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24 Abstract:

25 Mosquito surveillance data can be used for predicting mosquito distribution and dynamics as 

26 they relate to human disease. Often these data are collected by independent agencies and 

27 aggregated to state and national level portals to characterize broad spatial and temporal 

28 dynamics. These larger repositories may also share the data for use in mosquito and/or disease 

29 prediction and forecasting models. Assumed, but not always confirmed, is consistency of data 

30 across agencies. Subtle differences in reporting may be important for development and the 

31 eventual interpretation of predictive models. Using mosquito vector surveillance data from 

32 Arizona as a case study, we found differences among agencies in how trapping practices were 

33 reported. Inconsistencies in reporting may interfere with quantitative comparisons if the user has 

34 only cursory familiarity with mosquito surveillance data. Some inconsistencies can be overcome 

35 if they are explicit in the metadata while others may yield biased estimates if they are not 

36 changed in how data are recorded. Sharing of metadata and collaboration between modelers and 

37 vector control agencies is necessary for improving the quality of the estimations. Efforts to 

38 improve sharing, displaying, and comparing vector data from multiple agencies are underway, 

39 but existing data must be used with caution. 

40

41 Key Words: Mosquito-borne disease, vector surveillance, disease prediction, data sharing
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42 Introduction

43 While the challenges to sharing vector data across agencies and with academic partners isn’t new 

44 (Moise et al. 2019), it recently came to the fore during the Zika outbreak. In an age of improved 

45 data sharing, modelers from all disciplines wanted access to vector data to estimate risk for Zika 

46 given the presence of vectors. However, they were met with no centralized repository and 

47 inconsistencies in reporting across agencies. 

48

49 In addition to emergent diseases, data challenges exist with endemic diseases like West Nile 

50 Virus (WNV) in the US. Focused studies have shown mosquito surveillance data is useful for 

51 predicting human WNV cases weeks in advance (Bolling et al. 2009, Kilpatrick and Pape 2013). 

52 Combining mosquito abundance with infection prevalence, the vector index, has proven useful 

53 for estimating human disease risk, but few areas have sufficiently complete data available to do 

54 so (Petersen 2019). Data completeness and consistency is further compounded when trying to 

55 merge data from multiple agencies. 

56

57 Heterogeneity in data composition, quality, and spatial or temporal resolution challenge their use 

58 for display and modelling purposes. The pragmatic approach when estimating probabilities of 

59 species abundance or presence is to use the data as is, and, for example, acknowledging 

60 heterogeneity as random effects in mixed models or to create complex frameworks to account for 

61 biases (Fletcher et al. 2019, Manica et al. 2019). These modelling approaches can be applied 

62 only when complete information is provided with respect to the data collection and reporting 

63 process. Even then, the models are often too complex for decision making. Improving how 

64 predictive models are used by stakeholders for planning and response will come with sharing of 
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65 standardized data and from collaboration with vector control agencies (Moy et al. 2018, Barker 

66 2019). Such co-production of science has been shown to improve the data quality and utility of 

67 predictive disease risk models (Purse et al. 2020).

68

69 Along omni-comprehensive world species databases (the largest is GBIF https://www.gbif.org/), 

70 there have been initiatives to share mosquito and mosquito-borne disease data. These range from 

71 international data portals like VectorBase (vectorbase.org), national like VectorMap 

72 (http://vectormap.si.edu/) hosted by the Smithsonian Institute, and more local programs like 

73 VectorSurv (https://vectorsurv.org/) originating in California but expanding to other states. 

74 Related, ArboNET (https://wwwn.cdc.gov/arbonet/) is a passive disease surveillance system 

75 established in 2000 by the Centers for Disease Control and Prevention (CDC) in response to 

76 West Nile virus, which aims to facilitate arboviral data compilation and sharing (Petersen 2019). 

77

78 Such collections of vector data may then be imported further into repositories aimed at reaching 

79 broader audiences. One example is the CDC’s National Environmental Public Health Tracking 

80 (EPHT). EPHT was initiated as a comprehensive approach for collecting, compiling, and sharing 

