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Abstract

The overall aim of this project was to determine whether or not there is a relationship

between intellectual disability and poverty and health variables in Brazil and the UK.

Through determining this relationship, the aim was to then try to profile a child who is

at greater risk of intellectual disability in order to result in a quicker diagnosis and earlier

access to the support and resources available for children with intellectual disabilities.

In order to investigate this relationship in Brazil, The Pesquisa Nacional de Saúde

(PNS) was used. For the UK, data from the Millennium Cohort Study (MCS) was used.

In order to account for the complex survey design, both model-based and design-

based approaches to analysis were investigated. Simulations were run to compare the

various methods and recommendations about which methods to use in various scenarios

were made.

Due to the large number of variables available in the two data sets, methods of

variable selection were examined. Both stepwise selection based on Akaike Information

Criterion (AIC) and the lasso were compared through simulations. It was found that

although these methods resulted in different models being selected, the inference made

based on the selected models did not vary much between the two methods.

To conduct the analysis of the PNS and the MCS a design-based approach was taken.

Stepwise selection using AIC was used for variable selection and sampling weights were

used when calculating the coefficient estimates and standard errors.

After the analysis of the PNS data, a potential profile of a child likely to have an

intellectual disability in Brazil was found to be: a child who is unable to read and write

with poor general health and multiple visits to doctor within a 12 month period. In the

UK, it was found to be: a child in a family who requires extra support in the form of

benefits along with a poorer general health which limits daily activities.
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Chapter 1

Introduction

In recent years the population of both the UK and Brazil has increased rapidly and

as a result challenges have arisen in many areas such as health, welfare, education and

housing.

Intellectually disabled children in Brazil face barriers of a family, social and educa-

tional nature. Historically, in Brazil, the education available to disabled children was

inadequate and in many cases non-existent. Between 1889 and 1920 there were only

7 state schools in Brazil for children with an intellectual disability (Jannuzzi, 2005).

More recently however, after much persistence from parents, children with intellectual

disability are now integrated into regular education or special services.

A similar trend has been seen in the UK. Up to the 1970’s many children with an

intellectual disability did not live with their families and instead were institutionalised.

In more recent years, however, the majority of children with an intellectual disability

live with their families and also attend schools which are inclusive of their needs (Scior

and Werner, 2015).

Researching the equity of provision of education will provide a valuable insight into

the relationship between educational attainment and the demand for education for chil-

dren who are intellectually disabled. Also, a comparison between Brazil and the UK will

provide a contrast to determine whether educational policies for disabled children can

be improved upon in either of the two countries.
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1.1 Definition and diagnosis of intellectual disability

The World Health Organisation (WHO) defines intellectual disability as “a significantly

reduced ability to understand new or complex information and to learn and apply new

skills (impaired intelligence). This results in a reduced ability to cope independently

(impaired social functioning), and begins before adulthood, with a lasting effect on

development”.

An intellectual disability is characterised by the impairment of skills which contribute

to the overall level of intelligence (Ke and Liu, 2015). Examples of such skills include

cognitive, language, motor and social skills.

There are numerous terms used for intellectual disability which vary from country

to country. These terms include, but are not restricted to, learning disability, special

educational needs and mental retardation.

Diagnosis of an intellectual disability can happen at a variety of stages of a child’s

life: as a baby, at school age or at the transition from childhood to adulthood. If a

baby is born with a syndrome which commonly results in an intellectual disability, then

a diagnosis may be received within the first year of the child’s life. When a child enters

school, if their progress does not align with expectations or the progress of their peers,

then a diagnosis may be made. Finally, a diagnosis may be made if a child struggles with

the independence associated with transitioning from childhood to adulthood (McKenzie,

2013).

1.1.1 UK

In the UK, the term special educational needs or learning disability is most commonly

used. This term should not be confused with the term learning difficulty. A learning

disability is a condition that affects all areas of life, whereas a learning difficulty (such

as dyslexia) is a condition which causes an obstacle to a specific form of learning (such

as reading and spelling) but does not affect IQ (FPLD, 2017).

1.1.1.1 Definition

In “A Working Definition of Learning Disabilities”, a paper written by Emerson and

Heslop in 2010, it is stated that a child in the UK is classified as having a learning
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disability if they meet any of the following criteria:

1. “They have been identified within education services as having a Special Educational

Need (SEN) associated with ‘moderate learning difficulty’ or ‘profound multiple

learning difficulty’. Children aged 7 or older should be at the School Action Plus

stage of assessment or have a statement of SEN. Younger children should also be

included if they are at the School Action stage of assessment of SEN.

2. They score lower than two standard deviations below the mean on a validated test

of general cognitive functioning (equivalent to an IQ score of less than 70) or

general development. Care should, however, be taken when considering the results

of tests, especially tests carried out in English on children below the age of 7 living

in bi-lingual households or households where English is not spoken.

3. They have been identified as having learning disabilities on locally held disabil-

ity registers (including registers held by GP practices or Primary Care Trusts).”

(Emerson and Heslop, 2010)

‘School Action’ is the support that a child in the UK receives when it is felt that

a child is not progressing adequately despite differentiated teaching (Dauncey, 2015).

This support includes the involvement of a Special Educational Needs Co-ordinator

(SENCO) to help to aid the child’s learning. If a child still doesn’t progress adequately,

then additional support may be given. This additional support is ‘School Action Plus’.

1.1.1.2 Diagnosis

For a person to be diagnosed as having an intellectual disability in the UK they must

meet three criteria. First, they must have an IQ of 69 or lower. Next, they must have

great difficulties in areas such as self-care or safety. Finally, the onset of these problems

must have been during childhood. In order to evaluate these criteria, assessment should

be carried out by a qualified psychologist using a standardised test (British Psychological

Society, 2000).

One such test that is used in the UK to assess whether or not a child between the ages

of eight and sixteen has an intellectual disability is the Child and Adolescent Intellectual

Disability Screening Questionnaire (CAIDS-Q). This questionnaire is made up of seven

items and hence is relatively quick to complete. During an evaluation of the properties
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of the CAIDS-Q, the questionnaire was found to be highly accurate in identifying a child

with intellectual disability with sensitivity of 100% and specificity ranging from 83% to

94% (McKenzie et al., 2018).

The CAIDS-Q includes items which are likely to be associated with a child having

an intellectual disability such as the ability to tell the time and literacy skills. Responses

to each of the items are recorded as yes or no with one point being given to a response

of yes (with the exception of two items which are given one point if the response given

is no). The score is then converted into a percentage and the higher the score, the less

likely a child is to have an intellectual disability (McKenzie et al., 2012).

1.1.2 Brazil

In Brazil, the terms intellectual disability, intellectual developmental disorder or learning

disability are most commonly used. Previously the term mental retardation has also been

used.

1.1.2.1 Definition

In Brazil, the American Association on Intellectual and Developmental Disabilities (AAIDD)

definition of intellectual disability is used (Carvalho and Forrester-Jones, 2016). That is,

“significant limitations in intellectual functioning and in adaptive behaviour as expressed

in practical, social and conceptual skills originating before the age of 18”.

A Portuguese paper written by Ke and Liu in 2015 states that according to the

Diagnostic and Statistical Manual of Mental Disorders (DSM) and the International

Statistical Classification of Diseases and Related Health Problems (ICD) there are three

basic criteria which must be met for an individual to be diagnosed with an intellectual

disability. The conditions are as follows:

• They have intellectual functioning significantly below average. This can be deter-

mined by an IQ score of 70 or lower.

• The individual has deficits or impairments in functioning in at least two of the

following areas: communication, self-care, home living, social/interpersonal skills,

use of resources in the community, self-direction, academic skills, work, leisure,

health and safety.
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• The onset is before the age of 18 (Ke and Liu, 2015).

1.1.2.2 Diagnosis

Diagnosis of intellectual disability in Brazil is conducted using ICD-10. The ICD-10

guidelines for diagnosing intellectual disability state that an individual should present

with a reduced level of intellectual functioning and therefore have a reduced ability to

adapt to the demands of daily life.

According to these guidelines, an individual with an IQ of between 50 and 69 has

a mild intellectual disability, an individual with an IQ of between 35 and 49 has a

moderate intellectual disability, an individual with an IQ of between 20 to 34 has a

severe intellectual disability and an individual with an IQ of below 20 has a profound

intellectual disability. To determine the IQ of an individual a standardized intelligence

test which is appropriate for the individual’s level of functioning should be used (WHO,

1992). However, there is no diagnosis measure that has been normed on the population of

Brazil and the methodology for diagnosis suggested by ICD-10 is generally not followed

correctly (Oakland, 2004).

Since most services for people with intellectual disabilities in Brazil are mainly pri-

vately funded, with only a few state funded, the assessment process of diagnosing in-

tellectual disability is very inconsistent. This means that many people who have an

intellectual disability in Brazil never get a diagnosis (Carvalho and Forrester-Jones,

2016).

1.2 Prevalence of Intellectual Disability

A meta-analysis conducted in 2011 by Maulik et al. found the global prevalence of

intellectual disability to be 1.04% (Maulik et al., 2011). The rate of intellectual dis-

ability globally varies across an assortment of factors: gender (prevalence is higher in

males), income (the highest prevalence occurs in low and middle income countries) and

environment (prevalence is higher in urban areas than in rural areas) (Ke and Liu, 2015).
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1.2.1 UK

Although there is no record of the exact number of people living with an intellectual

disability in the UK, in 2011 it was estimated that the number was approximately 1.191

million people (roughly 1.9% of the population). Of these, 286,000 were estimated to be

children (Emerson et al., 2012).

1.2.2 Brazil

Data collected in the 2010 census showed that around 45.6 million people in Brazil have

a disability of some sort. It was also found that 1.4% of these people have a learning

or mental disability (Carvalho and Forrester-Jones, 2016). It is thought however, that

this figure may be inaccurate as the assessment instrument used was said to be difficult

to understand and socio-culturally insensitive. Also, within the 2010 census people with

mental illness were counted as having an intellectual disability and it failed to include

individuals with an undeclared disability (Carvalho and Forrester-Jones, 2016).

1.3 Education Structure

Education is commonly thought of as a basic right which should be available for all

children, with the majority of countries worldwide now having a range of ages for which

education is compulsory. The funding for education in many countries comes from public

resources and national governments. After the availability of basic education becoming

a global priority in the mid 20th Century the rate of illiteracy worldwide declined greatly

(Roser and Ortiz-Ospina, 2016).

1.3.1 UK

The structure of education in the UK is comprised of four main levels: primary education,

secondary education, further education and higher education. Primary education is for

children aged between 4 and 11 and secondary education is for children aged between

11 and 16. Further education may be entered once a student finishes their secondary

education and higher education, which is university level, may be entered after further

education has been completed.
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In 1944 education was made compulsory until the age of 15. In 1972 the age was

raised and now education is compulsory until the age of 16 in the whole of the UK

(Norris, 2007). In 2013, the law was amended slightly in England adding a requirement

that from age 16 to 18 an individual must either stay in full time education, start an

apprenticeship or spend 20 hours per week working or volunteering whilst in part time

education.

In the UK, all children between the ages of 5 and 16 are eligible for a free place at

a state school. The funding for state schools comes from local authorities or from the

government. There are four types of state schools in the UK. Community schools are

funded by the state and hiring of staff for the school is the responsibility of the local

education authority. Foundation schools are also state funded however the hiring of the

employees of the school is the responsibility of the governors (Wood, 2006). Grammar

schools can be funded by local authorities, a foundation body or a trust and admit

children dependant on their academic ability. Finally, academies are run by trusts and

are independent to local authorities.

A national curriculum was created in 1988 to provide a framework for education

between the ages of 5 and 18 in England and Wales. The national curriculum includes

a set of subjects for schools to follow in order to ensure that children across the country

are all learning the same things. The equivalent in Scotland is called the Curriculum

for Excellence programme and in Northern Ireland is known as the common curriculum

(British Council, 2013). Community schools, foundation schools and grammar schools

tend to follow the national curriculum whereas academies have the freedom to follow a

different curriculum.

In addition to the free state schools, there are also private schools in the UK. Private

schools are not funded by the government or local authorities and therefore do not have

to follow the national curriculum.

1.3.2 Brazil

The structure of education in Brazil was introduced in 1971 and is comprised of three

levels: elementary school (ensino fundamental), high school (ensino médio) and higher

education (ensino superior). Elementary school is for children aged 6 to 14 and is

compulsory for all children between the ages of 7 and 14 years old. High school is
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for children between the ages of 15 and 17 and higher education is university level and

takes place after all other schooling is complete (Meyer, 2010).

Before this structure was put into place, education was only compulsory up to fourth

grade (approximately 11 years old) and education beyond this point was available only

to children from higher income families. The rate of illiteracy in Brazil before 1971 was

estimated to be 33% (Mantoan and Valente, 1998).

Education at municipality, state and federal level in Brazil is overseen by a system of

ministries and government offices. Early childhood education is provided and regulated

by municipalities whereas primary and secondary level education is the responsibility

of states and federal districts. Nationally, The Ministry of Education is responsible for

establishing policies and regulating public and private schools and provides technical

and financial support for education systems within municipalities and states (Stanek,

2013).

Classes are provided to cover a range of areas: communication and expression (Por-

tuguese), social studies (geography, history, political science), science (mathematics,

physical-biological science) and educational practices (physical education, art, health

education, civic and moral education) (Mantoan and Valente, 1998).

1.4 Intellectual Disability and Poverty

Inadequate prenatal care, inadequate medical care during delivery, malnutrition, acci-

dents, physical abuse, childhood diseases and inherited syndromes are all factors that

can lead to a child having an intellectual disability. Many of these factors are linked to

poverty and thus there is evidence that poverty is a cause of intellectual disability and

may be preventable through public health measures (Block, 2007).

1.4.1 UK

There have been a various studies into the relationship between poverty and intellectual

disability in the UK. Studies have been conducted using data from the Family and Child

Study (FACS) and the Millennium Cohort Study (MCS).

One paper written in 2010 for the Journal of Intellectual and Developmental Dis-

ability entitled “Poverty transitions among families supporting a child with intellectual
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disability” outlines three potential pathways to the relationship between intellectual dis-

ability and poverty. Firstly, if a family has a child with an intellectual disability it may

be more likely to enter poverty and less likely to escape poverty. Secondly, if a child

grows up in poverty, they are more exposed to a range of hazards which can increase

the risk of developing health conditions or impairments which are related to disability.

Finally, there may be “third factors” which lead to an increase in risk for both poverty

and intellectual disability. Examples of such “third factors” are poor parental health or

parental intellectual disability (Emerson et al., 2010).

This study used data from the FACS and identified a child has having an intellectual

disability if they responded “yes” to either “Does 〈 name of child 〉 have any long-

standing illness or disability?” or “Has 〈 name of child 〉 been identified at school as

having SEN?” . In addition to this, an answer of “yes” also had to be recorded to either

“Do/Does/Will this problem/ any of these problems affect 〈 name of child 〉’s ability

to attend school or college regularly?” or “Do/Does/Will this problem/ any of these

problems cause you to spend more time caring for 〈 name of child 〉 compared with a

fully-fit child of a similar age?”.

In order to measure poverty, two different methods were used. The first was income

poverty which was based on equivalised household incomes. Equivalised income accounts

for the different sizes and compositions of households by dividing the household’s total

income by it’s equivalent size. The second was hardship which was based on a family’s

access to assets and resources.

The paper identifies three potential events which are believed to be associated with

a family including a child with an intellectual disability entering income poverty: an

increase in the number of dependent children in the family; the main informant of the

questionnaire developing a disability of some kind and the number of adults working 16

or more hours per week increasing. After analysis it was found that the first two of these

events were found to be statistically significant however the third was not.

In addition to income poverty, the paper also highlighted three potential trigger

events potentially related to a family entering hardship. These events are: separation,

an increase in the number of dependent children in the family and if the occupational

status of the family decreases. Analysis found that none of these events were statistically

significant in relation to the risk of a family entering hardship.
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The probability of a family exiting income poverty was also investigated in this

paper. Three possible events which could be associated with a family exiting poverty

were identified: if the occupational status of the family increased; if the health of the

informant of the questionnaire improved and if the number of adults working 16 or more

hours per week increased. Only the first of these three potential trigger events was found

to be significant during the analysis.

The paper summarises that families who are supporting a child with an intellectual

disability or any other type of disability are more likely to be living in income poverty and

hardship when compared to a family who is not supporting a child with an intellectual

disability.

Also, when taking into account the initial poverty status of a family, it was found

that a family including a child with an intellectual disability is both more likely to

enter hardship and less likely to transition out of hardship in a 12 month period, when

compared to a family which does not support a child with an intellectual disability.

These findings are consistent with the initial analysis in a later article from The

Journal of Social Policy with the title “Child Disability and the Dynamics of Family

Poverty, Hardship and Financial Strain: Evidence from the UK”. In addition to the two

indicators used in the previously mentioned study to measure poverty (income poverty

and hardship) this study used a third indicator: financial strain - based on a self-reported

(by the adult informant) evaluation of the level of financial strain experienced. This

study also used data from the FACS and so a child was identified as having a disability

if they met the same conditions as previously mentioned.

The article hypothesised that when compared to a family who is not supporting a

child with a disability, a family supporting a disabled child will: be in poverty for a

greater proportion of yearly intervals; have an increased chance of entering poverty and

have a reduced chance exiting poverty (Shahtahmasebi et al., 2011).

In addition to the initial analysis, a further analysis comparing the association be-

tween poverty and child disability, whilst taking into account possible confounding vari-

ables, was also conducted. The proposed confounding variables included: composition

of the household, age and sex of informant, general health status of informant, presence

of long-standing illness or disability, smoking status of informant, occupational status of

the household, academic attainment of household and neighbourhood deprivation.
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When an analysis was completed including these potential confounding variables it

was found that any associations found previously were reduced, eliminated or reversed

meaning that a family supporting a child with a disability is no more likely to exit or

enter poverty than a family who is not supporting a child with a disability when they

have similar levels of resources.

A further paper which was written for Public Health England in 2015 used data from

the MCS to “summarise current knowledge about the determinants of health inequalities

experienced by children with learning disabilities in the UK” (Emerson, 2015). In this

study it was discovered that the majority of children in the UK who do not have a learning

disability had not experienced income poverty at three or more of the initial five waves of

the MCS. The paper states that there is already known evidence of an inequality between

children with an learning disability and children with no learning disability. Children

with a learning disability are known to be ‘significantly more likely than their non-

disabled peers to be living in households characterised by low socio economic position

(SEP) and poverty” (Emerson, 2015).

It finds that although this association is not exclusive to learning disabilities, the

relationship is especially strong between child disability and low SEP for children with

learning disabilities. This is particularly true for children with less severe learning dis-

abilities. Disabled children (including those with an intellectual disability) are, at any

point in time, at a greater risk of poverty. Over time, they are also more likely to enter

poverty and remain in poverty and less likely to escape from poverty.

As a likely result of the apparent association between intellectual disability and

poverty, children with a learning disability are more likely to experience a variety of

hazards that can be detrimental to their health. These hazards include, but are not

exclusive to: inadequate nutrition, poor housing conditions and family, peer and com-

munity violence (Emerson, 2015).

1.4.2 Brazil

There have been very few studies conducted in Brazil to evaluate the relationship between

intellectual disability and poverty. In Brazil only 7% of articles in the mental health field

between 1999 and 2003 discuss mental health in children and this percentage is further

decreased when looking at intellectual disability (Razzouk et al., 2006).
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A paper entitled “Perspectives of intellectual disability in Latin American countries:

epidemiology, policy and services for children and adults” discusses the lack of research

into intellectual disability in Brazil among other Latin American countries. It states

that the majority of studies published regarding intellectual disabilities in Brazil tend

to be specific to small regions and produce only descriptive statistics (Mercadante et al.,

2009). For example a study of 500 children, aged between 6 and 12, was conducted

and found that 4% of students had an IQ of below 70 (Assis, 2009). A study linking

education and intellectual disability looked at two groups of 44 students and concluded

that intellectual disability was the greatest predictor of a child dropping out of school

(Tramontina et al., 2002).

A further paper entitled “Poverty, disabilities and violence” examines social inequal-

ities in Latin America, particularly Brazil, regarding chronic poverty in the disabled

community and its connection with violence. The paper states that “the links between

poverty and disability - that poverty causes disability and disability causes poverty has

not yet been addressed” (Marinho, 2009). The major barrier in studying this relation-

ship currently is defining poverty. When looking at poverty it is important to not only

consider the lack of material assets but to take a broader view and also consider the lack

of resources available. Despite the fact people with disabilities may not be the poorest,

they may suffer from lack of access to healthcare, education and employment.

This study found that based on data from the 2000 Census, there were approximately

9 million disabled people in Brazil (not specifically intellectually disabled) who had a

monthly salary of between 100 and 200 US dollars.

Marinho states that there is still insufficient interest in the relationship between

intellectual disability and poverty in Brazil and emphasises the need to bring this topic

to social and political sectors in order to reduce poverty in the disabled community.

1.5 Motivation

Despite various studies being conducted into the relationship between poverty and in-

tellectual disability in the UK, there has been very little research conducted for the

population of Brazil. Some studies in the UK confirm a relationship between intellectual

disability and poverty, however others conclude that when accounting for other variables,

30



this relationship no longer exists. Therefore in order to fully understand the relationship

between intellectual disability and poverty in both a developed and a developing country,

a new analysis will be conducted.

In 2011 it was estimated that only 6.6% of adults with an intellectual disability in

the UK were in some form of paid employment with the majority of employment being

part-time (Emerson et al., 2012). This suggests that despite recent advances in the

policies for disabled individuals, there are still improvements which can be made. If it

is possible to profile a child that may be likely to have an intellectual disability, early

intervention is more likely to be an option.

Early intervention is when a child receives support for their disability in the early

years of their lives, however according to Mencap, many children with intellectual dis-

abilities currently do not receive the support that they need. Without early intervention,

an intellectually disabled individual may be more likely to have poor outcomes in life

resulting in higher financial costs not only to the family but also to society (Cooper

et al., 2014).

There is a belief in Brazil that there is a relationship between poverty and intellectual

disability however there is a lack of research into this subject. In particular there have

been no large scale studies in Brazil which examine the relationship between intellectual

disability poverty. A person living in poverty faces limitations with their access to ser-

vices and resources such as education. Therefore, without studies regarding intellectual

disabilities the progression of education for disabled children will be halted (Mantoan

and Valente, 1998).

International comparisons are important since they allow the countries involved to

gain inspiration from each other in order to improve. Both the UK and Brazil have

adopted similar policies in recent years regarding the education of children with intel-

lectual disabilities and therefore, comparing the two countries will provide insight into

how both systems can be improved.

1.6 Data Sources

In order to examine the relationship between poverty variables and intellectual disability

in Brazil, data from the Brazilian National Health Survey, The Pesquisa Nacional de
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Saúde (PNS) will be used. The PNS was created in partnership with the Brazilian

Institute of Geography (IBGE) by the Ministry of Health with the objectives to “produce

national level data about the health status and lifestyles of the Brazilian population and

also data about health care regarding access, use of health services, preventative actions,

continuity of care and health care funding” (Souza-Júnior et al., 2015).

The PNS was first conducted in 2013 and used a multi-stage, probability sampling

design in order to provide estimates of various characteristics of the population of Brazil.

In regards to the UK, data from the The Millennium Cohort Study (MCS) will be

used. The MCS is a longitudinal study which is collecting data from approximately

19,000 children who were born in the UK between September 2000 and January 2002.

The study is funded by the Economic and Social Research council (ESRC) and certain

Government departments and so far there have been seven surveys conducted. These

have occurred when the children were aged nine months, three years, five years, seven

years, eleven years old, fourteen and seventeen years old.

Data concerning the child, the child’s siblings and the child’s parents has been col-

lected. Particular topics covered by the data include: parenting; school choice; child

behaviour and cognitive development; employment of parents; education of parents and

income and poverty.

The study was developed to see the impact that family context (the home setting

and family characteristics e.g. parental stress and parenting practices) in the early years

of a child’s life has on the child’s development and outcomes throughout their childhood,

their adolescent years and further into adulthood.

All analyses and simulations in this project will be conducted using R.

1.7 Sampling weights

If a survey has a complex design then there are many factors which may lead to sampling

weights being included within the data. In order for any analysis conducted on the

sample to fully describe the population, these sampling weights may need to be included.

The main purposes of sample weights when considering data with a complex sampling

structure are: to compensate when individuals or households do not have an equal

probability of inclusion in the survey, to compensate for non-responses and to adjust for
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certain characteristics in order to ensure the sample conforms to the entire population

(Yansaneh, 2003).

Both the Millennium Cohort Study (MCS) and the Pesquisa Nacional de Saúde

(PNS) have complex survey designs and both include sampling weights. This raises the

question of whether or not these weights should be incorporated into the analysis of

these data sets and, if so, how it is best to incorporate them.

1.8 Variable Selection

When a survey such as the PNS or MCS is conducted, generally information about a

wide variety of topics is collected. This in turn can lead to an extensive data set with a

large number of possible predictors. When this is the case, some sort of variable selection

will be necessary. Variable selection aims to remove any unnecessary predictors from

the model.

There are a number of motivations for conducting variable selection. Occam’s Razor

says that if there are multiple explanations for something then the simplest explanation

is the best. This principle can be applied to regression models and therefore we want to

find the smallest possible model which fits the data (Wears and Lewis, 1999).

If more predictors than necessary are included in the regression model, it will add

noise to the estimation of the parameters of interest. Also, the risk of collinearity is

increased if there are too many covariates included.

There are a number of ways in which variable selection can be conducted. These

include: background knowledge, using information criteria and introducing a penalty to

the likelihood. In particular, the recent developments in the penalty methods suggest

that it is possible to incorporate variable selection in the estimation so that an automatic

variable selection is possible. Arguably, the Lasso (Tibshirani, 1996a) is one of the first

methods developed and is still the most popular. This raises the question of which

method of variable selection should be used to analyse the survey data from the PNS

and the MCS.

1.9 Research questions and objectives

The research questions to be answered in this thesis are:
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1. How do poverty and health variables interrelate with intellectual disability in Brazil

and the UK?

2. When is it appropriate to include sampling weights and how should they be used

when necessary?

3. Which methods of variable selection are commonly used when analysing survey

data? Specifically, how has the lasso been adapted beyond linear regression with

continuous covariates for use with more complex data?

4. Is it possible to profile different types of children that need lower and higher levels

of support to aid in identifying subgroups for selective interventions to alleviate

inequalities in education?

The specific objectives are to:

1. Review the current practice used to analyse data from a complex survey design,

specifically how it is advised to incorporate the sampling weights.

2. Conduct simulations to show the effect that using sampling weights has on coeffi-

cient estimates under varying sampling schemes.

3. Review the current practices used to conduct variable selection and see how they

can be extended for use on data from a complex survey.

4. Conduct simulations to compare the resulting models when using different methods

of variable selection.

5. Review the current practices for conducting variable selection for a complex survey

sample.

6. Compute a relevant analysis to determine the relationship between intellectual

disability and the poverty and health variables in both Brazil and the UK.

1.10 Outline of thesis

Chapter 2 gives information about the Brazilian National Health Survey (Pesquisa Na-

cional de Saúde (PNS)). The data from this survey will be used to answer the research
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questions regarding Brazil. The aims and content of the survey are discussed. Informa-

tion is given regarding how the sample of the PNS was selected and furthermore how

the sampling weights provided have been calculated. Exploratory analysis has been con-

ducted. Within this, the variable of interest has been selected and potential variables

that could be indicators of poverty have been established.

Chapter 3 looks at the Millennium Cohort Study (MCS). The data from the fifth

sweep of the MCS conducted in 2013 will be used to answer the research questions re-

garding the UK. Similarly to the previous chapter, the aims and content of the survey

are discussed as well as the sampling scheme and how the sampling weights have arisen.

Exploratory analysis has been conducted in which the response variable has been se-

lected, similar variables to those found in the PNS have been established and further

variables which may be indicators of poverty have been identified.

