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Abstract: Mucin-1 (MUC-1) is associated with a broad range of human epithelia including gastric,
lung and colorectal. In this work, a direct competitive electrochemical immunosensor
based on gelatin modified transduction platform was designed. Dopamine (DA)/mucin-
1 functionalized electro-active carbon nanotubes were employed as signal generating
probes in the construction of electrochemical immunosensor for early stage diagnosis
of breast cancer. The gelatin modified electrode served as a support to immobilize
antibody (anti-MUC-1), while electrochemical response of functionalized electro-active
carbon nano probes was used for quantitative measurement of MUC-1. Cyclic
Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) were carried
out to characterize the transduction surface at different fabrication steps. The
developed immunosensor permitted the detection of MUC-1 in the linear range of 0.05-
940 U/mL, with a detection limit (LOD) of 0.01 U/mL. The immunosensor showed
recovery values in the range of 96-96.67% for human serum sample analysis,
demonstrating its practical applicability.

Response to Reviewers: Response to the comments
Editor s' comments:
We would like to thank editor for his valuable input and feedback to improve our
manuscript. The entire manuscript was very carefully corrected for language and
grammatical errors by the English speaker and one of the coauthors, Prof Ihtesham ur
Rehman (Bioengineering, Engineering Department, Lancaster University, Lancaster,
UK). He is also serving as editor for following journals; Editor for Europe: Applied
Spectroscopy Reviews; International Journal of Molecular Sciences; “Recent Advances
in Dental Materials and Biomaterials”.
Grammatical Mistakes
No. CommentsResponsePage no.Line no.
1(line 83) The authors defined the abbreviation as “Gelatin (GL)”. In other parts of the
text, the abbreviation is not used. The abbreviation is not necessary.The Abbreviation
is deleted from the entire manuscript.
2(line 90) What is the “antigen a”?The typo error was corrected;
“antigen a” was replaced by “antigen”0391
3Is the company name “HB Tokyo Japan” correct? “HB” may be the hardness of the
lead of the pencil.The correction was made;
The pencil graphite electrodes (PGE, 0.5 mm lead diameter) were purchased from
Staedtler Mars GmbH &amp; Co. KG, Germany.05132-133
4It says “in tail-on called tail down orientation.[24]”. What do you mean?The
information was included in the revised manuscript

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



“tail-on orientation (Fc attached to the surface)”07206
5The abbreviation “EIS” is defined three times in the text. It is enough to define
abbreviations only once. The authors should check all the abbreviations.The correction
was made;
The EIS abbreviation is defined once in the entire manuscript. Moreover, all the
abbreviations are carefully checked for the same
0122
6(line 337) Although the authors use “Et” as the abbreviation of electrochemical, many
“electrochemical” are used without abbreviation in the text. I do not think the
abbreviations is necessary.The Abbreviation is deleted from the entire manuscript.
7It says “The impedimetric response was analogue of the CV response (Fig. 5B).”.
What do you mean?The correction was made;
“The trend of the impedimetric response of all the fabrication steps was found to be the
analogue of their CV response as can be evidenced in the Fig. 5A and 5B.”14365-367
8It says “The calibration curve (Fig. 7B) was fitted by sigmoidal logistic four parameter-
equation y = y0 + (a/1 + (x/x0) b)”. This is really strange. The equation represents a
linear relation.The correction was made in the equation;
“The calibration curve (Fig. 7B) was fitted by sigmoidal logistic four parameter-equation
y = a2 + [a1-a2/1 + (x/x0)p] using Origin Pro-8 SR0 software, in which a2 and a1 are
the maximum and minimum values respectively, and x0 and p are the x value at the
inflection point and the slope of inflection point accordingly.”16428-431
9In line 34, it says “of biomarkers. [1].”. There are two periods at the end of the
sentence. Many minor errors of this kind are found in lines 46, 49, 83, 103, 106, 129,
231, 286, 287, 294, 296, 347, 348, 403, 409, 410, 474, 478, 505. The authors should
correct all of them by themselves.
The entire manuscript was carefully revised for such minor errors
10(line 49) However, the presence of strong van der Waals interactions among
MWCNTs hold them tightly togetherThe correction was made;
“However, the presence of strong Van der Waals interactions among MWCNTs results
their aggregation which limits their applications”0252-54
11(line 121) XRD analysis were performed withThe correction was made;
“XRD spectra were obtained from…”04123
12(line 160) while EDC/NHS chemistry was carried for GL activation on the electrode
surface.The correction was made;
“The crosslinkers (EDC and NHS) were used to activate the carboxylic groups of
gelatin on the electrode surface.”06162-163
13(line 194) as on the specific surface.The correction was made;
“on the substrate surface.”07196
14(line 195) The carboxylic acid function of these amino acids,The correction was
made;
“The carboxylic acid functional groups”07197
15(line 198) as amino acids are present in excess, therefore …The correction was
made;
“In general, the presence of excessive amount of amino acids can theoretically result in
a random immobilization.”07199-200
16(line 231) This immunosensor was first scanned in ferri/ferro cyanide solution and
then in PBS solution using CV as the initial signal.The correction was made;
“The immunosensor was characterized both in ferri/ferro cyanide solution and PBS
buffer.”08229
17(line 254) the band appeared from 2200 cm-1 to 2300 cm-1 was assigned to
CO2.The correction was made;
“Similarly, the spectral band at 2200 to 2300 cm-1 was assigned to CO2.”09251-252
18(line 287) with very well separation characteristics. .The correction was made;
“After interaction of DA (Fig. 2D), the modified MWCNTs were found to be
disaggregated.”10282-283
19(line 294) in comparison to that of obtained for MWCNTsThe correction was made;
“The intensity of 002 peak for fMWCNTs was increased as compared to pristine
MWCNTs”11289-290
20(line 376) in (1 mM) of [Fe (CN)6]4-/3-solutionThe correction was made;
of 1 mM redox couple [Fe (CN)6]4-/3- .14371
21(line 400) As for the expression of “Figure” in the text, the authors should follow the
rule of this journal.The Figure expression was corrected in the entire manuscript as per
the journal format.
22(line 423) Both labelled and un labelled antigen have …The correction was made;

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



“Both labelled and un-labelled antigens have…”16418
23(line 427) The decrease response was … The correction was made;
“The decrease in response was..” 16422
24(line 429) the change in current signal was difficult to observed …The correction was
made;
“the change in current response was difficult to be observed”16424-425
25Other than these, there are nouns without appropriate articles.The entire manuscript
was carefully revised for such nouns errors

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



       Tel: +923317648259 

    E-mail: akhtarhayat@cuilahore.edu.pk 

                                             December 12 2020 

 

Dear Editor 

 

We should like to submit our revised manuscript entitled: “Dopamine/mucin-1 functionalized 

electro-active carbon nanotubes as a probe for direct competitive electrochemical 

immunosensing of breast cancer biomarker” 

We would like to thank editor for his valuable input and feedback to improve our manuscript. 

The entire manuscript was very carefully corrected for language and grammatical errors by the 

English speaker and one of the coauthors, Prof Ihtesham ur Rehman (Bioengineering, 

Engineering Department, Lancaster University, Lancaster, UK). He is also serving as editor for 

following journals; Editor for Europe: Applied Spectroscopy Reviews; International Journal of 

Molecular Sciences; “Recent Advances in Dental Materials and Biomaterials”.  

The changes are highlighted in red in the revised manuscript for your consideration. We hope 

that the current version of the manuscript fulfills the quality criteria for publication in this 

esteemed journal. 

With best regards 

Dr Akhtar Hayat (PhD) 

Associate professor 

IRCBM, CUI Lahore 

Pakistan 

 

Cover letter

mailto:akhtarhayat@cuilahore.edu.pk


Response to the comments 
Editor s' comments: 

We would like to thank editor for his valuable input and feedback to improve our manuscript. 

The entire manuscript was very carefully corrected for language and grammatical errors by 

the English speaker and one of the coauthors, Prof Ihtesham ur Rehman (Bioengineering, 

Engineering Department, Lancaster University, Lancaster, UK). He is also serving as editor 

for following journals; Editor for Europe: Applied Spectroscopy Reviews; International 

Journal of Molecular Sciences; “Recent Advances in Dental Materials and Biomaterials”. 

  Grammatical Mistakes    

No

.  

Comments Response Page 

no. 

Line 

no. 

1 (line 83) The authors 

defined the abbreviation 

as “Gelatin (GL)”. In 

other parts of the text, 

the abbreviation is not 

used. The abbreviation is 

not necessary. 

The Abbreviation is deleted from the 

entire manuscript.   

  

2 (line 90) What is the 

“antigen a”? 

The typo error was corrected;   
“antigen a” was replaced by “antigen” 

03 91 

3 Is the company name 

“HB Tokyo Japan” 

correct? “HB” may be 

the hardness of the lead 

of the pencil. 

The correction was made;   

The pencil graphite electrodes (PGE, 

0.5 mm lead diameter) were purchased 

from Staedtler Mars GmbH &amp; Co. 

KG, Germany. 

05 132-

133 

4 It says “in tail-on called 

tail down 

orientation.[24]”. What 

do you mean? 

The information was included in the 

revised manuscript   
“tail-on orientation (Fc attached to the 

surface)” 

07 206 

5 The abbreviation “EIS” 

is defined three times in 

the text. It is enough to 

define abbreviations only 

once. The authors should 

check all the 

abbreviations. 

The correction was made;   

The EIS abbreviation is defined once in 

the entire manuscript. Moreover, all the 

abbreviations are carefully checked for 

the same 

 

01 22 

6 (line 337) Although the 

authors use “Et” as the 

abbreviation of 

electrochemical, many 

“electrochemical” are 

used without 

abbreviation in the text. I 

do not think the 

abbreviations is 

necessary. 

The Abbreviation is deleted from the 

entire manuscript.   

  

7 It says “The 

impedimetric response 

was analogue of the CV 

The correction was made;   

“The trend of the impedimetric response 

of all the fabrication steps was found to 

14 365-

367 

Response to Reviewers



response (Fig. 5B).”. 

What do you mean? 

be the analogue of their CV response as 

can be evidenced in the Fig. 5A and 

5B.” 

8 It says “The calibration 

curve (Fig. 7B) was 

fitted by sigmoidal 

logistic four parameter-

equation y = y0 + (a/1 + 

(x/x0) b)”. This is really 

strange. The equation 

represents a linear 

relation. 

The correction was made in the 

equation;   
“The calibration curve (Fig. 7B) was 

fitted by sigmoidal logistic four 

parameter-equation y = a2 + [a1-a2/1 + 

(x/x0)
p] using Origin Pro-8 SR0 

software, in which a2 and a1 are the 

maximum and minimum values 

respectively, and x0 and p are the x 

value at the inflection point and the 

slope of inflection point accordingly.” 

16 428-

431 

9 In line 34, it says “of 

biomarkers. [1].”. There 

are two periods at the 

end of the sentence. 

Many minor errors of 

this kind are found in 

lines 46, 49, 83, 103, 

106, 129, 231, 286, 287, 

294, 296, 347, 348, 403, 

409, 410, 474, 478, 505. 

The authors should 

correct all of them by 

themselves. 

 

The entire manuscript was carefully 

revised for such minor errors 

  

10 (line 49) However, the 

presence of strong van 

der Waals interactions 

among MWCNTs hold 

them tightly together 

The correction was made;   

“However, the presence of strong Van 

der Waals interactions among 

MWCNTs results their aggregation 

which limits their applications” 

02 52-54 

11 (line 121) XRD analysis 

were performed with 

The correction was made;   
“XRD spectra were obtained from…” 

04 123 

12 (line 160) while 

EDC/NHS chemistry 

was carried for GL 

activation on the 

electrode surface. 

The correction was made;   
“The crosslinkers (EDC and NHS) were 

used to activate the carboxylic groups of 

gelatin on the electrode surface.” 

06 162-

163 

13 (line 194) as on the 

specific surface. 

The correction was made;   
“on the substrate surface.” 

