| 1  | Uncovering temporal-spatial drivers of vehicular NO <sub>x</sub> emissions in China                                                                                      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Junfeng Wang <sup>a,b</sup> *, Xinjing Li <sup>a,b</sup> , Shihao Ding <sup>a,b</sup> , Xiaoya Xu <sup>a,b</sup> , Lingxuan Liu <sup>c</sup> , Liang Dong <sup>d</sup> , |
| 3  | Yinchang Feng <sup>a,e</sup>                                                                                                                                             |
|    |                                                                                                                                                                          |
| 4  | <sup>a</sup> College of Environmental Science and Engineering, Nankai University, Tianjin 300500, China                                                                  |
| 5  | <sup>b</sup> Research Center for Resource, Energy and Environmental Policy, Nankai University, Tianjin                                                                   |
| 6  | 300500, China                                                                                                                                                            |
| 7  | <sup>c</sup> Lancaster University Management School, Lancaster University, LA1 4YX, Bailrigg, Lancashire,                                                                |
| 8  | United Kingdom                                                                                                                                                           |
| 9  | <sup>d</sup> Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, The Netherlands                                                               |
| 10 | <sup>e</sup> State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution                                                             |
| 11 | Prevention and Control & Center for Urban Transport Emission Research, Tianjin, 300350, China                                                                            |

## 12 Highlights

| 13 | • | China's NO <sub>x</sub> emissions from provincial vehicles were estimated during 2005-2015. |
|----|---|---------------------------------------------------------------------------------------------|
| 14 | ٠ | A new temporal-spatial decomposition model was built to identify emission drivers.          |
| 15 | ٠ | Road vehicle carrying capacity drove both temporal change and spatial difference            |
| 16 | • | Regional emission intensity and road economic growth affected spatial difference.           |
| 17 | ٠ | Economic development played a crucial role in the temporal change.                          |
| 18 |   |                                                                                             |
| 19 |   |                                                                                             |
| 20 |   |                                                                                             |

- \_0
- 21

## 1 Abstract

2 The increasing vehicle numbers in China have raised issues on effective mitigation of the 3 vehicular NO<sub>x</sub> emissions recently. Notably, temporally growing and spatial agglomeration of high 4 vehicular NO<sub>x</sub> emissions make an essential challenge to the mitigation strategy-makers. However, 5 so far, there have been few studies to give insight into the socioeconomic drivers like the spatial 6 imbalance of socioeconomic development, vehicle structure and road infrastructure to help 7 governors. To fill the above gap, this study explores drivers of temporal change and spatial 8 differences by building a temporal-spatial decomposition model and accounting for national and 9 regional NO<sub>x</sub> emissions from vehicles in China from 2005 to 2015. Results show that, of all the 10 driving forces in this study, only road vehicle carrying capacity ( $\Delta N_{VI}$ ) acts as a primary driving 11 force for both temporal growing and spatial agglomeration of vehicular NO<sub>x</sub> emissions in China. 12 Regional vehicle emission intensity ( $\Delta N_{\text{NI}}$ ) and road economic growth ( $\Delta N_{\text{EI}}$ ) only mainly

13 contributed to spatial agglomeration. While economic development  $(\Delta N_G)$  played a crucial role in 14 the temporal growing of vehicular NO<sub>x</sub> emissions in China. These findings indicate that the future 15 mitigation policy should fully cover the comprehensive socioeconomic factors, which would be 16 useful for China and other developing countries when aiming to improve the performance of their 17 current vehicle emissions policy system.

18 Keywords:

19 Vehicular NO<sub>x</sub> emissions; Temporal-spatial decomposition; Spatial differences; Agglomeration;

20 China

## 1 **1. Introduction**

2 Rapid economic development and urbanization have led to dramatic growth in energy 3 consumption and the number of automobiles in many developing countries, including China. 4 Consequently, emissions of air pollutants have increased significantly in recent years (Zhu et al., 5 2013; Hao et al., 2014; Wang et al., 2017b), which has led to severe regional air pollution. Among 6 air pollutants, emissions of nitrogen oxides (NO<sub>x</sub>) are of particular concern. NO<sub>x</sub> contributes 7 substantially to local air pollution and regional environmental risks such as acid rain, eutrophication, 8 tropospheric ozone, haze, and loss of biodiversity (Hao et al., 2002; Peel et al., 2012; Cheng et al., 9 2016); it also increases health risks across regions with dense populations (Boningari and Smirniotis, 10 2016). As well as particulate matter with an aerodynamic diameter less than 2.5  $\mu$ m (PM2.5), China has devoted increasing attention to NOx emissions reduction. In China's 12th and 13th Five-Year 11 12 Plans (2010–2015 and 2016–2020), the government incorporated  $NO_x$  reduction targets into the 13 total emission control system and implemented these targets for NO<sub>x</sub> emissions control into each 14 province. Therefore, NO<sub>x</sub> reduction has become an important political goal for energy policy and 15 air quality management in China (Wang et al., 2014; Ding et al., 2017). 16 Emissions of  $NO_x$  (NO and  $NO_2$ ) are from both natural processes and anthropogenic emission 17 (Lee et al., 1997). On a global scale, nearly half of the total  $NO_x$  is derived from human activities, 18 which could rapidly increase due to economic growth (Lamsal et al., 2011). Meanwhile,  $NO_x$ 19 emissions from vehicles have gradually become a major contributor over pasts (Anenberg et al., 20 2017; Wild et al., 2017; Ramos et al., 2018), alongside industrial emissions. In particular, the number 21 of vehicles in China should be focused on, as this has grown from 43.29 million in 2005 to 260.03 22 million in 2015 (MEP, 2016) due to the fast-growing population and expanding urbanization over 23 the past decade. Meanwhile, the contribution of  $NO_x$  emissions from vehicles rose to 31% of total 24 Chinese emissions in 2015, reaching 5.85 million tons (MEP, 2015). Specifically, in well-developed 25 urban areas characterized by vehicles agglomeration, NOx emissions from vehicles have become 26 the principal source of urban NO<sub>x</sub> emissions (Liu et al., 2017a), leading to severe air pollution in

those areas. Therefore, identifying the drivers and impact mechanisms of vehicular NO<sub>x</sub> emissions
 is key to taking effective measures to reduce NO<sub>x</sub> emissions.

2

3 Despite the increasing issue of  $NO_x$  emissions from vehicles, most previous studies have only 4 focused on NO<sub>x</sub> emissions inventories. Lang et al. (2014) estimated on-road vehicular emissions in 5 China from 1999-2011 based on the COPERT model. Jing et al. (2016) developed a vehicle 6 emission inventory with a high temporal-spatial resolution for the Beijing urban area based on a 7 bottom-up methodology. Liu et al. (2018) improved the accuracy and temporal-spatial resolution of 8 a vehicle emission inventory in a medium-sized city, Foshan, with a strip road network. Yang et al. 9 (2018) established vehicle emission inventories for five major air pollutants in the Beijing-Tianjin-10 Hebei (BTH) region and carried out a policy scenario analysis based on the newly developed 11 inventories. Lv et al. (2019) estimated the vehicle emissions in Yunnan province for 2003-2015 with 12 the COPERT IV model. All of the above studies could help us to understand the vehicular emission 13 characteristics in China. However, most of the studies were carried out in: (1) limited region, some 14 of them were focused on local or developed areas, such as the Beijing-Tianjin-Hebei (BTH), 15 Yangtze River Delta (YRD) or Pearl River Delta (PRD) region. Considering the continuous sharp 16 growth of vehicle population and the progressive implementation of more and more stringent 17 emission standards (from State I to State V) during the recent decade, the vehicular emissions and 18 its characteristics in China should be further estimated and analyzed. (2) limited research 19 perspective, these studies only involved estimating vehicle emissions, they did not explore further 20 the driving forces behind these changes.

Nevertheless, socioeconomic factors have been identified as driving forces, which are essential to track and evaluate emissions performance (Wang et al., 2017a). Generally, in addition to econometric techniques (Jiang et al., 2016; Wang et al., 2019a) and computable general equilibrium (CGE) models (Zhang et al., 2018), the decomposition method is popular and also helpful in finding drivers. A critical advantage of decomposition analysis is that it can distribute a temporal change or spatial difference in an aggregate indicator into components related to several driving factors. The two most widely used are index decomposition analysis (IDA) and structural decomposition analysis (SDA) (Wang et al., 2017a). Several previous
 studies have used decomposition analysis to explain the observed change in aggregate NO<sub>x</sub>
 generation from energy consumption (He et al., 2019) and power generation (Wang et al., 2018;
 Wang et al., 2019b). However, there are only a few studies on transportation or vehicle CO<sub>2</sub>
 (Wang et al., 2011; Liu et al., 2015; Luo et al., 2016; Liang et al., 2017), and this lack an
 exploration of the driving mechanisms behind NO<sub>x</sub> emissions from on-road vehicles.

7 Moreover, the above situation is similar to current regulatory policies related to vehicle 8 emission reduction. The previous studies are mostly about technical constraints (e.g., fuel quality, 9 technology efficiency) and rarely involve socioeconomic factors such as economic growth, road 10 infrastructure construction, urbanization, and population agglomeration (Yang et al., 2015). In 11 addition, regional disparities in vehicular  $NO_x$  emissions have become an increasing issue (Xu and 12 Masui 2009, Huang and Todd 2010, Li and DaCosta 2013). However, previous studies did not 13 investigate the drivers of these geographical differences and congregation of people in certain areas. 14 Notably, the nexus issue of economic growth and road infrastructure, which are deeply affected by 15 urbanization, did not receive as much focus as other impact factors (Lang et al., 2012; Gu et al., 16 2013; Lang et al., 2014; Lang et al., 2016; Sun et al., 2016).

17 In summary, there are at least two knowledge gaps to be bridged. First, how did driving forces 18 including economic growth, population clustering, and road infrastructure construction affect the 19 temporal change in NO<sub>x</sub> emissions from the provincial on-road vehicle population? Second, what 20 factors cause the geographical differences and clustering of NOx-related vehicle emissions and 21 whether they have a similar impact mechanism as the drivers of temporal change. To bridge the 22 gaps, by estimating the national and regional NO<sub>x</sub> emissions from vehicles in China from 2005 to 23 2015, the temporal change and spatial distribution of NO<sub>x</sub> emissions from on-road vehicles in China 24 were first shown. Then a conceptual model of the connections between vehicles, the economy, 25 infrastructure, and population was established. Finally, the temporal-spatial decomposition method 26 was applied to identify the dominant drivers of temporal changes and spatial differences in vehicular 27 NO<sub>x</sub> emissions in China.

