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ABSTRACT

This thesis builds upon two strands of recent research related to con-
ducting Bayesian inference for stochastic processes.
Firstly, this thesis will introduce a new residual-bridge proposal for

approximately simulating conditioned diffusions formed by applying
the modified diffusion bridge approximation of Durham and Gallant,
2002 to the difference between the true diffusion and a second, ap-
proximate, diffusion driven by the same Brownian motion. This new
proposal attempts to account for volatilities which are not constant
and can, therefore, lead to gains in efficiency over recently proposed
residual-bridge constructs (Whitaker et al., 2017) in situations where
the volatility varies considerably, as is often the case for larger inter-
observation times and for time-inhomogeneous volatilities. These gains
in efficiency are illustrated via a simulation study for three diffusions;
the Birth-Death (BD) diffusion, the Lotka-Volterra (LV) diffusion, and
a diffusion corresponding to a simple model of gene expression (GE).
Secondly, this thesis will introduce two new classes of Markov Chain

Monte Carlo samplers, named the Exchangeable Sampler and the Ex-
changeable Particle Gibbs Sampler, which, at each iteration, use ex-
changeablility to simulate multiple, weighted proposals whose weights
indicate how likely the chain is to move to such a proposal. By gen-
eralising the Independence Sampler and the Particle Gibbs Sampler
respectively, these new samplers allow for the locality of moves to be
controlled by a scaling parameter which can be tuned to optimise the
mixing of the resulting MCMC procedure, while still benefiting from
the increase in acceptance probability that typically comes with us-
ing multiple proposals. These samplers can lead to chains with better
mixing properties, and, therefore, to MCMC estimators with smaller
variances than their corresponding algorithms based on independent
proposals. This improvement in mixing is illustrated, numerically, for
both samplers through simulation studies, and, theoretically, for the Ex-
changeable Sampler through a result which states that, under certain
conditions, the Exchangeable Sampler is geometrically ergodic even
when the importance weights are unbounded and, hence, in scenarios
where the Independence Sampler cannot be geometrically ergodic. To
provide guidance in the practical implementation of such samplers, this
thesis derives asymptotic expected squared-jump distance results for
the Exchangeable Sampler and the Exchangeable Particle Gibbs Sam-
pler. Moreover, simulation studies demonstrate, numerically, how the
theory plays out in practice when d is finite.
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xiv Nomenclature

Notation

|A| Denotes the cardinality of the set A.

A ⊆ B A is a subset of B.

P(B) Denotes the power set of a set B; that is, P(B) := {A : A ⊆ B} .

Ac Denotes the complement of a set A ⊆ Ω; that is,

Ac := {ω ∈ Ω : ω 6∈ A} .

x1:∞ Shorthand for x1, x2, . . .. Similarly x(1:∞) is shorthand for x(1), x(2), . . .,
x1:n is shorthand for x1, x2, . . . , xn etc. For dual scripts, the su-
perscript takes precedent over the subscript so that, for instance,
x

(1:m)
1:n is shorthand for x(1:m)

1 , . . . , x
(1:m)
n .

N The set of natural numbers not including 0.

µ - a.e. Denotes almost everywhere with respect to the measure µ de-
fined on some measurable space (X ,GX ); that is, if φ(x) is some
logical statement about some variable x ∈ X , then φ(x), µ - a.e.
if {x ∈ X : φ(x) is false.} ⊆ A ∈ GX with µ(A) = 0.

σ(Ω) Denotes the σ-algebra generated by the sets of Ω; that is the
smallest σ-algebra containing all elements of Ω.

B(Rd) Denotes the Borel sets of Rd; that is,

B(Rd) := σ({(a, b] : a, b ∈ Rd and a < b}) .

xn ↓ x Denotes convergence from above; thats is, xn → x as n → ∞
and, for any n ∈ N, xn ≥ x.

a ≤ b For any two vectors a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ Rd,
a ≤ b if and only if ai ≤ bi for each i = 1, . . . , d. Similarly for
other inequalities. The definition of intervals such as [a, b] obey
this ordering.

f−1(A) Denotes the pre-image of a set A with respect to the function
f : X → Y; that is f−1(A) := {x ∈ X : f(x) ∈ A}.

1A(x) Denotes the indicator function corresponding to a set A; that
is,

1A(x) :=

0 if x /∈ A ,

1 if x ∈ A .

P(φ(X)) Denotes, for a logical statement φ(x) about a random variable
X defined on (X ,GX ,P),

P({w ∈ X : φ(X(w))}) .
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dlim
n→∞

Denotes the distributional limit of the sequence of random vari-
ables X1:∞.

plim
n→∞

Denotes the probabilistic limit of the sequence of random vari-

ables X1:∞.

aslim
n→∞

Denotes the almost sure limit of the sequence of random vari-
ables X1:∞.

Permutation A permutation, σ, of a finite set, Ω := {1, . . . , N}, is a
one-to-one mapping from Ω onto itself.

[A]i,j Denotes the (i, j)-th entry of the matrix A.

diag(x1:d) Denotes a d-dimensional diagonal matrix with entries x1:d;
that is, a matrix X ∈ Rd×d such that [X]i,j = 0 for any i 6= j
and [X]i,i = xi for any i ∈ {1, . . . , d}.

T(ν) Denotes the T-distribution with ν degrees of freedom; that is, a
continuous distribution with density

Γ(0.5(ν + 1))√
νπΓ(0.5ν)

(
1 +

x2

ν

)−0.5(1+ν)

, x ∈ R .

∆yk Denotes yk+1 − yk.

Exp(λ) Denotes the Exponential distribution with rate λ; that is a
continuous distribution with density

λ exp(−λx) , x ∈ [0,∞) .

o(h(t)) Denotes little order; that is, f(t) = g(t) + o(h(t)) if

lim
t↓0

[f(t)− g(t)]/h(t) = 0 .

AT and A∗ Denote the transpose of the matrix A.

Nk(µ,Σ) Denotes the k-dimensional Normal distribution with mean
µ and variance matrix Σ (in one dimension the mean and vari-
ance will both be scalars); that is a continuous distribution with
density

(2π)−k/2|det(Σ)|−1/2 exp[−(x−µ)TΣ−1(x−µ)/2] , x ∈ Rk .

π[h] Denotes the expectation of the function h : Rd → Rr with
respect to the distribution π; that is the r-dimensional vector
whose i-th component is given by

π[hi] =

∫
Rd

hi(x)π(dx) .

If r = 1 then π[h] denotes a scalar.



xvi Nomenclature

Varπ(h(X)) Denotes the variance of the function h : Rd → Rr with
respect to the distribution π; that is the matrix of size r × r
whose (i, j)-th component is

Varπ(h(X))ij = π[hihj ]− π[h]iπ[h]j .

If r = 1 then Varπ(h(X)) denotes a scalar.

supp(f) Denotes the support of a function f ; that is,

supp(f) = {x : f(x) 6= 0} .

Id Denotes the d-dimensional identity matrix; that is the matrix
whose (i, j)-th element is 1 if i = j and 0 otherwise.