Chapter 4 looks at when and how sampling weights are used when analysing survey

data. The different methods for calculating sampling weights are described. Litera-

ture regarding when it is appropriate to use sampling weights for descriptive statistics

and regression modelling is discussed along with the proposed methods to conduct such

analyses. Both model-based and design-based methods are examined. Potential tests

to determine whether or not the use of sampling weights is necessary when using linear

regression modelling are described. Model-based and design-based methods are com-

pared through simulation studies for a variety of scenarios. A test for determining the

appropriateness of using weights in a linear regression model is adapted for use with a

logistic regression model.

Chapter 5 examines various methods of variable selection. Variable selection using

background knowledge, information criteria and penalised likelihoods are discussed. The

least absolute shrinkage and selection operator (lasso) is defined and the ways in which it

has been adapted to account for binary response variables and variables with a grouping

structure are discussed. Simulations comparing the lasso with step-wise selection have

been computed. The need for centering and standardising the design matrix is also

examined.

Chapter 6 combines methods from the two previous chapters the way in which the

lasso can be used for survey data from a finite population is discussed. Various design-

based models are fit to the data from the PNS and the MCS and the results of each are
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examined to determine the similarities and differences in inference between the resulting

models.

Chapter 7 uses stepwise selection based on AIC to determine models to describe the

relationship between intellectual disability and poverty and health variables in the two

countries. Sample weights are used when calculating the estimates for the coefficients.

The resulting models are then interpreted and the results for both countries are compared

and contrasted.

Chapter 8 concludes the findings of the previous chapters. The profile of a child

with a potential intellectual disability is determined and potential recommendations to

policies are made. Finally, future work is discussed.
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Chapter 2

Data - Brazil (The Pesquisa

Nacional de Saúde (PNS))

This chapter will discuss the dataset that will be used for the Brazilian analysis. The

sampling scheme of the PNS will be discussed along with how the sampling weights

have been calculated. The content of the survey will be also be described. Finally,

exploratory analysis will be conducted in which the response variable will be identified,

proxy variables for poverty will be examined and the remaining variables of the PNS

will also be explored.

2.1 Obtaining the sample for the PNS

The target of geographical coverage of the PNS was the entire country. The sample

was made up of people living in permanent private households (PPH) within one of the

census tracts of the 2010 Geographic operating base (Souza-Júnior et al., 2015).

Certain areas of the country were excluded from the sample such as indigenous

villages, military bases, camp sites, jails, nursing homes and hospitals.

2.1.1 The Master Sample

The sample selected for the PNS was a subsample of the Integrated Household Surveys

System’s (SIPD) Master Sample (Damacena et al., 2013). The Master Sample is made

up of primary sampling units (PSUs) which are used for various studies. A detailed

description of how the Master Sample was created is given later in the chapter.
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2.1.2 Sample Size

After taking many factors into account, including the effect of the sampling plan, it was

calculated that the size of the sample for each of the geographical areas should be at

least 900 households. Therefore the estimated sample size, based on a 20% non-response

rate, was approximately 80,000 households.

During the study a total of 81,167 households were visited. Out of these house-

holds, 69,994 were occupied. In total 64,348 household interviews and 60,202 individual

interviews with a randomly selected resident were conducted.

Since the main interest of this project is intellectual disability in children the data

will be reduced to include only responses regarding children aged between 5 and 18.

Therefore the sample size used throughout this project is 45,517.

2.2 Survey design and content

When conducting the PNS, the questionnaire was divided into three sections each with

a different respondent. Within each section, the questionnaire was further divided into

modules.

2.2.1 Part 1 - Household section

The first section of the questionnaire concerned the whole household and questions were

answered by the head of the household. The modules in this section of the questionnaire

asked questions regarding the following:

• Module A: Address information and household demographics

• Module B: Home visits from the Family Health Team and Endemic Disease

Agent.

Module A includes questions regarding the location of the home, the type of housing,

the materials used in the walls/ floor/ roof, access to water and access to other appliances

such as TV/ fridge/ computer.

Module B asks whether the family has a family health plan and whether they have

recently received visits from the Family Health Team and Endemic Disease Agents.
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2.2.2 Part 2 - Household residents

The second section of the PNS was answered by all of the residents of the household.

If a member of the household was absent during the interview, the questions could be

answered on their behalf by the head of the household. For children, answers were

supplied by a parent or guardian.

The modules of the second section of the questionnaore asked questions relating to

the following subjects:

• Module C: General characteristics of residents

• Module D: Education characteristics of people 5 years or older

• Module E: Work of household members (aged 14 years or older)

• Module F: Household income

• Module G: People with disabilities

• Module I: Health plan coverage

• Module J: Health service utilisation

• Module K: Health of individuals 60 years or older and mammography coverage

for women over 50

• Module L: Children under 2.

More specifically, module C concerns the general characteristics of the individual

such as gender, age and race.

Module D was asked to only those aged over five years old and concerned the ed-

ucational characteristics of the individual. Questions were asked about whether or not

school is attended, whether the individual can read and write and the highest level of

education an individual has received.

Due to issues in data collection, answers to modules E and F are not available.

Module G is concerned with disabilities and asks whether or not an individual has

an intellectual, physical, hearing or visual disability along with asking about how the

disability has an effect on every day tasks if relevant. Since the main focus of this project

is intellectual disability, this module will be of high interest and the question which asks
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“Do you have an intellectual disability?” will serve as a binary response when conducting

logistic regression.

Module I asks about whether the individual has a health plan and if they do what

the plan covers, how long the health plan has been held and how much the health plan

costs.

Module J asks about how much the individual uses health services in particular, the

general health status of an individual, when the last time a doctor/ dentist was consulted

and whether or not an individual has been hospitalised in the last 12 months.

Module K was asked to residents over the age of 50 and so is not of interest in this

project. Similarly, module L concerned only children under the age of two and so is also

of no interest in this project.

2.2.3 Part 3 - Individual

Part 3 of the questionnaire was issued to only one member of each household. This

resident was selected at random from all the residents of the household aged 18 or over.

Questions in this section related to the following topics:

• Module M: Other work characteristics and social support

• Module N: Perception of health status

• Module O: Accidents and violence

• Module P: Lifestyle

• Module Q: Chronic diseases

• Module R: Women’s health (aged 18 or over)

• Module S: Prenatal care (women who gave birth between 28/07/11 and 27/07/13)

• Module U: Oral health

• Module X: Health care

Since this section was asked to residents over the age of 18, the data collected in this

section of the questionnaire is of no interest in this project.
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2.3 Sampling weights in The PNS

Due to the complex survey structure of the PNS, sampling weights are provided in the

dataset. The following section describes the sampling plan in more detail and how the

sampling weights have been calculated.

2.3.1 Stratification of The Master Sample

As mentioned previously, the Master Sample is a collection of census tracts or groups

of census tracts that have been selected for use as primary sampling units (PSUs) in

various studies.

PSUs were selected by stratification across four different criteria:

1. Administrative - stratifies by state and also within the state based on whether

the area is a capital city, metropolitan region or integrated economic development

region.

2. Geographic - divides the state capital cities and any larger cities into further

strata.

3. Area situation - separates geographic strata into rural and urban areas.

4. Statistical - classifies the rural and urban areas into similar strata by household

income and number of permanent private households (PPHs) (Souza-Júnior et al.,

2015).

2.3.2 Probability of a PSU being selected in the Master Sample

PSUs from each strata were selected using probability proportional to size (PPS) sam-

pling where the number of PPHs were used to determine the size of each PSU.

The probability of a certain cluster being selected when using PPS sampling is

a× b
c

where:

• a is the cluster population,
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• b is the number of clusters sampled and

• c is the total population (sum of the population of all clusters).

Therefore, for the Master Sample, the probability of PSU i being selected in strata

h is:

Nhi ×mh

Nh

where:

• Nhi is the population of PSU i,

• mh is the number of PSUs to be sampled in strata h and

• Nh is the total population of all PSUs in strata h.

2.3.3 Weight of the primary sampling units in the Master Sample

The sampling weights of each of the PSUs is the inverse of their sampling probability.

Therefore PSU i in strata h has a sampling weight of

Nh

Nhi ×mh
,

where Nh, Nhi and mh are as previously defined.

2.3.4 Obtaining the PNS sample from the Master Sample

The sample for the PNS was obtained using simple random sampling in three stages:

1. Stage 1: Simple random sampling (SRS) was used to select the PSUs from the

Master sample. This maintained the stratification of PSUs used in the Master

Sample which is as previously discussed.

2. Stage 2: Simple random sampling was used to select a fixed number of PPHs

from each of the PSUs.

3. Stage 3: Simple random sampling was used again to select an individual in each

household (aged 18 or over) from a list of residents to complete the final part of

the questionnaire (Souza-Júnior et al., 2015).
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Figure 2.1: A strata of the Master Sample showing the primary sampling units (PSUs)
and the individual households within these PSUs.

2.3.5 Probability of a PSU being selected in the PNS sample

Figure 2.1 shows an example of a strata from the Master Sample. The circles represent

PSUs with the red indicating that the PSU is selected in the sample for the PNS.

The probability of PSU i being selected in the sample for the PNS is given by the

probability of the PSU being selected in the Master sample multiplied by the probability

that it is chosen from this sample by SRS.

mh ×Nhi

Nh
×
mPNS
h

mh

where mh, Nhi and Nh are as previously defined and mPNS
h is the number of PSUs

in stratum h that are selected for the PNS.

2.3.6 Weight of PSU i in the PNS sample

The weights of the PSUs in the PNS sample are calculated as the inverse of the sampling

probability of selection and are defined as
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whi =
Nh

mh ×Nhi
× mh

mPNS
h

for PSU i in stratum h (Paulo and Freitas, 2014a).

2.3.7 Basic weights of households in the PNS sample

The households in each of the PSUs were selected by simple random sampling therefore

the probability of a household in PSU i and stratum h being selected is given that this

PSU and stratum has been selected:

nhi
N∗hi

where nhi is the number of households selected in PSU i, stratum h and N∗hi is the

total number of PPHs in PSU i, stratum h.

Therefore the weight of a household within a PSU is given by:

wj|hi =
N∗hi
nhi

Combining the weight of a PSU and a household within the PSU gives a basic

household weight of:

whij = whi × wj|hi =
Nh

mh ×Nhi
× mh

mPNS
h

×
N∗hi
nhi

for household j in PSU i in stratum h (Paulo and Freitas, 2014a).

2.3.8 Weights correcting for non-responses and to population calibra-

tion

The final weight of a household in the PNS sample accounts for the weight of the corre-

sponding PSU, adjusts for households with non-responses and also calibrates estimates

with population totals with the use of other sources (Paulo and Freitas, 2014a).

2.3.8.1 Correcting for non-responses

Non-responses may have occurred for a variety of reasons including refusal by the infor-

mant or an inability to contact a resident of a chosen household. An adjustment for this
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is given by the following weight:

w∗hij = whij ×
n∗hi
n∗∗hi

where n∗hi is the number of selected households with residents in PSU i, stratum h

and n∗∗hi is the number of households in which an interview was held in PSU i, stratum

h (Paulo and Freitas, 2014a).

2.3.8.2 Population calibration

An additional adjustment was made to account for the results of research from other

sources. This adjustment means that when estimating the total population at certain

geographic levels, the estimates concur with the population estimates produced by the

Population Coordination and Social Indicators (COPIS) of the Research Board (Paulo

and Freitas, 2014a).

Based on information from 27th July 2013, the calibration can be seen in the following

expression:

w∗∗hij = w∗hij ×
P tria

P̂ tria

where P tria is the population estimates produced by COPIS at geographic level a and

P̂ tria is the population estimated obtained with the survey data at geographic level a.

2.3.9 Final Household Weight

The final weight of a household which accounts for the probability of selection of the

corresponding PSU, compensates for non-responses and calibrates for known population

totals is given by (Paulo and Freitas, 2014b):

w∗∗hij =
1

mh
× Nh

Nhi
× mh

mPNS
h

×
N∗hi
nhi
× P tria

P̂ tria

.

2.4 Exploratory analysis

As mentioned previously, the variable of interest in this project is intellectual disability.

Since the variable of interest in this project is binary, logistic regression will be used
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to examine the relationship between intellectual disability and the other socio-economic

variables in the data. The methods for analysis of data from a survey with a complex

sampling structure will be discussed in more detail in later chapters.

In order, to understand what is available in the PNS data, exploratory analysis will

be carried out. This will involve looking at the frequency of the response variable and

looking at the other socio-economic variables in more detail.

Since interest lies in children with intellectual disabilities, the data set was cut down

to include only people younger than 18 years old. Since Module D of the PNS was only

filled in for people over the age of the 5, the lower bound of the age range was adjusted

to account for this. Therefore, the following analysis was conducted on data from the

PNS for children aged between 5 and 18 years old.

2.4.1 The response variable - Intellectual disability

Module G of the PNS questionnaire is interested in disabilities. Information was collected

regarding intellectual disabilities, physical disabilities, hearing impairments and visual

impairments.

The following question was asked to/about each member of the household:

Does 〈 name 〉 have an intellectual disability?

The possible answers to this question were “yes” or “no” providing a binary variable.

Initial exploratory analysis of this variable showed that out of 45,517 children, 404

of them have been recognised as having an intellectual disability.

Since less than 1% of the sample size has an intellectual disability, it may be relevant

to also look at the other disabilities (physical, hearing, visual) which were asked about in

the questionnaire. This can be done with the aim to see whether there is any correlation

between intellectual disability and any of the other three disabilities and as a result,

whether a further group of people could be used to help to model any variables significant

to intellectual disability.

Table 2.1 shows whether or not the children who have been classified as having an

intellectual disability have also been classified as having a further disability. It can been

seen, however, that out of the 404 children with an intellectual disability 327 of them

have no further disability. This means that it is unlikely that combining the disability

groups will give any further insight to the factors that influence intellectual disability.
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Table 2.1: Disabilities (physical, hearing or visual) the children in the PNS sample with
an intellectual disability have.

Hearing disability

Yes No

Visual disability

Physical disability Yes No Yes No Total

Yes 1 2 5 36 44

No 7 10 16 327 360

Total 8 12 21 363 404

2.4.2 Using Module A to measure poverty

In order to examine the relationship between intellectual disability and poverty, it needs

to be determined how poverty will be measured using the available data. Generally, to

measure poverty, a cut off called the ‘poverty line’ is used. A poverty line of 60% of the

countries median income is widely used and it is recommended that this value is used

for cross-national comparisons (Eurostat, 1998).

Module E of the PNS contains the question:

What is the gross monthly income usually received for this work?

Based on the recommendation from Eurostat, this answer to this question by the

members of the child’s household could be used to determine whether or not the child

is classified as living in poverty. However, information from Module E (among others)

is missing from the dataset meaning that this method is no longer an option.

In a paper written for the Joseph Rowntree Foundation in 2014, the following broad

definition of poverty is used:

“When a person’s resources (mainly their material resources) are not sufficient to meet

their minimum needs (including social participation)” (Goulden and D’arcy, 2014).

Based on this definition of poverty, a person is said to be in poverty if the resources

that they have are not sufficient to meet their basic needs. Module A of the PNS is

concerned with household demographics and includes questions regarding the material

of the walls and roof and the availability of running water to the household. Some of the

items covered in this module of the questionnaire may be useful as a proxy to determine

the socio-economic position of the household that the children live in.
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2.4.2.1 Combining of levels in Module A

Since in the PNS there is no information available regarding income and as such it is

difficult to use the standard measure of poverty, other variables must be looked at. There

are certain variables within Module A of the PNS that can be recoded to give a better

insight into whether a person in Brazil is perceived to be living in poverty or not.

If the household in which a person is living is constructed with unsuitable materials

then perhaps this could be seen as a sign of poverty. From a book published by IBGE,

it is said that certain household characteristics can be classed as “adequate” or “inade-

quate”. In particular, the material of the walls, roof and floor along with water supply,

outlet of bathroom, waste collection and origin of electricity can all be defined in this

way (Fundação Instituto Brasileiro de Geografia and Estat́ıstica. Departamento de Pop-

ulação and Indicadores Sociais, 1998). Using the recoded variables with combined levels

instead of the original categorical variables will also aim to provide a model that is more

interpretable without losing too much information. Table 2.2 shows how the original

answers to these questions can be adapted into either “adequate” or “inadequate”.

Furthermore, it is asked whether the home contains a variety of items. These items

include: stove, TV, refrigerator, video/DVD player, washing machine, telephone, mi-

crowave, car, computer and internet.

Based on recommendations from the same book published by IBGE, these goods

can be grouped into basic goods and status goods. It is recommended that basic goods

include stove, TV and refrigerator and that status goods include video/DVD player,

washing machine, telephone, microwave and car.

The two questions about whether or not a home has a computer and whether or

not the home has internet has also been grouped into one variable with responses: has

computer and internet, has computer with no internet, no computer has internet and no

computer or internet.
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Table 2.2: The renaming of certain household variables in Module A of the PNS

Material of Coated masonry Adequate
Walls Uncoated masonary Adequate

Suitable wood for construction Adequate
Uncoated taipa Inadequate
Seized wood Inadequate
Straw Inadequate
Other Inadequate

Material of Roof tile Adequate
Roof Concrete slab Adequate

Suitable wood for construction Adequate
Metal sheet Adequate
Seized wood Adequate
Straw Inadequate
Other Inadequate

Material of Carpet Adequate
Floor Ceramic tile or stone Adequate

Suitable wood for construction Adequate
Cement Adequate
Seized wood Inadequate
Dirt Inadequate
Other Inadequate

Water Supply General distribution Adequate
Well or spring on the property Inadequate
Well or spring off the property Inadequate
Car tanker Inadequate
Water stored in rain tanks Inadequate
Rain water stored otherwise Inadequate
Rivers, lakes or streams Inadequate
Other Inadequate

Outlet of General sewage Adequate
Bathroom Septic tank Adequate

Fossa rudimentary Inadequate
Ditch Inadequate
Straight to river, lake or stream Inadequate
Other Inadequate

Waste Collected directly by housekeeping Adequate
Collection Collected in housekeeping bucket Adequate

Burned on the property Inadequate
Buried on the property Inadequate
Thrown onto wasteland Inadequate
Thrown into river, lake or sea Inadequate
Other Inadequate

Electricity General network Adequate
Other source (generator etc) Inadequate
No electricity Inadequate

2.4.2.2 Module A and Intellectual Disability

After combining the levels of some of the responses to the questions in Module A, some

exploratory analysis can be conducted in order to get a basic idea of the relationship

between these and the response variable. Table 2.3 shows the summary of the results of

the exploratory analysis conducted. Sampling weights were not used when conducting

the exploratory analysis.

It can be seen that when fitted alone with intellectual disability very few of the
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variables from Module A are found to be significant at the 5% level.

The type of home that a child lives in is found to be significant at the 10% level with

the odds of a child having an intellectual disability reducing if they live in an apartment

or lodging compared to a house.

If the material of the walls, roof and floor are inadequate, then the odds of a child

having an intellectual disability are increased compared to if the materials are adequate.

However, only the material of the walls is found to be significant at the 5% level with

the material of the roof found to be significant at the 10% level and the floor at the 15%

level.

If a home does not have a kitchen, the odds of a child having an intellectual disability

are found to increase compared to when a home does have a kitchen. The remaining

variables are found not to be significant at the 5% or 10% level.

From this initial analysis it appears that there may be evidence of a relationship

between intellectual disability and some poverty variables. How adequately a house

is constructed appears to have the strongest relationship with the odds that a child

has an intellectual disability. There appears to be little to no relationship between a

families access to both basic goods and status goods with whether or not a child has an

intellectual disability.

2.4.3 Exploratory Analysis of the remaining modules

The remaining modules of the PNS focus on topics such as health care, education and

other disabilities.

Table 2.4 summarises the results of the exploratory analysis conducted on these mod-

ules. The percentage of the sample belonging to each level of a variable has been calcu-

lated and then this percentage has been split across whether a child has an intellectual

disability or not. Then each of the variables has been included as the only explanatory

variable in a logistic regression model with intellectual disability as the response.

It can be seen that many of the variables are found to be significant at the 5% level.

If a child is female the odds of them having an intellectual disability are lower than if a

child is male. This is a common finding among studies into intellectual disabilities (Lai

et al., 2012). The race of a child was not found to be significant.

If a child is unable to read and write, the odds of that child having an intellectual
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disability was found to be significantly higher than for a child who is able to read and

write. If a child is educated, the odds of intellectual disability are reduced compared to

an uneducated child.

When looking at the other forms of disabilities, it was found that if a child has a

physical, hearing or visual disability the odds of them having an intellectual disability

are increased. It was previously noted in Table 2.1 that there are very few children who

have another disability in addition to an intellectual disability.

The health status of a child was also found to significantly affect the odds of a child

having an intellectual disability. If a child was reported as having average health the

odds of them having an intellectual disability are increased compared to a child with

above average health. The odds are increased further if a child is reported to have below

average health.

If a child’s health was found to limit daily activities the odds of intellectual disability

are increased. If a child has been diagnosed with a chronic illness the odds are also

increased.

When the length of time that a child last saw a doctor increases, the odds of that

child having an intellectual disability is decreased. Also if no health care was sought

for the child in the previous two weeks to when the survey was conducted, the odds of

intellectual disability are reduced compared to a child who did seek health care.

If a child was hospitalised or received emergency care at home in the last 12 months

the odds of the child having an intellectual disability are greater than for a child who

was not.

From this analysis, it appears that there are relationships between many of the

health variables and intellectual disability. There is evidence that there is a relationship

between sex and intellectual disability however, there is no evidence of a relationship

between race and intellectual disability. There is also evidence of a relationship between

level of education and intellectual disability.

2.5 Issues to consider during analysis

When it comes to analysing the data from the PNS with regards to intellectual disability

there are a number of issues which need to be considered.
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Firstly, when making a comparison between Brazil and the UK, similar variables in

each data set will need to be used. When it comes to the variables in module A of

the PNS it may be difficult to find any corresponding variables in the UK dataset since

subjects such as the material of the walls aren’t commonly asked in UK surveys.

As described above, the PNS has a complex sampling structure and therefore each

observation in the data set has a sampling weight. When analysing the relationship

between intellectual disability and the variables in the data, it will need to be determined

whether or not these sampling weights are required and, if so, how they should be used.

Finally, despite some of the variables being combined to create new ones, there is

still a relatively large number of variables to consider when looking at the relationship

that they have with intellectual disability. Therefore, some sort of variable selection will

need to be considered.
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Chapter 3

Data - UK (The Millennium

Cohort Study (MCS))

This chapter will discuss the dataset that will be used for the UK based analysis. First,

the aims of the MCS will be discussed. Next the sampling scheme and calculation of the

sampling weights will be described. Finally, exploratory analysis will be conducted to

examine the response variable and any variables that correspond to the variables in the

Brazilian dataset. Issues to be considered in further analysis is also discussed.

3.1 Aims of the Survey

When designing the surveys to be used in the MCS, the following five principles were

strongly considered:

• The study should provide data regarding children living in all four countries of the

UK (England, Wales, Scotland and Northern Ireland).

• The study should provide adequate data for specific sub-groups of children. These

subgroups include: children living in disadvantaged circumstances, children of eth-

nic minorities and children living in the three smaller countries of the UK.

• The study should provide data not only on the child but also on the child’s fam-

ily circumstances and the environment in which they grow up, including socio-

economic factors.

• The children in the study should be born within a single 12 month period.
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• Any child born within the selected time period of the study should have a known,

non-zero probability of being selected to be in the sample (Joshi et al., 2002).

The ESRC previously funded two other cohort studies: The National Child Develop-

ment Study in 1958 and the British Cohort Study in 1970. When a proposal was made

to the ESRC for the MSC it was stated that it should differ from the previous studies

in the following ways:

• Instead of a one week time period, the sample should include a sample of children

born in a 12 month time period, to include births in all seasons.

• The birth dates in the sample should include children born in the year 2000.

• The sample should include children from the whole of the UK.

• Data collected should focus strongly on the families social and economic circum-

stances.

• 15,000 should be the target sample size.

• The length of the interview will be controlled by a budget of £1.7 million.

• A sample design which over-samples ethnic minorities should be considered.

• The first of the surveys should be carried out when the children are all around 6

months old (Hansen, 2012).

The aims of each of the surveys differ slightly from each other since the information to

be captured in each wave of the study changed to be more relevant to the age of the

child at the time of the survey.

3.1.1 First Survey - 9 months old

Originally it was planned that the first survey would be conducted when the child was

aged 6 months. However, this target was unattainable and instead it was chosen to

postpone the survey until the child was 9 months old. In total 18, 553 families took part

in the first survey of the MCS.

In the first survey, information was collected regarding the circumstances of both the

mother’s pregnancy and the birth of the child. Information was also collected on the

social and economic background of the families.
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The objectives of the first survey were proposed in March 2000 by the Centre for

Longitudinal Studies and included:

• To obtain an insight to the initial health, social and economic advantages and

disadvantages that children born in the new millennium will face.

• To obtain a baseline for comparison of data collected in further studies.

• To collect information on topics which have not been covered by previous studies

such as the father’s participation in the care and development of the child.

• To focus strongly on the mother, father and siblings of the child, recording how

they have adapted to the newcomer in the family.

3.1.2 Second Survey - 3 years old

The second survey was conducted when the children were 3 years old. The data collected

in this survey allowed any changes in circumstances since the first survey to become

apparent.

In addition to the 18,553 families who took part in the first survey, a further 1,389

families were contacted to participate in the second survey.

Objectives of the second survey included:

• To measure the physical, cognitive, social and emotional development of the child.

• To look at changes in the family since the child was 9 months old.

• To collect information on any older siblings that the child has.

• To compile data which is comparable to previous cohort studies in the UK and

other studies from outside of the UK.

• To collect data from families who had moved into survey areas after the original

sample had been decided.

3.1.3 Third Survey - 5 years old

When the children were 5 years old, the third survey was conducted. The sample for

the third survey was made up of any family who had responded to at least one of the

previous surveys. This survey had the following objectives:
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• To continue to measure the physical, cognitive and behavioural development of the

child.

• To assess the child’s experiences of starting primary school.

• To continue to collect data on the siblings of the child.

• To contact any families who have responded to a previous survey (regardless of

whether they have responded to all earlier sweeps).

3.1.4 Fourth Survey - 7 years old

The fourth survey was conducted when the children in the sample were 7 years old and

had similar objectives to the third survey with the addition of:

• To directly ask the children about their thoughts and experiences.

In total, the number of families eligible to participate in the fourth survey of the

MCS was 19,244. However due to exclusion due to ineligibility, refusal, untraceability

or sensitive family circumstances, the survey was issued to 17,031 families.

3.1.5 Fifth Survey - 11 years old

The fifth survey took place when the children were aged 11. There were 19,244 potential

families eligible to take part in this survey however due to death, emigration, refusal or

untraceability, the total number of families who responded to this sweep of the MCS was

13,287. Therefore, information was collected for 13,469 cohort members in total.

The respondents for this survey were the cohort members, their parents and their

teachers. The aims were mostly similar to the surveys conducted in previous years with

the addition of:

• Collect information regarding puberty

• Collect information about the child’s attitude towards smoking, drinking and anti-

social behaviours

• Collect information about the child’s final year of primary school.

Since this survey was conducted between January 2012 and February 2013, when

making comparisons with analysis of the PNS, data from the fifth survey of the MCS

will be used.
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3.1.6 Sixth Survey - Aged 14

The sixth survey of the MCS was conducted in 2015 when the children were 14 years

old. In total 11,726 families took part in the survey and data was collected for 11,872

children.

This survey was the first conducted whilst the cohort members were teenagers and

hence some more age-appropriate questions such as those regarding alcohol, drugs, pu-

berty and romantic relationships were added to the cohort member self-completion ques-

tionnaire.

A further addition to this survey was activity monitoring. All cohort members in

Scotland, Wales and Northern Ireland along with 81% of English cohort members wore

a wrist activity monitor for two days along with self-completing an activity diary.

Saliva samples for DNA extraction and genotyping were collected from all cohort

members as well as their natural parents.

3.1.7 Seventh Survey - Aged 17

The seventh survey of the MCS was conducted in 2019 when the cohort members were

17 years old. In total 10,625 families took part in the survey and data was collected for

10,757 cohort members.