07 196 

14 (line 195) The carboxylic 

acid function of these 

amino acids, 

The correction was made;   

“The carboxylic acid functional groups” 

07 197 

15 (line 198) as amino acids 

are present in excess, 

therefore … 

The correction was made;   

“In general, the presence of excessive 

amount of amino acids can theoretically 

result in a random immobilization.” 

07 199-

200 

16 (line 231) This The correction was made;   08 229 



 

immunosensor was first 

scanned in ferri/ferro 

cyanide solution and then 

in PBS solution using 

CV as the initial signal. 

“The immunosensor was characterized 

both in ferri/ferro cyanide solution and 

PBS buffer.” 

17 (line 254) the band 

appeared from 2200 cm-

1 to 2300 cm-1 was 

assigned to CO2. 

The correction was made;   
“Similarly, the spectral band at 2200 to 

2300 cm-1 was assigned to CO2.” 

09 251-

252 

18 (line 287) with very well 

separation 

characteristics. . 

The correction was made;   

“After interaction of DA (Fig. 2D), the 

modified MWCNTs were found to be 

disaggregated.” 

10 282-

283 

19 (line 294) in comparison 

to that of obtained for 

MWCNTs 

The correction was made;   
“The intensity of 002 peak for 

fMWCNTs was increased as compared 

to pristine MWCNTs” 

11 289-

290 

20 (line 376) in (1 mM) of 

[Fe (CN)6]4-/3-solution 

The correction was made;   

of 1 mM redox couple [Fe (CN)6]
4-/3- . 

14 371 

21 (line 400) As for the 

expression of “Figure” in 

the text, the authors 

should follow the rule of 

this journal. 

The Figure expression was corrected in 

the entire manuscript as per the journal 

format. 

  

22 (line 423) Both labelled 

and un labelled antigen 

have … 

The correction was made;   

“Both labelled and un-labelled antigens 

have…” 

16 418 

23 (line 427) The decrease 

response was …  

The correction was made;   

“The decrease in response was..”  

16 422 

24 (line 429) the change in 

current signal was 

difficult to observed … 

The correction was made;   

“the change in current response was 

difficult to be observed” 

16 424-

425 

25 Other than these, there 

are nouns without 

appropriate articles. 

The entire manuscript was carefully 

revised for such nouns errors 

  



Highlights  

1. Detection of MUC-1 is critical but difficult due to its trace amount in the serum of 

early cancer patients. 

2. Dopamine can provide an amplified signal because of its electron donating capability. 

3. Gelatin consists of large number of carboxylic/ amine groups that can provide a 

specific immobilization support to antibodies or antigens. 

4. DA/MUC-1/fMWCNT nanoprobe provided an amplified current signal which was 

high enough to carry out the competition step with improved sensitivity. 

 

 

 

Research Highlights



 
 

Dopamine/mucin-1 functionalized electro-active carbon 1 

nanotubes as a probe for direct competitive 2 

electrochemical immunosensing of breast cancer 3 

biomarker 4 

 5 

Sidra Rashid1, Mian Hasnain Nawaz1, Ihtesham ur Rehman2, Akhtar Hayat1*, Jean 6 

Loius Marty3*.  7 

1. Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS 8 

University Islamabad, Lahore Campus, Pakistan. 9 

2. Bioengineering, Engineering Department, Lancaster University, Lancaster, UK 10 

3. Sensbiotech, 21rue de Nogarede, 66400 Ceret, France. 11 

*Corresponding author: akhtarhayat@cuilahore.edu.pk; sensbiotech@gmail.com 12 

Abstract 13 

Mucin-1 (MUC-1) is associated with a broad range of human epithelia including gastric, lung 14 

and colorectal. In this work, a direct competitive electrochemical immunosensor based on 15 

gelatin modified transduction platform was designed. Dopamine (DA)/mucin-1 16 

functionalized electro-active carbon nanotubes were employed as signal generating probes in 17 

the construction of electrochemical immunosensor for early stage diagnosis of breast cancer. 18 

The gelatin modified electrode served as a support to immobilize antibody (anti-MUC-1), 19 

while electrochemical response of functionalized electro-active carbon nano probes was used 20 

for quantitative measurement of MUC-1. Cyclic Voltammetry (CV) and Electrochemical 21 

Impedance Spectroscopy (EIS) were carried out to characterize the transduction surface at 22 

different fabrication steps. The developed immunosensor permitted the detection of MUC-1 23 

in the linear range of 0.05-940 U/mL, with a detection limit (LOD) of 0.01 U/mL. The 24 

immunosensor showed recovery values in the range of 96-96.67% for human serum sample 25 

analysis, demonstrating its practical applicability. 26 

Key words: MWCNTs, Mucin, Gelatin, Dopamine, Electrochemical Immunosensor, 27 

Direct immobilization, Competitive assay.  28 

 29 

 30 

 31 

Manuscript

mailto:akhtarhayat@cuilahore.edu.pk


2 
 

1 Introduction 32 

Breast cancer is one of the most common causes of women mortality. The mortality rate can 33 

be reduced to a significant level with  the early stage diagnosis of breast cancer biomarkers 34 

[1]. However, the trace level of  biomarkers in the serum of early cancer patients is one of the 35 

limiting factors towards diagnosis [2]. In this context, increasing demand for the detection of 36 

ultralow amount of  cancer biomarkers has resulted in the exploration of  different signal 37 

amplification strategies towards fabrication of ultrasensitive electrochemical immunoassays 38 

[3]. Several traditional techniques including radioimmunoassay, enzyme-linked 39 

immunosorbent assay (ELISA), electrophoretic immunoassay, fluorescence immunoassay, 40 

immune-polymerase chain reaction (PCR) and mass spectrometric immunoassay have been 41 

used for this purpose. However, they undergo operational limitations and hence, it is highly 42 

desirable to develop ultrasensitive, simple and easily automated device for early diagnosis of 43 

cancer biomarkers [4]. Electrochemical immunosensors with inherent advantages of cost 44 

effectiveness, higher sensitivity and lower power requirement have  been applied for clinical 45 

diagnosis [5].  46 

In such ultrasensitive immunosensors, nanomaterials can either be used directly as an electro-47 

active label or as a substrate material to immobilize the electro-active labels [6]. Among the 48 

wide range of nanomaterials, multi-walled carbon nanotubes (MWCNTs) have been 49 

considered as a very promising material to enhance electron transfer rate on the transducer 50 

surface. Owing to their intrinsic electrical and electrochemical properties, MWCNTs are 51 

highly suitable for their integration into sensing strategies [7]. However, the presence of 52 

strong Van der Waals interactions among MWCNTs results their aggregation which limits 53 

their applications [8]. In this direction, the introduction of highly active functional groups via 54 

covalent modification of MWCNTs could enhance the electrochemical features of MWCNTs. 55 

For instance, the introduction of carboxylic groups on MWCNTs could covalently bond the 56 

amine residues of biological receptor elements [9]. Such biomolecule coated nanomaterials 57 

have been applied for the recognition of analytes. Consequently, electrostatically and 58 

covalently coupled carbon nanotubes not only stabilize the biomolecules but also offer 59 

distinct advantages including higher binding capacity, improved stability and reduced cost 60 

per assay [10, 11]. Currently, MWCNTs coated with both, biological recognition elements 61 

and electro-active labels have been investigated simultaneously, for molecular recognition 62 

and signal amplification [12].  63 
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DA is an important member of the catechol family, which is hydrophilic in nature and 64 

considered as an electron donor with variable redox properties [13]. DA and its derivatives 65 

have been reported to design signal amplification probes for construction of electrochemical 66 

biosensors [14]. Furthermore, the functional groups of DA including amine, imine, quinone 67 

and catechol enable DA to bind with a broad range of biomolecules [15]. In this regard, we 68 

have developed a DA coated MUC-1 conjugated MWCNTs nanoprobe. The MUC-1 was 69 

linked through amide bond formation with MWCNTs, while with DA using its amine and 70 

carboxylic groups respectively. This nanoprobe was subsequently integrated with carbon 71 

interface of working electrode to construct a direct competitive electrochemical 72 

immunosensor. 73 

On the other hand, despite the advantages of nano-amplification technologies in 74 

electrochemical immunosensor, the unmodified electrodes are prone to major drawbacks of 75 

poor sensitivity, higher oxidation potential and fouling of the electrode response [16]. To 76 

overcome these problems, modification of the electrode surface with appropriate materials is 77 

of critical importance. Besides providing specific immobilization support for recognition 78 

elements, natural polymers have the ability to overcome the disadvantages of biological 79 

damages and toxicity imposed by non-biological transducing materials [17]. In this direction, 80 

it is highly desirable to fabricate a transducer surface with increased number of binding sites 81 

to improve the analytical merits of the biosensor. Amino acids modified transducer platforms 82 

provide a high surface area and abundant functional groups, which subsequently improve 83 

their stability and sensitivity. Gelatin is a linear polypeptide with large number of 84 

amine/carboxylic functional groups which provide a specific immobilization support for 85 

bioreceptors to design electrochemical biosensors [18]. The electro-oxidation of gelatin can 86 

render free amine groups on the transducer surface for interaction with carboxylic groups of 87 

Fc region of antibody [19]. Thus, it provides an efficient platform for the effective 88 

immobilization of the antibody [20]. Antibody immobilization on the electrode is considered 89 

to determine the surface charge of the transducer surface. This surface charge undergoes 90 

alteration upon immunoreaction with the given antigen [21]. Moreover, direct immobilization 91 

of biorecognition elements via covalent modification is known to improve the sensitivity of 92 

electrochemical immunosensors for various applications [22]. Direct assays involving 93 

antibody immobilization on modified electrode offer the advantages of sensitivity and 94 

stability over the indirect strategies. In addition, the immobilization of antibody on modified 95 

electrode can recognise even the low level of analyte for diagnostic purpose [23]. 96 
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Keeping in view the above objectives, a direct electrochemical immunosensor based on DA 97 

coated MUC-1 conjugated functionalized multi walled carbon nanotubes (DA/MUC-98 

1/fMWCNTs) was fabricated for the competitive detection of MUC-1. MWCNTs were used 99 

to provide large surface area, while DA was employed to attain better sensitivity towards the 100 

target analyte. This fabrication approach resulted in a highly sensitive and selective 101 

transduction platform for the analysis of MUC-1 biomarker. The designed strategy was 102 

demonstrated for the analysis of breast cancer biomarker, however, it can be very easily 103 

extended to other biomarkers for diverse applications. 104 

2 Experimental Details 105 

2.1 Materials  106 

Potassium ferrocyanide (K4[Fe(CN)6]), Sulfuric acid (H2SO4, 98%), potassium ferricyanide 107 

(K3[Fe(CN)6]), bovine serum albumin (BSA), fetal bovine serum (FBS), human serum and 108 

Prestige Antibodies (NS1) were purchased from Sigma (Taufkirchen, Germany). Cancer 109 

antigen mucin (25 kU) was purchased from Lee bio (Maryland Heights, MO, USA). 110 

Lysozyme was purchased from Carbosynth (Berkshire, UK), while N-(3-111 

dimethylaminopropyle)-N-ethyle-carbodiimide hydrochloride (EDC) and N-hydroxy 112 

succinimide (NHS) were from Alfa Aesar (Heysham, UK). MWCNTs (D × L 4–5 nm × 0.5–113 

1.5 μm) were purchased from Sigma-Aldrich, France. 114 

2.2 Apparatus 115 

Different spectroscopic techniques were employed to characterize the nanoprobe and 116 

immunosensor fabrication steps. Fourier transform infrared (FTIR) measurements were 117 

performed by using a Thermo Nicolet 6700™ spectrometer (Waltham, MA, USA). Scanning 118 

electron microscopy (SEM) studies were performed by using a VEGA-3-TESCAN (Brno, 119 

Czech Republic) with variable pressure mode (LMU). Images were taken in different 120 

magnification ranges at an accelerated voltage of 20 kV. UV–Visible (UV–Vis) 121 

measurements were performed with a UV-spectrophotometer (UV-1800, USA) that was 122 

equipped with UV probe software to measure the absorption parameters. XRD spectra were 123 

obtained from a Rigaku D/Max 2500 XRD (Rigaku Corp Japan), equipped with graphitic 124 

mono-chromator (40 kV, 40 mA). A nickel filtered Cu-Kα radiation source (λ =1.5418 Å) 125 

was used during the sample analysis. To inspect the surface topography, atomic force 126 

microscopy (AFM) was performed at AFM PARK XE-7 Systems (Suwon Korea) in non-127 

contact mode. 128 
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For electrochemical measurements, AMEL 2553, potentiostat/galvanostat equipped with 129 