µ1 � µ2 Denotes, for two probability measures, µ1 and µ2 defined on
the same measurable space (X ,GX ), that µ1 is absolutely con-
tinuous with respect to µ2.

‖µ1 − µ2‖ Denotes, for two probability measures, µ1 and µ2 defined on
the same measurable space (X ,GX ), the total variation distance
between the two measures; that is,

‖µ1 − µ2‖ := sup
A∈GX

|µ1(A)− µ2(A)| .

Cov(h(X), g(Y )) Denotes the covariance of the functions h : Rd → R
and g : Rd → R of two random variables, X and Y ; that is, if
X, Y have a joint distribution π and marginal distributions πX
and πY respectively, then

Cov(h(X), g(Y )) = π[hg]− πX [h]πY [g] .

Corr(h(X), g(Y )) Denotes the correlation of the functions h : Rd → R
and g : Rd → R of two random variables, X and Y ; that is, if
X, Y have a joint distribution π and marginal distributions πX
and πY respectively, then

Corr(h(X), g(Y )) = Cov(h(X), g(Y ))/
√

VarπX (h(X))VarπY (g(Y )) .

〈·, ·〉π Denotes the inner-product associated with the Hilbert space of
functions which are square-integrable with respect to π, which
is a measure on some measurable space (X ,GX ); that is, for any
f, g ∈ L2(π) where

L2(π) := {f : X → R such that π[f2] <∞} ,

define

〈f, g〉π :=

∫
X 2

π(dx)f(x)g(x) .
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Unif(A) Denotes the discrete uniform distribution over the finite set
A; that is, the distribution with probability mass function, f ,
such that, for any a ∈ A, f(a) = 1/|A|.

Unif(a, b) Denotes the Uniform distribution on the interval (a, b]; that
is, a continuous distribution with density

(b− a)−1 , x ∈ (a, b] .

Gamma(α, β) Denotes the Gamma distribution with shape α and rate
β; that is, a continuous distribution with density

βα

Γ(α)
xα−1 exp(−βx) dx , x ∈ [0,∞) .

a ∧ b Denotes the minimum of a and b; that is a ∧ b = b if a ≥ b and
a ∨ b = a otherwise.

a ∨ b Denotes the maximum of a and b; that is a∨ b = a if a ≥ b and
a ∨ b = b otherwise.

dxe Denotes the ceiling of x ∈ R; that is,

dxe = min{k ∈ Z : k ≥ x} .

bxc Denotes the integer part of x ∈ R; that is,

bxc := max{k ∈ Z : k ≤ x} .

δx Denotes, for a measurable space (X ,GX ), the Dirac measure
centred on x.





1THE INTRODUCTION

Inference for processes which are stochastic in nature, or, by virtue of
incomplete information, can be modelled as such, is an increasingly com-
mon task in many academic disciplines, including, but not limited to,
biology (see, for instance, Wilkinson, 2006; Kuhner, 2006; Boys, Wilkin-
son, and Kirkwood, 2008), epidemiology (Neal and Roberts, 2004; Ball
and Neal, 2008; Jewell, Keeling, and Roberts, 2008), physics (see, for
example, Cancès, Legoll, and Stoltz, 2007; Akeret et al., 2015; Lelièvre
and Stoltz, 2016), and economics (see, for instance, Glasserman, 2010;
Rambharat and Brockwell, 2010; Sen, Jasra, and Zhou, 2017). The ar-
rival of cheap computational resources at the end of the twentieth cen-
tury has enabled practitioners to conduct statistical inference for more
complex, and arguably, therefore, more realistic stochastic processes,
leading to significant advancements in the field.
This thesis will concentrate on Bayesian inference for stochastic pro-

cesses, with a specific focus on the challenges involved in conduct-
ing inference for diffusions driven by Stochastic Differential Equations
(SDEs). In particular, this thesis is concerned with the construction
of stochastic approximations to expectations, E[f(x)], defined with re-
spect to a target distribution, π, based on averaging, or, more formally,
Monte Carlo (MC) techniques (see, for example, Liu, 2001; Andrieu
et al., 2003; Glasserman, 2010; Doucet et al., 2001; Robert and Casella,
2004). Such techniques can be favourable over their deterministic coun-
terparts since, firstly, under appropriate conditions, they retain an er-
ror independent of the dimension of the probability space on which π
resides (see Section 2.3 of this thesis, or, for example, Corollary 2.1,
Roberts and Rosenthal, 1997, Section 1.3.1, Doucet et al., 2001, or Sec-
tion 1.7, Brooks et al., 2011), secondly, they are, in a sense that shall
be made clear in Section 2.3 (and is clear from the aforementioned
references), independent of the function f1, and, thirdly, recent ap-
proaches, which utilise the sequential structure of certain distributions,
have vastly extended the scope of such techniques (see, for example,
Andrieu, Doucet, and Holenstein, 2010; Lindsten, Jordan, and Schön,
2014; Chopin and Singh, 2015).

After introducing the necessary background material in Chapter 2,
this thesis will build upon two strands of recent research related to con-
ducting Bayesian inference for stochastic processes. Firstly, in Chapter
3, this thesis will introduce a new residual-bridge proposal for approxi-
mately simulating conditioned diffusions formed by applying the modi-
fied diffusion bridge approximation of Durham and Gallant, 2002 to the
difference between the true diffusion and a second, approximate, diffu-
sion driven by the same Brownian motion. This new proposal attempts

1 It is the logic of the algorithm itself that is independent of f , not the error of the
approximation.
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2 the introduction

to account for volatilities which are not constant and can, therefore,
lead to gains in efficiency over recently proposed residual-bridge con-
structs (Whitaker et al., 2017) in situations where the volatility varies
considerably, as is often the case for larger inter-observation times and
for time-inhomogeneous volatilities. These gains in efficiency are illus-
trated via a simulation study (see Section 3.3.2).
Secondly, in Chapter 4, this thesis will introduce two new classes of