1 The structure of this study is as follows. Section 2 presents the vehicular NO<sub>x</sub> emissions 2 calculation method and the temporal-spatial decomposition method used in this paper. Section 3 3 reveals the results of the estimated vehicular NO<sub>x</sub> emissions in China. Section 4 discusses the drivers 4 of temporal changes and spatial differences in vehicular NO<sub>x</sub> emissions. Section 5 presents the 5 conclusions and provides policy implications.

## 6 2. Methodology

## 7 2.1 Estimation of vehicular NO<sub>x</sub> emissions

8 In this study, NO<sub>x</sub> emissions from vehicles in 31 provinces in China from 2005 to 2015 were 9 estimated based on emission factors and vehicle kilometers travelled (VKT) using Equation 1 (Lang 10 et al., 2016; Liu et al., 2018): 11  $N_{i,t} = \sum_{i} (V_{i,i,t} \times EF_{i,i,t} \times VKT_{i,i,t}) \times 10^{-6}$ (1)12 where 13 *i*: A given municipality or province in China (except for Hong Kong, Macao, and Taiwan due 14 to data availability); 15 j: A given vehicle type, including freight and passenger vehicles of different sizes, fuel types 16 and emission standards. Detailed categories are shown in Table A.1 in the Supplementary 17 information; 18 t: A given year of vehicular NO<sub>x</sub> emissions estimation; 19  $N_{i,t}$ : NO<sub>x</sub> emissions from vehicles in year t for area i (t); 20  $V_{i,j,t}$ : Vehicle number of type *j* in year t for area *i*;

21  $EF_{i,j,t}$ : Emission factor for vehicles of type *j* in year *t* for area *i*, (g/km);

22  $VKT_{i,j,i}$ : Annual average vehicle kilometers travelled by vehicles of type j in year t for area i,

23 (km).

In Equation 1, the vehicular emission factor is a comprehensive index to measure the average

vehicle emission contribution level, which is estimated using the National Emission Inventory Guidebook for On-road Vehicles (MEP, 2014). The guidebook provides data on China V standard vehicles as well as vehicles corresponding to the government vehicle registration types, which can be used to carry out a more accurate calculations (Yang et al., 2018). In this study, emission factors of vehicles of type *i* were adjusted using Equation 2 according to the change in conditions in different regions.

7 
$$EF_{i,j,t} = BEF_j \times \varphi_{i,t} \times \gamma_{i,t} \times \lambda_{j,t} \times \theta_{i,j,t}$$
 (2)

8 where

9 **BEF**<sub>i</sub> : The comprehensive basic emission factor for a vehicle of type *j*;

10  $\boldsymbol{\varphi}_{i,t}$ : The environmental correction factor of area *i* in year *t*;

11  $\gamma_{i,t}$ : The road traffic condition correction factor of area *i* in year *t*;

12  $\lambda_{j,t}$ : The deterioration correction factor of vehicles of type *j* in year *t*;

13  $\theta_{i,j,t}$ : Other use condition correction factors of vehicles of type *j* in year *t* for area *i*.

*BEF* is based on the 2014 conditional scenario (MEP, 2014) and contains the following assumptions: average cumulative VKT were under typical urban driving conditions (30 km/h) for all vehicles; meteorological condition (15°C, relative humidity of 50%); fuel quality (fuel with a sulfur content of 50 ppm and 350 ppm for gasoline and diesel fuel, respectively, gasoline without ethanol blending); and load factor (50% for a diesel vehicle under the typical working condition). Detailed information of the environmental correction factor is presented in Tables A.2–A.4 (Supplementary information).

## 21 2.2 The conceptual model

This study aims to introduce a conceptual model to explore how socioeconomic factors affect vehicular NO<sub>x</sub> emissions in China and its sub regions (Fig. 1). According to Fig. 1, some subsystems, including the vehicle, road, and socioeconomic systems, are closely interconnected into a comprehensive overall system. In this context, vehicular NO<sub>x</sub> emissions are affected and driven by all areas of this connected system. Some studies (Lang et al., 2014; Liu et al., 2017b) have demonstrated a linear relationship between vehicular  $NO_x$  emissions and GDP. Additionally, the population size (social system) and road miles (road system) could also push up vehicle  $NO_x$ emissions because of their impact on the growth of the provincial vehicle population. Meanwhile, economic growth could be driven by improved road infrastructure, which would then lead to more investment in road infrastructure, further increasing the amount of road miles.



Fig. 1. Conceptual model of a comprehensive system connecting vehicles, roads, society, and the
8 economy.

9 2.3 Temporal-spatial decomposition method

6

From the conceptual model above, it is necessary to pull out several important drivers to further quantify the size of their effect. Then how socioeconomic factors affect temporal changes and spatial differences in vehicular  $NO_x$  emissions in China can be explored. Here, a temporal-spatial decomposition model of vehicular  $NO_x$  emissions was rebuilt using the LMDI (Logarithmic Mean Divisia Index) method, which is widely used due to its full breakdown of variables, clear explanation, and zero residual errors (Ang et al., 1998; Ang 1996, 2004). As the most popular index 1 decomposition approach, LMDI performs well in the case with large variations in variable values 2 and possesses the capacity to conduct comparative analysis within time series or across objects 3 (Jiang et al., 2017). Previous studies were reviewed (Wang et al., 2011; Luo et al., 2016; Liang et 4 al., 2017) to present the formula of national and provincial NO<sub>x</sub> emissions from vehicle populations 5 shown in Equation 3. The variables involved in Equation 1 are defined in Table 1.

7  

$$N = \sum_{i} N_{i} = \sum_{i} N_{i} / V_{i} \times V_{i} / T_{i} \times T_{i} / GDP_{i} \times GDP_{i} / P_{i} \times P_{i}$$
6  

$$= \sum_{i} NI_{i} \times VI_{i} \times EI_{i} \times G_{i} \times P_{i}$$
(3)

6  $= \sum_{i} NI_{i} \times VI_{i} \times EI_{i} \times G_{i} \times P_{i}$ 

8 Table 1

9 Definitions and units of the variables in Equation 1.

| Variables             | Definition (units)                                                                         |
|-----------------------|--------------------------------------------------------------------------------------------|
| Ν                     | Total NO <sub>x</sub> emissions from vehicle population in China ( $t = 1000 \text{ kg}$ ) |
| N <sub>i</sub>        | $NO_x$ emissions from vehicles of area <i>i</i> in China (t)                               |
| V <sub>i</sub>        | Total vehicle population of area <i>i</i> (vehicles)                                       |
| T <sub>i</sub>        | Total length of highways of area <i>i</i> (km)                                             |
| GDP <sub>i</sub>      | Gross Domestic Product (GDP) of area <i>i</i> (billion yuan)                               |
| <b>P</b> <sub>i</sub> | Population of area <i>i</i> (ten thousand persons)                                         |
| NI <sub>i</sub>       | $NO_x$ emissions per vehicle of area <i>i</i> (t/vehicle)                                  |
| VI <sub>i</sub>       | Vehicle population per length of highways of area <i>i</i> (vehicles/km)                   |
| EIi                   | Road construction mileage supported by GDP per capita of area <i>i</i> (km/billion yuan)   |
| G <sub>i</sub>        | GDP per capita of area $i$ (billion yuan/ ten thousand persons)                            |
|                       |                                                                                            |

10

\_

#### 11 2.3.1 Temporal decomposition analysis

12 Based on the additive LMDI method, changes to vehicular NO<sub>x</sub> emissions between the target 13 year T and the base year 0 could be estimated by Equation 4, and effects of various driving forces 14 on regional emissions between the target year T and the base year 0 for region *i* could be estimated 15 using Equations 4a-e. The variables involved in Equation 4 are defined in Table 2. Moreover, the factor correlation analysis was conducted to analyze the correlation between vehicular NO<sub>x</sub>
 emissions and each of decomposition factors (Fig. 2).

3 
$$\Delta N_i^{(T-0)} = N_i^T - N_i^0 = \Delta N_{i,NI}^{(T-0)} + \Delta N_{i,VI}^{(T-0)} + \Delta N_{i,EI}^{(T-0)} + \Delta N_{i,G}^{(T-0)} + \Delta N_{i,P}^{(T-0)}$$
(4)

$$4 \qquad \Delta N_{i,NI}^{(T-0)} = \sum_{i} L\left(N_{i}^{T}, N_{i}^{0}\right) ln\left(\frac{NI_{i}^{T}}{NI_{i}^{0}}\right) \tag{4a}$$

5 
$$\Delta N_{i,VI}^{(T-0)} = \sum_{i} L(N_i^T, N_i^0) ln\left(\frac{VI_i^T}{VI_i^0}\right)$$
(4b)

$$6 \qquad \Delta N_{i,EI}^{(T-0)} = \sum_{i} L\left(N_{i}^{T}, N_{i}^{0}\right) ln\left(\frac{EI_{i}^{T}}{EI_{i}^{0}}\right) \tag{4c}$$

$$7 \qquad \Delta N_{i,G}^{(T-0)} = \sum_{i} L\left(N_i^T, N_i^0\right) ln\left(\frac{G_i^T}{G_i^0}\right) \tag{4d}$$

8 
$$\Delta N_{i,P}^{(T-0)} = \sum_{i} L\left(N_{i}^{T}, N_{i}^{0}\right) ln\left(\frac{P_{i}^{T}}{P_{i}^{0}}\right)$$
(4e)

9 where  $L(N_i^T, N_i^0) = \frac{N_i^T - N_i^0}{lnN_i^T - lnN_i^0}$ . The decade from 2005 to 2015, over two five-year plans in China, 10 was selected to analyze the temporal change of NO<sub>x</sub> emissions from vehicles. The base year is 2005 11 while the target year is 2010 during 2005-2010. And the base year is 2010 while the target year is 12 2015 during 2010-2015.