ZPulse software was used. A conventional three electrode system with Ag/AgCl as reference 130 

electrode, a pencil graphite electrode as working electrode and platinum wire as counter 131 

electrode was employed. The pencil graphite electrodes (PGE, 0.5 mm lead diameter) were 132 

purchased from Staedtler Mars GmbH &amp; Co. KG, Germany. An electrode length 133 

measuring 1cm was immersed in a solution per measurement to maintain the uniform surface 134 

area for all the electrochemical experiments. EIS experiments were carried out using 135 

[Fe(CN)6]
4−/3− as a redox probe under an applied potential of 0.1 V (vs. Ag/AgCl reference 136 

electrode). The frequency range was between 100 kHz–0.2 Hz, with an AC amplitude and 137 

sampling rate of 10 mV and 10 points respectively. The EIS spectra were plotted in the form 138 

of complex plane diagrams (Nyquist plots, −Zim vs. Zre) and fitted to a theoretical curve 139 

corresponding to the equivalent circuit with a frequency response analyzer software (FRA). 140 

2.3 Preparation of nanoprobe 141 

To obtain the carboxy functionalized MWCNTs, a homogenous solution of MWCNTs was 142 

prepared (2 mg/mL) in distilled H2O under ultrasonication for 2 hours. Subsequently, chloro-143 

acetic acid (1 g/mL) and NaOH (1.5 g/mL) were added to the reaction suspension. After 144 

sonication, supernatant was removed and remaining solution was allowed to dry. Then, 145 

fMWCNTs were treated with 100 mM EDC-NHS solution containing MUC-1 protein for 45 146 

min. For MUC-1 conjugation, 200 μL of MUC-1 protein (1/100 dilution from stock solution) 147 

was mixed with the solution of NHS (25 mM) and EDC (100 mM) in the Phosphate Buffer 148 

Saline (PBS, pH - 7.4) for 45 min. Subsequently, the supernatant was removed via centrifuge 149 

at 12000 rpm to obtain the MUC-1 conjugated fMWCNTs. MWCNTs provided a large 150 

surface area for the attachment of MUC-1 protein to make a stable and promising 151 

immunosensing platform. Afterwards, DA (1 mg/mL) was added in the reaction mixture 152 

under vigorous stirring for 20 min. The mixture was allowed to settle down. Excessive water 153 

was removed and left over was directly used for immunosensor fabrication. 154 

2.4 Fabrication of competitive electrochemical immunosensor 155 

Prior to gelatin grafting, the PGE was electrochemically cleaned in 0.5 M H2SO4 to 156 

reduce/oxidize impurities by successive cyclic voltammetric scans within the potential range 157 

from -1.5 to 1.5 V. For electro oxidation of gelatin, the solution of gelatin (2.5 mg/mL) was 158 

prepared in acetate buffer (pH=5) at room temperature. Two 159 

consecutive cyclic voltammetric scans were run at a scan rate of 0.5 V/s in the potential range 160 

from -1.2 to 0.4 V for the electro oxidation of gelatin on PGE surface. The modified electrode 161 
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was incubated in 25 µL of MUC-1 antibody solution (0.25 U/mL). The crosslinkers (EDC 162 

and NHS) were used to activate the carboxylic groups of gelatin on the electrode surface. The 163 

Electrode was then washed with PBS solution to remove the excess of unbound antibody. To 164 

block the residual carboxylic sites, diethanolamine was incubated on the electrode surface for 165 

a time period of 45 min. For MUC-1 detection, 25 µL of nanoprobe was incubated on the 166 

modified electrode surface for 45 min. For the selectivity experiments of the fabricated 167 

immunosensor, various interfering moieties including FBS, BSA and NS1 were incubated on 168 

the sensor surface following a procedure similar to the one described for MUC-1 analysis. 169 

2.5 Quantitative detection of MUC-1 170 

Based on the principle of competitive-assay, the fabricated immunosensor was incubated with 171 

different concentrations of free MUC-1 for 15 min and subsequently washed with the PBS 172 

buffer. The peak current was recorded using the electrochemical workstation. The difference 173 

in the corresponding peak before and after the competition step was used for the quantitative 174 

analysis of MUC-1. 175 

2.6 Real Sample Analysis 176 

To validate the potential application of proposed immunosensor in clinical analysis, MUC-1 177 

spiked human serum samples were analysed. Human serum was diluted (50 times) with PBS 178 

buffer to achieve the desired analyte concentration. The samples were spiked with three 179 

different concentrations of the analyte (0.1, 14.8 and 473.6 U/mL). 180 

3 Results and discussion 181 

3.1 Detection mechanism of electrochemical immunosensor  182 

The mechanism of proposed electrochemical immunosensor based on DA assisted signal 183 

amplification strategy was presented in scheme 1. 184 

The detection strategy consists of three main steps: preparation of nanoprobe, modification of 185 

electrode surface and competitive recognition of free MUC-1. fMWCNTs provided –COOH 186 

groups for the attachment of MUC 1 protein, while DA was used to amplify the 187 

electrochemical signal due to its electron donating capability. The DA/MUC-1/fMWCNTs 188 

nanoprobe was synthesised by covalent binding of MUC-1 protein with DA. A robust way to 189 

create bio-functionalized surface is to immobilize the biological macromolecules such as 190 

antibodies or antigens at the modified electrode surface by means of covalent binding. This 191 

requires the presence of two mutually reactive chemical groups on the protein and on the 192 
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substrate surface. The commonly employed literature methods exploit the reactivity of 193 

endogenous functional groups (such as amines and carboxylic acid groups) present in the side 194 

chains of the amino acids. In such strategies, the naturally occurring functional groups are 195 

used to covalently couple with the complementary functional groups present on the substrate 196 

surface. The carboxylic acid functional groups of these amino acids can react with amines 197 

using the coupling chemistry. This coupling reaction is usually activated by EDC/NHS agents 198 

which results in a rapid formation of a peptide bond. In general, the presence of excessive 199 

amount of amino acids can theoretically result in a random immobilization. However, 200 

immobilization methods based on covalent binding chemistry can provide surface coatings 201 

with a unique orientation of the antibody (Abs)-proteins. This covalent immobilization, in 202 

principle, provides the best entry point for Abs molecules to the protein (gelatin) modified 203 

surface with a specific orientation. This intermediated protein (gelatin) on electrode surface 204 

actually displays two and five binding domains specific to the Fc-portion of Abs that renders 205 

tail-on orientation (Fc attached to the surface) [24]. Um et al. introduced tail-on orientation of 206 

the Abs by the electrochemical immobilizing of a protein onto the electrode surface [25]. The 207 

electrostatic interactions between various functional groups such as amino groups on the 208 

modified (with gelatin in this case) surface and the oxygen containing groups of the Ab 209 

present in the Fc region also favour tail-on orientations of Abs due to steric hindrance 210 

imposed by side arms of the Abs. Abs possess only one binding site. Therefore, Abs should 211 

display free antigen-binding regions after immobilization to achieve the highest analyte 212 

binding. Thus, this tail-on orientation can improve biosensor performance with improvement 213 

factors as high as 200 being reported upon organized orientation [26]. Moreover, EDC/NHS 214 

activation approach possesses many merits including high conversion efficiency, mild 215 

reaction conditions, highly oriented biocompatibility with target molecules, and much cleaner 216 

products as compared to other crosslinking reagents. Therefore, the modified electrode in the 217 

strategy employed in this study with improved electro-active area supplied a non-random 218 

immobilized surface for MUC-1 antibody. The antibody was well oriented in this 219 

arrangement because of EDC assisted –HN ̶ COOH bond formation with gelatin-surface. In 220 

addition, the maximum numbers of MUC-1 antibody active sites were prone to epitopes 221 

attachment. 222 
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 223 

Scheme. 1. Schematic illustration of (A) different steps involved in the fabrication of nanoprobe, (B) 224 
Modification of working electrode and principle of direct competitive electrochemical immunosensor for breast 225 
cancer detection. (1) Electrooxidative grafting of gelatin on pencil electrode, (2) EDC/NHS attested binding of 226 
MUC-1 antibody, (3) Attachment of developed nanoprobe with modified electrode resulting in higher current 227 
signal, (4) Free MUC-1 replaced nanoprobe and resulting signal decreased in competitive assay.    228 

The immunosensor was characterized both in ferri/ferro cyanide solution and PBS buffer. 229 

Afterwards, when the immunosensor was used to recognize free MUC-1, a competitive 230 

process was carried out in PBS buffer. The proposed strategy is based on the direct 231 

competition between labelled and un-labelled antigen. The direct competition approach is 232 

well established detection mechanism in the literature. Both labelled and un-labelled antigens 233 

have equal binding tendencies, while the detection mechanism relies on the competition 234 

between both types of antigens. In the absence of free antigen, maximum signal intensity was 235 

observed while the presence of free antigen competed with the labelled one to bind with the 236 

immobilized antibody, thus decreasing the output signal. The decrease in response was 237 

proportional to the concentration of free analyte (antigen) and was employed for quantitative 238 

analysis of MUC-1. Since an electron donor (DA) was attached to the nanoprobe, a dramatic 239 

difference in current signal was observed in the absence and presence of free analyte. The 240 

immunosensor permitted to detect low level of MUC-1 in human serum samples and thus can 241 

be used for early diagnosis of breast cancer. 242 
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3.2 Characterization 243 

3.2.1 FTIR, UV-Vis, SEM, XRD and AFM analysis of nanoprobe  244 

FTIR spectra were used to evaluate and monitor the functional group changes during 245 

modification process of MWCNTs (Fig. 1A). No significant spectral bands appeared in case 246 

of MWCNTs, while a spectral peak at 1490 cm-1 was observed for C-H bending (a). 247 

However, in case of COOH-MWCNTs, several significant peaks appeared (b). Spectral peaks 248 

at 1202 cm-1 and 1490 to 1650 cm-1 were respectively assigned to C-O-C and C=C bending 249 

modes. Spectral bands at 2850 to 2950 cm-1 represent C-H stretching vibrations. Another 250 

small spectral peak appeared at 3460 cm-1 for OH-stretching of carboxylic group. Similarly, 251 

the spectral band at 2200 to 2300 cm-1 was assigned to CO2. However, upon incubation of 252 

MUC-1 protein (c), C=O peak shifted to 1643 cm-1 and became broader due to amide-253 

carbonyl stretching mode [27]. Small peaks at 1180, 1480 and 3430 cm−1 were assigned to 254 

aliphatic C−N stretching, N−H rocking and N-H stretching vibrations, respectively [28]. A 255 

single absorption band appeared at 1636 cm-1, which was attributed to aromatic (C=C) of the 256 

DA layer (d)[29].  257 

258 
Fig. 1. (A) FTIR analysis and (B) UV-Vis spectra of a; MWCNTs, b) fMWCNTs, c) fMWCNTs/MUC-1 259 

protein, d) fMWCNTs/MUC-1 protein/ DA. 260 

Fig. 1.B shows the UV–Vis spectra of each modification step of MWCNTs during fabrication 261 

of electrochemical immunosensor. A characteristic peak of MWCNTs near 250 nm can be 262 

seen in Fig. 1B, a. The peak is in good agreement with the literature reporting characteristics 263 

of MWCNTs [30]. After acidic treatment (Fig. 1B, b), the transition absorption peaks near 264 

250 nm became stronger with a red shift due to the electronic transition from n → π* of a 265 

nonbonding pair of electrons from carboxylic groups. It indicates that the functionalization 266 
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process was efficient for MWCNTs to provide fMWCNTs. This red shift in the characteristic 267 

peak of MWCNTs corresponds to the presence of excessive carboxylic groups on the surface 268 

of fMWCNTs [31]. A characteristic peak at 260 nm was observed for MUC-1 as shown in 269 

