parametric HAR 

forecasting models. By running regressions of jumps on news announcements, we find that 

many news announcements have a significant effect on stocks’ jump components. Thus, 

the forecasting results show that including news announcements in models can improve 

volatility forecasting and should be considered in future research. A useful direction for 

further work in this area would be to incorporate information from macroeconomic news 

announcements into models such as HAR-GARCH (Corsi et al. 2008) that combine 

parametric and non-parametric methods for volatility forecasting. 
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Appendix 

Figures 

Figure 4.1: Jump components estimated using TBV for low jump frequency stocks in the pre-crisis period. 

Some extreme values for the XRX, YHOO, BSX, BT, VOD, TEF, UL and CNP stocks are discarded as they 

are too large to be displayed in the graph. 

 

 

Figure 4.2: Jump components estimated using TBV for stock with high trading volumes in the pre-crisis 

period. 
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Figure 4.3: Jump components estimated using TBV for stocks with few jumps and high trading volumes in 

the pre-crisis period. 

 

 

 
Figure 4.4: Jump components estimated using TBV for low jump frequency stocks in the post-crisis period. 

Some extreme values for each stock are discarded as they are too large to be displayed in the graph. 
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Figure 4.5: Jump components estimated using TBV for stocks with high trading volumes in the post-crisis 

period. Some extreme values for the ORCL, T and EXC stocks are discarded as they are too large to be 

displayed in the graph. 

 

 

 

Figure 4.6: Jump components estimated using TBV for stocks with few jumps and high trading volumes in 

the post-crisis period. Some extreme values for the AAPL, CSCO, INTC and MSFT stocks are discarded as 

they are too large to be displayed in the graph. 
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Figure 4.7: Jumps, co-jumps and news for the top six highest volume stocks overall (subset one) in the pre-

crisis period. More than six stocks are shown here because there is variation in the top six stocks between the 

pre- and post-crisis periods. The list of news outlets is shown in Table 4.4. The co-jumps are estimated using 

the MCP co-jump test. 
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Figure 4.8: Jumps, co-jumps and news for the six stocks with the fewest jumps overall (subset one) in the 

pre-crisis period. More than six stocks are shown here because there is variation in the top six stocks between 

the pre- and post-crisis periods. The list of news outlets is shown in Table 4.4. The co-jumps are estimated 

using the MCP co-jump test. 
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Figure 4.9: Jumps, co-jumps and news for the stocks with the highest volume in each sector (subset two) in 

the pre-crisis period. The list of news outlets is shown in Table 4.4. The co-jumps are estimated using the 

MCP co-jump test. 
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Figure 4.10: Jumps, co-jumps and news for the stocks with the fewest jumps in each sector (subset two) in 

the pre-crisis period. More than one stock per sector is shown here because there is variation in the top stocks 

between the pre- and post-crisis periods. The list of news outlets is shown in Table 4.4. The co-jumps are 

estimated using the MCP co-jump test. 
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Figure 4.11: Jumps, co-jumps and news for the six stocks with the highest volumes overall (subset one) in 

the post-crisis period. More than six stocks are shown here because there is variation in the top six stocks 

between the pre- and post-crisis periods. The list of news outlets is shown in Table 4.4. The co-jumps are 

estimated using the MCP co-jump test. 
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Figure 4.12: Jumps, co-jumps and news for the six stocks with the fewest jumps overall (subset one) in the 

post-crisis period. More than six stocks are shown here because there is variation in the top six stocks between 

the pre- and post-crisis periods. The list of news outlets is shown in Table 4.4. The co-jumps are estimated 

using the MCP co-jump test. 
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Figure 4.13: Jumps, co-jumps and news for the stocks with the highest volume in each sector (subset two) in 

the post-crisis period. The list of news outlets is shown in Table 4.4. The co-jumps are estimated using the 

MCP co-jump test. 
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Figure 4.14: Jumps, co-jumps and news for the stocks with the fewest jumps in each sector (subset two) in 

the post-crisis period. More than one stock per sector is shown here because there is variation in the top stocks 

between the pre- and post-crisis periods. The list of news outlets is shown in Table 4.4. The co-jumps are 

estimated using the MCP co-jump test.
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Figure 4.15: Jumps, co-jumps and news estimated using CTBV for three stocks in the IT sector (AAPL, INTC and IBM) in July 2016. Co-jumps are 

estimated using the MCP co-jump test based on the stocks from data subset one. The annotations show changes in the jump components that co-occur with 

news.
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Tables 

Table 4.1 Volume, realised volatility and jumps for stocks from five industrial 

sectors in the pre-crisis period 

 
Volume 

RV Jumps  
Volume 

RV Jumps 
(in 100000) (in 100000) 

  HC Sector   IT Sector 

ABT 40.467 2.761 183 AAPL 1325.400 8.083 170 

AMGN 93.262 4.851 168 CSCO 575.390 6.158 103 

BSX 60.276 5.378 256 EBAY 201.100 9.779 169 

GILD 222.350 10.101 267 HPQ 104.170 5.476 184 

HUM 12.153 8.914 299 IBM 66.218 2.455 134 

JNJ 76.434 1.692 213 INTC 559.200 5.600 81 

MDT 41.984 2.751 234 MSFT 642.640 3.208 118 

MRK 77.056 2.505 207 ORCL 415.130 7.890 174 

PFE 206.990 2.687 197 XRX 44.267 8.888 224 

UNH 72.903 2.799 231 YHOO 213.030 11.190 145 

  TS Sector   CS Sector 

AMT 20.347 17.360 380 AVP 24.239 3.074 253 

BT 1.806 3.106 512 BFB 8.291 1.501 387 

CHL 7.976 2.521 446 COST 41.027 4.501 240 

CTL 7.832 3.086 244 EL 20.414 3.045 352 

FTR 15.108 5.925 345 KMB 15.931 1.977 189 

LVLT 7.775 24.788 325 KO 107.920 1.908 148 

T 102.950 3.405 170 PEP 41.056 2.192 160 

TEF 13.429 2.023 141 PG 72.613 1.811 174 

VOD 15.800 2.650 94 UL 4.127 1.699 195 

VZ 71.167 2.863 215 WMT 100.190 2.777 171 

  Utilities Sector 

AEE 6.420 1.676 185 EXC 24.714 2.661 213 

AEP 14.680 3.054 213 OKE 9.416 2.822 525 

CNP 16.378 6.320 266 PCG 16.011 6.675 247 

DUK 13.639 3.358 211 PEG 19.820 2.533 207 

ETR 9.995 2.442 244 SO 20.461 2.219 194 

Note. The table indicates the stocks with the highest volume (bold) and the stocks with the fewest jumps (bold and 

italics) in each sector. The six stocks with the highest volume (bold and underline) and fewest jumps (bold, italics 

and underline) overall are also shown. 
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Table 4.2 Volume, realised volatility and jumps for five sector stocks in post-crisis 

period 

  
Volume 

RV Jumps   
Volume 

RV Jumps 
(in 100000) (in 100000) 

  HC Sector   IT Sector 

ABT 66.357 1.124 322 AAPL 891.740 1.661 189 

AMGN 42.244 1.874 330 CSCO 382.300 1.601 258 

BSX 142.750 3.319 218 EBAY 114.680 2.468 285 

GILD 128.09 2.295 310 HPQ 158.740 2.582 267 

HUM 16.158 2.840 405 IBM 42.836 0.938 271 

JNJ 85.417 0.795 312 INTC 386.820 1.719 253 

MDT 52.627 1.33 333 MSFT 411.220 1.474 245 

MRK 116.260 1.289 282 ORCL 206.930 1.621 240 

PFE 330.860 1.397 254 XRX 103.730 3.057 205 

UNH 57.095 2.261 377 YHOO 184.720 2.733 283 

  TS Sector   CS Sector 

AMT 24.741 1.436 329 AVP 53.650 6.704 286 

BT 2.384 0.998 90 BFB 8.034 1.546 332 

CHL 10.468 0.693 247 COST 23.099 1.060 347 

CTL 43.346 1.655 280 EL 20.817 1.676 307 

FTR 113.390 4.161 307 KMB 18.574 0.777 367 

LVLT 17.354 9.506 237 KO 140.820 0.771 308 

T 227.180 0.938 274 PEP 51.211 0.764 355 

TEF 18.631 1.158 92 PG 85.738 0.747 316 

VOD 42.476 0.834 88 UL 11.635 0.582 101 

VZ 139.830 0.974 293 WMT 89.194 0.818 323 

  Utilities Sector 

AEE 15.595 1.278 304 EXC 54.297 1.495 274 

AEP 28.029 1.119 328 OKE 15.812 2.943 230 

CNP 35.506 1.922 213 PCG 24.523 1.130 336 

DUK 28.292 0.969 343 PEG 27.316 1.358 289 

ETR 12.288 1.232 340 SO 41.143 0.861 319 

Note. The table indicates the stocks with the highest volume (bold) and the stocks with the fewest jumps (bold and 

italics) in each sector. The six stocks with the highest volume (bold and underline) and fewest jumps (bold, italics 

and underline) overall are also shown. 
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Table 4.3 Two subsets of stocks used in the analysis 

High volume Low jump frequency 

Pre-crisis Post-crisis Pre-crisis Post-crisis 

Subset one: chosen based on all stocks 

AAPL (IT) INTC (IT) INTC (IT) VOD (TS) 

MSFT (IT) VOD (TS) VOD (TS) BT (TS) 

CSCO (IT) CSCO (IT) CSCO (IT) TEF (TS) 

INTC (IT) MSFT (IT) MSFT (IT) UL (CS) 

ORCL (IT) IBM (IT)  IBM (IT) AAPL (IT) 

GILD (HC) YHOO (IT) YHOO (IT) XRX (IT) 

Subset two: chosen based on each sector 

GILD (HC) PFE (HC) AMGN (HC) BSX (HC) 

AAPL (IT) AAPL (IT) INTC (IT) AAPL (IT) 

T (HC) T (HC)  VOD (HC) VOD (HC) 

KO (CS) KO (CS) KO (CS) UL (CS) 

EXC (Utility) EXC (Utility) AEE (Utility) CNP (Utility) 

Note. Subset one comprises the 13 stocks with the highest volume and those with the fewest jumps in the 

whole data set. Subset two comprises the two stocks with the highest volume and those with the fewest 

jumps for each industrial sector. Stocks GILD, AAPL, INTC, VOD and UL are shown in both subsets. 

Therefore, there are 21 stocks in these two subsets are used in our analysis.  
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Table 4.4 Descriptive statistics for macroeconomic news outlets 

News Description Positive Negative (Absolute values) 

  Mean S.D. Min. Max. Mean S.D. Min. Max. 

ADP CHNG ADP Employment Change 0.749 0.764 0.019 3.696 0.659 0.677 0.038 3.715 

NHSPATOT Building Permits 0.889 0.755 0.017 3.353 0.672 0.482 0.017 1.981 

MTIBCHNG Business Inventories 0.944 0.578 0.464 2.784 0.910 0.632 0.464 3.711 

CGNOXAI% 

Manufacturers’ new orders for non-defence capital 

goods excluding aircrafts 0.607 0.671 0.050 3.172 0.850 0.742 0.050 2.971 

CPTICHNG Capacity Utilisation 0.825 0.505 0.297 2.377 0.900 0.696 0.297 4.457 

USEMNCHG Change in Household Employment 0.765 0.670 0.071 1.904 0.845 0.558 0.011 1.818 

USMMMNCH Change in Manufacturing Payrolls 0.568 0.482 0.047 2.244 0.895 0.862 0.047 4.254 

NFP TCH Change in Non-farm Payrolls 0.653 0.555 0.013 2.423 0.850 0.722 0.013 4.098 

NFP PCH Change in Private Payrolls 0.779 0.530 0.050 2.176 0.784 0.633 0.033 2.309 

CFNAI Chicago Fed Nat Activity Index 0.706 0.472 0.035 1.688 0.929 0.729 0.035 2.602 

CONCCONF Consumer confidence index 0.803 0.601 0.039 2.403 0.812 0.613 0.020 2.735 

INJCSP Continuing Claims 0.641 0.648 0.016 5.293 0.741 0.832 0.016 9.283 

GDPCPCEC 

Core Personal Consumption Expenditures (PCE) 

(QoQ) 0.824 0.614 0.026 2.496 0.752 0.654 0.013 2.909 

CPUPXCHG 

Consumer Price Index (CPI) excluding Food & En-

ergy (MoM) 0.641 0.648 0.016 5.293 0.741 0.832 0.016 9.283 

CPI CHNG Consumer Price Index (CPI) (MoM) 1.137 0.633 0.735 3.674 1.124 0.579 0.735 2.939 

USCABAL Current Account Balance 1.220 0.342 1.104 2.207 1.246 0.373 1.104 2.207 

DFEDGBA Texas’ Manufacturing Activity 1.090 0.582 0.788 3.151 1.135 0.551 0.788 3.151 

DGNOCHNG Durable Goods Orders 0.916 0.604 0.048 2.359 0.703 0.597 0.032 2.613 

DGNOXTCH Durables excluding Transportation 0.685 0.525 0.040 1.818 0.898 0.698 0.013 2.713 

EMPRGBCI Empire Manufacturing 0.677 0.804 0.036 5.294 0.754 0.656 0.036 2.974 

ECI SA% Employment Cost Index 0.733 0.668 0.066 3.876 0.834 0.643 0.066 3.022 

ETSLTOTL Existing Home Sales 0.806 0.531 0.032 2.150 0.816 0.639 0.021 2.646 

TMNOCHNG Factory Orders 1.027 0.760 0.597 2.983 0.937 0.499 0.597 2.386 

HPIMMOM% FHFA House Price Index (MoM) 0.704 0.534 0.050 2.059 0.779 0.830 0.050 4.117 

GDP CQOQ GDP Annualised (QoQ) 0.885 0.852 0.160 4.163 0.610 0.599 0.160 3.203 

GDP DCHG GDP Price Deflator 0.817 0.689 0.209 3.548 0.835 0.719 0.209 3.548 

GDP PIQQ GDP Price Index 0.687 0.588 0.273 3.000 0.756 1.120 0.273 5.455 

NHSPSTOT Housing Starts 0.638 0.594 0.262 2.885 1.110 1.014 0.262 3.934 

ECONUSIB IBD/TIPP Economic Optimism 0.805 0.636 0.024 3.125 0.736 0.629 0.024 3.089 

IMP1CHNG Import Price Index (MoM) 0.698 0.600 0.038 3.377 0.876 0.687 0.038 3.300 

IP CHNG Industrial Production (MoM) 0.800 0.530 0.176 2.286 0.800 0.750 0.176 3.868 

INJCJC Initial Jobless Claims 0.811 0.502 0.270 2.975 0.901 0.725 0.270 5.409 

Note. MoM, QoQ and YoY refer to month-over-month, quarter-over-quarter and year-over-year respectively 
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Cont. … Table 4.4 Descriptive statistics for macroeconomic news outlets 

News Description Positive Negative (Absolute values) 

  Mean S.D. Min. Max. Mean S.D. Min. Max. 

