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Abstract

This thesis investigates whether laser-driven plasma can be used as an ana-

logue model of gravity in order to investigate Hawking radiation. An action

describing laser-driven plasma is derived, and effective metrics are obtained

in various regimes from the resulting field equations. Effective metrics ex-

hibiting different behaviour are analysed by considering different forms of

the fields. One of the effective metrics has the required properties for the

analysis of Hawking radiation. It is shown that for a near-IR laser the Hawk-

ing temperature is about 4.5 K, which is small compared to typical plasma

temperatures. However the waist of the laser is shown to have significant

impact on the resulting Hawking temperature. As such it may be possible to

obtain Hawking temperatures of several hundred Kelvin with a pulse width

of a few µm. A new approach to investigating quantum fluctuations in an

underdense laser-driven plasma is also presented that naturally emerges from

the model underpinning the above studies. It is shown that the 1-loop ef-

fective action is expressible in terms of a massless field theory on a dilatonic

curved background. Plane wave perturbations to the field equations are anal-

ysed for fields which are linear in Minkowski coordinates, and two dispersion

relations are obtained. The impact on a Gaussian wave packet is calculated,

suggesting it may be possible to experimentally verify this theory by utilising

an x-ray laser.
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Chapter 1

Introduction

The theory of general relativity predicts that a large enough mass confined

to a small enough volume will create a black hole; a region of spacetime from

which nothing, not even light, can escape. The point of no return is called the

event horizon. Observational evidence suggests that many galaxies have black

holes at their centres [1], including our own Milky Way [2]. These objects can

be completely characterised by their mass, charge and angular momentum.

In 1975 Hawking [3] showed that black holes should radiate particles due to

quantum effects near the horizon. The temperature of this radiation, called

Hawking temperature, is inversely proportional to the mass of the black hole

and the gravitational coupling constant. However the temperature of the

radiation is very small compared to everyday temperatures. For example,

for a black hole the mass of our Sun, the Hawking temperature is about 10−7

K. Considering that the cosmic microwave background has a temperature

of about 2.7 K, detecting Hawking radiation would require precision not

attainable with current technology. However, it has been discovered that
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black holes are not the only phenomena that can generate Hawking radiation.

Certain systems can be described in terms of an effective metric, and if such

a metric is equivalent to that of a black hole, the system should produce

Hawking radiation. The field of research into such systems is called analogue

gravity. It is thus feasible that experiments in a laboratory setting could

realize the Hawking effect and potentially measure it. The aim of this thesis

is to investigate whether laser-driven plasma has the necessary properties to

probe this effect. Facilities such as ELI [4] and XFEL [5] are pushing the

boundary in terms of attainable laser pulse intensities and power in the near-

IR and x-ray spectrum respectively. Thus such systems might be promising

candidates for the experimental realisation of Hawking radiation.

For the rest of this chapter, section 1.1 will give an overview of the ana-

logue gravity topic. The rest of this thesis is organised as follows: chapter 2

will give an overview of the relevant mathematical concepts required to un-

derstand the presented work. Chapter 3 will describe the laser-driven plasma

theory, deriving the two field equations used to extract effective metrics. In

chapter 4 effective metrics will be derived and analysed assuming the forms

of the fields. Section 4.1 will consider the field equations separately while

section 4.2 will consider the full system of equations. In section 4.3 the full

system will be considered again for the case of a varying spot size of the laser

pulse, leading to an effective metric conformally related to the Schwarzschild

metric, and it will be shown that the resulting Hawking temperature is de-

pendant on the initial laser spot size and the initial laser intensity. Chapter 5

will present a new approach for investigating quantum effects in laser-driven

plasma inspired by gravitational physics. The effects of the resulting dis-
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persion relation will be investigated for the case of a Gaussian wave packet.

Finally chapter 6 will give a summary of the presented work. Natural units

will be assumed throughout, unless stated otherwise.

1.1 Analogue gravity overview

In 1981 Unruh showed that Hawking radiation can be probed experimentally

through the use of an analogue model based on sound in fluid flow [16]. To

do so, perturbed equations of motion for an irrotational fluid were shown to

be equivalent to the equations for a massless scalar field in a spacetime that

is conformal to Schwarzschild spacetime (see section 2.3.1 for mathematical

detail). This publication gained little interest for several years, until this

model was used to investigate whether there is a Planck scale cutoff of the

Hawking radiation by taking into account the atomic nature of the fluid [17].

From that point the interest in analogue gravity grew, and various other

models were discovered.

There are many physically different physical systems which allow for an

analogue model of physics in curved spacetime:

• Surface waves in a shallow basin filled with liquid - the speed of the

waves can be easily modified by changing the depth of the basin, and

different effective metrics can be obtained by varying the shape of the

basin [19]. Such models can be generalised to non-shallow water waves

[20], however the analysis becomes significantly more complicated.

• Linear electrodynamics - formulating the Maxwell equations in a metric
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independent form and assuming a linear constitutive relationship be-

tween the electric and magnetic fields leads to an effective metric [21].

• Nonlinear electrodynamics - if the permittivity and permeability de-

pend on the background electromagnetic field, the photon propagation

is equivalent to that in curved spacetime [22].

• Dielectric media - propagation of photons in a dielectric medium char-

acterised by permeability and permittivity tensors which are propor-

tional to each other is equivalent to that in curved spacetime [23]. It

is also possible to consider light propagating in dielectric fluids [24],

requiring high refractive index to be experimentally viable.

• Bose–Einstein condensates (BEC) - perturbations of the phase of the

condensate wave function leads to an effective metric [25] from a gener-

alised nonlinear Schrödinger equation. The effective geometry depends

on the state of the system, and various approximations yield different

results.

• Accelerating plasma mirrors - x-ray pulses on solid plasma targets with

a density gradient are analogous to the late time evolution of black hole

Hawking evaporation [26].

This list is by no means exhaustive. There are many other systems that can

be described by an effective geometry [18]. Since so many systems can be

described by an effective metric, it is also possible to make analogies between

them. For example, surface waves propagating against an external current
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in deep water are described by an equation that is equivalent to the Gross-

Pitaevskii equation modelling the mean-field dynamics of BEC [27].

The very first experiment in the context of analogue gravity was per-

formed in 2008. It demonstrated scattering of light waves at horizons in

optical fibres [31]. In the same year, a similar experiment in which surface

waves scattered at horizons in a water tank [32]. Shortly thereafter optical

horizons were also realised in bulk crystals and sonic horizons in a BEC of

ultra-cold atoms [33]. In 2011, the scattering of surface waves at horizons in

a water tank was shown to be a thermal spectrum of emission [34].

These experiments provided evidence for the versatility of analogue grav-

ity as well as the robustness of the Hawking effect, which describes the scat-

tering of waves at horizons not only in gravitational physics, but also con-

densed matter systems. However, in these experiments, the input state was

a classical probe and not the quantum vacuum, meaning the emission was

stimulated and not a spontaneous scattering of quantum fluctuations. And

so it was not possible to measure the entangled state of Hawking radiation

and its infalling partner. In hopes of addressing this issue, atomic BECs

have been studied extensively due to the low temperature of the fluid, which

could lead to spontaneous emission by means of correlations between density

patterns in the atomic population across the horizon [35,36], with numerous

proposed experiments [37–39]. The observation of spontaneous emission in

entangled pairs has been reported in 2016 [40], and it was claimed that this

emission spectrum was thermal [41], however these claims are disputed [42].

Meanwhile, optics experiments lead to observation of stimulated emission

into waves of positive and negative frequency at optical horizons [43], and

5



quantum tunnelling of waves across horizon [44]. A series of experiments

based on a rotating geometry similar to the Kerr black hole were performed,

observing rotational superradiance at the ergosurface [45]. This also led to

the study of effects of vorticity and dispersion on fluid flows [46] as well as to

the observation of classical back reaction of water waves on a vortex flow [47].

This is a small selection of experiments, and many more are planned for

the future. Water, optics and BEC have been the main focus of experimental

realisation of analogue gravity, however, a variety of other systems have also

been proposed as potential candidates. This thesis aims to show that laser-

driven plasma systems have the necessary qualities to consider it as a model

for analogue gravity.
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Chapter 2

Mathematical background

This chapter discusses mathematical concepts which will be utilised in sub-

sequent chapters. The derivations presented are brief as the results are of

importance, and the detail can be found in the provided references. Section

2.1 will describe the necessary definitions in general relativity, section 2.2 will

discuss the relevant quantum field theory, and section 2.3 will demonstrate

the derivation of two effective metrics.

2.1 Preliminary aspects

The volume form will be defined as

?1 =
√
− det g4dx

0 ∧ dx1 ∧ dx2 ∧ dx3 (2.1)

throughout, where ? is the Hodge star operator and det g4 is the determinant

of a given 4-dimensional metric tensor. The inner product of two 1-forms α

and β on a metric g is given by α ·β = g−1(α, β), and can also be defined for
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any p-forms γ and δ as γ · δ = ?−1(γ∧?δ). More than one metric will feature

in the following calculations, and the α · β notation will always be used for

the background metric. A 1-form α is timelike, lightlike, or spacelike when

α · α is less than zero, zero, or greater than zero respectively. It is useful to

define a Hodge operator #

#1 =
√
− det g2dx

0 ∧ dx1, (2.2)

to distinguish between 2- and 4-dimensional systems. The flat 4-dimensional

Minkowski metric with signature (−,+,+,+) is given by

gM = −dt⊗ dt+ dx⊗ dx+ dy ⊗ dy + dz ⊗ dz, (2.3)

where x, y and z are Cartesian coordinates in 3-dimensional Euclidean space

and t is time, and it will be assumed as the background metric throughout

this thesis. For 2-dimensional systems it will be assumed as

gM = −dt⊗ dt+ dz ⊗ dz. (2.4)

The magnitude of the proper acceleration |A|, calculated with respect to the

metric gM of a curve (t(η), z(η)), where η is a parameter, is given by

|A|2 =
1

ṫ2 − ż2

( d

dη

(
ż√

ṫ2 − ż2

))2

−

(
d

dη

(
ṫ√

ṫ2 − ż2

))2


=
(z̈ṫ− ẗż)2

(ṫ− ż)3
,

(2.5)
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where the dots denote derivatives with respect to η. A metric is conformally

flat if it can be written as Ω2gM , where Ω is a real function of the coordinates.

The light-cone coordinates will be defined as u = z − t and v = z + t. The

Riemann curvature tensor can be written as

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ, (2.6)

where Γρµν are the Christoffel symbols given by

Γρµν =
1

2
gρσ (∂µgσν + ∂νgσµ − ∂σgµν) . (2.7)

The Ricci curvature tensor is defined as Rµν = Rρ
µρν , furthermore R =

gµνRµν is the Ricci curvature scalar. Another curvature scalar is the Kretschmann

scalar, defined as K = RρσµνR
ρσµν . Both scalars are zero for gM , however

they are not necessarily equal in general. A singularity in any of the scalar

invariants corresponds to a physical singularity. The Schwarzschild metric is

given by

gS = −
(

1− 2GM

r

)
dt⊗ dt+

(
1− 2GM

r

)−1

dr ⊗ dr + r2dΩ2, (2.8)

where r is the radial coordinate centred about a body of mass M and dΩ2 is

the angular contribution. For this metric the Ricci tensor is zero; hence the

Ricci scalar is also zero, however the Kretschmann scalar evaluates to KS =

48G2M2

r6 . The components of gS in equation (2.8) exhibit two singularities at

r = rS = 2GM and r = 0. However the singularity at rS is a coordinate

singularity, and the metric components can be made regular at this point with
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a different set of coordinates, for example Kruskal-Szekeres coordinates. The

point r = 0 however is a physical singularity, as the Kretschmann scalar is

also singular at that point. If the mass is contained within the Schwarzschild

radius rS, then this metric describes a static, uncharged, non-rotating black

hole of mass M centred at the origin with a horizon at rS.

2.2 Quantum field theory in curved space-

time

Consider a free scalar field φ satisfying the massless wave equation

d ? dφ = 0. (2.9)

A scalar product can be defined as

(f1, f2) = −i
∫

Σ

(f1 ? df
∗
2 − f2 ? df

∗
1 ), (2.10)

where the superscript ∗ denotes complex conjugation and Σ is a Cauchy hy-

persurface. For example, two solutions to the massless wave equation (2.9)

in n-dimensional Minkowski spacetime with metric gM are proportional to

eik·x−iωt and eik·x+iωt, where ω = |k|. The modes proportional to eik·x−iωt are

called positive frequency because they are eigenfunctions of the ∂t operator

with eigenvalue −iω. Conversely the solution eik·x+iωt corresponds to nega-

tive frequency modes. Requiring (uk, uk′) = δkk′ leads to normalised positive
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frequency modes

uk =
1√

2ω(2π)n−1
eik·x−iωt, (2.11)

where Σ in equation (2.10) is a hypersurface of constant t. A classical field is

quantized by treating it as an operator and imposing equal time commutation

relations:

[φ(t,x), φ(t,x′)] =0,

[π(t,x), π(t,x′)] =0,

[φ(t,x), π(t,x′)] =iδ(x− x′),

(2.12)

where π is the conjugate variable to φ. The normalised modes and their com-

plex conjugates form a complete orthonormal basis with the scalar product

(2.10). Supposing that k is discrete, φ can be written as

φ =
∑
k

(ukak + u∗ka
†
k). (2.13)

The a†k and ak operators are called creation and annihilation operators respec-

tively. The equal time commutation relations given in (2.12) are equivalent

to

[ak, ak′ ] =0,

[a†k, a
†
k′

] =0,

[ak, a
†
k′

] =δkk′ .

(2.14)

A vacuum state |0〉 is defined by ak |0〉 = 0 for all k.

11



2.2.1 Unruh Effect

When an observer is accelerating in Minkowski spacetime, there will be a

detectable thermal spectrum of particle excitations in the vacuum state |0〉

introduced above; this is called the Unruh effect. In this section the calcu-

lation of this effect will be performed. This calculation is compatible with

4-dimensional spacetime, however the results will be used in the context

of 2-dimensional spacetime in sections 4.2.1 and 4.1.3, as such only the 2-

dimensional case is presented.

Consider a 2-dimensional Minkowski space with the metric given in equa-

tion (2.4). The wave equation (2.9) has orthonormal positive frequency

modes as shown in the example above given by

ūk =
1√
4πω

eikz−iωt, (2.15)

where in this subsection the bar will indicate quantities found in Minkowski

space. Now consider the two sets of coordinate transformations:

t =
1

a
eaξR sinh(aηR)

z =
1

a
eaξR cosh(aηR),

(2.16)

and

t =− 1

a
eaξL sinh(aηL)

z =− 1

a
eaξL cosh(aηL),

(2.17)

where a is a constant. The two pairs of coordinates (ηR, ξR) and (ηL, ξL) are

known as Rindler coordinates; when ξ is constant they represent uniformly
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accelerating observers in Minkowski space. Both sets of Rindler coordinates

cover regions of spacetime where |z| > |t|, known as Rindler wedges. The

first pair of coordinates ηR, ξR covers the region where z > 0, whilst the

second pair of coordinates ηL, ξL covers the region where z < 0. They both

lead to

g = e2aξL/R(dξL/R ⊗ dξL/R − dηL/R ⊗ dηL/R). (2.18)

Solving the wave equation (2.9) the following modes are obtained:

Ruk =


1√
4πω

eikξR−iωηR in R

0 in L

(2.19)

Luk =


0 in R

1√
4πω

eikξL+iωηL in L

(2.20)

with ω = |k|. Note that these are positive frequency modes with respect to

∂ηR for Ruk and −∂ηL for Luk. These modes cover Minkowski space and both

sets can be used to quantize φ:

φ =
∑
k

(
ūkak + ū∗ka

†
k

)
, (2.21)

φ =
∑
k

(
Ruk

Rbk + Ru∗k
Rb†k + Luk

Lbk + Lu∗k
Lb†k

)
, (2.22)

with ak and bk being annihilation operators. The operators ak,
Rbk and Lbk

lead to two vacuum states1 |0M〉 and |0R〉, corresponding to Minkowski and

1The subscript on |0R〉 stands for “Rindler”, whereas the superscript on Rbk stands for
“right”.
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Rindler spaces respectively. The states |0M〉 and |0R〉 satisfy ak |0M〉 = 0 and

Rbk |0R〉 = Lbk |0R〉 = 0 respectively. Bogolubov transformations between the

two sets of modes are commonly used to show that the vacuum state |0M〉

represents a thermal bath of particles according to the accelerated observer.

However a more elegant method due to Unruh [6] is to use

1Uk = Ruk + e−
πω
a
Lu∗−k, (2.23)

2Uk = Ru∗−k + e
πω
a
Luk. (2.24)

It can be shown that 1Uk ∝ (z − t)
iω
a and 2Uk ∝ (z + t)

iω
a when k > 0.

Likewise 1Uk ∝ (z + t)−
iω
a and 2Uk ∝ (z − t)− iωa when k < 0. The constants

of proportionality are a±
iω
a√

4πω
, ± corresponding to the same sign as the exponent

of z+t or z−t. Both 1Uk and 2Uk are analytic and share the positive frequency

properties of the Minkowski modes. They must also share a common vacuum

state, namely |0M〉. The normalization factor of 1Uk is
(
2e−

πω
a sinh

(
πω
a

))− 1
2 ,

and for 2Uk it is
(
2e

πω
a sinh

(
πω
a

))− 1
2 , hence the field φ can be expressed as

φ =
∑
k

(
2 sinh

(πω
a

))− 1
2
[

1ck(e
πω
2a
Ruk + e−

πω
2a
Lu∗−k) + 2ck(e

−πω
2a

Ru∗−k + e
πω
2a
Luk)

]
+ h.c.

(2.25)

where now 1ck |0M〉 = 0 and 2ck |0M〉 = 0. Taking inner products (φ, Ruk)

and (φ, Luk) with φ given by (2.22) and (2.25) results in

Rbk =
(

2 sinh
(πω
a

))− 1
2
(
e
πω
2a

1ck + e−
πω
2a

2c†k

)
, (2.26)
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Lbk =
(

2 sinh
(πω
a

))− 1
2
(
e
πω
2a

2ck + e−
πω
2a

1c†k

)
. (2.27)

Thus it may be deduced that a Rindler observer will detect

〈0M |L b†k
Lbk |0M〉 = 〈0M |R b†k

Rbk |0M〉 =
e−

πω
a

2 sinh
(
πω
a

) =
1

e
2πω
a − 1

(2.28)

particles in mode k. This is the Planck spectrum for radiation at temperature

T =
a

2π
. (2.29)

2.2.2 Hawking radiation

Hawking radiation [3] is the thermal radiation predicted to be spontaneously

emitted by black holes, thereby reducing their mass. Intuitively this radiation

arises when a pair of virtual photons, one with positive energy and one with

negative energy, are created due to quantum vacuum fluctuations just outside

the event horizon. The negative energy photon then crosses the event horizon,

while the positive one escapes to infinity, constituting a part of the Hawking

radiation. This effect is widely discussed in literature [7, 9], as such the

derivation will be omitted. The main result is that the temperature of this

radiation is given by

TH =
κ

2π
, (2.30)

where κ is the surface gravity of the black hole, which for a Schwarzschild

black hole (metric in equation (2.8)) is κ = (4GM)−1. This temperature is

conformally invariant [10], which will be exploited in section 4.3.
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2.2.3 Effective action for a dilaton in two dimensions

This section describes the renormalization and variation of a one-loop ef-

fective action arising from a massless scalar field theory on a background

2-dimensional dilatonic spacetime, following the calculation performed in

Ref. [11]. The results will be exploited in chapter 5. The one-loop effec-

tive action W given by the path integral [12]

exp{iW [g, φ, ψ]} =

∫
Df̃ exp

{
1

2
i

∫
M
e−2φdf̃ · df̃#1

}
(2.31)

describes the coupling of a dilaton φ to some Lorentzian metric gµν and

their self-couplings, due to the vacuum fluctuations of a massless scalar field

f̃ . The properties of the measure Df̃ are fixed [11] by introducing f̃ =

eψf , for some scalar field ψ, and taking Df̃ to be the standard measure for

f , not f̃ [11]. This is equivalent to requiring the quantity
∫
Df̃ ei〈f̃ ,f̃〉 to

be a field-independent constant, where the inner product 〈·, ·〉 is given by

〈a, b〉 =
∫
M e−2ψa∗b#1 and ∗ denotes complex conjugate. The integral in

the exponent on the right-hand side of equation (2.31) can be written as

∫
M
e−2φdf̃ ∧#df̃ = −

∫
M
f̃d(e−2φ#df̃) = −

∫
M
f̃#−1d(e−2φ#df̃)#1.