Fig. 1B, c [32]. Finally, nanoprobe retained the characteristic absorption peaks of both MUC-270 

1 protein and DA at 368 nm [33], indicating the successful labelling of DA with nanoprobe 271 

(Fig. 1B, d). 272 

The functionalization process was based on the attachment of organic moieties on the 273 

material surface. Therefore, a change in surface morphology via SEM and AFM could be 274 

used as an indicator to show the variation in surface nature upon different modification steps.  275 

The SEM images at different stages of nanoprobe fabrication are displayed in Fig. 2. It can be 276 

observed from Fig. 2 that the MWCNTs have different surface morphology as compared to 277 

those of functionalized MWCNTs (fMWCNTs), fMWCNTs/MUC-1 protein and 278 

fMWCNTs/MUC-1/DA). It can also be observed from the micrographs that the surface-279 

roughness of MWCNTs increased after functionalization with COOH. Similarly, fMWCNTs 280 

became closely packed upon the addition of MUC-1 protein, making the surface appearance 281 

of MWCNTs as covered with cloudy clusters. After interaction of DA (Fig. 2D), the modified 282 

MWCNTs were found to be disaggregated. 283 

 284 

Fig. 2. SEM analysis of a; MWCNTs, b) fMWCNTs, c) fMWCNTs/MUC1 protein, d) fMWCNTs/MUC1 285 

protein / DA. 286 
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The XRD patterns for each fabrication step of nanoprobe were displayed in Fig. 3A. Typical 287 

peaks (002 and 100) of MWCNTs were obtained at 2ϴ = 26.68° and 48° respectively, which 288 

were in accordance with the reported literature. The intensity of 002 peak for fMWCNTs was 289 

increased as compared to pristine MWCNTs [34]. However, a decrease in the peak intensities 290 

was observed after the attachment of EDC/NHS treated MUC-1, with the appearance of 291 

additional peaks at 28.5° and 46.7°, confirming the presence of MUC-1 on the surface of 292 

fMWCNTs [35]. XRD pattern of fMWCNTs/MUC-1 protein/DA, as shown in Fig. 3A, d 293 

depicted only one reduced peak of MWCNTs at 26°, while the other peaks were depressed 294 

due to the presence of DA [36]. 295 

296 
Fig. 3. (A) XRD analysis and (B) AFM topographs of step wise preparation of MUC-1 immunoprobe. a) 297 
MWCNTs, b) fMWCNTs, c) fMWCNTs/MUC-1 protein, d) fMWCNTs/MUC-1 protein/DA. 298 
 299 
AFM was used for the investigation of surface morphology of nanoprobe. The topography 300 

images are given in Fig. 3B. Image (a) indicates the rough surface features of MWCNTs [37]. 301 

After functionalization process, the surface roughness was reduced with increased cluster 302 

formation. This decrease was attributed to the smoothing effect induced by f-MWCNTs [38]. 303 

Similarly, the immobilization of antibody increased the profile height with a changed surface 304 

morphology, thus indicating the attachment of large size molecules (antibody) on the surface 305 

of fMWCNTs (c). Finally, the DA attachment altered the height and surface of the 306 

topographical profile as shown in Fig. 3B, d. 307 

3.2.2 Characterization of modified electrode 308 

In Fig. 4A, the XRD images of modified electrode were presented. Peaks close to 28.1° and 309 

32.6° were the characteristic peaks for carbon surface. After the immobilization of gelatin, 310 

the peaks were diminished. While the appearance of peak at 26.4° proved the successful 311 
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electro-oxidation of gelatin on the electrode surface. This XRD pattern reveals the amorphous 312 

structure of gelatin [39]. However, these peaks were decreased on the attachment of antibody, 313 

which occupied the carboxylic groups for amide bond formation. The addition of analyte 314 

further diminished the majority of the peaks, indicating the effective attachment of analyte on 315 

the transducer surface. 316 

317 
Fig. 4. (A) XRD and (B) AFM images of a) Bare electrode, b) Gelatin modified electrode, c) Gelatin modified 318 
electrode with MUC-1 antibody, d) Gelatin modified electrode with MUC-1 antibody + free MUC-1.    319 

The stepwise investigation of electrode fabrication protocol was also performed using AFM 320 

topographic profiling. Fig. 4B, a represents the surface of bare electrode with a profile height 321 

of 0.00-0.16 µm and irregular trough and crust contrast. Gelatin grafting resulted in uniform 322 

topology with increased profile height, suggesting the effective immobilization of proteinic 323 

clusters, as shown in Fig. 4B, b. An improved smooth surface with increased profile height 324 

(Fig. 4B, c) was observed after the attachment of antibody, indicating the presence of bulky 325 

molecules on the modified electrode. Moreover, the specific attachment of analyte (MUC-1) 326 

resulted in the reversal of profile height and morphology, as illustrated in Fig. 4B, d. Such 327 

reversal of morphological features could be attributed to the breakage of clusters of antibody 328 

molecules [40]. 329 

3.3 Electrochemical Characterization 330 

CV and EIS were performed for the characterization of each working step and different 331 

stages, involved in the fabrication of proposed immunosensor. CV and EIS are considered 332 

powerful tools to study the electrochemical characteristics of transducing surfaces. All 333 

electrochemical characterizations were carried out in the presence of [Fe (CN)6]
4-/3- (1 mM) 334 

as an electro-active redox probe. This probe permits the recognition of high current response 335 

against the behaviour of electrochemically inert solution. In CV, differences in the peak 336 
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currents (PC) and peak to peak separations were monitored to characterize each fabrication 337 

step of the electrochemical immunosensor. Similarly, EIS is also considered as a very 338 

effective electrochemical technique for surface modification characterization. The Nyquist 339 

plot with a semicircle portion at higher frequencies corresponds to the electron transfer 340 

resistance. Impedance spectra (Nyquist plots) for each surface modification step were 341 

recorded using the Randles equivalent circuit. The circuit consisted of ohmic electrolyte 342 

resistance (Rs), the electron-transfer resistance (Ret), the Warburg impedance element (Zw) 343 

resulting from the diffusion of ions from the bulk of the electrolyte to the interface, and the 344 

constant phase element. The Ret depends on the insulating feature at the electrode/electrolyte 345 

interface and represents facial properties of the surface. Ret is the useful parameter to evaluate 346 

interfacial properties. Therefore, Ret was considered to monitor the changes on the electrode 347 

interface at each fabrication step for the designed immunosensor. 348 

3.3.1 Characterization of nanoprobe assembly 349 

 350 

Fig. 5. (A) Cyclic voltammograms and (B) Electrochemical Impedance spectra of different steps involved in 351 
nanoprobe preparation; a. Bare PGE, b. MWCNTs, c. fMCNTs/EDC-activated, d. fMCNTs/EDC-352 
activated/MUC-1 protein, e. fMCNTs/EDC-activated/ MUC-1 protein/DA. 353 

Cyclic voltammograms for all fabrication steps involved in the formation of nanoprobe are 354 

shown in Fig. 5A. The representative anodic and cathodic peaks were observed for (a) Bare 355 

PGE, (b) MWCNTs, (c) fMWCNTs/EDC-activated, (d) fMWCNTs/EDC-activated/MUC-1 356 

protein, and (e) fMWCNTs/EDC-activated/ MUC-1 protein/DA. A characteristic redox peak 357 

of bare PGE with the anodic and cathodic peak current was observed. The presence of 358 

MWCNTs resulted in a decrease in the current with increased electron transfer resistance 359 

(Ret). After the formation of fMWCNTs/EDC-activated PGE, the Ret between electrode 360 

surface and activated fMWCNTs was reduced due to the succinimide moiety introduced by 361 
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EDC-activation. After the immobilization of MUC-1 protein, the negatively charged 362 

phosphate groups resulted in the higher Ret value. However, upon addition of DA, an 363 

increased CV-response was observed. Basically, well assembled DA on the nanoprobe 364 

facilitated the flow of electrons [41]. The trend of the impedimetric response of all the 365 

fabrication steps was found to be the analogue of their CV response as can be evidenced in 366 

the Fig. 5A and 5B. 367 

3.3.2 Characterization of transducer surface fabrication  368 

Electro-oxidation of gelatin was performed in acetate buffer (pH=5). A representative first 369 

scan of oxidation process is shown in Fig. 6A. After deposition of gelatin, the modification 370 

steps were characterized in the presence of 1 mM redox couple [Fe (CN)6]
4-/3- . The CV 371 

current of the bare electrode enhanced (approximately 2-folds) after electrochemical 372 

oxidation of gelatin on PGE surface while peak shifted to the higher potential, as shown in 373 

Fig. 6B, b. 374 

 375 

Fig. 6. (A) Characteristic CV curve for electro-oxidation of gelatin (first cycle) on PGE-surface (2.5 mg/mL in 376 
Acetate buffer pH=5). (B) Cyclic Voltammograms and (C) Electrochemical impedance of different steps 377 
involved in the fabrication of immunosensor; a. Bare, b. Bare/gelatin, c. Bare/gelatin/antibody, d. 378 
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Bare/gelatin/antibody/nanoprobe, e. Bare/gelatin/antibody/nanoprobe/free MUC-1. (D) Cyclic Voltammograms 379 
of immunosensor in PBS to demonstrate the working mechanism; a. Bare, b. gelatin, c. gelatin/nanoprobe, d. 380 
gelatin/nanoprobe/MUC-1 Ag. 381 

With gelatin grafting, a good peak to peak separation was observed. These electrochemical 382 

changes suggested an increased electron transfer rate between modified electrode surface and 383 

the electrolyte solution. The EDC/NHS treated MUC-1 antibody immobilization resulted in a 384 

reduction of electron transfer, showing a further peak shifting towards higher potential as 385 

represented in Fig. 6B, c. The immobilization of nanoprobe resulted in a very prominent 386 

redox peak (Fig. 6B, d). However, upon incubation of analyte (MUC-1), a clear decrease in 387 

peak current was observed (Fig. 6B, e). This enhanced signal in case of nanoprobe was 388 

mainly contributed by DA, which is an efficient electron-donor. It is note-worthy that the 389 

electron donor signal probes can be attached precisely to the target analyte for signal 390 

amplification [41]. The maximum surface of fMWCNTs was covered by MUC-1, hindering 391 

the attachment of DA molecules on the surface of fMWCNTs. Moreover, the DA was used as 392 

an electron donor and the intensity of current signal was dependent on the amount of attached 393 

DA. DA has been employed as a probe to donate electrons for signal amplification in the 394 

construction of the electrochemical biosensors [42]. It can also be observed from the Fig. 6 395 

that the combination of DA and MUC-1 altered the nature of peak current, which could be 396 

attributed to the high electrical conductivity of DA [43]. When MUC-1 antigen competed 397 

with the MUC-1 nanoprobe containing DA, the peak current was decreased. Additionally, the 398 

antigens acted as an insulator and subsequently reduced the electron transfer rate [44]. This 399 

could be attributed to the antibody-antigen complex on the surface of the modified electrode 400 

[20].  401 

Similarly, Fig. 6D represents the electrochemical response of PGE at different modification 402 

steps in PBS. A characteristic redox peak of DA was observed in the presence of DA labelled 403 

MUC-1 (Fig. 6D, c), while the given characteristic peak was significantly decreased upon 404 

competition between free and DA labelled MUC-1, as shown in the Fig. 6D, d. This further 405 

demonstrates the working mechanism of fabricated immunosensor. Similarly, bare and 406 

gelatin modified electrodes did not show any response. 407 

3.4 Competition assay for MUC-1 protein   408 

Prior to perform competition assay, different experimental conditions were optimized. The 409 

detail of the experimental optimization is provided in the supporting information (SI). To 410 

validate the immobilization method, direct competitive immunoassays were performed for 411 

MUC-1 analysis using optimized experimental parameters. The assays were relied on the 412 

https://www.sciencedirect.com/topics/chemistry/conductivity
https://www.sciencedirect.com/topics/chemistry/competitive-immunoassay
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competition between the free MUC-1 and labelled MUC-1 nanoprobe. When the system was 413 

tested without free MUC-1 by CV, a current signal of 98.9  μA was obtained as shown in Fig. 414 