NAPMPMI ISM Manufacturing 0.785 0.711 0.055 4.388 0.720 0.652 0.055 4.552 

MAPMINDX ISM Milwaukee 0.823 0.675 0.052 3.869 0.746 0.628 0.052 3.137 

NAPMNMAN ISM Non-Manufacturing 0.751 0.644 0.006 2.534 0.811 0.613 0.027 1.913 

NAPMNMI ISM Non-Manufacturing Index 0.802 0.570 0.029 2.394 0.807 0.584 0.058 3.202 

NAPMPRIC ISM Prices Paid 0.738 0.580 0.051 2.104 0.804 0.728 0.103 4.054 

LEI CHNG Leading Index 0.758 0.470 0.201 1.809 0.992 0.580 0.201 2.010 

CHPMINDX MNI Chicago PMI 1.114 0.668 0.543 2.713 0.934 0.512 0.543 2.713 

USHBMIDX NAHB Housing Market Index 0.503 1.106 0.008 10.585 0.390 0.554 0.008 3.096 

FRNTTOTL Net Long-term TIC Flows 0.986 0.654 0.375 3.004 0.834 0.569 0.375 3.755 

NHSLTOT New Home Sales 0.807 0.617 0.031 2.607 0.774 0.620 0.033 3.311 

SBOITOTL NFIB Small Business Optimism 0.777 0.781 0.017 4.183 0.655 0.644 0.051 2.846 

PRODNFR% Nonfarm Productivity 0.582 0.524 0.069 2.426 0.906 0.823 0.069 3.465 

PCE CMOM 

Core Personal Consumption Expenditures Deflator 

(MoM) 0.876 0.798 0.153 4.581 0.659 0.589 0.153 2.901 

GDPCTOT% Personal Consumption 0.794 0.608 0.025 2.797 0.696 0.746 0.025 3.852 

PITLCHNG Personal Income 0.883 0.593 0.267 3.469 0.833 0.668 0.267 3.736 

PCE CRCH Personal Spending 0.846 1.121 0.347 6.255 0.632 0.537 0.347 4.170 

OUTFGAF Philadelphia Fed Business Outlook 1.002 0.552 0.605 3.628 1.016 0.672 0.605 4.838 

PXFECHNG 

Producer Price Index (PPI) excluding Food & En-

ergy (MoM) 0.723 0.556 0.011 2.459 0.835 0.707 0.011 3.605 

PPI CHNG Producer Price Index (PPI) (MoM) 0.878 0.676 0.387 4.261 0.974 0.773 0.387 3.874 

RSTAMOM Retail Sales Advance (MoM) 0.880 0.725 0.208 3.537 0.779 0.596 0.208 2.497 

RSTAXAG% Retail Sales Excluding Auto and Gas 0.760 0.972 0.167 7.682 0.697 0.549 0.167 2.672 

RSTAXMOM Retail Sales Excluding Auto (MoM) 0.686 0.483 0.307 1.840 1.073 0.617 0.307 3.066 

RCHSINDX Richmond Fed Manufacturing Index 0.815 0.663 0.222 3.107 0.844 0.661 0.222 3.773 

SPCS20SM 

S&P CoreLogic Case-Shiller Home Price SA In-

dex (MoM) 0.775 0.684 0.115 3.577 0.868 0.525 0.115 2.308 

SPCS20Y% 

S&P CoreLogic Case-Shiller Home Price NSA In-

dex (YoY) 0.984 0.788 0.257 3.861 0.783 0.528 0.257 1.802 

USTBTOT Trade Balance 0.791 0.666 0.030 3.219 0.766 0.656 0.030 2.946 

CONSSENT 

The University of Michigan Consumer Sentiment 

Index 0.655 0.589 0.034 3.158 0.814 0.746 0.034 3.398 

USURTOT Unemployment Rate 1.012 0.504 0.679 2.715 1.113 0.606 0.679 3.393 

COSTNFR% Unit Labour Costs 0.698 0.611 0.097 3.283 0.750 0.789 0.097 4.635 

MWINCHNG Wholesale Inventories (MoM) 0.842 0.646 0.215 3.869 0.841 0.571 0.215 2.794 

Note. MoM, QoQ and YoY refer to month-over-month, quarter-over-quarter and year-over-year respectively 

 

 

 

 

 

 

 

 



220 

 

Table 4.5 Mean volumes and jumps for stocks before and after the financial crisis 

 Pre-crisis Post-crisis 

Stock (Sector) 

Volume  

(in 100000) 

Total 

Jumps 

Jumps per 

day 

Volume  

(in 100000) 

Total 

Jumps 

Jumps per 

day 

 Panel A. Few jumps 

IBM (IT) 66.22 135 0.07 42.84 271 0.14 

XRX (IT) 44.27 230 0.11 103.73 205 0.11 

YHOO (IT) 213.03 147 0.07 184.72 283 0.15 

AMGN (HC) 93.26 173 0.09 42.24 330 0.17 

BSX (HC) 60.28 264 0.13 330.86 254 0.13 

BT (TS) 5.60 26 0.01 2.38 90 0.05 

TEF (TS) 14.75 19 0.01 18.63 92 0.05 

VOD (TS) 15.80 95 0.05 42.48 88 0.05 

UL (CS) 4.13 216 0.11 11.64 101 0.05 

AEE (Utilities) 6.42 194 0.10 15.60 304 0.16 

CNP (Utilities) 16.38 283 0.14 35.51 213 0.11 

 Panel B. High volume 

ORCL (IT) 415.13 179 0.09 206.93 240 0.13 

GILD (HC) 222.35 284 0.14 128.09 310 0.16 

PFE (HC) 206.99 200 0.10 330.86 254 0.13 

T (TS) 102.95 172 0.09 227.18 274 0.14 

EXC (Utilities) 24.71 220 0.11 54.30 274 0.14 

 Panel C. High volume & few jumps 

AAPL (IT) 1325.40 173 0.09 891.74 189 0.10 

CSCO (IT) 575.39 106 0.05 382.30 258 0.14 

INTC (IT) 559.20 87 0.04 386.82 253 0.13 

MSFT (IT) 642.64 120 0.06 411.22 245 0.13 

KO (CS) 107.92 153 0.08 140.82 308 0.16 

Average 224.90 166 0.08 190.04 230 0.12 

Note. The table reports the mean trading volume, and number of intraday jumps (total and daily) estimated using 

the Lee-Mykland (2008) intraday jump test for each stock in the pre- and post-crisis periods. There are more stocks 

in Panel A than in the other panels, because the stocks with the fewest jumps vary considerably between the pre-

crisis and post-crisis periods. 
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Table 4.6 Descriptive statistics for stocks’ jump components estimated using BV in the pre-

crisis period 

  Full  Up to 90th percentile   

Stock (Sector) Max Mean Variance Mode Max Mean Variance Mode 

% change in 

variance 

  Panel A. Few jumps   

IBM(IT) 25.398 0.866 4.719 0.057 1.692 0.457 0.145 0.057 96.9% 

XRX(IT) 170.44 3.771 96.395 0.093 9.026 1.889 3.980 0.093 95.9% 

YHOO(IT) 28.382 2.844 15.655 0.095 6.477 1.839 2.700 0.095 82.8% 

AMGN(HC) 10.014 1.396 2.628 0.125 3.366 0.951 0.552 0.125 79.0% 

BSX(HC) 37.868 2.598 13.400 0.081 5.336 1.707 1.636 0.081 87.8% 

BT(TS) 12.950 1.628 3.026 0.049 3.706 1.173 0.825 0.049 72.8% 

TEF(TS) 125.990 0.827 29.489 0.047 1.270 0.448 0.094 0.047 99.7% 

VOD(TS) 6.680 0.727 0.712 0.058 1.776 0.512 0.198 0.058 72.1% 

UL(CS) 15.169 0.889 1.381 0.043 2.309 0.583 0.263 0.043 81.0% 

AEE(Utilities) 12.179 0.660 0.771 0.044 1.343 0.479 0.118 0.044 84.7% 

CNP(Utilities) 124.86 2.200 72.283 0.056 3.248 0.979 0.526 0.056 99.3% 

  Panel B. High volume  

ORCL(IT) 18.003 1.753 5.527 0.134 3.937 1.106 0.759 0.134 86.3% 

GILD(HC) 68.554 4.397 38.297 0.213 10.232 2.864 6.718 0.213 82.5% 

PFE(HC) 25.584 1.347 5.219 0.064 3.159 0.788 0.435 0.064 91.7% 

T(TS) 12.566 1.035 1.846 0.069 2.289 0.691 0.268 0.069 85.5% 

EXC(Utilities) 17.676 1.047 2.232 0.077 1.933 0.715 0.209 0.077 90.6% 

  Panel C. High volume & few jumps  

AAPL(IT) 22.044 2.466 7.013 0.147 5.482 1.775 1.586 0.147 77.4% 

CSCO(IT) 11.993 1.205 2.065 0.064 2.618 0.824 0.360 0.064 82.6% 

INTC(IT) 8.636 1.211 1.774 0.144 2.714 0.849 0.393 0.144 77.8% 

MSFT(IT) 25.95 0.940 3.421 0.067 1.955 0.611 0.236 0.067 93.1% 

KO(CS) 8.607 0.776 1.027 0.026 1.859 0.519 0.178 0.026 82.6% 

Note. The table reports the descriptive statistics for jump components estimated using BV for each stock in the pre-crisis 

period. The bold and italic values indicate the largest and smallest values respectively across different stocks for each 

column. The panel on the left shows the descriptive statistics for the jump components for the whole data set. The panel 

on the right shows the descriptive statistics for the jump components after eliminating the highest decile in the data set 

(leaving only the bottom 90%). There are more stocks in Panel A than in the other panels, because the stocks with the 

fewest jumps vary considerably between the pre-crisis and post-crisis periods. 
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 Table 4.7 Descriptive statistics for stocks’ jump components estimated using BV in the post-

crisis period  

  Full data Up to 90th percentile   

Stock (sector) Max Mean Variance Mode Max Mean Variance Mode 
% change 

in variance 

  Panel A. Few jumps  

IBM(IT) 8.207 0.365 0.307 0.053 0.731 0.268 0.025 0.053 91.8% 

XRX(IT) 24.395 1.122 4.397 0.142 1.930 0.703 0.153 0.142 96.5% 

YHOO(IT) 22.556 1.081 3.568 0.104 2.067 0.703 0.188 0.104 94.7% 

AMGN(HC) 13.125 0.869 1.439 0.123 1.687 0.590 0.176 0.123 87.8% 

BSX(HC) 15.116 1.208 2.849 0.139 2.107 0.833 0.214 0.139 92.5% 

BT(TS) 5.022 0.318 0.163 0.037 0.545 0.234 0.016 0.037 90.1% 

TEF(TS) 2.992 0.330 0.128 0.053 0.704 0.235 0.018 0.053 85.7% 

VOD(TS) 3.887 0.272 0.136 0.042 0.469 0.195 0.009 0.042 93.1% 

UL(CS) 0.882 0.161 0.020 0.032 0.288 0.122 0.004 0.032 81.0% 

AEE(Utilities) 70.683 0.890 18.169 0.061 1.084 0.364 0.052 0.061 99.7% 

CNP(Utilities) 23.323 0.681 2.739 0.072 1.103 0.403 0.056 0.072 97.9% 

  Panel B. High volume  

ORCL(IT) 5.042 0.531 0.331 0.052 1.023 0.385 0.054 0.052 83.8% 

GILD(HC) 7.417 0.832 0.689 0.119 1.571 0.623 0.122 0.119 82.3% 

PFE(HC) 7.610 0.475 0.349 0.047 0.812 0.350 0.034 0.047 90.3% 

T(TS) 20.518 0.402 1.504 0.048 0.705 0.253 0.024 0.048 98.4% 

EXC(Utilities) 21.177 0.689 2.176 0.062 1.210 0.433 0.076 0.062 96.5% 

  Panel C. High volume & few jumps  

AAPL(IT) 6.170 0.465 0.309 0.020 0.849 0.339 0.040 0.020 86.9% 

CSCO(IT) 3.564 0.565 0.246 0.052 1.146 0.441 0.073 0.052 70.5% 

INTC(IT) 3.633 0.535 0.165 0.094 0.979 0.434 0.049 0.094 70.5% 

MSFT(IT) 4.387 0.516 0.235 0.040 0.993 0.395 0.046 0.040 80.5% 

KO(CS) 2.729 0.312 0.110 0.031 0.583 0.228 0.018 0.031 83.9% 

Note. The table reports the descriptive statistics for jump components estimated using BV for each stock in the post-

crisis period. The bold and italic values indicate the largest and smallest values respectively across different stocks for 

each column. The panel on the left shows the descriptive statistics for the jump components for the whole data set. The 

panel on the right shows the descriptive statistics for the jump components after eliminating the highest decile in the data 

set (leaving only the bottom 90%). There are more stocks in Panel A than in the other panels, because the stocks with 

the fewest jumps vary considerably between the pre-crisis and post-crisis periods. 
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Table 4.8 Descriptive statistics for stocks’ jump components estimated using TBV in the pre-

crisis period 

 

  Full data Up to 90th percentile    

Stock 
Max Mean Variance Mode Max Mean Variance Mode 

% change 

in variance (Sector) 