Markov Chain Monte Carlo samplers named the Exchangeable Sampler
and the Exchangeable Particle Gibbs Sampler, which, at each iteration,
use exchangeablility to simulate multiple, weighted proposals whose
weights indicate how likely the chain is to move to such a proposal. By
generalising the Independence Sampler and the Particle Gibbs Sampler
respectively, these new samplers allow for the locality of moves to be
controlled by a scaling parameter which can be tuned to optimise the
mixing of the resulting MCMC procedure, in a manner reminiscent of
MCMC algorithms based on random walks (see, for instance, Roberts,
Gelman, and Gilks, 1997; Roberts and Rosenthal, 1998b, 2001; Sherlock
and Roberts, 2009), while still benefiting from the increase in accep-
tance probability that typically comes with using multiple proposals.
As a result, these samplers can lead to chains with better mixing prop-
erties, and, therefore, to MCMC estimators with smaller variances than
their corresponding algorithms based on independent proposals. This
improvement in mixing is illustrated, numerically, for both samplers
through simulation studies (see Sections 4.3.2 and 4.4.2), and, theo-
retically, for the Exchangeable Sampler through Corollary 4.3.7 which
proves that, under certain conditions, the Exchangeable Sampler is ge-
ometrically ergodic even when the importance weights are unbounded
and, hence, in scenarios where the Independence Sampler cannot be
geometrically ergodic ( see, for example, Mengersen and Tweedie, 1996;
Atchadé and Perron, 2007 for proofs that bounded weights is neces-
sary for geometric ergodicity). Moreover, to provide guidance in the
practical implementation of such samplers, this thesis will investigate
the optimal scaling parameter for both the Exchangeable Sampler and
the Exchangeable Particle Gibbs Sampler in a manner similar to op-
timal scaling results in the literature (see, for instance, Roberts, Gel-
man, and Gilks, 1997; Roberts and Rosenthal, 1998b, 2001; Sherlock
and Roberts, 2009). In particular, Theorem 4.3.17 of Section 4.3.1, and
Theorem 4.4.7 of Section 4.4.1 derive an asymptotic (as the dimension,
d, of the state space tends towards infinity) expected squared-jump
distance result for the Exchangeable Sampler and the Exchangeable
Particle Gibbs Sampler respectively. Moreover, Section 4.3.1 and Sec-
tion 4.4.1 provide simulation studies numerically demonstrating how
the theory plays out in practice when d is finite.



2BACKGROUND MATERIAL

2.1 concepts in probability

The ideas in this thesis rely on foundational concepts in probability,
which, for completeness, are briefly introduced in this section. In Sec-
tion 2.1.1 we introduce the concept of a sequence of random variables,
define several notions of convergence of such a sequence, and also
state Bayes’ theorem. We introduce, in Section 2.1.2, the concept of
exchangeability- a concept which will be fundamental when we discuss
a novel generalization of current state of the art Markov Chain Monte
Carlo methods in Chapter 4. In Section 2.1.3 we introduce the idea of
a random (stochastic) process whose future behaviour is dependent on
the past only through the present and, finally, in Section 2.1.4, the dif-
fusion process, whose inference is the focus of this thesis, is introduced
and characterised.

2.1.1 Sequences of Random Variables

Throughout this thesis it will be convenient to discuss a sequence of
random variables, defined via a sequence of conditional random vari-
ables, without mentioning the underlying probability space on which
it resides. Such discussions only make sense if such a space exists.
To this end, let X1 ∼ π1 be a d1-dimensional random variable de-
fined on the space (Rd1 ,B(Rd1), π1), where B(Rd1) denotes the Borel
sets of Rd1 . For each j ∈ N, and each x1:j ∈ Rd1 × . . . × Rdj , let
Xj+1|X1:j = x1:j ∼ πXj+1|x1:j

be a dj+1-dimensional random variable,
defined on the measurable space (Rdj+1 ,B(Rdj+1)). Suppose further
that the mapping πXj+1|X1:j

: Rd1 × . . . × Rdj × B(Rdj+1) → [0, 1], de-
fined by πXj+1|X1:j

(x1:j , A) := πXj+1|x1:j
(A), is measurable in the first

argument for any fixed A ∈ B(Rdj+1). Then, for any j ∈ N, one can
talk about a sequence of random variables X1, . . . , Xj and a probability
measure P such that for any Aj ∈ σ(B(Rd1)× . . .× B(Rdj )),

P(X1:j ∈ Aj) =

∫
Rd1

π1(dx1)

∫
Rd2

πX2|x1
(dx2) . . .

∫
Rdj

1Aj (x1:j)πXj |x1:j−1
(dxj) .

A formal statement and proof of the existence of such a measure on
an appropriately defined probability space follows from the Infinite-
Dimensional Product Measure Theorem (see, for example, Theorem
2.7.2, Ash and Doléans-Dade, 2000). With this joint measure in place,
one can derive a natural definition of the marginal random variables,
Xj , for each j ∈ N. Indeed, for any j ∈ N, let Xj ∼ πj be the dj-

3



4 background material

dimensional random variable which is defined, for any Aj ∈ B(Rdj ),
by

πj(Aj) := P
({

w ∈
∞∏
r=1

Rdr : wj ∈ Aj
})

=

∫
Rd1

π1(dx1)

∫
Rd2

πX2|x1
(dx2) . . .

∫
Aj

πXj |x1:j−1
(dxj) .

Thus, X1:∞ is a sequence of random variables all defined on the com-
mon probability space constructed only by specifying the distribution
π1 of a random variable X1, and, for each j ∈ N and each (x1:j) ∈
Rd1 × . . .×Rdj , the distribution of a dj+1-dimensional random variable
denoted by Xj+1|X1:j = x1:j , and thought of as the random variable
Xj+1 conditioned on the knowledge that X1:j = x1:j .
Given the density π1 of a random variable X1 and the conditional

density πX2|X1=x1
corresponding to the conditional random variable

X2|X1 = x1, one can, via Bayes’ Theorem (see, for instance, Section
7.3, Papoulis, Pillai, and Pillai, 2002), derive the density corresponding
to the conditional random variable X1|X2 = x2;

g(x1|x2) =
f(x2|x1)π1(x1)

π2(x2)
.

Finally, it will be useful to introduce several notions of convergence,
(see, for instance, Ash and Doléans-Dade, 2000, Durrett, 2010, or Cap-
inski and Kopp, 2013) that will be discussed throughout this thesis;

definition 2.1.1 (Convergence of Random Variables). A sequence
of random variables, not necessarily defined on a common probability
space, X1:∞, with distribution functions F1, F2, . . . is said to converge
in distribution to a random variable, X, with distribution function F ,
written dlim

n→∞
Xn = X, if and only if, for every x ∈ Rd at which F is

continuous,

lim
n→∞

Fn(x) = F (x) .

Suppose now that the random variables, X1:∞, X, are defined on a
common probability space (X ,GX ,P). Then, the sequence X1:∞ is said
to converge in probability to X, written plim

n→∞
Xn = X if and only if, for

every ε > 0,

lim
n→∞

P(|Xn −X| ≥ ε) = 0 .

The sequence X1:∞ is said to converge almost surely to X, written
aslim
n→∞

Xn = X, if and only if

lim
n→∞

Xn(w) = X(w) , P - a.e. .
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2.1.2 Exchangeability

A sequence of random variables is said to be exchangeable if their joint
distribution is independent of their order (see Definition 2.1.2 for a def-
inition in the case of finite sequences). While exchangeability is closely
related to independence (see, for instance, de-Finetti’s Theorem, de
Finetti, 1931, and its extensions in Hewitt and Savage, 1955, and Dia-
conis and Freedman, 1980), the extra flexibility afforded by exchange-
able random variables allows one to simulate identically distributed
random variables whose closeness can be parametrized (see, for exam-
ple, Lemma 2.1.3 and Algorithm 1). It is this property which allows one
to generalise current state of the art Markov Chain Monte Carlo meth-
ods, which rely on independent proposals, to methods which utilise ex-
changeability and, therefore, can benefit from tailored jump-sizes (see
Chapter 4 of this thesis).

definition 2.1.2. A sequence X1:N of random variables, X1:N ∈
XN is said to be exchangeable if, for any A1:N ∈ GNX ,

P(X1 ∈ A1, . . . , XN ∈ AN ) = P(Xσ(1) ∈ A1, . . . , Xσ(N) ∈ AN ) ,

for any permutation1, σ, of the set {1, . . . , N}. In other words, if the
joint probability density function, π, exists, then

π(x1:N ) = π(xσ(1), . . . , xσ(N)) ,

for any permutation σ of the set {1, . . . , N}.