81 data on environmental exposures, burdens, and diseases (Frumkin et al. 2008). Primarily, EPHT 

82 focuses on human disease outcomes, see for example (Eatman and Strosnider 2017), but some 

83 agencies are also including vector abundance and arbovirus surveillance data. Currently 26 state 

84 and local health departments share morbidity, mortality, and surveillance data via the EPHT 

85 portal (Centers for Disease Control and Prevention 2017). Many of these broader repositories 

86 make the data accessible internally to those providing data and externally through specific 
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87 requests, reaching a broader group of potential users, but also moving the data further from its 

88 sources.

89

90 When using data from a compiled database, differences in reporting that may ultimately affect 

91 the model output may go undetected. In the US, for example, vector data is held in over 1000 

92 different individual vector agencies across the country (Rund et al. 2019). Merging data across 

93 agency goes beyond which species and by what trap type. The complexities in how to merge 

94 begin to arise in just considering differences in trapping frequency or the locations of the site 

95 (e.g., urban vs agricultural). Most of these will be documented and can be addressed. What is not 

96 as often documented is the purpose for trapping and a detailed sampling design which would 

97 allow for a complete and transparent merging of data (Sedda et al. 2019). While clean, compiled 

98 vector data from multiple agencies is an objective, the lack of standardization between agencies 

99 would make such a database unhelpful, potentially even counter-productive (Yong 2017). This is 

100 especially true in the absence of robust metadata (Powers and Hampton 2019).  

101

102 Herein, we use mosquito surveillance data from Arizona as a case study to highlight potential 

103 discrepancies in how data are reported between agencies. We acknowledge that many of JME’s 

104 readership are aware of issues described herein, the call for standardization in reporting 

105 collection locations has been made elsewhere in JME (Foley et al. 2009). Yet merging mosquito 

106 surveillance data remains currently unfeasible because of the lack of standardization. Without 

107 discussion of these challenges even those of us who work closely with local vector control 

108 agencies may attempt to merge data erroneously, assuming that other agencies report in the very 

109 same way. Similarly, we hope that vector control agencies who don’t work as closely with 
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110 modelers may understand how their data are used and the significance of their data reporting. 

111 Whether using vector data for visualization or in prediction and forecasting models, these 

112 discrepancies must be addressed to insure the output’s validity. Through an understanding of the 

113 origins and purposes of the data, better models and better predictions may be generated. We hope 

114 that this is a further step toward a unified mosquito surveillance protocol.

115

116 Modeling mosquito surveillance data

117 Vector data to support estimating vector-borne disease risk usually require spatial and temporal 

118 information to document changes in distribution across space and changes over time, both within 

119 a season or across years. This assumes some consistency or at least the knowledge of 1) the trap 

120 type, 2) whether the trap was set because of a suspected hotspot or as part of routine sampling, 3) 

121 the location and frequency for setting and servicing traps. Knowing the location and time of 

122 trapping events is a minimum requirement in spatio-temporal and population dynamics analyses, 

123 reflected in points 1 and 3. Point 2 is essential to correct for data inflation as expected in hotspots 

124 or for routine sampling when carried out in certain ecotypes. Variations on these aspects may 

125 produce dramatically different pictures of the distribution of mosquitoes and/or the risk for 

126 disease. 

127

128 Data for this case study. We use the 2018 data from the local Arizona database for reporting to 

129 CDC’s ArboNET. Prior to forwarding the data to the national ArboNET, the Arizona 

130 Department of Health Services (ADHS) receives and complies mosquito data from 19 vector 

131 control agencies across the 15 counties in Arizona. The state was moving toward VectorSurv as 

132 their centralized data repository at the time of this analysis. While this change will help to 
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133 standardize many of the data collection inconsistencies described herein, data collected prior to 

134 the centralization likely continue to be requested. It will be even more relevant to be aware of 

135 some of the inconsistencies when the data are merged for longitudinal analyses and for trend 

136 analyses using historical data. 