- 13 **Table 2**
- 14 Definitions of variables in Equations 4 and 5.

| Variable        | Definition                                                                                |
|-----------------|-------------------------------------------------------------------------------------------|
| $\Delta N$      | The change of total vehicular NO <sub>x</sub> emissions from vehicle population in China. |
| $\Delta N_{NI}$ | Vehicle emission intensity effect, the effect of regional vehicular emission              |
|                 | standards, improvement of fuel quality, adjustment of vehicle structure, and other        |
|                 | measures on provincial vehicular NO <sub>x</sub> emissions.                               |
| $\Delta N_{VI}$ | Road vehicle carrying capacity effect, the effect of changes in vehicle population        |
|                 | and road infrastructure construction on vehicular NO <sub>x</sub> emissions.              |
| $\Delta N_{EI}$ | Road economic growth effect, the effect of increasing economic growth driven by           |
|                 | road infrastructure construction on vehicular NO <sub>x</sub> emissions.                  |
| $\Delta N_G$    | Economic development effect, the effect of regional economic growth on vehicular          |
|                 | NO <sub>x</sub> emissions.                                                                |
| $\Delta N_P$    | Population scale effect, the effect of population migration and growth on vehicular       |
|                 | NO <sub>x</sub> emissions.                                                                |

15





2

Fig. 2. Factor correlation analysis of vehicular NOx emissions

## 3 2.3.2 Spatial decomposition analysis

4 After the analysis of temporal change, a further spatial analysis was performed to identify the 5 drivers of the geographical differences in provincial vehicular NO<sub>x</sub> emissions in China using data 6 from a specific year, in this case 2005, 2010, and 2015 (Su et al., 2016). Within this framework, 7 each province was compared with the arithmetic average of all the provinces, or the provincial 8 national average (Li et al., 2017). Then the spatial difference in vehicular NO<sub>x</sub> emissions was 9 decomposed into five driving forces, according to Equation 3. The difference in vehicular  $NO_x$ emissions between the province (i) and the provincial national average (\*), denoted as  $\Delta N^{(R_i - R^*)}$ 10 11 was obtained by Equation 5:

12 
$$\Delta N^{(R_i - R^*)} = N^{R_i} - N^{R^*} = \Delta N_{NI}^{(R_i - R^*)} + \Delta N_{VI}^{(R_i - R^*)} + \Delta N_{G}^{(R_i - R^*)} + \Delta N_P^{(R_i - R^*)}$$
  
13 (5)

14 The effects of five forces that influence the difference in vehicular NO<sub>x</sub> emissions between the 15 province (*i*) and the provincial national average (\*) were calculated using Equations 5a-e. The 16 variables in Equation 5 and its sub-equations are defined in Table 2.

$$1 \qquad \Delta N_{NI}^{(R_i - R^*)} = \sum_i L\left(N^{R_i}, N^{R^*}\right) \ln\left(\frac{NI^{R_i}}{NI^{R^*}}\right) \tag{5a}$$

$$2 \qquad \Delta N_{VI}^{(R_i - R^*)} = \sum_i L\left(N^{R_i}, N^{R^*}\right) \ln\left(\frac{VI^{R_i}}{VI^{R^*}}\right) \tag{5b}$$

$$3 \qquad \Delta N_{EI}^{(R_i - R^*)} = \sum_i L\left(N^{R_i}, N^{R^*}\right) \ln\left(\frac{EI^{R_i}}{EI^{R^*}}\right) \tag{5c}$$

$$4 \qquad \Delta N_G^{(R_i - R^*)} = \sum_i L\left(N^{R_i}, N^{R^*}\right) \ln\left(\frac{G^{R_i}}{G^{R^*}}\right) \tag{5d}$$

5 
$$\Delta N_P^{(R_i - R^*)} = \sum_i L(N^{R_i}, N^{R^*}) \ln\left(\frac{p^{R_i}}{p^{R^*}}\right)$$
 (5e)

6 where  $(N^{R_i}, N^{R^*}) = \frac{N^{R_i} - N^{R^*}}{ln N^{R_i} - ln N^{R^*}}$ . This analysis covers 22 provinces, 5 autonomous regions, and 4 7 direct-controlled municipalities in China. Moreover, 2005, 2010, and 2015 were chosen as typical 8 years to explore the drivers on spatial differences in line with the temporal decomposition analysis 9 in this study.

## 10 2.4 Data sources

According to the conceptual model described above, and considering data availability and accuracy, provincial-level registered vehicle population data were used to estimate NO<sub>x</sub> emissions attributed to vehicles in each province and then discussed the socioeconomic drivers.

14 To estimate vehicular  $NO_x$  emissions, data was used that reflects the level of vehicle activity 15 as it varied by region and year. Number of vehicles, temperature, humidity, and altitude for each 16 province were obtained from the China statistical yearbook (NBS, 2006-2016). Other inputs, such 17 as vehicle kilometers travelled (VKT) for different vehicle types were derived from the National 18 Emission Inventory Guidebook for On-road Vehicles and adjusted based on previous research (Song 19 et al., 2016; Lang et al., 2016; Sun et al., 2016). Both the implementation timetable for emissions 20 standards for different vehicle types and annual data on the sulfur content of vehicle fuels in each 21 province were collected from the China Vehicle Emission Control Annual Report (MEP, 2016).

The input data used in the spatial-temporal LMDI method, including the total length of highways, Gross Domestic Product (GDP), and provincial population were taken from the China Statistical Yearbook (NBS, 2006-2016).

## 1 **3. Results and Discussion**

## 2 3.1 Trends of vehicular NO<sub>x</sub> emissions from 2005 to 2015

3 Fig. 3 shows the estimated result of national vehicular  $NO_x$  emissions in China from 2005 to 4 2015. Significantly, the trend in vehicular  $NO_x$  emissions exhibits a nonlinear change with time. 5 From 2005 to 2008, NO<sub>x</sub> emissions from vehicles only show a moderate increase (from  $3250 \times$ 6  $10^3$ t to  $3510 \times 10^3$ t), partly because of a slow increase in the vehicle population and widespread 7 implementation of the State II emissions standards. However, from 2008 to 2010 the rapid 8 development of the economy led to a sharp increase in the vehicle population as well as vehicular 9 NO<sub>x</sub> emissions (from  $3510 \times 10^3$ t to  $5000 \times 10^3$ t). Since 2011, total NO<sub>x</sub> emissions from vehicles 10 have remained at approximately  $660 \times 10^3$  t with a slight downward trend in recent years, which may 11 be due to state control of vehicle population growth and the implementation of cleaner emissions 12 standards. The following discussion in section 4.1 will further analyze the socioeconomic factors 13 behind the mechanism for emissions changes.



## 3.2 Spatial distribution and agglomeration of vehicular NO<sub>x</sub> emissions

15

Spatial autocorrelation models are popular to characterize spatial distribution characteristics.

1 Moran's I which measures spatial autocorrelation (Moran, 1948) can be further classified into Global 2 Moran's I and Local Moran's I (Anselin and Griffith, 1988). In this study, we use Global Moran's I 3 to estimate the degree of spatial dependence and heterogeneity of vehicular NO<sub>X</sub> emissions among 4 31 provinces in China from the year 2005 to 2015. As shown in Table 3, the Moran's I value was 5 more than zero for each year, which indicating that there was a spatial autocorrelation of vehicular 6 NO<sub>x</sub> emissions. P-value and Z-score, as indicators to measure whether there is statistical 7 significance of Moran index, could help us to make judgment of random hypothesis. Table 4 shows 8 the critical P-values and critical Z-scores at different confidence levels. If the Z-score is greater than 9 the critical value of the normal distribution function at the 0.05 level of 1.96, it indicates that the 10 attribute value of the research object has a significant correlation in the spatial distribution. 11 Although the spatial correlation in 2005 is not obvious, the p-value of 2010 and 2015 had a 12 significance level of 1% (Table 3), which means that the null hypothesis can be rejected. It also 13 indicated that spatial agglomeration becomes more and more obvious from 2005 to 2015. In terms 14 of Z-score, the index value for 2010 and 2015 was over 1.65, suggesting that there was a positive 15 spatial autocorrelation of High-high and Low-low in terms of vehicular NO<sub>x</sub> emissions.

16 **Table 3** 

| 17 | Moran's I of vehicular NO <sub>x</sub> emissions in China. |
|----|------------------------------------------------------------|
|    |                                                            |

| Year | Moran's I | Z-score | P-value |
|------|-----------|---------|---------|
| 2005 | 0.0565    | 0.7718  | 0.2020  |
| 2010 | 0.2166    | 2.1571  | 0.0250  |
| 2015 | 0.2182    | 2.1804  | 0.0270  |

## 18 **Table 4**

## 19 Critical p-value and critical z-score under different confidence levels.

| Confidence level | Z-score           | P-value |
|------------------|-------------------|---------|
| 90%              | < -1.65 or > 1.65 | < 0.10  |
| 95%              | < -1.96 or > 1.96 | < 0.05  |
| 99%              | < -2.58 or > 2.58 | < 0.01  |



2

1

3

Fig. 4. Moran scatter plot of vehicular NOx emissions in 30 provinces in China

As shown in Fig. 4, this study examined the Moran scatter plots of 30 provinces and municipalities in China (Hainan was excluded due to no spatial neighbors). Combining the Moran scatter plots for three years, it can be found that the areas with high vehicular NO<sub>X</sub> emissions between itself and the surrounding areas (High-High) are mainly concentrated in eastern regions such as Shandong, Hebei, Henan, Jiangsu and Anhui. This is also hotspots for NO<sub>X</sub> emissions from vehicles in China. On the contrary, Low-Low areas mainly concentrated in underdeveloped areas such as Gansu, Ningxia, Qinghai, Guizhou and Tibet.



Fig. 5 shows the spatial distributions of provincial vehicular NO<sub>x</sub> emissions in 2005, 2010, and

1 2015. Significant spatial agglomeration was found in China. Notably, the Beijing-Tianjin-Hebei 2 (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD) are hot spots with higher 3 contributions to emissions. These three regions contribute approximately 40% (40.03%, 4 37.36%,36.99% in 2005, 2010, 2015, respectively) of the national vehicular NO<sub>x</sub> emissions, but 5 only account for 4.4% of China's geographical area. Fast economic growth and urbanization, a rapid 6 increase in the vehicle population, and improved road infrastructure have an essential impact on 7 increased vehicular NO<sub>x</sub> emissions in these three regions.



Ν

**Fig. 5.** Vehicular NO<sub>x</sub> emissions for 31 provinces in China (Note: no data was available for Hong Kong, Macao, and Taiwan in this study)

## 1 3.3 Drivers of temporal changes in vehicular NO<sub>x</sub> emissions

## 2 3.3.1 Drivers on national vehicle NO<sub>x</sub> emissions

Fig. 6 shows the temporal decomposition results at the national level from 2005 to 2015. Overall, under the combined effect of five influencing factors, vehicular NO<sub>x</sub> emissions trended upwards in period 1 (2005–2010) but decreased in the following period (2010–2015). It was found that the road vehicle carrying capacity ( $\Delta N_{VI}$ ), economic development ( $\Delta N_G$ ), and population-scale effects ( $\Delta N_P$ ) substantially drove the growth of national vehicular NO<sub>x</sub> emissions in China from 2005 to 2015. In contrast, the vehicle emission intensity ( $\Delta N_{NI}$ ) and road economic growth effects ( $\Delta N_{EI}$ ) inhibited the growth of NO<sub>x</sub> emissions from vehicles over time.