(2.32)

This integrand can be written as fAf , where the operator A is given by

Af =− eψ#−1d[e−2φ#d(eψf)]

=− e2ψ−2φ[#−1d#df + 2(dψ − dφ) · df

+ (dψ · dψ − 2dψ · dφ+ #−1d#dψ)f ],

(2.33)
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or equivalently

Af = −e2ψ−2φgµν(∇µ∇νf+2(∇µψ−∇µφ)∇νf+f∇µ∇νψ−2f∇µφ∇νψ+f∇µψ∇νψ),

(2.34)

where ∇µ is the covariant derivative2. Introducing subscript E to denote

quantities defined on a Riemannian metric, by definition e−WE = Det(AE)−
1
2 ,

where Det denotes a functional determinant, hence

WE =
1

2
TrE lnAE, (2.35)

where TrE is the functional trace [7, 8]. In zeta-function regularization WE

can be expressed as

WE = −1

2
ζ ′AE(0), (2.36)

where ζAE(s) = TrE(A−sE ) and prime denotes derivative with respect to s.

Mapping (2.36) to the Lorentzian domain gives

W = −1

2
ζ ′A(0). (2.37)

By introducing an infinitesimal Weyl transformation δgµν = δk gµν (therefore

δgµν = −δk gµν), for some infinitesimal scalar field δk, the energy-momentum

tensor Tµν by definition satisfies [13]

δgW =
1

2

∫
M
δgµνTµν#1 = −1

2

∫
M
δk T µµ#1. (2.38)

2Since #−1d#dα = gµν∇µ∇να and dα · dβ = gµν∇µα∇νβ for any 0-forms α and β.
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Noting that δgΓ
α
µν = 1

2
(∂µδk δ

α
ν + ∂νδk δ

α
µ − gαβgµν∂βδk) gives gµνδgΓ

α
µν = 0,

and hence inspecting (2.34) yields δg(Af) = −δk(Af). Furthermore defining

ζ(s|δk, A) = Tr(δk A−s) results in

ζ(0|δk, A) =

∫
M
δkT µµ#1. (2.39)

It can be shown that ζ(0|δk, A) = a2(δk, A) up to a divergent part [14],

where a2 is a coefficient in the asymptotic expansion of the heat kernel

Tr
(
δk e−At

)
=
∑

n=0 t
n−2an. It is not straightforward to compute this expan-

sion for an arbitrary A, however Ref. [14] provides the result for operators

of the form P = −(ĝµνDµDν + E), for some metric ĝµν , connection Dµ and

scalar field E:

a2(δk, A) =
1

24π
tr

∫
δk(R̂ + 6E)#1, (2.40)

where R̂ is the Ricci scalar obtained from ĝµν . Identifying ĝµν as ĝµν =

e2ψ−2φgµν and introducing the connection Dµ = ∇̂µ + ωµ with ωµ = ∇̂µψ −

∇̂µφ, where ∇̂µ is the covariant derivative with respect to ĝµν , leads to

the conclusion that the operator A is of the required form, where E =

ĝµν∇̂µ∇̂νφ− ĝµν∇̂µφ∇̂νφ. Written in the original metric in conjunction with

(2.39) this yields [15]

T µµ =
1

24π
(R− 6(∇φ)2 + 4�φ+ 2�ψ), (2.41)

where R is the Ricci scalar, � is the d’Alembert operator and (∇φ)2 =

gµν∇µφ∇νφ. The effective action can be computed from its functional deriva-

tives with respect to ρ, φ and ψ, where ρ is introduced by gµν = e2ρηµν , where
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ηµν is a flat metric. All metrics on 2-dimensional manifolds are conformally

flat, so the previous expressions for gµν is general. The variation of the metric

becomes δgµν = 2δρ gµν , and thus δρW = −
∫
M δρT µµ#1, leading to

δW

δρ
= − 1

12π

√
−η(−∆ρ+ ∆ψ + 2∆φ− 3(∂φ)2), (2.42)

where ∆ and ∂µ are the d’Alembert operator and covariant derivative with

respect to ηµν respectively, and (∂φ)2 = ηµν∂µφ∂νφ. To obtain the remaining

functional derivatives, firstly note that

δ2W

δφ(x)δρ(x′)
= − 1

6π

√
−η
(
∆δ(x− x′) + 3ηµν∂ν(δ(x− x′)∂µφ(x))

)
, (2.43)

follows from (2.42). By definition δρ
δW
δφ(x)

=
∫
M d2x′

√
−η δ2W

δφ(x)δρ(x′)
δρ(x′), and

utilising integration by parts and Stokes’ theorem gives

δρ
δW

δφ
= − 1

6π

√
−η (∆δρ+ 3ηµν∂ν(δρ∂µφ)) , (2.44)

thus

δW

δφ
= − 1

6π

√
−η(∆ρ+ 3ηµν∂ν(ρ∂µφ)) +

δW

δφ

∣∣∣∣
ρ=0

. (2.45)

With a similar approach,

δW

δψ
= − 1

12π

√
−η∆ρ+

δW

δψ

∣∣∣∣
ρ=0

(2.46)

can be obtained. Calculating δW
δψ

∣∣∣
ρ=0

and δW
δφ

∣∣∣
ρ=0

is not trivial, since neither

δφA or δψA are proportional to A. To evaluate these, Ref. [11] proposes

19



upgrading f to a two-component spinor ~f by

eiW |ρ=0 =
1

4

∫
D ~f exp{i

∫
M

~f †A~f#1}. (2.47)

Introducing D~f = iγµeψ∂µ(e−φ ~f) and D† ~f = iγµe−φ∂µ(eψ ~f), where γµ are

the 2-dimensional Dirac matrices with respect to ηµν , it can be shown that

in flat spacetime ∫
M

~f †A~f#1 =

∫
M

~f †DD† ~f#1. (2.48)

The zeta-function corresponding to DD† can be written as [14]

ζDD†(s) = Tr
(
(DD†)−s

)
=

1

Γ(s)

∫ ∞
0

dt ts−1 Tr exp
(
−tDD†

)
, (2.49)

where Γ(s) =
∫∞

0
dt ts−1e−t, and the variations with respect to φ and ψ

become [11]

δζDD†(s) = −2sTr
(
(DD†)−sδψ − (D†D)−sδφ

)
. (2.50)

Noting that W |ρ=0 = −1
4
ζ ′
DD†(0) yields

δ(W |ρ=0) =
1

2
(ζ(0|δψ,DD†)− ζ(0|δφ,D†D))

=
1

2
(a2(δψ,DD†)− a2(δφ,D†D)).

(2.51)

Introducing Dµ = ∂µ + ∂µψ− ∂µφ− γ5ηµωε
νω∂νφ and E = ĝµν∇̂µ∇̂νφ, where

γ5εµν = 1
2
[γµ, γν ], allows DD† to be written in the form of −(ĝµνDµDν +E).

Thus both terms can be evaluated by noting that D†D is obtained from DD†
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by φ 7→ −ψ and ψ 7→ −φ, hence [11]

δ(W |ρ=0) =
1

12π

∫
M

((∆φ+ 2∆ψ)δφ+ (∆ψ + 2∆φ)δψ)#1. (2.52)

The variations of W are now obtained:

δW

δφ
=− 1

12π

√
−η(2∆ρ+ 6∂µ(ρ∂µφ)−∆φ− 2∆ψ),

δW

δψ
=− 1

12π

√
−η(∆ρ−∆ψ − 2∆φ).

(2.53)

These together with (2.42) result in

W = − 1

24π

∫
M

(− ρ∆ρ+ 2ψ∆ρ− ψ∆ψ − 6ρ(∂φ)2 + 4φ∆ρ

− 4φ∆ψ − φ∆φ)#1,

(2.54)

which written in terms of the original metric gµν becomes

W = − 1

24π

∫
M

(
− 1

4
R�−1R + 3(∇φ)2�−1R−R(ψ + 2φ)

+ (∇ψ)2 + (∇φ)2 + 4(∇µψ)(∇µφ)

)
#1,

(2.55)

after integration by parts has been used. The renormalization termW(µ, µ′) =

ζA(0) lnµ + 1
2
ζDD†(0) lnµ′ associated with the zeta-function regularization

methodology must be added [11] to (2.55). It can be shown [11] that ζDD†(0)

is a boundary term and as such does not contribute to the field equations.

Thus a renormalized effective action for a theory in two dimensions is given
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by

W =− 1

24π

∫
M

(
− 1

4
R�−1R + 3(∇φ)2�−1R−R(ψ + 2φ)

+ (∇ψ)2 + (∇φ)2 + 4(∇µψ)(∇µφ)

)
#1− 1

4π
ln(µ)

∫
M

(∇φ)2#1,

(2.56)

where the boundary terms have been dropped. This result will be used in

chapter 5, in which the natural inner product is given by
∫
d2x
√
−ηa∗b. As

such ψ can be set to zero, allowing for a definition of w = W |ψ=0:

w[g, φ, µ] =
1

24π

∫
M

(
1

4
R�−1R + 2Rφ− 3(∇φ)2�−1R)#1

− 1

24π
(1 + 6 lnµ)

∫
M

(∇φ)2#1.

(2.57)

2.3 Analogue gravity

The notion of an effective metric is a key component of analogue gravity.

Section 2.3.1 will show the derivation of an effective metric from equations

governing a perfect fluid, in similar fashion to the first effective metric found

by Unruh [16]. Section 2.3.2 will show that effective metrics arise naturally

from the linearisation process for any scalar field governed by a Lagrangian

which depends only on the field and its first derivatives.

2.3.1 Acoustic metric

To derive an effective acoustic metric geff for a perfect fluid of energy density

%(n) and unit-normalized 4-velocity Ṽ , n being the proper density, local
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balance of energy-momentum and particle number conservation can be used:

ιV d

(
d%

dn
Ṽ

)
= 0, (2.58)

d ? (nṼ ) = 0. (2.59)

Here tilde denotes metric dual with respect to the spacetime metric g. Note

that equation (2.58) is satisfied when d%
dn
Ṽ = dφ, leading to the relations

dφ · dφ = −
(
d%

dn

)2

, (2.60)

d ?

(
n

1
d%
dn

dφ

)
= 0, (2.61)

where · denotes metric product given by g. Next, consider a perturbation to

the system such that φ = φ0 + εφ1 +O(ε2), n = n0 + εn1 +O(ε2) and

n
d%
dn

=

(
n
d%
dn

)∣∣∣∣∣
n=n0

+ ε
d

dn

(
n
d%
dn

)∣∣∣∣∣
n=n0

n1 +O(ε2). (2.62)

The zeroth order in ε returns unperturbed equations (2.60) and (2.61), and

the first order from equation (2.60) gives

dφ0 · dφ1 = − d%

dn

d2%

dn2

∣∣∣∣
n=n0

n1, (2.63)

from which an equation for n1 can be obtained. This can be combined with

the first order in ε of equation (2.61), which results in

d ? (αdφ0 · dφ1 dφ0 + βdφ1) = 0, (2.64)
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where

α = − 1
d%
dn

d2%
dn2

d

dn

(
n
d%
dn

)∣∣∣∣∣
n=n0

, (2.65)

β =

(
n
d%
dn

)∣∣∣∣∣
n=n0

. (2.66)

Requiring

κ0 ?eff dφ1 = ?(αdφ0 · dφ1 dφ0 + βdφ1), (2.67)

where κ0 is a dimensionful constant such that the dimensions of the spacetime

metric and the effective metric are the same, and ?eff is the Hodge map

resulting from the effective metric geff , leads to an expression for the effective

metric geff . Firstly introduce a 0-form γ such that

?eff1 = γ ? 1, (2.68)

?effdφ1 = ιg−1
eff (dφ1,−)γ ? 1 = γ ? [g−1

eff (dφ1,−)][, (2.69)

where [ denotes metric dual with respect to g. With this equation (2.67)

yields

κ0γg
−1
eff (dφ1,−) = αdφ0 · dφ1d̃φ0 + βd̃φ1

= (αd̃φ0 ⊗ d̃φ0 + βg−1)(dφ1,−),

(2.70)

thus obtaining the expression

κ0γg
−1
eff = αd̃φ0 ⊗ d̃φ0 + βg−1, (2.71)

for the inverse g−1
eff of the effective metric This effective metric can exhibit

sonic horizons with the right choice of φ0 and the results have been studied
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in the non-relativistic limit in Ref. [18].

2.3.2 Effective metric from a scalar field

It is straightforward to derive an effective metric for any scalar field φ whose

dynamics are given by a Lagrangian L(φ, ∂µφ) [28], which depends only on the

field and its first derivatives. Perturbing the field φ = φ0+εφ1+ 1
2
ε2φ2+O(ε3),

the Lagrangian can be written as

L(φ, ∂µφ) =L(φ0, ∂µφ0) + ε

(
∂L

∂(∂µφ)
∂µφ1 +

∂L
∂φ

φ1

)
+
ε2

2

(
∂L

∂(∂µφ)
∂µφ2 +

∂L
∂φ

φ2

)
+
ε2

2

(
∂2L

∂(∂µφ)∂(∂νφ)
∂µφ1∂νφ1 + 2

∂2L
∂(∂µφ)∂φ

φ1∂µφ1 +
∂2L
∂φ∂φ

φ2
1

)
+O(ε3),

(2.72)

where the derivatives of the Lagrangian are evaluated at ε = 0. Consider the

action

S[φ] =

∫
dnxL(φ, ∂µφ). (2.73)

Utilising integration by parts and Euler-Lagrange equations for φ yields [28]

S[φ] = S[φ0] +
ε2

2

∫
dnx

[
∂2L

∂(∂µφ)∂(∂νφ)
∂µφ1∂νφ1

+

(
∂2L
∂φ∂φ

− ∂µ
(

∂2L
∂(∂µφ)∂φ

))
φ2

1

]
.

(2.74)

Thus the equation of motion for the linearised perturbation is

∂µ

(
∂2L

∂(∂µφ)∂(∂νφ)
∂νφ1

)
−
(
∂2L
∂φ∂φ

− ∂µ
(

∂2L
∂(∂µφ)∂φ

))
φ1 = 0. (2.75)
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By defining

√
−geffg

µν
eff ≡

(
∂2L

∂(∂µφ)∂(∂νφ)

)∣∣∣∣
φ=φ0

, (2.76)

equation (2.75) can be written as

(∆− U)φ1 = 0, (2.77)

where ∆ is the d’Alembert operator associated with the effective metric geff ,

and U is a potential given by

U =
1√
−geff

(
∂2L
∂φ∂φ

− ∂µ
(

∂2L
∂(∂µφ)∂φ

))∣∣∣∣
φ=φ0

. (2.78)

This result shows that an effective metric arises naturally from the lineari-

sation process. The signature and properties of such effective metric will

depend on the details of L. However, it is also possible to derive effective

metrics with multiple fields [29] (a fact that will be exploited in subsequent

chapters), and even systems that cannot be described by Lagrangians [30].

This availability of models and their robustness lends itself to experimental

searches for analogue Hawking radiation, as well as analogies of other effects

arising from general relativity.
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Chapter 3

Underdense laser-driven

plasma theory

A laser-driven plasma is said to be underdense if the laser frequency is greater

than the plasma frequency. The plasma acts as a non-linear optical medium

for the laser. The field equations for an underdense laser-driven plasma

will be derived in this chapter. Firstly, in section 3.1 the ponderomotive

force equation will be derived, which describes the bulk behaviour of the

plasma electrons, then the continuity equation will be derived in section

3.2 by considering conservation of particle number current. Section 3.3 will

introduce an action for the theory of electron-ion plasma and discuss what

form the energy density should take, as well as extracting the laser pulse

contribution to the electromagnetic field. Section 3.3.1 will present the field

equations resulting from stationary variations of the action for a general

energy density and the cold plasma model will be assumed. Section 3.3.2 will

describe the system obtained from considering an energy density that leads
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to field equations that are commonly used in laser-driven plasma physics and

discuss an approximation regime in which it reduces to one spatial dimension.

Finally section 3.4 will show that the results of section 3.3.2 can be obtained

by considering scalar quantum electrodynamics (QED).

3.1 Relativistic ponderomotive force

A heuristic derivation of a commonly used method for modelling the effects

of an intense laser pulse on charged particles will be presented. Consider a

timelike unit normalised vector field V . The relativistic equation of motion

for a collection of particles with mass m and charge q moving in an electric

field represented by V can be written as

ιVdṼ =
q

m
ιVF , (3.1)

where F is the Maxwell tensor. This equation can be simplified to

ιVdṼ =
q

m
ιVF =⇒ dṼ =

q

m
F + Ω, (3.2)

where ιVΩ = 0 is required, and also dΩ = 0 since dF = 0. For simplicity,

the 2-form Ω will be set to zero, meaning the motion is irrotational when

F = 0. Let 〈α〉 denote the differential p-form that results from averaging

the differential p-form α over the period of the fast oscillations of the laser

pulse. The precise details of the averaging process are unimportant1, but the

1Typically a time-averaging process is used [48,49], however a different process can be
used, such as phase-averaging [50].
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key properties of 〈·〉 include

〈α + β〉 = 〈α〉+ 〈β〉,

〈〈α〉〉 = 〈α〉,

〈dα〉 = d〈α〉.

(3.3)

Let V and F be a sum of slowly varying parts from the background plasma

and fast varying parts from the laser pulse;

Ṽ = 〈Ṽ〉+ Ṽfast,

F = 〈F〉+ Ffast,

(3.4)

where 〈Ṽfast〉 = 0 and 〈Ffast〉 = 0. Using (3.2) and (3.3) (with Ω = 0) leads

to

d〈Ṽ〉 =
q

m
〈F〉, (3.5)

dṼfast =
q

m
Ffast. (3.6)

Now introducing Ṽ = 〈Ṽ〉
|〈Ṽ〉| and using the fact that V is timelike and unit

normalised, the following equality can be derived:

〈Ṽ〉 = Ṽ

√
1 + 〈Ṽ2

fast〉. (3.7)

With this equation (3.5) becomes

q

m
〈F〉 =d

(
Ṽ

√
1 + 〈Ṽ2

fast〉
)

=d

(√
1 + 〈Ṽ2

fast〉
)
Ṽ +

√
1 + 〈Ṽ2

fast〉 dṼ .
(3.8)
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Dividing both sides by
√

1 + 〈Ṽ2
fast〉 and applying ιV yields

q

m
ιV 〈F〉 =ιV

[
d

(
ln

(√
1 + 〈Ṽ2

fast〉
))

Ṽ

]
+ ιV dṼ

=ιV d ln

(√
1 + 〈Ṽ2

fast〉
)
Ṽ − d ln

(√
1 + 〈Ṽ2

fast〉
)
ιV Ṽ + ιV dṼ .