137

138 Using a data manipulation program written in SAS (SAS Institute Inc., Cary, NC), ADHS cleans 

139 and compiles data from agencies for inclusion into the local database which was maintained in 

140 Microsoft Access (Microsoft Corporation, Redmond, WA). WNV vector data were extracted and 

141 provided for this analysis as a Microsoft Excel spreadsheet (Microsoft Corporation, Redmond, 

142 WA). After removing 1,151 entries with no geographic positioning coordinates (1.6% of the total 

143 entries), there were 71,812 entries with 27 variables. When collapsing pools to trap nights, this 

144 further combines to 42,308 trap nights over 3,821 unique trap type/location entries recorded in 

145 2018. Frequency comparisons were conducted in StataIC v15 (StataCorp, College Station TX).

146

147 Trapping Method. Traps that collect adult host seeking mosquitoes in the US commonly include 

148 CO2 traps which may be enhanced with baits like octenol or light. For WNV surveillance, live 

149 bait in traps (e.g., bird-boxes) may also be used, but these are rare and were not in our dataset. 

150 Gravid females are often an important indicator of disease risk because they are more likely to 

151 have taken a blood meal (Williams and Gingrich 2007) and may be selected for using gravid 

152 traps. Immature mosquitoes may be collected via using a dipper in existing water habitat or 

153 through placement of ovi-traps, and reliably provide presence information but not abundance. 

154
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155 Trap types listed in this data set include primarily CO2 traps (80% of all entries). The next most 

156 common were ovitraps (5.3%), Biogents Sentinel trap (1.8%), and Encephalitis Vector Survey 

157 trap (1.6%). Traps were defined as Other, in 8.1% of entries, while 3.1% of the entries did not 

158 list any trap type. Additional baits used, like octenol, were either not used or not reported in these 

159 data. 

160

161 It is well established that the type of trap, when, and how it is placed influences the species and 

162 abundance of mosquitoes collected (Bidlingmayer 1967). Studies have shown that use of 

163 attractant (Meeraus et al. 2008), type of trap (DiMenna et al. 2006, Brown et al. 2008, Maciel-de-

164 Freitas et al. 2008, Holderman et al. 2018), and location of trap (Anderson et al. 2004, DiMenna 

165 et al. 2006, Černý et al. 2011) may provide different depictions of mosquito abundance, species 

166 composition, and infection prevalence. Failure to account for attractant use and trap type 

167 information may result in biases or large errors in estimates of species presence and abundance 

168 depending upon the variety of traps deployed (Bidlingmayer 1967, Kline 2006). Because of the 

169 effects of trap type and bait used on the species observed, it would be necessary to confirm and 

170 account for such information where possible. 

171

172 Reason for Trapping. In the data we reviewed, 74% of entries include a reason for trapping. 

173 Routine surveillance was the most commonly listed reason (85.2%), followed by complaint 

174 response (8.9%), surveillance (2.5%), enhanced surveillance (1.6%), response to human case 

175 (1.6%), or other (0.3%). Maricopa County, Arizona’s most populated county, accounted for 93% 

176 of the data in the 2018 database. The reason for trapping for 83% of that county’s data was 
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177 “routine surveillance” with an additional 15% with no reason listed. In contrast, only 59.6% of 

178 the reported reason for trapping was routine surveillance of all other counties combined. 

179

180 The reason for vector surveillance systems is to inform decisions about public health 

181 interventions. The reasons listed, however, indicate how implementation of traps set to protect 

182 human health may differ among agencies with further implications to mosquito abundance 

183 estimates. Traps set at the same, fixed location each year and repeatedly sampled over the season 

184 provide the most robust estimates of between and within year abundance. Traps set in response 

185 to citizen complaints produce high estimates of abundance and, if included in comparisons, may 

186 overestimate abundance, especially later in the season (Fig 1). Traps set in response to a human 

187 case may lead to biased estimates of vector abundance or arboviral infection prevalence because 

188 they likely represent hot spots of virus activity rather than normal variance. If the routine 

189 surveillance program is robust and the primary data source, the impact of using all available data 