## 1 3.3.2 Drivers on province NO<sub>x</sub> emissions

2 In this section, the temporal vehicular NO<sub>x</sub> emissions changes of each province in China were 3 decomposed as shown in Fig. 7. It was found that NO<sub>x</sub> emissions from vehicles increased in all 4 provinces in period 1 (2005-2010) and 29 provinces (all except Gansu and Tibet) then showed 5 reduced emissions in period 2 (2010-2015). This indicates that most provincial emission levels react 6 similarly to the national level under the combined effect of the five drivers ( $\Delta N_{VI},\,\Delta N_G$  and  $\Delta N_P$ 7 play positive roles for vehicular NOx emissions growth, whereas  $\Delta N_{NI}$  and  $\Delta N_{EI}$  reduce emissions). 8 Although the driving mechanism is similar among the provinces, the significance of the drivers 9 shows spatial diversity across the provinces. Next, how these five factors affect the emissions of 10 different provinces will be analyzed.





Fig. 7. Decomposition results of vehicular NO<sub>x</sub> emissions in 31 provinces in China



Fig. 8. The contribution rate of five influencing factors in 31 provinces.

(Note: red and green colors represent an increase and decrease of vehicular NO<sub>x</sub> emissions during the study periods, respectively.)

1 (1) Economic development effect  $(\Delta N_G)$ 

2 Of all the drivers, Economic development ( $\Delta N_G$ ) was the most positive factor on vehicular NO<sub>x</sub> 3 emissions for 2005-2010 (Fig. 8). The contribution rate was approximately 50% to 120%. The 4 significant contribution of  $\Delta N_{\rm G}$  can be predominantly attributed to increasing resident income per 5 capita and growing travel demand, which is often accompanied by an increase in the number of 6 vehicles (Liang et al., 2017). Nevertheless, in the following stage from 2010 to 2015, it was found 7 that the effect of  $\Delta N_G$  weakened gradually, which differs from previous studies (Wang et al., 2011; 8 Liu et al., 2015; Luo et al., 2016). Decoupling index I<sub>D</sub> is applied to quantitatively measure the 9 relationship between economic growth and vehicular NO<sub>x</sub> emissions. As shown in Table 5, 10 decoupling index I<sub>D</sub> of Vehicular NO<sub>x</sub> emissions and GDP per capita were 0.28 in 2005-2010 and 11 0.46 in 2010-2015, respectively. This result can be shown as a gradual decoupling between 12 economic growth and NO<sub>x</sub> emissions from vehicles during the period of China's 12th Five-Year 13 Plan, especially in several economically developed regions like Beijing, Tianjin, Shanghai, Zhejiang, 14 Fujian, etc. (see Fig. 9). This also indicates that vehicular NO<sub>x</sub> emissions in China are no longer as 15 increasing with economic growth, possibly due to its more advanced economic development.

16 **Table 5** 

|           |       |                |                |            | Rate of    |                      |
|-----------|-------|----------------|----------------|------------|------------|----------------------|
| Devie 4   | V     | Vehicular NOx  | GDP per capita | Decoupling | change of  | Decoupling           |
| Period    | Y ear | emissions(ton) | (Yuan/people)  | indicator  | decoupling | index I <sub>D</sub> |
|           |       |                |                |            | indicator  |                      |
| 2005 2010 | 2005  | 3248671.09     | 15375.90       | 211.28     | 0.72       | 0.28                 |
| 2005-2010 |       |                |                |            | 0.72       | 0.28                 |
|           | 2010  | 5005621.88     | 437041.99      | 152.77     |            |                      |
| 2010-2015 |       |                |                |            | 0.54       | 0.46                 |
|           | 2015  | 4340943.84     | 722767.87      | 82.33      |            |                      |

## 17 Decoupling between vehicular from 1997 to 2008

18 Note: the valve range of  $I_D$  is [0,1], if  $I_D > 0$ , it means the decoupling phenomenon occurs. The larger

19 the value, the more significant the decoupling phenomenon is (Wang et al., 2012).





Fig. 9. The change in vehicular NO<sub>x</sub> emissions and GDP in China and 31 provinces from 2005 to 2015.
(2) Road vehicle carrying capacity effect (ΔN<sub>VI</sub>)

4 Road vehicle carrying capacity effect  $(\Delta N_{VI})$  is another critical driver on promoting the growth 5 of vehicular NO<sub>x</sub> emissions across most provinces. It was found that the rapid change of Road 6 vehicle carrying capacity has replaced  $\Delta N_G$  as the dominant factor responsible for increasing 7 vehicular NO<sub>x</sub> emissions since 2010. Especially, stronger  $\Delta N_{VI}$  effects were found in the Beijing-

- 1 Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD) regions than in
- 2 other regions from 2005 to 2010. Also, in the second stage (2010-2015), the role of  $\Delta N_{VI}$  in non-



3 hotspot regions showed a similar positive effect as in eastern China.

Fig. 10. Road vehicle carrying capacity of 31 provinces in 2005, 2010, and 2015.

6 We further explored the reasons for this result and found that this effect in the Beijing-Tianjin-7 Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD) regions are related to 8 increasing on-road vehicles and traffic pressure. With the rapid economic development and 9 improvement in the resident income, vehicle ownership has surged dramatically, especially in some 10 big cities. As shown in Fig. 10, the  $\Delta N_{VI}$  of Beijing, Tianjin, and Shanghai has almost reached the 11 maximum road capacity (270 vehicles/km). High road vehicle carrying capacity mostly means high 12  $NO_x$  emissions. However,  $\Delta N_{VI}$  in central and western regions like Hainan and Ningxia slightly 13 contributed to the change in vehicular  $NO_x$  emissions. The reason is that it is still far from the 14 carrying capacity of developed provinces, although road vehicle carrying capacity also increased 15 from 2005 to 2015 (such as Hainan from 7.63 to 30.80, Ningxia from 11.42 to 30.05). Nevertheless, 16 considering the potential for economic growth and urbanization in these provinces, policy-makers 17 should raise issues on its gradual contribution to increasing vehicular NO<sub>x</sub> emissions.

18 (3) Population scale effect ( $\Delta N_P$ )

5

19 Of all the drivers, the change of population-scale  $(\Delta N_P)$  plays the smallest effect size (Fig. 11). 20 Overall, it contributed to an increase of only 5–20%. Nonetheless, some provinces, including 21 Beijing, Hebei, Jiangsu, Shanghai, Guangdong, and Zhejiang, show more noticeable contribution 1 growth (approximately  $8 \times 10^3$  t to  $14 \times 10^3$  t) than other regions from 2005 to 2010. This result 2 could be explained mostly by increasing population migration from surrounding regions because of 3 high urbanization, which leads to the rapidly growing number of vehicles and related NO<sub>x</sub> emissions.



## 4 5

#### Fig. 11. The change in population of 31 provinces in 2005, 2010, and 2015.

6 (4) Road economic growth effect ( $\Delta N_{EI}$ )

7 Road economic growth effect ( $\Delta N_{EI}$ ) reflects the change in regional road infrastructure induced 8 by economic development, which indirectly affects NO<sub>x</sub> emissions from vehicles. According to the 9 decomposition results, it was found, of all the drivers, the effect of  $\Delta N_{\rm EI}$  acts as the role with the 10 biggest impact on spatial difference during 2005-2010. Also, it was observed that  $\Delta N_{EI}$  positively 11 affects the increasing emissions only in Shandong, Henan, Hebei, Heilongjiang, Gansu, Guizhou, 12 Zhejiang, Hunan and Ningxia. These results indicate that the increased GDP required more road 13 infrastructure than other provinces, which also caused more vehicle  $NO_x$  emissions. Especially, 14 Shandong and Henan seemed to have the biggest driving force on economic development. In 15 comparison, Shanghai, Guangdong, and Beijing negatively contribute to NO<sub>x</sub> emissions from 16 vehicles. However, during the second stage,  $\Delta N_{EI}$  started acting as an inhibitor of NO<sub>x</sub> emissions 17 from vehicles across all provinces due to the decline of road mileage per GDP across the country 18 (Fig. 12). As a result, this study revealed that the role of  $\Delta N_{\rm EI}$  is somewhat complicated due to the 19 connection between road infrastructure construction, economic growth, and vehicle population. The 20 economic growth induced by increasing highway mileages could play positive or negative effect on 21 NO<sub>x</sub> emissions from vehicles, which mainly depend on the economic development level of regions.

1 So, we hope that mitigation policy-makers should carefully evaluate the effect of economic growth



## 2 on NOx emissions.



Fig. 12. The change in regional road intensity induced by economic development.

5 (5) Vehicle emission intensity effect ( $\Delta N_{NI}$ )

6 Here, the regional vehicle emission intensity comprehensively involves changes in vehicular 7 emission standards, vehicular fuel quality, and vehicle structure on NO<sub>x</sub> emissions, and represents 8 the average emission level of one registered vehicle in a province. As shown in Fig. 8, the most 9 remarkable result to emerge from the decomposition model was that vehicle emission intensity 10 effect ( $\Delta N_{\rm NI}$ ) is a pivotal factor in reducing vehicular NO<sub>x</sub> emissions across all provinces from 2005 11 to 2015. Notably, according to decomposition results, the effect of  $\Delta N_{NI}$  shows the obvious spatial-12 differences from 2000 to 2005. The influenced provinces are mainly located in hot spot regions such 13 as Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD). 14 We also found that, in the following stage, with the implementation of State IV across most 15 provinces in China since 2013 (Fig. 13),  $\Delta N_{NI}$  has changed into a significant positive effect on 16 controlling national NO<sub>x</sub> emissions. Our findings also underline the importance of stringent 17 emission standards (Fig. 13) and the improvement of fuel quality over the past ten years (Wu et al., 18 2017). The primary cause for this spatial distribution is due to the stringent emission standards of 19 megacities such as Beijing, Tianjin, and Shanghai.



2

1

Fig. 13. The proportion of vehicles in China with different emission standards.

3 (The implementation timetable of vehicular emission standards in China is presented in Table A.5 in
4 Supplementary information.)