  Panel A. Few jumps 

IBM(IT) 44.349 1.041 5.531 0.058 2.263 0.608 0.231 0.058 95.8% 

XRX(IT) 181.290 4.644 145.800 0.111 9.867 2.197 4.612 0.111 96.8% 

YHOO(IT) 102.200 4.219 47.883 0.095 9.556 2.535 4.833 0.095 89.9% 

AMGN(HC) 37.914 2.104 9.923 0.083 5.110 1.287 1.127 0.083 88.6% 

BSX(HC) 45.495 2.900 18.201 0.094 6.083 1.838 2.047 0.094 88.8% 

BT(TS) 50.577 2.196 7.694 0.059 5.199 1.504 1.690 0.059 78.0% 

TEF(TS) 144.050 1.075 16.871 0.047 2.184 0.678 0.264 0.047 98.4% 

VOD(TS) 46.503 1.058 4.072 0.330 2.261 0.677 0.301 0.330 92.6% 

UL(CS) 19.461 1.000 2.195 0.042 2.523 0.603 0.296 0.042 86.5% 

AEE(Utilities) 19.537 0.821 1.052 0.038 1.831 0.575 0.175 0.038 83.4% 

CNP(Utilities) 377.450 3.616 255.000 0.097 5.936 1.502 1.379 0.097 99.5% 

  Panel B.  High volumes 

ORCL(IT) 73.992 2.736 17.329 0.126 6.358 1.727 2.059 0.126 88.1% 

GILD(HC) 141.310 5.986 99.793 0.134 14.875 3.425 11.402 0.134 88.6% 

PFE(HC) 31.179 1.412 5.053 0.088 3.105 0.877 0.465 0.088 90.8% 

T(TS) 21.791 1.473 3.717 0.059 3.226 0.980 0.580 0.059 84.4% 

EXC(Utilities) 22.958 1.297 3.150 0.077 2.716 0.862 0.406 0.077 87.1% 

  Panel C. Few jumps & High volumes 

AAPL(IT) 31.892 3.482 16.049 0.140 7.778 2.411 3.190 0.140 80.1% 

CSCO(IT) 60.258 2.090 12.493 0.079 4.745 1.305 1.089 0.079 91.3% 

INTC(IT) 40.134 1.812 6.769 0.115 4.136 1.191 0.805 0.115 88.1% 

MSFT(IT) 43.891 1.260 4.880 0.071 2.844 0.796 0.448 0.071 90.8% 

KO(CS) 10.904 0.799 1.122 0.031 1.843 0.532 0.172 0.031 84.6% 

Note. The table reports the descriptive statistics for jump components estimated using TBV for each stock in the pre-crisis 

period. The bold and italic values indicate the largest and smallest values respectively across different stocks for each 

column. The panel on the left shows the descriptive statistics for the jump components for the whole data set. The panel on 

the right shows the descriptive statistics for the jump components after eliminating the highest decile in the data set (leaving 

only the bottom 90%). There are more stocks in Panel A than in the other panels, because the stocks with the fewest jumps 

vary considerably between the pre-crisis and post-crisis periods. 

 

 

 

 

 



224 

 

Table 4.9 Descriptive statistics for stocks’ jump components estimated using TBV in the post-

crisis period 

  Full data Up to 90th percentile   

Stock 
Max Mean Variance Mode Max Mean Variance Mode 

% change 

in variance (Sector) 

  Panel A. Few jumps 

IBM(IT) 12.989 0.437 0.392 0.050 0.826 0.314 0.032 0.050 91.9% 

XRX(IT) 38.664 1.513 7.067 0.136 2.647 0.987 0.331 0.136 95.3% 

YHOO(IT) 40.466 1.461 5.873 0.091 2.807 0.931 0.336 0.091 94.3% 

AMGN(HC) 40.169 0.997 3.128 0.068 1.986 0.644 0.172 0.068 94.5% 

BSX(HC) 88.628 1.799 12.353 0.105 3.272 1.192 0.532 0.105 95.7% 

BT(TS) 14.278 0.443 0.477 0.038 0.820 0.317 0.035 0.038 92.7% 

TEF(TS) 11.146 0.514 0.532 0.056 0.986 0.353 0.041 0.056 92.3% 

VOD(TS) 12.756 0.361 0.436 0.044 0.613 0.245 0.016 0.044 96.3% 

UL(CS) 18.080 0.236 0.417 0.027 0.419 0.165 0.008 0.027 98.1% 

AEE(Utilities) 82.359 0.752 7.448 0.058 1.150 0.446 0.065 0.058 99.1% 

CNP(Utilities) 765.330 1.436 530.360 0.066 1.276 0.498 0.073 0.066 100.0% 

  Panel B. High volumes 

ORCL(IT) 51.973 0.729 2.998 0.042 1.375 0.504 0.091 0.042 97.0% 

GILD(HC) 28.444 1.222 3.337 0.073 2.257 0.799 0.238 0.073 92.9% 

PFE(HC) 23.618 0.685 1.508 0.060 1.227 0.465 0.075 0.060 95.0% 

T(TS) 21.420 0.478 0.818 0.038 0.862 0.324 0.035 0.038 95.7% 

EXC(Utilities) 41.653 0.839 3.951 0.039 1.459 0.517 0.102 0.039 97.4% 

  Panel C. Few jumps & high volumes 

AAPL(IT) 36.449 0.764 2.327 0.023 1.514 0.507 0.103 0.023 95.6% 

CSCO(IT) 44.622 0.744 2.410 0.070 1.408 0.526 0.096 0.070 96.0% 

INTC(IT) 48.472 0.798 3.051 0.055 1.408 0.574 0.095 0.055 96.9% 

MSFT(IT) 29.383 0.693 1.288 0.041 1.206 0.488 0.070 0.041 94.5% 

KO(CS) 8.540 0.369 0.196 0.030 0.737 0.269 0.026 0.030 86.7% 

Note. The table reports the descriptive statistics for jump components estimated using TBV for each stock in the post-

crisis period. The bold and italic values indicate the largest and smallest values respectively across different stocks for 

each column. The panel on the left shows the descriptive statistics for the jump components for the whole data set. The 

panel on the right shows the descriptive statistics for the jump components after eliminating the highest decile in the data 

set (leaving only the bottom 90%). There are more stocks in Panel A than in the other panels, because the stocks with 

the fewest jumps vary considerably between the pre-crisis and post-crisis periods. 
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Table 4.10 Descriptive statistics for jump components estimated using BV at 

different times during the pre-crisis period 

 Full data 2000-2002 2003-2006 2007 

Stock (Sector) Mean Variance Mean Variance Mean Variance Mean Variance 

 Panel A. Few jumps 

IBM (IT) 0.866 4.719 2.234 15.620 0.399 0.300 0.510 0.155 

XRX (IT) 3.771 96.395 5.715 45.035 2.354 165.080 1.477 6.899 

YHOO (IT) 2.844 15.655 6.058 26.786 1.249 2.266 0.970 0.566 

AMGN (HC) 1.396 2.628 2.668 3.993 0.694 0.424 0.836 1.240 

BSX (HC) 2.598 13.400 3.522 8.252 2.010 20.985 0.904 0.342 

BT (TS) 1.628 3.026 2.572 3.780 0.686 0.412 0.477 0.405 

TEF (TS) 0.827 29.489 1.537 69.544 0.325 0.069 0.256 0.083 

VOD (TS) 0.727 0.712 1.449 0.838 0.341 0.182 0.406 0.490 

UL(CS) 0.889 1.381 1.349 1.831 0.248 0.047 0.260 0.089 

AEE(Utilities) 0.660 0.771 0.942 1.139 0.325 0.237 0.390 0.096 

CNP(Utilities) 2.200 72.283 2.998 90.239 1.858 76.371 1.194 3.545 

 Panel B. High volume 

ORCL(IT) 1.753 5.527 4.272 11.352 0.887 0.468 0.819 0.453 

GILD(HC) 4.388 38.216 7.535 56.742 1.323 0.741 1.131 1.049 

PFE(HC) 1.347 5.219 2.188 8.558 0.859 2.651 0.511 0.259 

T(TS) 1.035 1.846 1.722 3.333 0.670 0.779 0.713 0.327 

EXC(Utilities) 1.047 2.232 1.216 2.888 0.564 0.576 1.462 2.884 

 Panel C. Few jumps & high volume 

AAPL(IT) 2.466 7.013 4.585 11.274 1.404 0.842 0.920 1.212 

CSCO(IT) 1.205 2.065 2.471 3.894 0.680 0.380 0.618 0.162 

INTC(IT) 1.211 1.774 2.672 2.919 0.702 0.243 0.496 0.075 

MSFT(IT) 0.940 3.421 1.879 8.396 0.428 0.143 0.567 0.194 

KO(CS) 0.776 1.027 1.149 1.222 0.505 0.837 0.483 0.320 

Note. The table reports the descriptive statistics for jump components estimated using BV for each stock at 

different times during the pre-crisis period. The bold and italic values indicate the largest and smallest values 

respectively across different stocks for each column. The panel on the left shows the descriptive statistics for 

the jump components for the whole data set. The panel on the right shows the descriptive statistics for the jump 

components after eliminating the highest decile in the data set (leaving only the bottom 90%). There are more 

stocks in Panel A than in the other panels, because the stocks with the fewest jumps vary considerably between 

the pre-crisis and post-crisis periods. 
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Table 4.11 Descriptive statistics for jump components estimated using BV at 

different times during the post-crisis period 

 Full data 

01/07/2009-

30/06/2010 
01/07/2010-

30/12/2016 
Stock (Section) Mean Variance Mean Variance Mean Variance 

 Panel A. Few jumps 

IBM(IT) 0.365 0.307 0.616 1.671 0.323 0.070 

XRX(IT) 1.122 4.397 1.864 12.745 0.982 2.739 

YHOO(IT) 1.081 3.568 1.405 2.575 1.032 3.712 

AMGN(HC) 0.869 1.439 0.912 0.718 0.861 1.577 

BSX(HC) 1.212 2.847 1.925 5.950 1.078 2.167 

BT(TS) 0.318 0.163 0.625 0.690 0.261 0.047 

TEF(TS) 0.330 0.128 0.360 0.083 0.326 0.134 

VOD(TS) 0.272 0.136 0.405 0.216 0.244 0.116 

UL(CS) 0.161 0.020 0.214 0.023 0.152 0.019 

AEE(Utilities) 0.890 18.169 0.601 0.665 0.940 21.202 

CNP(Utilities) 0.681 2.739 0.699 0.288 0.677 3.251 

 Panel B. High volumes 

ORCL(IT) 0.531 0.330 0.816 0.769 0.487 0.251 

GILD(HC) 0.832 0.689 0.791 0.422 0.840 0.742 

PFE(HC) 0.475 0.349 0.662 0.178 0.440 0.374 

T(TS) 0.402 1.504 0.502 0.196 0.386 1.702 

EXC(Utilities) 0.690 2.168 0.684 1.235 0.691 2.368 

 Panel C. Few jumps & high volumes 

AAPL(IT) 0.465 0.309 0.475 0.110 0.464 0.335 

CSCO(IT) 0.565 0.246 0.630 0.124 0.558 0.260 

INTC(IT) 0.535 0.164 0.714 0.162 0.510 0.160 

MSFT(IT) 0.516 0.235 0.629 0.416 0.498 0.207 

KO(CS) 0.312 0.110 0.384 0.074 0.299 0.115 

Note. The table reports the descriptive statistics for jump components estimated using BV for each stock at 

different times during the post-crisis period. The bold and italic values indicate the largest and smallest values 

respectively across different stocks for each column. The panel on the left shows the descriptive statistics for 

the jump components for the whole data set. The panel on the right shows the descriptive statistics for the 

jump components after eliminating the highest decile in the data set (leaving only the bottom 90%). There 

are more stocks in Panel A than in the other panels, because the stocks with the fewest jumps vary 

considerably between the pre-crisis and post-crisis periods. 
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Table 4.12 Descriptive statistics for jump components estimated using TBV at 

different times during the pre-crisis period 

 Full data 2000-2002 2003-2006 2007 
Stock (Section) Mean Variance Mean Variance Mean Variance Mean Variance 

 Panel A. Few jumps 

IBM(IT) 1.041 5.531 2.178 14.659 0.452 0.180 0.713 0.695 

XRX(IT) 4.644 145.800 9.282 262.060 1.916 56.256 1.878 52.269 

YHOO(IT) 4.219 47.883 9.060 80.820 1.860 15.634 1.842 8.599 

AMGN(HC) 2.104 9.923 4.271 18.788 0.876 0.565 1.209 3.875 

BSX(HC) 2.900 18.201 4.719 25.019 1.869 12.778 1.408 2.497 

BT(TS) 2.196 7.694 3.964 11.251 0.974 1.190 0.512 0.395 

TEF(TS) 1.075 16.871 1.958 39.554 0.486 0.187 0.377 0.077 

VOD(TS) 1.058 4.072 2.186 8.560 0.509 1.022 0.472 0.274 

UL(CS) 1.000 2.195 1.809 3.537 0.341 0.105 0.314 0.084 

AEE(Utilities) 0.821 1.052 1.380 1.794 0.410 0.151 0.491 0.144 

CNP(Utilities) 3.616 255.000 6.269 599.980 2.189 47.767 1.412 6.141 

 Panel B. High volumes 

ORCL(IT) 2.736 17.329 6.020 37.254 1.327 1.456 1.194 2.032 

GILD(HC) 5.983 99.729 12.105 180.270 1.930 2.524 1.469 1.665 

PFE(HC) 1.412 5.053 2.317 6.280 0.922 4.198 0.550 0.232 

T(TS) 1.473 3.717 2.510 6.613 0.881 1.129 0.895 0.692 

EXC(Utilities) 1.297 3.150 1.927 3.884 0.620 0.602 1.881 7.085 

 Panel C. Few jumps & High volumes 

AAPL(IT) 3.482 16.049 6.156 23.965 2.138 5.441 1.717 7.512 

CSCO(IT) 2.090 12.493 4.544 29.520 0.975 0.635 0.924 0.725 

INTC(IT) 1.812 6.769 3.910 15.462 0.987 0.651 0.882 1.074 

MSFT(IT) 1.260 4.880 2.534 10.831 0.553 0.289 0.679 0.404 

KO(CS) 0.799 1.122 1.364 1.565 0.475 0.663 0.490 0.293 

Note. The table reports the descriptive statistics for jump components estimated using TBV for each stock at different 

times during the pre-crisis period. The bold and italic values indicate the largest and smallest values respectively across 

different stocks for each column. The panel on the left shows the descriptive statistics for the jump components for the 

whole data set. The panel on the right shows the descriptive statistics for the jump components after eliminating the highest 

decile in the data set (leaving only the bottom 90%). There are more stocks in Panel A than in the other panels, because 

the stocks with the fewest jumps vary considerably between the pre-crisis and post-crisis periods. 
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Table 4.13 Descriptive statistics for jump components estimated using TBV at 