190 may be minimal. In Figure 1 a, most (83.1%) of the data from this county are listed as routine 

191 sampling. The data restricted to only routine (solid boxes) and routine with response to case or 

192 complaint (dashed boxes) are similar. The lack of data from routine sampling later in the season 

193 is likely omission errors: coordinates for routine sites not marked as such in the database. In 

194 contrast (Fig 1 b), when estimating abundance using the data from all other counties where 

195 almost half of the trapping is for reasons other than “routine surveillance’, not distinguishing by 

196 reason for trapping inflates the mosquito abundance (dashed boxes are higher than routine only). 

197 These data show an exception from early in the season where more than 100000 mosquitos were 

198 recorded in one trap on one night. For illustrative purpose, we also plot the comparison of only 
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199 routine versus only response (complaint or human case related) trapping, Figure 1c. This further 

200 shows the inflated counts of trapping where complaints are registered or human cases occur.  

201

202 The modeler interested in describing mosquito geographic dynamics will likely turn toward 

203 vector control data from multiple agencies for the longest period of time available. However, 

204 they run the risk of compounding uncertainty around trapping reasons both between agencies but 

205 also as agencies change their sampling strategy over time. 

206

207 Vector control agencies focus sampling efforts to areas where the population they seek to protect 

208 are. This may leave sparsely populated areas undersampled. Surveillance designed to sample 

209 across high, medium and low population density areas are rare. As a result, description of 

210 mosquito geographic dynamics and movements to inform vector control in a highly populated 

211 area may be jeopardized by lack of information about potential immigration of mosquitoes from 

212 neighboring areas (Sedda et al. 2019). 

213

214 Immigration and emigration of mosquitoes from an area to another can be estimated by using 

215 insect population models (Sedda et al. 2020). In case of immigration, new trapping locations can 

216 be adaptively added based on modeled mosquito migration patterns especially if sharing data 

217 from neighboring districts is possible and the data are comparable. Establishing new routine sites 

218 would then be determined by allocating the traps where immigration processes are taking place 

219 in combination with other priorities such as proximity to highly density areas. Agencies working 

220 to understand between year dynamics may wish to establish set surveillance locations for 

221 consistent intra-annual comparisons if they don’t already. At a minimum, including a reason for 
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222 trapping, especially when in response to a case or nuisance is critical so that estimates could be 

223 adjusted accordingly. 

224

225 Frequency of Trapping and Site Names. Trapping frequency varied by county and even within 

226 county. When evaluating trapping locations, 57.1% of the traps are located in Maricopa County 

227 and 32.3% are located in Pima County, Arizona’s two most populated counties. Though they 

228 represent only 3.9% of all of the records entered, almost half (43.9%) of the sites were set for 

229 one night based on the coordinates reported in the database regardless of reason for trapping. As 

230 would be expected, locations listing “complaint response” as the reason for trapping were 

231 serviced less frequently, an average of 1.02 trap night (sd= 0.15, min= 1, max= 2) for the year. In 

232 contrast, traps labeled as “routine surveillance” were serviced an average of 14.38 trap nights 

233 (sd=16.56, min= 1, max= 43) over the year evaluated. Of CO2 traps set for “routine 

234 surveillance,” 24.6% of traps were set between 40 and 43 nights, 17.6% were set between 20-22 

235 nights, and nearly half (43.9%) were set for only one trap night.

236

237 One explanation of the high occurrence of routine traps set for just one night, may be associated 

238 with how databases are designed. Error may occur if location coordinates are not linked to a 

239 specific site and an error of around 5m might be expected between readings taken with a 

240 smartphone (National Coordination Office for Space-Based Positioning, Navigation 2019). Thus, 

241 what is known to the vector control agency to be the same location, may be recorded as a cluster 

242 of close locations when identified by coordinates alone. In these data, 27.3% of trap with the 

243 same name had different GPS coordinates, even after removing sites with no name recorded. 
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244 Inclusion of a site name with permanent coordinates or standardization of terminology would 

245 resolve the normal error in location readings. 