## 5 3.4 Drivers of spatial differences in vehicular NO<sub>x</sub> emissions

## 6 3.4.1 Mapping spatial differences in vehicular NO<sub>x</sub> emissions

7 China has a huge geographical area and features the imbalance of socio-economic development. 8 Therefore, studying the drivers of vehicular  $NO_x$  emissions at the provincial level from a spatial 9 perspective is useful for regional emission reduction. Based on the estimated results of provincial 10  $NO_x$  emissions, we observed significant regional disparity since 2005 (Fig. 14). It was found that 11 differences between provinces were widening as overall  $NO_x$  emissions from vehicles rose, which 12 had led to the important challenge of reducing national vehicular  $NO_x$  emissions.





Fig. 15. Spatial diversity of the drivers of vehicular NOx emissions in China (10<sup>3</sup> t).

## 1 3.4.2 Identifying the key drivers of spatial differences in vehicular NO<sub>x</sub> emissions

Here, the aim is to identify the factors causing this regional disparity and spatial agglomeration, which would help policymakers to reduce national and local NO<sub>x</sub> emissions from vehicles. We applied the multi-regional (M-R) spatial decomposition method to build a fresh temporal-spatial model. We hope it could find and quantify the key drivers of the spatial difference.

6 This study decomposed the spatial differences into the five factors:  $\Delta N_{NI}$ ,  $\Delta N_{VI}$ ,  $\Delta N_{EI}$ ,  $\Delta N_G$ , 7 and  $\Delta N_P$  and estimated each effect using Equations 5a–e. Moreover, in order to find the key drivers, 8 a key-driver list of all provinces was made by ranking the 31 regions according to their spatial 9 differences in vehicular NO<sub>x</sub> emissions. The ranked results are shown in Fig. 16. Those with the 10 most significant contribution rates were named as the key factors which affect emissions, 11 differentiating them from less important ones. Further, joint drivers were identified by values which 12 differ by less than 50% of the contributions of the key drivers. The joint and key drivers contribute 13 to spatial differences and agglomeration of vehicular NO<sub>x</sub> emissions. Considering the synergistic 14 effect between drivers, joint drivers were classified with key drivers into the following types: 15 population-driven, economic development-driven, vehicle-driven, and road infrastructure-driven.

|                |                  |                     | 2005                |                 |                       |                       |                  |                     | 2010                |                 |                       |                       |                  |                     | 2015                |                 |                       |                     |
|----------------|------------------|---------------------|---------------------|-----------------|-----------------------|-----------------------|------------------|---------------------|---------------------|-----------------|-----------------------|-----------------------|------------------|---------------------|---------------------|-----------------|-----------------------|---------------------|
| Drovingos      | Nationwide       | Contri              | bution              | rate c          | feach                 | factor                | Nationwide       | Contri              | bution              | rate o          | feach                 | factor                | Nationwide       | Contri              | bution              | rate o          | feach                 | factor              |
| Flovinces      | Ranking          | Contra              | oution              | Tate c          | i cach                | lactor                | Ranking          | Conur               | oution              | Tate 0          | i cach                | lactor                | Ranking          | Contra              | oution              | i late o        | i cach                | lactor              |
|                | $\Delta N_{tot}$ | $\Delta N_{\rm NI}$ | $\Delta N_{\rm VI}$ | $\Delta N_{EI}$ | $\Delta N_{\text{G}}$ | $\Delta N_{\text{P}}$ | $\Delta N_{tot}$ | $\Delta N_{\rm NI}$ | $\Delta N_{\rm VI}$ | $\Delta N_{EI}$ | $\Delta N_{\text{G}}$ | $\Delta N_{\text{P}}$ | $\Delta N_{tot}$ | $\Delta N_{\rm NI}$ | $\Delta N_{\rm VI}$ | $\Delta N_{EI}$ | $\Delta N_{\text{G}}$ | $\Delta N_{I\!\!P}$ |
| Beijing        | 14               | 8.69                | -22.98              | 16.10           | -11.32                | 10.50                 | 21               | 2.52                | -6.26               | 4.74            | -2.06                 | 2.05                  | 23               | 1.03                | -3.94               | 3.88            | -1.43                 | 1.46                |
| Tianjin        | 27               | 0.53                | -1.53               | 1.37            | -0.95                 | 1.58                  | 27               | 0.53                | -1.72               | 1.76            | -0.78                 | 1.21                  | 27               | 0.34                | -1.56               | 1.87            | -0.72                 | 1.06                |
| Hebei          | 2                | 0.20                | 0.55                | -0.32           | -0.05                 | 0.61                  | 2                | 0.22                | 0.58                | -0.22           | -0.17                 | 0.60                  | 2                | 0.12                | 0.61                | -0.03           | -0.33                 | 0.64                |
| Shanxi         | 8                | 0.80                | -0.17               | 1.80            | -0.71                 | -0.72                 | 9                | 1.06                | -0.15               | 2.10            | -1.14                 | -0.87                 | 11               | 2.85                | -1.08               | 9.26            | -6.90                 | -3.13               |
| Inner Mongolia | 9                | 3.09                | -3.19               | 3.37            | 0.24                  | -2.52                 | 7                | 2.04                | -1.75               | 1.38            | 1.29                  | -1.96                 | 17               | -0.75               | 2.64                | -2.27           | -1.54                 | 2.92                |
| Liaoning       | 5                | 0.40                | 0.92                | -0.76           | 0.41                  | 0.04                  | 6                | 0.53                | 1.18                | -1.49           | 0.74                  | 0.05                  | 6                | 0.67                | 0.97                | -1.29           | 0.68                  | -0.03               |
| Jilin          | 20               | -0.17               | 0.60                | -0.95           | 0.39                  | 1.14                  | 19               | -0.53               | 0.43                | -0.40           | 0.12                  | 1.38                  | 21               | -0.55               | 0.29                | -0.27           | 0.10                  | 1.43                |
| Heilongjiang   | 12               | -22.96              | 34.36               | -30.86          | 8.91                  | 11.56                 | 13               | 3.31                | -3.75               | 4.20            | -1.72                 | -1.04                 | 12               | 30.33               | -36.66              | 39.15           | -20.97                | -10.85              |
| Shanghai       | 17               | 0.79                | -9.27               | 11.17           | -5.34                 | 3.66                  | 24               | 0.26                | -3.89               | 5.02            | -1.60                 | 1.22                  | 25               | -0.08               | -3.01               | 4.21            | -1.15                 | 1.02                |
| Jiangsu        | 7                | -0.71               | 0.94                | -2.07           | 1.21                  | 1.63                  | 5                | -0.34               | 1.08                | -1.59           | 0.81                  | 1.03                  | 5                | -0.27               | 1.16                | -1.51           | 0.75                  | 0.87                |
| Zhejiang       | 10               | -2.27               | 4.43                | -4.67           | 2.64                  | 0.87                  | 11               | -3.03               | 4.86                | -4.37           | 2.30                  | 1.23                  | 9                | -3.55               | 5.88                | -4.98           | 2.29                  | 1.34                |
| Anhui          | 13               | -21.69              | 36.35               | -28.63          | 48.97                 | -34.00                | 8                | 1.76                | -1.36               | 1.15            | -1.90                 | 1.35                  | 7                | 1.16                | -0.91               | 0.93            | -1.22                 | 1.04                |
| Fujian         | 26               | 0.43                | 0.47                | 0.14            | -0.28                 | 0.23                  | 23               | 0.50                | -0.22               | 0.81            | -0.40                 | 0.31                  | 22               | 0.53                | -0.40               | 1.15            | -0.63                 | 0.36                |
| Jiangxi        | 18               | -2.12               | 3.13                | -1.89           | 2.05                  | -0.16                 | 16               | -2.11               | 3.54                | -2.48           | 2.24                  | -0.19                 | 15               | -1.92               | 3.31                | -2.61           | 2.43                  | -0.21               |
| Shandong       | 3                | -0.40               | 1.00                | -1.30           | 0.42                  | 1.28                  | 1                | -0.12               | 0.50                | -0.48           | 0.24                  | 0.87                  | 1                | -0.13               | 0.51                | -0.44           | 0.21                  | 0.86                |
| Henan          | 4                | 0.33                | 0.26                | -0.44           | -0.52                 | 1.38                  | 4                | 0.29                | -0.27               | 0.22            | -0.44                 | 1.20                  | 4                | 0.16                | 0.09                | 0.09            | -0.42                 | 1.07                |
| Hubei          | 15               | -0.26               | 4.14                | -2.72           | 2.25                  | -2.42                 | 14               | -0.65               | 5.58                | -2.88           | 1.36                  | -2.41                 | 13               | -0.04               | 11.77               | -6.01           | 0.86                  | -5.58               |
| Hunan          | 16               | -0.65               | 3.94                | -2.15           | 2.63                  | -2.77                 | 15               | 0.05                | 4.04                | -2.39           | 1.61                  | -2.31                 | 14               | 0.79                | 3.43                | -1.75           | 1.45                  | -2.91               |
| Guangdong      | 1                | -0.19               | 0.63                | -0.58           | 0.42                  | 0.73                  | 3                | -0.57               | 1.04                | -1.10           | 0.41                  | 1.23                  | 3                | -0.41               | 0.89                | -1.04           | 0.33                  | 1.23                |
| Guangxi        | 21               | -0.33               | 1.32                | -1.07           | 1.36                  | -0.28                 | 20               | -0.37               | 0.72                | -0.40           | 1.23                  | -0.19                 | 19               | -0.33               | 0.52                | -0.37           | 1.48                  | -0.29               |
| Hainan         | 30               | -0.24               | 0.51                | -0.61           | 0.24                  | 1.10                  | 31               | -0.05               | 0.03                | -0.06           | 0.18                  | 0.90                  | 31               | 0.00                | 0.07                | -0.07           | 0.14                  | 0.86                |
| Chongqing      | 24               | -0.41               | 0.52                | -0.45           | 0.62                  | 0.72                  | 25               | -0.51               | 1.32                | -0.90           | 0.33                  | 0.76                  | 24               | -0.09               | 1.01                | -0.59           | 0.02                  | 0.66                |
| Sichuan        | 11               | -2.98               | -3.73               | 5.87            | -6.78                 | 8.63                  | 12               | -0.81               | -1.97               | 2.74            | -2.24                 | 3.28                  | 8                | -0.50               | -1.49               | 1.99            | -1.43                 | 2.43                |
| Guizhou        | 25               | -0.31               | 0.86                | -1.41           | 1.69                  | 0.17                  | 26               | -0.07               | 1.29                | -1.77           | 1.25                  | 0.29                  | 26               | 0.14                | 1.20                | -1.51           | 0.84                  | 0.33                |
| Yunnan         | 6                | 0.92                | -2.27               | 3.78            | -1.60                 | 0.17                  | 10               | 1.34                | -2.68               | 5.59            | -3.58                 | 0.33                  | 10               | 1.59                | -4.08               | 7.50            | -4.53                 | 0.52                |
| Tibet          | 28               | -0.91               | 1.66                | -2.09           | 0.39                  | 1.95                  | 30               | -0.66               | 1.20                | -1.57           | 0.40                  | 1.63                  | 28               | -1.43               | 1.88                | -2.19           | 0.45                  | 2.30                |
| Shaanxi        | 23               | 0.05                | 0.69                | -0.78           | 0.81                  | 0.23                  | 17               | -0.13               | 1.65                | -1.85           | 0.76                  | 0.57                  | 18               | 0.27                | 1.30                | -1.60           | 0.42                  | 0.62                |
| Gansu          | 22               | -1.50               | 1.58                | -1.77           | 1.59                  | 1.11                  | 22               | -1.38               | 2.20                | -2.51           | 1.55                  | 1.14                  | 20               | -2.22               | 3.03                | -4.24           | 2.52                  | 1.91                |
| Qinghai        | 31               | -0.42               | 0.93                | -1.16           | 0.29                  | 1.36                  | 29               | -0.37               | 0.90                | -1.05           | 0.20                  | 1.33                  | 30               | -0.32               | 0.86                | -1.11           | 0.17                  | 1.40                |
| Ningxia        | 29               | -0.32               | 0.24                | -0.55           | 0.29                  | 1.35                  | 28               | -0.45               | 0.05                | -0.30           | 0.16                  | 1.53                  | 29               | -0.45               | 0.14                | -0.52           | 0.17                  | 1.66                |
| Xinjiang       | 19               | -1.39               | 3.80                | -4.90           | 0.67                  | 2.82                  | 18               | -1.56               | 3.18                | -4.14           | 1.02                  | 2.50                  | 16               | -2.26               | 4.31                | -6.16           | 1.61                  | 3.50                |