different times during the post-crisis period 

 Full data 01/07/2009-30/06/2010 
01/07/2010-

30/12/2016 
Stock (Section) Mean Variance Mean Variance Mean Variance 

 Panel A. Few jumps 

IBM(IT) 0.437 0.392 0.579 1.375 0.419 0.266 

XRX(IT) 1.514 7.064 2.458 16.924 1.349 5.171 

YHOO(IT) 1.460 5.864 1.676 3.350 1.428 6.227 

AMGN(HC) 0.998 3.126 1.121 2.797 0.979 3.178 

BSX(HC) 1.802 12.325 2.545 14.323 1.666 11.853 

BT(TS) 0.443 0.476 0.873 2.055 0.369 0.172 

TEF(TS) 0.514 0.532 0.646 1.123 0.492 0.429 

VOD(TS) 0.362 0.437 0.523 0.583 0.338 0.411 

UL(CS) 0.236 0.416 0.496 2.779 0.195 0.035 

AEE(Utilities) 0.753 7.442 0.953 5.362 0.720 7.778 

CNP(Utilities) 1.436 529.880 5.848 3795.000 0.723 2.024 

 Panel B. High volumes 

ORCL(IT) 0.729 2.990 1.275 19.260 0.646 0.468 

GILD(HC) 1.222 3.337 1.043 1.380 1.250 3.639 

PFE(HC) 0.686 1.506 1.114 4.054 0.622 1.094 

T(TS) 0.478 0.818 0.644 1.170 0.452 0.761 

EXC(Utilities) 0.840 3.940 1.094 10.840 0.796 2.758 

 Panel C. Few jumps & High volumes 

AAPL(IT) 0.764 2.323 1.106 10.303 0.715 1.189 

CSCO(IT) 0.743 2.408 1.198 15.319 0.681 0.617 

INTC(IT) 0.798 3.043 1.296 17.424 0.730 1.059 

MSFT(IT) 0.693 1.288 0.753 0.631 0.684 1.384 

KO(CS) 0.369 0.196 0.484 0.149 0.351 0.201 

Note. The table reports the descriptive statistics for jump components estimated using TBV for each stock at 

different times during the post-crisis period. The bold and italic values indicate the largest and smallest values 

respectively across different stocks for each column. The panel on the left shows the descriptive statistics for 

the jump components for the whole data set. The panel on the right shows the descriptive statistics for the 

jump components after eliminating the highest decile in the data set (leaving only the bottom 90%). There are 

more stocks in Panel A than in the other panels, because the stocks with the fewest jumps vary considerably 

between the pre-crisis and post-crisis periods. 
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Table 4.14 Size of daily jump components estimated using CTBV 

 Pre-crisis period Post-crisis period 

 J>10 10>J>5 5>J>0 J>10 10>J>5 5>J>0 

IBM(IT) 1 1 124 0 1 988 

XRX(IT) 5 3 161 12 13 941 

YHOO(IT) 2 6 144 10 32 1000 

AMGN(HC) 2 3 161 3 13 1030 

BSX(HC) 4 14 168 13 24 977 

BT(TS) 1 2 143 0 1 854 

TEF(TS) 1 1 131 0 3 775 

VOD(TS) 0 1 113 1 1 760 

UL(CS) 1 1 114 0 0 732 

AEE(Utilities) 2 1 157 2 10 974 

CNP(Utilities) 1 1 153 4 8 941 

ORCL(IT) 1 1 137 0 2 907 

GILD(HC) 1 3 155 10 22 982 

PFE(HC) 1 1 140 2 4 929 

T(TS) 1 1 146 1 3 964 

EXC(Utilities) 1 1 162 4 6 949 

AAPL(IT) 1 1 127 1 5 902 

CSCO(IT) 1 1 127 2 3 927 

INTC(IT) 1 1 131 1 3 964 

MSFT(IT) 0 2 136 1 4 936 

KO(CS) 0 0 158 0 1 991 

Note. The table reports the number of extreme jump components (greater than 10 and greater than 5) and 

relatively small jump components (smaller than 5) estimated using CTBV for each stock in both the pre- 

and post-crisis periods. The bold values indicate the three stocks with the most extreme values in both 

periods. 
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Table 4.15 Estimated coefficients for regression of jump components on news surprises in the pre-crisis period 

𝑙𝑜𝑔(𝐽𝑡 + 1) =𝛽𝐽,𝑘,𝑝|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡≥0)+𝛽𝐽,𝑘,𝑛|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡<0) +𝜀𝑡 

Negative (-) or  

Positive (+) news 

surprise 

AAPL 

(IT) 

CSCO 

(IT) 

IBM 

(IT) 

INTC 

(IT) 

MSFT 

(IT) 

ORCL 

(IT) 

XRX 

(IT) 

YHOO 

(IT) 

AEE 

(Utilities) 

CNP 

(Utilities) 

EXC 

(Utilities) 

CPTICHNG (+) 0.246* 0.110 0.173*** 0.249*** 0.125* 0.240** 0.588*** 0.513*** 0.144* 0.606*** 0.212** 

USMMMNCH (-) 0.031 0.082 -0.005 0.048 -0.046 0.016 0.197* 0.104 0.012 0.158 -0.027 

NFP TCH (-) 0.029 0.004 0.072* 0.016 0.107** 0.133* 0.171 0.009 0.109** 0.092 0.166** 

INJCSP (+) 0.077 0.061 0.047 0.088 0.043 0.054 0.096 0.127 0.070 0.174 0.081 

INJCSP (-) 0.026 -0.013 0.053 0.033 0.098* 0.095 0.042 0.276** 0.037 0.181 0.059 

GDPCPCEC (+) 0.094 -0.005 0.214* -0.066 0.077 0.064 0.232 -0.077 -0.025 -0.063 0.101 

CPUPXCHG (+) 0.021 0.029 0.069 0.024 -0.037 -0.062 -0.081 -0.072 0.046 0.136 0.056 

CPUPXCHG (-) 0.084 0.043 0.170*** 0.027 0.042 0.210* 0.174 0.109 0.172** 0.116 0.012 

CPI CHNG (+) -0.022 0.093 -0.023 0.012 0.108 0.262* 0.252 0.308* -0.004 -0.034 0.061 

DGNOCHNG (+) 0.130 -0.009 0.004 0.011 -0.007 -0.022 0.043 -0.026 -0.023 0.174 -0.036 

DGNOXTCH (+) 0.115 0.024 -0.006 0.030 0.004 0.020 0.284 0.220 0.105 -0.049 0.053 

ECI SA (+) 0.043 -0.028 -0.028 0.002 -0.021 -0.039 -0.252 0.025 0.147* 0.232 0.260** 

ECI SA (-) 0.281 -0.040 -0.069 0.312** 0.043 -0.031 0.229 0.179 -0.076 0.141 0.058 

TMNOCHNG (-) 0.051 0.046 0.026 0.129* 0.090 0.154 0.132 0.157 0.077 0.274* 0.325*** 

GDP CQOQ (-) 0.050 -0.002 -0.010 0.038 0.068 0.208** 0.138 0.007 0.218*** 0.377*** 0.121 

GDP DCHG (-) 0.110 0.012 -0.001 0.013 0.081 -0.032 -0.005 0.040 0.001 0.169 0.092 

GDP PIQQ (+) 0.051 0.066 0.186 -0.195 -0.100 -0.099 0.924** -0.076 -0.114 -0.367 -0.224 

NHSPSTOT (+) 0.075 0.016 0.064 0.050 0.069 0.110 0.227* 0.228** 0.101* 0.138 0.126* 

NHSPSTOT (-) 0.153 -0.004 0.056 0.037 0.051 0.051 0.421*** 0.053 0.149** 0.242* 0.081 

Note. The table reports the OLS coefficient estimates of the regression for jump components on negative (-) or positive (+) news surprise on individual news 

outlets in the pre-crisis period. The superscript asterisks *, ** and *** denote statistical significance at the 10%, 5% and 1% levels respectively. The significant 

coefficients are highlighted in bold. The jump components 𝐽𝑡 is estimated using corrected threshold bi-power variation (CTBV). 
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Cont. …Table 4.15. Estimated Coefficients for regression of jump components on news surprises in the pre-crisis period  

𝑙𝑜𝑔(𝐽𝑡 + 1) =𝛽𝐽,𝑘,𝑝|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡≥0)+𝛽𝐽,𝑘,𝑛|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡<0) +𝜀𝑡 

Negative (-) or  

Positive (+) news 

surprise 

AAPL 

(IT) 

CSCO 

(IT) 

IBM 

(IT) 

INTC 

(IT) 

MSFT 

(IT) 

ORCL 

(IT) 

XRX 

(IT) 

YHOO 

(IT) 

AEE 

(Utilities) 

CNP 

(Utilities) 

EXC 

(Utilities) 

IMP1CHNG (-) 0.023 0.024 0.044 0.077 0.067 0.094 0.176 0.052 0.112* 0.036 0.175** 

INJCJC (+) 0.094 0.110*** 0.033 0.049 0.080*** 0.149*** 0.138* 0.094 0.099*** 0.191*** 0.084* 

INJCJC (-) 0.086 0.079* 0.033 0.049 0.050 0.104* 0.171* 0.086 0.082** 0.238*** 0.078* 

NAPMPMI (+) 0.155 0.054 0.132*** 0.050 0.016 0.187* 0.192 0.086 0.064 0.194 0.306*** 

NAPMPMI (-) 0.100 0.094 0.051 0.055 0.158** 0.261** 0.480*** 0.091 0.009 0.372** 0.110 

MAPMINDX (+) -0.011 -0.003 -0.005 -0.004 -0.005 0.785*** -0.029 -0.016 0.206 -0.019 0.069 

NAPMNMAN (-) 0.164 0.288*** 0.071 0.173* 0.107 0.182 0.356* 0.210 0.115 0.409** 0.218* 

NAPMPRIC (-) 0.071 0.096 0.009 0.071 0.018 -0.097 0.225 0.119 0.036 0.328* 0.080 

LEI CHNG (+) 0.224 0.029 0.029 0.226*** 0.087 0.024 0.284 0.090 0.209*** 0.421** 0.148 

CHPMINDX (-) 0.139 0.086 0.104* 0.186** 0.098 0.091 0.197 0.181 0.119 0.275* 0.109 

PRODNFR (+) 0.125 -0.042 0.033 0.145 0.060 0.242* 0.218 -0.157 0.091 0.328 0.084 

PCE CMOM (-) -0.088 -0.031 -0.025 0.068 -0.043 -0.086 -0.077 0.089 0.094 0.020 -0.041 

GDPCTOT (+) 0.042 0.004 -0.024 0.139 0.079 0.152 0.388 -0.017 -0.083 0.078 0.057 

GDPCTOT (-) 0.407* 0.027 0.178* 0.122 0.026 -0.001 0.108 0.124 0.080 0.392 0.242 

PITLCHNG (-) 0.443* 0.089 0.134 0.246* 0.195* 0.437** 0.290 0.149 0.073 0.445* 0.131 

PPI CHNG (-) 0.086 0.136* 0.067 0.143* 0.079 0.223** 0.218 0.192 0.139* 0.178 0.068 

CONSSENT (+) 0.103 0.076 0.102** 0.062 0.128** 0.303*** 0.286** 0.217** 0.159*** 0.497*** 0.170** 

CONSSENT (-) 0.131 0.034 0.060 0.055 0.056 0.104 0.348*** 0.190** 0.090* 0.231** 0.117* 

USURTOT (+) 0.073 -0.047 0.158* -0.020 0.261** 0.154 -0.149 0.019 0.017 0.198 0.195 

COSTNFR (-) -0.019 0.285** 0.029 -0.052 -0.035 -0.080 0.120 0.297 -0.061 -0.138 0.003 

Note. The table reports the OLS coefficient estimates of the regression for jump components on negative (-) or positive (+) news surprise on individual news outlets 

in the pre-crisis period. The superscript asterisks *, ** and *** denote statistical significance at the 10%, 5% and 1% levels respectively. The significant coefficients 

are highlighted in bold. The jump components 𝐽𝑡 is estimated using corrected threshold bi-power variation (CTBV). 
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Cont. … Table 4.15 Estimated Coefficients for regression of jump components on news surprises in the pre-crisis period  

𝑙𝑜𝑔(𝐽𝑡 + 1) =𝛽𝐽,𝑘,𝑝|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡≥0)+𝛽𝐽,𝑘,𝑛|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡<0) +𝜀𝑡 

Negative (-) or  

Positive (+) news 

surprise 

KO 

(CS) 

UL 

(CS) 

BT 

(TS) 

T 

(TS) 

TEF 

(TS) 

VOD 

(TS) 

AMGN 

(HC) 

BSX 

(HC) 

GILD 

(HC) 

PFE 

(HC) 

 

CPTICHNG (+) 0.110* 0.305*** 0.730*** 0.083 0.404*** 0.286*** 0.172 0.390** 0.068 0.210**  

USMMMNCH (-) 0.034 0.017 0.166 0.048 0.035 0.023 0.069 0.138 0.048 0.051  

NFP TCH (-) 0.026 0.053 0.187 0.050 0.100* 0.074 0.164** 0.284*** 0.022 0.101  

INJCSP (+) -0.004 0.184** 0.509*** 0.001 0.141* 0.065 0.126 0.171 0.087* 0.163**  

INJCSP (-) 0.007 0.033 0.100 0.171** -0.016 0.086 0.107 0.143 0.102* 0.101  

GDPCPCEC (+) -0.005 0.487** 0.290 0.162 0.204 -0.035 -0.033 -0.230 -0.015 0.541***  

CPUPXCHG (+) 0.112* 0.022 0.174 0.045 0.034 0.071 -0.131 -0.011 0.070 -0.006  

CPUPXCHG (-) 0.120* 0.214* 0.350* -0.018 0.202** 0.055 0.097 0.125 0.084 0.321***  

CPI CHNG (+) -0.079 0.189 0.229 0.112 0.227* 0.005 0.445*** 0.242 0.002 0.132  

DGNOCHNG (+) 0.016 0.017 0.024 0.008 0.025 0.008 0.175* 0.532*** -0.015 -0.044  

DGNOXTCH (+) 0.029 0.070 0.314 0.042 0.131 0.076 0.024 -0.302 0.195** 0.047  

ECI SA (+) 0.017 -0.075 0.248 -0.012 0.004 0.129 0.056 0.468** -0.026 0.077  

ECI SA (-) -0.019 -0.026 0.592* 0.019 0.141 0.015 0.085 0.176 -0.019 0.401***  

TMNOCHNG (-) 0.008 0.293*** 0.418** 0.165* 0.230*** 0.025 0.069 0.477*** 0.094 0.106  

GDP CQOQ (-) 0.115* 0.074 0.316* 0.034 0.097 0.033 0.051 0.031 -0.004 -0.027  

GDP DCHG (-) -0.013 0.084 0.234 0.019 -0.009 -0.003 0.032 0.411*** 0.184*** -0.019  

GDP PIQQ (+) -0.103 0.362 -0.228 0.209 0.089 -0.057 -0.055 -0.171 0.019 -0.187  

NHSPSTOT (+) 0.058 0.142* 0.255* 0.057 0.144** 0.036 0.121* 0.218* 0.040 0.079  

NHSPSTOT (-) 0.036 0.175* 0.375** 0.070 0.083 0.032 0.170* 0.332** 0.082 0.075  

Note. The table reports the OLS coefficient estimates of the regression for jump components on negative (-) or positive (+) news surprise on individual news outlets 

in the pre-crisis period. The superscript asterisks *, ** and *** denote statistical significance at the 10%, 5% and 1% levels respectively. The significant coefficients 

are highlighted in bold. The jump components 𝐽𝑡 is estimated using corrected threshold bi-power variation (CTBV). 
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Cont. … Table 4.15 Estimated Coefficients for regression of jump components on news surprises in the pre-crisis period  