It is fairly clear that independent and identically distributed random
variables are also exchangeable. Moreover, exchangeable random vari-
ables are identically distributed, but not necessarily independent. These
results are essentially consequences of de-Finetti’s Theorem and the ex-
tensions thereof (see, for instance, de Finetti, 1931, Hewitt and Savage,
1955, and Diaconis and Freedman, 1980). Intuitively, a sequence of ran-
dom variables is exchangeable if the order they are simulated in does
not matter. The results of de Finetti, 1931 and Hewitt and Savage,
1955 show, not only that exchangeability can be achieved through in-
dependence given some underlying random variable, but also, in some
sense, that this is the only way of obtaining an exchangeable sequence.
Indeed, let f0 be a prior distribution for a random variable Θ ∈ T , and,
given Θ = θ, let f∗ be a joint distribution for a sequence of independent
and identically distributed random variables X1:N each with marginal
distribution f . Then, the sequence X1:N , whose joint distribution is π∗,
say, is exchangeable but not independent. Indeed,

π∗(x1:N ) =

∫
T

f0(θ)
N∏
i=1

f(xi|θ) dθ , (1)

1 A permutation, σ, of a finite set, Ω := {1, . . . , N}, is a one-to-one mapping from Ω
onto itself.



6 background material

which is clearly exchangeable due to the independence of the xi within
the integral. Moreover, the marginal distributions are given by

π(x) =

∫
T

f0(θ)f(x|θ) dθ ,

and, in general,

π∗(x1:N ) 6=
N∏
i=1

∫
T

f0(θ)f(xi|θ) dθ .

That is, the sequence is, in general, not independent. The representation
given by (1) provides a way of simulating N exchangeable random
variables. First, simulate a θ from f0(·), then simulate N independent
and identically distributed random variables X1:N such that, for any
i ∈ {1, . . . , N}, Xi ∼ f(·|θ). A particularly useful choice of f0 and
f allows for the generation of exchangeable normal random variables
via the simulation of other normal random variables. Indeed, let Θ ∼
Nd(µ,Σ) for some µ ∈ Rd and Σ ∈ Rd×d, and, for any i ∈ {1, . . . , N},
Xi|θ ∼ Nd(Aθ + b, C) where A ∈ Rd×d, b ∈ Rd, and C ∈ Rd×d is a
diagonal matrix with diagonal entries c1:d; that is, [C]i,j = 0 for any
i 6= j and [C]i,i = ci for any i ∈ {1, . . . , d}. Then, Xi ∼ Nd(Aµ +
b, AΣAT + C). The usefulness of this choice stems from the fact that
normal random variables are well understood and easy to simulate.
Moreover, the expected squared Euclidean distance between the Xi is
tractable;

lemma 2.1.3. Let X1:N |Θ = θ be a sequence of independent random
variables given some underlying random variable θ such that, for any
i ∈ {1, . . . , N}, Xi|Θ = θ ∼ Nd(Aθ + b, C) where A ∈ Rd×d, b ∈ Rd,
and C = diag(c2

1:d) ∈ Rd×d is a diagonal matrix with entries c2
1:d; that

is, [C]i,j = 0 for any i 6= j and [C]i,i = c2
i for any i ∈ {1, . . . , d}. Then,

for any i 6= j, and any k ∈ {1, . . . , N},

E[‖X(k)
i −X

(k)
j ‖

2] = 2c2
k ,

where X(k) denotes the k-th component of the random variable X.

Proof. See A.1.

As a result of this lemma, one can simulate a sequence of exchange-
able d-dimensional normal random variables whose expected closeness
in dimension k can be controlled. Indeed, in one dimension, the follow-
ing procedure (Algorithm 1), which is at the heart of the exchangeable
Markov Chain Monte Carlo methods introduced in Chapter 4 of this
thesis, demonstrates how one can simulate what this thesis terms an
ε-close exchangeable sequence; that is, a sequence Z1:N of standard
normal random variables whose closeness, in terms of the square-root
expected squared distance is equal to a jump-size, ε ∈ [0, 1];
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Algorithm 1 Simulate an ε-Close Sequence of Exchangeable Standard Normal Ran-
dom Variables

1: Let ε ∈ [0, 1] and set δ = ε/
√

2.
2: Sample θ from a N(0, 1) distribution.
3: for i = 1, . . . , N do
4: Sample ẑi from a N(0, 1) distribution.
5: Set zi = θ

√
1− δ2 + δẑi.

6: end for

remark 1. The procedure outlined in Algorithm 1 is a multiple-sample
extension of the preconditioned Crank-Nicolson proposal introduced in
Cotter et al., 2013.

Consider, for any i 6= j, Zi and Zj simulated by this procedure. By
Lemma 2.1.3,√

E[‖Zi − Zj‖2] =
√

2δ = ε .

Trivially, if X1:N are exchangeable; that is, the order in which they
are simulated does not matter, then, for any measurable function f :
X → Rd, the sequence f(X1), . . . , f(XN ) is exchangeable; for one can
simulate the Xi in any order and apply the function f to each Xi

independently2. In one-dimension, this fact can be used in conjunction
with Theorem 2.3.2 to simulate a sequence of exchangeable random
variables, X1:N , where each Xi ∼ π, provided π is a distribution whose
corresponding distribution function, F (x) := π((−∞, x]), is invertible
for every x ∈ R. Indeed, by Theorem 2.3.2, Φ(Zi) ∼ Unif(0, 1). Hence,

Algorithm 2 Simulation of General Exchangeable Sequences

1: Let Φ denote the distribution function of a standard normal random variable.
2: Simulate z1:N via Algorithm 1.
3: Set xi = F−1(Φ(zi)) for each i ∈ {1, . . . , N}.

Xi := F−1(Φ(Zi)) ∼ π. In general, the Xi will not be ε-close. However,
a closeness of at most ε could be enforced if the function F−1(Φ(·)) were
suitably smooth. For example, if F−1(Φ(·)) were Lipschitz continuous
with Lipschitz constant a > 0, then, for any i 6= j,

E[‖Xi −Xj‖2] ≤ a2E[‖Zi − Zj‖2] = a2ε2 .

Therefore, if an ε/a-close sequence Z1:N were simulated via Algorithm
1, then the closeness of the Xi would be at most ε.