(3.9)

Let ΠV be the V -orthogonal projection operator defined by

ΠV α ≡ α + Ṽ ∧ ιV α, (3.10)

where α is any p-form. Utilising the fact that ιV Ṽ = −1, equation (3.9) can

be rearranged as

mιV dṼ = −mΠV d ln

(√
1 + 〈Ṽ2

fast〉
)

+
q√

1 + 〈Ṽ2
fast〉

ιV 〈F〉. (3.11)

The first term on the right-hand side is the ponderomotive force term, and

the extra factor in the second term can be interpreted as a multiplicative cor-

rection to the relativistic mass of particles undergoing the averaged motion.

3.2 Continuity equation

Consider a 4-dimensional spacetime M and a 3-dimensional manifold B.

Let f be a function that maps worldlines in M to points in B, such that

f : (ξ̌0, ξ̌A) 7→ (ξA), where A, B and C run over 1, 2 and 3. The point (ξA) in

B corresponds to the particle with world line ξ̌0 7→ (ξ̌0, ξ̌A) inM. A general
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3-form ς on B is given by

ς =
1

3!
ςABC dξ

A ∧ dξB ∧ dξC . (3.12)

Letting fX = ξX ◦ f leads to

f ∗ς =
1

3!
ςABC ◦ f dfA ∧ dfB ∧ dfC , (3.13)

where f ∗ is a pullback map induced from f . For any 3-form j on manifold

M given by j = f ∗ς,

dj = 0, (3.14)

since dj = df ∗ς = f ∗dς = 0 as ς is a 3-form on a 3-dimensional manifold. Let

j be the particle number 3-form of f ; note that particle number conservation

follows immediately from equation (3.14). Introducing proper density n and

4-velocity of matter V , the particle number 3-form j can be written as

j = n ? Ṽ . (3.15)

Requiring V to be unit normalised results in n =
√
j · j. Note that both n

and V are dependent on f .
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3.3 Action

An action describing a laser-driven plasma whose plasma electrons are rep-

resented by f : B →M can be written as

S[f,A] =

∫
M

(
ρ ? 1 + qA ∧ J +

1

2
F ∧ ?F − qA ∧ Jext

)
, (3.16)

where ρ is the proper energy density of the plasma and a function of the

proper density of the plasma electrons N , A is the electromagnetic potential

1-form, F = dA is the Maxwell tensor, and J = f∗ς = N ? Ṽ . The 3-form

Jext describes the external number current of the plasma ions. The proper

energy density of a cold plasma is given by mN . The discussion in section

3.1 suggests the action

S[f, A] =

∫
M
〈
(
ρ ? 1 + qA ∧ J +

1

2
F ∧ ?F − qA ∧ Jext

)
〉

=

∫
M

(
% ? 1 + qA ∧ j +

1

2
〈F ∧ ?F〉 − qA ∧ jext

)
,

(3.17)

where % is the proper energy density of the averaged motion, and a function

of the averaged number density n = 〈N〉. The 3-form jext = 〈Jext〉 is the

averaged external number current. Here 〈A∧J 〉 = A∧j and 〈A∧Jext〉 = A∧

jext are assumed rather than shown directly, as the resulting field equations

agree with the commonly used ones [48–53]. Also note that the statement

〈?P 〉 = ?〈P 〉 for any p-form P requires the metric components to also be

slowly varying, however the results will be applied to Minkowski space and

as such it is a valid statement.

Keeping the background plasma and the laser pulse contributions to the
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Maxwell tensor together would lead to a complicated system. Thus following

the same approach as in section 3.1, let F be split into fast varying part,

Ffast due to the laser pulse and a slow varying part, F = 〈F〉, due to the

plasma, such that F = F + Ffast. Assuming a solution for the laser pulse

with a rapidly changing eiΦ compared to the amplitude α0 gives

Ffast = d
(
Re
(
α0e

iΦ
))
≈ Re

(
idΦ ∧ α0e

iΦ
)
. (3.18)

Equation (3.18) leads to

〈F ∧ ?F〉 =〈F ∧ ?F + F ∧ ?Ffast + Ffast ∧ ?F + Ffast ∧ ?Ffast〉

=F ∧ ?F + 〈Ffast ∧ ?Ffast〉,
(3.19)

since 〈F ∧ ?Ffast〉 = F ∧ ?〈Ffast〉. The last term written in terms of α0 and

Φ is

〈Ffast ∧ ?Ffast〉 =〈1
4
i(dΦ ∧ α0e

iΦ − dΦ ∧ ᾱ0e
−iΦ) ∧ ?i(dΦ ∧ α0e

iΦ − dΦ ∧ ᾱ0e
−iΦ)〉

=
1

2
〈(dΦ ∧ ᾱ0e

−iΦ) ∧ ?(dΦ ∧ α0e
iΦ)〉

=
1

2
(dΦ ∧ ᾱ0) ∧ ?(dΦ ∧ α0),

(3.20)

since 〈Φ〉 = Φ, 〈α0〉 = α0 and 〈eiΦ〉 = 0. Here bar denotes complex conjugate.

Incorporating this into the action (3.17) yields

S[α0,Φ, f, A] =

∫
M

(
%?1+qA∧(j−jext)+

1

2
F ∧?F+

1

4
dΦ∧ᾱ0∧?(dΦ∧α0)

)
,

(3.21)

where now F = dA. Compared to the action in (3.17), the contribution of the
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plasma and the laser pulse to the electromagnetic field has been split into the

last two terms respectively. The final issue is the lack of interaction between

the laser pulse and plasma. This can be added by modifying %(n) 7→ λ(n, µ),

where µ is a dimensionless intensity parameter relating the back-reaction of

the laser pulse and the plasma, but that leaves the question of what forms

should λ and µ have. One possible choice is µ = µI = α0·ᾱ0

2
. This comes

from requiring the form of equation (3.31) in the following section to match

that of equation (3.11) for λ that is chosen appropriately (see section 3.3.2).

However the residual gauge invariance of (3.20) under the transformation

α0 7→ α0 + ξdΦ for some 0-form ξ is then not respected by the entire action

(3.21). To restore it, another choice for µ can be made:

µ = µII =
ιV (dΦ ∧ α0) · ιV (dΦ ∧ ᾱ0)

2(ιV dΦ)2
, (3.22)

which can be written as

µII =
α0 · ᾱ0

2
+
ιV α0ιV ᾱ0

2(ιV dΦ)2
dΦ · dΦ− ιV ᾱ0(α0 · dΦ) + ιV α0(ᾱ0 · dΦ)

2ιV dΦ
. (3.23)

When α0 ·dΦ = 0 and α0 ·Ṽ = 0, µII reduces to µI. However, the form µ = µII

will be assumed for the purpose of varying the action, to respect the residual

gauge invariance. As for λ, there is a form that corresponds to standard

modelling techniques in laser-driven plasma literature. The particular form

will be discussed in section 3.3.2, but will be kept general for now, thus finally
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arriving at the action

S[α0,Φ, f, A] =

∫
M

(
λ?1+qA∧(j−jext)+

1

2
F ∧?F+

1

4
dΦ∧ᾱ0∧?(dΦ∧α0)

)
.

(3.24)

3.3.1 Variation of the action

Firstly consider variation with respect to A:

δAS =

∫
M

(
qδA ∧ (j − jext) + dδA ∧ ?F

)
=

∫
M

(
qδA ∧ (j − jext) + d(δA ∧ ?F ) + δA ∧ d ? F

)
=

∫
M
δA ∧ (q(j − jext) + d ? F ).

(3.25)

Requiring δAS = 0 recovers the Maxwell equation d?F = −q(j−jext). Next,

variation with respect to f requires more care. First let fε : M → B be a

1-parameter family of maps with f0 = f and consider a 0-form h:

δf (f
∗h) =

d

dε
(h ◦ fε)

∣∣∣∣
ε=0

=
∂h

∂ξA
dfAε
dε

∣∣∣∣
ε=0

=
∂f ∗h

∂ξ̌A
dfAε
dε

∣∣∣∣
ε=0

=
dfAε
dε

∣∣∣∣
ε=0

∂

∂ξ̌A
(f ∗h) = LX(f ∗h),

(3.26)

where X = dfAε
dε

∣∣∣
ε=0

∂
∂ξ̌A

. Now looking at a 1-form:

δf (f
∗(dξA)) = dδff

A = d
dfA

dε

∣∣∣∣
ε=0

= dιXdξ̌
A = (dιX + ιXd)dξ̌A = LXdξ̌A

= LX(f ∗dξA).

(3.27)
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This can be extended to any p-form β obtained by pulling back from B using

f ∗, thus δf (β) = LXβ for any such p-form β. Variation of n ? 1 and µ ? 1

with respect to f is as follows:

δf
√
j · j ? 1 =

1

2
√
j · j

(δfj · j + j · δfj) ? 1 =
1

n
? (δfj · j) =

1

n
δfj ∧ ?j

= δfj ∧ Ṽ ,
(3.28)

since ? ? Ṽ = Ṽ , and using (3.22)

δfµ ? 1 =
∂µ

∂Ṽ
∧ ?δf Ṽ =

∂µ

∂Ṽ
∧ δf

j

n
=
∂µ

∂Ṽ
∧
(

1

n
LXj + jδf

1

n

)
=
∂µ

∂Ṽ
∧
(

1

n
dιXj −

j

n3
δfj · j

)
=
∂µ

∂Ṽ
∧
(

1

n
dιXj −

1

n
(δfj · ?Ṽ ) ? Ṽ

)
=
∂µ

∂Ṽ
∧
(

1

n
dιXj −

1

n
ιV (dιXj ∧ Ṽ )

)
= − ∂µ

∂Ṽ
∧
(

1

n
ιV dιXj ∧ Ṽ

)
=− 1

n
ιV

(
∂µ

∂Ṽ
∧ Ṽ ∧ dιXj

)
+

1

n
ιV

(
∂µ

∂Ṽ
∧ Ṽ

)
∧ dιXj

=
1

n

(
ΠV

∂µ

∂Ṽ

)
∧ dιXj,

(3.29)
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where ∂µ

∂Ṽ
is a 1-form and ΠV denotes the V -orthogonal projection operator

on forms. Thus varying the action gives

δfS =

∫
M

(
∂λ

∂n
δfn ? 1 +

∂λ

∂µ
δfµ ? 1 + qA ∧ δfj

)
=

∫
M
dιXj ∧

(
∂λ

∂n
Ṽ − qA− 1

n

∂λ

∂µ
ΠV

∂µ

∂Ṽ

)
=

∫
M
ιXj ∧ d

(
∂λ

∂n
Ṽ − qA− 1

n

∂λ

∂µ
ΠV

∂µ

∂Ṽ

)
=

∫
M
ιXιV (n ? 1) ∧ d

(
∂λ

∂n
Ṽ − qA− 1

n

∂λ

∂µ
ΠV

∂µ

∂Ṽ

)
=

∫
M

(n ? 1) ∧ ιXιV d
(
∂λ

∂n
Ṽ − qA− 1

n

∂λ

∂µ
ΠV

∂µ

∂Ṽ

)
.

(3.30)

If X and V are linearly dependent then δfS = 0 is satisfied trivially, otherwise

this gives the Lorentz force associated with the averaged motion and an extra

contribution:

ιV d

(
∂λ

∂n
Ṽ − 1

n

∂λ

∂µ
ΠV

∂µ

∂Ṽ

)
= qιV F, (3.31)

where

∂µ

∂Ṽ
=

((ιV α0)ᾱ0 + (ιV ᾱ0)α0)(dΦ · dΦ) + ((ιV α0)(ᾱ0 · dΦ) + (ιV ᾱ0)(α0 · dΦ))dΦ

2(ιV dΦ)2

− (α0 · dΦ)ᾱ0 + (ᾱ0 · dΦ)α0

2ιV dΦ
− (ιV α0)(ιV ᾱ0)(dΦ · dΦ)dΦ

(ιV dΦ)3
.

(3.32)

Varying (3.24) with respect to α0 and Φ gives

(dΦ·dΦ)ᾱ0−(dΦ·ᾱ0)dΦ = −2
∂λ

∂µ

(
ᾱ0+

ιV ᾱ0

(ιV dΦ)2
(dΦ·dΦ)Ṽ− ᾱ0 · dΦ

ιV dΦ
Ṽ− ιV ᾱ0

ιV dΦ
dΦ

)
,

(3.33)
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and

d ?

(
ᾱ0 · dΦ

4
α0 +

α0 · dΦ

4
ᾱ0 −

ᾱ0 · α0

2
dΦ +

∂λ

∂µ

(
ιV α0ιV ᾱ0

(ιV dΦ)2
dΦ

− ιV ᾱ0

2ιV dΦ
α0 −

ιV α0

2ιV dΦ
ᾱ0 −

ιV ᾱ0ιV α0

(ιV dΦ)3
(dΦ · dΦ)Ṽ

− ιV ᾱ0

2(ιV dΦ)2
(α0 · dΦ)Ṽ − ιV α0

2(ιV dΦ)2
(ᾱ0 · dΦ)Ṽ

))
= 0,

(3.34)

respectively. As presented, these equations are very complicated and un-

manageable. They become much simpler when using µI, or seeking solutions

where α0 ·dΦ = 0 and α0 ·Ṽ = 0 (i.e. the polarisation vector of the laser pulse

is orthogonal to the motion of the plasma electrons). The former abandons

residual gauge invariance but leads to simpler field equations, while the latter

is applicable when the pointwise behaviour of the system is 2-dimensional on

spacetime. The form of µI leads to field equations that are commonly used

in laser-driven plasma physics, but from a physical standpoint it is a more

natural choice to keep residual gauge invariance. Both choices reduce the

field equations in the same way. However from now on it will be assumed

that one of these choices was made, thus the field equations from varying the

action with respect to α0 and Φ respectively become

dΦ · dΦ = −2
∂λ

∂µ
, (3.35)

d ? (µdΦ) = 0. (3.36)

Furthermore the force from the laser will be assumed to dominate over the

force from the electromagnetic field, thus equation (3.31) obtained from vary-
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ing the action with respect to f becomes

ιV d

(
∂λ

∂n
Ṽ

)
= 0. (3.37)

The flow of electrons can be chosen to be irrotational [53], thus this equation

can be solved by introducing a momentum potential ψ such that

dψ =
∂λ

∂n
Ṽ . (3.38)

The following relations are also satisfied:

dψ · dψ = −
(
∂λ

∂n

)2

, (3.39)

d ?

(
n

1
∂λ
∂n

dψ

)
= 0, (3.40)

where (3.40) follows from (3.14) and (3.15).

3.3.2 Minimal energy density

The typical form of λ [48–53], which will be referred to as minimal energy

density, that leads to field equations commonly used in laser-driven plasma

physics is

λ = nm

√
1 +

q2

m2
µ. (3.41)

With the form of µ discussed previously, the field equation (3.31) is that of

the standard relativistic ponderomotive force found in section 3.1, with µ

being proportional to 〈Ṽ2
fast〉. In this regime the effective mass of the electron
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is given by
√
m2 + q2µ. This form of λ lends itself in specifying the field

equations further; now equations (3.35) and (3.39) become

dΦ · dΦ = − nq2

m
√

1 + q2

m2µ
, (3.42)

dψ · dψ = −m2 − q2µ, (3.43)

respectively. The field equations (3.36) and (3.40) can be written as

d((dψ · dψ +m2) ? dΦ) = 0, (3.44)

d((dΦ · dΦ) ? dψ) = 0. (3.45)

These in turn suggest the action

S[Φ, ψ] =
1

2

∫
M

(dΦ · dΦ)(dψ · dψ +m2) ? 1. (3.46)

The considerations in section 3.3.1 leading to requiring α0 · dΦ = 0 and

α0 · Ṽ = 0 suggest that both Φ and ψ will vary more quickly in the direction

of propagation of the laser pulse than transverse to it. Furthermore supposing

that it is possible to approximate (dΦ · dΦ)(dψ · dψ + m2) as a product of

two functions of (t, z) and (x, y), where the laser pulse propagates in the z-

direction, and using the approximation
∫
h(x, y)dxdy ≈ max(h)

∫
supp(h)

dxdy,

for a sufficiently well behaved function h, allows the introduction of

Λ =
max[(dΦ · dΦ)(dψ · dψ +m2)]x,y

∫
S dxdy

[(dΦ · dΦ)(dψ · dψ +m2)]|x=y=0

, (3.47)

40



where S = supp((dΦ · dΦ)(dψ · dψ + m2)). The quantity
∫
S dxdy represents

the cross-sectional area of the laser pulse (spot size), and thus Λ will depend

on (z, t), unless the spot size is assumed to be constant. Thus the action

becomes

S[Φ, ψ] =
1

2

∫
M

Λ[(dΦ · dΦ)(dψ · dψ +m2)]|x=y=0#1, (3.48)

and the domain of the field equations is reduced to 2-dimensional spacetime:

d(Λ(dψ · dψ +m2)#dΦ) = 0, (3.49)

d(Λ(dΦ · dΦ)#dψ) = 0. (3.50)

Analysis of a system with non-varying cross sectional area can be done with

the field equations (3.44) and (3.45), and one or three spatial dimensions can

be considered. The field equations (3.49) and (3.50) describe a system in one

spatial dimension, and involve a varying spot size which is encoded in Λ.

3.4 Effective field theory of laser-driven plasma

motivated from scalar QED

Although the action (3.48) may seem mysterious, it will be shown that this

action can be motivated through scalar quantum electrodynamics. To show

this, consider the action

S = −
∫
M

[
1

2
Dϕ ∧ ?Dϕ+

1

2
m2|ϕ|2 ? 1 +

1

2
F ∧ ?F − A ∧ jext

]
, (3.51)

41



on a flat 4-dimensional spacetime, where ϕ is a complex scalar field, F = dA,

Dϕ = dϕ + ieAϕ, jext is the background electric current 3-form, A is the

electromagnetic potential 1-form and e is the elementary charge. Let ϕ be a

function of (t, z) only, A = A + Axdx + Aydy, where the components of the

1-form A are functions of (t, z) only and underline indicates projection into

the t− z plane. The first term in the integrand of (3.51) becomes

1

2
Dϕ ∧ ?Dϕ =

1

2
(Dϕ ∧ ?Dϕ+ e2|A|2|ϕ|2#1) ∧#⊥1, (3.52)

while the third term becomes

1

2
F ∧ ?F =

1

2
F ∧ ?F ∧#⊥1 +

1

2
dAx ∧ dx ∧ ?(dAx ∧ dx)

+
1

2
dAy ∧ dy ∧ ?(dAy ∧ dy)

=
1

2
(F ∧ ?F + dĀ ∧#dA) ∧#⊥1,

(3.53)

where A = Ax + iAy and #⊥1 = dx ∧ dy. Assuming that the background

current has no components in the x and y directions, the following action is

motivated from (3.51):

S = −
∫
M

Λ
[1
2

(Dϕ ∧#Dϕ+ e2|A|2|ϕ|2#1 +m2|ϕ|2#1)

+
1

2
(F ∧#F + dĀ ∧#dA)− A ∧ j

]
,

(3.54)

where jext = j ∧ dx∧ dy for some 1-form j. Here Λ is the cross-sectional area

of the domain in the x− y plane of the action, assumed to be a function of

(t, z) . The field equations arising from stationary variations in ϕ,A and A
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respectively are

D(Λ#Dϕ)− Λ(e2|A|2 +m2)ϕ#1 = 0, (3.55)

1

2
ieΛ(ϕ#Dϕ− ϕ̄#Dϕ) + d(Λ#F )− Λj = 0, (3.56)

e2ΛA|ϕ|2#1− d(Λ#dA) = 0. (3.57)

By introducing ϕ = |ϕ|eiψ and A = |A|eiΦ, the field equations result in

Λ(dψ + eA) · (dψ + eA)− 1

|ϕ|
#−1d(Λ#d|ϕ|) + e2Λ|A|2 + Λm2 = 0, (3.58)

d#(Λ|ϕ|2(dψ + eA)) = 0, (3.59)

e2Λ|ϕ|2#(dψ + eA) + d(Λ#F )− Λj = 0. (3.60)

ΛdΦ · dΦ + e2Λ|ϕ|2 − 1

|A|
#−1d(Λ#d|A|) = 0, (3.61)

Λd#(Λ|A|2dΦ) = 0. (3.62)

Equations (3.58) and (3.59) arise from the real and imaginary parts of (3.55),

similarly (3.61) and (3.62) arise from the real and imaginary parts of (3.57).