𝑙𝑜𝑔(𝐽𝑡 + 1) =𝛽𝐽,𝑘,𝑝|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡≥0)+𝛽𝐽,𝑘,𝑛|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡<0) +𝜀𝑡 

Negative (-) or  

Positive (+) news 

surprise 

KO 

(CS) 

UL 

(CS) 

BT 

(TS) 

T 

(TS) 

TEF 

(TS) 

VOD 

(TS) 

AMGN 

(HC) 

BSX 

(HC) 

GILD 

(HC) 

PFE 

(HC) 

IMP1CHNG (-) 0.031 0.086 0.264* 0.042 0.076 0.091* 0.117 0.212* 0.032 0.019 

INJCJC (+) 0.063** 0.173*** 0.305*** 0.065* 0.084** 0.064** 0.117** 0.190*** 0.091*** 0.136*** 

INJCJC (-) 0.074** 0.082* 0.362*** 0.085* 0.132*** 0.043 0.061 0.170** 0.002 0.127*** 

NAPMPMI (+) 0.022 0.256*** 0.516*** 0.120* 0.170** 0.011 0.074 0.116 0.088 0.150* 

NAPMPMI (-) 0.238*** 0.250** 0.649*** 0.063 0.240*** 0.073 0.238** 0.463*** 0.091 0.013 

MAPMINDX (+) -0.009 -0.012 0.271 0.293 0.102 -0.007 -0.004 -0.025 -0.006 -0.015 

NAPMNMAN (-) 0.090 0.269** 0.586*** 0.255** 0.173* 0.043 0.178 0.291* 0.071 0.165 

NAPMPRIC (-) -0.029 -0.029 0.022 0.162* -0.053 0.035 0.086 0.147 0.054 0.141 

LEI CHNG (+) 0.070 0.131 0.319 0.077 0.120 0.017 0.230* 0.364** 0.035 0.269*** 

CHPMINDX (-) 0.042 0.180* 0.563*** 0.188* 0.099 0.080 0.156 0.312* 0.047 0.130 

PRODNFR (+) 0.180** 0.121 0.483* 0.092 0.119 -0.036 0.259* 0.304 0.007 0.165 

PCE CMOM (-) 0.077 0.233* 0.254 -0.024 -0.063 0.170* 0.042 0.178 0.007 0.198* 

GDPCTOT (+) 0.069 -0.063 0.099 -0.048 -0.004 0.002 0.033 0.132 0.078 0.328** 

GDPCTOT (-) 0.008 0.180 0.037 0.077 0.025 0.098 0.114 0.841*** -0.015 0.120 

PITLCHNG (-) -0.005 0.218 0.488 0.080 0.184 0.113 0.173 0.470* 0.387*** 0.267* 

PPI CHNG (-) 0.080 0.134 0.402** 0.122 0.077 -0.005 0.203* 0.232* 0.018 0.064 

CONSSENT (+) 0.102** 0.224*** 0.555*** 0.175*** 0.112* 0.026 0.295*** 0.159 0.071 0.175*** 

CONSSENT (-) 0.105*** 0.152** 0.462*** 0.126** 0.197*** 0.085* 0.043 0.308*** 0.072* 0.188*** 

USURTOT (+) 0.032 0.120 0.203 -0.049 0.020 -0.049 0.103 0.072 -0.058 0.037 

COSTNFR (-) -0.109 -0.013 -0.188 -0.105 -0.028 0.124 -0.075 -0.114 -0.016 -0.053 

Note. The table reports the OLS coefficient estimates of the regression for jump components on negative (-) or positive (+) news surprise on individual news 

outlets in the pre-crisis period. The superscript asterisks *, ** and *** denote statistical significance at the 10%, 5% and 1% levels respectively. The significant 

coefficients are highlighted in bold. The jump components 𝐽𝑡 is estimated using corrected threshold bi-power variation (CTBV). 
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Table 4.16 Estimated Coefficients for regression of jump components on news surprises in the post-crisis period 

𝑙𝑜𝑔(𝐽𝑡 + 1) =𝛽𝐽,𝑘,𝑝|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡≥0)+𝛽𝐽,𝑘,𝑛|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡<0) +𝜀𝑡 

Negative (-) or  

Positive (+) news 

surprise 

AAPL 

(IT) 

CSCO 

(IT) 

IBM 

(IT) 

INTC 

(IT) 

MSFT 

(IT) 

ORCL 

(IT) 

XRX 

(IT) 

YHOO 

(IT) 

AEE 

(Utilities) 

CNP 

(Utilities) 

EXC 

(Utilities) 

NHSPATOT (+) 0.045 0.032 0.012 0.192*** 0.102* 0.103* 0.193** 0.081 0.181*** 0.103 0.080 

NHSPATOT (-) 0.133 0.007 0.051 0.170* 0.141 -0.062 0.060 0.356** 0.154 0.377*** 0.094 

MTIBCHNG (+) 0.133** 0.131* 0.108** 0.080 0.194*** 0.125* 0.059 0.131 0.113 0.138* 0.051 

MTIBCHNG (-) 0.060 0.145* 0.166*** 0.273*** 0.063 0.210*** 0.139 0.267** 0.073 0.078 0.096 

CGNOXAI (-) -0.052 -0.147* 0.008 0.042 -0.123* -0.002 0.005 0.026 -0.042 -0.014 -0.166* 

CPTICHNG (+) 0.097 0.090 -0.023 0.040 0.035 0.071 0.270 0.062 0.323** 0.022 0.046 

USMMMNCH (-) 0.082 -0.018 0.045 0.130 0.062 0.205* 0.017 0.415** 0.127 -0.048 0.015 

NFP TCH (+) 0.010 0.073 0.033 0.207** 0.077 0.183** 0.096 0.090 0.024 0.250** 0.088 

NFP TCH (-) 0.071 0.115 0.050 0.137* 0.081 0.054 0.175 -0.019 0.068 0.068 0.070 

CFNAI (+) 0.095 0.071 0.110 0.055 0.171* -0.011 0.339* 0.131 0.030 0.017 0.054 

CONCCONF (-) 0.067 0.121* 0.026 0.117* 0.127* 0.074 0.047 0.219* 0.257*** 0.061 0.085 

INJCSP (+) 0.012 0.024 0.036 0.013 0.055 0.054 0.076 0.097 0.097** 0.039 0.084* 

CPUPXCHG (-) 0.112* 0.080 0.059 0.074 0.025 0.018 0.170* 0.141 0.159** 0.145* 0.041 

CPI CHNG (+) 0.096 0.030 0.145** 0.066 0.091 0.234*** 0.061 0.067 0.020 0.239*** 0.070 

DFEDGBA (+) 0.130* 0.075 0.168*** 0.141* 0.142* 0.103 0.094 0.121 0.115 0.066 0.047 

DFEDGBA (-) 0.140*** 0.069 0.148*** 0.128** 0.069 0.051 0.142* 0.195** 0.171*** 0.061 0.101* 

DGNOCHNG (+) 0.054 0.071 0.013 0.140* 0.179*** -0.002 -0.015 0.048 -0.004 -0.004 -0.062 

DGNOXTCH (+) 0.097 0.149 0.031 0.037 0.131 0.057 0.337* 0.583*** 0.444*** 0.149 0.247* 

DGNOXTCH (-) 0.142* 0.233*** 0.025 0.028 0.187** 0.009 0.088 0.066 0.115 0.140 0.299*** 

EMPRGBCI (+) 0.142* 0.046 0.000 0.218** 0.164* 0.060 0.055 0.343** 0.067 0.224** 0.089 

EMPRGBCI (-) 0.030 0.047 -0.003 0.033 0.044 0.164*** 0.177* 0.120 0.121* 0.052 0.104 

TMNOCHNG (+) 0.038 0.043 0.024 0.091 0.021 0.079 0.111 0.245* 0.113 0.133* 0.143* 

Note. The table reports the OLS coefficient estimates of the regression for jump components on negative (-) or positive (+) news surprise on individual news outlets in 

the post-crisis period. The superscript asterisks *, ** and *** denote statistical significance at the 10%, 5% and 1% levels respectively. The significant coefficients are 

highlighted in bold. The jump components 𝐽𝑡 is estimated using corrected threshold bi-power variation (CTBV). 
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Cont. …Table 4.16 Estimated Coefficients for regression of jump components on news surprises in the post-crisis period  

𝑙𝑜𝑔(𝐽𝑡 + 1) =𝛽𝐽,𝑘,𝑝|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡≥0)+𝛽𝐽,𝑘,𝑛|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡<0) +𝜀𝑡 

Negative (-) or  

Positive (+) news 

surprise 

AAPL 

(IT) 

CSCO 

(IT) 

IBM 

(IT) 

INTC 

(IT) 

MSFT 

(IT) 

ORCL 

(IT) 

XRX 

(IT) 

YHOO 

(IT) 

AEE 

(Utilities) 

CNP 

(Utilities) 

EXC 

(Utilities) 

HPIMMOM (+) 0.119* 0.096 0.102* 0.061 0.059 0.183** 0.112 0.170 0.070 0.327*** 0.187** 

GDP PIQQ (+) -0.007 0.027 0.029 0.042 0.013 0.005 0.088 0.190* 0.065 0.002 -0.005 

NHSPSTOT (-) -0.015 -0.014 0.033 -0.015 -0.030 0.216** 0.043 -0.079 -0.006 -0.151 0.107 

IMP1CHNG (+) 0.113* 0.129* 0.138** 0.156* 0.077 0.137* 0.286** 0.095 0.200** 0.072 0.082 

IP CHNG (+) 0.027 0.017 0.188* 0.077 0.143 -0.002 -0.087 0.165 -0.146 0.025 0.012 

INJCJC (+) 0.067** 0.091** 0.031 0.063* 0.055* 0.037 0.053 0.135** -0.013 0.143*** 0.042 

INJCJC (-) 0.095*** 0.066* 0.048* 0.053 0.028 0.052 0.142** 0.129** 0.069* 0.074* 0.073* 

NAPMPMI (+) 0.096* 0.041 0.033 0.077 0.056 0.122* 0.187* 0.213* 0.093 0.040 0.072 

NAPMPMI (-) 0.168** -0.006 0.028 0.090 0.091 0.158* 0.066 0.024 0.122 -0.021 0.016 

MAPMINDX (+) 0.025 0.319*** 0.053 0.029 0.121 0.039 0.032 0.108 0.071 0.112 0.044 

MAPMINDX (-) 0.063 0.107 0.065 0.068 0.015 0.030 0.146 0.058 0.034 0.136* 0.172* 

NAPMNMI (+) 0.046 0.045 0.071 0.031 0.060 0.101 0.066 0.104 0.087 0.096 0.124 

NAPMPRIC (-) 0.041 0.161* 0.055 0.003 0.071 -0.041 0.083 0.086 -0.013 0.151* 0.124 

LEI CHNG (+) 0.058 0.079 0.081** 0.064 0.077* -0.032 0.007 0.157* 0.112* 0.073 0.032 

CHPMINDX (-) 0.059 0.041 0.023 0.162** 0.073 0.085 0.243** 0.103 0.090 0.054 0.058 

USHBMIDX (+) 0.033 0.043 0.056 0.106* 0.064 0.060 0.133 0.128 0.163** 0.155** 0.146* 

USHBMIDX (-) 0.087 0.018 0.059 0.173** 0.069 0.117* 0.129 0.192* 0.098 0.084 0.084 

NHSLTOT (+) 0.146* 0.050 0.047 0.016 0.059 0.176* 0.002 0.085 0.186* 0.188* 0.204* 

SBOITOTL (+) 0.036 0.106 0.114* 0.166* 0.019 0.089 0.394*** 0.245* 0.167* 0.221** 0.214** 

PRODNFR (-) 0.012 0.066 -0.010 0.098 -0.026 0.051 0.424** 0.040 -0.069 -0.115 -0.178 

PCE CMOM (+) 0.097 -0.024 -0.019 0.031 -0.011 0.131* -0.015 0.100 0.028 -0.014 -0.037 

PCE CMOM (-) 0.008 0.121* 0.021 0.016 0.003 0.055 0.075 0.217* 0.044 0.077 0.080 

Note. The table reports the OLS coefficient estimates of the regression for jump components on negative (-) or positive (+) news surprise on individual news outlets 

in the post-crisis period. The superscript asterisks *, ** and *** denote statistical significance at the 10%, 5% and 1% levels respectively. The significant coefficients 

are highlighted in bold. The jump components 𝐽𝑡 is estimated using corrected threshold bi-power variation (CTBV). 
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Cont. … Table 4.16 Estimated Coefficients for regression of jump components on news surprises in the post-crisis period  

𝑙𝑜𝑔(𝐽𝑡 + 1) =𝛽𝐽,𝑘,𝑝|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡≥0)+𝛽𝐽,𝑘,𝑛|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡<0) +𝜀𝑡 

Negative (-) or  

Positive (+) news 

surprise 

AAPL 

(IT) 