Fig. 16. Key and joint drivers of spatial differences in vehicular NO<sub>x</sub> emissions<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>: Orange regions indicate higher NO<sub>x</sub> emissions from vehicles than the national average while yellow regions indicate lower than average emissions. Dark blue drivers are the key drivers of the spatial differences of vehicular NO<sub>x</sub> emissions while light blue indicates joint drivers, with a contribution rate of ( $\frac{\Delta N_{ecah} f_{actor}}{\Delta N_{tot}}$ ).

1 We found that the population-driven factor influenced most provinces. Henan, Shandong, 2 Guangdong, Hebei, and Sichuan not only feature the largest population in China but also intense 3 population agglomeration. They both show a population-driving effect on the difference from other 4 provinces. Within the provinces with population-driven effect, we also found that  $\Delta N_P$  often is along 5 with  $\Delta N_{VI}$  and  $\Delta N_{EI}$  to play a significant impact on making the spatial differences. These results can 6 be observed in Guangdong in the Pearl River Delta, and Hebei and Shandong in Beijing-Tianjin-7 Hebei, where the key driver  $\Delta N_P$  combines with the joint driver  $\Delta N_{VI}$  to make the difference. 8 Moreover,  $\Delta N_P$  of Sichuan, together with  $\Delta N_{EI}$ , lead to spatial differences of vehicular  $NO_x$ 9 emissions with other provinces.

10 In contrast to the population factor, road infrastructure factor shows the complicated effect on 11 making the spatial difference.  $\Delta N_{VI}$  refers to the relationship among the changing vehicle population, 12 road infrastructure construction and emission growth. In some provinces, including Hunan, Hubei, 13 Zhejiang, and Shanxi,  $\Delta N_{VI}$  crucially causing spatial differences.  $\Delta N_{EI}$  results indicate a complicated 14 relationship between road infrastructure construction, regional economic growth, and emission 15 growth. Shanxi is close to the Beijing-Tianjin-Hebei region and it is one of China's major coal 16 production provinces. We observed that most of the coal carriers are heavy-duty diesel vehicles, 17 which account for 74% of total vehicular  $NO_x$  emissions, with only 15% of the vehicle population 18 (Fig. 17). The linkage between the number of coal carriers and economic growth induces a higher 19  $\Delta N_{NI}$  contribution to emissions than other factors.





Fig. 17. The proportion of vehicle types in all 31 provinces in 2005, 2010, and 2015<sup>2</sup>

3 According to the results shown in Fig. 18, we found that Vehicle-driven effects ( $\Delta N_{NI}$ ) only 4 showed a minor and declining influence on making a spatial difference. Vehicle-driven effects ( $\Delta N_{NI}$ ) 5 were mainly from local regulations on vehicular NO<sub>x</sub> emissions, such as stringent vehicular 6 emission standards, improvement in local vehicular fuel quality, and other control measures. 7 Moreover, this role of Vehicle-driven effects ( $\Delta N_{NI}$ ) is closely related to the declining proportion of 8 trucks amongst total vehicles (Fig. 17). It was found that  $\Delta N_{\rm NI}$  had a positive effect on the spatial 9 differences of emission in Beijing, Shanghai, and Guangdong. These results underlined that 10 stringent regulation in developed megacities still be important, and it would help decrease the 11 disparities in regional emissions.

12

Moreover, we found that economic development effect ( $\Delta N_G$ ) had a key impact on the growing

13 spatial differences in vehicular NO<sub>x</sub> emissions between provinces. Interestingly, it was found that

<sup>&</sup>lt;sup>2</sup> LDPV: light-duty passenger vehicle; MDPV: medium-duty passenger vehicle; HDPV: heavy-duty passenger vehicle; LDT: light-duty truck; MDT: medium-duty truck; HDT: heavy-duty truck;

economic development effect  $(\Delta N_G)$  usually works with joint drivers to make a spatial difference. Here, economic development effect  $(\Delta N_G)$  links two factors to show the complicated connection between the economy and emissions. On the one hand, a high level of economic development requires large vehicles to support its activities; on the other hand, rapid economic growth usually brings an increased need for road infrastructure construction. We found that, in some hot spot regions (Jiangsu and Zhejiang) with a high level of economic activity and vehicle population, economic development effect  $(\Delta N_G)$  played the crucial role in growing the spatial differences.



Fig. 18. NO<sub>x</sub> emissions per vehicle for all 31 provinces in 2005, 2010, and 2015

## 1 3.5 Uncertainty analysis

Note that although the main purpose of this study is to explore emission trends and their driving forces on NOx emissions from on-road vehicles in China from a temporal-spatial perspective, the uncertainties in emission estimation in this study present a need for future research. To aid in this effort, a table (Table 6) was made to compare previous studies on vehicular NOx emissions with the estimation results in this study for uncertainty analysis.

7 Based on comparison results, the reasons for uncertainty in the estimation of total 8 vehicular NOx emissions were mainly from uncertainties in vehicle emission factors (see 9 Equation 1), annual VKT, and vehicle population. Vehicle emissions factors were the leading 10 factor (Zhang et al., 2014), which is key to estimating emissions. Some previous studies have 11 been conducted based on the COPERT or Multi-resolution emission inventory for China (MEIC) 12 models (Lang et al., 2014; Sun et al., 2016; Liu et al., 2016; Zheng et al., 2018). Based on the 13 present study and the National Emission Inventory Guidebook for On-road Vehicles (MEP, 14 2014), the localized vehicle emissions factors were estimated using the various emissions 15 standards in each province of China. Moreover, each parameter in the estimation equation was 16 obtained from official sources.

17 However, based on the calculation process, the uncertainty in emission factors was 18 observed in Equation 1, where the estimation equation of emission factor was established by 19 multiplication of five factors. So, the quality of the data used for each factor will contribute to 20 uncertainties. For example, BEF is based on the 2014 scenario and adjusted according to the 21 other factors ( $\phi$ ,  $\gamma$ ,  $\lambda$  and  $\theta$ ). However, average annual values do not cover extreme conditions 22 of temperature, humidity, traffic speed, and other factors, which should be considered in the 23 uncertainty analysis. Meanwhile, we should not ignore the fact that there are many substandard 24 oil products in China, which leads to the improper emission factors based on qualified oil 25 products (Tang et al., 2015). We have corrected the impact of the vehicle's use conditions (such 26 as load factor, oil quality, etc.) by  $\theta$  (MEP, 2014). As for VKT, due to the lack of official province-statistics, the data used in this study were obtained from the National Emission Inventory Guidebook for On-road Vehicles and adjusted based on previous studies. Therefore, the uncertainty from VKT was assumed to be lognormal with the coefficients of variation (CVs, the standard deviation divided by the mean) of 30% (Lang et al., 2016), even though only the most reliable data were used for this study.

## 1 Table 6

2 Comparison of vehicular NO<sub>x</sub> emissions estimates with other studies.

3

| Study               | Method & Data      | Region    | Year or Period | Emissions (10 <sup>4</sup> t) or | Results in this study | 4<br>Uncertainty<br>5 |
|---------------------|--------------------|-----------|----------------|----------------------------------|-----------------------|-----------------------|
|                     |                    | C1.       | 2005 2010      |                                  | <b>5 4</b> 0/         |                       |
| Lang et al. (2014)  | COPERT IV model    | China     | 2005-2010      | 67%                              | 54%                   | 13%                   |
| Sun et al. (2016)   | COPERT IV model    | Shandong  | 2014           | 51.38                            | 41.11                 | 25% 7                 |
| Zhang et al. (2017) | Guidebook of China | Tianjin   | 2013           | 6.74                             | 6.02                  | 10% 8                 |
| Yang et al. (2018)  | Guidebook of China | Beijing   | 2014           | 8.34                             | 8.98                  | 7%                    |
|                     |                    | Tianjin   | 2014           | 6.97                             | 5.94                  | 17%                   |
|                     |                    | Hebei     | 2014           | 39.16                            | 33.89                 | 15%                   |
| Tang et al. (2016)  |                    | China     | 2006           | 45.94                            | 32.67                 | 28.9%                 |
|                     |                    |           | 2010           | 51.68                            | 50.06                 | 3.2%                  |
| Zheng et al. (2018) | MEIC               | China     | 2012-2015      | -6 %                             | -12%                  | /                     |
| Liu et al. (2016)   | OMI                | China     | 2005-2011      | 53%(OMI); 42%(MEIC)              | 53.4%                 | 0.4-11.4%             |
|                     | MEIC               | China     | 2011-2015      | -32%(OMI); -21%(MEIC)            | -12.9%                | 8.1-19.1%             |
| De, B. Foy et al.   | OMI                | Beijing   | 2010-2014      | -24.7%                           | -18.4%                | 6.3%                  |
| (2016)              |                    | Shanghai  | 2010-2014      | -13.9%                           | -18.9%                | 5%                    |
|                     |                    | Chongqing | 2010-2014      | -12.8%                           | -9.8%                 | 3%                    |

## 1 **4.** Policy implications

2 These findings could provide meaningful policy implications, not only for China, but for 3 many other developing countries. One of these is the monitoring indicator of regional vehicle 4 emission intensity which are influenced not only by emissions standards and fuel quality but 5 also the widespread impact of vehicle numbers and structure of every province. Considering 6 the gradual changes in vehicle emission intensity, here we suggest put regional vehicle emission 7 intensity into the current regional vehicle emission policy system. We believe that it would help 8 the government better manage the impact of vehicle types. The prioritizing regulations on 9 heavy-duty diesel vehicles would effectively reduce  $\Delta N_{NI}$  and NO<sub>x</sub> emissions from vehicles.