Inspection of equations (3.58), (3.59), (3.61) and (3.62) when d#d|ϕ|, d#d|A|

and A are negligible leads to equations (3.49) and (3.50). Applying the above
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amplitude-phase decomposition to the action (3.54) gives

S = −
∫
M

Λ
[1
2

(dψ + eA) ∧#(dψ + eA)|ϕ|2 +
1

2
d|ϕ| ∧#d|ϕ|

+
1

2
e2|A|2|ϕ|2#1 +

1

2
m2|ϕ|2 +

1

2
F ∧#F

+
1

2
|A|2dΦ ∧#dΦ +

1

2
d|A| ∧#d|A| − A ∧ j

]
.

(3.63)

Let |I〉 = |AI,AI, ϕI; tI〉 and |II〉 = |AII,AII, ϕII; tII〉 be the eigenstates of the

field operators at times tI and tII respectively. The transition amplitude is

given by [8]

〈II|I〉 =

∫
DADADA∗DϕDϕ∗eiS

=

∫
DADΦDψD(|A|2)D(|ϕ|2)eiS,

(3.64)

where the lower and upper limits in the action integral are tI and tII respec-

tively.

Suppose that the derivatives of |ϕ| and |A| are negligible compared to the

derivatives of Φ and ψ. Furthermore suppose d|ϕ| · d|ϕ| and d|A| · d|A| are

negligible compared to other terms in (3.63). Now the functional integrals

over |ϕ|2 and |A|2 are infinite dimensional analogues of

I =

∫ ∞
0

dx

∫ ∞
0

dy ei(ax+by+cxy), (3.65)

where Im{a} = 0+ and Im{b} = 0+, and c < 0 is a real constant. The

notation 0+ indicates replacing 0+ with ε and taking the limit ε → 0 of

the whole expression. The variables corresponding to a b, c, x and y are

−1
2
Λ(dψ+ eA)2− 1

2
Λm2, −1

2
Λ(dΦ)2, −1

2
Λe2, |ϕ|2 and |A|2 respectively. Note

that a 7→ a+ i0+ and b 7→ b+ i0+ corresponds to the Feynman prescription
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M2 7→ M2 − i0+, with M = m for ϕ and M = 0 for A. Either integral

evaluates to

I =
1

c
e−i

ab
c lim
ε→0+

∫ ∞
Re{ac}

dz
eibz

z − iε
=

1

c
e−i

ab
c lim
ε→0+

∫ ∞
Re{ bc}

dz
eiaz

z − iε
. (3.66)

Numerical integration reveals that

I ≈ −2π

c
θ(a)θ(b)e−i

ab
c , (3.67)

where θ is the Heaviside function, is a reasonable approximation when |a
c
| > 1

and | b
c
| > 1. The right-hand side of equation (3.67) arises from considering

the results of (3.66) when the lower integration limits are replaced by ±∞.

Hence with these approximations equation (3.67) suggests that the functional

integrals in (3.64) give

〈II|I〉 ≈
∫
DADΦDψθ[UΦ]θ[Uψ]eiS

′
, (3.68)

up to a numerical factor, where UΦ = −dΦ · dΦ, Uψ = −(dψ + eA) · (dψ +

eA)−m2 and

S ′ =

∫
M

Λ

(
1

2e2
(dψ + eA) ∧#(dψ + eA)dΦ · dΦ− 1

2
F ∧#F + A ∧ j

+
1

2e2
m2dΦ · dΦ#1

)
.

(3.69)

The action S ′ is that of equation (3.63) with the stated assumptions. This
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approach is valid for ∣∣∣∣d√UΦ · d
√
UΦ

UΦUψ

∣∣∣∣� 1, (3.70)

∣∣∣∣∣d
√
Uψ · d

√
Uψ

UΦUψ

∣∣∣∣∣� 1, (3.71)

which can be deduced from equations (3.58) and (3.61) respectively since by

assumption the kinetic terms of |ϕ| and |A| in (3.63) are negligible. When

A is negligible, the action (3.69) is that of (3.48). There is a point worth

noting: Φ and ψ in (3.69) have finite ranges as they are the angles in polar

decomposition of ϕ and A. However when UΦ and Uψ are large, small vari-

ations in Φ and ψ will make significant contributions to (3.69), enhancing

the phase interference in the functional integral over configurations in (3.68).

Thus Φ and ψ having finite ranges lessens in significance when UΦ and Uψ

are large, and in such case there is no obstacle in extending their ranges to

the real line. Thus Φ and ψ can be regarded as scalar fields. Finally note

that this approach only captures the effects of quantum fluctuations of Φ

and ψ and not those of |ϕ| or |A|. The above considerations support that if

the quantum fluctuations of |ϕ| and |A| are negligible then the physics of the

bi-scalar field theory (3.48) should capture a flavour of the physics of (3.51).
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Chapter 4

Effective metric derivation

There are several ways of deriving an effective metric from the field equations

found in section 3.3, and different functions can be ascribed to the fields

giving rise to distinct metrics. Firstly section 4.1 will consider metrics derived

from individual field equations separately, with one of the solutions leading

to the Unruh effect. Section 4.2 will consider effective metrics derived from

perturbing the general field equations (3.36) and (3.40). In each of these,

subsections will follow with specified forms of the fields Φ and ψ. While

there will be no solutions analogous to the Schwarzschild metric, the Unruh

effect is attainable again. Finally section 4.3 will consider the system with

varying laser spot size as discussed in section 3.3.2 and show that it is possible

to get an effective metric conformal to the Schwarzschild metric.
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4.1 Individual field equations

Before turning to the bi-scalar field theory of Φ and ψ, it is instructive to

explore the case of a single field, as is typically the focus of other analogue

gravity systems. To do so, an effective metric can be derived from equation

(3.40) or (3.36) individually. Note that they both resemble the field equation

d(f′(ν) ? dϕ) = 0, (4.1)

for some function f, where ν = dϕ · dϕ, ϕ is some field, and prime indicates

derivative with respect to ν. The effective metric will be derived for this

general field and its properties dependant on Φ and ψ will be discussed in

the immediately following sections.

Consider the action

S[ϕ] =

∫
M

f(ν) ? 1, (4.2)

of which stationary variation gives equation (4.1). Perturbing the field such

that ϕ = ϕ0 + εϕ1 + ε2ϕ2 +O(ε3) and Taylor expanding f yields

f(ν) = f0 +2εf′0dϕ0 ·dϕ1 +ε2(f′0(dϕ0 ·dϕ2 +dϕ1 ·dϕ1)+2f′′0(dϕ0 ·dϕ1)2)+O(ε3),

(4.3)

where the zero subscript denotes functions evaluated at the solution ϕ0 to

equation (4.1). Noting that for any χ

∫
M
dϕ0·dϕχf′0?1 =

∫
M
dϕχ∧(f′0?dϕ0) =

∫
M
d(ϕχf

′
0?dϕ0)−

∫
M
ϕχd(f′0?dϕ0) = 0,

(4.4)
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results in

S[ϕ] = ε2
∫

(f′0dϕ1 · dϕ1 + 2f′′0(dϕ0 · dϕ1)2) ? 1. (4.5)

From this, an effective metric is given by

σg−1
eff = f′0g

−1 + 2f′′0d̃ϕ0 ⊗ d̃ϕ0, (4.6)

where ?eff1 = σ ? 1, so that g−1
eff (dϕ1, dϕ1) is the integrand of equation (4.5).

The function σ can be obtained by expressing the effective metric in terms

of an orthonormal frame. To see this let U = d̃ϕ0

|dϕ0| , then

σg−1
eff =f′0(−U ⊗ U + ΠUg

−1) + 2f′′0|dϕ0|2U ⊗ U

=− (f′0 − 2f′′0|dϕ0|2)U ⊗ U + f′0ΠUg
−1.

(4.7)

Assuming geff is Lorentzian suggests the frame

Xeff
0 =

√
f′0 − 2f′′0|dϕ0|2

σ
X0, Xeff

j =

√
f′0
σ
Xj

=⇒ e0
eff =

√
σ

f′0 − 2f′′0|dϕ0|2
e0, ejeff =

√
σ

f′0
ej,

(4.8)

where e0 = Ũ and j = 1, 2, 3. Thus ?eff1 = σ ? 1 gives

σ2√
(f′0)4 − 2(f′0)3f′′0|dϕ0|2

=σ

=⇒ σ = (f′0)
3
2

√
f′0 − 2f′′0|dϕ0|2,

(4.9)
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and the effective metric becomes

g−1
eff =

f′0√
(f′0)3(f′0 − 2f′′0|dϕ0|2)

g−1 +
2f′′0√

(f′0)3(f′0 − 2f′′0|dϕ0|2)
d̃ϕ0 ⊗ d̃ϕ0. (4.10)

Section 4.1.1 will consider the field equation for ψ, showing that it will never

lead to a Lorentzian effective metric. Section 4.1.2 will consider the field

equation for Φ using minimal energy density, showing it leads to a complex

metric. Section 4.1.3 will consider the field equation for Φ with a general

energy density, however the time dependence of the field will be assumed

to be linear in order to obtain a solution. It will be shown to lead to a

peculiar energy density, but also an effective metric that is conformally flat

and that of a homogeneous plane wave, and a calculation of the Unruh effect

will be presented. Similarly section 4.1.4 will consider the same system, but

in radial coordinates, showing that the resulting equations are too difficult

to solve analytically.

4.1.1 Field equation for ψ

Consider the case when ϕ = ψ and the laser strength µ is not an independent

variable. Equation (3.39) gives |dψ| = dλ
dn

, with which comparing equations

(3.40) and (4.1) results in

f′0(ν) =
ω2
p√
−ν

, (4.11)

where ω2
p = nq2

m
, and thus f′0 − 2f′′0|dψ0|2 = 0. Hence trivially there is no

Lorentzian effective metric corresponding to (3.39) and (3.40) alone.
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4.1.2 Field equation for Φ with minimal energy density

Consider the Φ field when the minimal energy density (3.41) is used and n

is not an independent variable. Equation (3.35) becomes

dΦ0 · dΦ0 = −
ω2
p√

1 + q2

m2µ
, (4.12)

where ω2
p = nq2

m
, which in conjunction with equation (3.36) results in f′0 =

ω4
p

ν2 − 1. Furthermore f′0 − 2f′′0|dΦ0|2 = −ω4
p

ν2 − 1, so

σ2 = − 1

ν8
(ω4

p + ν2)(ω4
p − ν2)3 = − 1

ν8
(ω8

p − ν4)3(ω4
p − ν2)2. (4.13)

A consequence of equation (4.12) is that ω8
p > ν4, making σ imaginary, and

thus there is no Lorentzian effective metric corresponding to (3.35) and (3.36)

alone for the minimal energy density case.

4.1.3 Field equation for Φ with general energy density

Equations (3.35) and (3.36), when n is not an independent variable, can

describe a laser pulse propagating through a dielectric medium, not just

a laser-driven plasma system. Instead of requiring minimal energy density

given in (3.41), a form of λ(µ) can be found that is compatible with the

existence of a Lorentzian effective metric. Let Φ0 be of the form

Φ0 = γt+ h(z), (4.14)
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where γ is a constant and h is a function. Furthermore the timelike condition

dΦ0 · dΦ0 < 0 gives the constraint

(
dh

dz

)2

< γ2. (4.15)

Looking at equation (4.1) now results in

d

dz

[
dh

dz
f′0 (ν)

]
= 0, =⇒ f′0(ν) =

cf
dh
dz

, (4.16)

for some constant cf. At this point it is possible to deduce the form of λ from

the field equation in terms of ν: f′0 has to equal ±kµ for some constant k due

to equation (3.36), furthermore dh
dz

=
√
ν + γ2, thus with equation (3.35):

λ =
γ2

2
µ+

c2
f

2k2µ
. (4.17)

The last term in the energy density increases for sufficiently small µ, but in

the large µ limit it disappears. Noting that d
dν

= dz
dν

d
dz

and dz
dν

= 1
dν
dz

= 1

2 d
2h
dz2

dh
dz

yields

f′′0(ν) =
1

2d
2h
dz2

dh
dz

d

dz

(
cf
dh
dz

)

=− cf

2
(
dh
dz

)3 .

(4.18)

A change of sign in dh
dz

will change the overall sign of the effective metric, so

without any loss of generality the numerators can be brought into the square
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roots in equation (4.10), thus with dz = 1
dh
dz

dh,

geff =
|cfγ|(
dh
dz

)2

[
1

γ
(dt⊗ dh+ dh⊗ dt) +

(
1

γ2
+

1(
dh
dz

)2

)
dh⊗ dh+ dx⊗ dx+ dy ⊗ dy

]
.

(4.19)

Introducing a coordinate change

t =v − Ξ(h), ζ =
h

γ
, (4.20)

where 2 1
γ
dΞ
dh

= 1
γ2 + 1

( dhdz )
2 and letting Ω(h) =

|cfγ|

( dhdz )
2 , shows that the effective

metric is conformally flat:

geff = Ω(γζ) [dv ⊗ dζ + dζ ⊗ dv + dx⊗ dx+ dy ⊗ dy] . (4.21)

With a further substitution of du = Ωdζ, this metric becomes that of a

homogeneous plane wave in Rosen coordinates. While there is no particle

creation in such a spacetime [54], it might be of interest in pursuing analogue

models of string theory [55], but that is beyond the scope of this discussion.

However, if considered as a 2-dimensional effective metric, the Unruh effect

calculation applies, hence the motion of a detector in the laboratory frame

corresponding to a uniformly accelerated observer in the effective metric can

be deduced. By using the coordinate transformation

u =
Z − T√

2
v =

Z + T√
2

(4.22)

53



the metric becomes

geff = −dT ⊗ dT + dZ ⊗ dZ. (4.23)

A uniformly accelerated observer in the right Rindler wedge of this metric is

described by the parametrization

Z =
1

a
eaξ cosh(aη) T =

1

a
eaξ sinh(aη), (4.24)

for some constants a and ξ. Firstly note that

ξ =
1

2a
ln
(
a2(Z2 − T 2)

)
=

1

2a
ln
(
2a2uv

)
,

η =
1

2a
ln

(
Z + T

Z − T

)
=

1

2a
ln
(v
u

)
,

(4.25)

thus

v =
1

a
√

2
ea(ξ+η), u =

1

a
√

2
ea(ξ−η). (4.26)

By definition u satisfies

du

dz

dh

dz
=
|cfγ|
γ

, (4.27)

furthermore Ξ = h
2γ

+ γ
2

∫
(dh
dz

)−1dz, hence

t(η) =
1

a
√

2
ea(ξ+η) − h(z(η))

2γ
− γ

2

[∫
1
dh
dz

dz

]∣∣∣∣∣
z=z(η)

, (4.28)

Now z(η) and t(η) can be found once h(z) is specified. Figures 4.1 and

4.2 show the motion and proper acceleration respectively in the laboratory

frame for a simple choice of h(z) = z, with arbitrarily chosen constants as an
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example. The plots show the motion starts with an approximately constant

velocity in the past followed by a period of acceleration near t = 0 and

tending to z = 0 for large t, and the acceleration is prominent around t = 0

and tends to zero for large |t|.

Figure 4.1: Plot of the motion described by (4.28) with h(z) = ln(cosh(z))
for arbitrarily chosen constants a = 1, ξ = 2, cf = 2 and γ = 3.
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Figure 4.2: Plot of the magnitude of the acceleration |A| (see equation (2.5))
described by (4.28) with h(z) = ln(cosh(z)) for arbitrarily chosen constants
a = 0.1, ξ = 1, cf = 2 and γ = 3.

4.1.4 Field equation for Φ with general energy density

in spherical coordinates

Let Φ0 be of the form

Φ0 = γt+ h(r), (4.29)

where γ is a constant and h is a function of the radial coordinate r =√
x2 + y2 + z2 in spherical coordinates. Looking at equation (4.1) now re-

sults in
d

dr

[
r2dh

dr
f′

(
−γ2 +

(
dh

dr

)2
)]

= 0,

=⇒ f′0(ξ) =
c

r2 dh
dr

,

(4.30)
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for some constant c. With d
dξ

= dr
dξ

d
dr

and dr
dξ

= 1
dξ
dr

= 1

2 d
2h
dr2

dh
dr

,

f ′′0 (ξ) =
1

2d
2h
dr2

dh
dr

d

dr

(
c

r2 dh
dr

)

=− c
r d

2h
dr2 + 2dh

dr

2r3 d2h
dr2

(
dh
dr

)3 .

(4.31)

Ricci and Kretschmann scalars can be obtained with the use of algebraic

software, however there are no simple algebraic solutions when the former is

equal to zero or the latter is proportional to k
r

for some constant k. Thus

this approach is not fruitful for obtaining static effective metrics that are of

interest in analogue gravity.