CSCO 

(IT) 

IBM 

(IT) 

INTC 

(IT) 

MSFT 

(IT) 

ORCL 

(IT) 

XRX 

(IT) 

YHOO 

(IT) 

AEE 

(Utilities) 

CNP 

(Utilities) 

EXC 

(Utilities) 

GDPCTOT (+) 0.109* 0.129* 0.067 0.065 0.081 0.036 0.073 0.215* 0.032 0.039 0.108 

GDPCTOT (-) 0.011 0.045 0.038 0.062 0.036 0.043 0.079 0.033 0.115* 0.025 0.052 

PITLCHNG (-) 0.038 -0.037 0.022 -0.030 0.029 0.008 -0.068 -0.031 0.000 -0.039 -0.058 

PCE CRCH (+) 0.014 0.066 0.030 0.113 0.042 0.073 0.149 0.118 0.071 0.055 0.112 

PCE CRCH (-) 0.070 0.035 0.030 0.073 0.076 0.021 0.127 0.044 0.118* 0.137* 0.278*** 

OUTFGAF (+) 0.025 0.080 0.070 0.067 0.045 0.173** 0.238** 0.014 0.200** 0.108 0.022 

OUTFGAF ((-) 0.093* 0.032 0.031 0.071 0.086 0.077 0.288*** 0.096 0.056 0.070 0.120* 

PXFECHNG (+) 0.023 -0.044 0.079 0.166* 0.026 -0.007 0.146 0.036 0.099 0.139 0.092 

PXFECHNG (-) -0.005 0.151** 0.138*** 0.057 0.130* 0.102 0.023 -0.035 -0.024 0.026 0.121 

PPI CHNG (-) 0.026 0.115 -0.065 0.037 -0.073 0.023 0.098 0.272 0.187 0.020 0.017 

RSTAMOM (+) -0.012 0.356* 0.044 0.044 -0.128 0.002 0.266 -0.013 -0.013 -0.152 -0.016 

RSTAMOM (-) 0.084 0.080 0.027 0.084 -0.055 0.288* 0.526** 0.260 0.212 0.117 0.080 

RSTAXAG (+) 0.180* -0.072 0.012 0.157 0.149 -0.014 -0.046 0.126 0.143 0.187 0.064 

RSTAXMOM (-) -0.059 0.007 0.067 0.030 0.084 -0.064 -0.199 -0.105 -0.062 0.009 0.045 

RCHSINDX (-) 0.029 0.062 0.030 0.163** 0.045 -0.002 0.217** 0.039 0.159** 0.075 0.097 

SPCS20SM (+) 0.081 0.087 0.068 0.195*** 0.095 0.117* 0.261** 0.225** 0.221*** 0.132* 0.072 

SPCS20SM (-) 0.102* 0.038 0.097** 0.132** 0.119** 0.156*** 0.126 0.283*** 0.211*** 0.148** 0.109 

CONSSENT (+) 0.095* 0.071 0.085* 0.179*** 0.082 0.159*** 0.157* 0.262*** 0.210*** 0.083 0.126* 

CONSSENT (-) 0.082** 0.162*** 0.029 0.196*** 0.124*** 0.077* 0.080 0.210*** 0.124*** 0.092* 0.082* 

USURTOT (+) 0.090 0.116 0.122* -0.017 0.080 -0.016 0.104 0.086 0.181* 0.002 0.005 

COSTNFR (+) -0.029 0.021 0.068 0.005 0.123 0.043 0.012 0.065 0.271** 0.261** 0.404*** 

Note. The table reports the OLS coefficient estimates of the regression for jump components on negative (-) or positive (+) news surprise on individual news outlets 

in the post-crisis period. The superscript asterisks *, ** and *** denote statistical significance at the 10%, 5% and 1% levels respectively. The significant coefficients 

are highlighted in bold. The jump components 𝐽𝑡 is estimated using corrected threshold bi-power variation (CTBV). 
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Cont. … Table 4.16 Estimated Coefficients for regression of jump components on news surprises in the post-crisis period  

𝑙𝑜𝑔(𝐽𝑡 + 1) =𝛽𝐽,𝑘,𝑝|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡≥0)+𝛽𝐽,𝑘,𝑛|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡<0) +𝜀𝑡 

Negative (-) or  

Positive (+) news 

surprise 

KO 

(CS) 

UL 

(CS) 

BT 

(TS) 

T 

(TS) 

TEF 

(TS) 

VOD 

(TS) 

AMGN 

(HC) 

BSX 

(HC) 

GILD 

(HC) 

PFE 

(HC) 

 

NHSPATOT (+) 0.046 0.012 0.012 0.026 0.042 0.005 0.188** 0.156 0.064 0.132**  

NHSPATOT (-) 0.192*** 0.012 0.030 0.104 0.026 0.048 0.170 0.089 0.114 0.065  

MTIBCHNG (+) 0.070* 0.025 0.055 0.074 0.074* 0.031 0.139 0.140 0.038 0.151**  

MTIBCHNG (-) 0.032 0.041 0.090* 0.154** 0.038 0.011 0.198* 0.584*** 0.101 0.183**  

CGNOXAI (-) -0.024 0.002 0.017 0.040 -0.008 0.054 0.177* 0.030 0.026 0.146*  

CPTICHNG (+) 0.087 0.064 0.088 0.088 0.037 0.014 0.426** 0.209 0.095 0.099  

USMMMNCH (-) 0.107 -0.008 0.079 0.148* 0.029 0.054 -0.003 0.212 0.115 0.043  

NFP TCH (+) 0.068 0.030 0.067 0.110 0.054 0.002 0.142 0.259* 0.026 0.066  

NFP TCH (-) 0.038 0.015 0.053 0.202*** 0.010 0.017 0.327*** 0.301** 0.050 0.084  

CFNAI (+) 0.041 0.013 -0.010 0.064 0.045 0.323*** 0.105 0.238 0.135 -0.014  

CONCCONF (-) 0.027 0.008 0.039 0.085* 0.042 0.032 0.133 0.137 0.088 0.049  

INJCSP (+) 0.044* 0.002 0.037 0.007 0.008 -0.012 -0.021 0.086 0.024 0.025  

CPUPXCHG (-) 0.066 0.006 0.042 0.026 0.018 0.071* 0.119 0.270** 0.067 0.069  

CPI CHNG (+) 0.050 -0.002 0.021 -0.007 0.022 -0.006 -0.034 0.221* 0.007 0.117*  

DFEDGBA (+) 0.073 0.036 0.111** 0.068 0.087 0.017 0.147 0.362** 0.124* 0.208***  

DFEDGBA (-) 0.030 0.014 0.051* 0.143*** 0.035 0.071*** 0.203*** 0.128 0.024 0.160***  

DGNOCHNG (+) 0.028 0.012 0.015 0.050 0.012 0.041 0.092 0.036 0.010 0.005  

DGNOXTCH (+) 0.064 0.017 0.074 0.126 0.064 0.158*** 0.185 0.212 0.025 0.176*  

DGNOXTCH (-) 0.091* 0.007 0.036 -0.036 0.008 -0.006 -0.059 -0.039 0.000 0.006  

EMPRGBCI (+) 0.132** 0.011 -0.006 0.061 0.074 0.075 0.000 0.266* 0.057 0.088  

EMPRGBCI (-) 0.025 0.017 0.038 0.033 0.041 0.079*** 0.167** 0.174* 0.031 0.047  

TMNOCHNG (+) 0.046 0.026 0.073 0.110* 0.082* 0.102** 0.027 0.275* 0.151** 0.015  

Note. The table reports the OLS coefficient estimates of the regression for jump components on negative (-) or positive (+) news surprise on individual news outlets 

in the post-crisis period. The superscript asterisks *, ** and *** denote statistical significance at the 10%, 5% and 1% levels respectively. The significant coefficients 

are highlighted in bold. The jump components 𝐽𝑡 is estimated using corrected threshold bi-power variation (CTBV). 



238 

 

Cont. … Table 4.16 Estimated Coefficients for regression of jump components on news surprises in the post-crisis 

period 

𝑙𝑜𝑔(𝐽𝑡 + 1) =𝛽𝐽,𝑘,𝑝|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡≥0)+𝛽𝐽,𝑘,𝑛|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡<0) +𝜀𝑡 

Negative (-) or  

Positive (+) news 

surprise 

KO 

(CS) 

UL 

(CS) 

BT 

(TS) 

T 

(TS) 

TEF 

(TS) 

VOD 

(TS) 

AMGN 

(HC) 

BSX 

(HC) 

GILD 

(HC) 

PFE 

(HC) 

HPIMMOM (+) 0.088* 0.012 0.033 0.096* 0.000 0.001 0.099 0.199 0.054 0.121* 

GDP PIQQ (+) 0.082* -0.003 0.011 -0.018 0.022 -0.002 0.006 0.011 0.002 0.054 

NHSPSTOT (-) -0.018 0.029 0.056 0.008 0.017 -0.030 -0.043 0.105 -0.053 -0.028 

IMP1CHNG (+) 0.092* 0.035 0.049 0.079 0.045 0.166*** 0.147 0.633*** 0.128* 0.101 

IP CHNG (+) -0.029 -0.022 0.045 -0.009 0.031 0.006 -0.284* -0.011 -0.039 -0.005 

INJCJC (+) 0.026 0.010 0.051** 0.076*** 0.044* 0.035* 0.100* 0.082 0.036 0.052 

INJCJC (-) 0.035 0.020 0.062** 0.137*** 0.052* 0.078*** 0.126** 0.210*** 0.032 0.067* 

NAPMPMI (+) 0.118*** 0.061** 0.090** 0.165*** 0.022 0.031 0.355*** 0.102 0.060 0.207*** 

NAPMPMI (-) 0.085 0.028 0.132** 0.028 0.014 0.110** 0.244* 0.144 0.018 0.005 

MAPMINDX (+) 0.051 0.017 0.048 0.178*** 0.007 0.220*** 0.157 0.154 0.021 0.064 

MAPMINDX (-) 0.063 0.008 0.072 0.075 0.038 0.038 0.086 0.309** 0.019 0.082 

NAPMNMI (+) 0.082* 0.035 0.070* 0.075 0.031 0.013 0.341*** 0.068 0.062 0.175*** 

NAPMPRIC (-) 0.035 -0.011 0.000 0.050 0.010 0.018 -0.041 0.104 0.008 0.092 

LEI CHNG (+) 0.009 0.012 0.009 0.064 0.078** 0.018 0.130* 0.178* 0.036 0.138*** 

CHPMINDX (-) 0.086* 0.042* 0.051 0.064 0.030 0.018 0.113 0.078 0.093 0.101 

USHBMIDX (+) 0.126*** 0.013 0.137*** 0.031 0.022 0.093*** 0.150* 0.164 0.045 0.190*** 

USHBMIDX (-) 0.062 0.015 0.089* 0.101* 0.050 0.059* 0.279*** 0.397*** 0.115* 0.145** 

NHSLTOT (+) 0.043 0.007 0.087 0.116 -0.004 0.115** 0.058 0.164 0.138* 0.085 

SBOITOTL (+) 0.110* 0.034 0.141** 0.217*** 0.064 0.020 0.230* 0.180 0.049 0.069 

PRODNFR (-) -0.051 -0.019 0.046 0.006 -0.007 0.018 0.024 0.046 0.017 -0.033 

PCE CMOM (+) 0.062 0.050* 0.040 -0.079 0.007 0.002 -0.067 -0.068 -0.017 0.028 

PCE CMOM (-) 0.085* 0.005 0.026 -0.062 0.006 -0.031 -0.147 -0.036 0.041 0.105 

Note. The table reports the OLS coefficient estimates of the regression for jump components on negative (-) or positive (+) news surprise on individual 

news outlets in the post-crisis period. The superscript asterisks *, ** and *** denote statistical significance at the 10%, 5% and 1% levels respectively. The 

significant coefficients are highlighted in bold. The jump components 𝐽𝑡 is estimated using corrected threshold bi-power variation (CTBV). 
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Cont. … Table 4. Estimated Coefficients for regression of jump components on news surprises in the post-crisis 

period  

𝑙𝑜𝑔(𝐽𝑡 + 1) =𝛽𝐽,𝑘,𝑝|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡≥0)+𝛽𝐽,𝑘,𝑛|𝑆𝑘𝑡| 1 (𝑆𝑘𝑡<0) +𝜀𝑡 

Negative (-) or  

Positive (+) news 

surprise 

KO 

(CS) 

UL 

(CS) 

BT 

(TS) 

T 

(TS) 

TEF 

(TS) 

VOD 

(TS) 

AMGN 

(HC) 

BSX 

(HC) 

GILD 

(HC) 

PFE 

(HC) 

GDPCTOT (+) 0.035 0.008 0.038 0.030 0.029 0.005 0.142* 0.178 0.045 0.078 

GDPCTOT (-) 0.032 0.004 0.033 0.131*** 0.003 0.032 0.244*** 0.117 0.024 0.078 

PITLCHNG (-) 0.002 0.024 0.044 0.081 -0.017 0.110** 0.195* -0.020 0.037 -0.006 

PCE CRCH (+) 0.042 0.005 0.030 0.097 0.032 0.017 0.280** 0.291** 0.028 0.147* 

PCE CRCH (-) 0.118*** 0.008 0.004 0.086* 0.042 -0.004 0.267*** 0.281** 0.008 0.129* 

OUTFGAF (+) 0.068 0.004 0.061 0.047 0.006 0.051 0.008 0.365*** 0.003 0.106 

OUTFGAF (-) 0.112*** 0.009 0.145*** 0.006 0.011 0.016 0.151* 0.129 0.060 0.016 

PXFECHNG (+) 0.045 0.003 0.025 0.026 0.017 -0.020 0.230* 0.112 0.076 0.132* 

PXFECHNG (-) 0.074* -0.004 0.020 0.145** 0.008 -0.020 0.285*** 0.397*** 0.028 0.223*** 

PPI CHNG (-) -0.029 0.055 0.133* 0.060 0.024 0.055 -0.206 0.032 0.049 -0.185 

RSTAMOM (+) 0.004 -0.030 0.138 0.040 -0.067 -0.148* 0.022 0.259 0.025 -0.088 

RSTAMOM (-) 0.207* -0.013 0.486*** 0.046 -0.025 0.046 0.192 0.036 -0.106 0.107 

RSTAXAG (+) 0.065 0.031 0.001 0.065 0.040 0.149** 0.043 0.309 0.196* 0.129 

RSTAXMOM (-) -0.083 0.019 -0.283*** 0.020 0.034 0.042 -0.001 0.095 0.118 0.031 

RCHSINDX (-) 0.125*** 0.019 0.021 0.042 0.059 0.052* 0.036 0.211* 0.076 0.049 

SPCS20SM (+) 0.087* 0.037 0.045 0.061 0.058 0.112*** 0.230** 0.302** 0.084 0.086 

SPCS20SM (-) 0.044 0.018 0.042 0.118** 0.048 0.071** 0.110 0.114 0.113** 0.151** 

CONSSENT (+) 0.092** 0.011 0.076* 0.161*** 0.055 0.061** 0.158* 0.186* 0.053 0.090* 

CONSSENT (-) 0.074*** 0.014 0.079*** 0.099*** 0.093*** 0.024 0.106* 0.119* 0.099*** 0.078** 

USURTOT (+) 0.015 0.007 0.067 -0.011 0.034 0.023 0.157 -0.031 0.053 0.138 

COSTNFR (+) 0.094 0.046 0.095 0.083 0.001 0.003 0.092 0.133 -0.013 0.022 

Note. The table reports the OLS coefficient estimates of the regression for jump components on negative (-) or positive (+) news surprise on individual news 

outlets in the post-crisis period. The superscript asterisks *, ** and *** denote statistical significance at the 10%, 5% and 1% levels respectively. The 

significant coefficients are highlighted in bold. The jump components 𝐽𝑡 is estimated using corrected threshold bi-power variation (CTBV). 
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Table 4.17 Proportions of news-related daily jump components, estimated using 