In previous surveys a major focus of many of the questionnaires was schooling. Since

at age 17 many of the cohort members will have made major decisions in relation to

education and employment, a principle aim of this survey was to collect data regarding

this transition.

This survey aimed to build a picture of the daily life of the cohort members with

regards to: relationships with parents; family and peers; risky behaviours; social media

engagement and effort on activities such as education/school.

3.2 Sampling scheme for the MCS

The population of interest for the MCS is any child born between September 2000 and

January 2002 who at the age of nine months was living in the UK and eligible to receive

Child Benefit. This population includes children living in non-household circumstances

such as hostels at nine months as well as children who were born outside of the UK but
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were UK residents at the age of 9 months.

Children in the study were found using the Child Benefit records. In England and

Wales children born between 1 September 2000 and 31 August 2001 were sampled. In

Scotland and Northern Ireland children born between 23 November 2000 and 11 January

2002 were sampled. The initial time period of 12 months was extended in Scotland and

Northern Ireland due to a shortage in numbers which was noticed during fieldwork.

Any child born within the correct time period and living in one of the roughly 400

electoral wards of the UK at 9 months old were eligible for the study. Children who died

before the age of 9 months, who emigrated out of the UK before the age of 9 months or

who were not residents of the UK at the age of 9 months were excluded from the sample

(Cullis, 2007).

Although the sampling technique aimed to give an accurate representation of the

whole population, particular sub-groups were over-sampled intentionally. This was done

to ensure that there was accurate representation of: children living in the smaller coun-

tries of the UK (Scotland, Wales and Northern Ireland); children living in disadvantaged

areas and areas in England with a large ethnic minority population (30% or more of the

population in 1991 was Black or Asian). The Child Poverty Index, defined as the per-

centage of children under 16 in an electoral ward living in families receiving at least one

type of means tested benefit, was used during the stratification. The poorest 25% of

wards based on the Child Poverty Index were over-sampled (Hansen, 2012).

3.2.1 Stratification of the population

The population was stratified by country (England, Wales, Scotland and Northern Ire-

land) then, within these strata, further stratification was conducted.

In England the population was stratified into three strata. The first of these strata

was “ethnic minority” which included wards in which at least 30% of the total population

was either black or Asian. The next stratum was “disadvantaged” which included wards

which fell into the poorest 25% of wards based on the Child Poverty Index. The final

stratum was “advantaged” which included wards which fell into the wealthiest 25% of

wards based on the Child Poverty Index. If a ward was included in the “ethnic minority”

stratum it was excluded from the remaining two strata.

In Wales, Scotland and Northern Ireland, the population was stratified into two
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strata: “disadvantaged” and “advantaged”. The criteria for inclusion in these strata

were equivalent to the strata in England.

Since the wards in the UK vary greatly in size, particularly in England, in some

instances multiple wards were combined to create “superwards” which had a minimum

of 24 expected births in a year. In order to be combined, wards had to be bordering

each other in the same district and be within the same stratum. If this was not possible

then non-bordering within the same district were combined. Furthermore if this was not

possible then non-bordering wards in different districts could be combined. Under no

circumstances were wards in different strata combined.

3.2.2 Sample size

The target sample size of the MCS was 15,000. Sampling based on expected number of

births would have resulted in the sample sizes in Wales, Scotland and Northern Ireland

being too small for meaningful analysis. Instead, 1,500 children were chosen to be

sampled from these three countries meaning that 10,500 children were to be sampled

from England.

Initially, in England, half of the children were to be sampled from advantaged wards,

a quarter from disadvantaged wards and the final quarter from ethnic wards. In Wales,

Scotland and Northern Ireland half of the children were to be sampled from advantaged

wards and the other half from disadvantaged wards.

After additional resources were allocated to the study, further children could be sam-

pled from each country. In England, 35 additional disadvantaged wards were selected.

In Wales the target sample size was doubled with the additional 1500 children to be

sampled from disadvantaged wards. In Scotland, the target sample size was increased to

2,500 with 500 of the additional children to be sampled from advantaged wards and the

remaining 500 to be sampled from disadvantaged wards. Finally in Northern Ireland the

target sample size was increased to 2,000 with the additional children to be selected from

disadvantaged wards. The final target sample size was 20,646 children (Plewis et al.,

2007).
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3.2.3 Obtaining the sample

The population in England was ordered by the standard regions (South East, London,

North West, East of England, West Midlands, South West, Yorkshire and the Humber,

East Midlands and North East) and then within these regions ordered by ward size

(largest to smallest). In Scotland, four regions (South, Central, North East and North

West) were used and then similarly to England, the wards were listed in descending

order. Wales and Northern Ireland were not divided into regions and instead were listed

only by ward size.

Then, systematic sampling was used within each stratum and country to select the

wards to be sampled. The sampling interval was established based on the ratio of the

number of wards in the population to the required number of wards in the sample.

Once the wards were selected, a list of all eligible children living in the wards was

collected. The list was created based on the Child Benefit register. A letter was sent out

to all families with an eligible child in the selected wards inviting them to participate in

the survey. In total, 18,553 families agreed to take part in the study.

3.2.4 Sampling weights

Since the probability of selection varies depending on whether the child comes from an

advantaged or disadvantaged ward, sampling weights are given in order to adjust for

this.

Since there was no sub-sampling within wards, the weights for each child in the same

ward are equal. There are different weights provided depending on whether analysis is

based on an individual country or based on the whole of the UK.

The basic weight for a ward was calculated as the inverse of the sampling fraction

applied to each stratum. This weight was then scaled so that the mean sampling weight

was equal to one.

The sampling weights for each stratum are given in Table 3.1. Both the weights for

when analysis of a single country is to be conducted and for when analysis for the whole

of the UK is to be conducted are given.

The weights were then further adjusted to account for any bias arising from non-

responses. There are a variety of ways in which these biases can occur.
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Table 3.1: The sampling weights for each stratum of the MCS

Country Stratum Weight for country Weight for UK
analysis analysis

England Advantaged 1.32 2.00
Disadvanaged 0.71 1.09
Ethnic 0.24 0.37

Wales Advantaged 1.77 0.62
Disadvantaged 0.65 0.23

Scotland Advantaged 1.23 0.93
Disadvantaged 0.75 0.57

Northern Ireland Advantaged 1.41 0.47
Disadvantaged 0.76 0.25

The first of these ways is that there is an under-representation of families who have

recently moved. Since it is thought that families who move around more have different

characteristics to whose who don’t move very often if at all it is important to account

for this bias.

Next, there were some losses in the Child Benefit sample due to some families being

excluded for numerous reasons which could lead them to be classed as a sensitive case.

These reasons include: if there had been an infant death in the family in the past five

years; the child had been taken into the care system and the family had already been

selected for another survey. If the Child Benefit was to be paid directly into a bank

account, then records may not always show a change of address and so non-response

may also occur due to this.

Non-response also occurred when the survey was conducted in the field. It was found

that families in ethnic wards in England and advantaged wards in Northern Ireland were

less likely to respond. It was also found that if the claimant of Child Benefits had the

title “miss” they were less likely to respond. If the Child Benefit was paid into a bank

account and the age of the mother was over 33, then it was found that the family was

more likely to respond to the survey.

Finally, there was an over-representation of children born in winter in Scotland and

Northern Ireland due to the time period of eligible births being increased in these coun-

tries. A weight was given to the families with a child born between 24 November and

11 January in 2000 or 2001 to account for this.

A separate weight was created to adjust for each of these biases and similarly to

the weights for the strata, they were standardised to have mean one in each case. The
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four weights can then be multiplied together to give a total non-response weight for

each observation. This weight was then combined with the stratum to give an overall

sampling weight (Plewis et al., 2007).

3.3 Contents of the Survey

As mentioned previously, in order to make comparisons with the analysis of the PNS,

data from the fifth survey of the MCS (MCS5) will be used. This part of the study was

made up of a variety of questionnaires. The household demographic module was asked

in the form of an interview and the respondent could be either the mother, father or

guardian of the child.

The “main” parent survey was asked in the form of an interview and in most cases

was answered by the mother or mother figure of the child. The contents of this interview

were as follows:

• Module FC: Family content

• Module ES: Early education, schooling and childcare

• Module AB: Child and family activities and child behaviour

• Module PA: Parenting activities

• Module CH: Child Health

• Module PH: Parental health

• Module EI: Employment, education and income

• Module HA: Housing and local area

• Module OM: Other matters

• Module OS: Older siblings

• Module Z: Consents and contact information.

The “partner” survey was also asked in the form of an interview and in most cases

was answered by the father or father figure of the child. The following modules were

contained with this interview:
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• Module FC: Family context

• Module ES: Early education, schooling and childcare

• Module PA: Parenting activities

• Module PH: Parental health

• Module EI: Employment, education and income

• Module OM: Other matters

• Module Z: Consents and contact information.

Both the mother and father of the child were asked to fill in a self-completed ques-

tionnaire. The contents of this survey included:

• Module SC: Self completion

– Strengths and difficulties questionnaire (main respondent only)

– Discipline (main respondent only)

– Relationship with cohort member

– Cohort member’s pubertal development (main respondent only)

– Attitudes, racial harassment and discrimination, anti-social behaviour and

consumerism

– Mental health

– AUDIT (alcohol use disorders identification test)

– Relationship with partner

– Life satisfaction.

The child’s height, weight and body fat were all measured and the children all com-

pleted some assessments to evaluate their cognitive development. These assessments

were made up of the British Ability Scale (testing verbal similarities), the Cambridge

Neuropsychological Test Automated Battery (CANTAB) spatial working memory task

and the CANTAB gambling task (testing decision making).

In addition to the assessments, the children were asked to respond to a self-completed

questionnaire to obtain an insight into their thoughts about a variety of topics. This

questionnaire contained questions about the following topics:
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• Activities outside school

• Internet and social networking

• Life satisfaction, happiness and self-esteem

• Friends and unsupervised time

• Pocket money, family financial position and materialism

• Anti-social behaviours

• Secondary school

• Attitudes

• Other children (including bullying)

• Risky behaviours (including smoking and alcohol)

• Mental health

• Future ambitions.

In England and Wales, the teacher of each of the children was also asked to self-

complete a questionnaire. This questionnaire covered the following topics:

• Child’s abilities and behaviour

• Suspension and truancy

• Cohort member’s profile (including English as an additional language (EAL), Spe-

cial educational needs (SEN), help and support, peers, bullying)

• Move to secondary school

• Future education

• Parents

• Class groupings and setting

• Child’s class

• Teacher profile (Mostafa et al., 2014).
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3.4 Exploratory Analysis

Similarly to in the previous chapter, some initial exploratory analysis of the MCS5 will

be conducted. Unlike the PNS, the MCS only contains data regarding children and

therefore the sample does not need to be cut down to accommodate for this.

In this section, the response variable will be looked into as well as the other available

variables in the dataset. It will be determined whether or not there are any variables

in the data which correspond to the variables in the PNS in order to make comparisons

between the two countries.

3.4.1 The response variable

Once again, the response variable of interest is whether or not the child has an intellectual

disability. In the MCS the term used for intellectual disability is special educational

needs (SEN). There are a few questions which ask about whether or not a child has SEN

within the survey.

In some previous studies into children with intellectual disability in the UK, a child’s

score in the cognitive tests have been used to determine whether or not the child has

an intellectual disability. For example, using principle component analysis, the first

component, based on all age standardised test scores from the cognitive tests, accounting

for 63% of the score variance was extracted. A child was then classified as having an

intellectual disability if they scored lower than two standard deviations below the mean

of this first component (Emerson et al., 2016).

However, since the purpose of analysis in this project is to make an international

comparison between Brazil and the UK, a different response variable will be used. In

the PNS, no cognitive tests were carried out and hence the response variable was chosen

to be the answer to a question in which the parent or guardian of the child was asked

whether or not the child had an intellectual disability. Therefore, a combination of the

questions asked to the main respondents of the MCS5 about whether or not a child has

a SEN will be used in order to make the response variables as comparable as possible

between the two countries.

In the teacher survey the question “Does the child have Special Educational Needs?”

is asked. However, since the teacher survey was only conducted in England and Wales
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this question does not provide information for all of the children in the study.

The interview asked to the main respondent contained the question “has the child’s

school told you that your child has special needs?”. The frequency of responses to this

question can be found in Table 3.2.

Table 3.2: The frequency of responses to the question “has the child’s school told you
that your child has special needs?” from the “main” interview.

Frequency

Yes 1429
No 12013

In addition to this question, the main respondent was also asked “Does the child

have a statement of SEN?”. The frequency of responses to this question can be found in

Table 3.3. In this case, the “not applicable” responses correspond to the children who

answered no, not applicable or don’t know to the previous question.

Table 3.3: The frequency of responses to the question “does the child have a statement
of SEN?” from the “main” interview.

Frequency

Not applicable 12013
Yes 629
No 747

Child is currently being assessed 53

Since the definition of intellectual disability in the UK is that a child has been

identified as having a SEN within education services, the response to this question will

be used as the response variable of interest. The second question was only asked to

parents who responded yes to the first question and so the responses of “not applicable”

can be recoded as “no”. A child who is currently being assessed will be also classed as

not having SEN since at the time of the survey they had not yet been given a statement

of SEN.

After recoding some of the responses, the response variable is now binary with 12,813

children being recorded as not having SEN and 629 children being reported as having

SEN.

3.4.2 Variables corresponding to the PNS

When trying to make an international comparison between Brazil and the UK, similar

variables should be used in the analysis of each country.
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Module A of the PNS concerned the household, with many of the questions asking

about the type of materials parts of the house were constructed from. These variables

have been used in order to determine whether the house a child is living in is adequate or

inadequate and hence whether the child may be living in poverty. There are no variables

of this nature in the MCS and so a different way to asses the living conditions of a child

will be looked into. Variables in MCS5 directly relating to variables from Module A

of the PNS are: number of rooms in the home, number of cars in the home, number

of people in the home, whether the home has a computer and whether the home has

internet. Similarly to the PNS, whether a house has a computer and internet was asked

as two separate questions. For analysis they will be combined to allow direct comparison

between the two countries.

Data is available regarding the general characteristics of each child which correspond

to the variables in the PNS. Sex, age and race are all available. Since all of the children

in the MCS were all born within a specified period of time, the ages of the children in

the study only range between 10 and 12. This differs to the PNS since the range of ages

of children in that study was chosen to be 5-18. In MCS5 race was available as a factor

with six levels. However, to make it comparable to the PNS, the number of levels will

be reduced to two.

In regards to education, a question was asked regarding the school year that a child

was in. Since the range of ages in the MCS is small, unlike the PNS, there is only very

little variation in the level of education that the children are currently at.

Similarly to the PNS, there are questions in the MCS regarding disabilities. There

are variables available showing whether or not a child has a visual disability, a hearing

disability or a physical disability. Also, there are questions asking about the general

health status of the child, whether their health limits their daily activities and whether

they have been diagnosed with a long term illness. Data is also available regarding

whether a child has been hospitalised or consulted a dentist in the last twelve months.

3.4.3 Additional variables

When looking at the available variables in the PNS data, the majority of the variables

found that could be related to whether or not a family is living in poverty concern the

adequacy of the household. There are no variables of this nature in the MCS. Therefore
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different ways to establish whether or not a family is living in poverty in the UK need

to be investigated.

In the MCS5 data there is a variable regarding damp in the home which may show

in part the living conditions of a family. The parent was asked to rate how much of a

problem they have with damp in their home from no damp to great problem. If the

response to this question was “great problem” it may suggest that the family live in

inadequate conditions.

In MCS5, the parent was asked whether the family is receiving any payments from

the following: jobseekers allowance, income support, sickness or disability, child benefit,

tax credits, any type of family related benefit, housing benefit or any other state benefit.

Since the ideas behind means tested benefits are to help to redistribute resources from

richer people to poorer people, if a family is receiving a benefit of some sort it may suggest

that the family is not as well off financially as others (Finn and Goodship, 2014). Since

the sample of the MCS primarily came from the Child Benefit records and Child Benefits

is not means tested, this type of benefit will not be included when analysing. A number

of different types of benefits are considered. According to the UK government website,

the benefits considered are received by individuals in the following circumstances:

• job seeker’s allowance - when out of work and actively looking for a job,

• income support - when on a low income or have no income and have a low amount

of money in savings,

• sickness support - when extra costs of living are incurred as a result of a long-term

health problem or disability,

• tax credit - when on a low income,

• family benefits - when on maternity leave, when seeking child care or if in full time

education with a child under 15,

• housing benefits - if unemployed or on low income.

The parent interview asks the question “How well would you say your family is

managing financially?” with the options to reply: living comfortably, doing alright, just

getting by, finding it quite difficult and finding it very difficult. Although this question
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does not show quantitatively the financial situation of a family it does show how the

family feel that they are coping. The broad definition of poverty is “When a person’s

resources (mainly their material resources) are not sufficient to meet their minimum

need” (Goulden and D’arcy, 2014). Therefore, a negative response to this question may

suggest that a family is living in poverty.

The more quantitative definition of poverty compares a families income with a

poverty line which is usually a cut-off of 60% of the countries median income. If a

families income falls below this cut-off then they are described as living in poverty (Eu-

rostat, 1998). The MCS5 contains an indicator variable which identifies whether a family

falls below this line or not.

3.4.4 Exploratory Analysis

Similar exploratory analysis was carried out for the variable described above as for

the PNS. The percentage of the sample belonging to each level of a variable has been

calculated and then this percentage has been split across whether a child has a SEN or

not. Then, each of the variables has been included as the only explanatory variable in

a logistic regression mode with SEN as the binary response variable. The results of this

exploratory analysis can be found in Table 3.4. Sampling weights were not used when

conducting the exploratory analysis.

It can be seen that many of the variables are found to be significant at the 5%

level. When looking at the different types of benefits that a family might receive, all of

them are found to be significant with the exception of job seekers allowance. If a family

receives any of the significant benefits it can be seen that the odds of the child having

a SEN is increased. The greatest increase can be seen with other state benefits and the

lowest can be seen with tax credit.

If a parent feels like they are finding it very difficult to manage financially it can be

seen that the odds of their child having a SEN is increased compared to if they feel like

they are coping comfortably. The greater they feel like they are struggling, the greater

the odds of their child having a SEN.

Whether or not the house that a child is living in has a problem with damp was not

found to be significant at the 5% level.

If a families income falls below the poverty line, the odds of the child having an
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intellectual disability are increased. This, along with the other variables which could be

related with a child living in poverty shows that there may be a relationship between

poverty and SEN in the UK.

Similarly to the results of the exploratory analysis of the PNS, it was found that the

odds of a child having a SEN is reduced if the child is female compared to if the child is

male. Also similarly to the Brazilian data, race was found not to be significant.

Similarly to the PNS, other disabilities are found to be significant. If a child has

another disability then the odds of them having a SEN are increased. Also if a child has

a long-term illness the odds that that they have a SEN are increased.

The general health status of a child was found to significantly affect the odds of a

child having a SEN. The worse the general health status of the child is reported to be,

the greater the odds of the child having a SEN. If it was reported that the childs health

limits their daily activities then the odds of SEN are increased compared to if their

health does not limit their daily activities. This along with the other health variables

show that there is strong evidence of a possible relationship between a child’s health and

the odds that they have SEN.

3.5 Further Analysis

Once again, the MCS has a complex sampling structure and each of the observations

has its own sampling weight. Therefore when analysing the data to determine whether

or not there is a relationship between a child having a SEN and other variables in the

data, it must first be decided whether or not these sampling weights need to be used

and if so, how they should be used.

Also, despite being less than in the PNS, there is a relatively large number of variables

to consider. A method of variable selection will need to be chosen in order to further

analyse the data and produce a model showing the relationship between SEN and the

variables from the MCS.
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Chapter 4

Methodology and Analysis -

Sampling Weights

This chapter will aim to answer the research question: When is it appropriate to include

sampling weights and how should they be used when necessary?

It will begin by discussing how sampling weights are calculated for complex survey

designs. Next a review of the current practices used to analyse data from a complex

survey design, specifically how it is advised to incorporate the sampling weights will be

conducted. Then, simulations will be conducted with the aim to show the effect that

using sampling weights has on coefficient estimates under various sampling schemes.

This chapter will also investigate whether the F-test, used by DuMouchel and Duncan

(2008) to determine the appropriateness of using sampling weights for linear regression,

can be extended using the likelihood ratio test for a logistic regression model.

4.1 How are sampling weights calculated?

Once survey data has been collected it must be appropriately weighted before analysis.

This process involves adding a new variable to the data for each respondent. The weight

given to an individual shows the projection of this individual to the population. For

example, if a person in the sample has a sample weight of 100, this person will represent

100 people in the population. The sample weights given in a data set will generally

adjust for unequal sampling probabilities, non-responses, coverage errors and various

other sampling biases (Bollen et al., 2016).
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4.1.1 Base weights

Sampling weights are usually provided when the probability of selection is unequal across

individuals in the population. In the simplest case, the sampling weight will be the

inverse of the probability of selection. For example, if an individual, i, has probability

πi of being selected in the sample then the base weight given to this individual wi can

be calculated as wi = 1/πi.

In a simple random sample the weight given to every individual will be equal and

can be calculated as N/n where N is the size of the population and n is the sample size.

For a stratified sample, the weights across different strata will vary but the weight of

each individual within the same strata will be constant. For example, for an individual

in strata k the base weight can be calculated as Nk/nk where Nk is the population size

of the strata and nk is the sample size for the strata.

If a survey has a multi-stage design then the base weight has to reflect the probability

of selection across each stage of the design. For example, in a three-stage design in which

firstly a primary sampling unit (PSU) is selected, secondly a household is selected and

thirdly an individual within the household is selected then the overall probability of

selection is calculated as the product of the probability of selection at each stage. The

weight for the individual is then calculated as the inverse of the overall probability.

4.1.2 Adjusting for non-response

In a survey it is unlikely that a response will be obtained for every question from every

sampled unit. If a household or individual fails to respond to any of the questions of the

survey, this is known as unit or total non-response. If a household or individual fails to

respond to some of the questions but does provide some data then this is known as item

non-response (Yansaneh, 2003). It is important that the non-response rate is clearly

reported in surveys along with the method in which this rate was calculated.

If non-response is by chance then it will not cause too many problems. It may result

in larger confidence intervals as a result of the smaller sample size but it will not result

in bias. However it is important to account for non-response whilst calculating sampling

weights since there is likely to be systematic differences between those who respond and

those who do not and if this is ignored any estimates produced from an analysis will
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be biased. In order for any bias caused by non-response to be reduced, either the non-

response rate needs to be small or that there needs to be minimal differences between

those who respond and those who do not (De Leeuw et al., 2012).

The primary method in which item non-response bias is reduced is imputation. Im-

putation is a process which fills in the data missing due to non-response with plausible

values in order to create a complete data set. This ensures that the original sample size

is maintained (Durrant et al., 2005).

To reduce bias caused by unit or total non-response there are three standard pro-

cedures. The first of these procedures is to adjust the weights to compensate for non-

responses. Secondly, when establishing the required sample size, a larger sample size

than is actually required can be used with the extra units making up a “reserve” sample

from which replacements for non-responses can be selected. Finally, substitution can

be used. If no response is obtained from a household then it is replaced in the sample

by another household which is similar with respect to the characteristic of interest. In

general it is recommended that adjusting the weights is the method used to compensate

for unit non-response (Yansaneh, 2003).

There are generally four stages to adjusting weights for non-response. Initially the

base weights are calculated to account for unequal sampling probabilities. Next, the

sample is partitioned into subgroups and the weighted response rates are computed for

each subgroup. Then, the non-response adjustment is calculated as the inverse of the

subgroup response rate. Finally the non-response adjusted weight is calculated as the

product of the base weight and the non-response adjustment weight.

4.1.3 Adjusting for under-coverage

When a survey is designed there is a specific population of interest which is known as

the target population. A sample frame is a list of members of the target population. A

coverage error occurs when the sample frame and the target population do not match.

Under-coverage occurs when not all members of the target population are included in the

sample frame. Over-coverage occurs when one or more units from the target population

appear more than once in the sample frame (De Leeuw et al., 2012).

Since the design of the majority of household surveys is multi-stage, coverage errors

may occur at three levels. The first of these levels is the primary sampling unit (PSU)
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level, which is generally a geographical area such as a state or a county. The second is

at household level in which households from within the selected PSUs are sampled from

a list of all available households. Lastly, is at the individual level in which a sample of

one or more people is selected from a list of available residents.

Under-coverage at PSU level is usually minimal since in general the geographical

areas which make up the PSUs cover the entire geographic extent of the target popu-

lation. However in some instances during the design stage of a survey, some PSUs will

be excluded from the sample frame due to inaccessibility as a result of civil unrest or

natural disasters for example. An additional reason for a PSU to be excluded is cost.

If a PSU is a remote area containing very few households, then it may be decided that

it is too costly to cover the area considering it will only represent a very small amount

of the target population. During the design stage it should be explicitly stated if any

PSUs have been excluded from the sample frame.

At the household level the amount of under-coverage is generally larger and therefore

a more serious concern. One reason is that in some circumstances it is difficult to define

what is meant by a household or dwelling unit. For example, how is a multi-unit structure

such as a block of apartments handled during sampling? If a house is unoccupied during

the design stage but occupied at the time of data collection this may cause it to be

missed from the sample frame. The way in which institutions, such as hospitals and

prisons, are handled may also add confusion and increase under-coverage (Groves et al.,

2011).

Generally, under-coverage at the household level is more common in surveys con-

ducted in developing countries. This is due to the fact that most census data does

not provide full details of sampling units at either the household or person level and

commonly out of date listings are used to construct the sample frame (Yansaneh, 2003).

Under-coverage at the individual level may arise since generally sampling frames

identify housing units but not people within each household. Residency rules should be

established before a survey is conducted in order to create a correct residency list for

each household.

A common residency rule is the de jure rule in which the list of residents is con-

structed from the people who “usually” reside within a household. There are a number

of problems with this rule however as it may not work in all circumstances: some people
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may have no usual address and some may have more than one; some households are

complex and the list of “usual” residents may not be easily defined; there may be dis-

agreements within a household about who resides there and who does not (Martin and

De La Puente, 1993).

There are two ways in which under-coverage can be corrected. The first of these

is reduction, improving the listings procedures used to create the sample frame in or-

der to reduce under-coverage. The second is to adjust the sample weights in order to

compensate for under-coverage.

One method of reduction can be used when it is known in advance that there are

some ineligible units listed on the sampling frame for example unoccupied households. If

there is an approximation to the prevalence of ineligible units within the sample frame,

then the sample size can be increased in order to account for this and decrease under-

coverage. A further method of reduction is to use multiple sampling frames. For example

an older list of housing units can be enhanced by a list of newly constructed housing

units (Groves et al., 2011).

If there are reliable controls available for the entire population as well as specified

subgroups of the population an attempt can be made to adjust the weights of each

sampling unit so that the sum of the weights equal the sum of the weights of the controls

within the specified subgroups. This technique is known as post-stratification and adjusts

for both non-response and under-coverage simultaneously (Yansaneh, 2003).

4.2 When should sampling weights be used?

Before analysing survey data it should be understood when and how sampling weights

should be used. In some circumstances it is essential to include sampling weights during

analysis, for example when the objective is to estimate a population mean. However,

in other cases such as regression modelling, whether or not weights should be used is a

much more complex question.

4.2.1 Descriptive statistics

When the aim is to summarise features of a data set descriptive statistics such as means

may be used. When estimating descriptive statistics, it is generally accepted that sam-
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pling weights should always be used (De Leeuw et al., 2012).

Including sampling weights allows population totals to be estimated and leads to

means being representative of the target populations. Methods for computing descriptive

statistics using sampling weights will be discussed later in the chapter.

4.2.2 Regression modelling

When the objective of data analysis is to determine whether or not there is a relation-

ship between two or more variables, regression modelling may be used. As previously

mentioned, whether or not sampling weights should be used when fitting a regression

modelling is not as clear cut as it is when estimating descriptive statistics.