10 This study also suggests that policy-makers should evaluate the linkages between 11 economic growth, urban population agglomeration, and substantial road infrastructure 12 construction. Rapid population agglomeration dramatically increased the demand for 13 construction of road infrastructure and the number of vehicles. This would cause spatial 14 agglomeration of vehicular NO<sub>x</sub> emissions in more economically developed and densely 15 populated regions. Therefore, critical continuous area and regional policies are crucial to 16 controlling vehicle  $NO_x$  emissions. Also, it is necessary to limit the spatial transfer of high-17 emission vehicles, coordinate the elimination and treatment of high-emission vehicles, adjust 18 the transportation structure, and promote efficient green freight organization.

Moreover, cooperation and differentiated emission-reduction measures should be considered to control NOx emissions from vehicles of China's regions from the perspective of both equity and efficiency. More attention should be paid to central and western regions regarding China's emission-reduction. These regions with higher vehicle emission intensity have developed fuel quality and vehicle structure, and thus have great potential of emissionreduction through optimizing vehicle structure, improving fuel quality and emission standard. More importantly, marginal abatement cost in these regions is much lower than that of the relatively developed eastern region. Total abatement cost of China as a whole would decrease
 if Chinese government transfer the focus of emission-reduction from developed eastern regions
 to less developed central and western regions.

On the other hand, the population as well as vehicle ownership of developed regions are becoming oversaturated. Population scale, economic development and road vehicle carrying capacity are main reasons for the high NO<sub>x</sub> emissions from vehicles in these areas. If eastern developed regions choose to provide less developed regions with technical support, funds and management for emission-reduction, not only improves the emission-reduction efficiency of less developed regions, but also promotes the development of local economy. The rapid development of less developed regions would push a large number of population migration and vehicle transfer, which could relieve the pressure of traffic emissions in developed regions indirectly. China would achieve a better emission-reduction and mitigate the economic loss.

## **5.** Concluding remarks and future prospects

## 2 5.1 Conclusion

In this study, vehicular NO<sub>x</sub> emissions in China were estimated from 2005 to 2015 and their temporal and spatial trends were also explored. We observed that there is an increasing difference in emissions among regions. Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD) are high-emission regions which also face more severe human health risks than in non-hotspot regions such as Central and West China.

8 So, the drivers were explored using a temporal-spatial decomposition model. It was found 9 that both economic development ( $\Delta N_G$ ) and road vehicle carrying capacity ( $\Delta N_{VI}$ ) are the main 10 factors in driving the growth of provincial vehicular NO<sub>x</sub> emissions. The most dominant factor 11  $\Delta N_G$  has changed into  $\Delta N_{VI}$  since 2010. Specifically, Regional vehicle emission intensity ( $\Delta N_{NI}$ ) 12 and road economic growth ( $\Delta N_{\rm FI}$ ) contributed to reducing NO<sub>x</sub> emissions from vehicles but 13 increased emission differences between regions. On the contrary, economic development ( $\Delta N_G$ ), 14 as well as population scale  $(\Delta N_p)$  played crucial roles in reducing the spatial agglomeration of 15 vehicular NO<sub>x</sub> emissions in China, but promoted the emission growing during 2005 to 2015.

## 16 5.2 Future prospects

17 Registered vehicle populations were acquired from the official statistical yearbooks, in 18 which all the data were summarized directly from the registered vehicle population (except 19 motorcycles) in local government. As a result, the uncertainty in the vehicle population is small. 20 However, this study did not consider the registered vehicle fluidity across provinces. The 21 estimated vehicle NO<sub>x</sub> emissions only reflect aggregated NO<sub>x</sub> emissions from the registered 22 vehicle population in each province. So, the estimated results in this study are not exactly equal 23 to the real emissions from vehicles running in each province. Based on this, the results were 24 compared with satellite monitoring data from the Ozone Monitoring Instrument (OMI). A good agreement was found between the estimated emission trends in this study and OMI observations
 (Liu et al., 2016; Cai et al., 2018;).

Moreover, this study applied provincial data other than city-level NO<sub>x</sub> emissions to explain the socioeconomic drivers on provincial vehicle NOx emissions. So, the estimated results are not suitable to explain city-level air quality related to  $NO_x$  emissions. The province is a core local government in China, which has the responsibility to plan and manage economic growth, road infrastructure projects, and population urbanization. So, when talking about the driving forces on vehicle NO<sub>x</sub> emissions, provincial data was considered an appropriate alternative to explore the impact mechanisms. However, due to increasing concerns about air pollution in core cities, using city-level data would be useful when considering the impact of immigration and urbanization on vehicular NO<sub>x</sub> emissions in future.

## 13 Acknowledgements

14This work was supported by the Natural Science Foundation of China [grant numbers1571373134]; the Tianjin Natural Science Foundation [grant number 18JCZDJC39900]; and China16Scholarship Council [grant number 201806200003].

## 1 **References**

2

- Anenberg, S., Miller, C., Minjares, J. R., Du, L., Henze, D. K., Lacey, F., Malley, C. S.,
  Emberson, L., Franco, V., Klimont, Z., Heyes, C., 2017. Impacts and mitigation of
  excess diesel-related NO<sub>x</sub> emissions in 11 major vehicle markets. Nature.
  545(7655): 467-471.
- Ang, B. W., 1996. Decomposition of industrial energy consumption: the energy
  intensity approach. Energy Econ. 18(1-2), 129-143.
- Ang, B. W., Zhang, F., Choi, K., 1998. Factorizing changes in energy and environmental
   indicators through decomposition. Energy. 23(6): 489-495.
- Ang, B.W., 2004. Decomposition analysis for policymaking in energy. Energy Policy.
   32(9): 1131-1139.
- Anselin, L., Griffith, D.A., 1988. Do spatial effects really matter in regression analysis?
   Reg. Sci. 65, 11–34.

# Boningari, T., Smirniotis, P. G., 2016. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NO<sub>x</sub> abatement. Curr. Opin. Chem. Eng. 13: 133-141.

- Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He,
  K., Carmichael, G., Pöschl, U., Su, H., 2016. Reactive nitrogen chemistry in
  aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2(12).
- Ding, L., Liu, C., Chen, K., Huang, Y., Diao, B., 2017. Atmospheric pollution reduction
   effect and regional predicament: An empirical analysis based on the Chinese
   provincial NO<sub>x</sub> emissions. J. Environ. Manage. 196: 178-187.
- Gu, D., Wang, Y., Smeltzer, C., Liu, Z., 2013. Reduction in NO<sub>x</sub> emission trends over
  China: regional and seasonal variations. Environ. Sci. Technol. 47(22): 1291212919.
- Hao, H., Geng, Y., Wang, H., Ouyang, M., 2014. Regional disparity of urban passenger
  transport associated GHG (greenhouse gas) emissions in China: A review. Energy.
  68: 783-793.
- Hao, J., Tian, H., Lu, Y., 2002. Emission inventories of NO<sub>x</sub> from commercial energy
   consumption in China, 1995–1998. Environ. Sci. Technol. 36(4), 552-560.
- He, S., Zhao, L., Ding, S., Liang, S., Dong, L., Wang, J., Feng, Y., Liu, L., 2019.
  Mapping economic drivers of China's NO<sub>x</sub> emissions due to energy consumption.
  J. Clean. Prod. 241, 118130.
- Huang, Y., Todd, D., 2010. The energy implications of Chinese regional disparities.
   Energy Policy. 38(11): 7531-7538.
- Jiang, J., Ye, B., Xie, D., Tang, J., Tian, G., 2017. Provincial-level carbon emission
  drivers and emission reduction strategies in China: Combining multi-layer LMDI
  decomposition with hierarchical clustering. J. Clean. Prod. 169,178-190.
- Jiang, J., Zhang, J., Zhang, Y., Zhang, C., Tian, G., 2016. Estimating nitrogen oxides
  emissions at city scale in China with a nightlight remote sensing model. Sci. Total