6B.This current was high enough to carry out the competition step and measure the lower 415 

current intensities (Fig. 7A). The proposed strategy was based on the direct competition 416 

between labelled and un-labelled antigen. The direct competition approach is well established 417 

detection mechanism in the literature. Both labelled and un-labelled antigens have equal 418 

binding tendencies, while the detection mechanism relies on the competition between both 419 

types of antigens. In the absence of free antigen, a maximum signal was observed while the 420 

presence of free antigen competed with the labelled one to bind with the immobilized 421 

antibody, thus decreasing the output signal. The decrease in response was proportional to the 422 

concentration of free analyte (antigen), hence, utilized for its quantitative analysis. For the 423 

higher concentrations (473.6 and 940 U/mL), the change in current response was difficult to 424 

be observed due to saturation point. The calibration curve obtained with electrochemical 425 

immunosensor is shown in Fig. 7B. Due to experimental error (5 %), the LOD was defined as 426 

the MUC-1 concentration, which corresponds to the 85% of MUC-1 binding depending on 427 

the maximum standard deviation value. The calibration curve (Fig. 7B) was fitted by 428 

sigmoidal logistic four parameter-equation y = a2 + [a1-a2/1 + (x/x0) 
p] using Origin Pro-8 429 

SR0 software, in which a2 and a1 are the maximum and minimum values respectively, and x0 430 

and p are the x value at the inflection point and the slope of inflection point accordingly. With 431 

the help of equation, percentage binding was evaluated depending upon the maximum 432 

standard deviation value. The lower percentage binding (less than 100 %) could be linked 433 

with the high number of the washing steps that might cause leaching of excessive antibodies 434 

out of the electrode surface. The correlation coefficient R, LOD and IC50 values were found 435 

to be 0.95, 0.01 U/mL and 7.4 U/mL respectively, from regression equation. 436 

 437 
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Fig. 7. Variation of CV with increasing concentration of free MUC-1 for competition assay (A) and standard 438 
curve for proposed assay (B). Experimental conditions: Gelatin concentration = 0.1 M, antibody concentration= 439 
0.25 U/mL, antibody incubation time= 30 min, nanoprobe concentration= 25 µL, nanoprobe incubation time= 440 
15 min, DA concentration = 0.1M, pH of buffer=7.2.  441 

Table 1 presents a comparison between the given electrochemical immunosensor and the 442 

existing literature reports for the detection of cancer biomarker. 443 

 444 

Table 1. A comparison of present work with the published literature reports for the detection of MUC-1. 445 

No. Material 

Used 

Detection 

Method 

LOD 

(U/m

L) 

Linear 

Range 

(%) 

Ref. 

1 Au/ZnO thin film 

surface 

Plasmon Resonance 

Based 

0.025 1-40 [45] 

 2 COOH rich 

graphene oxide 

Disposable 

electrochemical 

immunosensor 

0.04 0.1-2 [46] 

3 Coated 

Polymethylmethacr

ylate 

Kinetic-exclusion 

analytical 

technology 

0.21 

  

0.3-20 [47] 

4 Pt nanoclusters Enzyme-linked 

Immunosensor 

0.04 0.1-160 [48] 

5 DA/MUC-

1/fMWCNT 

Direct competitive 

immunosensor 

0.01 0.05-

940 

Present 

work 

 446 

The above comparison demonstrated the advantages of developed immunosensor over the 447 

reported methods in terms of lower LOD and linear range. The lower LOD could be 448 

attributed to the direct immobilization through covalent linking that increased the 449 

accessibility of free MUC-1 to the antibody [49]. 450 

3.5 Stability and Reproducibility  451 

In order to evaluate the stability, the immunosensor was stored at 4°C after every use. The 452 

response of the immunosensor did not show any significant change over a period of two 453 

weeks, indicating the extended stability of the immunosensor. Furthermore, reproducibility of 454 

the immunosensor was also assessed. For this purpose, five immunosensors were designed 455 

independently under the optimized experimental conditions to detect the MUC-1 IC50 456 

concentration (7.4 U/mL). The relative standard deviation (RSD) of the peak current 457 

difference was about 1.52 %, indicating good reproducibility of the proposed immunosensor 458 

(Fig. 8.). 459 
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 460 

Fig. 8. (A) Stability and (B) Reproducibility of the proposed electrochemical immunosensor for the detection of 461 
10 nM MUC1. 462 

3.6 Recovery and spiked sample analysis  463 

In order to verify the clinical applicability of our proposed immunosensor for MUC-1 464 

detection, human serum samples (taken from Shaukat Khanum Memorial Cancer Hospital & 465 

Research Center, Lahore Pakistan) were spiked with three different concentrations of MUC-1 466 

(0.1, 14.8 and 473.6 fU/mL). Antibody immobilized gelatin-PGE modified electrodes were 467 

incubated with above mentioned concentrations at optimized experimental conditions with 468 

same protocol as described for standard MUC-1 analysis. Assays were performed in 469 

triplicate. Good recoveries (93.5-95%) were obtained with R.S.D % in the range of (4.6-6). 470 

The percentage recoveries are summarised in table 2. These results proved the clinical 471 

applicability of the immunosensor for complex biological systems. 472 

Table 2. Recovery percentages obtained for real sample analysis against various concentrations of MUC-1 using 473 
proposed immunosensor. 474 

No. MUC-1 added 

(U/mL) 

MUC-1 found 

(U/mL) 

R.S.D % R.E % R% 

1 0.1 0.06  6 6.5 93.5 

2 14.8 12.9 4.6 5 95 

3 473.6 452 5 5.5 94.5 

 R.S.D=Relative standard deviation, R.E= Relative Error, R= Recovery  475 

3.7 Specificity of the Immunosensor 476 

Selectivity and specificity are important parameters to validate the practical applicability of 477 

the immunosensor. Therefore, by performing control experiment with non-specific binding 478 

proteins such as BSA, FBS and NS1, the specificity of designed immunosensor was 479 

evaluated. Fig. 9 illustrates the percentage (%) binding response of the antibody immobilized 480 

gelatin-PGE modified electrode upon incubation with non-specific (FBS, BSA, NS1) as well 481 
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as structural analogue (MUC-2) proteins. It is evident from Fig. 9 that the percentage binding 482 

response values for nonspecific proteins were considerably lower than MUC-1. However, 483 

MUC-2 showed higher response in comparison to non-specific binding proteins but much 484 

lesser than MUC-1. These results proved that the effect of non-specific proteins was 485 

insignificant on MUC-1 detection and the proposed immunosensor had sufficient specificity 486 

towards MUC-1 protein. 487 

 488 

Fig. 9. Specificity of the proposed immunosensor for MUC-1 analysis. 489 

4 Conclusion 490 

In this study, a new, simple and inexpensive strategy for the detection of MUC-1 has been 491 

developed. Modification of fMWCNTs with Ag and DA provided a highly sensitive 492 

nanoprobe, which offered distinct advantages over the already reported electro-active labels 493 

in literature. On the other hand, modification of the PGE with GE facilitated to overcome the 494 

problem of biological damages and toxicity imposed by non-biological transducing materials. 495 

Both the above mentioned modifications provided an ideal and conductive platform using 496 

amino-carboxy-surface chemistry of gelatin and fMWCNTs. Compared to other reported 497 

electrochemical immunosensors for the detection of MUC-1, the proposed immunosensor 498 

functioned well over a wide linear range between 0.05-940 U/mL, anda low LOD of 0.01 499 

U/mL. Moreover, the designed immunosensor offers significant potential for widespread 500 

applications in the field of clinical diagnostics and can easily be extended to the development 501 

of other types of bio-receptor surfaces based on aptamers/antibodies for the detection of other 502 

analytes. This could not only be useful for rapid detection but also for the monitoring of the 503 

progression of disease process, which is a far bigger challenge than detection. 504 
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Abstract 13 

Mucin-1 (MUC-1) is associated with a broad range of human epithelia including gastric, lung 14 

and colorectal. In this work, a direct competitive electrochemical immunosensor based on 15 

gelatin modified transduction platform was designed. Dopamine (DA)/mucin-1 16 

functionalized electro-active carbon nanotubes were employed as signal generating probes in 17 

the construction of electrochemical immunosensor for early stage diagnosis of breast cancer. 18 

The gelatin modified electrode served as a support to immobilize antibody (anti-MUC-1), 19 

while electrochemical response of functionalized electro-active carbon nano probes was used 20 

for quantitative measurement of MUC-1. Cyclic Voltammetry (CV) and Electrochemical 21 

Impedance Spectroscopy (EIS) were carried out to characterize the transduction surface at 22 

different fabrication steps. The developed immunosensor permitted the detection of MUC-1 23 

in the linear range of 0.05-940 U/mL, with a detection limit (LOD) of 0.01 U/mL. The 24 

immunosensor showed recovery values in the range of 96-96.67% for human serum sample 25 

analysis, demonstrating its practical applicability. 26 
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1 Introduction 32 

Breast cancer is one of the most common causes of women mortality. The mortality rate can 33 

be reduced to a significant level with  the early stage diagnosis of breast cancer biomarkers 34 

[1]. However, the trace level of  biomarkers in the serum of early cancer patients is one of the 35 

limiting factors towards diagnosis [2]. In this context, increasing demand for the detection of 36 

ultralow amount of  cancer biomarkers has resulted in the exploration of  different signal 37 

amplification strategies towards fabrication of ultrasensitive electrochemical immunoassays 38 

[3]. Several traditional techniques including radioimmunoassay, enzyme-linked 39 

immunosorbent assay (ELISA), electrophoretic immunoassay, fluorescence immunoassay, 40 

immune-polymerase chain reaction (PCR) and mass spectrometric immunoassay have been 41 

used for this purpose. However, they undergo operational limitations and hence, it is highly 42 

desirable to develop ultrasensitive, simple and easily automated device for early diagnosis of 43 

cancer biomarkers [4]. Electrochemical immunosensors with inherent advantages of cost 44 

effectiveness, higher sensitivity and lower power requirement have  been applied for clinical 45 

diagnosis [5].  46 

In such ultrasensitive immunosensors, nanomaterials can either be used directly as an electro-47 

active label or as a substrate material to immobilize the electro-active labels [6]. Among the 48 

wide range of nanomaterials, multi-walled carbon nanotubes (MWCNTs) have been 49 

considered as a very promising material to enhance electron transfer rate on the transducer 50 

surface. Owing to their intrinsic electrical and electrochemical properties, MWCNTs are 51 

highly suitable for their integration into sensing strategies [7]. However, the presence of 52 

strong Van der Waals interactions among MWCNTs results their aggregation which limits 53 

their applications [8]. In this direction, the introduction of highly active functional groups via 54 

covalent modification of MWCNTs could enhance the electrochemical features of MWCNTs. 55 

For instance, the introduction of carboxylic groups on MWCNTs could covalently bond the 56 

amine residues of biological receptor elements [9]. Such biomolecule coated nanomaterials 57 

have been applied for the recognition of analytes. Consequently, electrostatically and 58 

covalently coupled carbon nanotubes not only stabilize the biomolecules but also offer 59 

distinct advantages including higher binding capacity, improved stability and reduced cost 60 

per assay [10, 11]. Currently, MWCNTs coated with both, biological recognition elements 61 

and electro-active labels have been investigated simultaneously, for molecular recognition 62 

and signal amplification [12].  63 
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DA is an important member of the catechol family, which is hydrophilic in nature and 64 

considered as an electron donor with variable redox properties [13]. DA and its derivatives 65 

have been reported to design signal amplification probes for construction of electrochemical 66 

biosensors [14]. Furthermore, the functional groups of DA including amine, imine, quinone 67 

and catechol enable DA to bind with a broad range of biomolecules [15]. In this regard, we 68 

have developed a DA coated MUC-1 conjugated MWCNTs nanoprobe. The MUC-1 was 69 

linked through amide bond formation with MWCNTs, while with DA using its amine and 70 

carboxylic groups respectively. This nanoprobe was subsequently integrated with carbon 71 

interface of working electrode to construct a direct competitive electrochemical 72 

immunosensor. 73 

On the other hand, despite the advantages of nano-amplification technologies in 74 

electrochemical immunosensor, the unmodified electrodes are prone to major drawbacks of 75 

poor sensitivity, higher oxidation potential and fouling of the electrode response [16]. To 76 

overcome these problems, modification of the electrode surface with appropriate materials is 77 

of critical importance. Besides providing specific immobilization support for recognition 78 

elements, natural polymers have the ability to overcome the disadvantages of biological 79 

damages and toxicity imposed by non-biological transducing materials [17]. In this direction, 80 

it is highly desirable to fabricate a transducer surface with increased number of binding sites 81 

to improve the analytical merits of the biosensor. Amino acids modified transducer platforms 82 

provide a high surface area and abundant functional groups, which subsequently improve 83 

their stability and sensitivity. Gelatin is a linear polypeptide with large number of 84 

amine/carboxylic functional groups which provide a specific immobilization support for 85 

bioreceptors to design electrochemical biosensors [18]. The electro-oxidation of gelatin can 86 

render free amine groups on the transducer surface for interaction with carboxylic groups of 87 