There are three situations in which weighting may be necessary during regression:

calculating estimates which correct for heteroskedasticity (when the variability of the

error terms is not constant); correcting for endogenous sampling and identifying partial

effects in the presence of unmodeled heterogeneity effects (Solon et al., 2013).

When correcting for heteroskedastic error terms, the use of weights will aim to ensure

a greater precision of coefficients in both linear and non-linear regression models. It

is proposed that weighting is done based on group or strata population in order to

correct for population-size-related heteroskedasticity in the group or strata error terms.

However, it has been found that in many cases the use of weights in this way, makes

estimates much less precise (Solon et al., 2013). This finding agrees with the discussion

in a paper written by William T. Dickens. Dickens stated that individual error terms

are likely to be correlated due to group specific error components so weighting in this

way will not be appropriate (Dickens, 1990).

Solon et al. recommend that, in addition to reporting heteroskedasticity-robust

standard error estimates, that it is good practice to report both weighted and unweighted

estimates.

Endogenous sampling occurs when the selection probability is related to the response

variable. If this is the case then an analysis which ignores the selection probabilities may

lead to biases in the estimated regression parameters (Lohr, 2009). Weighting by the

inverse probability of selection can reduce the bias present without the use of weights.

Weighting is not necessary if the sampling probability varies across strata and the strata

are included within the model since the error term should no longer be related to the
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error term (Solon et al., 2013).

When identifying average partial effects in the presence of unmodeled heterogeneity

effects, it is suggested that the heterogeneity should be investigated to determine how

to best account for it rather than trying to average it out through the use of weights.

One way in which to do this is to, if possible, use a fully saturated model (Solon et al.,

2013).

Chromy and Abeyasekera express that when analysing data from a household survey

with a complex sampling design weights should be used in order to adjust for unequal

sampling probabilities and non-responses in addition to properly estimate the precision

of any estimates. However, if weights are to be ignored, assumptions are required.

One such assumption is that the design of the sample generated an equal probability

sample. Assumptions such as this are most reasonable when the analysis conducted is

the application of a regression model to study the relationship between a dependent

variable and one or more independent explanatory variables (Chromy and Abeyasekera,

2005).

When considering a binary response variable, standard statistical methods are often

inappropriate due to clustering and stratification in the sampling design. In particular,

the chi-squared and likelihood ratio tests largely increase the type I error rate when

there is strong intra-cluster correlation present. Therefore some adjustments to standard

methods are required so that inferences made from survey data are valid (Roberts et al.,

1987).

In many cases is it suggested that when it comes to fitting a regression model to

survey data that two models are fitted, one with weights and one without.

Thomas Lumley states that it often makes little difference when drawing conclusions

whether or not sampling weights are used when fitting regression models. If there is a

large difference between the estimates when weights are used it is generally an indication

that some particularly influential observations have large sampling weights. This in

turn could mean that neither the weighted or unweighted model is reliable. Sensitivity

analysis can be performed by removing the most influential observation and refitting

the model. Lumley also states that if both the weighted and unweighted estimates are

valid (the sampling weights are ignorable) then the weighted estimates will in fact be

less precise (Lumley, 2010).
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This is consistent with a suggestion made by Winship and Mare. They advise that

when conducting regression analysis with data which has sampling weights two models

should be estimated - one with unweighted data and the other with weighted data. If

the parameter estimates from the two models are similar then the unweighted model

is preferred since the estimated standard errors will be correct. If the results of the

two models are different then it may indicate that the model is missing non-linear or

interaction terms (Winship and Radbill, 1994).

Lohr also agrees, advising that both unweighted and weighted regression models

should be fitted. So long as the model fitted is a good one, then the estimates ob-

tained from fitting a regression without weights should be similar to those obtained with

weights. If this is not the case then it may suggest that the proposed model does not

fit well for some of the population. It is proposed that if the model fitted is a good one

then the only difference between a weighted and unweighted model would be apparent

in the intercept term (Lohr, 2009).

Chromy and Abeyasekera advise that after a non-survey statistical package has been

used to fit a regression model and variable selection has been performed, a survey sta-

tistical package, which acknowledges the survey design, should also be used to fit the

chosen model. This type of software can be used to fit logistic regression models based

on survey data and obtain estimates of parameters and also the standard errors of these

parameters. The estimates of the parameters based on the sample data will be estimates

of what would be obtained from fitting the model to the entire finite population (Chromy

and Abeyasekera, 2005).

4.2.3 Testing whether to use sampling weights

Since advice of whether or not to use sampling weights in regression analysis is largely

vague, a test of the appropriateness of weighting would reduce confusion and make the

decision more objective. Tests to determine whether or not weighting is required do

exist but due to lack of awareness amongst researchers, certain traditions in different

fields (either always weighting or never weighting) and the fact that some of these tests

are not available in current R packages, these tests are rarely applied. Most of these

tests fall into one of two categories: difference in coefficient and weight association tests

(Bollen et al., 2016).
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Difference in coefficient tests fit both weighted and unweighted regression models

and compare the coefficients to determine whether or not the difference between them

is significantly different from zero or not. Weight association tests fit one regression

model containing both the unweighted covariates along with some transformed form of

the covariates and examine the coefficients of the transformed covariates. Difference in

coefficient tests give a direct comparison between weighted and unweighted estimates

whereas weight association tests do not (Bollen et al., 2016).

4.2.3.1 Difference in coefficient tests

One way to test the differences between the coefficients of a weighted and an unweighted

model was proposed by Hahs-Vaughn and Lomax. They suggest that both models are

fitted and the confidence intervals of the coefficients are examined. If the confidence

intervals for the two models overlap then they state that weighting makes no difference

and analysis should continue ignoring the weights (Hahs-Vaughn and Lomax, 2006).

Pfefferman proposed that a test developed by Hausman to identify model misspec-

ifications could be used to compare the coefficients of a weighted and an unweighted

model (Pfeffermann, 1993). The underlying idea of the Hausman test is that if a model

is specified correctly then two different consistent estimators of a parameter will, as the

sample size increases, converge to the same value. If the model has been misspecified

then the estimators will diverge.

Assumptions made by Hausman for this test are: both parameter estimates are con-

sistent estimators of the true parameter; both parameter estimators have asymptotic

normal distributions and also that the second of the two parameter estimates is asymp-

totically efficient (Bollen et al., 2016).

The null hypothesis in the Hausman test is that the model has been specified cor-

rectly. The Hausman test creates a chi-squared test statistic based on the differences

between the coefficients of two models. The inverse of the covariance matrix of these

differences is pre-multiplied and post-multiplied by the differences to form this statis-

tic. This test statistic is then compared to a Chi-squared distribution with degrees of

freedom equal to the number of coefficients in the model (Hausman, 1978).

Pfeffermann proposed that this test could be used to assess the need for the use of

sampling weights in regression models. The coefficients of the weighted and unweighted
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models are compared. The covariance matrix used in this test is equal to [V̂ [β̂w] −

V̂ [β̂u]] where β̂w and β̂u are the coefficient matrices of the weighted and unweighted

models respectively. This matrix is pre and post multiplied by the vector of differences

between the coefficients of the two models and this value is compared to a Chi-squared

distribution.

Asparouhav and Muthen also use a Hausman test to compare the differences between

weighted and unweighted models however they use a slightly modified covariance matrix

to that as used by Pfeffermann. In this case, the matrix to be pre and post multiplied

by the vector of differences is given by [V̂ [β̂w] − V̂ [β̂u] − 2C] where C is defined to be

the covariance matrix of the two estimators (Asparouhav and Muthen, 2007).

4.2.3.2 Weight Association Tests

Similarly to some of the difference in coefficient tests discussed above, many weight

association tests have been derived from a Hausman test for misspecification. Hausman

tests the significance of βM after fitting the model Y = Xβ + XMβM + ε, where Y is

the vector of the response variable, X is the design matrix of the explanatory variables

and XM is the design matrix X which has been transformed in some way. An F-test

with the null hypothesis H0 : βM = 0 is then used to test whether or not the model has

been correctly specified (Hausman, 1978).

Whereas Hausman used this method for testing for misspecification, DuMouchel and

Duncan applied this test to determine whether or not weights should be used. They

use ordinary least squares to fit Y = Xβu + Xwβw + ε where Y and X are as defined

above and X is transformed to Xw by applying the sampling weights. Similarly to the

Hausman test, an F-test with the null hypothesis H0 : βw = 0 is used to determine

whether the coefficients of all of the weighted covariates are statistically significantly

different to zero. If the null hypothesis is rejected then weights are required. If there is

a failure to reject the null hypothesis then it is suggested that a weighted analysis is not

necessary (DuMouchel and Duncan, 2008).

Fuller also adapted the Hausman test to determine the appropriateness of using

sample weights during analysis. Originally Fuller proposed transforming the design

matrix in the same way as DuMouchel and Duncan, however, later he proposed a further

adaptation to the test. The model Y = Xβu + Wβw + ε where W is the vector of the
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sample weights, is fitted and the null hypothesis H0 : βw = 0 is once again tested with an

F-test. Fuller also suggested that if only certain covariates are of interest, then a subset

of WX can be used in place of XMβM in the test originally proposed by Hausman

(Fuller, 2009).

A weight association test which differs from the Hausman test was proposed by

Pfeffermann and Sverchkov. Residuals from an Ordinary Least Squares regression of the

dependent variable on the original covariates (ignoring weights) are calculated and then

correlated with the sampling weights. The square and the cube of the residuals are also

correlated with the weights. A Fisher’s F-test or a bootstrap estimation can then be

used to determine whether or not these correlations are zero and therefore whether or

not weights are required (Pfeffermann and Sverchkov, 1999).

A further test proposed by Pfeffermann and Sverchkov again calculates residuals

from an ordinary least squares regression of the dependent variables on the original

covariates and then uses ordinary least squares regression of these residuals on the weight

variable. A t-test is then performed to determine whether the coefficient of the weights

is statistically significant to zero and hence whether or not the weights should be used

(Pfeffermann and Sverchkov, 1999).

These tests have all been developed for assessing the use of weights in linear regression

models. If the response is binary and a logistic regression model is used, an F-test can

no longer be used. It will be useful to examine whether or not these tests can be further

developed to account for binary responses. This will be done in the simulations section

later in this chapter.

4.3 How should sampling weights be used?

Once it has been determined whether or not it is appropriate to use sampling weights

within an analysis, the question of how best to incorporate the weights arises. When

analysing survey data there are three different approaches which can be used: model-

based, design-based and model assisted (Lehtonen and Pahkinen, 2004).

85



4.3.1 Model-based analysis - ignoring weights

In areas of statistics which are not concerned with survey data, generally analysis takes a

model-based approach. This means that inference is based on a model which is assumed

to describe the relationship between the explanatory variables and the response variable

(Lohr, 2009).

This approach does not account for a complex survey design and instead assumes

that the data is a result of simple random sampling from an infinite population and is

independent and identically distributed.

For a single explanatory variable the linear model used, in the model-based setting,

is of the form

Yi = β0 + β1xi + εi (4.1)

where Yi denotes the response variable and xi an explanatory variable. The error

terms εi are assumed to satisfy the following conditions:

1. E(εi) = 0 for all i.

2. V (εi) = σ2 for all i.

3. Cov(εi, εj) = 0 for all i 6= j.

These assumptions are essential in order to make inference about the true parameters

β0 and β1 as well as predicted values of the response variable (Lohr, 2009).

If the observations truly follow the chosen model then the sample design should

have no effect on the estimates so long as the only relationship between the inclusion

probabilities and the response variable is through the explanatory variables (Lohr, 2009).

When the response of interest is continuous, linear regression is the most common

model-based approach. In this case, the aim is to estimate β in the model y = XT β

which is calculated by the ordinary least squares estimator:

β̂ = (XTX)−1XTy. (4.2)

When the response variable is binary, logistic regression is used. The standard logistic

regression model is of the form :
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log

(
p

1− p

)
= XTβ (4.3)

where p denotes the probability that the response variable takes a value of 1.

The regression coefficients can be estimated using maximum likelihood estimation.

Since it is not possible to explicitly define the values of the coefficients which maximise

the likelihood function, an iterative process such as iteratively reweighted least squares

(IRWLS) must be used.

4.3.2 Model-based analysis - including weights

If interest lies in the relationship between the mean of one (normally distributed) variable

(the response variable Y ) and one or more further variables (explanatory variables X)

then a linear regression model may be used. The general form of such a model is

E[Y ] = β0 +Xβ where V ar[Y ] = σ2. (4.4)

This implies that the variance of the response variable is constant and despite having

no influence on the interpretation of β0 and β it does affect the precision of the estimates.

When using a regression model, generally the aim is to identify and estimate an

underlying model which could have generated the data. One problem with using a design-

based approach is that this is not done. However, results of design-based regression can

be justified through the use of an extension of a standard linear model (Kott, 1991).

To obtain estimates for the parameters β0 and β which account for a complex sam-

pling structure, sampling-weighted least squares can be used. This means finding the

values of the parameters which minimise the estimate of the population sum of squared

residuals:

R̂SS =

n∑
i=1

1

πi
(Yi − β0 −Xiβ)2. (4.5)

Solving this, the parameter estimates can be calculated using:

β̂ = (XTWX)−1XTWY (4.6)

where X is the n× p design matrix, W is the n× n matrix with 1
πi

on the diagonal
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and Y is the vector of responses.

The variance of the parameter estimates is given by:

V ar(β̂) = σ2(XTWX−1). (4.7)

4.3.3 Design-based analysis

When analysing complex survey samples, generally a design-based approach is used. This

means that a population, whose data values are unknown but treated as fixed, is specified.

Since the the sample design of the survey is under the control of the researcher, any

sampling probabilities are known. Design-based methods of analysis are used to make

estimates concerning the fixed, finite population and are not able to make generalisations

for other populations (Lumley, 2010). A design-based approach to analysis acknowledges

that the data is a sample from a finite population and gives a sampling weight to each

observation. This differs from a model-based approach to analysis which treats the data

as a simple random sample from an infinite population (Wheeler et al., 2008).

In order to use design-based methods, there are certain conditions which need to be

met:

1. Each individual in the population must have a non-zero probability (πi) of being

selected as part of the sample.

2. This probability should be known for each individual in the sample.

3. Each pair of individuals in the population should have a non-zero probability (πi,j)

of both being included in the sample.

4. This probability should be known for each pair of individuals in the sample (Lum-

ley, 2010).

4.3.3.1 Design-based methods of obtaining population estimates

If interest lies in the population total of a certain measure X, for example income, the

Horvitz-Thompson estimator can be used. When the data is from a sample of size n

and a sampling weight of 1/πi indicates that individual i was selected with probability

πi, the Horvitz-Thompson estimator is given by:
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T̂X =

n∑
i=1

1

πi
Xi =

n∑
i=1

X̌i, (4.8)

where X̌i = 1
πi
Xi.

From this, the mean can be estimated using

µ̂X =
1

N

n∑
i=1

X̌i (4.9)

where N is the population size.

For a simple random sample of size n all sampling weights are equal to N/n. This

means that the estimate of the mean of X is given by the sample mean:

µ̂X =
1

N

n∑
i=1

X̌i =
1

N

n∑
i=1

N

n
Xi =

1

n

n∑
i=1

Xi. (4.10)

4.3.3.2 Design-based methods for investigating causal effects - linear regres-

sion

As before, if we are interested in identifying a linear relationship between a response

variable and p explanatory variables, multiple linear regression can be used. Again, we

wish to estimate β in the model y = xTβ.

Using a design-based approach this estimate can be found using the following formula:

β̂ =

(∑
i∈S

wixix
T
i

)−1∑
i∈S

wixiyi (4.11)

where S is the sample, wi is the sampling weight for observation i x is the n × p

design matrix and y is the vector of responses.

An estimator for the variance of β̂ is then given by

V̂ (β̂) =

(∑
i∈S

wixix
T
i

)−1

V̂

(∑
i∈S

wiqi

)(∑
i∈S

wixix
T
i

)−1

(4.12)

with

qi = xi(yi − xTi β̂). (4.13)

and where V̂
(∑

i∈S wiqi
)

is an estimate for the variance of a total based on obser-

89



vations {wiqi}.

For a simple random sample:

V̂

(∑
i∈S

wiqi

)
= (1− n

N
)N2

s2
q

n
(4.14)

where

s2
q =

1

n− 1

∑
j∈S

(qj − q̄)2. (4.15)

For a stratified sample:

V̂

(∑
i∈S

wiqi

)
=

H∑
h=1

(1− nh
Nh

)N2
h

S2
h

nh
(4.16)

where H is the number of strata and

s2
h =

1

n− 1

∑
j∈Sj

(qhj − q̄h)2. (4.17)

An alternative way of expressing these equations is given by Sarndel et al. In the

context of a finite population, β can be estimated using the following:

β̂ =

(
n∑
i=1

XiX
T
i

)−1 n∑
i=1

Xiyi (4.18)

where X is a matrix of covariates and y is the response vector.

In a model-assisted setting, initially β is expressed as a vector of population totals

and then estimated by substituting the appropriate weighted estimators for these totals.

More specifically, firstly for j = 1, . . . , p, and j′ = 1, . . . , p, where p denotes the

number of covariates, the population totals for k ∈ S, where S is the sample, can be

expressed as

tjj′ =
n∑
j=1

XjkXj′k and tj0 =
n∑
j=1

Xjkyk. (4.19)

If we let T =
∑n

i=1 XiX
T
i and t =

∑n
i=1 Xiyi Equation 4.18 can then be expressed

as
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β̂ = T−1t (4.20)

which is a function of totals tjj′ and tj0. These totals can be approximated by their

weighted estimators

t̂jj′ =

n∑
j=1

XikXj′k

πk
and t̂j0 =

n∑
j=1

Xjkyk
πk

(4.21)

where πk is the sampling weight for observation k.

Therefore β can now be estimated using:

β̂ =

 n∑
j=1

XikXj′k

πk

−1 n∑
j=1

Xjkyk
πk

 . (4.22)

Once again, this estimate is not unbiased and, similarly to design-based analysis, the

variance formula is an approximation (Särndal et al., 2003). The variance estimator is

defined as:

V̂ (β̂) =

(
n∑
k=1

XkX
T
k

πk

)−1

V̂

(
n∑
k=1

XkX
T
k

πk

)−1

(4.23)

where V̂ is a symmetric p× p matrix with elements

v̂jj′ =
n∑
k=1

n∑
l=1

∆̌kl

(
Xjkek
πk

)(
Xj′lel
πl

)
(4.24)

where ek = yk − β̂Xk and

∆̌ = 1− πkπl
πkl

. (4.25)

For a stratified sample, with population size U{1, . . . , N}, let Uh be the subset of

the index for the elements in the hth stratum, h = 1, . . . ,H. Then U = U1 ∪ . . . ∪ UH

and N1 + . . .+NH = N .

Let n be the sample size and nh, h = 1, . . . ,H be the size of hth stratum so that

n1 + . . .+ nH = n.

The probability of observation k and l being selected for the sample is given by:
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πk` =


nh(nh−1)
Nh(Nh−1) , k, ` ∈ Uh
nh
Nh

ni
Ni
, k ∈ Uh, ` ∈ Ui, h 6= i.

(4.26)

4.3.3.3 Design-based methods for investigating causal effects - logistic re-

gression

When the response variable Y is binary, logistic regression is used. Similarly to linear

regression, a complex sampling design will affect the standard errors of the logistic

regression coefficients (Lohr, 2009).

When weights are ignored, maximum likelihood estimation is generally used to obtain

estimates for the parameters. This is not the case when sampling weights are used.

Instead, quasi-likelihood methods are used.

Starting with the logistic regression model given by Equation 4.3 with mean E(yi) =

µ(β), a quasi-maximum likelihood estimator (MLE) β̂ of β can be found by solving the

following equation

T̂ (β) =
n∑
i=1

wiui(β) = 0 (4.27)

where wi is the sampling weight for the i-th observation and

ui(β) = [yi − µi(β)]xi. (4.28)

An estimate of the covariance matrix of β̂ is then given by

V̂ ar(β̂) = [IO(β̂)]−1V (T̂ )[IO(β̂)]−1 (4.29)

where IO(β̂) is the observed information matrix and V (T̂ ) is the estimated covariance

matrix of the estimated total T̂ (β) (Chambers and Skinner, 2003).

4.3.4 Model-assisted methods

A model-assisted approach to survey sample analysis is a combination of a both a model-

based and and a design-based approach. A model is used to establish any parameters of

interest and then inference is based upon the design of the survey. More specifically, a

particular model is fitted because it is believed to be a possible candidate for generating
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the population, however the sampling weights are used to estimate the parameters and

the sampling design is used to estimate the variance of the estimate (Lohr, 2009).

4.4 Simulations

In order to understand the role of sampling weights when analysing survey data more

thoroughly, analysis of data in a variety of different settings will be conducted. Initially

different sampling schemes will be looked at then, the proportion of the population

sampled will be varied and finally a binary response variable will be considered. For

each circumstance, a model-based analysis, both with and without weights, as well as a

design-based analysis will be conducted.

In addition to fitting regression models using both model-based and design-based

approaches, for each scenario the weight association test proposed by DuMouchel and

Duncan will be conducted in order to see whether or not it would be recommended

that the sampling weights should be used during regression analysis. Since these tests

have been developed for continuous responses, during this section it will be determined

whether or not a likelihood ratio test can be used in place of an F-test when considering

a binary response.

For the continuous responses, initially a linear model, Y = Xβ, will be fit using

ordinary least squares. Next, an extended model including the original covariates plus

the covariates multiplied by the sampling weights , Y = Xβu + Xwβw will be fit. Then

an F-test can be used to test the null hypothesis H0 : βw = 0 to determine whether

the coefficients of all of the weighted covariates are statistically significantly different

to zero. If the null hypothesis is rejected then this suggests that weights are required

during regression analysis. If there is a failure to reject the null hypothesis then it is

suggested that a weighted during regression analysis is not necessary.

The population data consists of 1000 observations of six continuous variables (one

response and five explanatory). Each observation also belongs to one of three strata.

The true values of β are β0 = 1.5, β1 = 1, β2 = −0.5, β3 = −1, β4 = −0.5, β5 = 2.
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4.4.1 Different sampling schemes

A variety of different sampling schemes will be considered. In this section the sample

size is selected to be 100. Initially a simple random sample will be taken, then stratified

samples will be selected using multiple different methods to determine the sample size

of each strata.

4.4.1.1 Simple random sampling

For the simple random sample, each of the observations has the same sampling weight.

The probability of selection for each observation is 0.1 meaning that the weight of each

observation is 10. Because of this it is expected that there will be little to no difference

between the three analysis approaches.

Figure 4.1: The difference between the coefficient estimates and the true values for the
simple random sample not including weights (blue), including weights - model-based
(pink) and including weights - design-based (orange).

The results from the three different modelling approaches can be seen in Figures 4.1

and 4.2. Figure 4.1 shows the difference between the coefficient estimates and the true

values. Since all weights are equal, the coefficient estimates obtained from each of the

methods are also equal. It can be seen the range of this difference between simulations

is largest for the intercept and smallest for x4.

Figure 4.2 shows the standard errors for each of the coefficient estimates. It can be

seen that, across all three methods, the range in standard errors for the coefficient of

the intercept term is the largest and is smallest for the coefficient of x4. This was to

be expected as it supports what was seen in the previous figure. Dissimilarly from the
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Figure 4.2: The standard errors of the coefficient estimates for the simple random sam-
ple not including weights (blue), including weights - model-based (pink) and including
weights - design-based (orange).

coefficient estimates, there is a difference in the range of the standard errors between

methods. For all of the coefficients the median standard error calculated using the

design-based method is smaller. The range of the standard errors however, is larger for

the design-based models than it is for the two model-based approaches.

F-test

Since under simple random sampling, all sampling weights are equal, it is not possible

to fit the extended model due to singularity. For a simple random sample it is gener-

ally not recommended that sampling weights are necessary however, the three methods

discussed above have been conducted as a reference.

4.4.1.2 Stratified sampling

There are a variety of different ways in which the sample size selected from each strata

in a stratified random sample can be selected. Selecting a fixed number, proportional

allocation and optimal allocation will be considered. An underlying relationship between

the response variable and strata will also be considered to determine how sampling

weights effect the results of analysis both when strata is ignored and when strata is

included.

4.4.1.2.1 Fixed number in each strata

The first stratified sample selected will select a fixed number of observations from each
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of the strata. In the sample, the frequency of observations in strata 1, 2 and 3 is 204,

358 and 438 respectively. It is decided that the sample will consist of 30 observations

from strata 1, 40 observations from strata 2 and 30 observations from strata 3.

Since a simple random sample of fixed size is selected from each strata, each obser-

vation within the same strata will have the same sampling weight. The probability of

selection for each strata is πi1 = 0.14706, πi2 = 0.11173 and πi3 = 0.06849. Therefore

the corresponding weights are wi1 = 6.8, wi2 = 8.95 and wi3 = 14.6 for observations in

strata 1, 2 and 3 respectively.

Figure 4.3: The difference between the coefficient estimates and the true values for the
stratified sample not including weights (blue), including weights - model-based (pink)
and including weights - design-based (orange).

Figure 4.4: The standard errors of the coefficient estimates for the stratified sample not
including weights (blue), including weights - model-based (pink) and including weights
- design-based (orange).

Figure 4.3 shows that there is a slight bias with the coefficient estimates of the
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intercept with the median falling below zero. There is also a slight bias for the coefficient

of x6. The coefficient estimates are the same for model-based regression including weights

and the design-based regression but are slightly different to the model-based regression

ignoring the weights. The difference however appears to be very small.

Figure 4.4 shows boxplots of the standard errors for the simulations of the stratified

sample. Similarly to the results from the simple random sample the range of the standard

errors is highest for the intercept term across the three different methods. The median is

also highest for this term for all three methods. Across all three methods, the median of

the standard errors is lower for the design-based regression. For all of the estimates, with

the exception of x2, the median of the standard errors for the model-based regression

including weights is lower than that of the model-based regression ignoring the weights.

The difference in medians between these two methods however appears to be small.

F-test

When the F-test was conducted for this scenario, it was found that using sampling

weights was recommended 8% of the time. From the results of the above simulations

it appears that the coefficient estimates and the standard errors of these estimates are

similar across all three methods with any differences found being small. Therefore, it

is not unexpected that in this situation, the F-test does not recommend the use of the

sampling weights.

However, even though the differences found here are small, it has been shown that

there is a difference between the three methods when stratified sampling has been used.

When weights are used, the coefficient estimates are the same regardless of whether a

model-based or a design-based approach is used. The standard errors of the estimates

however, differ across all three methods with, generally, the design-based approach giving

the lower standard errors.

4.4.1.2.2 Proportional allocation

The next method of determining the sample size selected in each strata is proportional

allocation. This means that a fixed proportion of each strata is chosen using a simple

random sample within each strata. For these simulations 10% of each strata will be

sampled.
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Selecting 10% of each strata means that the sample size in strata 1, 2 and 3 is 20, 36

and 44 respectively. This means that the sampling weights for each strata are wi1 = 10.2,

wi2 = 9.9444 and wi3 = 9.9545. Since these three sampling weights are all roughly the

same, it is expected that the results of the analysis of this sample will be very similar to

the results of the analysis of the simple random sample.

Figure 4.5: The difference between the coefficient estimates and the true values for the
stratified sample with proportional allocation not including weights (blue), including
weights - model-based (pink) and including weights - design-based (orange).

Figure 4.6: The standard errors of the coefficient estimates for the stratified sample
with proportional allocation not including weights (blue), including weights - model-
based (pink) and including weights - design-based (orange).

It can be seen in Figure 4.5 that the coefficient estimates across the three methods

all appear to be equal. This was to be expected since the sampling weights across the

three strata are all close to 10. Once again, there is a bias on the intercept term.

The difference between the three methods can be seen in the boxplots of the standard
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errors of the coefficient estimates. Both model-based approaches (ignoring and including

weights) give similar standard errors. The median of the standard errors across all

estimates is lower for the design-based analysis than it is for the model-based analysis.

The range of the standard errors, however, is larger across all of the estimates for the

design-based regression.