246

247 Alternatively, this might be indicative of differences in how routine is understood. Routine might 

248 be interpreted as sampling sites which are fixed locations that are sampled at regular intervals. 

249 Routine may also be interpreted as part of standard assessment of the mosquito fauna of the area, 

250 but not necessarily as specific fixed sites sampled at a fixed and regular frequency. Fixed 

251 surveillance sites, to revisit each year as part of routine vector surveillance can allow for 

252 comparison of trends over time. 

253

254 Frequent trapping of at least every other week during the mosquito season is common in 

255 mosquito sampling designs and enables descriptions of seasonality and variation in mosquito 

256 abundance using a cost-effective approach (Vanlalruia et al. 2014). However, depending on the 

257 number of trapping locations, frequent trapping may not be sustainable for long surveillance 

258 campaigns over large areas. Allocation of carefully selected locations can provide better, cost-

259 effective results especially if coupled with minimization of trapping uncertainties via spatially 

260 explicit data modelling, i.e. adaptive sampling (Fanshawe and Diggle 2012). Some analyses have 

261 shown that sampling over a period of two or more years may be useful to accurately infer 

262 seasonal and interannual cycles in mosquito abundance (Li et al. 2019). In a study of the 

263 association between Aedes aegypti vector abundance and dengue infection, mosquito data from 

264 longitudinal surveys were associated with infection risk, whereas cross-sectional vector indices 

265 were poor (Cromwell et al. 2017). 

266
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267 Routine surveillance trapping, that is a trap set in the same location annually and visited 

268 regularly within the mosquito season, provides estimates of seasonal dynamics in vector 

269 abundance. As described above, this has costs for the agency, especially when these are in 

270 addition to responding to nuisance complaints from community members about biting insects 

271 and enhanced trapping in response to human cases of arboviral disease. One solution might be to 

272 identify a subset of trapping locations allocated along an environmental gradient relevant to the 

273 region or as part of a systematic grid over the whole region based on historical data or important 

274 ecological delineation (Sedda et al. 2019) within a cost optimization framework (Longbottom et 

275 al. 2020). These locations would be part of the regular annual surveillance and serviced multiple 

276 times within the mosquito season. Many vector control agencies do this, but identifying these 

277 sentinel trapping locations explicitly in any shared dataset would be helpful to reduce the effect 

278 of systematic biases.  

279

280 Missing Data and Empty Traps. Approximately half of the entries (47.6%) reported no 

281 mosquitoes collected. Nine of the 40 individuals who submitted reports, entered traps with zero 

282 counts. This indicates that empty traps are being recorded into this database, but inconsistently 

283 across agencies and individuals. 

284

285 This inconsistency has important implications for the data analyst. The completeness of the data 

286 set is a measure of how long the data have been consistently reported and whether empty traps 

287 are reported. A zero count may occur when a trap is tampered with or malfunctions in some way. 

288 Alternatively, a zero count may occur when the trap functions properly but no mosquito is 

289 collected or, in some instances, when mosquitoes are collected, but not the target species. 
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290 Distinguishing between zero counts because a trap failed and traps with zero collected 

291 mosquitoes is essential to creating a better estimate of abundance and the beginning and end of 

292 the local mosquito season. As an example (Figure 2), we plotted abundance from week 23-27 for 

293 one submitting county which did consistently report empty traps. For one species, weekly trap 

294 counts both with the unaltered data and when artificially removing the empty traps are plotted. 

295 This boxplot over time shows abundance estimates that may be artificially inflated if empty traps 

296 are not included in the data. While this omission may be obvious to the analyst who explored 

297 their data before modeling, it cannot be remedied if empty traps are not recorded. 

298

299 From a modeling point of view, zero counts can be addressed with overdispersed models when 

300 the zeros are real; Zero inflated models can help to address when the zeros are not associated 

301 with the mosquito distribution but rather trap malfunction (Warton 2005). However, this is only 

302 possible if zero-counts are recorded in the data. Training on data entry and setting mandatory 

303 data fields in the recording system may facilitate the completeness of reporting data. As 

304 databases become more automated, incorporated training and mandatory entry may reduce the 

305 problems associated with empty traps. When using data already collected, the procedure by 

306 which the submitting vector control personnel record empty and malfunctioning traps should be 

307 confirmed.   