Fc region of antibody [19]. Thus, it provides an efficient platform for the effective 88 

immobilization of the antibody [20]. Antibody immobilization on the electrode is considered 89 

to determine the surface charge of the transducer surface. This surface charge undergoes 90 

alteration upon immunoreaction with the given antigen [21]. Moreover, direct immobilization 91 

of biorecognition elements via covalent modification is known to improve the sensitivity of 92 

electrochemical immunosensors for various applications [22]. Direct assays involving 93 

antibody immobilization on modified electrode offer the advantages of sensitivity and 94 

stability over the indirect strategies. In addition, the immobilization of antibody on modified 95 

electrode can recognise even the low level of analyte for diagnostic purpose [23]. 96 
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Keeping in view the above objectives, a direct electrochemical immunosensor based on DA 97 

coated MUC-1 conjugated functionalized multi walled carbon nanotubes (DA/MUC-98 

1/fMWCNTs) was fabricated for the competitive detection of MUC-1. MWCNTs were used 99 

to provide large surface area, while DA was employed to attain better sensitivity towards the 100 

target analyte. This fabrication approach resulted in a highly sensitive and selective 101 

transduction platform for the analysis of MUC-1 biomarker. The designed strategy was 102 

demonstrated for the analysis of breast cancer biomarker, however, it can be very easily 103 

extended to other biomarkers for diverse applications. 104 

2 Experimental Details 105 

2.1 Materials  106 

Potassium ferrocyanide (K4[Fe(CN)6]), Sulfuric acid (H2SO4, 98%), potassium ferricyanide 107 

(K3[Fe(CN)6]), bovine serum albumin (BSA), fetal bovine serum (FBS), human serum and 108 

Prestige Antibodies (NS1) were purchased from Sigma (Taufkirchen, Germany). Cancer 109 

antigen mucin (25 kU) was purchased from Lee bio (Maryland Heights, MO, USA). 110 

Lysozyme was purchased from Carbosynth (Berkshire, UK), while N-(3-111 

dimethylaminopropyle)-N-ethyle-carbodiimide hydrochloride (EDC) and N-hydroxy 112 

succinimide (NHS) were from Alfa Aesar (Heysham, UK). MWCNTs (D × L 4–5 nm × 0.5–113 

1.5 μm) were purchased from Sigma-Aldrich, France. 114 

2.2 Apparatus 115 

Different spectroscopic techniques were employed to characterize the nanoprobe and 116 

immunosensor fabrication steps. Fourier transform infrared (FTIR) measurements were 117 

performed by using a Thermo Nicolet 6700™ spectrometer (Waltham, MA, USA). Scanning 118 

electron microscopy (SEM) studies were performed by using a VEGA-3-TESCAN (Brno, 119 

Czech Republic) with variable pressure mode (LMU). Images were taken in different 120 

magnification ranges at an accelerated voltage of 20 kV. UV–Visible (UV–Vis) 121 

measurements were performed with a UV-spectrophotometer (UV-1800, USA) that was 122 

equipped with UV probe software to measure the absorption parameters. XRD spectra were 123 

obtained from a Rigaku D/Max 2500 XRD (Rigaku Corp Japan), equipped with graphitic 124 

mono-chromator (40 kV, 40 mA). A nickel filtered Cu-Kα radiation source (λ =1.5418 Å) 125 

was used during the sample analysis. To inspect the surface topography, atomic force 126 

microscopy (AFM) was performed at AFM PARK XE-7 Systems (Suwon Korea) in non-127 

contact mode. 128 
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For electrochemical measurements, AMEL 2553, potentiostat/galvanostat equipped with 129 

ZPulse software was used. A conventional three electrode system with Ag/AgCl as reference 130 

electrode, a pencil graphite electrode as working electrode and platinum wire as counter 131 

electrode was employed. The pencil graphite electrodes (PGE, 0.5 mm lead diameter) were 132 

purchased from Staedtler Mars GmbH &amp; Co. KG, Germany. An electrode length 133 

measuring 1cm was immersed in a solution per measurement to maintain the uniform surface 134 

area for all the electrochemical experiments. EIS experiments were carried out using 135 

[Fe(CN)6]
4−/3− as a redox probe under an applied potential of 0.1 V (vs. Ag/AgCl reference 136 

electrode). The frequency range was between 100 kHz–0.2 Hz, with an AC amplitude and 137 

sampling rate of 10 mV and 10 points respectively. The EIS spectra were plotted in the form 138 

of complex plane diagrams (Nyquist plots, −Zim vs. Zre) and fitted to a theoretical curve 139 

corresponding to the equivalent circuit with a frequency response analyzer software (FRA). 140 

2.3 Preparation of nanoprobe 141 

To obtain the carboxy functionalized MWCNTs, a homogenous solution of MWCNTs was 142 

prepared (2 mg/mL) in distilled H2O under ultrasonication for 2 hours. Subsequently, chloro-143 

acetic acid (1 g/mL) and NaOH (1.5 g/mL) were added to the reaction suspension. After 144 

sonication, supernatant was removed and remaining solution was allowed to dry. Then, 145 

fMWCNTs were treated with 100 mM EDC-NHS solution containing MUC-1 protein for 45 146 

min. For MUC-1 conjugation, 200 μL of MUC-1 protein (1/100 dilution from stock solution) 147 

was mixed with the solution of NHS (25 mM) and EDC (100 mM) in the Phosphate Buffer 148 

Saline (PBS, pH - 7.4) for 45 min. Subsequently, the supernatant was removed via centrifuge 149 

at 12000 rpm to obtain the MUC-1 conjugated fMWCNTs. MWCNTs provided a large 150 

surface area for the attachment of MUC-1 protein to make a stable and promising 151 

immunosensing platform. Afterwards, DA (1 mg/mL) was added in the reaction mixture 152 

under vigorous stirring for 20 min. The mixture was allowed to settle down. Excessive water 153 

was removed and left over was directly used for immunosensor fabrication. 154 

2.4 Fabrication of competitive electrochemical immunosensor 155 

Prior to gelatin grafting, the PGE was electrochemically cleaned in 0.5 M H2SO4 to 156 

reduce/oxidize impurities by successive cyclic voltammetric scans within the potential range 157 

from -1.5 to 1.5 V. For electro oxidation of gelatin, the solution of gelatin (2.5 mg/mL) was 158 

prepared in acetate buffer (pH=5) at room temperature. Two 159 

consecutive cyclic voltammetric scans were run at a scan rate of 0.5 V/s in the potential range 160 

from -1.2 to 0.4 V for the electro oxidation of gelatin on PGE surface. The modified electrode 161 
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was incubated in 25 µL of MUC-1 antibody solution (0.25 U/mL). The crosslinkers (EDC 162 

and NHS) were used to activate the carboxylic groups of gelatin on the electrode surface. The 163 

Electrode was then washed with PBS solution to remove the excess of unbound antibody. To 164 

block the residual carboxylic sites, diethanolamine was incubated on the electrode surface for 165 

a time period of 45 min. For MUC-1 detection, 25 µL of nanoprobe was incubated on the 166 

modified electrode surface for 45 min. For the selectivity experiments of the fabricated 167 

immunosensor, various interfering moieties including FBS, BSA and NS1 were incubated on 168 

the sensor surface following a procedure similar to the one described for MUC-1 analysis. 169 

2.5 Quantitative detection of MUC-1 170 

Based on the principle of competitive-assay, the fabricated immunosensor was incubated with 171 

different concentrations of free MUC-1 for 15 min and subsequently washed with the PBS 172 

buffer. The peak current was recorded using the electrochemical workstation. The difference 173 

in the corresponding peak before and after the competition step was used for the quantitative 174 

analysis of MUC-1. 175 

2.6 Real Sample Analysis 176 

To validate the potential application of proposed immunosensor in clinical analysis, MUC-1 177 

spiked human serum samples were analysed. Human serum was diluted (50 times) with PBS 178 

buffer to achieve the desired analyte concentration. The samples were spiked with three 179 

different concentrations of the analyte (0.1, 14.8 and 473.6 U/mL). 180 

3 Results and discussion 181 

3.1 Detection mechanism of electrochemical immunosensor  182 

The mechanism of proposed electrochemical immunosensor based on DA assisted signal 183 

amplification strategy was presented in scheme 1. 184 

The detection strategy consists of three main steps: preparation of nanoprobe, modification of 185 

electrode surface and competitive recognition of free MUC-1. fMWCNTs provided –COOH 186 

groups for the attachment of MUC 1 protein, while DA was used to amplify the 187 

electrochemical signal due to its electron donating capability. The DA/MUC-1/fMWCNTs 188 

nanoprobe was synthesised by covalent binding of MUC-1 protein with DA. A robust way to 189 

create bio-functionalized surface is to immobilize the biological macromolecules such as 190 

antibodies or antigens at the modified electrode surface by means of covalent binding. This 191 

requires the presence of two mutually reactive chemical groups on the protein and on the 192 
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substrate surface. The commonly employed literature methods exploit the reactivity of 193 

endogenous functional groups (such as amines and carboxylic acid groups) present in the side 194 

chains of the amino acids. In such strategies, the naturally occurring functional groups are 195 

used to covalently couple with the complementary functional groups present on the substrate 196 

surface. The carboxylic acid functional groups of these amino acids can react with amines 197 

using the coupling chemistry. This coupling reaction is usually activated by EDC/NHS agents 198 

which results in a rapid formation of a peptide bond. In general, the presence of excessive 199 

amount of amino acids can theoretically result in a random immobilization. However, 200 

immobilization methods based on covalent binding chemistry can provide surface coatings 201 

with a unique orientation of the antibody (Abs)-proteins. This covalent immobilization, in 202 

principle, provides the best entry point for Abs molecules to the protein (gelatin) modified 203 

surface with a specific orientation. This intermediated protein (gelatin) on electrode surface 204 

actually displays two and five binding domains specific to the Fc-portion of Abs that renders 205 

tail-on orientation (Fc attached to the surface) [24]. Um et al. introduced tail-on orientation of 206 

the Abs by the electrochemical immobilizing of a protein onto the electrode surface [25]. The 207 

electrostatic interactions between various functional groups such as amino groups on the 208 

modified (with gelatin in this case) surface and the oxygen containing groups of the Ab 209 

present in the Fc region also favour tail-on orientations of Abs due to steric hindrance 210 

imposed by side arms of the Abs. Abs possess only one binding site. Therefore, Abs should 211 

display free antigen-binding regions after immobilization to achieve the highest analyte 212 

binding. Thus, this tail-on orientation can improve biosensor performance with improvement 213 

factors as high as 200 being reported upon organized orientation [26]. Moreover, EDC/NHS 214 

activation approach possesses many merits including high conversion efficiency, mild 215 

reaction conditions, highly oriented biocompatibility with target molecules, and much cleaner 216 

products as compared to other crosslinking reagents. Therefore, the modified electrode in the 217 

strategy employed in this study with improved electro-active area supplied a non-random 218 

immobilized surface for MUC-1 antibody. The antibody was well oriented in this 219 

arrangement because of EDC assisted –HN ̶ COOH bond formation with gelatin-surface. In 220 

addition, the maximum numbers of MUC-1 antibody active sites were prone to epitopes 221 

attachment. 222 
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 223 

Scheme. 1. Schematic illustration of (A) different steps involved in the fabrication of nanoprobe, (B) 224 
Modification of working electrode and principle of direct competitive electrochemical immunosensor for breast 225 
cancer detection. (1) Electrooxidative grafting of gelatin on pencil electrode, (2) EDC/NHS attested binding of 226 
MUC-1 antibody, (3) Attachment of developed nanoprobe with modified electrode resulting in higher current 227 
signal, (4) Free MUC-1 replaced nanoprobe and resulting signal decreased in competitive assay.    228 