4.2 High frequency approach and the promi-

nence of the minimal energy density

The full field system (3.35), (3.36), (3.39) and (3.40) for Φ and ψ will now

be considered. Unfortunately, simply perturbing the field equations does not

immediately yield an obvious way to extract an effective metric as was the

case in section 4.1. However as will be shown, it is possible with the assump-

tion that the perturbations have high frequency. This method also requires

the minimal energy density to be used, as will be demonstrated. Consider

the field equations (3.36) and (3.40) using a general λ. By perturbing µ

and n such that µ = µ0 + εµ1 + O(ε2), n = n0 + εn1 + O(ε2) and defining
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k(µ, n)|0 ≡ k(µ0, n0) for any function k, the following relations are acquired:

−2
∂λ

∂µ
= −2

∂λ

∂µ

∣∣∣∣
0

− 2ε

(
∂

∂n

∂λ

∂µ

∣∣∣∣
0

n1 +
∂

∂µ

∂λ

∂µ

∣∣∣∣
0

µ1

)
, (4.32)

−
(
∂λ

∂n

)2

= −
(
∂λ

∂n

)2
∣∣∣∣∣
0

− ε

(
∂

∂n

(
∂λ

∂n

)2
∣∣∣∣∣
0

n1 +
∂

∂µ

(
∂λ

∂n

)2
∣∣∣∣∣
0

µ1

)
, (4.33)

n
∂λ
∂n

=
n
∂λ
∂n

∣∣∣∣∣
0

+ ε

(
∂

∂n

n
∂λ
∂n

∣∣∣∣∣
0

n1 +
∂

∂µ

n
∂λ
∂n

∣∣∣∣∣
0

µ1

)
. (4.34)

Perturbing Φ and ψ in a similar fashion, equations (3.35) and (3.39) in first

order of ε give

dΦ0 · dΦ1 = − ∂2λ

∂n∂µ

∣∣∣∣
0

n1 −
∂2λ

∂µ2

∣∣∣∣
0

µ1, (4.35)

2dψ0 · dψ1 = − ∂

∂n

(
∂λ

∂n

)2
∣∣∣∣∣
0

n1 −
∂

∂µ

(
∂λ

∂n

)2
∣∣∣∣∣
0

µ1 (4.36)

respectively. These can be solved as a system of linear equations for n1 and

µ1, giving

n1 =
2 ∂2λ
∂µ2

∣∣∣
0

(dψ0 · dψ1)− ∂
∂µ

(
∂λ
∂n

)2
∣∣∣
0

(dΦ0 · dΦ1)(
∂2λ
∂n∂µ

∂
∂µ

(
∂λ
∂n

)2 − ∂2λ
∂µ2

∂
∂n

(
∂λ
∂n

)2
)∣∣∣

0

, (4.37)

µ1 =

∂
∂n

(
∂λ
∂n

)2
∣∣∣
0

(dΦ0 · dΦ1)− 2 ∂2λ
∂n∂µ

∣∣∣
0

(dψ0 · dψ1)(
∂2λ
∂n∂µ

∂
∂µ

(
∂λ
∂n

)2 − ∂2λ
∂µ2

∂
∂n

(
∂λ
∂n

)2
)∣∣∣

0

. (4.38)

The field equations (3.36) and (3.40) in first order of ε read

d(µ0 ? dΦ1 + µ1 ? dΦ0) = 0, (4.39)
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d

(
n
∂λ
∂n

∣∣∣∣∣
0

? dψ1 +

(
∂

∂n

n
∂λ
∂n

∣∣∣∣∣
0

n1 +
∂

∂µ

n
∂λ
∂n

∣∣∣∣∣
0

µ1

)
? dψ0

)
= 0. (4.40)

Substituting the expressions for n1 and µ1 and introducing

p0 =
n
∂λ
∂n

∣∣∣∣∣
0

, (4.41)

q0 =
∂2λ
∂n2((

∂2λ
∂n∂µ

)2

− ∂2λ
∂n2

∂2λ
∂µ2

)
∣∣∣∣∣∣∣∣
0

, (4.42)

r0 = −
∂2λ
∂n∂µ

∂λ
∂n

((
∂2λ
∂n∂µ

)2

− ∂2λ
∂n2

∂2λ
∂µ2

)
∣∣∣∣∣∣∣∣
0

, (4.43)

s0 = 2

(
∂2λ
∂µ2

∂
∂n

n
∂λ
∂n

− ∂2λ
∂n∂µ

∂
∂µ

n
∂λ
∂n

)
(

∂2λ
∂n∂µ

∂
∂µ

(
∂λ
∂n

)2 − ∂2λ
∂µ2

∂
∂n

(
∂λ
∂n

)2
)
∣∣∣∣∣∣
0

, (4.44)

the field equations (4.39) and (4.40) become

d(µ0 ? dΦ1 + q0(dΦ0 · dΦ1) ? dΦ0 + r0(dψ0 · dψ1) ? dΦ0, ) = 0, (4.45)

d(p0 ? dψ1 + r0(dΦ0 · dΦ1) ? dψ0 + s0(dψ0 · dψ1) ? dψ0) = 0. (4.46)

To extract a metric, the perturbations will be assumed to have high frequency,

such that Φ1 = Re
(
aηe

iK
η

)
and ψ1 = Re

(
bηe

iK
η

)
, for some parameter η.

Only the lowest order of η is required, where aη = a0 + O(η) and bη =

b0 + O(η). Using dΦ1 = Re
(
i
η
a0e

iK
η dK

)
and dψ1 = Re

(
i
η
b0e

iK
η dK

)
, the
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field equations (4.45) and (4.46) in the lowest order of η lead to

(q0(dΦ0 · dK)a0 + r0(dψ0 · dK)b0)(dΦ0 · dK) + µ0(dK · dK)a0 = 0, (4.47)

(r0(dΦ0 · dK)a0 + s0(dψ0 · dK)b0)(dψ0 · dK) + p0(dK · dK)b0 = 0 (4.48)

respectively. These in turn can be written as a matrix multiplied by a vector:

q0(dΦ0 · dK)2 + µ0(dK · dK) r0(dΦ0 · dK)(dψ0 · dK)

r0(dΦ0 · dK)(dψ0 · dK) s0(dψ0 · dK)2 + p0(dK · dK)


b0

a0

 =

0

0

 .

(4.49)

The determinant of this matrix must be zero for the vector on the left-hand

side of (4.49) to be non-zero. Thus

(q0(dΦ0 · dK)2 + µ0(dK · dK))(s0(dψ0 · dK)2 + p0(dK · dK))

−r2
0(dΦ0 · dK)2(dψ0 · dK)2 =0,

(4.50)

which can be rearranged to give

µ0p0(dK · dK)2 + (q0s0 − r2
0)(dΦ0 · dK)2(dψ0 · dK)2

+(dK · dK)(p0q0(dΦ0 · dK)2 + s0µ0(dψ0 · dK)2) = 0.

(4.51)

The simplest way to extract one or more effective metrics from (4.50) is

to demand that it can be factorised. Introducing two symmetric rank two

tensors

g−1
I = aIg

−1 +bId̃Φ0⊗ d̃Φ0 +cId̃ψ0⊗ d̃ψ0 +dI(d̃Φ0⊗ d̃ψ0 + d̃ψ0⊗ d̃Φ0), (4.52)
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g−1
II = aIIg

−1+bIId̃Φ0⊗d̃Φ0+cIId̃ψ0⊗d̃ψ0+dII(d̃Φ0⊗d̃ψ0+d̃ψ0⊗d̃Φ0), (4.53)

the coefficients need to be matched such that g−1
I (dK, dK)g−1

II (dK, dK) gives

the determinant of the matrix. Here g−1 is the inverse of the background

metric, which will be set to the Minkowski metric in the following sections.

These two tensors are then the inverses of two effective metrics. This proce-

dure gives the following relations:

aIaII = µ0p0, (4.54)

4dIdII + bIcII + bIIcI = q0s0 − r2
0, (4.55)

aIbII + aIIbI = p0q0, (4.56)

aIcII + aIIcI = s0µ0, (4.57)

bIbII = 0, (4.58)

cIcII = 0, (4.59)

aIdII + aIIdI = 0, (4.60)

bIdII + bIIdI = 0, (4.61)

cIdII + cIIdI = 0. (4.62)

Since µ0p0 6= 0, inspection of (4.54) shows aI 6= 0 and aII 6= 0. If dI 6= 0

and dII 6= 0, then equations (4.60), (4.61) and (4.62) can be re-written as

aIbII − aIIbI = 0, aIcII − aIIcI = 0 and bIcII − bIIcI = 0 which together with
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(4.58) and (4.59) yield

bI = bII = cI = cII = 0. (4.63)

This in turn gives q0 = 0 and s0 = 0 by (4.56) and (4.57), leading to two

partial differential equations:

∂2λ

∂n2
= 0, (4.64)

n

((
∂2λ

∂µ∂n

)2

− ∂2λ

∂µ2

∂2λ

∂n2

)
+
∂2λ

∂µ2

∂λ

∂n
= 0, (4.65)

from equations (4.42) and (4.44) respectively. Equation (4.64) follows from

(4.42), and (4.65) follows from (4.44). Equation (4.64) yields λ = F1(µ)n +

F2(µ), which in conjunction with (4.65) results in

n

(
dF1

dµ

)2

+

(
d2F1

dµ2
n+

d2F2

dµ2

)
F1 = 0. (4.66)

Note that F1 = 0 trivially satisfies this equation, but this is not a physical

choice for λ as it is independent of the averaged number density n. Solving

(4.66) for F2 yields

F2 = −n
∫ ∫ (

dF1

dµ

)2

+ d2F1

dµ2 F1

F1

dµdµ, (4.67)
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however no matter what F1 is, there is a factor of n thus contradicting the

fact that F2 is just a function of µ. Hence F2 = 0. Finally (4.66) becomes

(
dF1

dµ

)2

+
d2F1

dµ2
F1 = 0, (4.68)

which solves to F1 = ±
√
C1 + C2µ, thus

λ = ±n
√
C1 + C2µ. (4.69)

Note that dI = dII = 0 could have been chosen instead of (4.63). However

this choice does not lead to choices of λ that include (4.69). The form of λ

in (4.69) recovers the standard relativistic ponderomotive force, and as such

dI = dII = 0 is not a valid physical choice. In summary, starting from the full

field equations (3.35), (3.36), (3.39) and (3.40) for Φ and ψ with a general

energy density λ, the perturbations are assumed to be of high frequency in

order to derive two effective metrics. When the coefficients of the metrics are

matched to the underlying field equations, it appears that the only physically

sensible choice for λ is the minimal energy density.

The remaining coefficients in (4.52) and (4.53) are

aI =
√

(dΦ0 · dΦ0)(dψ0 · dψ0 +m2)dI, dI = dI,

aII = −
√

(dΦ0 · dΦ0)(dψ0 · dψ0 +m2)dII, dII =
1

dI

.
(4.70)

Choosing dI = 1 yields two effective metrics that are given by

g−1
eff = d̃Φ0 ⊗ d̃ψ0 + d̃ψ0 ⊗ d̃Φ0 ±

√
(dΦ0 · dΦ0)(dψ0 · dψ0 +m2)g−1. (4.71)
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Note that at this stage it is not important to distinguish between the + and −

sign choice. It is also required that the effective metrics are Lorentzian, which

leads to a constraint on dΦ0 and dψ0. For example, suppose that the fields

are functions of the light-cone coordinates only, then the ∂x⊗ ∂x and ∂y⊗ ∂y

components of the metric are both either positive or negative. The ∂u⊗∂u and

∂v ⊗ ∂v components are 8∂vΦ0∂vψ0 and 8∂uΦ0∂uψ0, the ∂u ⊗ ∂v and ∂v ⊗ ∂u

components are 4(∂uΦ0∂vψ0 + ∂vΦ0∂uψ0) ± 2
√

(dΦ0 · dΦ0)(dψ0 · dψ0 +m2)

which is equivalent to 2(dΦ0 · dψ0 ±
√

(dΦ0 · dΦ0)(dψ0 · dψ0 +m2)), and the

remaining components are zero. A Lorentzian signature is obtained when

det
(
g−1

eff

)
< 0, which gives

4[(dΦ0 · dΦ0)(dψ0 · dψ0)− (dΦ0 · dψ0 ±
√

(dΦ0 · dΦ0)(dψ0 · dψ0 +m2))2] < 0.

(4.72)

A little rearranging and taking the square root yields the constraint

−dΦ0 · dψ0 >
√

(dΦ0 · dΦ0)(dψ0 · dψ0) +
√

(dΦ0 · dΦ0)(dψ0 · dψ0 +m2).

(4.73)

Although both metrics are Lorentzian, it can be inferred that the effective

metric (4.71) with positive sign choice will have the same signature as the

background metric, while the negative sign choice gives the opposite signa-

ture. To proceed further, the forms of Φ0 and ψ0 are required. The field

equations are too complicated for a general solution, but there are several

regimes which lead to a manageable system which require the fields to be

functions of two variables (t, z), or equivalently the light-cone coordinates

(u, v). Section 4.2.1 will consider the fields as linear functions of t and z,
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leading to metrics with constants coefficients which are conformally flat, and

the Unruh effect calculation will be discussed. It is also worth noting that the

field equations result in linear fields when requiring them to be of the form

γt+ h(z). Section 4.2.2 will consider fields as solutions to the 2-dimensional

wave equation, leading to effective metrics with geometric singularities, how-

ever it will be shown that there are no horizons; thus they are naked singu-

larities. Section 4.2.3 will consider the system in spherical coordinates with a

linear time component, showing they lead to systems which are not physical.

However, it will be shown later that introducing an extra degree of freedom

(the spot size of the laser) leads to physically interesting effective metrics.

4.2.1 Fields as linear functions

The simplest model is given by Φ0 and ψ0 being linear functions of t and z,

or equivalently the light-cone coordinates. The background metric will be

considered as 2-dimensional for brevity, but the result easily translates to

three spatial dimensions. Introduce Φ0 = c1u+ c2v, ψ0 = c3u+ c4v, for some

constants c1, c2, c3, c4, where u and v are the light-cone coordinates. In order

to keep dΦ0 and dψ0 timelike, either c1 is positive with c2 being negative or

the other way around, and similarly either c3 is negative and c4 is positive

or the converse is true. For this analysis it will be assumed that c2 and c4

are negative, but it is straightforward to change that by introducing minus
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signs in relevant places. The effective metrics now become

geff = Ω2

[
− 4c1c3du⊗ du− 4c2c4dv ⊗ dv

+
(

2c1c4 + 2c2c3 ±
√

4c1c2(4c3c4 +m2)
)

(du⊗ dv + dv ⊗ du)

]
,

(4.74)

where Ω2 = − 2

det(g−1
eff )

. With the transformation z − t =
√

4c1c3u, z + t =
√

4c2c4v, the metrics become

geff = 2Ω2(−(Cuv + 1)dt⊗ dt + (Cuv − 1)dz⊗ dz), (4.75)

where

Cuv =−
2c1c4 + 2c2c3 ±

√
4c1c2(4c3c4 +m2)√

16c1c2c3c4

=−
dΦ0 · dψ0 ±

√
(dΦ0 · dΦ0)(dψ0 · dψ0 +m2)√

(dΦ0 · dΦ0)(dψ0 · dψ0)
.

(4.76)

Finally letting T = Ω
√

2
√
Cuv + 1t and Z = Ω

√
2
√
Cuv − 1z puts the metrics

into the form:

geff = −dT ⊗ dT + dZ ⊗ dZ. (4.77)

Requiring Cuv − 1 > 0 is equivalent to the condition given in (4.73). Now an

observer that is uniformly accelerated in the effective spacetime, in the right

Rindler wedge is described by the parametrization

Z =
1

a
eaξ cosh(aη), T =

1

a
eaξ sinh(aη). (4.78)
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Thus z = 1
aΩ
√

2
√
Cuv−1

eaξ cosh(aη) and t = 1
aΩ
√

2
√
Cuv+1

eaξ sinh(aη). In the

light-cone coordinates adapted to the background metric this becomes

u =
1

2aΩ
√

2
√
Cuv − 1

√
c1c3

eaξ cosh(aη)− 1

2aΩ
√

2
√
Cuv + 1

√
c1c3

eaξ sinh(aη),

v =
1

2aΩ
√

2
√
Cuv − 1

√
c2c4

eaξ cosh(aη) +
1

2aΩ
√

2
√
Cuv + 1

√
c2c4

eaξ sinh(aη),

(4.79)

yielding

z(η) =
eaξ

4aΩ
√

2

[
cosh(aη)√
Cuv − 1

(
1
√
c2c4

+
1
√
c1c3

)
+

sinh(aη)√
Cuv + 1

(
1
√
c2c4

− 1
√
c1c3

)]
,

t(η) =
eaξ

4aΩ
√

2

[
cosh(aη)√
Cuv − 1

(
1
√
c2c4

− 1
√
c1c3

)
+

sinh(aη)√
Cuv + 1

(
1
√
c2c4

+
1
√
c1c3

)]
.

(4.80)

Noting that

(
dt

dη

)2

−
(
dz

dη

)2

=
e2aξ

4Ω2
√

2

1 + Cuv − 2 cosh2(aη)
√
c1c2c3c4(C2

uv − 1)
, (4.81)

reveals that the observer can only exist in a small portion of the background

spacetime given by 1 + Cuv − 2 cosh2(aη) > 0, because the tangent to the

curve (t(η), z(η)) becomes spacelike beyond it. The proper acceleration also

becomes divergent at the transition point. The Unruh effect is strictly defined

for an observer that is accelerating for all time; however this is experimen-

tally unfeasible, and instead a finite time interval needs to be chosen. Thus

the timelike region may be extended, which can be achieved by tweaking

the parameters associated with Φ0 and ψ0 to maximise Cuv, such that it is

sufficiently large. Figure 4.3 shows the motion of such an observer in the

laboratory frame, which resembles a uniformly accelerated motion, but fig-
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ure 4.4 shows non-constant acceleration, which diverges as expected at the

points where 1+Cuv−2 cosh2(aη) = 0. The results for the minus sign choice

in the effective metric are similar, with only minor changes in the numerical

values, and as such their discussion will be omitted.

Figure 4.3: Plot of the motion in the lab frame of the corresponding uniformly
accelerated observer in the effective metric with plus sign chosen, in the range
1 + Cuv − 2 cosh2(aη) > 0. The constants were chosen to be c1 = −c4 = 15
and −c2 = c3 = a = ξ = m = 1. These values are for illustrative purposes
only.
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Figure 4.4: Plot of the magnitude of the acceleration |A| (see equation (2.5))
in the lab frame of the corresponding uniformly accelerated observer in the
effective metric with plus sign chosen, in the range 1+Cuv−2 cosh2(aη) > 0.
The constants were chosen to be c1 = −c4 = 15 and −c2 = c3 = a = ξ =
m = 1. These values are for illustrative purposes only.
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4.2.2 Fields as solutions of 2-dimensional wave equa-

tion

Suppose that Φ0 and ψ0 are functions of (t, z) only, and d ? dΦ0 = 0 and

d ? dψ0 = 0. Utilising light-cone coordinates gives the general solutions

Φ0 = Φ−(u)+Φ+(v) and ψ0 = ψ−(u)+ψ+(v), with which the field equations

(3.44) and (3.45) reduce to

d2Φ−
du2

dψ+

dv

dΦ+

dv
= −d

2Φ+

dv2

dψ−
dv

dΦ−
dv

, (4.82)

d2ψ−
du2

dψ+

dv

dΦ+

dv
= −d

2ψ+

dv2

dψ−
dv

dΦ−
dv

. (4.83)

A solution to (4.82) and (4.83) can be found:

Φ+ =
(

ln
(
ec7(v+c8)

)
− ln

(
−1 + c2e

c7(v+c8)
))c6

c1

+ c10,

Φ− =
(
− ln

(
ec1(u+c3)

)
+ ln

(
−1 + c2e

c1(u+c3)
))c6

c1

+ c5,

ψ+ =
ln
(
−1 + c2e

c7(v+c8)
)

c2

+ c9,

ψ− = −
ln
(
−1 + c2e

c1(u+c3)
)

c2

+ c4,

(4.84)

where cj are constant for j = 1, 2, .., 10. Without loss of generality, c4, c5,

c9 and c10 can be set to zero as only the derivatives of (4.84) are of interest.

The effective metrics are quite complicated and no insight is gained from

writing them out, so to show their general properties other constants will be

set to c1 = 1, c2 = 1, c6 = 1
2
, c7 = 1, c8 = 1 and m = 2. Furthermore,

coordinates u = eu and v = ev will be adopted and a 2-dimensional system
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will be considered. The fields now become

dΦ0 =
1

2u(u− 1)
du− 1

2v(v− 1)
dv, (4.85)

dψ0 = − 1

u− 1
du +

1

V − 1
dV. (4.86)

Note that in order to keep the fields real-valued, u > 1 and v > 1 is required,

or equivalently z > |t|. Firstly consider the effective metric obtained from

choosing + in equation (4.71). Figure 4.5 shows a plot of the determinant of

this metric and its individual components, and figure 4.6 shows a plot of the

Kretschmann scalar. What the plots fail to show is that all of these quantities

are divergent at u = 1 and at v = 1. There are no other divergences, thus

these are the only geometric singularities and there are no horizons at finite

u and v. The effective metric obtained from choosing the − sign contains the

same naked singularities as the + sign choice. Further naked singularities

are found at points that satisfy

0 =u4 − (4v− 8)u3 + (6v2 − 56v + 24)u2 − (4v3 + 56v2 − 80v + 32)u

+ v4 − 8v3 + 24v2 − 32v + 16.

(4.87)

Since none of the geometric singularities have horizons at finite u and v, and

thus finite u and v, neither of the effective metrics are useful for representing

the gravitational field of a black hole.
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Figure 4.5: Plots of a) determinant, b) dudv component, c) du2 component,
d) dv2 component of the effective metric in equation (4.71) with + sign choice
for constants c1 = 1, c2 = 1, c6 = 1

2
, c7 = 1, c8 = 1 and m = 2.