2.1.3 Markov Processes

Processes which exhibit random movements over time; that is, stochas-
tic processes, are formalised by a collection of random variables indexed
by time;

2 This is, again, essentially a consequence of de-Finetti’s Theorem and the extensions
thereof. See, for instance, de Finetti, 1931, Hewitt and Savage, 1955, and Diaconis
and Freedman, 1980
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definition 2.1.4 (Stochastic Process). A d-dimensional stochastic
process (henceforth, process) is a collection of random variables, {Xt :
t ∈ T } defined on a common probability space (X ,GX ,P), where, for the
purposes of this thesis, T is either {1, . . . , T} ⊆ N or [0, T ] ⊆ R+ for
some, potentially infinite, T . For any ω ∈ X , the function t → Xt(ω)
is called a sample path of the process.

As highlighted in Section 2.1.1, it is possible, using the Infinite-
Dimensional Product Theorem (see, for example, Theorem 2.7.2, Ash
and Doléans-Dade, 2000), to demonstrate the existence of a common
underlying probability space on which a sequence of random variables,
X1:∞, and, therefore, a stochastic process with a countable index set,
T = {1, . . . , T}, is defined. Provided a consistent set of finite-dimensional
probability measures exists, Kolmogorov’s Extension Theorem (see, for
instance, Theorem 2.7.5, Ash and Doléans-Dade, 2000) provides a sim-
ilar result for stochastic processes with an uncountable index set, T =
[0, T ]. The sets N and [0,∞) are ordered. Thus, stochastic processes
are naturally ordered and, therefore, for any time t ∈ T , the history of
the process up to that time makes sense as a concept and, formally, is
encapsulated in the natural filtration;

definition 2.1.5 (Natural Filtration). The natural filtration corre-
sponding to a d-dimensional process {Xt : t ∈ T } is defined to be the
collection of sets {FXt : t ∈ T } such that, for any t ∈ T ,

FXt := σ({X−1
s (B(Rd)) : s ≤ t}) .

The natural filtration for a process {Xt : t ∈ T }, therefore, is a
sequence of σ-algebras, {FXt : t ∈ T }, such that, for any t ∈ T , FXt is
the smallest σ-algebra that ensures that Xs is measurable with respect
to FXt , for any s ≤ t. Many processes of interest are such that their
future behaviour depends only on their most recent accessible value,
and these processes are said to be weakly Markov. Specifically, the
behaviour of a weakly Markov process at time t ∈ T depends on its
behaviour up to time s < t only through the processes value at time s;

definition 2.1.6 (Weakly Markov Process). A process {Xt : t ∈ T }
is weakly Markov (henceforth, Markov) if, for any U ∈ B(Rd) and
(s, t) ∈ T 2, with s < t,

P(X−1
t (U)|FXs ) = P(X−1

t (U)|σ(X−1
s (B(Rd)))) .

The support of a process is the space of all possible values that the
process could take. Formally,

definition 2.1.7. The support of a process {Xt : t ∈ T } is defined
by⋃
t∈T
{y ∈ Rd : there exists an open B ∈ B(Rd) with y ∈ B and P(X−1

t (B)) > 0} .

Henceforth, for brevity, a Markov process {Xt : t ∈ {1, . . . , T}} will
be called a Markov chain and the term Markov process will be exclu-
sively reserved for a process {Xt : t ∈ [0, T ]}. In either case, since the
index set is implicit, the chain/process will simply be referred to as Xt.
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Figure 1: A sample path of a Wiener process.

2.1.4 Diffusion Processes

The fundamental diffusion process is the Wiener process (see Wiener,
1923, or, for example, Definition 9.2.1, Ash and Doléans-Dade, 2000,
Definition 3.3.1, Shreve, 2004, and Section 8.1, Durrett, 2010), a sample
path of which can be seen in Figure 1;

definition 2.1.8. A one-dimensional Wiener process is a process,
Wt, with the following properties;

(W1) W0 = 0.

(W2) For any 0 ≤ t1 < t2, Wt2 −Wt1 ∼ N(0, t2 − t1).

(W3) For any 0 ≤ t1 < t2 ≤ t3 < t4, the random variables Wt4 −Wt3

and Wt2 −Wt1 are independent.

(W4) Sample paths of Wt are continuous.

A d-dimensional Wiener process is a vector of d one-dimensional inde-
pendent Wiener processes.

Following Section 7.1, Durrett, 2010, a process satisfying properties
(W1), (W2), and (W3) can be constructed using the Kolmogorov Ex-
tension Theorem. Indeed, for any n ∈ N, consider a sequence of times
t1:n ∈ [0, T ]n such that 0 := t0 ≤ t1 < t2 < . . . < tN . Define, for any
permutation τ of {1, . . . , n}, the probability measures Ptτ(1),...,tτ(n)

, to
be such that, for any B ∈ σ(B(R)n),

Ptτ(1),...,tτ(n)
(B) :=

∫
B

n−1∏
k=0

(2π∆tk)
−1/2 exp

(
− (∆wtk)2

2∆tk

)
dwt1 . . . dwtn ,
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where ∆tk := tk+1 − tk and ∆wk := wk+1 − wk. The existence of the
Wiener process,Wt, then follows by Kolmogorov’s Continuity Theorem
(see, for instance, Theorem 2.1.6, Stroock and Varadhan, 1997), and the
fact that, for any s < t, Wt −Ws ∼ N(0, t− s).

A different view of the Wiener process (known as Donsker’s invari-
ance principle; see for example, Donsker, 1951, Theorem 37.8, Billings-
ley, 1995, or Theorem 12.9, Kallenberg, 1997), which will motivate the
general diffusion process, can be seen by considering, for a small, fixed,
time increment, ∆t, the behaviour of the process at times tk := k∆t
for k ∈ N. Indeed, consider the one-dimensional random walk Markov
chain, Yt, defined by Y0 = 0, and, for any k ∈ {1, 2, . . .},

Yk+1 = Yk + ∆Wk+1 , (2)

where ∆Wk+1 := Wtk+1
− Wtk . Define the process W∆t

t := Ybt/∆tc,
then, in a sense which, for the purposes of this thesis, is intentionally
left vague, W∆t

t converges to the Wiener process as ∆t ↓ 0. Therefore,
defining the integral with respect to the Wiener process as an appro-
priate limit of the sum of Wiener increments as ∆t ↓ 0,

W∆t
t →Wt =

t∫
0

dWs ←
bt/∆tc∑
j=1

∆Wj = W∆t
t . (3)

A general one-dimensional diffusion process can be motivated by con-
sidering a generalization of the random walk Markov chain which allows
for a non-zero initial state, a non-zero, time-inhomogenous, change in
mean, and a non-unit, time-inhomogenous variance; namely, a Markov
chain Xt, such that X0 = x0, and, for any k ∈ N,

Xk+1 = Xk + ∆tµ(Xk, tk) + ζ(Xk, tk)∆Wk+1 , (4)

where the change in mean, µ : R × [0,∞) → R, and the variance,
ζ2 : R× [0,∞)→ R, are, respectively, known as the drift and volatility
of the process. Extrapolating (4) gives

Xk+1 = x0 + ∆t
k∑
j=0

µ(Xj , tj) +
k∑
j=0

ζ(Xj , tj)∆Wj+1 .