308

309 Pathogen Information. In Arizona, WNV (52%) and St. Louis encephalitis virus (47%), are the 

310 most common pathogens for arboviral testing. Dengue, chikungunya, and Zika viruses accounted 

311 for most of the rest. Reverse transcriptase-polymerase chain reaction (RT-PCR) is the most 

312 commonly used method of testing (35% of reported test types). 
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313

314 When a maximum number of mosquitoes are collected, mosquitoes are pooled into smaller 

315 groups for arbovirus detection. There is no established standard, but pools up to 50 or up to 100 

316 are common. Pool size, mosquito species/genus composition and arboviral test results were 

317 documented in the Arizona database. For the data reviewed here, pools were of no more than 50 

318 mosquitoes and usually consisted of a single species.

319

320 Arboviral information with mosquito abundance information can then be used to estimate 

321 transmission risk. Three common measures are minimum infection rate (MIR), maximum 

322 likelihood estimate (MLE), and the vector index. MIR is the ratio of positive pools to the number 

323 of mosquitoes tested and assumes only one positive mosquito in a positive pool (Reeves and 

324 Hammon 1962), whereas MLE estimates the most likely infection rate (Walter et al. 1980). The 

325 vector index is the product of a given species abundance multiplied by the proportion infected 

326 (Gujral et al. 2007). While these metrics are helpful in estimating human WNV risk (Kilpatrick 

327 and Pape 2013), they should be used with caution in areas of high transmission and low sample 

328 size (Gu et al. 2008, Bustamante and Lord 2010, Chakraborty and Smith 2019). It is worth noting 

329 that information like prevalence of the pathogen or of insecticide resistance can inform ad-hoc 

330 calculations for the size of the group during the pooling especially in presence of spatial 

331 heterogeneity which may require group size differing from trap to trap (Hepworth and 

332 Biggerstaff 2017).

333

334 Capturing Vector Control Information. Despite that data repositories like ArboNET were 

335 established to monitor disease not to assess mosquito control measures, data from these 
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336 repositories are being used to describe mosquito distributions, arbovirus presence and disease 

337 risk. Refinements to these repositories include MosquitoNET, developed to also include 

338 insecticide resistance information. Including information on the magnitude and duration of 

339 intervention will likely further complicate standardization because of the wide range of 

340 approaches by organization, region and regulation. However, consideration of it would be useful 

341 to the researcher trying to interpret vector dynamics, to the citizens interested in vectors in their 

342 area, and also to vector control as to the lasting success of their efforts. Specifically, adulticide or 

343 larvicide, technician, equipment, pesticide mix, quantity, area treated, start/stop date and time, 

344 and description of the conditions when applied. These data were not captured in the database we 

345 reviewed. Newer repositories like VectorSurv designed with modeling in mind do include this 

346 information, with new sets of challenges to standardization.

347

348 In trying to understand the impact of vector control, the missing information about interventions 

349 can create challenges in estimating changing trends in mosquito abundance, especially given the 

350 current global rise in insecticide resistance in mosquitoes (Moyes et al. 2017). When and where 

351 adulticiding or larviciding is performed affects the mosquito abundance in an area. This is the 

352 goal of these activities. Including this information may be critical for research questions looking 

353 to understand drivers of the trends in mosquito abundance and evolution (Britch et al. 2010, 

354 Fouet et al. 2018) and to identify thresholds for action (Nasci and Mutebi 2019). 

355  

356 Standards in metadata. Using mosquito surveillance data for model inference and prediction is 

357 affected by the degree of standardization in how the data are collected, compiled and defined. 