CTBV 

 Pre-crisis Post-crisis 

Stock (Sector) Proportion Mean  Variance Proportion Mean  Variance 

 Panel A: Few jumps 

IBM(IT) 0.134 0.467 0.168 0.011 0.543 0.116 

XRX(IT) 0.046 2.421 12.682 0.093 1.102 0.476 

YHOO(IT) 0.122 1.646 2.612 0.193 1.299 9.969 

AMGN(HC) 0.108 1.824 3.559 0.227 0.885 1.251 

BSX(HC) 0.199 2.941 23.154 0.108 1.103 0.553 

BT(TS) 0.094 1.316 2.357 0.173 0.270 0.034 

TEF(TS) 0.132 0.637 0.295 0.095 0.302 0.060 

VOD(TS) 0.053 0.841 0.301 0.352 0.251 0.044 

UL(CS) 0.226 0.911 2.371 0.056 0.144 0.024 

AEE(Utilities) 0.028 0.456 0.068 0.196 0.829 1.823 

CNP(Utilities) 0.024 1.146 0.819 0.286 0.955 8.162 

 Panel B: High volumes 

ORCL(IT) 0.138 1.414 2.516 0.242 0.473 0.099 

GILD(HC) 0.119 0.644 1.170 0.067 0.361 0.084 

PFE(HC) 0.257 0.843 1.446 0.227 0.525 0.172 

T(TS) 0.080 1.187 1.993 0.311 0.596 4.629 

EXC(Utilities) 0.072 0.746 0.387 0.106 0.555 0.343 

 Panel C: High volumes & few jumps 

AAPL(IT) 0.085 1.969 3.593 0.292 0.523 0.755 

CSCO(IT) 0.027 2.601 7.090 0.109 0.484 0.138 

INTC(IT) 0.123 1.046 1.046 0.076 0.445 0.082 

MSFT(IT) 0.198 0.807 1.041 0.172 0.457 0.146 

KO(CS) 0.068 0.531 0.269 0.110 0.390 0.230 

Note. The table reports the descriptive statistics for jump components that co-occur with macroeconomic 

news announcements, estimated using CTBV for each stock. The stocks with the highest and lowest values 

in each column are marked in bold and italics respectively. There are more stocks in Panel A than in the other 

panels, because the stocks with the fewest jumps vary considerably between the pre-crisis and post-crisis 

periods. 
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Table 4.18 Proportions of co-jump-related jump components estimated using CTBV 

for the six stocks with the highest volume and fewest jumps in the data set (subset 

one) 

 Pre-crisis Post-crisis 

 Proportion Mean  Variance Proportion Mean  Variance 

 Panel A: Six stocks with the highest volume 

AAPL(IT) 0.099 5.549 27.362 0.103 0.809 0.610 

CSCO(IT) 0.093 2.648 10.194 0.094 0.870 0.329 

GILD(HC) 0.096 1.284 1.456 0.101 1.005 0.743 

INTC(IT) 0.102 2.406 5.059 0.098 0.795 0.293 

MSFT(IT) 0.106 1.943 4.194 0.100 0.751 0.567 

ORCL(IT) 0.100 4.053 19.234 0.105 0.789 0.349 

PFE(HC) 0.109 2.248 10.693 0.101 0.793 0.361 

T(TS) 0.101 1.888 4.717 0.109 0.497 0.240 

 Panel B: Six stocks with the fewest jumps 

AAPL(IT) 0.106 5.511 25.222 0.126 0.753 0.430 

BT(TS) 0.124 4.303 13.234 0.142 0.650 0.697 

CSCO(IT) 0.102 2.672 10.041 0.118 0.888 0.347 

IBM(IT) 0.109 1.993 15.361 0.108 0.476 0.105 

INTC(IT) 0.105 2.369 4.882 0.129 0.832 0.324 

MSFT(IT) 0.118 2.181 6.043 0.113 0.696 0.522 

TEF(TS) 0.123 1.329 1.259 0.138 0.463 0.126 

UL(CS) 0.133 2.486 5.718 0.130 0.303 0.037 

VOD(TS) 0.115 1.937 5.080 0.114 0.415 0.147 

XRX(IT) 0.107 5.663 250.39 0.128 2.185 9.967 

YHOO(IT) 0.093 7.084 85.634 0.117 1.546 2.693 

Note. The table reports the descriptive statistics for jump components that co-occur with co-jumps, estimated 

using CTBV for the six stocks with the highest volume and the six stocks with the fewest jumps in the data 

set (subset one). More than six stocks are shown in each panel of the table because there is variation in the 

top six stocks between the pre- and post-crisis periods.  
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Table 4.19 Co-jump-related jump components estimated using CTBV for the two 

stocks with the highest volume and fewest jumps in each sector (subset two) 

 Pre-crisis Post-crisis 

 Proportion Mean Variance Proportion Mean Variance 

 Panel A: Highest volume in each sector 

AAPL(IT) 0.101 5.506 27.828 0.117 1.117 11.074 

EXC(Utilities) 0.122 1.605 1.700 0.127 1.056 12.204 

GILD(HC) 0.093 1.565 2.976 0.117 1.010 0.638 

KO(CS) 0.109 1.422 1.480 0.118 0.478 0.165 

PFE(HC) 0.130 2.389 10.340 0.116 0.966 4.440 

T(TS) 0.104 1.778 1.820 0.120 0.597 1.251 

 Panel B: Lowest jump frequency in each sector 

AAPL(IT) 0.102 5.802 26.491 0.119 0.764 0.455 

AEE(Utilities) 0.130 1.358 1.126 0.127 1.258 46.372 

AMGN(HC) 0.118 4.294 17.120 0.125 0.941 0.987 

BSX(HC) 0.119 4.772 21.557 0.123 2.393 17.443 

CNP(Utilities) 0.115 2.762 40.231 0.118 0.881 0.529 

INTC(IT) 0.104 2.431 6.154 0.123 0.853 0.497 

KO(CS) 0.103 1.316 1.108 0.117 0.450 0.147 

UL(CS) 0.128 2.604 6.257 0.122 0.287 0.043 

VOD(TS) 0.112 1.748 4.825 0.112 0.369 0.054 

Note. The table reports the descriptive statistics for jump components that co-occur with co-jumps, 

estimated using CTBV for the two stocks from each sector with the highest volume and the fewest jumps 

(subset two). More than one stock per sector is shown in each panel of the table because there is variation 

in the highest stocks between the pre- and post-crisis periods.  
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Table 4.20 Coefficients for news surprise (positive or negative) that co-occurs with co-

jumps on jump components estimated using CTBV for the stocks with the highest 

volumes and fewest jumps for each sector (data subset two) 

𝑙𝑜𝑔(𝐽𝑡 + 1) =𝛽𝐽,𝑝|𝑆𝑡| 1 (𝑆𝑡≥0) + 𝛽𝐽.𝑛 |𝑆𝑡| 1 (𝑆𝑡<0) +𝜀𝑡 

 Pre-crisis Post-crisis 

News Surprise Positive Negative Positive Negative 

 Panel A: Highest-volume stocks in each sector 

AAPL(IT) 0.115*** 0.113*** 0.075*** 0.026** 

GILD(HC) 0.087*** 0.045*** 0.045*** 0.040*** 

PFE(HC) 0.079*** 0.071*** 0.068*** 0.040*** 

T(TS) 0.080*** 0.071*** 0.060*** 0.048*** 

KO(CS) 0.100*** 0.034** 0.050*** 0.040*** 

EXC(Utilities) 0.111*** 0.084*** 0.082*** 0.074*** 

 Panel B: Stocks with the fewest jumps in each sector 

AAPL(IT) 0.167*** 0.132*** 0.066*** 0.046*** 

INTC(IT) 0.110*** 0.067*** 0.093*** 0.059*** 

AMGN(HC) 0.113*** 0.095*** 0.092*** 0.073*** 

BSX(HC) 0.174*** 0.217*** 0.136*** 0.134*** 

VOD(TS) 0.078*** 0.061*** 0.028*** 0.029*** 

KO(CS) 0.082*** 0.054*** 0.059*** 0.048*** 

UL(CS) 0.125*** 0.140*** 0.018*** 0.013** 

AEE(Utilities) 0.068*** 0.081*** 0.090*** 0.062*** 

CNP(Utilities) 0.293*** 0.224*** 0.090*** 0.061*** 

Note. The table reports the OLS coefficient estimates of the regression for jump components on news 

announcements that co-occur with co-jumps for the stocks with the highest volumes and fewest jumps in each 

sector (subset two), for the pre- and post-crisis periods. The superscript asterisks *, ** and *** denote statistical 

significance at the 10%, 5% and 1% levels respectively. 
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Table 4.21 Coefficients for news surprise (positive or negative) that co-occurs with co-

jumps on jump components estimated using CTBV for the six stocks with the highest 

volume and fewest jumps in the data set overall (subset one). 

𝑙𝑜𝑔(𝐽𝑡
𝑐 + 1) =𝛽𝐽,𝑝|𝑆𝑡

+| + 𝛽𝐽.𝑛 |𝑆𝑡
−| +𝜀𝑡 

 Pre-crisis Post-crisis 

News Surprise Positive Negative Positive Negative 

 Panel A: Top six highest-volume stocks 

AAPL(IT) 0.161*** 0.104*** 0.065*** 0.042*** 

CSCO(IT) 0.050* 0.064*** 0.074*** 0.066*** 

INTC(IT) 0.071*** 0.053*** 0.071*** 0.074*** 

MSFT(IT) 0.031 0.053*** 0.074*** 0.061*** 

ORCL(IT) 0.117*** 0.106*** 0.082*** 0.048*** 

GILD(HC) 0.069*** 0.051*** 0.050*** 0.027** 

PFE(HC) 0.092*** 0.067*** 0.066*** 0.042*** 

T(TS) 0.084*** 0.088*** 0.063*** 0.043*** 

 Panel B: Top six lowest-jump-frequency stocks 

AAPL(IT) 0.133*** 0.126*** 0.053*** 0.049*** 

CSCO(IT) 0.050* 0.084*** 0.088*** 0.080*** 

IBM(IT) 0.032* 0.064*** 0.048*** 0.052*** 

INTC(IT) 0.080*** 0.071*** 0.076*** 0.069*** 

MSFT(IT) 0.050** 0.059*** 0.069*** 0.057*** 

XRX(IT) 0.146*** 0.300*** 0.148*** 0.108*** 

YHOO(IT) 0.148*** 0.118*** 0.176*** 0.115*** 

BT(TS) 0.325*** 0.322*** 0.038*** 0.035*** 

TEF(TS) 0.127*** 0.116*** 0.035*** 0.040*** 

VOD(TS) 0.048** 0.056*** 0.022*** 0.028*** 

UL(CS) 0.149*** 0.132*** 0.014*** 0.014** 

Note. The table reports the OLS coefficient estimates of the regression for jump components on news 

announcements that co-occur with co-jumps for the six stocks with the highest volumes and fewest jumps 

in the whole data set (subset one), for the pre- and post-crisis periods. The superscript asterisks *, ** and 

*** denote statistical significance at the 10%, 5% and 1% levels respectively. More than six stocks are 

shown in each panel of the table because there is variation in the top six stocks between the pre- and post-

crisis periods. 
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Table 4.22 MSE results for standard HAR, HAR-TJ and HAR-CTJ models for 

different stocks (forecast horizon h=1) 

 Pre-crisis Post-crisis 

 HAR HAR-TJ HAR-CTJ HAR HAR-TJ HAR-CTJ 

 Panel A. Few jumps  
IBM(IT) 2.543 2.456 2.568 0.316 0.295 0.304 

XRX(IT) 4.544 5.044 4.891 1.097 1.117 1.062 

YHOO(IT) 7.536 8.100 7.735 2.140 1.951 1.928 

AMGN(HC) 4.529 4.108 4.298 8.987 8.637 8.503 

BSX(HC) 5.077 5.041 5.129 3.581 3.702 3.533 

BT(TS) 0.598 1.961 1.552 0.227 0.245 0.238 

TEF(TS) 0.576 0.815 0.541 0.136 0.136 0.136 

VOD(TS) 1.111 1.141 1.104 0.060 0.061 0.067 

UL(CS) 0.290 0.411 0.343 0.035 0.035 0.034 

AEE(Utilities) 0.636 0.697 0.643 0.501 0.396 0.413 

CNP(Utilities) 4.833 4.603 4.702 1.078 1.158 1.206 

 Panel B. High volume 

ORCL(IT) 7.462 7.388 7.514 0.431 0.346 0.389 

GILD(HC) 1.661 1.655 1.656 0.246 0.236 0.242 

PFE(HC) 0.586 0.645 0.597 2.246 2.123 2.150 

T(TS) 2.460 2.268 2.489 1.513 1.531 1.564 

EXC(Utilities) 7.419 6.956 6.766 1.223 1.128 1.078 

 Panel C. High volume & few jumps 

AAPL(IT) 41.446 41.846 42.823 0.992 0.957 1.024 

CSCO(IT) 2.861 2.955 2.918 0.676 0.627 0.716 

INTC(IT) 6.562 5.953 6.480 0.395 0.357 0.345 

MSFT(IT) 1.152 1.220 1.190 0.624 0.620 0.617 

KO(CS) 0.531 0.502 0.522 0.067 0.071 0.064 

Note. This tables reports the mean squared error (MSE) forecasting results from standard HAR-family models 

with the forecast horizon set to h=1. These models are used as benchmarks for the modified HAR-family 

models that incorporate the impact of news in the following tables. There are more stocks in Panel A than in 

the other panels, because the stocks with the fewest jumps vary considerably between the pre-crisis and post-

crisis periods. 
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Table 4.23 MSE results for HAR, HAR-TJ and HAR-CTJ models modified to take 

into account the impact of news on different stocks (forecast horizon h=1) 