Again, taking an appropriate limit as ∆t ↓ 0,

Xt = x0 +

t∫
0

µ(Xs, s) ds+

t∫
0

ζ(Xs, s) dWs . (5)

This is often written in shorthand as a stochastic differential equation
(SDE);

dXt = µ(Xt, t) dt+ ζ(Xt, t) dWt . (6)

A similar approach can be taken to motivate a general d-dimensional
process, except in this case µ : Rd×[0,∞)→ Rd, ζ : Rd×[0,∞)→ Rd×r,
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and Wt is an r-dimensional Wiener process. The construction or, in-
deed, existence of a general diffusion process which satisfies Equation
(5) is beyond the scope of this thesis3. In this thesis the continuous ver-
sion of the Markov chain defined by (4), namely, the diffusion driven
by (6), is only needed to motivate some of the algorithmic approaches
taken when simulating conditioned diffusions as described in Chapter
3. As shall be highlighted in Chapter 3, inference conducted in this
thesis will be for the Markov chain, defined by (4), for small ∆t. Since
diffusion processes are, themselves, approximations to real-world phe-
nomena, this approach is valid, provided a suitably small increment,
∆t, is chosen so that the chain exhibits similar behaviour to the real-
world process being modelled. Of course, in practice, when conducting
any data analysis, such verifications should always take place.

2.2 bayesian inference

This section will briefly described the paradigm of Bayesian inference.
For a more detailed introduction see, for example, Gelman et al., 2003.
Given a set of data, assumed to be a sample from some pre-specified
stochastic model, Bayesian inference seeks to infer the distribution, or
properties thereof, of the underlying random variables (or parameters)
driving the behaviour of the model. By specifying a prior distribution on
the parameters of the model, Bayes’ Theorem can be used to derive the
conditional distribution of the parameters given the set of data. The
construction of this prior distribution should be based upon sensible
considerations of the dataset likely to be seen, without reference to
any particular dataset that may have been collected; that is, the prior
should be decided upon a-priori to seeing the dataset that will be used
for analysis.
Formally, suppose there is a stochastic model P(X ∈ A|Θ = θ) with

density f(x|θ) driving the generation of some observed dataset X = x
given a set of parameters Θ = θ. Suppose, further, that the parame-
ters have a prior density f0(θ). By Bayes’ Theorem (see, for instance,
Section 7.3, Papoulis, Pillai, and Pillai, 2002), the density of Θ given
X = x; that is the posterior, is given by

g(θ|x) =
f(x|θ)f0(θ)∫

X
f(x|θ)f0(θ) dθ

, (7)

which encapsulates all the properties of the parameters Θ given the
dataset X = x. Often, in practice, and with a sensible, honest f0, the
denominator of Equation (7), which is independent of θ, is intractable
and, thus, the posterior is known only up to a constant of proportion-
ality. Deriving properties from this posterior, or, in general, densities
only known up to a constant of proportionality will be the subject of
the remainder of this thesis.

3 For a rigorous construction, see, for example, Ethier and Kurtz, 1986; Stroock and
Varadhan, 1997; Rogers and Williams, 2000a.
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2.3 monte carlo algorithms

Of primary interest in Bayesian inference problems and, therefore, this
thesis, is the expectation of π-integrable functions h;

π[h] := Eπ[h(X)] =

∫
X

h(x)π(x) dx . (8)

The d-dimensional random variable X ∼ π is encapsulated by such
expectations; indeed π itself could be reconstructed from such expecta-
tions, since, for any measurable set A,

π(A) =

∫
A

π(x) dx =

∫
X

1A(x)π(x) dx = π[1A] . (9)

Loosely speaking, for moderately large d, d ≥ 5 say, deterministic,
grid-based methods for numerically approximating (8) have drawbacks
which are undesirable for conducting Bayesian inference in many real-
world applications. Firstly, the approximation error for a fixed compu-
tational cost for naive grid-based methods (see, for instance, Chapters
7 and 10 of Süli and Mayers, 2003, Sobolev and Vaskevich, 2013, or
Hinrichs et al., 2014) typically scales exponentially poorly with dimen-
sion, and, secondly, adaptive grid-based approaches (see, for example,
Dooren and Ridder, 1976, Berntsen, Espelid, and Genz, 1991, or Genz,
1991) rely heavily on the function h and, therefore, are computation-
ally burdensome if π[h] needs to be calculated for different functions
h. The key problem with grid-based algorithms is that they consider
the integral in (8) in the Riemann sense and, therefore, suffer from the
exponentially increasing number of terms in the approximating Rie-
mann sum. An alternative way of looking at π[h], which, for suitably
well-behaved functions h, partially 4 alleviates the curse of dimension-
ality, is as the integral of the function h with respect to the probability
measure π,

π[h] =

∫
X

h(x)π(dx) .

Therefore, the contributions to π[h] which are the most important are
those areas of the space which π has relatively large mass. This sug-
gests that an alternative approach to approximating π[h] is to consider
sets with fixed measure π, or, as shown in Section 2.3.2, for importance
sampling, with fixed measure q for a suitably chosen q. This considera-
tion leads to the idea of stochastic approximations formed by averaging,
formally Monte Carlo (MC), techniques, that attempt to sample from

4 The curse of dimensionality is not entirely avoided. Indeed, in general, the volume
of the regions of equal π measure increase as the dimension increases and, therefore,
if the function h is not sufficiently smooth, the approximation of the integral over
those regions deteriorates. It is clear, then, that the error of such an approximation
has a subtle dependence on the dimension of the space through the smoothness of
h.
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the distribution π, and, thus, concentrate on representing h accurately
in the regions where π has the most mass.
This section will introduce the core ideas of the Monte Carlo ap-

proach underpinning the algorithms of this thesis. In particular, in Sec-
tion 2.3.1, the idealized Monte Carlo estimate which uses independent
samples from π to construct a MC approximation to π[h] will be intro-
duced and its properties will be described. Further, two algorithms for
simulating independent and identically distributed samples from π[h],
namely the inverse transform and rejection sampling, will be discussed.
Section 2.3.2 will then describe importance sampling, which, similar
to rejection sampling, relies on being able to sample from a suitably
chosen proposal distribution, q. However, unlike rejection sampling, im-
portance sampling uses all the simulated proposals when constructing
the MC approximation. In Section 2.3.3, the normalised importance
sampler, which is a MC algorithm which avoids the need to be able to
calculate π exactly and only relies upon being able to calculate π up
to a constant of proportionality, will be introduced. Section 2.3.5 will
introduce Markov Chain Monte Carlo (MCMC) algorithms and the
machinery needed to analyse the properties of the resulting MCMC
estimator (given by (18)). Section 2.3.6 will apply this machinery to
propose and accept-reject MCMC algorithms, highlighting several er-
godicity results detailed in the literature. These results will then be
discussed in the context of the Importance Sampler (Section 2.3.6.1)
and the Random-Walk Sampler (Section 2.3.6.2).