358 This information is usually collected as metadata and includes qualitative information like trap 
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359 type and the spatial allocation of trap across the landscape being monitored. Sometimes metadata 

360 can be employed in statistical frameworks as predictors, as random effects, or just to inform the 

361 model priors. The latter is the main element that allows for the estimation of data and model 

362 uncertainties of the predictions within the Bayesian paradigm (Lindley 1983). Machine learning 

363 methods, where algorithms learn from and act on data via transformations and segmentation, are 

364 gaining ground in inferential and predictive quantitative and translational methods (Toh et al. 

365 2019). Meaningful associations and/or directionalities within black box machines require large, 

366 robust datasets, often necessitating combining across multiple vector control districts and/or 

367 multiple years of sampling. Thus increasing the need for robust metadata and standardization in 

368 reporting. 

369

370 Biases and errors can only be controlled by the use of metadata directly into the model especially 

371 when dealing with heterogeneous data (Toh et al. 2019). One example of integrating spatially 

372 explicit data in order to provide a homogeneous health and environmental monitoring and 

373 subsequent analyses comes from Germany (Schröder 2006). Data standardization with robust 

374 metadata is fundamental for the efficiency of real-time or near-real time biosurveillance and 

375 early warning systems algorithms (Pollett et al. 2017). 

376

377 In this paper, we use Arizona mosquito data to highlight discrepancies that may arise due to 

378 variability in the collection, reporting and use of mosquito surveillance data. We expect that 

379 readers might feel, “but that isn’t how we do it” as they read this case-study. Thus further 

380 supporting the need for clarity in what data are reported. Understanding the variability may help 

381 to prioritize standardization efforts and for the inclusion and use of metadata. Time and resource 
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382 constraints, however will continue to limit what data each agency can report (Lindsey et al. 

383 2012). Addressing these gaps and insuring useful predictive models will come with the 

384 increasing trends for data sharing data and centralized repositories. 

385

386 Conclusion

387 This case-study was motivated to support efforts by health departments to more openly share 

388 vector control data with academic and community partners on repositories like EPHT. Data at 

389 the level provided within ArboNET would allow for spatial and temporal analysis of trends, 

390 comparisons across trap type and reason, and potential development of early warning with the 

391 inclusion of pathogen data. We describe expected variability in data collected across agencies as 

392 it relates to potential impacts for modeling work. As portals like CDC’s ArboNET or EPHT 

393 increasingly become resources for national level data, the challenges to maintaining the integrity 

394 of the data becomes more salient.

395

396 The aim of data repositories and data sharing is to build better understanding of mosquito-borne 

397 disease risk. Vector control uses their data to promote human health by identifying areas with 

398 high mosquito activity and responding. Modelers are more likely to use the data to understand 

399 drivers of high mosquito activity, with the same goal of protecting human health. When using 

400 mosquito surveillance data, ideally the researchers would be working with the agency collecting 

401 the data. In the absence of such collaboration, we hope the above information will help clarify 

402 the need for standardization and metadata. Coordination across agencies and data aggregation 

403 would allow for increased capacity to develop usable models of vector control, vector 

404 seasonality, and predictions of entomologic risk now and under future climates.
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554 Figure 1. Weekly mosquito abundance counts plotted by week to compare restricting to only those traps 

555 characterized in the database as “routine surveillance” (dark bars) with all other adult trapping (dashed 

556 bars). (a) Is from one county with a robust sampling program. This county accounts for 93% of the 

557 reported data in the database, of which 83.1% of the data was labeled as routine surveillance. (b) Is for all 

558 other counties combined, where 59.6% of the data were labeled as “routine surveillance”.  (c) Is a 

559 comparison of only routine surveillance (solid) and only response trapping (dashed). Note that 

560 this is for illustrative purposes and includes all mosquito species together and all trap type except 

561 ovi-traps. Outliers are not plotted. 

562

563 Figure 2. Weekly mosquito abundance counts plotted by week for one submitting county to 

564 illustrate the impact of recording empty traps. Dark bars indicate weekly trap counts with all data 

565 included. Dashed bars indicate weekly trap counts when zero values (e.g., empty traps) were 

566 artificially removed from the dataset. Outliers are not plotted.
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