Figure 4.6: Plot of the Kretschmann scalar of the effective metric in equation
(4.71) with + sign choice for constants c1 = 1, c2 = 1, c6 = 1

2
, c7 = 1, c8 = 1

and m = 2.
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4.2.3 Fields with linear time dependence in spherical

coordinates

Suppose that Φ0 = γΦt+ hΦ(r), ψ0 = γψt+ hψ(r). The field equations give

∂r
(
r2∂rhψ(∂rhΦ)2

)
= γ2

Φ∂r(r
2∂rhψ), (4.88)

∂r
(
r2∂rhΦ(∂rhψ)2

)
= (γ2

ψ −m2)∂r(r
2∂rhΦ). (4.89)

These have three solutions:

hΦ =
c1

r
+ c2, hψ = c3, (4.90)

hΦ = c3, hψ =
c1

r
+ c2, (4.91)

and

±hΦ =γΦr + c3,

±hψ =
√
γ2
ψr

2 −m2r2 + c2
1 − c1 ln

2c2
1 + 2c1

√
γ2
ψr

2 −m2r2 + c2
1

r

+ c2,

(4.92)

where c1, c2 and c3 are constants, and the ± signs in the third solution are

not related to the sign in the effective metric and are both independent of
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each other. For the solution in (4.91) the effective metrics become

geff =− ζr4

ζ2r4 − 2ζγΦγψr4 + c2
1γ

2
ψ

dt⊗ dt+
(ζ − 2γΦγψ)r4

ζ2r4 − 2ζγΦγψr4 + c2
1γ

2
ψ

dr ⊗ dr

+
c1γψr

2

ζ2r4 − 2ζγΦγψr4 + c2
1γ

2
ψ

(dt⊗ dr + dr ⊗ dt)

+
r2

ζ
dθ ⊗ dθ +

r2 sin2(θ)

ζ
dϕ⊗ dϕ,

(4.93)

where

ζ = ±
√

(dΦ0 · dΦ0)(dψ0 · dψ0 +m2) = ± 1

r2

√
(c2

1 − γ2
Φr

4)(m2 − γ2
ψ). (4.94)

Since γ2
ψ > m2, (4.94) becomes imaginary for r2 ≤

∣∣∣ c1γΦ

∣∣∣, thus the metrics

are only valid for r > rc, where rc =
∣∣∣ c1γΦ

∣∣∣ 1
2
. A singularity is obtained when

the denominator of the dt2 component equals zero, which can be achieved if

either the plus sign is chosen and γΦ and γψ have the same sign, or if the

minus sign is chosen and γΦ has the opposite sign to γψ. This choice does not

change the qualitative properties of the resulting metrics, so only the first

case will be discussed. For the positive sign choice, this singularity occurs at

r2
h = r2

c

m2√
−2γ4

ψ + γ2
ψm

2 +m4 + |γ3
φ|
√
γ2
ψ −m2

. (4.95)

A plot of the Kretschmann scalar for arbitrarily chosen constants in figure

4.7 shows the singularity at r = rh is geometrical, that there is another

one at r = rc, the curvature between rc and rh is high in comparison to

the region r > rh, and the metric is asymptotically flat for large r. Those
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singularities are naked, thus this solution does not relate to a gravitational

field of a black hole. When the minus sign is chosen for the metric, it also

Figure 4.7: Plot of the Kretschmann scalar of the effective metric given in
(4.93) with + sign choice, for constants c1 = 1, γΦ = 5, γψ = 5 and m = 4,
giving rc ≈ 0.447 and rh ≈ 0.506.

exhibits a naked singularity at r = rc and asymptotic flatness for large r.

The second solution given in (4.91) has the same properties as the previous

one due to the symmetry of the equations involved, and as such it will be

omitted. Finally the last solution given in (4.92) can also be discarded by

noting that it leads to dψ · dψ = −m2, which forces µ = 0 (i.e. the laser has

zero strength) due to equation (3.43).
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4.3 Laser with varying spot size

The derivation of an effective metric from the field equations (3.49) and (3.50)

is very similar to what is discussed in section 4.2, and will be omitted. The

difference is that a conformal factor of Λ appears in equation (4.71), thus

there are two effective metrics given by

g−1
eff = sΛ

(
d̃Φ0 ⊗ d̃ψ0 + d̃ψ0 ⊗ d̃Φ0 ±

√
(dΦ0 · dΦ0)(dψ0 · dψ0 + 1)g−1

)
.

(4.96)

Note that the dimensionless form has been used, as outlined in Appendix B.

The factor of s comes from the freedom of choice of dI in (4.70), and will be

assumed to be s = 1 or s = −1, to match the signature of the effective metrics

with the background metric. This is equivalent to choosing d2
I = 1 rather

than simply dI = 1. The condition for Lorentzian signature given in (4.73) is

still valid, as a conformal factor will not affect it. The advantage of including

Λ is that there are two equations for three unspecified fields, thus one of those

fields can be freely chosen. It is possible to obtain an effective metric that

is conformally related to the Schwarzschild metric, as will be shown in this

section. Firstly, suppose that Φ0 = γΦt + hΦ(z), ψ0 = γψt + hψ(z), and Λ is

some function of z. Then the zeroth order field equations become

d

[
Λ(1− γ2

ψ +

(
dhψ
dz

)2

)(γΦdz +
dhΦ

dz
dt)

]
= 0

=⇒ ∂z

[
Λ(1− γ2

ψ +

(
dhψ
dz

)2

)
dhΦ

dz

]
= 0,

(4.97)
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d

[
Λ(−γ2

Φ +

(
dhΦ

dz

)2

)(γψdz +
dhψ
dz

dt)

]
= 0

=⇒ ∂z

[
Λ(−γ2

Φ +

(
dhΦ

dz

)2

)
dhψ
dz

]
= 0.

(4.98)

Thus these two equations can be written as

Λ(−γ2
− +

(
dhψ
dz

)2

)
dhΦ

dz
= c1., (4.99)

Λ(−γ2
Φ +

(
dhΦ

dz

)2

)
dhψ
dz

= c2., (4.100)

where γ2
− = γ2

ψ − 1, and c1 and c2 are constants. This system has one

free function, either hΦ or hψ, which will determine (4.96) once specified.

This freedom allows for demanding that the ratio of the components of a

diagonalised effective metric is proportional to (1− zs
z

)2. The effective metric

is then conformally related to the Schwarzschild metric with a horizon at

z = zs. Introducing τ = at+ f(z) for some constant a, and choosing f(z) such

that the metric becomes diagonal, gives the requirement

−
(

1− zs
z

)2

=
a−2

(
2h′Φh

′
ψ ±

√
((h′Φ)2 − γ2

Φ)((h′ψ)2 − γ2
−)
)

2γΦγψ ∓
√

((h′Φ)2 − γ2
Φ)((h′ψ)2 − γ2

−)− (γψh
′
Φ+γΦh

′
ψ)2

2h′Φh
′
ψ±
√

((h′Φ)2−γ2
Φ)((h′ψ)2−γ2

−)

.

(4.101)

Note that the numerator on the right-hand side is proportional to geff(∂τ , ∂τ )

and the denominator is proportional to geff(∂z, ∂z). It is convenient to intro-

duce the scaled variables hΦ = γΦȟΦ and hψ = γψȟψ. With the introduction
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of ε2 =
γ2
−
γ2
ψ

, equation (4.101) becomes

−
(

1− zs
z

)2

=
a−2

(
2ȟ′Φȟ

′
ψ ±

√
(1− (ȟ′Φ)2)(ε2 − (ȟ′ψ)2)

)
2∓

√
(1− (ȟ′Φ)2)(ε2 − (h′ψ)2)− (ȟ′Φ+ȟ′ψ)2

2ȟ′Φȟ
′
ψ±
√

(1−(ȟ′Φ)2)(ε2−(ȟ′ψ)2)

.

(4.102)

Note that

(ȟ′ψ)2 < ε2 < 1, (4.103)

where the upper bound comes from the definition of ε and the fact that

γ− < γψ, while the lower bound is required so that the metric components

do not become imaginary. The field equations (4.99) and (4.100) yield the

relationship

β(ε2 − (ȟ′ψ)2)ȟ′Φ = (1− (ȟ′Φ)2)ȟ′ψ, (4.104)

between ȟ′Φ and ȟ′ψ, where β = c1
c2

. Introducing ȟ′ψ = εh and choosing β = 1
ε

results in ȟ′Φ = h. Also note that h2 < 1 is required due to (4.103). With

these simplifications, the components of the inverse of the effective metric in

t and z coordinates are

g−1
eff (dt, dt) = sΛγΦγψ(2∓ |ε|(1− h2)), (4.105)

g−1
eff (dz, dz) = sΛγΦγψ(2εh2 ± |ε|(1− h2)), (4.106)

g−1
eff (dt, dz) = −sΛγΦγψ(1 + ε)h, (4.107)

with

Λ2 =

(
c1

εh(1− h2)

)2

. (4.108)
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Note that by definition Λ > 0, thus the choice s = −1 is required in order to

match the signatures of the effective metrics to the background metric. The

∂t ⊗ ∂t component and the off-diagonal terms, as well as Λ, will be non-zero

for all values within the constraints (4.103). Equating g−1
eff (dz, dz) to zero

and solving for h leads to a horizon if ε is chosen appropriately. The value

of h when (4.106) equals zero is

h2 =
|ε|

|ε| ∓ 2ε
. (4.109)

When ε is positive, for the + sign choice in (4.96) there will be no horizon,

while there will be a horizon at h2 = 1
3

for the − sign choice. The converse

is true for ε < 0. Since these are interchangeable, the case of ε < 0 will

be assumed henceforth. Also note that det
(
g−1

eff

)
< 0 for −1 < ε < 0 and

1
3
< h2 < 1, thus both effective metrics are Lorentzian. This can be seen

from plotting the inequality given in (4.73), however it can also be proved

algebraically. To show this let p± = 1
Λ2γ2

Φγ
2
ψ

det
(
g−1

eff

)
and note:

p+ =(−3h4 + 3h2 − 1)ε2 + (4h2 − 2)ε− h2,

p− =(2 + |ε|(1− h2))(2εh2 − |ε|(1− h2))− (1 + ε)2h2

=− (2 + |ε|(1− h2))(−2εh2 + |ε|(1− h2))− (1 + ε)2h2.

(4.110)
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The result p− < 0 is immediately satisfied and thus det
(
g−1

eff

)
< 0 for the

negative sign choice. The derivatives of p+ are

dp+

dh
=− 2h((6h2 − 3)ε2 − 4ε+ 1)

d2p+

dh2
=− 24h2ε2

(4.111)

At h2 = 1
3
, p+ = −(1 + ε) and dp+

dh
= 2√

3
(ε2 + 4ε − 1). The polynomial

ε2 + 4ε − 1 = 0 has solutions at ε = −2 ±
√

5. Thus dp+

dh
|h2= 1

3
< 0 for

−1 < ε < 0, since these roots do not lie between -1 and 0. Furthermore

d2p+

dh2 < 0 for −1 < ε < 0 and 1
3
< h2 < 1, hence p+ is negative at h2 = 1

3

and decreases as h increases. Thus det
(
g−1

eff

)
< 0 for the positive sign choice.

Only the + sign effective metric is of interest and will be explored further, as

the other one does not contain a horizon. Let ν = −ε for convenience, with

which equation (4.102) can be written as

−
(

1− zs
z

)2

=
a−2 (1− 3h2)

2
ν2

(2− ν(1− h2)) (−2νh2 + ν(1− h2))− (1− ν)2h2
, (4.112)

which will always have a solution in the specified range, because the numera-

tor on the right-hand side is positive and the denominator is always negative

because it is the determinant of the effective metric. An expression for a is

obtained from (4.112) by matching the limit of z →∞ to h→ 1, yielding

a2 =

(
2ν

1 + ν

)2

. (4.113)

A solution to equation (4.112) can be found since it is a quadratic equation

in h2, however it is cumbersome and a simpler approach is available. Since
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the behaviour at large z is of interest, a function that tends to 1 for large z

is required. A simple choice for this function is h = e−
1
z . Inserting h = e−

1
z

and the solution for a into the right-hand side of equation (4.112), taking

the square root and Taylor expanding it in 1
z

yields 1− 2
1+ν

1
z

+O(z−2). This

allows to match zs = 2(1 + ν)−1 and

dΦ0 · dΦ0 = −γ2
Φ(1− e−

2
z ), (4.114)

dψ0 · dψ0 + 1 = −(γ2
ψ − 1)(1− e−

2
z ), (4.115)

is obtained. Following the definitions in Appendix B to restore units requires

setting

l∗ =
GM

c2
(1 + ν), (4.116)

where M is the mass of the effective black hole. This is because z̃s = 2GM
c2

and z̃ = l?z. Now the following relations can be obtained for the spot size Λ̃

and dimensionless amplitude a0 of the laser:

Λ̃ = l2∗
c1

νe−
l∗
z̃ (1− e−2 l∗

z̃ )
, (4.117)

a2
0 = (γ2

ψ − 1)(1− e−2 l∗
z̃ ) ≈ (γ2

ψ − 1)
2l∗
z̃
, (4.118)

and the plasma frequency ωp satisfies ω2
p ∝ 1

z̃
+ O( 1

z̃2 ). A system that fol-

lows these equations for the laser cross-sectional area Λ̃ and dimensionless

amplitude a0 for large z̃ corresponds to an effective black hole with Hawking

temperature

TH =
~c3

8πkbGM
, (4.119)
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which can be written as

TH =
~c(1 + ν)

8πkbl∗
. (4.120)

To proceed further, the values of l∗ and ν must be fixed using a physical

configuration.

4.3.1 Application of the result

The Hawking temperature can be calculated if the initial dimensionless am-

plitude a0|S and the initial laser cross-sectional area Λ̃|S are known. Here

|S indicates evaluation at z = zS. By matching a0|S to equation (4.118) a

value for γψ is obtained, and hence ν. Note that it is possible to solve for γψ

algebraically, however the solution is cumbersome and no insight is gained,

and as such it will be omitted. Choosing

c1 = ν[e−
l∗
z̃ (1− e−2 l∗

z̃ )]|S, (4.121)

gives l? =
√

Λ̃|S using (4.117), and the initial laser width w0 can be ex-

pressed as w0 =
√

Λ̃|S. Now ν and l∗ are known, thus M is known from

equation (4.116), and Hawking temperature follows. As an example the pa-

rameters a0|S ≈ 0.7 and w0 ≈ 30 µm are achievable [53] for maintaining an

intense near-IR laser pulse. These parameters result in γψ ≈ 1.15, ν ≈ 0.49,

c1 ≈ 0.18, M ≈ 2.71 × 1022 kg, and the associated Hawking temperature

is TH ≈ 4.52 K. Note that these values were obtained with asymptotically

expanded a0. Without the expansion the quantities are γψ ≈ 1.27, ν ≈ 0.61,

c1 ≈ 0.22, M ≈ 2.50 × 1022 kg and TH ≈ 4.89 K. This temperature is very
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small regardless. However, inspection of (4.116) reveals that the mass of the

effective black hole only depends on γψ through ν, and ν < 1, thus no matter

how big a0|S is, it will have small impact on the Hawking temperature. But

the mass of the effective black hole depends linearly on l∗. This suggests that

w0 contributes much more significantly to the Hawking temperature than a0

does. Indeed as a0|S gets smaller, γψ gets closer to 1 and thus ν gets closer to

0. This lowers the Hawking temperature by a factor of 2 from the maximum

value which coincides with ν = 1. On the other hand, TH is inversely pro-

portional to w0. Thus decreasing w0 by any factor will increase the Hawking

temperature by the same factor. For example, pulses with waist of ≈ 100 nm

are experimentally achievable [56]. Even for a small a0|S, and thus ν ≈ 0,

the Hawking temperature evaluates to ≈ 760 K. Note however that there

is no plasma in Ref. [56] and the pulse length is 210 µm, while the model

used in this section is only applicable when w0 is greater than pulse length.

Nevertheless even a pulse width of a few µm and high intensity would yield

TH ≈ 100 K.
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Chapter 5

Effective field theory of

laser-driven plasma

In this chapter the quantum effects of the previously derived action given in

(3.48) will be explored through the 1-loop effective action. The field equa-

tions will be derived in section 5.1. In section 5.2 the fields will be assumed

to be linear in Minkowski coordinates and they will be perturbed in order to

investigate the effects of the quantum fluctuations. In section 5.3 the per-

turbations will be assumed to be of the form of a plane wave leading to a

dispersion relation. Finally the effects of this on a Gaussian wave packet will

be investigated in section 5.3.1.

The spot size of the laser pulse will be assumed to be constant, hence (3.48)

can be written as

S[Φ, ψ] =
1

2

∫
M

(dΦ · dΦ)(dψ · dψ + 1)#1, (5.1)
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using the dimensionless forms of Φ and ψ as outlined in Appendix B. The

1-loop effective action Γ is given by [12]

Γ[Φ, ψ] = S[Φ, ψ]− i ln

{∫
D ~f exp

(
iΛtotal[~f]

)}
, (5.2)

where

Λtotal[~f] =
1

2

∫∫∫∫
dzdtdz′dt′

δ2S

δ2ϕA(z, t)δ2ϕB(z′, t′)
fA(z, t)fB(z′, t′), (5.3)

with the indices A,B ranging over 1, 2, ϕ1 = Φ, ϕ2 = ψ and ~f = (f1 f2)T , T

denoting matrix transposition. Note that the dimensionless factor Λ intro-

duced in equation (3.41) and the functional Λtotal are unrelated. The relevant

functional derivatives are

δS

δΦ(z, t)δΦ(z′, t′)
=∂t(∂tδ

(2)(dψ · dψ + 1))− ∂z(∂zδ(2)(dψ · dψ + 1)),

δS

δψ(z, t)δψ(z′, t′)
=∂t(∂tδ

(2)(dΦ · dΦ))− ∂z(∂zδ(2)(dΦ · dΦ)),

δS

δΦ(z, t)δψ(z′, t′)
=2∂t(∂tΦ(∂zψ∂zδ

(2) − ∂tψ∂tδ(2)))− 2∂z(∂zΦ(∂zψ∂zδ
(2) − ∂tψ∂tδ(2))),

(5.4)

where δ(2) is a product of two Dirac delta functions δ(x − x′) and δ(t − t′),

giving

Λtotal[~f] =

∫
M

1

2
[(dΦ · dΦ)(df2 · df2) + (dψ · dψ + 1)(df1 · df1)

+ 4(dΦ · df1)(dψ · df2)]#1,

(5.5)

or equivalently

Λtotal[~f] = −
∫
dtdx

1

2
~f †O~f, (5.6)
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where the operator O is given by

O~f = ∂µ

(ηστ∂σψ∂τψ + 1)ηµν 2ηµσ∂σΦηντ∂τψ

2ηµσ∂σψη
ντ∂τΦ ηστ∂σΦ∂τΦη

µν

 ∂ν~f. (5.7)

Here ηµν = Diag(−1, 1). By definition, the path integral
∫
D ~f exp

(
iΛtotal[~f]

)
is equal to Det(−iO)−

1
2 , where Det(−iO) is the functional determinant [7,8]

of the operator −iO, which is equal to the product of its eigenvalues. It is

difficult to directly calculate this analytically, however it is greatly simplified

when the fields Φ and ψ are linear functions of z and t. In this case, the

matrix in (5.7) is constant, thus the eigenfunctions of the operator are of the

form (a b)T exp(ilµx
µ), where a, b and lµ are constant. The eigenvalues of

the matrix in (5.7) arise in pairs, where each pair λ+
l and λ−l corresponds to

each lµ and must satisfy

λ+
l λ
−
l = (ηστ∂σψ∂τψ+1)ηγδ∂γΦ∂δΦ(ηµνlµlν)

2−4(ηµσ∂σΦηντ∂τΦlµlν)
2. (5.8)

Equation (5.8) can be readily factorised to λ+
l λ
−
l = (Aµν+ lµlν)(Aστ− lσlτ ), where

Aµν+ =s

(√
(ηστ∂σψ∂τψ + 1)ηγδ∂γΦ∂δΦη

µν + ηµσηντ (∂σΦ∂τψ + ∂τΦ∂σψ)

)
,

Aµν− =s

(√
(ηστ∂σψ∂τψ + 1)ηγδ∂γΦ∂δΦη

µν − ηµσηντ (∂σΦ∂τψ + ∂τΦ∂σψ)

)
,

(5.9)

where s = ±1 accounts for the overall sign of both tensors. Note that

these two tensors are exactly the same as the effective metrics found in

section 4.2, up to a sign. Now, due to the product of eigenvalues being
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commutative, the functional determinant can be expressed as Det(−iO) =

Det(−iO+) Det(−iO−), where

O+f = −∂µ(Aµν+ ∂νf), O−f = −∂µ(Aµν− ∂νf). (5.10)

The path integral can also be factorised to

∫
D ~f exp

(
iΛtotal[~f]

)
=

{∫
D ~f exp

(
iΛ+[~f]

)}{∫
D ~f exp

(
iΛ−[~f]

)}
,

(5.11)

where

Λ+[f] =

∫
dtdz

1

2
Aµν+ ∂µf∂νf, Λ−[f] =

∫
dtdz

1

2
Aµν− ∂µf∂νf. (5.12)

While this derivation requires the fields Φ and ψ to be linear functions of

the Minkowski coordinates, it is also valid when Φ and ψ are sufficiently

slowly varying. This approach is analogous to the common usage of the

Euler-Heisenberg Lagrangian even when the background electric and mag-

netic fields are not constant. The form of Γ can be obtained when (5.11)

is expressed in terms of a massless field theory on a dilatonic curved back-

ground, as discussed in section 2.2.3. This identification requires Aµν+ and

Aµν− to be Lorentzian, hence the constraint given in (4.73) applies. The pairs

of metrics g+
µν , g

−
µν and dilatons ϕ+, ϕ− are

gµν+ =
Aµν+√
A+

, ϕ+ = −1

4
ln(A+), gµν− =

Aµν−√
A−

, ϕ− = −1

4
ln(A−), (5.13)
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where A+ and A− are the determinants of ηµσAσν+ and ηµσAσν− respectively.