2.3.1 Idealised Algorithm

For any function h : Rd → R the idealised Monte Carlo approximation
of π[h] (see, for example, Section 1.1, Liu, 2001, Section 1.1.1, Doucet
et al., 2001, or Section 1.3.1, Glasserman, 2010) relies on a sequence of
independent samples, X1:N , from π;

IIA
N (X1:N ;h) :=

1

N

N∑
i=1

h(Xi) . (10)

Such an approximation has several desirable properties which Theorem
2.3.1 collects from several sources in the literature (see, for example,
Williams, 1991; Liu, 2001; Doucet et al., 2001; Robert and Casella,
2004);

theorem 2.3.1. Let X1:∞ be a sequence of independent d-dimensional
random variables each having distribution π and let h : Rd → R be any
function such that π[|h|] <∞ (so that π[h] exists). For any N ∈ N let
IIA
N (X1:N ;h) be defined by (10). Then,

(U) The estimator is unbiased; that is, for any N ∈ N,

E[IIA
N (X1:N ;h)] = π[h] .

(SL) The estimator is strongly consistent; that is,

aslim
N→∞

IIA
N (X1:N ;h) = π[h] .
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Moreover, if σ2 := Varπ[h(X)] <∞, then the following properties also
hold;

(CR) The estimator concentrates at the rate N−1/2; that is, for any
ε > 0,

P(|IIA
N (X1:N ;h)− π[h]| > εN−1/2) ≤ σ2/ε2 .

(CLT) The estimator obeys a Central Limit Theorem with limiting vari-
ance σ2; that is,

dlim
N→∞

√
N [IIA

N (X1:N ;h)− π[h]] = N1(0, σ2) . (11)

This theorem highlights the appeal of the Monte Carlo estimator (10),
since, although the approximation is stochastic, it is unbiased (property
U), and, therefore, on average does not over-estimate or under-estimate
π[h], it converges to π[h] with probability 1 (by property SL), and,
the rate of convergence, that is, the Monte Carlo error, can, not only
be characterised probabilistically (via properties CR and CLT), but is
also independent of the dimension d (although, see the footnote on the
previous page for a discussion about the subtle fact that, in general,
Var[h(X)] will increase as the dimension increases). One way to simu-
late samples from π is to use the inverse transform (see, for example,
Theorem 2.1, Devroye, 1986, Lemma 2.1.1, Liu, 2001, and Section 2.2.1,
Glasserman, 2010), which relies on being able to simulate independent
samples from the uniform distribution on the interval (0, 1)5 and being
able to invert the cumulative distribution associated with π:

theorem 2.3.2. Let U ∼ Unif(0, 1) and suppose that π is a dis-
tribution function such that the corresponding cumulative distribution
function, F (x) = π((−∞, x]), is invertible for every x ∈ R. Then, X :=
F−1(U) ∼ π. Suppose, instead that X ∼ π. Then, F (X) ∼ Unif(0, 1).

Unfortunately, for more complicated distributions π, inverting the cu-
mulative distribution function, either exactly through an explicit form,
or approximately via an algorithm, is either too computationally inten-
sive or impossible. One alternative solution is to use rejection sampling
(see, for instance, Section 3, Chapter 2, Devroye, 1986, Section 2.2, Liu,
2001, or Section 2.2.2, Glasserman, 2010) to indirectly simulate samples
from π by simulating samples from some other, appropriately chosen
proposal density, q, and accepting them as samples from π with proba-
bility proportional to π/q. The drawback of this approach is highlighted
in Theorem 4.2, Owen, 2013, and the discussion thereafter which shows
that, on average, the computational cost of simulating N samples from
π, and, therefore, obtaining a Monte Carlo error of order N−1/2, using
this procedure is NM , where M is the bound on the ratio π/q. Hence,

5 Simulating pseudo-random independent samples from a U(0, 1) distribution is a non-
trivial task which has received a lot of attention in the literature (see, for instance,
L’Ecuyer, 1994). This thesis will assume that there exists, at hand, a sequence U1:∞
of independent samples from a U(0, 1) distribution.
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not only is it necessary to choose a proposal density, q, such that an
M exists, but, for a computationally efficient algorithm, it is also nec-
essary to choose one such that M is small, thus restricting the range
of applicability of rejection sampling.

2.3.2 Importance Sampling

Importance sampling (see, for example, Section 2.5, Liu, 2001, Section
1.3.2, Doucet et al., 2001, or Section 4.6, Glasserman, 2010) is an al-
gorithm which utilises a change of measure argument to construct a
Monte Carlo approximation to π[h] using all of the samples proposed
from some proposal distribution q, which is in constrast to the rejec-
tion sampling procedure of the previous section. By weighting proposals
from q by the Radon-Nikodym derivative, one can quantify how likely
such a proposal is from π. The identity

π(A) =

∫
A

π(x)

q(x)
q(x) dx

motivates the following importance sampling estimator of π[h],

IIS
N (X1:N ;h) :=

1

N

N∑
i=1

w(Xi)h(Xi) , (12)

where w(x) := π(x)/q(x). This estimator shares the same desirable
properties as the idealized MC estimator, (10), but under different con-
ditions. Like Theorem 2.3.1, Theorem 2.3.3 collects these properties
from several sources in the literature (see, for example, Williams, 1991;
Liu, 2001; Doucet et al., 2001; Robert and Casella, 2004);

theorem 2.3.3. Let X1:∞ be a sequence of independent d-dimensional
random variables each having distribution q, where the corresponding
density, also denoted by q, is such that supp(π) ⊆ supp(q), and let
h : Rd → R be any function such that π(|h|) <∞ (so that π[h] exists).
For any N ∈ N let IIS

N (X1:N ;h) be defined by (12). Then,

(U) The estimator is unbiased; that is, for any N ∈ N,

E[IIS
N (X1:N ;h)] = π[h] .

(SL) The estimator is strongly consistent; that is,

aslim
N→∞

IIS
N (X1:N ;h) = π[h] .

Moreover, if σ2 := Varq[w(X)h(X)] <∞, then the following properties
also hold;

(CR) The estimator concentrates at the rate N−1/2; that is, for any
ε > 0,

P(|IIS
N (X1:N ;h)− π[h]| > εN−1/2) ≤ σ2/ε2 .
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(CLT) The estimator obeys a Central Limit Theorem with limiting vari-
ance σ2; that is,

dlim
N→∞

√
N [IIS

N (X1:N ;h)− π[h]] = N1(0, σ2) . (13)

The Importance Sampling estimator depends crucially on the choice
of the proposal distribution q. Choosing a good proposal is, in general,
a non-trivial task, and is discussed throughout the literature (see, for
instance, Oh and Berger, 1992; Owen and Zhou, 2000; Richard and
Zhang, 2007). The following Theorem (see Kahn and Marshall, 1953)
gives the form of the optimal proposal density, in the sense of minimiz-
ing the variance of the resulting Importance Sampling estimator;

theorem 2.3.4. The proposal density q which minimises Varq(wq(X)h(X)),
where wq(x) := π(x)/q(x) is q(x) ∝ π(x)|h(x)|.