F-test

Since the sampling weights for each strata when using proportional allocation are all

similar to each other, it would be expected that there are very few instances, if any, in

which it is recommended that sampling weights are included in regression analysis. It

was found using the F-test that the use of sampling weights was recommended 7% of

the time. This is surprisingly close to the number of times recommended in the previous

stratified example.

Once again, despite in general this test not recommending that sampling weights are

used, it has been shown that there is a difference in the approaches which can be taken.

If a model-based approach is chosen then there appears to be little difference between

whether or not weights are used. There has been shown to be a difference between model-

based approach and a design-based approach when it comes to calculating the standard

errors. The median standard error is lower when taking a design-based approach however

the variability in the standard errors is also greater.

4.4.1.2.3 Optimal allocation

The final way in which the sample size within each strata is determined which will

be considered is optimal allocation. When a survey is being conducted, there will be

certain costs associated with taking an observation for each strata. The purpose of

optimal allocation is to obtain the most information possible with the lowest survey cost

(Lohr, 2009).

The following formula is used to calculate the optimal sample size in stratum h:

nh =

 NhSh√
ch∑H

l=1
NlSl√
cl

n (4.30)

where Sh is the standard deviation of the response variable in stratum h, ch is the
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cost associated with taking an observation in stratum h and H is the number of strata

(Neyman, 1934).

Using this formula, keeping equal cost across the strata, the sample size selected from

each stratum is 19, 35 and 46. The weights for each stratum are therefore wi1 = 10.73684,

wi2 = 10.22857 and wi3 = 9.52174.

Figure 4.7: The difference between the coefficient estimates and the true values for the
stratified sample with optimal allocation not including weights (blue), including weights
- model-based (pink) and including weights - design-based (orange).

Figure 4.8: The standard errors of the coefficient estimates for the stratified sample with
optimal allocation not including weights (blue), including weights - model-based (pink)
and including weights - design-based (orange).

Figures 4.7 and 4.8 show that the results across the three methods are similar when

optimal allocation is used as when proportional allocation is used. Once again, there is

little to no difference in the coefficient estimates between the three methods. There is

also still a slight bias in the estimate of the intercept across all three methods.
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Similarly, the median standard error for each of the estimates is smallest for the

design-based regression than for the model-based regression with the range of the stan-

dard errors also being largest when using the design-based methods.

F-test

It was found that using sampling weights was recommended 5% of the time using

the F-test described above. This is a similar amount of times to both of the previous

scenarios. As before, this is unsurprising since the coefficient estimates calculated both

with and without weights are found to be very similar. Again, the main difference

between the three approaches is with the standard errors although this difference is

small.

4.4.1.2.4 Relationship between sampling scheme and response

Finally the effect of sampling weights when there is an underlying relationship between

the response variable and strata is considered. When simulating the response variable,

strata has been used as a covariate. The true regression coefficients for strata 2 and

strata 3 are 1 and 2 respectively. The number selected for the sample in each strata

will be the same as when a fixed number was selected from each strata (30, 40, 30) and

therefore the weights of the observations in each strata will also be the same as in these

simulations.

Two analyses will be conducted: the first will not include strata as an explanatory

variable and the second will include strata.

Analysis not including strata

Initially, a linear regression model will be fitted using only the continuous covariates.

It is generally recommended that if the sampling scheme has a relationship with the

response variable and not accounted for in the explanatory variables, then weights should

be used. Therefore, from the literature it is expected that in this scenario it will be

recommended that sampling weights are used the majority of the time. It is expected

that the estimated coefficients in the analyses using the sampling weights will be closer

to the true values than when weights are ignored.

The coefficient estimates minus the true values can be seen in Figure 4.9. Once again,

the coefficient estimates are the same for model-based analysis including weights and the

101



Figure 4.9: The difference between the coefficient estimates and the true values for the
stratified sample with underlying relationship (ignoring strata) not including weights
(blue), including weights - model-based (pink) and including weights - design-based
(orange).

Figure 4.10: The standard errors of the coefficient estimates for the stratified sample
with underlying relationship (ignoring strata) not including weights (blue), including
weights - model-based (pink) and including weights - design-based (orange).
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design based analysis. The biggest difference between the methods can be seen with the

intercept term. This difference is the opposite of what was expected. When weights are

included, both in a model-based and a design-based regression, the bias of the coefficient

estimate for the intercept term is larger than when weights are not included.

For the remaining estimates however, the difference between the coefficient estimates

and the true values are as expected and are smaller when weights are included than

when they are not. When weights are included, the median of this difference for all of

the estimates with the exception of x6 is very close to zero.

Figure 4.10 shows the standard errors of the estimates. As was seen previously, the

range of the standard errors for the design-based analysis is greater than for both of the

model-based analyses across most of the coefficients. The median of the standard errors

across all of the coefficient estimates are lower for the model-based analysis that includes

when weights are not included and then lower again when design-based regression is used.

F-test

When an F-test is used to test the appropriateness of including the sampling weights

in this scenario, it is found that it is recommended 100% of the time that weights are

used. From the literature this was expected.

The results of the analysis show that including weights tends to improve the coeffi-

cient estimates for the continuous covariates however not for the intercept term. Using

a design-based analysis lowers the median standard error of the coefficient estimates

however the range of these standard errors is generally increased compared to when a

model-based approach is used.

Analysis including strata

When the response variable has a relationship with the sampling scheme, it is gen-

erally recommended that either sampling weights are used or the sampling scheme is

accounted for in the covariates. Next, a linear regression model will be fit including

strata as a factor. This will aim to show the difference between the two different recom-

mended approaches.

Figure 4.11 shows the coefficient estimates minus the true values. It can be seen that

there is still a bias on the intercept term however it is smaller than when strata is not

included. There is also slight bias for the coefficient estimates of strata 2 and strata 3.

The bias for all of the coefficient estimates is smaller when sampling weights are used
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Figure 4.11: The difference between the coefficient estimates and the true values for the
stratified sample with underlying relationship (including strata) not including weights
(blue), including weights - model-based (pink) and including weights - design-based
(orange).

Figure 4.12: The standard errors of the coefficient estimates for the stratified sample
with underlying relationship (including strata) not including weights (blue), including
weights - model-based (pink) and including weights - design-based (orange).

than when they are not.

Figure 4.12 shows the standard errors of the coefficient estimates. The standard

error of the intercept estimate is larger for all three methods than it is for all of the

other covariates. The model-based approach ignoring weights has the lowest median

and smallest range (excluding a slight outlier) for the intercept than both of the ap-

proaches which include the sampling weights. This is also the case for the estimates of

the coefficients of x6 and both of the strata covariates. The range of the standard errors

is yet again greater for the design-based estimates than for the model-based estimates
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however the difference is generally small.

Since the sampling weight is the same for each strata and strata is being used as

a factor in the regression model, it is not possible to fit the extended model in order

to use an F-test to determine whether or not it is recommended to use weights in this

scenario. Looking at the results from the analysis however it seems that there is only a

very small difference in the coefficients between both the coefficient estimates and the

standard errors of these estimates between the three methods. Therefore, it is expected

both from these results and also the literature that if strata is used as a covariate, then

it is not recommended that sampling weights are also used.

Comparing the results of the analysis when strata is included in the regression model

with the regression when strata is ignored, it can be seen that the biggest difference is

found with the intercept term. When, strata is excluded and sampling weights are used,

there is a much larger bias for the estimate of the intercept. When strata is excluded, the

median bias for the remaining estimates is close to zero whether sampling weights are

used or not. When strata is included as a factor, there is a slight bias on the intercept,

one of the continuous covariates and both of the levels of the strata factor.

It has been found that when there is a relationship between the response variable and

the sampling scheme that is is important to account for this is some way when fitting

a regression model. Assuming in this scenario that relationship of interest is between

the response variable and the continuous covariates, then there is very little difference in

interpretation between the two recommended methods. Therefore, if incorporating the

sampling scheme is possible then sampling weights are not needed. In many surveys,

however, the sampling scheme is generally more complicated and may include a lot more

strata than what has been used in these simulations. Therefore, including strata as a

factor may mean that a large number of coefficients need to be estimated and may lead

to a model which is difficult to interpret.

4.4.2 Different sampling size

As the size of the sample increases, the proportion of the population sampled also in-

creases. Therefore the larger the sample, the more representative of the population the

sample may be. This section will aim to show how the effect of including sampling

weights in analysis changes as the size of the sample increases.
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Since it was previously shown that there is little to no difference in the results of the

three different methods when looking at a simple random sample and a stratified sample

with proportional allocation, from now on we will look only at the latter along with the

other scenarios described above.

4.4.2.1 Sampling 10% of the population

In the previous section, the sample size was 10% of the total population. It was found

that when the response variable had no relationship with the response variable, more of-

ten than not it was not recommended that sampling weights were necessary in regression

analysis. The difference between design-based regression and model-based regression (in-

cluding weights) lay in the standard errors. It was found that, in general, the estimates

were less precise when sampling weights were used.

When there was a relationship between the response variable and the sampling

scheme it was recommended every time that weights be included. From the literature

it was suggested that the sampling scheme could be accounted for either by using the

sampling weights or by including the strata used during sampling as covariates in the

regression model. It was found that there was little difference in how the relationship

of interest would be interpreted between both of these methods. In the simulations con-

ducted, it was simple to compute estimates using either method however if the sampling

scheme is more complicated than the one used here, it may be much more difficult to

include the strata within the regression model and therefore computing estimates using

the sampling weights may be the most logical method to use.

4.4.2.2 Sampling 20% of the population

Next the sample size will be doubled in order to contain 20% of the population. The

boxplots produced can be found in the Appendix.

For all of the sampling schemes considered, the results follow a similar pattern. The

coefficient estimates are all very similar to when only 10% of the population was sampled.

The standard errors are also very similar to what was seen above. As would be expected,

the range of the standard errors of the estimates is smaller when a higher proportion of

the population has been sampled.

When using the F-test discussed above it was found that in the majority of instances,
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with the exception of when there is a relationship between the response variable and

sampling scheme, it was not found necessary to include the sampling weights when using

regression. For a stratified sample in which a fixed number is selected from each strata,

it was found that the use of sampling weights was recommended only 2% of the time.

For stratified sampling using proportional allocation and optimal allocation weighting

was found necessary 4% and 7% of times respectively. When there is a relationship

between the response variable and the sampling scheme, it was found that weights were

recommended 91% of the time which is a reduction compared to the previous results.

Comparing these results to when 10% of the population was sampled, it can be

seen that with the exception of when optimal allocation is used, when the proportion

of the population sampled is increased, it is recommended fewer times that sampling

weights are required. This may be because the more of the population sampled, the

more representative the sample will be of the population and so sampling weights may

not be necessary.

4.4.2.3 Sampling 50% of the population

Finally, the sample size will be increased to contain 50% of the population. It was seen

previously that generally with an increase in the proportion of the population sampled

the percentage of times that it is recommended that using sampling weights is necessary

is decreased. Therefore it is expected that when half of the population is sampled that

the sample will be representative enough of the population that the use of weights is

recommended very few times.

The boxplots produced can be found in the Appendix. It can be seen that when

looking at the coefficient estimates, a similar pattern to that seen when 10% and 20% of

the population was sampled can be seen again. The estimates are equal when weights

are included regardless of whether a model-based or a design-based approach is taken.

When looking at the standard errors, similarly to the previous simulations, in gen-

eral the median standard error for each of the estimates is lower when a design-based

approach is used than a model based however the range is greater. Once again, the range

of the standard errors is smaller when 50% of the population is sampled compared to

when 10% or 20% is sampled.

It is when looking at the results of the F-test to determine whether or not sampling
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weights should be used that some differences arise from the previous simulations. For the

stratified sample in which a fixed number is sampled from each strata, it was found that

the use of weights was recommended 3% of the time. This is very similar to when 20%

of the population was sampled. When proportional allocation and optimal allocation

were used the inclusion of weights was recommended 4% and 2% of the time respectively.

For proportional allocation this is the same as when 20% of the population was sampled

and for optimal allocation this is a decrease. When there was a relationship between

the response variable and the sampling scheme it was found that the use of weights was

recommended 0% of the time. This is a large decrease from when both 10% and 20% of

the population was sampled. This may be due to the fact that when a large proportion

of the population is sampled, the sample is a lot more representative of the population

and sampling weights may no longer be required.

4.4.3 Binary response variable

The response variable of interest is not always continuous and so instead of linear regres-

sion, logistic regression is used. The majority of the literature is concerned with linear

regression and so it will be interesting to see whether or not the use of sampling weights

effects analysis when using logistic regression.

Similarly to the linear regression simulations above, when using logistic regression

several sampling methods will be considered. Stratified sampling with fixed number in

each strata, using proportional allocation and optimal allocation will be considered as

well as observing the effect of sampling weights when there is a relationship between the

response variable and the sampling scheme.

For each scenario three logistic regression models will be compared. The first will

use a model-based approach and ignore the sampling weights. The second will also use

a model-based approach but this time the sampling weights will be used in order to

estimate the regression coefficients and the variances of these estimates. Finally, the

third will take a design-based approach.

The true values of the regression coefficients remain unchanged from the previous

simulations. The response variable has been simulated following a binary distribution,

taking values of 0 or 1, with P (Y = 1) = exp(η)/(1 + exp(η)) where η = Xβ. The

population contains 463 zeros and 537 ones.
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It will no longer be possible to use the F-test applied in the above simulations to

establish whether or not using weights is necessary. Instead, it will be determined

whether a likelihood ratio test (LRT) can be used instead.

In order to conduct a likelihood ratio test the following steps will be taken. Similarly

to the F-test, two models will be fit. First, a model including only the covariates of

interest (and no weights) and then an extended model which includes the covariates of

interest along with these same covariates multiplied by the sampling weights. Define L0

as the maximum likelihood of the more simple model and L1 as the maximum likelihood

of the extended model. The ratio λ = L0/L1 can then be calculated and will take a value

between 0 and 1. The test statistic χ2 = −2 log λ can now be calculated and compared

to the 100(1 − α) percentile of the Chi-squared distribution with k degrees of freedom

where k is the difference in the number of parameters in the two models. If χ2 is found

to be greater than the critical value then it is suggested that weights are necessary in

analysis.

4.4.3.1 Stratified Sampling

As before, each observation belongs to one of three strata and the first sampling scheme

will select a fixed number of observations from each strata. These values have been

chosen to be 30, 40 and 30 from strata 1, 2 and 3 respectively.

Figure 4.13: The difference between the coefficient estimates and the true values for the
stratified sample not including weights (blue), including weights - model-based (pink)
and including weights - design-based (orange) for the logistic regression model.

It can be seen in Fig 4.13 that, similarly to linear regression, when weights are
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Figure 4.14: The standard errors of the coefficient estimates for the stratified sample not
including weights (blue), including weights - model-based (pink) and including weights
- design-based (orange) for the logistic regression model.

included the coefficient estimates are the same regardless of whether a model-based or

a design-based approach is taken. The intercept has a slight bias which is marginally

reduced when weights are used. For the remaining covariates, the median difference

between the coefficient estimates and true values are all close to zero. In general, other

than the coefficient estimates of x4 and x6, the median difference is closer to zero when

weights are used compared to when they are not.

The differences between the model-based approach and the design-based approach

can be seen in the standard errors of the coefficient estimates (Figure 4.14). The median

of the standard errors for each of the coefficients is very similar for each of the three

methods. Similarly to what was seen in the linear regression examples, the standard

error of the intercept is greater than for the coefficients of the continuous covariates.

The range of the standard errors appears to be similar for the three methods. This is

different to what was found in the linear regression simulations where, generally, the

design-based estimates had the largest ranges in standard errors.

The Likelihood Ratio Test

When conducting the likelihood ratio test, it was found that weights were recom-

mended 9% of the time. This is a relatively low number of times which is expected from

the results of the analysis since there appears to be very little differences between both

the coefficient estimates and the standard errors of the estimates regardless of whether

weights are used or not.

110



4.4.3.1.1 Stratified sampling with proportional allocation

When sampling using proportional allocation the proportion used in these simulations

was chosen to be 10%. Once again as expected that under this sampling scheme, there

will be very little difference whether weights are used or not. This is because the sampling

weights are close to 10 for all strata when the data is sampled in this way.

Figure 4.15: The difference between the coefficient estimates and the true values for
the stratified sample with proportional allocation not including weights (blue), includ-
ing weights - model-based (pink) and including weights - design-based (orange) for the
logistic regression model.

Figure 4.16: The standard errors of the coefficient estimates for the stratified sample
with proportional allocation not including weights (blue), including weights - model-
based (pink) and including weights - design-based (orange) for the logistic regression
model.

As expected, there is little to no difference in the coefficient estimates whether weights
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are used or not (as seen in Figure 4.15). The median difference is pretty close to zero

for all of the coefficients.

The range of the standard errors seen in Figure 4.16 appear to be similar across

the three methods. There are also quite a few outliers shown on the boxplots for the

three methods. In general, when weights are used, the median standard error is smaller

than when weights are not used but are similar whether a model-based or design-based

approach is taken.

The Likelihood Ratio Test

Using likelihood ratio tests it is suggested that weights are used 19% of the time.

Based on the above analysis this is higher than expected since there is very little dif-

ference between the coefficient estimates when weights are used and when they are not.

There is a difference however in the standard errors which may account for why it is

recommended that weights are used this many times.

4.4.3.1.2 Stratified sampling with optimal allocation

Using Equation 4.30 with a desired sample size of 100, the number of observations

selected from strata 1, 2 and 3 are 20, 36 and 44 respectively. This leads to sampling

weights of 10.2, 9.9444 and 9.9545. This number is close to 10% of each strata therefore

it is expected that the results of this analysis will be similar to that in the previous

section when proportional allocation was used to choose the sample size selected from

each strata.

As expected, the results seen in Figure 4.17 are very similar to those seen previously

when proportional allocation was used. There are only slight differences between the

coefficient estimates whether weights are used or not. The median of the differences

between the estimates and the true values are all very close to zero.

Also, similarly to when proportional allocation was used, the ranges of the standard

errors are similar across the three approaches used and the median standard error is

generally lower when weights are used compared to when they are not.

The Likelihood Ratio Test

It was found that 19% of the time it was recommended that the use of sampling

weights would be appropriate. This is the same amount found previously when propor-
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Figure 4.17: The difference between the coefficient estimates and the true values for the
stratified sample with optimal allocation not including weights (blue), including weights
- model-based (pink) and including weights - design-based (orange) for the logistic re-
gression model.

Figure 4.18: The standard errors of the coefficient estimates for the stratified sample
with optimal allocation not including weights (blue), including weights - model-based
(pink) and including weights - design-based (orange) for the logistic regression model.

tional allocation was used. Since the sampling size in each strata was similar in both

scenarios this was to be expected.

4.4.3.1.3 Relationship between response variable and sampling scheme

To see the effect of using weights when there is a relationship between the response

variable and the sampling scheme, strata was used as covariate when simulating the

response variable. The true values of the coefficients of strata were chosen to be 1 and

2 for strata 2 and 3 respectively.
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Analysis ignoring strata

For the first analysis, strata was not included as a covariate in the fitted models.

Figure 4.19: The difference between the coefficient estimates and the true values for the
stratified sample with underlying relationship (ignoring strata) not including weights
(blue), including weights - model-based (pink) and including weights - design-based
(orange) for the logistic regression model.

Figure 4.20: The standard errors of the coefficient estimates for the stratified sample
with underlying relationship (ignoring strata) not including weights (blue), including
weights - model-based (pink) and including weights - design-based (orange) for the lo-
gistic regression model.

It can be seen in Figure 4.19 that, similarly to the linear regression example, the

biggest difference in coefficient estimates between the three methods is with the intercept.

There is a bias on the intercept which is reduced when weights are not included. For the

coefficients of the remaining covariates, the median difference between the estimates and

the true vales is close to zero for all three methods with any bias being slightly reduced

by including the sampling weights.
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Figure 4.20 shows the standard errors of the coefficient estimates. It can be seen that

there are more extreme values for the model-based approach which includes weights than

there are for the other two methods. In general, there is little difference between the

median standard errors when model-based regression with no weights and design-based

regression is used. The range of the standard errors for these two methods also appears

to be similar across all of the coefficients. The median of the standard errors when a

model-based approach including weights is used is higher than for the other two methods.

The Likelihood Ratio Test

When using a likelihood ratio test it was recommended 58% of the time that the

use of sampling weights would be appropriate. This is much lower than the amount of

times it was recommended in the linear regression example (100%) however it is still

recommended that weights are used more often than not.

Analysis including strata

The second way in which the sampling scheme can be accounted for is by including

strata as a covariate in the regression model. Since there are only three strata in these

simulations, it is possible to try this method. However, with a more complex sampling

structure, especially from large surveys, it may not be possible to account for the sam-

pling scheme in this way as it may lead to a model with a large number of covariates

which is difficult to interpret.

Figure 4.21: The difference between the coefficient estimates and the true values for the
stratified sample with underlying relationship (including strata) not including weights
(blue), including weights - model-based (pink) and including weights - design-based
(orange) for the logistic regression model.

Figure 4.21 shows that, other than the intercept, there is very little difference in the
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Figure 4.22: The standard errors of the coefficient estimates for the stratified sample
with underlying relationship (inclusing strata) not including weights (blue), including
weights - model-based (pink) and including weights - design-based (orange) for the lo-
gistic regression model.

coefficient estimates between the three methods. The intercept has a slight bias when

weights are not used which is reduced when weights are included when calculating the

estimates.

The standard errors of the estimates seen in Figure 4.22 appear to follow the same

pattern as when strata is not included as a covariate. There are more outliers when

a model-based approach with weights is used. When a model-based approach without

weights and a design based approach is used, the standard errors are similar.

Similarly to the linear regression case, it is not possible to use the likelihood ratio test

as the extended model cannot be fit due to singularity. It can be seen however, that there

are only very small differences between the coefficient estimates whether weights are used

or not. Also, when a model-based approach not including weights and a design-based

approach is used, there is little difference in the standard errors. Therefore if strata is

included as a covariate then the use of sampling weights as well is not necessary.

4.5 Discussion

The overall aim of this chapter was to determine when and how sampling weights should

be used when analysing survey data.

Sampling weights can be used to adjust for unequal sampling probabilities, non-

response bias and under-coverage. The sampling weights provided in the PNS and MCS
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both account for unequal sampling probabilities and non-response bias. Further details

regarding how these weights have been calculated are given in Chapter 2 and Chapter

3.

It has been concluded that when estimating descriptive statistics such as population

means and totals, the sampling weights should always be used (De Leeuw et al., 2012).

The Horvitz-Thompson estimator described above shows how the sampling weights can

be incorporated when computing descriptive statistics.

When using regression models with survey data, it is less clear whether or not weights

should be used during the analysis. Tests have been developed for determining whether

or not the use of sampling weights is recommended for a linear regression model (Du-

Mouchel and Duncan, 2008). During the simulations section of this chapter, one of these

tests was extended for use in a logistic regression model setting.

When it is recommended that weights are used, two ways in which they can be

incorporated has been discussed. The first of these is to use a model-based approach

with sampling weights. The second is to use a design-based approach. One of the main

differences between these approaches is the population to which inference can be made.

Using a design-based approach, inference can be made about the specific population

from which the sample was selected. Using a model-based approach, inference is made

regarding broader sets of populations with similar characteristics (Dorazio, 1999).

Simulations were run to compare the results of these two methods along with the

results when ignoring sampling weights. As expected, there was found to be no difference

in coefficient estimates when when weights are used regardless of whether a model-based

approach or a design-based approach was used. In the majority of instances any bias

in the coefficient estimates was found to be lower when weights were used compared to

when they were not.

The main difference between the model-based and design-based methods was found

to be in the standard errors. Generally the median of the standard errors was found

to be lower when a design-based approach was taken compared to when a model-based

approach was taken. The range of the standard errors however tended to be greater for

the design-based regression.

The simulations using a linear response agree with Lumley’s statement that if both

weighted and unweighted estimates are valid then the weighted simulations will be less
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precise. It was found using the F-test that in general it was not necessary to use the

sampling weights during regression suggesting that the unweighted models were valid.

For the majority of the scenarios that were considered, the range of the standard errors

for the design-based regression was larger than that of the model-based regression.

When comparing the results of the linear regression simulations and the logistic

regression simulations it appears that the effect of including sampling weights is similar

for both. The main difference found was that when there is a relationship between the

response variable and the sampling scheme and strata is not included as a covariate in

the model, the F-test recommends that sampling weights are used 100% of the time

in the linear regression case whereas in the logistic regression simulations it was only

recommended 58% of the time using a likelihood ratio test. Despite the number of times

it is recommended that sampling weights are used is lower, it is still recommended more

often than not.

When there was a relationship between the response variable and the sampling

scheme, two methods for accounting for this were compared. The first did not include

strata as a covariate and it was found in this case that it was appropriate to include sam-

pling weights in the analysis. The second included strata as a covariate in the model. It

was found that the interpretation of the coefficient estimates for the covariates of interest

were similar for both of these methods and so either method would suitably account for

the sampling scheme. When the sampling scheme is more complex than the one simu-

lated, it may make more sense to simply use the sampling weights since including strata

as a covariate may lead to a model with a lot of different covariates which is difficult to

interpret.

When the proportion of the population sampled was increased, it was found that in

the majority of cases the results of the F-test indicated that the use of sampling weights

was not necessary, especially when there was no relationship between the response vari-

able and the sampling scheme. When there was a relationship, it was found that if the

proportion sampled was increased to 20%, it was still recommended to use the sampling

weights 91% of the time however this decreased to 0% when the proportion was increased

to 50%.

This chapter discusses methods for obtaining parameter estimates for model-based

and design-based regression. If there are a lot of potential covariates, however, some
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sort of variable selection may need to be implemented. Variable selection methods for

an infinite population are discussed in Chapter 5. Variable selection methods for a finite

population are discussed in Chapter 6.

4.5.1 Recommendations

When estimating descriptive statistics, the sampling weights should always be used.

This chapter aimed to reduce the uncertainty around if sampling weights should be used

when conducting regression models. The following recommendations can be used for

both linear regression and logistic regression.

When simple random sampling is used there is no reason to use sample weights as all

sample weights within the sample should be equal. Therefore, model-based regression is

appropriate here.

When stratified sampling is used and a fixed number is chosen from each strata,

it was found that the standard errors of the coefficient estimates was smallest when

sampling weights were used in a design-based model. This was also found to be case for

stratified sampling using proportional allocation and stratified sampling using optimal

allocation.

When there is an underlying relationship between the response variable and the

sampling scheme, it was found that design-based methods were preferred if the sampling

scheme was not accounted for in the covariates of the model. If strata was included

as a covariate it was found that there was no need to include sampling weights in the

analysis. Therefore the most appropriate method should be used when accounting for the

sampling scheme. If there are a lot of strata to be considered, then using the sampling

weights would be the recommended method.

It was found that as the proportion of the population sampled increased that the

need to include sampling weights in the analysis decreased. This is due to the fact that as

the proportion sampled increases, the more representative of the population the sample

is. Therefore, if only a small proportion of the population is sampled then the use of

sampling weights is recommended.
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4.5.2 Unique Contribution

Currently, confusion exists in the literature surrounding sampling weights in a regression

model. When researching this subject, conflicting recommendations were found and so

simulations were conducted in order to identify if and when sampling weights should be

used.

There is existing literature around testing for the appropriateness of sampling weights

in a linear regression model. However, little research has been carried out in a logistic

regression setting. This chapter extended the existing F-test using a likelihood ratio test

for a logistic regression model.
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Chapter 5

Methodology and Analysis -

Variable Selection

5.1 Introduction

This chapter will aim to answer the research question: Which methods of variable selec-

tion are commonly used when analysing survey data? Specifically, how has the lasso been

adapted beyond linear regression with continuous covariates for use with more complex

data?

The chapter will begin with a review of the current practices used to conduct variable

selection including background knowledge, information criteria and penalised likelihoods.

Next simulations will be conducted to compare the resulting models when using different

methods of variable selection. Finally the current packages available in R to conduct the

lasso will be investigated and whether any are suitable to analyse the data from The

PNS and the MCS will be discussed.