Thus (5.12) can be written as

Λ+[f] =

∫
d2x
√
−g+

1

2
exp{−2ϕ+}gµν+ ∂µf∂νf,

Λ−[f] =

∫
d2x
√
−g−1

2
exp{−2ϕ−}gµν− ∂µf∂νf,

(5.14)

where g+ and g− are determinants of g+
µν and g−µν respectively, and g+ = g− =

η by construction. Following the discussion in section 2.2.3, the effective

action is given by

Γ[Φ, ψ] = S[Φ, ψ] + w+ + w−, (5.15)

where w+ = w[g+
µν , ϕ+, µ+] and w− = w[g−µν , ϕ−, µ−].

5.1 Field equations

It is not straightforward to extract the field equations from varying Γ[Φ, ψ]

immediately due to the amount of substitutions made. To obtain them, the

variations of different terms will be presented, building up to expressing the

field equations in a condensed form. Starting with functional derivatives of

w[g, φ, µ] (see equation (2.57)), it is relatively easy to show that

12π√
−g

δw

δφ
= 3∇µ�

−1R∇µφ+ (3�−1R + 1 + 6 lnµ)�φ+R. (5.16)

The functional derivative of w with respect to gµν is more involved, as �−1, R

and
√
−g contain the metric. The calculation will be performed for the first

term of w, displaying all the tools necessary to obtain the whole expression,
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however the remaining terms will be omitted for brevity and the final result

will be stated. Firstly let I be given by

I =δ

∫
d2x
√
−gR�−1R

=

∫
d2x

{
δ(
√
−g)R�−1R +

√
−gRδ(�−1)R +

√
−gδR�−1R +

√
−gR�−1δR

}
=

∫
d2x

{
δ(
√
−g)R�−1R +

√
−gRδ(�−1)R + 2

√
−gδR�−1R

}
,

(5.17)

where the last step utilised the identity given by

∫
M
d2x
√
−gh1�

−1h2 =

∫
M
d2x
√
−g�H1H2 =

∫
M
d2x
√
−gH1�H2

=

∫
M
d2x
√
−gh2�

−1h1,

(5.18)

where H1 = �h1 and H2 = �h2 for some scalar fields h1 and h2, and in-

tegration by parts has been used. It can be shown that δR = Rµνδg
µν −

∇µ∇νδg
µν + gµν�δgµν and δ(

√
−g) = −1

2

√
−ggµνδgµν , also

∫
d2x
√
−gh1δ(�)h2 =δ

∫
d2x
√
−gh1�h2 −

∫
d2xδ(

√
−g)h1�h2

=− δ
∫
d2x
√
−ggµν∇µh1∇νh2 −

∫
d2xδ(

√
−g)h1�h2

=−
∫
d2x
√
−g(∇µh1∇νh2 −

1

2
gµν∇h1 · ∇h2)δgµν

−
∫
d2xδ(

√
−g)h1�h2

(5.19)

where h1 and h2 are again arbitrary scalar fields and integration by parts has

been used. It is worth noting that this result holds even if h1 and h2 depend

on the metric; the extra terms that appear in the first two lines of working
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(due to δh1 and δh2 being non-zero) cancel in the final result. Now I can be

evaluated to

I =

∫
d2x
√
−g
{

2Gµν�
−1R− 2∇µ∇ν�

−1R + 2gµνR +∇µ�
−1R∇ν�

−1R

− 1

2
gµν(∇�−1R)2

}
δgµν ,

(5.20)

where Gµν = Rµν − 1
2
gµνR is the Einstein tensor, however in two dimensions

Gµν = 0 [57]. Using the methods above yields

48π√
−g

δw

δgµν
=−∇µ∇ν�

−1R + gµνR +
1

2
∇µ�

−1R∇ν�
−1R− 1

4
gµν(∇�−1R)2

− 4∇µ∇νφ+ 4gµν�φ− 6∇µφ∇νφ�
−1R + 3gµν(∇φ)2�−1R

− 6∇(µ�
−1(∇φ)2∇ν)�

−1R + 3gµνg
σω∇σ�

−1(∇φ)2∇ω�
−1R

+ 6∇µ∇ν�
−1(∇φ)2 − 2(1 + 6 lnµ)∇µφ∇νφ

+ (−5 + 6 lnµ)gµν(∇φ)2,

(5.21)

where the parentheses enclosing indices denote tensor symmetrization given

by 2∇(µX∇ν)Y = ∇µX∇νY +∇νX∇µY . The functional derivatives of w+

or w− are simply the variations of w evaluated at φ = ϕ+ and gµν = gµν+ ,

or φ = ϕ− and gµν = gµν− respectively. It is now also possible to determine

the functional derivatives of w+ and w− with respect to Aµν+ and Aµν− by

introducing Aµν = e−2φgµν , where similarly to (5.13), φ = −1
4

lnA and A is

the determinant of ηµσAσν . The variations now become δgµν = e2φδAµν +
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2gµνδφ and 4δφ = −e2φgµνδAµν , thus

δw =

∫
d2x

(
δw

δgµν
δgµν +

δw

δφ
δφ

)
=

∫
d2x

{
δw

δgµν
− 1

4

(
2
δw

δgστ
gστ +

δw

δφ

)
gµν

}
e2φδAµν .

(5.22)

Exploiting the fact that the determinant g of gµν and the determinant η of

ηµν satisfies g = η gives

1√
−η

δw

δAµν
=

1√
−g

{
δw

δgµν
− 1

4

(
2
δw

δgστ
gστ +

δw

δφ

)
gµν

}
e2φ, (5.23)

where again the properties of δw+ and δw− follow through suitable substitu-

tions. Recalling that s2 = 1, equation (5.9) yields

sδAµν+ =

(
−
√
ε

α
ηµνβσ + 2ζ(µην)σ

)
∂σδΦ +

(
−
√
ε

α
ηµνζσ + 2β(µην)σ

)
∂σδψ,

sδAµν− =

(
−
√
ε

α
ηµνβσ − 2ζ(µην)σ

)
∂σδΦ +

(
−
√
ε

α
ηµνζσ − 2β(µην)σ

)
∂σδψ,

(5.24)

where

α = ηµν∂µΦ∂νΦ, βµ = ηµν∂νΦ, ε = ηµν∂µψ∂νψ + 1, ζµ = ηµν∂νψ.

(5.25)

Thus the field equations arising from varying Γ[Φ, ψ] with respect to Φ and

ψ can be written in concise form as

∇(η)
σ (εβσ + Bσ+ + Bσ−) = 0, ∇(η)

σ (αζσ + Cσ+ + Cσ−) = 0, (5.26)
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respectively, where

Bσ+ =
s√
−η

δw+

δAµν+

(
−
√
ε

α
ηµνβσ + 2ζµηνσ

)
,

Bσ− =
s√
−η

δw−
δAµν−

(
−
√
ε

α
ηµνβσ − 2ζµηνσ

)
,

(5.27)

Cσ+ =
s√
−η

δw+

δAµν+

(
−
√
α

ε
ηµνζσ + 2βµηνσ

)
,

Cσ− =
s√
−η

δw−
δAµν−

(
−
√
α

ε
ηµνζσ − 2ζµηνσ

)
.

(5.28)

The terms ∇(η)
σ (εβσ) and ∇(η)

σ (αζσ) come from variation of S[Φ, ψ].

5.2 Perturbations of the linear solution

The simplest solution of the field equations is given by the case when Φ and

ψ are linear functions of the Minkowski coordinates t and z. In this case α

and ε are constant, meaning Aµν+ , Aµν− , βµ and ζµ are constant. Therefore

gµν+ , gµν− , ϕ+ and ϕ− are also constant, and in addition R+ = R− = 0. Hence

(5.16) and (5.21) are zero, and thus (5.26) is satisfied. To investigate the

effects of the quantum fluctuations on this solution, introduce

gµν = ḡµν + gµν(1), φ = φ̄+ φ(1), (5.29)

where barred characters indicate quantities associated with the unperturbed

solution. The functional derivatives of w obtained in (5.16) and (5.21) be-

come

12π√
−g

δw

δφ
= R(1) + (1 + 6 lnµ)�̄φ(1), (5.30)
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48π√
−g

δw

δφ
= −∂µ∂ν�̄−1R(1) + ḡµνR(1) − 4∂µ∂νφ(1) + 4ḡµν�̄φ(1), (5.31)

respectively, to first order in the perturbations g(1) and φ(1), and the pertur-

bation of the curvature scalar is given by

R(1) = −∂µ∂νgµν(1) + ḡµν�̄g
µν
(1). (5.32)

With suitable substitutions, the field equations (5.26) become

0 =ε̄�(η)Φ(1) + 2β̄µζ̄ν∂µ∂νψ(1)

− s

96π

√
ε̄

ᾱ
β̄σ∂σ

{
e2ϕ̄+ [−2(�(η)/�̄

+)R+
(1) − c

+R+
(1) − 8�(η)ϕ

+
(1)

+ 2c+(1− 6 lnµ+)�̄+ϕ+
(1)]

+ e2ϕ̄− [−2(�(η)/�̄
−)R−(1) − c

−R−(1) − 8�(η)ϕ
−
(1)

+ 2c−(1− 6 lnµ−)�̄−ϕ−(1)]
}

+
s

48π
ζ̄µ
{
e2ϕ̄+ [−2(�(η)/�̄

+)∂µR
+
(1) − ḡ

+
µν∂

νR+
(1) − 8�(η)ϕ

+
(1)

+ 2(1− 6 lnµ+)ḡ+
µν∂

νϕ+
(1)]

− e2ϕ̄− [−2(�(η)/�̄
−)∂µR

−
(1) − ḡ

−
µν∂

νR−(1) − 8�(η)ϕ
−
(1)

+ 2(1− 6 lnµ−)ḡ−µν∂
νϕ−(1)]

}
,

(5.33)
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0 =ᾱ�(η)ψ(1) + 2β̄µζ̄ν∂µ∂νΦ(1)

− s

96π

√
ᾱ

ε̄
ζ̄σ∂σ

{
e2ϕ̄+ [−2(�(η)/�̄

+)R+
(1) − c

+R+
(1) − 8�(η)ϕ

+
(1)

+ 2c+(1− 6 lnµ+)�̄+ϕ+
(1)]

+ e2ϕ̄− [−2(�(η)/�̄
−)R−(1) − c

−R−(1) − 8�(η)ϕ
−
(1)

+ 2c−(1− 6 lnµ−)�̄−ϕ−(1)]
}

+
s

48π
β̄µ
{
e2ϕ̄+ [−2(�(η)/�̄

+)∂µR
+
(1) − ḡ

+
µν∂

νR+
(1) − 8�(η)ϕ

+
(1)

+ 2(1− 6 lnµ+)ḡ+
µν∂

νϕ+
(1)]

− e2ϕ̄− [−2(�(η)/�̄
−)∂µR

−
(1) − ḡ

−
µν∂

νR−(1) − 8�(η)ϕ
−
(1)

+ (1− 6 lnµ−)ḡ−µν∂
νϕ−(1)]

}
,

(5.34)

where c+ = ḡµν+ ηµν , c
− = ḡµν− ηµν and �(η) = ηµν∂µ∂ν . Expressing the metric

and dilaton perturbations in terms of perturbed fields gives

gµν+(1) = 2ϕ+
(1)ḡ

+
µν + e2ϕ̄+Āµν+(1), gµν−(1) = 2ϕ−(1)ḡ

−
µν + e2ϕ̄−Āµν−(1), (5.35)

4ϕ+
(1) = −e2ϕ̄+ ḡ+

µνĀ
µν
+(1), 4ϕ−(1) = −e2ϕ̄− ḡ−µνĀ

µν
−(1), (5.36)

where

sĀµν+(1) =

(
−
√
ε̄

ᾱ
ηµν β̄σ + 2ζ̄(µην)σ

)
∂σΦ(1) +

(
−
√
ε̄

ᾱ
ηµν ζ̄σ + 2β̄(µην)σ

)
∂σψ(1),

sĀµν−(1) =

(
−
√
ε̄

ᾱ
ηµν β̄σ − 2ζ̄(µην)σ

)
∂σΦ(1) +

(
−
√
ε̄

ᾱ
ηµν ζ̄σ − 2β̄(µην)σ

)
∂σψ(1).

(5.37)
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5.3 Plane-wave perturbations and their dis-

persion relations

By inspection of (5.33) and (5.34), the classical behaviour of the field per-

turbations satisfies

ε̄�(η)Φ(1) + 2β̄µζ̄ν∂µ∂νψ(1) = 0, ε̄�(η)ψ(1) + 2β̄µζ̄ν∂µ∂νΦ(1) = 0. (5.38)

Requiring the perturbations to be of the form of a plane-wave, Φ(1) ∝ eikx

and ψ(1) ∝ eikx, where kx ≡ kµx
µ, leads to the dispersion relation

Āµν+ kµkνĀστ− kσkτ = 0, (5.39)

where sĀµν+ =
√
ᾱε̄ηµν + 2β̄(µζν) and sĀµν− =

√
ᾱε̄ηµν − 2β̄(µζν). Further-

more (5.38) is linear in Φ(1) and ψ(1), thus the following substitutions can

be performed in (5.33) and (5.34): ∂µ 7→ ikµ, �(η) 7→ −ηµνkµkν ≡ −k · k,

�̄+ 7→ −ḡµν+ kµkν , �̄− 7→ −ḡµν− kµkν , 1/�̄+ 7→ −1/(ḡµν+ kµkν) and 1/�̄− 7→

−1/(ḡµν− kµkν). Terms containing 1/�̄+ and 1/�̄− dominate the quantum

corrections if Āµν+ kµkν = 0 and Āµν− kµkν = 0 respectively. Close to the clas-

sical solution Āµν+ kµkν = 0 the field equations (5.33) and (5.34) approximate

to

0 = ḡµν+ kµkν
(
ε̄k · kΦ(1) + 2β̄kζ̄kψ(1)

)
+ is

e2ϕ̄+

48π

(
−
√
ε̄

ᾱ
β̄k + 2ζ̄k

)
k · kR+

(1),

(5.40)
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0 = ḡµν+ kµkν
(
ᾱk · kψ(1) + 2β̄kζ̄kΦ(1)

)
+ is

e2ϕ̄+

48π

(
−
√
ᾱ

ε̄
ζ̄k + 2β̄k

)
k · kR+

(1),

(5.41)

respectively, where β̄k ≡ βµkµ and ζ̄k ≡ ζµkµ, and R+
(1) = kµkν ḡ

µν
+(1) follows

from equation (5.32). Furthermore ḡµν+(1) = e2ϕ̄+Aµν+(1), hence

sR+
(1) =

(
−
√
ε̄

ᾱ
β̄k + 2ζ̄k

)
ik · ke2ϕ̄+Φ(1) +

(
−
√
ᾱ

ε̄
ζ̄k + 2β̄k

)
ik · ke2ϕ̄+ψ(1).

(5.42)

Introducing

a = s

(
−
√
ε̄

ᾱ
β̄k + 2ζ̄k

)
k · ke2ϕ̄+ , (5.43)

b = s

(
−
√
ᾱ

ε̄
ζ̄k + 2β̄k

)
k · ke2ϕ̄+ , (5.44)

the field equations become

0 = ḡµν+ kµkν
(
ε̄k · kΦ(1) + 2β̄kζ̄kψ(1)

)
− 1

48π
a
(
aΦ(1) + bψ(1)

)
, (5.45)

0 = ḡµν+ kµkν
(
ᾱk · kψ(1) + 2β̄kζ̄kΦ(1)

)
− 1

48π
b
(
aΦ(1) + bψ(1)

)
. (5.46)

These can be written in matrix form as ḡµν+ kµkν ε̄k · k − a2

48π
2ḡµν+ kµkν β̄kζ̄k − ab

48π

2ḡµν+ kµkν β̄kζ̄k − ab
48π

ḡµν+ kµkνᾱk · k − b2

48π


Φ(1)

ψ(1)

 =

0

0

 . (5.47)

Requiring the determinant of this matrix to equal zero yields

0 =(ḡµν+ kµkν)
2[ε̄ᾱ(k · k)2 − (2β̄kζ̄k)2]

− 1

48π
[k · k(a2ᾱ + b2ε̄)− 4abβ̄kζ̄k]ḡµν+ kµkν .