The immunosensor was characterized both in ferri/ferro cyanide solution and PBS buffer. 229 

Afterwards, when the immunosensor was used to recognize free MUC-1, a competitive 230 

process was carried out in PBS buffer. The proposed strategy is based on the direct 231 

competition between labelled and un-labelled antigen. The direct competition approach is 232 

well established detection mechanism in the literature. Both labelled and un-labelled antigens 233 

have equal binding tendencies, while the detection mechanism relies on the competition 234 

between both types of antigens. In the absence of free antigen, maximum signal intensity was 235 

observed while the presence of free antigen competed with the labelled one to bind with the 236 

immobilized antibody, thus decreasing the output signal. The decrease in response was 237 

proportional to the concentration of free analyte (antigen) and was employed for quantitative 238 

analysis of MUC-1. Since an electron donor (DA) was attached to the nanoprobe, a dramatic 239 

difference in current signal was observed in the absence and presence of free analyte. The 240 

immunosensor permitted to detect low level of MUC-1 in human serum samples and thus can 241 

be used for early diagnosis of breast cancer. 242 
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3.2 Characterization 243 

3.2.1 FTIR, UV-Vis, SEM, XRD and AFM analysis of nanoprobe  244 

FTIR spectra were used to evaluate and monitor the functional group changes during 245 

modification process of MWCNTs (Fig. 1A). No significant spectral bands appeared in case 246 

of MWCNTs, while a spectral peak at 1490 cm-1 was observed for C-H bending (a). 247 

However, in case of COOH-MWCNTs, several significant peaks appeared (b). Spectral peaks 248 

at 1202 cm-1 and 1490 to 1650 cm-1 were respectively assigned to C-O-C and C=C bending 249 

modes. Spectral bands at 2850 to 2950 cm-1 represent C-H stretching vibrations. Another 250 

small spectral peak appeared at 3460 cm-1 for OH-stretching of carboxylic group. Similarly, 251 

the spectral band at 2200 to 2300 cm-1 was assigned to CO2. However, upon incubation of 252 

MUC-1 protein (c), C=O peak shifted to 1643 cm-1 and became broader due to amide-253 

carbonyl stretching mode [27]. Small peaks at 1180, 1480 and 3430 cm−1 were assigned to 254 

aliphatic C−N stretching, N−H rocking and N-H stretching vibrations, respectively [28]. A 255 

single absorption band appeared at 1636 cm-1, which was attributed to aromatic (C=C) of the 256 

DA layer (d)[29].  257 

258 
Fig. 1. (A) FTIR analysis and (B) UV-Vis spectra of a; MWCNTs, b) fMWCNTs, c) fMWCNTs/MUC-1 259 

protein, d) fMWCNTs/MUC-1 protein/ DA. 260 

Fig. 1.B shows the UV–Vis spectra of each modification step of MWCNTs during fabrication 261 

of electrochemical immunosensor. A characteristic peak of MWCNTs near 250 nm can be 262 

seen in Fig. 1B, a. The peak is in good agreement with the literature reporting characteristics 263 

of MWCNTs [30]. After acidic treatment (Fig. 1B, b), the transition absorption peaks near 264 

250 nm became stronger with a red shift due to the electronic transition from n → π* of a 265 

nonbonding pair of electrons from carboxylic groups. It indicates that the functionalization 266 
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process was efficient for MWCNTs to provide fMWCNTs. This red shift in the characteristic 267 

peak of MWCNTs corresponds to the presence of excessive carboxylic groups on the surface 268 

of fMWCNTs [31]. A characteristic peak at 260 nm was observed for MUC-1 as shown in 269 

Fig. 1B, c [32]. Finally, nanoprobe retained the characteristic absorption peaks of both MUC-270 

1 protein and DA at 368 nm [33], indicating the successful labelling of DA with nanoprobe 271 

(Fig. 1B, d). 272 

The functionalization process was based on the attachment of organic moieties on the 273 

material surface. Therefore, a change in surface morphology via SEM and AFM could be 274 

used as an indicator to show the variation in surface nature upon different modification steps.  275 

The SEM images at different stages of nanoprobe fabrication are displayed in Fig. 2. It can be 276 

observed from Fig. 2 that the MWCNTs have different surface morphology as compared to 277 

those of functionalized MWCNTs (fMWCNTs), fMWCNTs/MUC-1 protein and 278 

fMWCNTs/MUC-1/DA). It can also be observed from the micrographs that the surface-279 

roughness of MWCNTs increased after functionalization with COOH. Similarly, fMWCNTs 280 

became closely packed upon the addition of MUC-1 protein, making the surface appearance 281 

of MWCNTs as covered with cloudy clusters. After interaction of DA (Fig. 2D), the modified 282 

MWCNTs were found to be disaggregated. 283 

 284 

Fig. 2. SEM analysis of a; MWCNTs, b) fMWCNTs, c) fMWCNTs/MUC1 protein, d) fMWCNTs/MUC1 285 

protein / DA. 286 



11 
 

The XRD patterns for each fabrication step of nanoprobe were displayed in Fig. 3A. Typical 287 

peaks (002 and 100) of MWCNTs were obtained at 2ϴ = 26.68° and 48° respectively, which 288 

were in accordance with the reported literature. The intensity of 002 peak for fMWCNTs was 289 

increased as compared to pristine MWCNTs [34]. However, a decrease in the peak intensities 290 

was observed after the attachment of EDC/NHS treated MUC-1, with the appearance of 291 

additional peaks at 28.5° and 46.7°, confirming the presence of MUC-1 on the surface of 292 

fMWCNTs [35]. XRD pattern of fMWCNTs/MUC-1 protein/DA, as shown in Fig. 3A, d 293 

depicted only one reduced peak of MWCNTs at 26°, while the other peaks were depressed 294 

due to the presence of DA [36]. 295 

296 
Fig. 3. (A) XRD analysis and (B) AFM topographs of step wise preparation of MUC-1 immunoprobe. a) 297 
MWCNTs, b) fMWCNTs, c) fMWCNTs/MUC-1 protein, d) fMWCNTs/MUC-1 protein/DA. 298 
 299 
AFM was used for the investigation of surface morphology of nanoprobe. The topography 300 

images are given in Fig. 3B. Image (a) indicates the rough surface features of MWCNTs [37]. 301 

After functionalization process, the surface roughness was reduced with increased cluster 302 

formation. This decrease was attributed to the smoothing effect induced by f-MWCNTs [38]. 303 

Similarly, the immobilization of antibody increased the profile height with a changed surface 304 

morphology, thus indicating the attachment of large size molecules (antibody) on the surface 305 

of fMWCNTs (c). Finally, the DA attachment altered the height and surface of the 306 

topographical profile as shown in Fig. 3B, d. 307 

3.2.2 Characterization of modified electrode 308 

In Fig. 4A, the XRD images of modified electrode were presented. Peaks close to 28.1° and 309 

32.6° were the characteristic peaks for carbon surface. After the immobilization of gelatin, 310 

the peaks were diminished. While the appearance of peak at 26.4° proved the successful 311 
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electro-oxidation of gelatin on the electrode surface. This XRD pattern reveals the amorphous 312 

structure of gelatin [39]. However, these peaks were decreased on the attachment of antibody, 313 

which occupied the carboxylic groups for amide bond formation. The addition of analyte 314 

further diminished the majority of the peaks, indicating the effective attachment of analyte on 315 

the transducer surface. 316 

317 
Fig. 4. (A) XRD and (B) AFM images of a) Bare electrode, b) Gelatin modified electrode, c) Gelatin modified 318 
electrode with MUC-1 antibody, d) Gelatin modified electrode with MUC-1 antibody + free MUC-1.    319 

The stepwise investigation of electrode fabrication protocol was also performed using AFM 320 

topographic profiling. Fig. 4B, a represents the surface of bare electrode with a profile height 321 

of 0.00-0.16 µm and irregular trough and crust contrast. Gelatin grafting resulted in uniform 322 

topology with increased profile height, suggesting the effective immobilization of proteinic 323 

clusters, as shown in Fig. 4B, b. An improved smooth surface with increased profile height 324 

(Fig. 4B, c) was observed after the attachment of antibody, indicating the presence of bulky 325 

molecules on the modified electrode. Moreover, the specific attachment of analyte (MUC-1) 326 

resulted in the reversal of profile height and morphology, as illustrated in Fig. 4B, d. Such 327 

reversal of morphological features could be attributed to the breakage of clusters of antibody 328 

molecules [40]. 329 

3.3 Electrochemical Characterization 330 

CV and EIS were performed for the characterization of each working step and different 331 

stages, involved in the fabrication of proposed immunosensor. CV and EIS are considered 332 

powerful tools to study the electrochemical characteristics of transducing surfaces. All 333 

electrochemical characterizations were carried out in the presence of [Fe (CN)6]
4-/3- (1 mM) 334 

as an electro-active redox probe. This probe permits the recognition of high current response 335 

against the behaviour of electrochemically inert solution. In CV, differences in the peak 336 
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currents (PC) and peak to peak separations were monitored to characterize each fabrication 337 

step of the electrochemical immunosensor. Similarly, EIS is also considered as a very 338 

effective electrochemical technique for surface modification characterization. The Nyquist 339 

plot with a semicircle portion at higher frequencies corresponds to the electron transfer 340 

resistance. Impedance spectra (Nyquist plots) for each surface modification step were 341 

recorded using the Randles equivalent circuit. The circuit consisted of ohmic electrolyte 342 

resistance (Rs), the electron-transfer resistance (Ret), the Warburg impedance element (Zw) 343 

resulting from the diffusion of ions from the bulk of the electrolyte to the interface, and the 344 

constant phase element. The Ret depends on the insulating feature at the electrode/electrolyte 345 

interface and represents facial properties of the surface. Ret is the useful parameter to evaluate 346 

interfacial properties. Therefore, Ret was considered to monitor the changes on the electrode 347 

interface at each fabrication step for the designed immunosensor. 348 

3.3.1 Characterization of nanoprobe assembly 349 

 350 

Fig. 5. (A) Cyclic voltammograms and (B) Electrochemical Impedance spectra of different steps involved in 351 
nanoprobe preparation; a. Bare PGE, b. MWCNTs, c. fMCNTs/EDC-activated, d. fMCNTs/EDC-352 
activated/MUC-1 protein, e. fMCNTs/EDC-activated/ MUC-1 protein/DA. 353 

Cyclic voltammograms for all fabrication steps involved in the formation of nanoprobe are 354 

shown in Fig. 5A. The representative anodic and cathodic peaks were observed for (a) Bare 355 

PGE, (b) MWCNTs, (c) fMWCNTs/EDC-activated, (d) fMWCNTs/EDC-activated/MUC-1 356 

protein, and (e) fMWCNTs/EDC-activated/ MUC-1 protein/DA. A characteristic redox peak 357 

of bare PGE with the anodic and cathodic peak current was observed. The presence of 358 

MWCNTs resulted in a decrease in the current with increased electron transfer resistance 359 