5.2 Background Knowledge

The use of background knowledge is one method to assist with variable selection. This

involves using the results from previous studies or the advice of experts to filter the

variables before any statistical models are fit to the data (Heinze and Dunkler, 2017).

This method can be implemented before or after data collection. Given a research

question a list can be created containing any information that could possibly be collected
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and then cut down based on the factors such as relevance, cost of collection and quality

of measurements.

It may possible to sketch a conceptual model using prior knowledge of the subject ar-

eas showing any relationships between the independent variables in the data set. During

this process certain variables may be found to be redundant and hence can be excluded

from either data collection or regression modelling depending on when this step is carried

out. The conceptual model may also highlight which of the variables are confounders

and hence should be adjusted for when modelling.

Although using background knowledge may start to cut down the number of pre-

dictors in a model, it uses little to no statistical theory in order to classify whether or

not the resulting model performs better or worse than another model using a different

set of predictors. Therefore it is best if this method is used in conjunction with another

method of variable selection.

5.3 Variable selection algorithms using information crite-

ria

The most common method of variable selection is hypothesis testing (Heinze et al., 2018).

This generally takes the form of comparing two models based on a certain criteria in

order to determine which gives the preferred fit to the data.

These tests can be used using a stepwise selection algorithm. This can be done using

forward selection, backwards selection or stepwise selection depending on which model

is chosen as the initial model.

Forward selection begins with the null model and each of the variables are added one

at a time to see which improves the fit of the model most based on a specified criteria.

This variable is then added to the model and the process is repeated until it is found

that no further variables improve the model fit (Bursac et al., 2008).

Backwards selection begins with the full model and removes each of the variables

in turn in order to see which is the least significant based on a specified criteria. This

variable is then removed and then the process is repeated until it is indicated that no

further variables should be removed from the model (Bursac et al., 2008).

Stepwise selection is a combination of forward selection and backwards selection.
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Whereas during forward or backwards selection if a variable is added/removed from

the model it remains included/excluded this is not the case during stepwise selection.

Each time an independent variable is added to the model, the significance of each of the

variables in the model is then checked. A variable found to have significance lower than

a pre-specified amount is then removed from the model (Hintze, 2007).

5.3.1 Selection criteria

In order to use any of these algorithms there needs to be a criteria chosen to determine

whether or not independent variables are added or removed from the model. In each

of the cases described above, at each stage of the algorithm multiple models are fit and

need to compared. Analysis of variance (ANOVA) and Akaike Information Criterion

(AIC) can be used in order to choose between two or more models.

5.3.1.1 Analysis of variance (ANOVA)

Analysis of variance (ANOVA) can be used to choose between two nested models. First

a model containing p covariates is fit. Next, a smaller model in which a subset of the p

covariates has been removed from the model is fit. Defining this subset of covariates as

u ⊂ {1, . . . , p} then ANOVA tests the hypothesis H0 : βu = 0.

The test statistic can then be calculated using:

(RSS1 −RSS2)/(p− q)
RSS1/(n− p)

(5.1)

where RSS1 and RSS2 are the residual sum of squares for the full model and the

smaller (nested) model respectively, q is the number of covariates in the smaller model

and n is the sample size.

This test statistic can then be compared to the critical value Fp−q,n−p. If the test

statistic calculated is greater than the critical value then the the null hypothesis is

rejected and it is concluded that the full model is a better fit to the data.

5.3.1.2 The Akaike Information Criterion (AIC)

The AIC can be used to compare the adequacy of two or more models which may or

may not be nested. The AIC of a model is calculated using:
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AIC = 2p− 2 logL(β̂) (5.2)

where p is the number of estimated parameters in the model and L(β̂ is the maximum

value of the likelihood function for the model.

When comparing two or more models, the model with the lowest AIC is preferred.

Using forward selection, the variable which gives the lowest AIC when included in the

model is chosen to be added. The algorithm stops if none of the variables reduce the AIC

of the model when added. Using backward selection, the variable which lowers the AIC

by the highest value is removed from the model and the algorithm stops when removing

any further variables increases the AIC.

5.4 Automatic variable selection

The Least Absolute Shrinkage and Selection Operator (Lasso) is an example of a pe-

nalised model selection method. The log likelihood is penalised by subtracting some

value, λ, multiplied by the absolute sum of the regression coefficients from it. The Lasso

was developed to improve the prediction accuracy and interpretability of regression mod-

els by selecting only a subset of the available covariates (Tibshirani, 1996a). The Lasso

performs model selection and parameter estimation simultaneously.

5.4.1 Motivation for the use of the Lasso

A linear regression model is of the form

yi = β0 +

p∑
j=1

xijβj + ei, (5.3)

where β0 and β = (β1, β2, . . . , βp) are unknown parameters and ei is the error term.

To estimate the parameters using the method of least squares, the following is cal-

culated:

minimize
β0,β

{
1

2n

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβij

)2}
. (5.4)

In general, the use of this method will result in all of the parameter estimates to be

non-zero meaning that interpretation of the final model may be difficult and also that

the model may overfit the data.
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There are two main arguments for using an alternative to the least squares estimate.

1. Prediction accuracy : The least squares estimate generally has low bias yet a high

variance. Shrinking the values of the regression coefficients (or even having some

with a value of zero) can improve prediction accuracy when measured in terms of

mean-squared error.

2. Interpretation: Instead of using a large number of predictors, it is preferred to

use a subset of these predictors which have the strongest effects on the response

(Tibshirani, 1996a) .

The lasso uses l1-regularised regression and obtains parameter estimates by finding

solutions to the following:

minimize
β0,β

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβij

)2

subject to ‖β‖1 ≤ λ (5.5)

where ‖β‖1=
∑p

i=1 |βj‖ is the `1 norm of β and λ is a parameter that is specified.

The use of the l1 norm is preferred to that of the lq since if t is small enough, the

lasso gives sparse solution vectors with few non-zero coordinates. This is not the case

for lq-norms with q > 1 (Hastie et al., 2015). Therefore a benefit of the lasso is that it

conducts variable selection and parameter estimation simultaneously.

5.4.2 Why does the lasso have a model selection property?

To demonstrate the reason behind why the lasso has the model selection property, it

can be compared to ridge regression. Ridge regression is another regularisation method

which uses a penalty and has the shrinkage property but it does not have the model

selection property. The ridge regression method solves a similar optimisation problem

to the lasso:

minimize
β0,β

{
1

2n

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2}
subject to

p∑
j=1

β2
j ≤ λ2. (5.6)

The constraint region for ridge regression is a disk β2
1+β2

2 ≤ λ2 whereas the constraint

region for lasso is a diamond |β1‖+ |β2| ≤ λ (Figure 5.1). Both ridge regression and lasso

find the first point where the elliptical contours of the residual sum of squares (centered

at the full least squares estimates) intersect with the constraint region. Since unlike a
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Figure 5.1: Estimation of two parameters for the lasso (left) with the (blue) constraint
region given by |β1|+ |β2| ≤ λ and for ridge regression (right) with the constraint region
β2

1+β2
2 ≤ λ2. The red ellipses are the contours of the residual sum of squares function and

are centered at the point β̂ which is the unconstrained least squares estimate. Adapted
from (Hastie et al., 2015).

disk, a diamond has vertices, if the point of intersection is at a vertex then one of the

parameters equals zero. When there are more than 2 parameters to be estimated, the

constraint region is a rhomboid which gives more chances for the estimates to be equal

to zero due to the increased number of flat edges and vertices (Figure 5.2).

Figure 5.2: An example of a constraint region for the lasso with more than 2 parameters.
Adapted from (Hastie et al., 2015).

The lasso has the ability to yield sparse solutions meaning that the solution to the

optimisation problem is generally a model with few non-zero coefficients.

5.4.3 The Lasso for Linear Models

With n predictor-response pairs {(xi, yi)}ni=1, the lasso finds the solution (β̂0β̂) to the

optimisation problem:
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minimize
β0,β

{
1

2n

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2}
subject to

p∑
j=1

|βj | ≤ λ. (5.7)

The constraint in (5.7) is equivalent to the `1-norm constraint in (5.5). The sum of

the absolute values of the estimates of the parameters is limited by the bound λ. The

magnitude of λ controls how well the model fits to the data with a shrunken parameter

estimate corresponding to a more heavily-constrained model.

An alternative way to express Equation 5.7 is in the Lagrangian form:

minimize
β∈Rp

{
1

2n
‖y−Xβ‖22 + λ‖β‖1

}
, (5.8)

for some λ ≥ 0. Note, if λ = 0, then this gives the solution to the ordinary least squares

problem.

The factor 1
2n appearing in Equation 5.7 and Equation 5.8 is often replaced by 1

2 or

1 to ensure comparability between values of λ across different sample sizes. This has no

effect of the results obtained from Equation 5.7 and is simply a re-parametrization of λ

in Equation 5.8 (Hastie et al., 2015).

The intercept, β0, can be omitted from the lasso optimisation during linear regression

if the columns of the design matrix and the response variable have been centered (have

mean of zero) and the columns of the design matrix have also been standardised (have

variance of 1).

5.4.3.1 Cross-validation

The complexity of the model is determined by the value of λ. On one hand, if a large

value of λ is chosen, there will be more non-zero coefficients and the the model will

fit more closely to the data. This however may lead to a model which over-fits the

data. On the other hand, a smaller value of λ will result in fewer non-zero parameter

estimates, giving a more sparse model which does not fit to the data as well however is

more interpretable.

In general, the aim is to find a value of λ which results in a model with some parameter

estimates equal to zero and which also gives a good balance between the two scenarios

highlighted above.

Cross-validation is used to estimate the optimal value of λ and be conducted using
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the following steps.

1. Randomly divide the full dataset into a K groups, for example 5, 10 or n.

2. Fix one group as the test set and the remaining K−1 groups as the training group.

3. Apply the lasso to the training set for a range of λ values.

4. Use each fitted model to predict the responses in the test set.

5. Record the mean squared error for each value of λ.

6. Repeat this process K times with each of the K groups playing the role of the test

set once.

7. K different estimates of the prediction error are obtained for each value of λ.

Average these K estimates.

8. Plot the cross-validation curve.

When choosing the optimal value of λ there are two methods which can be used. The

first selects the value of λ which gives the minimum cross validation error. The second

gives the the value of λ which corresponds to a cross validation error of no more than

one standard error above it’s minimum value.

5.4.3.2 Computation of estimates

For ease of computation, the lasso criterion can be written in the Lagrangian form:

minimize
β∈Rp

{
1

2n

n∑
i=1

(
yi −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

|βj |
}
. (5.9)

Assuming that the data has been centered and standardised we can omit the inter-

cept.

5.4.3.3 Soft-Thresholding (Single Predictor)

For a single predictor xi, based on samples {(xi, yi)}ni=1, the problem to solve becomes:

minimize
β

{
1

2n

n∑
i=1

(yi − xiβ)2 + λ|β|
}
. (5.10)
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Since |β| does not have a derivative at β = 0, there is an issue in the use of the

standard method of taking the first derivative of the function with respect to β and

setting it equal to zero. The problem however can be solved using direct inspection of

the function with:

β̂ =



1
n〈x,y〉 − λ if 〈x,y〉 > λ,

0 if 〈x,y〉 ≤ λ,

1
n〈x,y〉+ λ if 〈x,y〉 < λ

(5.11)

where 〈x,y〉 is the least squares estimate of β.

This can also be written

β̂ = Sλ(
1

n
〈x,y〉) where Sλ(z) = sign(z)(|z| − λ)+. (5.12)

Sλ is known as the soft-thresholding operator and moves z towards zero by λ and

sets z equal to zero if it’s magnitude is less than or equal to λ.

If the data is standardised, then β̂ = Sλ( 1
n〈z,y〉) is a soft-thresholded version of the

usual least-squares estimate β̃ = 〈x,y〉.

5.4.3.4 Cyclic coordinate descent (Multiple Predictors)

In the multivariate case, the predictors are cycled through in a fixed, arbitrary order,

updating βj at the jth step. The objective function is minimised at the corresponding

coordinate whilst the other coefficients (βk, k 6= j) are fixed. The objective function

(5.8) can be written:

1

2n

n∑
i=1

(
yi −

∑
k 6=j

xikβk − xijβj
)2

+ λ
∑
k 6=j
|βk|+ λ|βj |. (5.13)

The partial residual is expressed as r
(j)
i = yi−

∑
k 6=j xikβ̂k and so the update for the

j-th coefficient, βj can be written in terms of it’s partial residual:

β̂j = Sλ
(

1

n
〈xj , r (j)〉

)
. (5.14)

Alternatively, this update can be expressed as:
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β̂j ← Sλ
(
β̂j +

1

n
〈xj , r〉

)
, (5.15)

where ri = yi −
∑p

j=1 xij β̂j are the full residuals.

The soft-thresholding update (5.14) is applied repeatedly meaning the coordinates

of β̂ and also the residual vectors are updated recurrently (Hastie et al., 2015).

It is often required that a lasso solution is found for varying values of λ. One way in

which this can be done is to take the value of λ which gives an all-zeroes vector as the

optimal solution and begin with this. This value of λ is given by λmax = maxj | 1n〈xj ,y〉|.

The value of λ can then be decreased by a small amount and coordinate descent can

be run until convergence. This value can then be further decreased and the solutions

from the previous value can be used as a starting point. Coordinate descent can then be

run until convergence. This method is called pathwise coordinate descent and calculates

solutions over a range of values of λ.

There are two main advantages to using coordinate descent to obtain solutions to

the lasso. The first is that it is quick due to the fact that the coordinate-wise minimisers

are available explicitly meaning that searching iteratively for each coordinate is not

necessary. The second is that it utilises the sparsity. If λ is large enough, most of the

coefficients will be (and remain) equal to zero.

5.4.4 The Lasso for Generalised Linear Models

The lasso was originally created for linear models however it can be extended to gen-

eralised linear models. This maximises the likelihood (or minimises the negative log-

likelihood) together with an `1-penalty:

minimize
β0,β

{
− 1

n
L(β0, β; y,X) + λ‖β‖1

}
(5.16)

where y is the outcome vector, X is the matrix of predictors and L is the specific

form of the log-likelihood which changes corresponding to the generalised linear model.

5.4.4.1 Logistic Regression

Given a binary response yi ∼ Bernoulli(µi), i = 1, . . . , n, consider the logistic model .
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log

(
µi

1− µi

)
= β0 + βTxi,

the negative log-likelihood with `1-regularisation is given by:

− 1

n

n∑
i=1

{yi log(P (Y = 1|xi) + (1− yi) log(1− P (Y = 1|xi)}+ λ‖β‖1. (5.17)

Since P (Y = 1|xi) = β0 + βTxi this can be written as

− 1

n

n∑
i=1

{
yi(β0 + βTxi)− log(1 + eβ0+βTxi)

}
+ λ‖β‖1. (5.18)

5.4.4.2 Algorithm for computation

When computing the lasso solutions for a logistic model, the proximal-Newton iter-

ative approach is widely used. This involves repeatedly approximating the negative

log-likelihood using a quadratic function (Lee et al., 2014). This method is combined

with coordinate descent to compute parameter estimates.

More specifically, if the current estimates of the parameters are (β∗0 , β
∗) then a

quadratic approximation to the unpenalised log-likelihood can be calculated as

`Q(β0, β) =
1

2n

n∑
i=1

wi(zi − β0 − βTxi)
2 + C(β∗0 , β

∗) (5.19)

where C(β∗0 , β
∗) is a constant independent from β∗0 and β∗ and

zi = β∗0 + β∗Txi +
yi − µ∗i

µ∗i (1− µ∗i )
and wi = µ∗i (1− µ∗i )

with µ∗i defined as P (Y = 1|xi) evaluated at the current parameters. The Newton

update is found by minimising `Q.

In order to minimise the penalised log-likelihood, coordinate descent is used to solve

the following:

minimize
β∈Rp

{−`Q(β0, β) + λPα(β)} (5.20)

where Pα(β) = (1 − α)1
2‖β‖

2
`2

+ α‖β‖`1 is a compromise between ridge regression
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when α = 0 and the lasso when α = 1 and is known as the elastic net penalty (Friedman

et al., 2010).

5.4.5 The Group Lasso

The lasso was designed for use with continuous covariates. If there is a categorical

variable, the lasso considers each category separately which can result in the final model

containing only certain categories from the group. It is desirable however to either

keep or remove all of the coefficients of a grouped variable simultaneously. There is an

extension called the group lasso which deals with this.

Given a linear regression model:

Y = β0 +
J∑
j=1

Xjβj + ε

which contains J groups of covariates and Xj denotes the covariates in group j ∈ J ,

the group lasso solves

minimise
β0∈R,βj∈Rpj

{
1

2

n∑
i=1

(yi − β0 −
J∑
j=1

Xijβj)
2 + λ

J∑
j=1

‖βj‖2
}

where ‖βj‖2 is the Euclidean norm of the vector βj .

This adaptation of the lasso has the properties that depending on the penalty, either

the entire vector β̂j will be equal to zero or the will be non-zero and that if all groups

have only one factor then the problem reduces to the original lasso described above.

In Equation 5.4.5 all groups are penalised by the same amount and so it may mean

that groups with more levels are more likely to be selected than groups with fewer levels.

This can be overcome by weighting the penalties by a factor of
√
dfj where dfj is the

degrees of freedom of the j-th of the j-th predictor (Yuan and Lin, 2006).

5.4.5.1 Computation of estimates

Computations of estimates for the group lasso are obtained using block coordinate de-

scent. This is similar to cyclic coordinate descent used in the linear regression setting.

The difference between the two methods however, is that instead of fixing all but one

coefficient, during block coordinate descent all but one of the vectors β̂j is fixed (Yang

and Zou, 2013).
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5.4.6 The Grouped Logistic Lasso

Combining the two previous methods, the lasso can be further extended to provide

estimates for a logistic model with categorical variables.

For a set of n observations (xi, yi), i = 1, . . . , n where y takes the form of a binary

response variable and xi contains J groups of predictors, the group lasso for logistic

regression solves:

minimise
β0∈R,βj∈Rpj

{
1

2

n∑
i=1

{
yi(β0 + βTxi)− log(1 + eβ0+βTxi)

}
+ λ

J∑
j=1

s(dfj)‖βj‖2
}

(5.21)

where ‖βj‖2 is the Euclidean norm of the vector βj and the function s(dfj) alters the

penalty relative to the size of the vector β̂j (Meier et al., 2008). As with in the group

lasso for linear regression, generally s(dfj) =
√
dfj .

5.4.7 Computation of estimates

Similarly to grouped linear regression, when computing estimates using grouped logistic

lasso, block coordinate descent can be used. One at a time, all but one of the parameter

groups is fixed and Equation 5.21 is solved for the remaining parameter group βj . In

order to find the solution, a Newton iterative approach such as described above can be

used (Meier et al., 2008).

5.4.8 R packages for computation of the Lasso

There are a variety of R packages in order use the lasso including glmnet, grpreg,

grplasso and gglasso.

The glmnet package was developed to fit generalized linear models using a penalised

maximum likelihood. Therefore, this package can be used for computing estimates using

the lasso for linear regression and logistic regression. It can be used to compute estimates

using a lasso penalty as well as a ridge penalty or an elastic net penalty.

The grpreg package was created to fit generalised linear models with grouped penal-

ties. Therefore, this package can also be used for either a continuous response or a

binary response. The penalties that can be applied when using this package include
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the group lasso, group minimax concave penalty (MCP) and group smoothly clipped

absolute deviation (SCAD).

The grplasso package and the gglasso were also developed in order to fit a gener-

alised linear model using a grouped lasso penalty.

Since interest lies in survey data, it may be found necessary to include sampling

weights during analysis. Two of the packages listed (grpreg and gglasso) do not allow

for the inclusion of sampling weights. Also, many responses to survey questions take the

form of a categoric or factor variable and so grouped lasso will be needed. The glmnet

package does not allow for grouped lasso.

When computing estimates the size of the penalty, λ, needs to be determined. The

optimal value of λ is generally found using cross-validation. The grplasso does not

conduct cross validation.

Table 5.1: The features of the glmnet, grpreg, grplasso and gglasso packages.

Lasso Logistic Group Weights Cross validation

glmnet Yes Yes No Yes Yes
grpreg Yes Yes Yes No Yes
grplasso Yes Yes Yes Yes No
gglasso Yes Yes Yes No Yes

Table 5.1 summarises whether each of the packages discussed above can include each

of the features which will be required when conducting the grouped logistic lasso for

survey data. It can be seen that none of the packages include all of the necessary

features and so one of them will have to be adapted in order to conduct analysis of the

PNS and MCS data.

5.5 Simulations

5.5.1 Comparing variable selection methods

Using step-wise selection with AIC is a very common method of variable selection. This

section will compare the results of this method with the results when the lasso is used.

When using the lasso, two different values of λ will be compared. The first of these values

will be the value of λ which gives the minimum cross validation error. The second of

these values will be chosen using the “one standard error” rule which gives the smallest

value of λ which corresponds to a cross-validation error of no more than one standard

134



error away from the minimum cross-validation error.

When choosing the true values of β, some of them will be set to zero. Then when

comparing the two methods, the number of false positives and false negatives will be

calculated. A false positive occurs when the coefficient estimate is not equal to zero when

the true value is equal to zero. A false negative occurs when the coefficient estimate is

equal to zero when the true value is not.

The bias and mean squared error will also be calculated. The average of each will

be calculated first for the whole model, next for the coefficients whose true values are

non-zero and finally for the coefficients whose true values are zero.

The two methods will be compared over a variety of scenarios. In the first, the

number of variables will be changed, starting with a small number and increasing until

there is a large number of possible variables which could be included in the model.

Next, the sample size will be increased to see whether or not this affects how many

false positives and false negatives are given by the two methods.

Finally, the error used when simulating the response variable will be varied and the

results of the two methods will be compared when there is low variability in the response

as well as a larger variability.

5.5.1.1 Changing number of variables

For the following simulations both the response and the explanatory variables will be

continuous and the sample size will remain fixed at 500. When simulating the response

variable the variance of the error term will be chosen to be 5% of the variance of Xβ,

where X is the design matrix containing all of the possible covariates and β is the true

values of the coefficients (some of which will be equal to zero). First, a small amount of

covariates will be used and then the number will be increased. The number of possible

covariates used will be 10, 20, 50 and 100. Although 100 seems like a large number

of variables to consider, as technology gets more advanced and surveys become more

accessible it is becoming increasingly common for surveys to collect large amounts of

information from participants (Winerman, 2018).

Some of the true coefficient values will be set to zero in order to see whether or not

this is detected by either of the two methods. For each number of covariates, different

amounts (30%, 50% and 70%) of coefficients with true value zero will be used. Each
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time 200 repeated simulations will be run and the average number of false positives and

negatives will be calculated by comparing the coefficient estimates with the true values.

Mean squared error and bias will also be calculated.

When looking at the average number of false positives and negatives in Table 5.2

it can be seen that none of the three methods produce any false negatives with one

exception. When using 100 potential covariates, with the true coefficients of 30 of them

zero, the average number of false positives when using the lasso with the one standard

error rule is 0.025.

When looking at the false positives, the lasso using the one standard error rule to

determine λ gives on average the least when starting with 10 or 20 possible covariates.

When starting with 50 or 100 covariates, stepwise selection using the AIC gives the least

amount of false positives when the coefficients of 30% or 50% of them are zero. When

70% of the true coefficients are equal to zero, the lasso using the one standard error rule

has the lowest mean number of false positives.

In all scenarios when changing the number of covariates, the lasso using the value of

λ which minimises the cross validation error was found to give the most average number

of false positives.

When looking at the bias in Table 5.3 it can be seen that step wise selection using

AIC gives the lowest total bias and the lowest bias for the coefficients whose true values

are non-zero. When looking at the bias for the coefficients whose true values are equal to

zero, it can be seen that the lasso using the one standard error rule to determine λ gives

the lowest bias. This is the true for all number of covariates regardless of how many of

the true coefficient values are equal to zero.

The mean squared errors calculated whilst varying the number of covariates can be

found in Table 5.4. Generally, stepwise selection using AIC results in the lowest total

mean squared error. The exceptions to this occur when 70% of the true coefficients are

equal to zero and there are 20, 50 or 100 covariates. When this is the case, the lasso

using the value of λ which results in the minimum cross validation error gives the lowest

total mean squared error.

Stepwise selection using the AIC also results in the lowest mean squared error when

considering only the coefficients whose true values are non-zero. The only exception to

this is when there are 50 covariates and 70% of the true coefficients are equal to zero. In
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this case, the lasso using the value of λ which results in the minimum cross validation

error gives the lowest mean squared error.

The lasso using the one standard error rule to select λ gives the lowest mean squared

error when looking at the coefficients whose true values are equal to zero. This is the

case regardless of how many covariates are used and how many of the true coefficients

are equal to zero.

Table 5.2: The average number of false negatives and false positives when AIC and Lasso
are used and the number of potential variables is changing

Average number of false negatives Average number of false positives

10 variables

Number of true zeros AIC Lasso min Lasso 1se AIC Lasso min Lasso 1se
3 0 0 0 0.505 1.870 0.150
5 0 0 0 0.775 2.555 0.085
7 0 0 0 1.150 2.245 0.045

20 variables

Number of true zeros AIC Lasso min Lasso 1se AIC Lasso min Lasso 1se
6 0 0 0 1.005 4.555 0.920
10 0 0 0 1.575 6.005 0.865
14 0 0 0 2.320 1.845 0.120

50 variables

Number of true zeros AIC Lasso min Lasso 1se AIC Lasso min Lasso 1se
15 0 0 0 2.855 11.680 5.030
25 0 0 0 4.550 15.975 5.695
35 0 0 0 6.250 16.220 3.895

100 variables

Number of true zeros AIC Lasso min Lasso 1se AIC Lasso min Lasso 1se
30 0 0 0.025 7.345 23.925 14.165
50 0 0 0 10.255 32.435 17.655
70 0 0 0 14.380 33.470 13.750

5.5.1.2 Changing sample size

For the following simulations both the response and the explanatory variables will be

continuous and the number of variables will remain fixed at 50. When simulating the

response variable the variance of the error term will be chosen to be 5% of the variance

of Xβ, where X is the design matrix containing all of the possible covariates and β is

the true values of the coefficients (some of which will be equal to zero). First, a small

sample size will be used and then the number will be increased. The sample sizes used

will be 100, 200, 500, and 1000.

Some of the true coefficient values will be set to zero in order to see whether or not

this is detected by either of the two methods. For each sample size, different amounts

(30%, 50% and 70%) of coefficients with true value zero will be used. Once again, 200

repeated simulations will be run each time and the average number of false positives and
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negatives will be calculated along with the bias and mean squared errors.

The average numbers of false positives and negatives produced for the three methods

when changing the sample size can be found in Table 5.5. It can be seen it is only when

the sample size is 100 that any false negatives are produced by any of the three methods.

When the sample size is 100, the lasso using the value of λ which results in the lowest

cross validation error has the lowest average number of false negatives. When looking at

the false positives, when the sample size is 100, stepwise selection using AIC results in

the least. When the sample size is 200 or 500 and 30% or 50% of the true coefficients are

equal to zero, step wise selection once again results in the lowest average number of false

positives. When the sample size is 200 or 500 and 70% of the true coefficient values are

equal to zero, the lasso using the one standard error rule results in the lowest number of

false positives. When the sample size is 1000 and 30% of the true coefficients are equal to

zero, stepwise selection using AIC results in the lowest number of false positives. When

50% or 70% of the true coefficients are equal to zero, the lasso using the one standard

error rule results in the lowest average number of false positives.

The bias calculated when varying the sample size can be found in Table 5.6. Similarly

to when changing the number of covariates, step wise selection using AIC gives the lowest

total bias and the lowest bias for the coefficients whose true values are non-zero. For the

coefficients whose true values are equal to zero, it can be seen that the lasso using the

one standard error rule to determine λ gives the lowest bias. This is true for all number

of covariates regardless of how many of the true coefficient values are equal to zero with

one exception. With a sample size of 100 and 50% of the true coefficients equal to zero,

stepwise selection using the AIC results in the lowest bias.