- 1 Environ. 544, 1119-1127.
- Jing, B., Wu, L., Mao, H., Gong, S., He, J., Zou, C., Song, G., Li, X., Wu, Z., 2016.
  Development of a vehicle emission inventory with high temporal-spatial
  resolution based on NRT traffic data and its impact on air pollution in Beijing –
  Part 1: Development and evaluation of vehicle emission inventory. Atmos. Chem.
  Phys. 16(5): 3161-3170.
- Lamsal, L. N., Martin, R. V., Padmanabhan, A., van Donkelaar, A., Zhang, Q., Sioris,
  C. E., Chance, K., Kurosu, T. P., Newchurch, M. J., 2011. Application of satellite
  observations for timely updates to global anthropogenic nox emission inventories.
  Geophys. Res. Lett.38(5).
- Lang, J., Cheng, S., Wei, W., Zhou, Y., Wei, X., Chen, D., 2012. A study on the trends
  of vehicular emissions in the Beijing–Tianjin–Hebei (BTH) region, China. Atmos.
  Environ. 62: 605-614.
- Lang, J., Cheng, S., Zhou, Y., Zhang, Y., Wang, G., 2014. Air pollutant emissions from
   on-road vehicles in China, 1999-2011. Sci. Total Environ. 496: 1-10.
- Lang, J., Zhou, Y., Cheng, S., Zhang, Y., Dong, M., Li, S., Wang, G., Zhang, Y., 2016.
  Unregulated pollutant emissions from on-road vehicles in China, 1999-2014. Sci.
  Total Environ. 573: 974-984.
- Lee, D. S., Köhler, I., Grobler, E., Rohrer, F., Sausen, R., Gallardoklenner, L., Oliver, J.
  G. J., Dentener, F. J., Bouwman, A.F., 1997. Estimates of global NO<sub>x</sub> emissions and their uncertainties. Atmos. Environ. 31(12), 1735-1749.
- Li, H., Zhao, Y., Qiao, X., Liu, Y., Cao, Y., Li, Y., Wang, S., Zhang, Z., Zhang, Y., Weng,
   J., 2017. Identifying the driving forces of national and regional CO<sub>2</sub> emissions in
   China: Based on temporal and spatial decomposition analysis models. Energy
   Econ. 68: 522-538.
- Li, Y., DaCosta, M. N., 2013. Transportation and income inequality in China: 1978–
  2007. Transport. Res. A-Pol. 55: 56-71.
- Liang, Y., Niu, D., Wang, H., Li, Y., 2017. Factors affecting transportation sector CO<sub>2</sub>
  emissions growth in China: An LMDI decomposition analysis. Sustainability.
  9(10): 1730.
- Liu, F., Beirle, S., Zhang, Q., van der, A. R. J., Zheng, B., Tong, D., He, K., 2017a. NOx
  emission trends over Chinese cities estimated from OMI observations during 2005
  to 2015. Atmos. Chem. Phys. 17(15): 9261-9275.
- Liu, Y., Liao, W, Li, L., Huang, Y., Xu, W., 2017b. Vehicle emission trends in China's
  Guangdong Province from 1994 to 2014. Sci. Total Environ. 586: 512-521.
- Liu, Y., Ma, J., Li, L., Lin, X., Xu, W., Ding, H., 2018. A high temporal-spatial vehicle
  emission inventory based on detailed hourly traffic data in a medium-sized city of
  China. Environ. Pollut. 236: 324-333.
- Liu, Z., Li, L., Zhang,Y., 2015. Investigating the CO<sub>2</sub> emission differences among
  China's transport sectors and their influencing factors. Nat. Hazards. 77(2): 13231343.

| 1  | Luo, X., Dong, L., Dou, Y., Liang, H., Ren, J., Fang, K., 2016. Regional disparity         |
|----|--------------------------------------------------------------------------------------------|
| 2  | analysis of Chinese freight transport CO2 emissions from 1990 to 2007: Driving             |
| 3  | forces and policy challenges. J. Transp. Geogr. 56: 1-14.                                  |
| 4  | Lv, W., Hu, Y., Li, E., Liu, H., Pan, H., Ji, S., Hayat, T., Alsaedi, A., Ahmad, B., 2019. |
| 5  | Evaluation of vehicle emission in Yunnan province from 2003 to 2015. J. Clean.             |
| 6  | Prod. 207: 814-825.                                                                        |
| 7  | Ministry of Environmental Protection, MEP, P.R.C., 2014. National Emission                 |
| 8  | Inventory Guidebook for On-road Vehicles. Beijing. (in Chinese). Available at:             |
| 9  | http://www.mee.gov.cn/gkml/hbb/bgg/201501/W020150107594587831090.pdf.                      |
| 10 | Ministry of Environmental Protection, MEP, P.R.C., 2015. China Environmental               |
| 11 | Status Bulletin. Beijing. (in Chinese). Available at:                                      |
| 12 | http://www.mee.gov.cn/gkml/sthjbgw/qt/201606/t20160602_353138.htm                          |
| 13 | Ministry of Environmental Protection, MEP, P.R.C., 2016. China Vehicle Emission            |
| 14 | Control Annual Report. Beijing. (in Chinese). Available at:                                |
| 15 | http://www.mee.gov.cn/home/jrtt_1/201606/t20160602_353154.shtml                            |
| 16 | Moran, P.A., 1948. The interpretation of statistical maps. J. R. Stat. Soc. Ser. B 10 (2), |
| 17 | 243–251.                                                                                   |
| 18 | National Bureau of Statistics (NBS), 2006-2016. China Statistical Yearbook. Beijing.       |
| 19 | (in Chinese). Available at: <u>http://www.stats.gov.cn/tjsj/ndsj/</u> .                    |
| 20 | Peel, J. L., Haeuber, R., Garcia, V., Russell, A. G., Neas, L., 2012. Impact of nitrogen   |
| 21 | and climate change interactions on ambient air pollution and human health.                 |
| 22 | Biogeochemistry. 114(1-3): 121-134.                                                        |
| 23 | Ramos, A., Muñoz, J., Andrés, F., Armas, O., 2018. NOx emissions from diesel light         |
| 24 | duty vehicle tested under NEDC and real-word driving conditions. Transport. Res.           |
| 25 | Part D-Tr. E. 63: 37-48.                                                                   |
| 26 | Song, X., Hao, Y., Zhang, C., Peng, J., Zhu, X., 2016. Vehicular emission trends in the    |
| 27 | Pan-Yangtze River Delta in China between 1999 and 2013. J. Clean. Prod. 137:               |
| 28 | 1045-1054.                                                                                 |
| 29 | Su, B., Ang, B. W., 2016. Multi-region comparisons of emission performance:                |
| 30 | The structural decomposition analysis approach. Ecol. Indic. 67: 78-87.                    |
| 31 | Sun, S., Jiang, W., Gao, W., 2016. Vehicle emission trends and spatial distribution in     |
| 32 | Shandong province, China, from 2000 to 2014. Atmos. Environ. 147: 190-199.                 |
| 33 | Tang, G., Sun, J., Wu, F., Sun, Y., Zhu, X., Geng, Y. and Wang, Y., 2015. Organic          |
| 34 | composition of gasoline and its potential effects on air pollution in North China.         |
| 35 | Sci. China Chem. 58(9).                                                                    |
| 36 | Tang, G., Chao, N., Wang, Y., and Chen, J., 2016. Vehicular emissions in China in 2006     |
| 37 | and 2010, J. Envrion. Sci., 48, 179-192.                                                   |
| 38 | Wang, C., Xu, C., 2012. Decoupling evaluation between cultivated land occupation and       |
| 39 | economic growth in Shandong province. China Population, Resources and                      |
| 40 | Environment. 022(008), 128-132.                                                            |
| 41 | Wang, H., Ang, B. W., Su, B., 2017a. Assessing drivers of economy-wide energy use          |

| 1        | and emissions: IDA versus SDA. Energy. Policy. 107, 585-599.                                 |
|----------|----------------------------------------------------------------------------------------------|
| 2        | Wang, J., Zhao, B., Wang, S., Yang, F., Xing, J., Morawska, L., Ding, A., Kulmala, M.,       |
| 3        | Kerminen, V. M., Kujansuu, J., Wang, Z., Ding, D., Zhang, X., Wang, H., Tian,                |
| 4        | M., Petaja, T., Jiang, J., Hao, J., 2017b. Particulate matter pollution over China           |
| 5        | and the effects of control policies. Sci. Total Environ. 584-585: 426-447.                   |
| 6        | Wang, J., Ma, Y., Qiu, Y., Liu L., Dong, Z., 2019a. Spatially differentiated effects of      |
| 7        | socioeconomic factors on China's NO <sub>x</sub> generation from energy consumption:         |
| 8        | Implications for mitigation policy. J. Environ. Manage. 250, 109417.                         |
| 9        | Wang, J., Qiu, Y., He, S., Liu, N., Xiao C., Liu, L., 2018. Investigating the driving forces |
| 10       | of NO <sub>x</sub> generation from energy consumption in China. J. Clean. Prod. 184: 836-    |
| 11       | 846.                                                                                         |
| 12       | Wang, J., Qiu, Y., Ma, Y., He, S., Liu, N., Feng, Y., Dong Z., Liu, L., 2019b. Quantifying   |
| 13       | the geographical distribution effect on decreasing aggregated nitrogen oxides                |
| 14       | intensity in the Chinese electrical generation system. J. Clean. Prod. 222: 856-864.         |
| 15       | Wang, S., Xing, J., Zhao, B., Jang, C., Hao J., 2014. Effectiveness of national air          |
| 16       | pollution control policies on the air quality in metropolitan areas of China. J.             |
| 17       | Environ. Sci. 26(1): 13-22.                                                                  |
| 18       | Wang, W. W., Zhang, M., Zhou, M., 2011. Using LMDI method to analyze transport               |
| 19       | sector $CO_2$ emissions in China. Energy. 36(10): 5909-5915.                                 |
| 20       | Wild, R. J., Dubé, W. P., Aikin, K. C., Eilerman, S. J., Neuman, J. A., Peischl, J.,         |
| 21       | Ryerson, T. B., Brown, S. S., 2017. On-road measurements of vehicle $NO_2$ / $NO_x$          |
| 22       | emission ratios in Denver, Colorado, USA. Atmos. Environ. 148: 182-189.                      |
| 23       | Xu, Y., Masui, T., 2009. Local air pollutant emission reduction and ancillary carbon         |
| 24       | benefits of SO <sub>2</sub> control policies: Application of AIM/CGE model to China. Eur. J. |
| 25       | Oper. Res. 198(1): 315-325.                                                                  |
| 26       | Yang, W., Li, T., Cao, X., 2015. Examining the impacts of socio-economic factors,            |
| 27       | urban form and transportation development on $CO_2$ emissions from transportation            |
| 28       | in China: A panel data analysis of China's provinces. Habitat Int. 49: 212-220.              |
| 29       | Yang, W., Yu, C., Yuan, W., Wu, X., Zhang, W., Wang, X., 2018. High-resolution               |
| 30       | vehicle emission inventory and emission control policy scenario analysis, a case             |
| 31       | in the Beijing-Tianjin-Hebei (BTH) region, China. J. Clean. Prod. 203: 530-539.              |
| 32       | Zhang, R., Fujimori, S., Dai, H., Hanaoka, T., 2018. Contribution of the transport sector    |
| 33       | to climate change mitigation: Insights from a global passenger transport model               |
| 34<br>25 | coupled with a computable general equilibrium model. Appl. Energy. 211: 76-88.               |
| 35       | Zhu, D., Iao, S., Wang, R., Shen, H., Huang, Y., Shen, G., Wang, B., Li, W., Zhang, Y.,      |
| 36       | Chen, H., Chen, Y., Liu, J., Li, B., Wang, X., Liu, W., 2013. Temporal and spatial           |
| 3/<br>20 | trends of residential energy consumption and air pollutant emissions in China.               |
| 58       | Appl. Energy. 106: 17-24.                                                                    |
| 39       |                                                                                              |