(Ret). After the formation of fMWCNTs/EDC-activated PGE, the Ret between electrode 360 

surface and activated fMWCNTs was reduced due to the succinimide moiety introduced by 361 
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EDC-activation. After the immobilization of MUC-1 protein, the negatively charged 362 

phosphate groups resulted in the higher Ret value. However, upon addition of DA, an 363 

increased CV-response was observed. Basically, well assembled DA on the nanoprobe 364 

facilitated the flow of electrons [41]. The trend of the impedimetric response of all the 365 

fabrication steps was found to be the analogue of their CV response as can be evidenced in 366 

the Fig. 5A and 5B. 367 

3.3.2 Characterization of transducer surface fabrication  368 

Electro-oxidation of gelatin was performed in acetate buffer (pH=5). A representative first 369 

scan of oxidation process is shown in Fig. 6A. After deposition of gelatin, the modification 370 

steps were characterized in the presence of 1 mM redox couple [Fe (CN)6]
4-/3- . The CV 371 

current of the bare electrode enhanced (approximately 2-folds) after electrochemical 372 

oxidation of gelatin on PGE surface while peak shifted to the higher potential, as shown in 373 

Fig. 6B, b. 374 

 375 

Fig. 6. (A) Characteristic CV curve for electro-oxidation of gelatin (first cycle) on PGE-surface (2.5 mg/mL in 376 
Acetate buffer pH=5). (B) Cyclic Voltammograms and (C) Electrochemical impedance of different steps 377 
involved in the fabrication of immunosensor; a. Bare, b. Bare/gelatin, c. Bare/gelatin/antibody, d. 378 
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Bare/gelatin/antibody/nanoprobe, e. Bare/gelatin/antibody/nanoprobe/free MUC-1. (D) Cyclic Voltammograms 379 
of immunosensor in PBS to demonstrate the working mechanism; a. Bare, b. gelatin, c. gelatin/nanoprobe, d. 380 
gelatin/nanoprobe/MUC-1 Ag. 381 

With gelatin grafting, a good peak to peak separation was observed. These electrochemical 382 

changes suggested an increased electron transfer rate between modified electrode surface and 383 

the electrolyte solution. The EDC/NHS treated MUC-1 antibody immobilization resulted in a 384 

reduction of electron transfer, showing a further peak shifting towards higher potential as 385 

represented in Fig. 6B, c. The immobilization of nanoprobe resulted in a very prominent 386 

redox peak (Fig. 6B, d). However, upon incubation of analyte (MUC-1), a clear decrease in 387 

peak current was observed (Fig. 6B, e). This enhanced signal in case of nanoprobe was 388 

mainly contributed by DA, which is an efficient electron-donor. It is note-worthy that the 389 

electron donor signal probes can be attached precisely to the target analyte for signal 390 

amplification [41]. The maximum surface of fMWCNTs was covered by MUC-1, hindering 391 

the attachment of DA molecules on the surface of fMWCNTs. Moreover, the DA was used as 392 

an electron donor and the intensity of current signal was dependent on the amount of attached 393 

DA. DA has been employed as a probe to donate electrons for signal amplification in the 394 

construction of the electrochemical biosensors [42]. It can also be observed from the Fig. 6 395 

that the combination of DA and MUC-1 altered the nature of peak current, which could be 396 

attributed to the high electrical conductivity of DA [43]. When MUC-1 antigen competed 397 

with the MUC-1 nanoprobe containing DA, the peak current was decreased. Additionally, the 398 

antigens acted as an insulator and subsequently reduced the electron transfer rate [44]. This 399 

could be attributed to the antibody-antigen complex on the surface of the modified electrode 400 

[20].  401 

Similarly, Fig. 6D represents the electrochemical response of PGE at different modification 402 

steps in PBS. A characteristic redox peak of DA was observed in the presence of DA labelled 403 

MUC-1 (Fig. 6D, c), while the given characteristic peak was significantly decreased upon 404 

competition between free and DA labelled MUC-1, as shown in the Fig. 6D, d. This further 405 

demonstrates the working mechanism of fabricated immunosensor. Similarly, bare and 406 

gelatin modified electrodes did not show any response. 407 

3.4 Competition assay for MUC-1 protein   408 

Prior to perform competition assay, different experimental conditions were optimized. The 409 

detail of the experimental optimization is provided in the supporting information (SI). To 410 

validate the immobilization method, direct competitive immunoassays were performed for 411 

MUC-1 analysis using optimized experimental parameters. The assays were relied on the 412 

https://www.sciencedirect.com/topics/chemistry/conductivity
https://www.sciencedirect.com/topics/chemistry/competitive-immunoassay
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competition between the free MUC-1 and labelled MUC-1 nanoprobe. When the system was 413 

tested without free MUC-1 by CV, a current signal of 98.9  μA was obtained as shown in Fig. 414 

6B.This current was high enough to carry out the competition step and measure the lower 415 

current intensities (Fig. 7A). The proposed strategy was based on the direct competition 416 

between labelled and un-labelled antigen. The direct competition approach is well established 417 

detection mechanism in the literature. Both labelled and un-labelled antigens have equal 418 

binding tendencies, while the detection mechanism relies on the competition between both 419 

types of antigens. In the absence of free antigen, a maximum signal was observed while the 420 

presence of free antigen competed with the labelled one to bind with the immobilized 421 

antibody, thus decreasing the output signal. The decrease in response was proportional to the 422 

concentration of free analyte (antigen), hence, utilized for its quantitative analysis. For the 423 

higher concentrations (473.6 and 940 U/mL), the change in current response was difficult to 424 

be observed due to saturation point. The calibration curve obtained with electrochemical 425 

immunosensor is shown in Fig. 7B. Due to experimental error (5 %), the LOD was defined as 426 

the MUC-1 concentration, which corresponds to the 85% of MUC-1 binding depending on 427 

the maximum standard deviation value. The calibration curve (Fig. 7B) was fitted by 428 

sigmoidal logistic four parameter-equation y = a2 + [a1-a2/1 + (x/x0) 
p] using Origin Pro-8 429 

SR0 software, in which a2 and a1 are the maximum and minimum values respectively, and x0 430 

and p are the x value at the inflection point and the slope of inflection point accordingly. With 431 

the help of equation, percentage binding was evaluated depending upon the maximum 432 

standard deviation value. The lower percentage binding (less than 100 %) could be linked 433 

with the high number of the washing steps that might cause leaching of excessive antibodies 434 

out of the electrode surface. The correlation coefficient R, LOD and IC50 values were found 435 

to be 0.95, 0.01 U/mL and 7.4 U/mL respectively, from regression equation. 436 

 437 
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Fig. 7. Variation of CV with increasing concentration of free MUC-1 for competition assay (A) and standard 438 
curve for proposed assay (B). Experimental conditions: Gelatin concentration = 0.1 M, antibody concentration= 439 
0.25 U/mL, antibody incubation time= 30 min, nanoprobe concentration= 25 µL, nanoprobe incubation time= 440 
15 min, DA concentration = 0.1M, pH of buffer=7.2.  441 

Table 1 presents a comparison between the given electrochemical immunosensor and the 442 

existing literature reports for the detection of cancer biomarker. 443 

 444 

Table 1. A comparison of present work with the published literature reports for the detection of MUC-1. 445 

No. Material 

Used 

Detection 

Method 

LOD 

(U/m

L) 

Linear 

Range 

(%) 

Ref. 

1 Au/ZnO thin film 

surface 

Plasmon Resonance 

Based 

0.025 1-40 [45] 

 2 COOH rich 

graphene oxide 

Disposable 

electrochemical 

immunosensor 

0.04 0.1-2 [46] 

3 Coated 

Polymethylmethacr

ylate 

Kinetic-exclusion 

analytical 

technology 

0.21 

  

0.3-20 [47] 

4 Pt nanoclusters Enzyme-linked 

Immunosensor 

0.04 0.1-160 [48] 

5 DA/MUC-

1/fMWCNT 

Direct competitive 

immunosensor 

0.01 0.05-

940 

Present 

work 

 446 

The above comparison demonstrated the advantages of developed immunosensor over the 447 

reported methods in terms of lower LOD and linear range. The lower LOD could be 448 

attributed to the direct immobilization through covalent linking that increased the 449 

accessibility of free MUC-1 to the antibody [49]. 450 

3.5 Stability and Reproducibility  451 

In order to evaluate the stability, the immunosensor was stored at 4°C after every use. The 452 

response of the immunosensor did not show any significant change over a period of two 453 

weeks, indicating the extended stability of the immunosensor. Furthermore, reproducibility of 454 

the immunosensor was also assessed. For this purpose, five immunosensors were designed 455 

independently under the optimized experimental conditions to detect the MUC-1 IC50 456 

concentration (7.4 U/mL). The relative standard deviation (RSD) of the peak current 457 

difference was about 1.52 %, indicating good reproducibility of the proposed immunosensor 458 

(Fig. 8.). 459 
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 460 

Fig. 8. (A) Stability and (B) Reproducibility of the proposed electrochemical immunosensor for the detection of 461 
10 nM MUC1. 462 

3.6 Recovery and spiked sample analysis  463 

In order to verify the clinical applicability of our proposed immunosensor for MUC-1 464 

detection, human serum samples (taken from Shaukat Khanum Memorial Cancer Hospital & 465 

Research Center, Lahore Pakistan) were spiked with three different concentrations of MUC-1 466 

(0.1, 14.8 and 473.6 fU/mL). Antibody immobilized gelatin-PGE modified electrodes were 467 

incubated with above mentioned concentrations at optimized experimental conditions with 468 

same protocol as described for standard MUC-1 analysis. Assays were performed in 469 

triplicate. Good recoveries (93.5-95%) were obtained with R.S.D % in the range of (4.6-6). 470 

The percentage recoveries are summarised in table 2. These results proved the clinical 471 

applicability of the immunosensor for complex biological systems. 472 

Table 2. Recovery percentages obtained for real sample analysis against various concentrations of MUC-1 using 473 
proposed immunosensor. 474 

No. MUC-1 added 

(U/mL) 

MUC-1 found 

(U/mL) 

R.S.D % R.E % R% 

1 0.1 0.06  6 6.5 93.5 

2 14.8 12.9 4.6 5 95 

3 473.6 452 5 5.5 94.5 

 R.S.D=Relative standard deviation, R.E= Relative Error, R= Recovery  475 

3.7 Specificity of the Immunosensor 476 

Selectivity and specificity are important parameters to validate the practical applicability of 477 

the immunosensor. Therefore, by performing control experiment with non-specific binding 478 

proteins such as BSA, FBS and NS1, the specificity of designed immunosensor was 479 

evaluated. Fig. 9 illustrates the percentage (%) binding response of the antibody immobilized 480 

gelatin-PGE modified electrode upon incubation with non-specific (FBS, BSA, NS1) as well 481 
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as structural analogue (MUC-2) proteins. It is evident from Fig. 9 that the percentage binding 482 

response values for nonspecific proteins were considerably lower than MUC-1. However, 483 

MUC-2 showed higher response in comparison to non-specific binding proteins but much 484 

lesser than MUC-1. These results proved that the effect of non-specific proteins was 485 

insignificant on MUC-1 detection and the proposed immunosensor had sufficient specificity 486 

towards MUC-1 protein. 487 

 488 

Fig. 9. Specificity of the proposed immunosensor for MUC-1 analysis. 489 

4 Conclusion 490 

In this study, a new, simple and inexpensive strategy for the detection of MUC-1 has been 491 

developed. Modification of fMWCNTs with Ag and DA provided a highly sensitive 492 

nanoprobe, which offered distinct advantages over the already reported electro-active labels 493 

in literature. On the other hand, modification of the PGE with GE facilitated to overcome the 494 

problem of biological damages and toxicity imposed by non-biological transducing materials. 495 

Both the above mentioned modifications provided an ideal and conductive platform using 496 

amino-carboxy-surface chemistry of gelatin and fMWCNTs. Compared to other reported 497 

electrochemical immunosensors for the detection of MUC-1, the proposed immunosensor 498 

functioned well over a wide linear range between 0.05-940 U/mL, anda low LOD of 0.01 499 

U/mL. Moreover, the designed immunosensor offers significant potential for widespread 500 

applications in the field of clinical diagnostics and can easily be extended to the development 501 

of other types of bio-receptor surfaces based on aptamers/antibodies for the detection of other 502 

analytes. This could not only be useful for rapid detection but also for the monitoring of the 503 

progression of disease process, which is a far bigger challenge than detection. 504 
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