The mean squared errors calculated whilst varying the number of covariates can be

found in Table 5.7. When the sample size is 100, the lasso using the value of λ which

results in the lowest cross validation error gives the lowest total mean squared error. This

method also results n the lowest mean squared error when 70% of the true coefficients

are equal to zero regardless of the sample size used. When the sample size is 200, 500 or

1000 and 30% or 50% of the true coefficients are equal to zero, stepwise selection using

AIC results in the lowest total mean squared error.

Stepwise selection using the AIC also results in the lowest mean squared error when

considering only the coefficients whose true values are non-zero. The exceptions to this
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are when the sample size is equal to 100 and 30% or 50% of the true coefficients are

equal to zero and when the sample size is equal to 500 and 70% of the true coefficients

are equal to zero. In these cases, the lasso using the value of λ which results in the

minimum cross validation error gives the lowest mean squared error.

The lasso using the one standard error rule to select λ gives the lowest mean squared

error when looking at the coefficients whose true values are equal to zero. This is the

case regardless of how many covariates are used and how many of the true coefficients

are equal to zero.

Table 5.5: The average number of false negatives and false positives when AIC and Lasso
are used and the sample size is changing

Average number of false negatives Average number of false positives

sample size 100

Number of true zeros AIC Lasso min Lasso 1se AIC Lasso min Lasso 1se
15 0.425 0.075 0.240 5.095 12.245 8.775
25 0.040 0.020 0.004 8.180 16.505 10.785
35 0 0 0 11.355 25.480 17.760

sample size 200

Number of true zeros AIC Lasso min Lasso 1se AIC Lasso min Lasso 1se
15 0 0 0 3.345 12.075 6.950
25 0 0 0 5.530 15.850 8.125
35 0 0 0 7.680 16.425 5.935

sample size 500

Number of true zeros AIC Lasso min Lasso 1se AIC Lasso min Lasso 1se
15 0 0 0 2.855 11.680 5.030
25 0 0 0 4.550 15.975 5.695
35 0 0 0 6.250 16.220 3.895

sample size 1000

Number of true zeros AIC Lasso min Lasso 1se AIC Lasso min Lasso 1se
15 0 0 0 2.460 11.460 3.640
25 0 0 0 3.985 16.120 3.790
35 0 0 0 5.765 15.905 2.465

5.5.1.3 Changing error

For the following simulations both the response and the explanatory variables will be

continuous, the number of variables will remain fixed at 50 and the sample size will

remain fixed at 500. When simulating the response variable the variance of the error

term will be chosen to be Z% of the variance of Xβ, where X is the design matrix

containing all of the possible covariates, β is the true values of the coefficients and Z is

a value to be varied. The values that Z will take during these simulations is 5, 10, 20

and 50.

Once again, some of the true coefficient values will be set to zero in order to see

whether or not this is detected by either of the two methods. For each change in Z,
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different amounts (30%, 50% and 70%) of coefficients with true value zero will be used.

Each time 200 repeated simulations will be run and the average number of false positives

and negatives will be calculated as well as the bias and mean squared error.

The average numbers of false negatives and false positives produced when varying

the error used to simulate the response variable can be found in Table 5.8. When Z is

chosen to be 5% the average number of false negatives for all methods is zero. When

Z = 10, stepwise selection using AIC and the lasso using the one standard error rule

produce a very small number of false negatives. When Z is equal to 20 or 50, the lasso

using the value of λ which results in the minimum cross validation error gives the lowest

average number of false negatives.

When looking at the false positives, when Z is equal to 5, 10 or 20 and 30% or 50%

of the true coefficients are equal to zero, stepwise selection using the AIC results in the

lowest number of false positives. When 70% of the true coefficients are equal to zero,

the lasso using the one standard error rule results in the lowest false positives. When

Z = 50, the lasso using the one standard error rule results in the lowest average number

of false positives regardless of how many of the coefficients true values are equal to zero.

The bias calculated for each of the three methods when varying the error used when

simulating the response variable can be found in Table 5.9. The total bias and the bias

for the coefficients whose true values are non-zero is lowest when stepwise selection with

AIC is used regardless of the error used or the number of coefficients whose true value is

equal to zero. Generally, when looking at the bias for the coefficients whose true values

are equal to zero, the lasso using the one standard error rule gives the lowest. The

exceptions to this occur when Z = 10 and 30% or 50% of the true coefficients are equal

to zero and when Z = 50 and 30% of the true coefficients are equal to zero. In these

three instances, stepwise selection using AIC gives the lowest bias.

The mean squared errors produced for the three different methods when changing

the error used when simulating the response variable can be found in Table 5.10. In

general, the lasso using the value of λ which gives the minimum cross validation error

results in the lowest total mean squared error. The exceptions are when Z = 5 and 30%

of the coefficients have true value equal to zero and when Z = 10 and 30% or 50% of the

true coefficients are equal to zero. In these cases, stepwise selection using AIC gives the

lowest total mean squared error. A further exception is when Z = 10 and 70% of the
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true coefficients are equal to 70 with the lasso using the one standard error rule resulting

in the lowest total mean squared error.

When looking at the mean squared error of the coefficient whose true values are

non-zero, stepwise selection using AIC generally gives the lowest. The exceptions to this

occur when Z = 5 and 70% of the true coefficients are zero, when Z = 20 and 30% of

the true coefficients are zero and when Z = 50 and 30% or 50% of the true coefficients

are zero. In these instances, the lasso using the value of λ which results in the minimum

cross validation error gives the lowest mean squared error.

When looking at the mean squared error for the coefficients whose true values are

equal to zero, the lasso using the one standard error rule gives the lowest average value

for all errors and regardless of how many of the true coefficients are equal to zero.

Table 5.8: The average number of false negatives and false positives when AIC and Lasso
are used and the error used when simulating the response variable is changing.

Average number of false negatives Average number of false positives

error 5%

Number of true zeros AIC Lasso min Lasso 1se AIC Lasso min Lasso 1se
15 0 0 0 2.86 11.68 5.03
25 0 0 0 4.55 15.98 5.70
35 0 0 0 6.25 16.22 3.90

error 10%

Number of true zeros AIC Lasso min Lasso 1se AIC Lasso min Lasso 1se
15 0.03 0 0.01 2.76 11.85 4.99
25 0 0 0 4.95 16.55 5.48
35 0 0 0 6.21 15.93 1.03

error 20%

Number of true zeros AIC Lasso min Lasso 1se AIC Lasso min Lasso 1se
15 3.09 0.38 2.33 2.75 11.24 4.47
25 0.35 0.03 0.39 4.54 15.91 5.40
35 0 0 0.01 6.02 15.93 3.65

error 50%

Number of true zeros AIC Lasso min Lasso 1se AIC Lasso min Lasso 1se
15 16.22 9.20 26.43 2.90 6.85 0.82
25 7.38 3.41 12.08 4.58 12.26 2.16
35 1.57 0.76 3.01 6.13 14.52 2.45

5.5.2 Centering and standardisation

When conducting the lasso the design matrix can be centered and standardised. When

centering, each of the columns of the design matrix will be altered in order to have a mean

of 0. When standardising, the design matrix is orthonormalised such that XTX = 1. For

group lasso, standardisation orthonormalises the design matrix such that XT
g XG = nIdfg ,

where Xg is a matrix made up of the columns of the design matrix corresponding to the

gth predictor, dfg is the degrees of freedom of the g-th predictor and n is the sample
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size.

Using a simulated data set, the difference in the results of the group logistic lasso

can be compared between when centering and standardisation are used and when they

are not.

Figure 5.3: Cross validation error curves for the same dataset varying whether the design
matrix is centered and standardised.

The default for centering and standardisation using the grplasso command is TRUE

for both. Figure 5.3 shows the cross validation curve for the four different options of

whether the design matrix is centered, standardised, both or neither.

The cross validation curve for when both centering and standardisation is set to

FALSE is the same as when standardising is set to FALSE and centering is left as default.

It appears that in order to be centered, the data must first be standardised and so the

grplasso command treats both of these instances the same when computing.

It can also be seen that the main difference between the four plots is when the data is

standardised but not centered. Therefore it is implied that centering and standardisation

should be used together or neither should be used but not one without the other.

From Figure 5.3 it can be seen that there is very little difference between the curves

for when both centering and standardisation is used and when neither is used. The

value of λ which gives the minimum cross validation error in each case is 16.52 and 12.26

respectively.

Since it is not clear what the difference in results is between when centering and stan-
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dardisation is used and when it is not with one replication, we make repeated simulations

to study the effect on the coefficient estimates more systematically.

Figure 5.4: The bias of each of the coefficients produced by the lasso when the design
matrix has been centered and standardised (blue) and when the design matrix has not
been centered or standardised (orange).

Figure 5.4 shows boxplots of the bias of the coefficient estimates obtained when

fitting the lasso both when the design matrix has been centered and standardised and

when it has not. It can be seen that there is no clear pattern as to which of the methods

results in the lowest bias as it varies between the coefficients.

Hastie et al suggest that centering and standardisation is necessary when the covari-

ates are measured using different units. If the covariates have all been measured using

the sane units then centering and standardisation may not be required (Hastie et al.,

2015).

5.6 Discussion

The main aim of this chapter was to examine the different types of variable selection

frequently used. The most common method of variable selection is step-wise selection.

This involves adding or removing variables to a model and comparing the results based

on a certain criteria. These criteria include ANOVA and AIC.

The lasso is a method which simultaneously selects a model and estimates the coef-
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ficients. Stepwise selection may not always lead to the best model globally. The lasso

is both computationally efficient and due to the criteria being convex, selects the best

global solution. Therefore, the lasso is generally superior to using stepwise selection

(McConville et al., 2017).

The lasso was originally developed by Tibshirani in 1996 for use with a continuous

response variable and continuous covariates (Tibshirani, 1996b). It has since been de-

veloped for use with a binary response variable as well as for use with factor variables.

In the group lasso case, all levels of a factor will either be included or excluded from the

final model. These two methods have also been combined in order to be able to logistic

regression with grouped variables.

There are a variety of R packages that can be used to compute lasso estimates. In

order compute estimates using the group logistic lasso, either the grpreg, the grplasso

or the gglasso can be used. Since our data comes from a survey, the sampling weights

may need to be included. Therefore the grplasso package will need to be used. The

methods of including sampling weights in the lasso are discussed further in Chapter 6.

Simulations were conducted to examine the differences between stepwise selection

and the lasso in a variety of scenarios. For the lasso, when choosing the value of the

penalty parameter λ, both the value of λ which minimised the cross validation error and

the value of λ which gave a cross validation error of one standard deviation from the

minimum were used.

When considering false negatives, very few were produced when the number of co-

variates and the sample size was varied using any of the three methods. The largest

number of false negatives were found when the size of the error term was increased. In

this case, the lasso with λ using the one standard error rule was found to give the most

false negatives and the lasso using λ which gave the lowest cross-validation error gave

the least false negatives. In terms of inference, this implies that as variability increases

the the lasso using λ which gives the lowest cross-validation error is less likely to exclude

useful information than the other two methods.

The lasso using λ which gave the lowest cross-validation error was found to produce

the most false positives on average. This is consistent with findings from Guo (2015)

who also concluded that the lasso has a higher false positive rate compared to stepwise

selection using AIC (Guo, 2015). Various further extensions to the lasso to control for

150



the false positive rate (Drysdale et al., 2019) (Sampson et al., 2013) (Javanmard et al.,

2019) however these methods are not considered further in this project.

Using the lasso causes the non-zero coefficients selected to be biased towards zero

therefore it was expected that the average bias for the lasso models would be larger than

for the models obtained using stepwise selection. The simulations confirmed this with

stepwise selection generally resulting in the lowest average bias. In order to reduce the

bias of the lasso it is recommended that an unrestricted model is fit using the variables

whose coefficients are found to be non-zero using the lasso (Hastie et al., 2009).

Across all of the simulations, it was found that in approximately half of the scenarios

the minimum average mean squared error was given by stepwise selection and for the

other half of the scenarios it was given by the lasso using the value of λ which minimised

the cross validation error. The lasso tended to have the lowest mean squared error when

there were a larger number of coefficients with a true value of zeros. It also had gave the

lowest mean squared error when the error used to calculate the response variable was

increased.

Although the lasso using λ which gave the lowest cross-validation error tends to

produce more false positives than stepwise selection, it produces less false negatives

when the error in simulating the response variable is larger. When looking at the mean

squared error there is little difference between the methods and a method has been

suggested to deal with the bias resulting from the use of the lasso. Therefore, in terms

of inference it appears that although the lasso may include more variables than necessary,

the interpretation of coefficients will be similar regardless of the method used.

This chapter has summarised variable selection methods which have been developed

for use with infinite populations. When analysing the PNS and MCS inference regarding

a finite population is required and sampling weights may be required. Chapter 6 discusses

how variable selection can be conducted whilst incorporating the sampling weights.
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Chapter 6

Methodology and Analysis –

Survey Weighted Variable

Selection

This chapter will combine methods from the previous chapters to examine how the lasso

can be further extended for use with survey data. The methods of calculating coefficient

estimates using the survey lasso will be described. Implementation of survey lasso in R

will be discussed. These methods will then be applied to the data from the PNS and

the MCS and a comparison between the methods will be made.

6.1 The lasso for survey data

The methods discussed in Chapter 6 assume that the data used is drawn independently

from an infinite population. For survey sampling this is not the case as the sample comes

from a finite population.

Consider a finite population of size N , denoted by U = {1, . . . , N}. Assume that

a sample S ⊂ U is constructed with sampling design p(.). Denoting s ∈ U as the

realisation of S, then p(s) is the probability of selecting a sample index s ⊂ U . The first-

order inclusion probability for the kth unit and the second-order inclusion probability

for the kth and lth units are defined as
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πk = Pr(k ∈ S) =
∑

s⊂U :k∈s
p(s) and πk,l = Pr(k, l ∈ S) =

∑
s⊂U :k,l∈s

p(s). (6.1)

It is assumed that πk > 0 for all k ∈ U .

6.1.1 Survey weighted lasso

As can be seen in Chapter 6, the linear lasso for an infinite population solves the follow-

ing:

minimize
β

{
1

2n
‖y−Xβ‖22 + λ‖β‖1

}
, (6.2)

where y is the response vector, X is the design matrix, ‖β‖1 is the `1 norm of β and

λ > 0 is a parameter that is to be specified.

For convenience this can be written as

minimize
β

{
(ys −Xsβ)T (ys −Xsβ) + λ

p∑
i=1

|βi|
}
. (6.3)

McConville et al.(2017) propose a survey weighted linear lasso which solves the fol-

lowing:

minimize
β

{
(ys −Xsβ)TΠ−1

s (ys −Xsβ) + λ

p∑
i=1

|βi|
}

(6.4)

where Xs = [xTj ]j∈S , ys = [yj ]j∈s and Πs = diag(πj)j∈s a diagonal matrix of the

inclusion probabilities for the sample (McConville et al., 2017).

6.1.2 Survey weighted logistic lasso

When the response variable of interest is binary then logistic regression should be used.

For an infinite population, the logistic lasso minimises the negative log-likelihood subject

to an l1 penalty (Park and Hastie, 2007).

This means solving:
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minimize
β

{
−

n∑
i=1

{
yi(β0 + βTxi)− log(1 + eβ0+βTxi)

}}
subject to

p∑
j=1

|βj | ≤ λ. (6.5)

McConville (2011) defines the survey weighted logistic lasso. The coefficient estima-

tor for the survey weighted logistic lasso is given by:

minimize
β

{
−
∑
i∈s

{
1

πi
yi(β0+βTxi)−log(1+eβ0+βTxi)

}}
subject to

p∑
j=1

|βj | ≤ λ. (6.6)

6.1.3 Survey weighted group lasso

As mentioned in Chapter 6, for factor variables with a group structure, the lasso de-

scribed above is not appropriate. Therefore, the group lasso which includes all or none

of the levels from a group should be used.

As discussed in Chapter 6, For the infinite population case, Yuan and Lin (2006)

state that given a linear regression model:

Y = β0 +
J∑
j=1

Xjβj + ε

which contains J groups of covariates and Xj denotes the covariates in group j ∈ J ,

the group lasso solves

minimize
β

{ n∑
i=1

(yi − β0 −
J∑
j=1

Xijβj)
2 + λ

J∑
j=1

‖βj‖2
}
. (6.7)

For the finite population survey case, McConville defines the coefficient estimator for

the survey weighted group lasso as

minimize
β

{
(ys −Xsβ)TΠ−1

s (ys −Xsβ) + λ
J∑
j=1

‖βj‖2
}
. (6.8)

6.1.4 Survey weighted group logistic lasso

For an infinite population, the coefficient estimator for the group logistic lasso was given

in Chapter 6 as:
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minimize
β

{ n∑
i=1

{
yi(β0 + βTxi)− log(1 + eβ0+βTxi)

}
+ λ

J∑
j=1

s(dfj)‖βj‖2
}

(6.9)

For a survey weighted group logistic lasso coefficient estimator, the formula for the

survey weighted logistic lasso given above can be extended to use the group penalty term

(McConville, 2011). Therefore, the coefficient estimator is given by:

minimize
β

{ n∑
i=1

{
1

πi
yi(β0 + βTxi)− log(1 + eβ0+βTxi)

}
+ λ

J∑
j=1

s(dfj)‖βj‖2
}
. (6.10)

6.2 Selection of the penalty parameter

Since the logistic lasso is needed, many of the covariates in both of the data sets have

a grouped structure and we would like to account for the sampling weights, grplasso

is the only current available package to compute the survey-weighted group lasso. As

mentioned in Chapter 6, there is no function to run cross-validation in the grplasso

package in order to choose the penalty parameter used when fitting the model. Therefore

in order to select an optimal value of λ this must computed be separately.

When conducting cross-validation for the grouped logistic lasso some alterations need

to be made from the algorithm described in Chapter 6 for the linear lasso.

Since the response variable is binary, it isn’t possible to use the mean squared error

(MSE) described above directly. Instead a new criteria to minimise needs to be selected.

The first method which can be conducted is using a probability threshold when

predicting the values of the response variable. First, the grouped logistic lasso is fit

to the training set over a range of λ. Then µpred can be found for observation in the

test data set. Next, a threshold value, τ , is chosen and for all values of µpred > τ the

predicted response ypred is 1. For any values of µpred ≤ τ the predicted response ypred

is 0. The MSE can then be calculated as
∑

(ypred,i − ytest,i)2 where ytest,i is the true

response for the i-th observation in the test data set. The mean of this error can then

be calculated for each value of λ and plotted. The value of λ which minimises this error

would be chosen.
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A problem with this method is choosing the value τ . Another similar method which

doesn’t require a choice of threshold calculates
∑

(µpred,i − ytest,i)2. The mean can then

be calculated for each value of λ and plotted. Once again the value of λ which minimises

this error would be chosen.

A further method calculates the negative log likelihood and chooses λ such that this

value is minimised. For logistic regression the negative log-likelihood is given by

−
n∑
i=1

(yi log(µi) + (1− yi) log(1− µi)) . (6.11)

During cross-validation, the lasso is fit over a range of values of λ and then the

negative log-likelihood of the test data-set of size n2 can be calculated as

−
n2∑
i=1

{ytesti log(µpredi) + (1− ytesti) log(1− µpredi)} . (6.12)

The mean for each value of λ across the k test data-sets can be calculated and the

value of λ which gives the lowest mean is then chosen. Using the negative log-likelihood

is the most commonly used method when choosing a value of λ using cross-validation

(Meier et al., 2008) and therefore will be the method used going forward.

6.2.1 Problems with implementation

Unfortunately, despite working for simulated data, cross validation for group logistic

lasso using sampling weights could not be implemented for the PNS or MCS data.

When trying to use the method of cross-validation described above, a minimum value

of the negative log-likelihood was not reached and therefore no optimal value of λ could

be obtained.

Further cross-validation criterion have been considered including weighted log-likelihood

and mean-squared error. Similarly to when the negative log-likelihood was used however,

a value of λ which minimised these criterion could not be found.

It is currently unclear as to why this method to choose a value of λ does not work

and so the implementation of cross validation for group logistic lasso using sampling

weights is left as future work.
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6.2.2 Using alternative methods to obtain the penalty parameter

The grpreg package includes an option to compute cross validation although as men-

tioned in Chapter 6 it does not contain an option to account for the sampling weights.

McConville (2011) shows that despite a model-based estimator of the optimal value of λ,

such as obtained using grpreg, being slightly less consistent, under similar conditions

gives a very similar value to when using a model-assisted estimator (McConville, 2011).

Therefore the model-based estimator of λ will be computed using the grpreg and

then after adjusting this value for the slight difference in formulation between the equa-

tion which the grpreg and the grplasso packages minimise over, this value will be used

in the grplasso package both with and without the sampling weights.

A sensitivity analysis will be conducted to examine the impact that varying the value

of λ around this chosen value has. The value will be varied slightly and the non-zero

coefficients selected using each value will be compared.

6.3 Analysis of the PNS and the MCS

For each of the data sets, the following analysis will be conducted. First, using the cross

validation function in the grpreg package, a value of λ will be found. This value will

then be adjusted to be used in the grplasso package. After conducting a sensitivity

analysis a value of λ to be used with grplasso will be selected. Then, two models will

be obtained using the grouped logistic lasso. The first will include the sampling weights

and the second will not. This will allow any differences in the non-zero coefficients to be

compared when the sampling scheme is accounted for.

There is currently no standard methods for computing standard error estimates for

the coefficients obtained using the lasso. Therefore, in order to make an inference about

the relationship between intellectual disability and socio-economic and health variables,

a design-based generalised linear model will be fit using the variables selected whilst

using the group logistic lasso.

Step-wise selection using AIC as described in Chapter 6, will also be conducted. The

model chosen using this method will then be compared to the two models selected using

the group logistic lasso.

After fitting each of these models, inference will be made regarding the relation-
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ship between intellectual disability and socio-economic and health variables in the two

countries.

6.3.1 Analysis of the PNS

Using the methods described above, the value of λ chosen was 11.90. After varying λ

around this value it was observed that there was no difference in the variables selected

and only little difference in the coefficient estimates. Therefore, 11.90 will be used as the

penalty parameter when fitting the group logistic lasso both with and without sampling

weights. The results from fitting a design-based regression model using the coefficients

selected with the weighted and unweighted lasso along with the results from selecting a

model using stepwise selection can be found in Tables 6.1 and 6.2.

6.3.2 Analysis of the MCS

Similarly to the analysis of the PNS, using the methods described above, the value of λ

chosen was 17.24. After varying λ around this value it was observed that there was no

difference in the variables selected and only little difference in the coefficient estimates.

Therefore, 17.24 will be used as the penalty parameter when fitting the group logistic

lasso both with and without sampling weights. The results from fitting a design-based

regression model using the coefficients selected with the weighted and unweighted lasso

along with the results from selecting a model using stepwise selection can be found in

Table 6.3.

6.3.3 Comparison of methods

It can be seen in both analyses that, similarly to the simulations conducted in Chapter

5, the lasso selects a higher number of variables than when stepwise selection using AIC

is used. This is more apparent in the analysis if the MCS. Although this is the case, the

inference is similar regardless of the method used.

When looking at the coefficient estimates they appear to be similar across the three

methods. When considering the confidence intervals of the coefficient estimates, any

variable that would be found to be significant at the 5% level (the 95% confidence

interval does not contain zero) using one method is also generally found to be significant

using the other methods. There are a small number of exceptions to this. The majority
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of these exceptions, however, occur for one level of a grouped variable in which the

remaining levels are not found to be significant. The only binary variables found to be

significant at the 5% level using only one or two of the methods are whether the material

of the roof is adequate and whether emergency care has been received at home in the

last year in the analysis of the PNS.

The standard errors of each of the estimates also appear to be similar across the

three methods.

6.4 Discussion

The aim of this chapter was to combine the methods discussed in the previous chapters

and apply them to the data from the PNS and the MCS.

Since the lasso is generally used for non-survey data, a slight adaptation is needed in

order to use it with survey data from a finite population. These adaptations have been

shown to be suitable for logistic regression, grouped variables and a combination of the

two (McConville et al., 2017).

Using these methods, various models were selected for each of the data sets. The first

of these was selected using group logistic lasso without the survey weights, the second

was selected using the survey-weighted group logistic lasso and the final was selected

using stepwise selection based on the AIC. In order to calculate the standard errors

of the estimates and based on the suggestion of Hastie et al to reduce the bias of the

coefficients (Hastie et al., 2009), a design-based regression model was then fit including

the variables found to have non-zero coefficients for the two models selected when using

the lasso.

Although the three methods used select different models, when looking at the confi-

dence intervals created for the coefficients in each model, the inference that can be made

is very similar for all three models for each of the data sets. There are very few instances

in which a variable is found to be significant in only one or two of the models.
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Chapter 7

Results

This chapter will answer the research question: How do poverty and health variables

interrelate with intellectual disability in Brazil and the UK? It will also answer: Is it

possible to profile different types of children that need lower and higher levels of support

to aid in identifying subgroups for selective interventions to alleviate inequalities in

education?

This chapter will use the knowledge gained in the previous chapters to select a final

model to describe the relationship between intellectual disability, poverty and health

variables for both Brazil and the UK. First, it will be discussed whether or not there

is a need to include an interaction between age and school year. Then after fitting the

final models to each of the datasets, inference will be made for each of the countries

separately and then finally, an international comparison will be made.

The previous chapter identified that regardless of the method of variable selection

used, the inference was very similar. Using the AIC for model selection proved to select

the fewer variables than when using the Lasso. Therefore when making the final inference

about the relationship between intellectual disability, poverty and health variables, this

method will be used in order to select the most parsimonious model. Weights will be

used when calculating the coefficient estimates.

7.1 Interaction between age and school year

Since there is a natural relationship between the age of a child and the level of education

or school year that they are in, an interaction term between these two variables will be
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considered for each of the two countries. The interaction term will be kept in the final

model if it is found to be significant at the 5% level.

7.2 Results - Brazil

Stepwise selection using AIC was used as method of variable selection. Coefficient esti-

mates were calculated using design-based methods as described in Chapter 4. The final

model for the PNS can be found in Table 7.1.

7.2.1 Inference regarding intellectual disability in Brazil

Looking at the results of the analysis of the PNS it can be seen that nearly all of the

variables that were highlighted as potential indicators of poverty in Chapter 2 were found

not to be significant at the 5% level. The only exception to this was whether or not the

home has a kitchen. If a home does not have a kitchen the odds of a child having an

intellectual disability was increased. The odds of a child having an intellectual disability

was found to be between 1.02 and 3.25 times higher for a child living in a home with no

kitchen compared to a child living in a home with a kitchen.

Age was also found to be significant with an increase in age resulting in an increase

of the odds of intellectual disability. This appears to be a logical finding as the older the

child the more likely it is that any intellectual disability will be identified and therefore

there is a greater potential of diagnosis.

Sex was found to be significant with a male found to have odds of between 1.63 and

2.64 times higher than a female of having an intellectual disability.

Whether a child is able to read and write was found to be significant. If a child is

not able to read and write the odds of that child having an intellectual disability was

found to be between 22.6 and 82.3 times higher compared to a child who is able to read

and write.

When looking at the level of education, it can be seen that only some of the levels

of education are found to be significant at the 5% level. The coefficient estimate of

graduated/masters was found to be very large. This is probably due to the fact that

there is a very small number of children in the sample with an intellectual disability and

it was found during the exploratory analysis that there were no children in the sample
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who had an intellectual disability and had also graduated. Therefore the odds for this

variable may be over-stated and hence interpretation may not be accurate.

When considering further disabilities, physical disability and hearing disability were

found to have a significant relationship with intellectual disability. For both of these

disabilities, the odds of a child having an intellectual disability were found to be decreased

if a child had a physical or hearing disability compared to if they didn’t.

Many of the health variables were found to be significant at the 5% level. If a child’s

general health status was reported to be average or below average then the odds of them

having an intellectual disability was found to be increased when compared to a child

with a reported general health status of above average. The worse the general health

of a child was reported to be the more the odds of an intellectual disability were found

to increase though there was found to be a slight overlap in the confidence intervals for

average health status and below average health status.