 Pre-crisis Post-crisis 

 HAR HAR-TJ HAR-CTJ HAR HAR-TJ HAR-CTJ 

 Panel A. Few jumps 
IBM(IT) 2.500 2.457 2.565 0.323 0.306 0.304 

XRX(IT) 4.738 4.987 4.987 1.122 1.120 1.086 

YHOO(IT) 7.547 7.942 7.750 2.120 1.947 1.926 

AMGN(HC) 4.624 4.352 4.285 8.951 8.625 8.564 

BSX(HC) 5.072 5.037 5.144 3.624 3.699 3.535 

BT(TS) 0.591 1.902 1.525 0.218 0.248 0.238 

TEF(TS) 0.564 0.809 0.533 0.136 0.136 0.135 

VOD(TS) 1.112 1.146 1.140 0.063 0.061 0.067 

UL(CS) 0.293 0.408 0.341 0.037 0.035 0.034 

AEE(Utilities) 0.684 0.695 0.645 0.487 0.426 0.439 

CNP(Utilities) 6.381 6.168 6.059 1.740 1.128 1.216 

 Panel B. High volumes 

ORCL(IT) 7.493 7.465 7.502 0.410 0.346 0.385 

GILD(HC) 1.834 1.694 1.668 0.251 0.238 0.236 

PFE(HC) 0.586 0.647 0.601 2.382 2.521 2.621 

T(TS) 2.495 2.248 2.465 1.620 1.525 1.546 

EXC(Utilities) 8.750 7.919 6.670 1.133 1.072 1.085 

 Panel C. Few jumps & high volumes 

AAPL(IT) 41.538 41.642 42.946 0.958 0.956 0.996 

CSCO(IT) 2.864 2.982 2.894 0.620 0.603 0.692 

INTC(IT) 6.537 5.702 6.690 0.398 0.360 0.345 

MSFT(IT) 1.150 1.218 1.206 0.592 0.540 0.515 

KO(CS) 0.521 0.496 0.516 0.066 0.071 0.064 

       

Improved results 7 12 10 11 9 8 

Note. This table reports the mean squared error (MSE) forecasting results from HAR-family models that take 

into account the impact of macroeconomic news announcements (forecast horizon h=1). Bold MSE values 

are lower than the MSE of the corresponding benchmark models in Table 4.22. The number of improved 

results for each model is given at the bottom of each column. There are more stocks in Panel A than in the 

other panels, because the stocks with the fewest jumps vary considerably between the pre-crisis and post-

crisis periods. 
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Table 4.24 MSE results for the HAR, HAR-TJ and HAR-CTJ models (forecast 

horizon h=1) modified to account for the impact of news that co-occurs with co-

jumps for the stocks with the highest volume and fewest jumps in each sector (subset 

two). 

 Pre-crisis Post-crisis 

 HAR HAR-TJ HAR-CTJ HAR HAR-TJ HAR-CTJ 

 Panel A. Highest volume stock in each sector 
AAPL(IT) 41.389 41.814 42.824 0.992 0.958 1.024 

GILD(HC) 1.665 1.641 1.656 0.246 0.236 0.242 

PFE(HC) 0.599 0.647 0.597 2.246 2.123 2.150 

T(TS) 2.695 2.874 2.061 1.513 1.531 1.564 

KO(CS) 0.525 0.499 0.520 0.067 0.071 0.064 

EXC(Utilities) 8.244 7.467 6.774 1.224 1.128 1.078 

 Panel B. Lowest jump stock in each sector 

AAPL(IT) 42.203 41.925 42.823 0.993 0.959 1.024 

INTC(IT) 6.583 5.958 6.493 0.396 0.357 0.345 

AMGN(HC) 4.547 4.107 4.301 8.987 8.639 8.503 

BSX(HC) 5.089 5.048 5.130 3.587 3.705 3.533 

VOD(TS) 1.144 1.142 1.104 0.060 0.061 0.067 

KO(CS) 0.534 0.501 0.522 0.067 0.071 0.064 

UL(CS) 0.297 0.413 0.342 0.035 0.035 0.034 

AEE(Utilities) 0.682 0.698 0.643 0.501 0.396 0.412 

CNP(Utilities) 5.170 4.652 4.758 1.080 1.170 1.214 

Note. This table reports the mean squared error (MSE) forecasting results from HAR-family models that take 

into account the impact of macroeconomic news announcements (forecast horizon h=1). Bold MSE values are 

lower than the MSE of the corresponding benchmark models in Table 4.22.  
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Table 4.25 MSE results for the HAR, HAR-TJ and HAR-CTJ models (forecast 

horizon h=1) modified to account for the impact of news that co-occurs with co-

jumps for the six stocks with the highest volume and fewest jumps in the data set 

overall (subset one) 

 Pre-crisis Post-crisis 

 HAR HAR-TJ HAR-CTJ HAR HAR-TJ HAR-CTJ 

 Panel A. Top six high volume stock 
AAPL(IT) 41.715 41.852 42.824 0.991 0.956 1.024 

CSCO(IT) 2.976 2.961 2.920 0.676 0.627 0.716 

INTC(IT) 6.885 5.955 6.492 0.394 0.356 0.345 

MSFT(IT) 1.227 1.301 1.190 0.624 0.621 0.617 

ORCL(IT) 7.404 7.328 7.407 0.432 0.346 0.389 

GILD(HC) 1.627 1.600 1.658 0.246 0.236 0.242 

PFE(HC) 0.603 0.646 0.596 2.246 2.123 2.150 

T(TS) 2.748 2.713 2.702 1.513 1.531 1.564 

 Panel B. Top six low jump frequency stock 

AAPL(IT) 41.892 41.886 42.824 0.993 0.958 1.024 

CSCO(IT) 2.951 2.956 2.918 0.676 0.627 0.716 

IBM(IT) 2.558 2.456 2.568 0.316 0.296 0.304 

INTC(IT) 6.653 5.955 6.483 0.395 0.357 0.345 

MSFT(IT) 1.211 1.243 1.190 0.625 0.621 0.617 

XRX(IT) 4.665 5.075 4.898 1.099 1.118 1.062 

YHOO(IT) 7.580 8.145 7.743 2.140 1.951 1.928 

BT(TS) 0.618 1.977 1.571 0.228 0.245 0.238 

TEF(TS) 0.556 0.813 0.541 0.136 0.136 0.136 

VOD(TS) 1.160 1.142 1.104 0.060 0.061 0.067 

UL(CS) 0.290 0.411 0.342 0.035 0.035 0.034 

Note. This table reports the mean squared error (MSE) forecasting results from HAR-family models that take 

into account the impact of macroeconomic news announcements (forecast horizon h=1). Bold MSE values 

are lower than the MSE of the corresponding benchmark models in Table 4.22. More than six stocks are 

shown in each panel of the table because there is variation in the top six stocks between the pre- and post-

crisis periods. 
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Concluding Remarks 

In this thesis, we have reviewed recent developments in the study of high-frequency 

financial volatility analysis. We have discussed the stylised facts of high-frequency returns 

and eleven different volatility measures, alongside different volatility patterns between 

calendar-time sampling returns and business-time sampling returns. In doing so, we have 

helped enhance the modelling and forecasting of financial volatility by incorporating 

trading volume, different intraday periodicity estimators and information from 

macroeconomic news announcements into volatility forecasting models.  

In Chapter 1, we initially focused on the development of the estimation of intraday 

periodicity, from the parametric Flexible Fourier form method to recent non-parametric 

estimators such as weighted standard deviation (WSD) and Shortest Half. We also 

discussed the stylised facts of high-frequency data reported in a limited number of previous 

studies, such as the presence of jumps. Various methods of detecting intraday jumps, 

estimating daily jump components and incorporating jumps into volatility models were 

compared. In the second part of the chapter, we reviewed the development of parametric 

conditional variance (GARCH) models, from using low-frequency to high-frequency data, 

along with how they have incorporated different features of financial data (e.g. leverage 

effects) in recent decades. In addition, the development of non-parametric HAR-family 

models is outlined in this chapter, as they are important for high-frequency volatility 

forecasting. In the final part of the chapter, we reviewed studies that use different methods 

to examine the impact of news on financial volatility, from visibly observing volatility 

graphs to regressing the volatility components (e.g. jump components) on quantifiable 
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variables representing news (e.g. standardised news surprise). We also discuss the impact 

of news announcements on co-movements between financial asset returns. Forecasting 

intraday volatility is challenging, as there are many features of volatility that are more 

visible at the intraday level. It is therefore important to accurately identify the stylised facts 

of volatility and efficiently incorporate them in volatility models. Since volatility 

forecasting will continue to be an important topic for researchers, investors and 

policymakers, more advanced methods and models for estimating and incorporating the 

stylised facts of intraday financial volatility need to be developed.  

Chapter 2 discussed the stylised facts of high-frequency data. The results show that both 

the absolute intraday returns and their volatility measures have slow-decaying 

autocorrelations and that the aggregated daily returns exhibit fat tails and leverage effects. 

In addition, by standardising aggregated returns using eleven different volatility measures, 

we find that the standardised returns follow normal distributions. In addition, the various 

volatility measures have long-memory properties and are significantly correlated with 

trading volumes. We hence incorporate trading volume in a volatility forecasting model 

and find that the new model performs better than three other HAR-class models for data 

from less volatile financial regimes (the post-crisis periods, as opposed to the pre-crisis and 

crisis period).  

Chapter 3 first investigates the impact of intraday periodicity on jump frequency, jump 

components and volatility forecasting, for both calendar-time and business-time sampling 

data. The results show that filtering for intraday periodicity results in a reduction in jump 

frequency for all returns and reduces the jump components for most returns regardless of 

the sampling scheme employed. However, the reduction in jump components for business-
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time sampling data is more consistent than for calendar-time data. In addition, we find that 

filtering for intraday periodicity yields better forecasting results from HAR models for less 

volatile data such as healthcare stocks and data from the post-crisis period for both 

sampling schemes. We also compare the intraday periodicity patterns, jump frequencies 

and jump components for business-time sampling and calendar-time sampling returns. The 

results show that intraday periodicity is more evident and that the jump frequency and jump 

components are higher for calendar-time sampling data compared to business-time 

sampling data. 

Chapter 4 extends non-parametric volatility (HAR) models by considering information 

regarding macroeconomic news announcements. This chapter first runs a regression of the 

jump components on the standardised news surprises from news announcements, including 

some news outlets which are not considered in previous literature, and on co-jump-related 

news announcements. The results show that many news announcements, including those 

specifically related to co-jumps, have a significant impact on stocks’ jump components. 

The second part of the study focuses on incorporating information from these news 

announcements in HAR-class models. We treat significant news announcements as an 

index to separate the jump components between those that are related to news and those 

that are caused by other factors. The out-of-sample forecasting results show that 

incorporating news announcements improves the models’ forecasting performance. 

However, considering co-jump-related news does not seem to yield different forecasting 

results for HAR models. In addition, we did not find a significant effect of news 

announcements on the co-movements between stocks when considering the impact of co-

jumps in HAR models. Since the impact of news announcements on these co-movements 
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can be observed from their impact on covariance in multivariate models, it would therefore 

be worthwhile for future research to take news announcements into account in multivariate 

volatility models such as multivariate GARCH models. 

In terms of the limitations of the thesis, we required high-frequency stock price data in 

order to study intraday patterns, which meant that data from a fairly limited range of sources 

(i.e. US stock data) could be used. The phenomena studied in this thesis may show different 

effects on stock prices from other countries such as European or Asian markets, or on other 

kinds of financial data such as foreign exchange markets and commodity markets. Future 

research in this area would therefore benefit from considering a wider range of data from 

various markets and financial domains. Another limitation is that the analysis of the effect 

of news announcements on stock volatility in Chapter 4 was restricted to macroeconomic 

news announcements from sources such as government bodies and credit agencies. 

Company-level news announcements, such as individual firms’ quarterly earnings 

announcements, also have an impact on stock volatility, but were not explicitly taken into 

account in the analysis. We recommend that future work on this topic investigates both 

types of news announcements and compares their relative effects on stock prices in order 

to gain a greater understanding of the effects of news on stock volatility. Finally, the 

COVID-19 pandemic in 2020 has led to another period of uncertainty in financial markets, 

which would be worthy of inclusion in future research on stock market volatility.  

In summary, this thesis contributes to the field by conducting a detailed examination of the 

impact of trading volume, intraday periodicity and macroeconomic news announcements 

on stock volatility by incorporating these factors into volatility forecasting models. In 

Chapter 2 we investigate the stylised facts of volatility measures for stocks, revealing the 
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presence of long-memory properties and correlations between them and trading volumes. 

We find that incorporating the lag of trading volume can improve volatility forecasting.  In 

Chapter 3 we find that business-time sampling data have fewer jumps and jump 

components and weaker intraday periodicity patterns than calendar-time sampling data. 

Filtering for intraday periodicity produces larger improvements in forecasting for the less 

volatile business-time sampling data. Chapter 4 examines the impact of macroeconomic 

news announcements on stocks’ jump components, including news outlets which have not 

previously been analysed in work to date. We find that macroeconomic news has a 

significant impact on jump components and that incorporating news surprise in HAR-

family models improves their forecasting performance. However, considering only co-

jump-related news does not have a significant effect on volatility forecasting models. 

Overall, the thesis demonstrates the importance of trading volume, intraday periodicity and 

macroeconomic news in stock volatility by providing innovations to existing models, thus 

furthering our understanding of stock market volatility forecasting. 
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