(5.48)
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From (5.13) it follows that ḡµν+ kµkν = e2ϕ̄+Āµν+ kµkν , furthermore ε̄ᾱ(k · k)2−

(2β̄kζ̄k)2 = Āµν+ kµkνĀστ− kσkτ , thus

0 =e2ϕ̄+(Āµν+ kµkν)
2Āστ− kσkτ −

1

48π
[k · k(a2ᾱ + b2ε̄)− 4abβ̄kζ̄k]. (5.49)

Utilising Āµν− kµkν = 2s
√
ᾱε̄k ·k−Āµν+ kµkν and 2β̄kζ̄k = sĀµν+ kµkν−

√
ᾱε̄k ·k,

and keeping first two lowest order terms in kµ gives

0 =2se2ϕ̄+(Āµν+ kµkν)
2
√
ᾱε̄− 1

48π
[(a2ᾱ + b2ε̄) + 2ab

√
ᾱε̄]. (5.50)

Dividing by 2
√
ᾱε̄ and factorising the last term gives

e2ϕ̄+(Āµν+ kµkν)
2 = − s

96π

(
a
( ᾱ
ε̄

) 1
4

− b
( ε̄
ᾱ

) 1
4

)2

. (5.51)

Demanding that both sides are real-valued when taking the square root re-

quires choosing s = −1. By definition e−4ϕ̄+ = (ᾱε̄+ β̄ · ζ̄)2− β̄ · β̄ζ̄ · ζ̄. Finally

substituting a, b and Āµν+ kµkν back and taking the square root yields

|
√
ᾱε̄k·k+2β̄kζ̄k| = ε̌

3

4
√

6π

|k · k|
[(
√
ᾱε̄+ β̄ · ζ̄)2 − β̄ · β̄ζ̄ · ζ̄]

1
4

∣∣∣∣( ᾱε̄ )
1
4

ζ̄k −
( ε̄
ᾱ

) 1
4

β̄k

∣∣∣∣ ,
(5.52)

where ε̌ is a parameter tracking the order of k and will be set to unity at

the end. A similar approach can be taken with the field equations close to

the Āµν− kµkν = 0 solution with similar results, the difference being a =

s
(
−
√

ε̄
ᾱ
β̄k − 2ζ̄k

)
k · ke2ϕ̄+ , b = s

(
−
√

ᾱ
ε̄
ζ̄k − 2β̄k

)
k · ke2ϕ̄+ , 2β̄kζ̄k =

−sĀµν− kµkν +
√
ᾱε̄k · k, e−4ϕ̄− = (ᾱε̄ − β̄ · ζ̄)2 − β̄ · β̄ζ̄ · ζ̄, and again re-
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quiring s = −1, yielding

|
√
ᾱε̄k·k−2β̄kζ̄k| = ε̌

3

4
√

6π

|k · k|
[(
√
ᾱε̄− β̄ · ζ̄)2 − β̄ · β̄ζ̄ · ζ̄]

1
4

∣∣∣∣( ᾱε̄ )
1
4

ζ̄k +
( ε̄
ᾱ

) 1
4

β̄k

∣∣∣∣ .
(5.53)

The justification of (5.1) requires the laser frequency to be the highest fre-

quency in the unperturbed case, hence equations (5.52) and (5.53) will be

investigated in the ultrarelativistic limit. To do so, let the timelike vector β̄µ

be decomposed as

β̄µ =
1

ε
β̄µ[−1] + εβ̄µ[1], (5.54)

where β̄µ[−1] and β̄µ[−1] are lightlike, and ε is a positive parameter used for

tracking the order of perturbations and will be set to unity at the end. It

is useful to correlate ε and ε̌: inspection of (5.52) and (5.53) with (5.54)

suggests ε̌ =
√
ε2p−1 for some positive integer p. Note that p � 1 since the

quantum corrections should be much smaller than the deviation of βµ from

a null vector. Utilising ᾱ = β̄ · β̄ = 2β̄[−1] · β̄[1] and ε̄ = ζ̄ · ζ̄ + 1, (5.52) and

(5.53) become

|ε
√
ᾱε̄k · k +

(
β̄[−1]k + ε2β̄[1]k

)
ζ̄k| = εp

3|k · k|
(
ε̄
ᾱ

) 1
4
∣∣β̄[−1]k

∣∣
4
√

6π
√
|β̄[−1] · ζ̄|

, (5.55)

|ε
√
ᾱε̄k · k −

(
β̄[−1]k + ε2β̄[1]k

)
ζ̄k| = εp

3|k · k|
(
ε̄
ᾱ

) 1
4
∣∣β̄[−1]k

∣∣
4
√

6π
√
|β̄[−1] · ζ̄|

, (5.56)

where O(εp+1) has been set to zero. To the lowest order in ε both of these

are solved by

β̄[−1]k[0]ζ̄k[0] = 0, (5.57)
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where kµ = k[0]µ + εk[1]µ +O(ε2) has been introduced. This can be solved by

β̄[−1]k[0] = 0 or ζ̄k[0] = 0. Firstly consider β̄[−1]k[0] = 0: since β̄µ[−1] is null,

kµ[0] must also be null and proportional to β̄µ[−1], where kµ[0] = ηµνk[0]µ. To first

order in ε equations (5.55) and (5.56) both give

β̄[−1]k[1]ζ̄k[0] = 0, (5.58)

thus k[1]µ is proportional to k[0]µ. Up to first order in ε, the phase speed of

the perturbations φ(1) and ψ(1) is the speed of light in the vacuum. Now

consider the ζ̄k[0] = 0 case. To analyse this solution in the first order of ε, it

is useful to introduce a timelike unit vector nµ = ζ̄µ/
√
−ζ · ζ and a spacelike

unit vector n⊥ orthogonal to n. By using ηµν = −nµnν + nµ⊥n
ν
⊥, equations

(5.55) and (5.56) to first order in ε give

nk[1] = −
√

ᾱε̄

−ζ̄ · ζ̄
n⊥k[0]

2β̄[−1] · n⊥
, (5.59)

nk[1] =

√
ᾱε̄

−ζ̄ · ζ̄
n⊥k[0]

2β̄[−1] · n⊥
, (5.60)

respectively. Note that n⊥k is proportional to the wavenumber of the per-

turbations Φ(1) and ψ(1) in the rest frame of the plasma electrons, thus up to

(p − 1)th order there is no dispersion, as (5.55) and (5.56) are second-order

homogeneous polynomials in kµ. Corrections due to quantum fluctuations

only contribute at pth order and above in ε. For the β̄[1]k[0] = 0 case, the

right-hand side of (5.55) and (5.56) can be shown to be of order εp+1. Thus

the quantum corrections are too small to be captured by the analysis. How-
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ever when ζ̄k[0] = 0,

nk = ±νn⊥k − εp
3

8
√

6π|n · β̄[−1]|

(
ε̄

ᾱ|ζ̄ · ζ̄|3

) 1
4

(n⊥k)2 +O(εp+1), (5.61)

where the − sign corresponds to (5.55) and the + sign corresponds to (5.56),

and the constant ν is given by

ν = ε

√
ᾱε̄

−ζ̄ · ζ̄
1

2β̄[−1] · n⊥
+O(ε2). (5.62)

It can be shown that |β̄[−1]·n| = |β̄[−1]·n⊥| = |∂0Φ(0)|. The sign of the quantum

corrections will be chosen such that its contribution to the frequency of the

perturbation is positive. Introducing the angular frequency ω = |nk| and

wavenumber κ = |n⊥k| of the perturbations in the rest frame of plasma ions,

and setting O(εp+1) to zero, ε to unity, Φ(0) = ω0t + k0z, dΦ(0) · dΦ(0) =

−ω2
p with ωp being the plasma frequency, and restoring units as outlined in

Appendix B finally yields

ω = vκ+
3

8

√
~e2

6πε0m2c3Λ̃

(
a2

0

(a2
0 + 1)3

) 1
4 c2κ2

√
ω0ωp

, (5.63)

with

v =
ωpc

2ω0

a0√
a2

0 + 1
. (5.64)

Equation (5.63) can be written as

ω = vκ+

√
3α

128π2

λe
w0

(
a2

0

(a2
0 + 1)3

) 1
4 c2κ2

√
ω0ωp

, (5.65)
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where λe is the Compton wavelength of an electron, α is the fine-structure

constant, and the width of the laser pulse w0 =
√

Λ̃ has been introduced.

Note that the standard dispersion relation for a cold plasma in the absence

of a laser pulse ω2 = ω2
p + c2k2 is not recovered in the limit a0 → 0. This

is because both the laser and the plasma are indispensable parts of the un-

derlying theory, as equations (3.49) and (3.50) both vanish if either is field

is zero.

5.3.1 Gaussian wave packet

This section will show the implications of the dispersion relation found in

(5.65) for a Gaussian pulse, suggesting that quantum fluctuations could play

a significant role in the evolution of an underdense plasma driven by an x-ray

laser pulse. Consider a Gaussian wave packet given by

Ξ(t, z) =

∫ ∞
−∞

dkei(kz−ωt) exp

(
−1

2

(k − k0)2

σ2

)
, (5.66)

where ω is a function of k, and σ controls the width of the packet at t = 0.

Taylor expanding ω = ω(k0)+ω′(k0)(k−k0)+ 1
2
ω′′(k0)(k−k0)2+O((k−k0)3),

where prime denotes derivative with respect to k, yields

|Ξ| = 1√
2π

1√
(ω′′(k0))2t2 + 1

σ4

exp

{
−1

2

(z − ω′(k0)t)2

σ2(ω′′(k0))2t2 + 1
σ2

}
. (5.67)

Thus the quantity

∆ =

√
σ2(ω′′(k0))2t2 +

1

σ2
(5.68)
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is an estimate of half of the width of a pulse subject to the dispersion relation

given by ω(k). Let ∆0 = 1
σ
, and ∆

∆0
= 1+δ for some small parameter δ, since

the contributions of the quantum fluctuations are small. The characteristic

time scale τ over which the length of a Gaussian wave packet increases by a

small amount δ due to quantum fluctuations is obtained from (5.68):

τ ∼
√

128π2

3α

w0

λe

(
a2

0

(a2
0 + 1)3

)− 1
4
√
ω0ωp

c2
σ2

√
(1 + δ)2 − 1

2
. (5.69)

Let τ̌ = ω0

2π
τ and σ̌ = σ

λ0
be normalised quantities with respect to the laser

period and laser wavelength λ0 = 2πc
ω0

respectively. The wavelength of the

laser pulse is required to be the shortest classical wavelength in this model,

thus σ̌ > 1. Considering δ � 1 gives

τ̌ & 1509

(
a2

0

(a2
0 + 1)3

)− 1
4

√
w2

0λ0δ

2λ2
eλp

, (5.70)

where λp = 2πc
ωp

. It is possible for an intense laser pulse to propagate through

an underdense plasma over distances that are many multiples of the classical

Rayleigh length. Equation (5.70) along with the number of oscillations
Nπw2

0

λ2
0

corresponding to N multiples of the Rayleigh length of a laser beam yields

the upper bound

δ . 8.7 × 10−6

√
a2

0

(a2
0 + 1)3

N2w2
0λ

2
eλp

λ5
0

. (5.71)

This suggests that the effects due to quantum fluctuations will not be de-

tectable in experiments based on near-IR lasers. As an example, it is pos-
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sible to maintain an intense near-IR laser pulse with λ0 = 800 nm and

w0 = λp = 30 µm over tens of Rayleigh lengths [53]. Even though the di-

mensionless laser amplitude a0 ≈ 0.7 is achievable using high-power near-IR

lasers, these parameters yield δ . 2.6 × 10−9 for N = 40, which is experi-

mentally unresolvable. However, similarly to the results of section 4.3.1, the

role of a0 is not that significant. Strong dependence of (5.71) on λ0 suggests

that x-ray lasers may lead to an experimentally accessible measurement. For

example taking λ0 = 10 nm, λp = 100 µm, w0 = 100 µm, a0 ≈ 6 × 10−5

yields δ . 0.05. Thus it may be possible to investigate this result with the

use of an x-ray laser, such as the European XFEL [5].
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Chapter 6

Conclusion

The main aim of this thesis was to establish a link between laser-driven

plasma and analogue Hawking radiation. While this has been achieved, other

results were obtained along the way, as will be summarised below.

Two field equations for a laser-driven plasma were derived in chapter 3 in

terms of the laser phase Φ, 4-momentum potential ψ of the plasma electrons

and the energy density λ. Furthermore, utilising the dispersion relations

of Φ and ψ in the minimal energy density case, these field equations were

shown to be readily expressible in terms of Φ and ψ only. This system was

also reduced to two dimensions with the introduction of Λ, related to the

cross-sectional area of the system. It was shown that the field equations for

the minimal energy density system can be motivated from scalar quantum

electrodynamics.

Following that, effective metrics were derived from the perturbations of

the field equations in chapter 4 in various regimes. Firstly the field equations

were considered separately in section 4.1. It was shown that regardless of the
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choice of energy density, the equation involving ψ does not lead to Lorentzian

effective metrics. However, the Φ equation was more robust. It was shown

that utilising minimal energy density leads yet again to a non-Lorentzian

effective metric, but assuming Φ = γt+h(z) for some general energy density

does indeed give a Lorentzian effective metric. It was shown that with suit-

able substitutions it is the homogeneous plane wave metric. Such a metric

is conformally flat; reducing the system to two dimensions allowed for inves-

tigation of the Unruh effect, leading to non-trivial motion of the accelerated

observer in the laboratory frame, with the freedom of choice of h(z). Lastly

it was briefly explained that considering a spherical system does not readily

lead to an analogue of a physically interesting spacetime.

In section 4.2, the field equations were considered together with a general

energy density. It was shown that in order to derive an effective metric, the

perturbations of the fields are required to have high frequency. With that,

the only physically sensible energy density giving rise to two effective metrics

was found to be that of the minimal energy density. Firstly the case of the

fields being linear in Minkowski coordinates was considered. This led to flat

metric, which again allowed for investigating the Unruh effect, and led to

non-uniform acceleration in the laboratory frame. Following that, the fields

were considered as solutions of the 2-dimensional wave equation. While the

field equations were solvable, the effective metrics had undesirable properties

and as such were discarded. A spherical system was also investigated with

both fields having the form of γΦ/ψt + hΦ/ψ(r). Two distinct solutions were

found for the h functions, however one displayed naked singularities while

the other was not physically viable.
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The final regime considered effective metrics on 2-dimensional spacetime

where the cross-sectional area of the laser pulse (spot size) is not constant.

The spot size appeared in the field equations as well as being the conformal

factor of the effective metrics. Both fields were assumed to be of the form

γΦ/ψt + hΦ/ψ(z), and a relation between hΦ and hψ was found in terms of a

function h. It was shown that there exists a singularity in one of the effective

metrics, and parameters were matched such that the ratio of the components

of the effective metrics was that of the Schwarzschild metric. The resulting

Hawking temperature depends on the initial dimensionless laser amplitude

a0 and the waist of the laser w0 =
√

Λ̃. The initial amplitude has a small

effect on the Hawking temperature compared to the waist. It was shown

that the Hawking temperature resulting from using an intense near-IR laser

is about 4.5 K. However, the temperature is inversely proportional to the

waist, which significantly increases the feasibility of detecting it as the waist

gets smaller.

Finally chapter 5 explored the quantum effects of the action for under-

dense plasma in two dimensions for a constant spot size. The analysis in-

cluded quantum backreaction of the system; backreaction is an important

area of study of analogue evaporating black hole systems. The 1-loop effec-

tive action was shown to be expressible in terms of a massless field theory

on a dilatonic curved background for fields that are linear in the Minkowski

coordinates. However it was argued that the fields may have a more gen-

eral form, thus the field equations were subsequently derived for a general

case. With these, the linear solution was perturbed and two distinct disper-

sion relations were derived, describing dynamical perturbations of a uniform
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underdense laser-driven plasma. One of the dispersion relations describes

propagation in the same direction, at essentially the same phase speed, as

the laser beam. The remaining dispersion relation is associated with pertur-

bations that co-propagate and counter-propagate with the laser beam, but at

a much slower speed than the laser beam. None of the modes are dispersive

without quantum corrections, and the modes that propagate at essentially

the same speed as the laser beam are non-dispersive even when quantum

effects are included. The effect of the non-trivial dispersion relation on a

Gaussian wave packet was then analysed. It was shown that for an near-IR

laser the effect is negligible, while for an x-ray laser the width of the packet

increases by about 5% over a distance corresponding to 40 Rayleigh lengths

of the laser.

6.1 Future work

There are several avenues for undertaking future work. Understanding how

to set up and measure the vacuum of an effective metric, and that of an

accelerated observer, would be an important step in finding a way to probe

the Unruh effect found in section 4.2.1. Investigating phenomena other than

Hawking radiation may also be feasible, such as naked singularities as dis-

played by several of the presented effective metrics, or analogue string theory

through homogeneous plane wave effective metrics found in section 4.1.3. The

simplest underdense plasma model was heavily focused on in this thesis, but

it may be possible to find a manageable system in a more general case.

Lastly, a comparison of the analogue Hawking temperature found in sec-
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tion 4.3 and typical plasma temperatures suggests that a detailed model

of the laser-driven plasma is needed to confidently identify signatures of the

analogue Hawking effect. The temperature of the plasma electrons in a laser-

driven plasma accelerator is ∼ 5× 105 K [53], which is ∼ ×105 times larger

than the expected analogue Hawking temperature. Even so, for comparison,

it is claimed [40, 41] that an analogue Hawking temperature of 1.2 nK has

been measured in an atomic Bose-Einstein condensate. Whilst it is clear that

identifying the analogue Hawking effect in a laser-driven plasma accelerator

is a significant challenge, the fact that the results show that its analogue

Hawking temperature is ten orders of magnitude larger than that of a Bose-

Einstein condensate suggests that further investigation is deserved.
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Appendix A

Identities

A smooth map f : M → N between two manifolds M and N induces a

pull-back map f ∗ : N →M with the following properties:

f ∗h ≡h ◦ f,

f ∗(α + β) =f ∗α + f ∗β,

f ∗(α ∧ β) =f ∗α ∧ f ∗β,

f ∗d =df ∗,

(A.1)

where h is a 0-form, α and β are p-forms.

Stokes’ theorem is given by

∫
S
dα =

∫
∂S
α, (A.2)



for any p-form alpha. Whenever this is used, all quantities will be assumed

to have compact support, meaning they vanish at the boundary of S,thus

∫
S
dα = 0, (A.3)

for all α.



Appendix B

Dimensionless variables and

restoring units

The process of restoration of dimensionful variables for results obtained from

the action (3.48) will be presented. This action is used in section 4.3 and

chapter 5. Firstly, the action written out with all the physical constants is

S =
ε0

q2c2

∫
dt̃dz̃

1

2
Λ̃

{
((∂t̃Φ̃)2−c2(∂z̃Φ̃)2)((∂t̃ψ̃)2−c2(∂z̃ψ̃)2−m2c4)

}
, (B.1)

where ∼ indicates quantities without any substitutions, ε0 is the permittivity

of free space, c is the speed of light and q is the elementary charge. The con-

stant coefficient in (B.1) ensures that S has the correct physical dimension.

Introducing

t̃ =
l∗
c
t, z̃ = l∗z, ψ̃ = mcl∗ψ, (B.2)



where l∗ has units of length, yields

S =
ε0m

2c3

q2

∫
dtdz

1

2
Λ̃

{
(dΦ · dΦ)(dψ · dψ + 1)

}
. (B.3)

The dot product is taken with respect to the metric g = −dt⊗ dt+ dz ⊗ dz.

If the spot size is not constant then two further substitutions are required:

Φ̃ =

√
~e2

ε0m2c3l2∗
Φ, Λ̃ = Λl2∗, (B.4)

resulting in

S = ~
∫
dtdz

1

2
Λ(dΦ · dΦ)(dψ · dψ + 1). (B.5)

However if the spot size is constant,

Φ̃ =

√
~e2

ε0m2c3Λ̃
Φ (B.6)

suffices, resulting in

S = ~
∫
dtdz

1

2
(dΦ · dΦ)(dψ · dψ + 1). (B.7)

Identifying

(∂t̃Φ̃)2 − c2(∂z̃Φ̃)2 = ω2
p, (B.8)

(∂t̃ψ̃)2 − c2(∂z̃ψ̃)2 −m2c4 = m2c4a2
0, (B.9)



where ωp is the plasma frequency and a0 is the dimensionless amplitude,

allows to express relevant observables with restored units as

ω2
p = −K

2c2

l2∗
dΦ · dΦ, (B.10)

a2
0 = −dψ · dψ − 1, (B.11)

where Φ̃ = KΦ, with

K =

√
~e2

ε0m2c3Λ̃
, (B.12)

when Λ̃ is constant, and

K =

√
~e2

ε0m2c3l∗
, (B.13)

when Λ̃ is not constant.