If a child has been diagnosed with a long-standing or chronic illness then the odds

of them having an intellectual disability was found to be decreased. The odds of a child

having an intellectual disability was found to be between 7.02 and 16.3 times higher for

a child with no chronic illness than for a child with a chronic illness.

If a child has never consulted a doctor, the odds of them having an intellectual

disability are reduced when compared to a child who has consulted a doctor in the

last 12 months. There is no significant difference between the odds of a child who has

consulted a doctor in the last twelve months and a child who last consulted a doctor

more than 12 months ago. The number of times that a child has consulted a doctor in

the last 12 months was also found to have a significant relationship with the odds of

a child having an intellectual disability. For each additional time that a child has seen

a doctor in the last 12 months, the odds of the child having an intellectual disability

increase by between 1.08 and 1.07.

The interaction between age and school level was also found to be significant however

as previously mentioned, due to the lack of children in the sample with intellectual

disability who have reached higher levels of education, the interpretation of these odds

may not be accurate.

In summary, it appears that eduction and health variables are more likely to indicate

whether a child has an intellectual disability in Brazil than socio-economic variables
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which may be indicative of poverty.

7.3 Results - UK

As with the above analysis, stepwise selection using AIC was used as method of variable

selection. Coefficient estimates were calculated using design-based methods as described

in Chapter 4. The final model for the MCS can be found in Table 7.2.

7.3.1 Inference regarding intellectual disability in the UK

From looking at the analysis of the MCS data it can be seen that there is a relationship

between a family receiving a benefit of some sort and a child having an intellectual

disability. The only benefits investigated that were not found to be significant were

job seekers allowance, housing benefits and family benefits. If a family receives income

support, sickness support, tax credit, family benefits or a different unspecified benefit

then it is found that the odds of the child in that family having an intellectual disability

is increased. The other variables which could be indicative of poverty or hardship along

with whether a family is classed as living below the poverty line was not found to be

significant.

If a child is female, then the odds of them having an intellectual disability were found

to be reduced compared to if a child is male. For a male child the odds of intellectual

disability was found to be between 1.93 and 2.83 times higher than for a female.

Age was not found to be significant. This may be due to the majority of the children

in the sample being the same age. Similarly, school year was found not to be signifi-

cant. Therefore, the interaction between age and school year was also not found to be

significant at the 5% level.

When looking at further disabilities, all were found to have a relationship with in-

tellectual disability. If a child has any of these disabilities then the odds of intellectual

disability are found to be increased. For a child with a visual disability, the odds of

intellectual disability are between 1.06 and 2.71 times higher than for a child with no

visual disability. For a child with a hearing disability, the odds of intellectual disability

are found to be between 1.20 and 3.25 times higher than for a child who does not have

a hearing disability. With regards to physical disability, a child who has a physical dis-
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ability has odds of between 1.70 and 3.42 times higher than a child who does not have

an intellectual disability.

If a child’s health was reported to limit their daily activities then the odds of intel-

lectual disability was found to be increased to between 6.75 and 10.18 times higher than

when compared to a child whose health was not reported to limit their daily activities.

The number of times that a child was hospitalised in the last 12 months was found to

be significant. Generally, the more common hospitalisation was the greater the odds of

intellectual disability.

In summary, a families socio-economic position according to the poverty line was not

found to have a significant relationship with intellectual disability. However, if a family

is receiving additional support in the form of benefits then the odds of intellectual

disability was found to increase suggesting that the socio-economic position of a family

may influence whether a child has an intellectual disability in the UK. Some health

variables were also found to be significant in terms of their relationship with intellectual

disability.

7.3.2 International comparison

There were a number of variables which can be directly compared between Brazil and

the UK. The effect of gender is found to be the same in each country with a female

being less likely to have an intellectual disability than a male. Race was found not to

be significant in either country.

Since the range of ages in the MCS is a lot smaller than that in the PNS, it is

difficult to compare the full effect that age has on intellectual disabilities between the

two countries. Increased age was found to increase the odds of intellectual disability in

Brazil.

Health variables in both countries have a relationship with intellectual disability

although the variables found to be significant varied between the countries. In both

surveys, the general health status of a child was reported. This variable was only found

to be significant in Brazil with a poorer health status increasing the odds of intellectual

disability. Similarly, whether a child has a long-term or chronic illness was only found

to be significant in Brazil. On the other hand, if health was reported to limit a child’s

daily activity the odds of them having an intellectual disability was found to increase in
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the UK. This variable was not found to be significant in Brazil.

In the UK the presence of a visual, hearing or physical disability was found to increase

the odds of having an intellectual disability. This differs to Brazil where visual disability

was not found to be significant and the presence of physical disability or hearing disability

was found to decrease the odds of intellectual disability.

In regards to socio-economic position, different variables were used in each country.

In Brazil, many variables relating to the adequacy of a home were used along with

variables relating to access to goods such as a stove, refrigerator and television. It was

found that, with the exception of a home having a kitchen, none of these variables had

a significant relationship with intellectual disability. In the UK, an indicator of a family

living below the poverty line was used along with indicators relating to a variety of

benefit schemes being received by a family. Although living below the poverty line was

not found to be significant, numerous benefits were. Therefore, there appears to be little

to no relationship between socio-economic position in Brazil and some indication of a

relationship in the UK.

7.4 Discussion

In Brazil, the only variable that that could be related to poverty found to be significant

was whether or not a home has a kitchen. The lack of a kitchen in a home increases the

odds of intellectual disability although the lower bound of the 95% confidence interval

of the odds is close to one. Therefore, despite this variable being found significant the

results of this analysis suggests that there is little to no relationship between intellectual

disability and poverty in Brazil.

The largest relationship in Brazil was found to be between intellectual disability and

whether a child can read and write. The odds of a child having an intellectual disability

if they are unable to read and write are up to 82 times that of a child who is able to

read and write. This suggests that if a child is not meeting targets with regards to this

it could be a strong indicator that the child has an intellectual disability. It was also

found that the odds of a child having an intellectual disability was reduced if they were

in education past what is compulsory. This implies that many intellectually disabled

children are not in further education.
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Despite the majority of poverty variables not being found to be significant with

regards to intellectual disability, many of the health variables were found to be significant.

A child having a physical disability increased the odds of intellectual disability. This is

important to note as in many cases children with physical disabilities often face issues in

terms of receiving education due to accessibility issues a lack of resources (França et al.,

2008).

The general health status of a child was found to have a relationship with intellectual

disability. The worse the health status of a child was reported to be, the greater the risk

of intellectual disability. In addition to this, for each additional time a child has visited

a doctor in the last 12 months the odds of intellectual disability were found to increase.

This suggests that overall, children with poorer general health are more likely to have

an intellectual disability in Brazil.

Therefore, in Brazil it seems as though the failure to meet educational targets such

as the ability to read and write in addition to a poor general health status and the need

to consult a doctor numerous times within a 12 month period may be factors which can

be used when attempting to profile a child who may have an intellectual disability.

In the UK, the commonly used method of indicating that a person is living in poverty

was available. The poverty line is generally set at 60% of a countries median income and

if the income of a family falls below this line then they are defined as living in poverty

(Eurostat, 1998). This variable however, was not found to have a significant relationship

with intellectual disability. The socio-economic status of a family however may in fact

have a relationship with intellectual disability since many of the benefits were found to

be significant.

A few of the variables relating to health were found to be significant in the UK. If

a child’s health was reported as limiting their daily activities the odds of intellectual

disability are increased. Also, the more often that a child had been hospitalised within

12 months, the more likely intellectual disability is. The presence of a further disability

was also found to increase the odds of intellectual disability.

Therefore, in the UK it seems as though a families need for extra support in the

form of benefits along with a poorer general health which results in a limitation of daily

activities may be factors which can be used when attempting to profile a child who may

have an intellectual disability.
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When making a comparison between the two countries it can be seen that health

variables were found to be significant in both countries. The poorer the health of a child

the more likely they are to have an intellectual disability. The socio-economic position

of a family seems to be more significant in the UK than in Brazil.
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Chapter 8

Conclusions, Discussion and

Future Work

The overall aim of this project was to determine whether or not there is a relationship

between intellectual disability and poverty and health variables in Brazil and the UK.

Through determining this relationship, the aim was to then try to profile a child who is

at greater risk of intellectual disability in order to result in a quicker diagnosis and earlier

access to the support and resources available for children with intellectual disabilities.

Policies regarding children with intellectual disabilities which have been adopted within

the two countries in recent years are similar and hence making a comparison between

the two countries will provide further insight into how both systems can be improved.

The need for a study of this kind was highlighted during the literature review. There

have been very few studies into intellectual disability in Brazil and any studies which

have been conducted tend to focus only on small regions (Mercadante et al., 2009). This

study was based on data from a recent national survey and therefore it is possible to

make an inference regarding intellectual disability for the whole population of Brazil.

Although there have been various studies into intellectual disability in the UK, in order

to make an international comparison and confirm findings from such studies, a new

analysis has been conducted.

The poverty line is the recommended measure to be used in international comparisons

when trying to define a person as living in poverty (Eurostat, 1998). Based on the data

available in the PNS however, there is no way to determine whether or not someone is

living below the poverty line and so alternative measures had to be used. The general
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definition of poverty is “when a person’s resources are well below their minimum needs”

(Goulden and D’arcy, 2014). Therefore one possible way proposed to determine whether

a person is living in poverty in Brazil is to look at the adequacy of the home and

an individuals access to basic resources. Based on recommendations from the IBGE,

the data regarding the materials which various parts of a home is constructed can be

classified as adequate or inadequate and the availability of resources can be grouped into

basic goods or status goods (Fundação Instituto Brasileiro de Geografia and Estat́ıstica.

Departamento de População and Indicadores Sociais, 1998).

An issue related to the comparison aspect of this project was the lack of corresponding

variables within the two data sets. The indicators of potential poverty from the PNS had

no equivalent in the MCS and hence in order to determine the socio-economic position

of an individual, different measures had to be used between the two countries. The MCS

contains an indicator of whether a families income falls below the poverty line of the UK

and hence this variable was included as an indicator of poverty.

In addition to the poverty line, a families socio-economic status could also be mea-

sured by the need of additional support in the form of benefits. Therefore in addition

to the poverty line, these benefits may be used to identify if a family is of a lower

socio-economic position in the UK.

In order to conduct appropriate analysis of the two data sets two main statistical

issues were first addressed. The first of these was to determine how to appropriately

account for the complex sampling design of the two surveys. The second was to determine

a method to select relevant variables from the large number of available variables in both

the PNS and the MCS.

In order to account for the complex survey design both model-based and design based

approaches were considered. Simulations showed no difference between the coefficient

estimates and little differences in the standard errors between the two methods for the

sampling schemes considered. Since the population for which inference is required is

the population from which the sample is taken, design-based analysis is used (Dorazio,

1999).

When comparing current variable selection methods simulations show that there is

little difference when it comes to making inference from the results of models selected

using step-wise selection and the lasso. This was further confirmed during the analysis
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of the PNS and MCS data.

Silva and Skinner (1997) highlight the need for variable selection in finite populations

(Nascimento Silva and Skinner, 1997) and McConville et al (2017) extend the lasso

accounting for sampling weights for use with a finite population (McConville et al.,

2017). These methods were considered for use when analysing the data from the PNS

and the MCS. There was found to be very little difference in inference when a model was

selected using survey weighted lasso and stepwise selection based on AIC. The model

found using AIC included fewer variables and hence this method was used in the final

analysis of both data sets in order to find the most parsimonious model.

Diagnosis of intellectual disability is not consistent in Brazil and many people never

receive a diagnosis (Carvalho and Forrester-Jones, 2016). Therefore if it possible to

profile a child who is likely to have an intellectual disability it may lead to a quicker

diagnosis and therefore quicker access to appropriate support. The earlier support and

resources are available to a child with an intellectual disability, the less likely they are

to have poor outcomes in life and hence the financial costs as a result of the disability

will be reduced for both the family and also for society (Battiscombe, 1974).

After the analysis of the PNS data, a potential profile of a child likely to have an

intellectual disability in Brazil was found to be: a child who is unable to read and write

with poor general health and multiple visits to a doctor within a 12 month period.

The ability to read and write was found to be the largest indicator that a child may

have an intellectual disability in Brazil. Therefore if a child is struggling to meet targets

in regards to this it may be advisable to consider testing for intellectual disability in order

to provide adequate support in assisting the child throughout their education. The earlier

a child is given support in such areas, the more likely they are to reach their full potential

with regards to education and employment. A child who does not pursue education when

it is no longer compulsory in Brazil, has higher odds of intellectual disability which could

suggest that current practices of educating children with intellectual disability can be

improved.

Similarly can be suggested regarding the health of a child. If a child has poor general

health then they are more likely to have a reduced education compared to a child with

a good general health. If a child is found to have poor general health and requires

multiple consultations with a doctor throughout a 12 month period, it may be advisable
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to consider testing for intellectual disability in order for the appropriate support to be

provided to the child and prevent the gap in education widening further.

In the UK, a potential profile of a child likely to have an intellectual disability was

found to be: a child in a family who requires extra financial support in the form of benefits

along with a poorer general health which results in a limitation on daily activities.

Despite an indicator of poverty based on the poverty line not being found to have

a significant relationship with intellectual disability, many benefits were found to have

a relationship. Since many of these benefits are received by a family whose income is

low, this suggests that the lower the socio-economic position of a family, the greater the

chance of the child having an intellectual disability. Therefore, one suggestion would be

to closely monitor the development of children in families who require extra financial

support, in order to identify any intellectual disability as soon as possible. The earlier

this support is provided the more likely a child is to achieve good outcomes in life and

therefore will be less likely to require similar financial support from the government in

the future.

Similarly to Brazil, poorer health was found to increase the odds of intellectual

disability and so also monitoring children in the UK who have a level of health which

restricts their daily activities may lead to a quicker diagnosis of intellectual disability

when relevant. With a quicker diagnosis the less likely the gap in educational attainment

is to widen.

In both countries physical disability was found to have a relationship with intellec-

tual disability. A child with a physical disability is more likely to have an intellectual

disability compared to a child without. Similarly to issues in education for children with

poor general health, in many cases education is often limited for children with physical

disabilities. This is usually due to access issues and a lack of appropriate support and

resources in schools (França et al., 2008). Therefore in order to prevent the gap in ed-

ucational attainment between disabled children and non-disabled children widening, it

may be suggested that the intellectual development of children with physical disabilities

should be closely monitored in order to diagnose any intellectual disability as quickly as

possible.
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8.1 Recommendations and Unique Contribution

This thesis has the potential to have impact on the early intervention of children with

intellectual disability. A method has been developed in order to profile children who are

likely to have a disability in both the UK and Brazil. From this certain recommendations

can be made.

In Brazil, the specific profile was found to be a child who is unable to read and

write with poor general health and multiple visits to the doctor each year. Since there

is limited diagnosis of intellectual disability in Brazil this may act as a good indicator

for schools to highlight if a pupil requires additional support. The earlier a diagnosis is

achieved, the less likely the gap in educational attainment is to widen between disabled

and non-disabled children.

In the UK, the specific profile was found to be a child in a family which requires

additional financial support along with a poorer general health. If this profile is used in

order to determine the educational support available to a child it may mean that children

who have an underlying disability but are yet to be diagnosed may benefit earlier and

are therefore less likely to fall behind their peers. This in turn means that they may be

less likely to require financial support and assistance from the government in the future,

breaking the cycle.

In this work, it has been determined when and how it is appropriate to use sam-

pling weights when conducting regression modelling, clearing up existing confusion from

literature. A test for the appropriateness of the use of sampling weights in a logistic

regression setting has also been developed.

There have been no large scale studies into intellectual disability in Brazil and so

this is a unique contribution to this field.

8.2 Future work

An additional statistical issue with both datasets, which has not been investigated in

this project, is the imbalance in the responses. For both data sets, there is only a small

proportion of children who have an intellectual disability. Analysis of imbalanced data

may be biased towards the majority group (Wang and Yao, 2009). There are ways in
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which the data can be trained in order to balance it including over-sampling the minority

class or under-sampling the majority class (Frei, 2019). These methods however have

not been researched for survey data. It is thought that the use of either of these methods

would confound with the sampling weights. In future it would be useful to examine how

to adapt these methods for survey data and investigate whether there are any further

methods to deal with imbalanced survey data.

In Chapter 7, a method of cross validation for the survey weighted group logistic lasso

was considered. However, it was not possible to implement this method for unknown

reasons. A further look into this will allow an optimal value of the penalty parameter to

be selected and survey weighted group lasso to be implemented using only the grplasso

package, without the need of further packages.

When analysing the data from the MCS, only a subset of the available variables were

selected in order to allow an international comparison with Brazil to be made. Therefore,

it would be interesting to see whether any of the additional variables in the MCS are

also found to be related to intellectual disability and allow a more detailed profile of a

child who is more likely to have an intellectual disability in the UK to be built.

The MCS is a longitudinal study and so it would also be interesting to see how

the relationship between intellectual disability and the variables from the MCS change

over time. There is currently no data available in Brazil, however, that would allow a

longitudinal study such as this to be completed.
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Appendix A

Appendix

A.1 Sampling weights - simulations

Figure A.1: The difference between the coefficient estimates and the true values for the
stratified sample, not including weights (blue), including weights - model-based (pink)
and including weights - design-based (orange) when sampling 20% of the population.
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Figure A.2: The standard errors of the coefficient estimates for the stratified sample, not
including weights (blue), including weights - model-based (pink) and including weights
- design-based (orange) when sampling 20% of the population.

Figure A.3: The difference between the coefficient estimates and the true values for
the stratified sample with proportional allocation, not including weights (blue), includ-
ing weights - model-based (pink) and including weights - design-based (orange) when
sampling 20% of the population.
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Figure A.4: The standard errors of the coefficient estimates for the stratified sample
with proportional allocation, not including weights (blue), including weights - model-
based (pink) and including weights - design-based (orange) when sampling 20% of the
population.

Figure A.5: The difference between the coefficient estimates and the true values for the
stratified sample with optimal allocation, not including weights (blue), including weights
- model-based (pink) and including weights - design-based (orange) when sampling 20%
of the population.
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Figure A.6: The standard errors of the coefficient estimates for the stratified sample with
optimal allocation, not including weights (blue), including weights - model-based (pink)
and including weights - design-based (orange) when sampling 20% of the population.

Figure A.7: The difference between the coefficient estimates and the true values for the
stratified sample with underlying relationship (ignoring strata), not including weights
(blue), including weights - model-based (pink) and including weights - design-based
(orange) when sampling 20% of the population.
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Figure A.8: The standard errors of the coefficient estimates for the stratified sample with
underlying relationship (ignoring strata), not including weights (blue), including weights
- model-based (pink) and including weights - design-based (orange) when sampling 20%
of the population.

Figure A.9: The difference between the coefficient estimates and the true values for the
stratified sample with underlying relationship (including strata), not including weights
(blue), including weights - model-based (pink) and including weights - design-based
(orange) when sampling 20% of the population.
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Figure A.10: The standard errors of the coefficient estimates for the stratified sample
with underlying relationship (including strata), not including weights (blue), includ-
ing weights - model-based (pink) and including weights - design-based (orange) when
sampling 20% of the population.

Figure A.11: The difference between the coefficient estimates and the true values for the
stratified sample, not including weights (blue), including weights - model-based (pink)
and including weights - design-based (orange) when sampling 50% of the population.
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Figure A.12: The standard errors of the coefficient estimates for the stratified sample, not
including weights (blue), including weights - model-based (pink) and including weights
- design-based (orange) when sampling 50% of the population.

Figure A.13: The difference between the coefficient estimates and the true values for
the stratified sample with proportional allocation, not including weights (blue), includ-
ing weights - model-based (pink) and including weights - design-based (orange) when
sampling 50% of the population.
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Figure A.14: The standard errors of the coefficient estimates for the stratified sample
with proportional allocation, not including weights (blue), including weights - model-
based (pink) and including weights - design-based (orange) when sampling 50% of the
population.

Figure A.15: The difference between the coefficient estimates and the true values for the
stratified sample with optimal allocation, not including weights (blue), including weights
- model-based (pink) and including weights - design-based (orange) when sampling 50%
of the population.
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Figure A.16: The standard errors of the coefficient estimates for the stratified sample
with optimal allocation, not including weights (blue), including weights - model-based
(pink) and including weights - design-based (orange) when sampling 50% of the popu-
lation.

Figure A.17: The difference between the coefficient estimates and the true values for the
stratified sample with underlying relationship (ignoring strata), not including weights
(blue), including weights - model-based (pink) and including weights - design-based
(orange) when sampling 50% of the population.
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Figure A.18: The standard errors of the coefficient estimates for the stratified sample
with underlying relationship (ignoring strata), not including weights (blue), including
weights - model-based (pink) and including weights - design-based (orange) when sam-
pling 50% of the population.

Figure A.19: The difference between the coefficient estimates and the true values for the
stratified sample with underlying relationship (including strata), not including weights
(blue), including weights - model-based (pink) and including weights - design-based
(orange) when sampling 50% of the population.
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Figure A.20: The standard errors of the coefficient estimates for the stratified sample
with underlying relationship (including strata), not including weights (blue), includ-
ing weights - model-based (pink) and including weights - design-based (orange) when
sampling 20% of the population.

189



References

Asparouhav, T. and Muthen, B. (2007). Testing for informative weights and weights

trimming in multivariate modeling with survey data. Proceedings of the 2007 JSM

meeting in Salt Lake City, Utah, Section on Survey Research Methods.

Assis, S. G. d. (2009). Children and youth with and without disabilities.

Battiscombe, G. (1974). Shaftesbury: a biography of the seventh Earl, 1801-1885. Lon-

don: Constable.

Block, P. (2007). Institutional utopias, eugenics, and intellectual disability in brazil.

History and Anthropology, 18(2):177–196.

Bollen, K. A., Biemer, P. P., Karr, A. F., Tueller, S., and Berzofsky, M. E. (2016). Are

survey weights needed? a review of diagnostic tests in regression analysis. Annual

Review of Statistics and Its Application, 3(1):375–392.

British Council (2013). The education systems of england & wales, scotland and northern

ireland.

British Psychological Society (2000). Learning disability: Definitions and contexts.

British Psychological Society Leicester.

Bursac, Z., Gauss, C. H., Williams, D. K., and Hosmer, D. W. (2008). Purposeful

selection of variables in logistic regression. Source code for biology and medicine,

3(1):17.

Carvalho, E. N. S. d. and Forrester-Jones, R. (2016). Country profile: intellectual

disability in brazil. Tizard Learning Disability Review, 21(2):65–74.

Chambers, R. L. and Skinner, C. J. (2003). Analysis of survey data. John Wiley & Sons.

190



Chromy, J. R. and Abeyasekera, S. (2005). Statistical analysis of survey data. Household

sample surveys in developing and transition countries, studies in methods. New York:

United Nations.

Cooper, V., Emerson, E., Glover, G., Gore, N. J., Hassiotis, A., Hastings, R., Knapp, M.

R. J., McGill, P., Oliver, C., Pinney, A., et al. (2014). Early intervention for children

with learning disabilities whose behaviour challenges. briefing paper. Challenging

Behaviour Foundation.

Cullis, A. (2007). Infant mortality in the millennium cohort study (mcs) sample areas.

Damacena, G. N., Janeiro-rj, R. D., Janeiro-rj, R. D., Federal, U., Gerais, D. M., Enfer-

magem, E. D., Horizonte-mg, B., Janeiro-rj, R. D., Pesquisas, D. D., Janeiro-rj, R. D.,

Pereira, C. A., Pesquisas, D. D., and Janeiro-rj, R. D. (2013). The Development of

the National Health Survey in Brazil. National Health Survey Methodology Article,

24.

Dauncey, M. (2015). Special Education al Needs ( SEN )/ Additional Learning Needs (

ALN ) in Wales. The National Assembly for Wales.

De Leeuw, E. D., Hox, J., and Dillman, D. (2012). International handbook of survey

methodology. Routledge.

Dickens, W. T. (1990). Error components in grouped data: Is it ever worth weighting?

Review of Economics and Statistics, 72(2):328–333.

Dorazio, R. M. (1999). Design-based and model-based inference in surveys of freshwater

mollusks. Journal of the North American Benthological Society, 18(1):118–131.

Drysdale, E., Peng, Y., Hanna, T. P., Nguyen, P., and Goldenberg, A. (2019). The false

positive control lasso. arXiv preprint arXiv:1903.12584.

DuMouchel, W. H. and Duncan, G. J. (2008). Using Sample Survey Weights in Mul-

tiple Regression Analyses of Stratified Samples. Journal of the American Statistical

Association, 78.

Durrant, G. B. et al. (2005). Imputation methods for handling item-nonresponse in

the social sciences: a methodological review. ESRC National Centre for Research

191



Methods and Southampton Statistical Sciences Research Institute. NCRM Methods

Review Papers NCRM/002.

Emerson, E. (2015). The Determinants of Health Inequalities Experienced by Children

with Learning Disabilities. Public Health England.

Emerson, E., Hatton, C., Robertson, J., Roberts, H., Baines, S., Evison, F., and Glover,

G. (2012). People with learning disabilities in england 2011. Durham: Improving

Health & Lives: Learning Disabilities Observatory.

Emerson, E. and Heslop, P. (2010). A working definition of learning disabilities. Im-

proving Health and Lives: Learning Disabilities Observatory, pages 1–4.

Emerson, E., Robertson, J., Baines, S., and Hatton, C. (2016). Obesity in british children

with and without intellectual disability: cohort study. BMC Public Health, 16(1):644.

Emerson, E., Shahtahmasebi, S., Lancaster, G., and Berridge, D. (2010). Poverty tran-

sitions among families supporting a child with intellectual disability. Journal of Intel-

lectual and Developmental Disability, 35:224–234.

Eurostat (1998). Recommendations on social exclusion and poverty statistics. Luxem-

bourg: Statistical Office of the European Communities.

Finn, D. and Goodship, J. (2014). Take-up of benefits and poverty: an evidence and

policy review. JRF/CESI Report.

FPLD (2017). Learning disabilities.

França, I. S. X. d., Pagliuca, L. M. F., and Baptista, R. S. (2008). Policies for the

inclusion of disabled people: limits and possibilities. Acta Paulista de Enfermagem,

21(1):112–116.

Frei, L. (2019). A deep dive into imbalanced data: Over-sampling.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized

linear models via coordinate descent. Journal of statistical software, 33(1):1.

Fuller, W. (2009). Sampling Statistics. Wiley.

192



Fundação Instituto Brasileiro de Geografia and Estat́ıstica. Departamento de População

and Indicadores Sociais (1998). Pesquisa sobre padrões de vida, 1996-1997. Ibge.

Goulden, C. and D’arcy, C. (2014). A Definition of Poverty. JRF Programme Paper,

pages 1–10.

Groves, R. M., Fowler Jr, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., and

Tourangeau, R. (2011). Survey methodology, volume 561. John Wiley & Sons.

Guo, P. (2015). Improved variable selection algorithm using a lasso-type penalty, with an

application to assessing hepatitis b infection relevant factors in community residents.

PLoS ONE, 10.

Hahs-Vaughn, D. L. and Lomax, R. G. (2006). Utilization of sample weights in single-

level structural equation modeling. The Journal of Experimental Education, 74(2):163–

190.

Hansen, K. (2012). Millennium Cohort Study: First, second, third and fourth surveys.

A guide to the datasets (Seventh Edition). Centre for Longitudinal Studies, pages

1–114.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning:

data mining, inference, and prediction. Springer Science & Business Media.

Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical Learning with Sparsity

- The Lasso and Generalisations. CRC Press.

Hausman, J. A. (1978). Specification tests in econometrics. Econometrica, 46(6):1251–

1271.

Heinze, G. and Dunkler, D. (2017). Five myths about variable selection. Transplant

International, 30(1):6–10.

Heinze, G., Wallisch, C., and Dunkler, D. (2018). Variable selection–a review and rec-

ommendations for the practicing statistician. Biometrical Journal, 60(3):431–449.

Hintze, J. (2007). Ncss statistical system user’s guide iii: Regression and curve fitting.

Jannuzzi, G. d. M. (2005). A educação do deficiente no brasil: dos primórdios ao ińıcio
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