Typically the optimal choice can not be implemented in practice.
However, it can help guide the construction of implementable propos-
als which lead to estimators with a relatively small variance. Ideally,
the choice of q would depend on h and would be chosen such that
Varq(w(X)h(X)) < ∞. Often, however, estimators for various func-
tions h are wanted, and, in such cases, choosing different proposals for
different functions h is, in many cases, prohibitively costly, and, when
the functions h are unknown a priori, impossible by definition. In such
scenarios it is generally a good idea to choose a q with heavier tails
than p; that is, a q such that

sup
x∈X

π(x)/q(x) = M <∞ ,

for then

Varq(w(X)h(X)) = π[wqh
2]−π[h]2 ≤Mπ[h2]−π[h]2 = Varπ[h]+(M−1)π[h2] ,

which is bounded provided π[h2] <∞.

2.3.3 Normalized Importance Sampling

For many situations of interest, particularly when conducting Bayesian
inference for the posterior of some parameters, the target distribu-
tion π(x) is only known up to a constant of proportionality; that is,
π(x) = γ(x)/γ(X ), where γ(X ) is unknown. In such cases, the im-
portance weights, π(x)/q(x) = γ(X )−1γ(x)/q(x), are, themselves, only
known up to a constant of proportionality, and, the Importance Sam-
pling estimator, given by (12), is only known up to a constant of pro-
portionality;

IIS
N (X1:N ;h) :=

1

Nγ(X )

N∑
i=1

w(Xi)h(Xi) ,



2.3 monte carlo algorithms 17

where, here, w(x) := γ(x)/q(x). The normalized Importance Sampling
estimator uses the samples from the proposal to also form a MC estima-
tor to γ(X ), thereby allowing the construction of a tractable estimator
to π[h] of the form

INIS
N (X1:N ;h) :=

N∑
i=1

w̃i(X1:N )h(Xi) , (14)

where w̃i(X1:N ) is the i-th normalized weight; that is,

w̃i(X1:N ) := w(Xi)

/ N∑
j=1

w(Xj) .

Generally, this estimator is biased. However, under appropriate con-
ditions, the estimator satisfies the same consistency condition as the
Importance Sampling estimator does and converges at the same rate;
that is N−1/2 (see, for example, Geweke, 1989, or Section 9.2 in Owen,
2013). The normalised importance sampling estimator is a useful esti-
mator when conducting Bayesian inference if a good proposal distribu-
tion q can be found. A particularly useful property of the estimator
is that the samples Xi and their corresponding unnormalised weights
w(Xi) = γ(Xi)/q(Xi) can be generated in parallel.

2.3.4 Effective Sample Size

A natural question that arises is; how efficient is the normalised impor-
tance sampling estimator? Aside from theoretical interest, measures of
efficiency are useful when employing adaptive resampling schemes in
particle filters (see, for instance, Del Moral, Doucet, and Jasra, 2012,
Doucet and Johansen, 2011, or Section 2.4.1.2). The ubiquitous mea-
sure of efficiency is the effective sample size (Kong, 1992);

definition 2.3.5. Let X1:N be a sequence of independent samples
from the target π, and let IIA

N (X1:N ;h) be the idealised estimator defined
by equation (10). Moreover, let Y1:N be a sequence of samples from some
joint proposal distribution q and let IN (Y1:N , h) be any estimator of the
form

IN (Y1:N , h) :=

N∑
i=1

w̃i(Y1:N )h(Yi) ,

where the w̃1:N (Y1:N ) are normalised weights. The effective sample size
of the estimator IN is defined, for function h, as the number of inde-
pendent samples needed for the idealised estimator to have the same
variance as IN ;

ESS(IN , h) :=
Varπ[h(X)]

Varq[IN (Y1:N , h)]
. (15)



18 background material

If the estimator IN has a small bias (N is large, for example) then the
effective sample size is an intuitive measure of efficiency. Unfortunately,
the measure depends on the target, π, the proposal, q, and the function
h which makes it an infeasible measure to consider in practice. An
approximation used throughout the literature (see, for example, Kong,
Liu, and Wong, 1994, Doucet et al., 2001, and Liu, 2001) is given by

ESS(w̃1:N (Y1:N )) :=

( N∑
i=1

w̃i(Y1:N )2

)−1

. (16)

This approximation of the effective sample size only depends on the
normalised weights, thereby making it a useful measure of efficiency
to look at in practice. This thesis will use this approximation as the
measure of effiency of a weighted sequence of random variables and will,
henceforth, call this approximation the effective sample size.

2.3.5 Markov Chain Monte Carlo (MCMC) Algorithms

Markov Chain Monte Carlo (MCMC) algorithms (Smith and Roberts,
1993; Tierney, 1994; Roberts and Rosenthal, 1998a; Andrieu et al., 2003;
Roberts and Rosenthal, 2004) are a versatile set of procedures which ex-
tend the basic Monte Carlo approach by constructing a Markov Chain
with stationary distribution π, which, utilising the concept of reversibil-
ity (Definition 2.3.7), is surprisingly simple (see, for instance, Section
2, Tierney, 1994, Chapter 5, Liu, 2001, Section 2.1-2.3, Roberts and
Rosenthal, 2004, or Section 2.3.6 below). Although, for certain Markov
Chains, coupling from the past ideas (see, for example, Propp and Wil-
son, 1998; Foss and Tweedie, 1998; Fill, 1998) allow for the exact sim-
ulation of samples from the stationary distribution, such algorithms,
in general, are either not applicable or not computationally efficient.
Fortunately, provided a chain has nice properties; namely, that it is
irreducible (Definition 2.3.8) and aperiodic (Definition 2.3.9), the lim-
iting distribution of the chain exists and is the stationary distribution
of the chain (see, for instance, Theorem 1 of Section 3, Tierney, 1994,
Theorem 1, Rosenthal, 2001, Theorem 4 of Section 3, Roberts and
Rosenthal, 2004, or Corollary 2.3.12 below), thus allowing for the con-
struction of ergodic, with respect to the number of particles, averages
by simulating the chain for a long period of time6 (Theorem 17.1.7,
Meyn and Tweedie, 2009). Moreover, if the chain also satisfies a drift
condition (Definition 2.3.18) back to small sets (Definition 2.3.16), the
convergence of the chain to its limiting distribution is geometrically
quick (see, for example, Theorem 1.4, Mengersen and Tweedie, 1996,
Section 3.4, Roberts and Rosenthal, 2004, or Theorem 15.0.1, Meyn
and Tweedie, 2009), thereby ensuring that the resulting averages sat-
isfy a Central Limit Theorem (see, for instance, Corollary 2.1, Roberts
and Rosenthal, 1997, Theorem 1, Hobert et al., 2002, or Theorem 24,
Roberts and Rosenthal, 2004).

6 In fact, aperiodicity is not necessary for the construction of ergodic averages (see
the discussion follwing Theorem 2.3.13).
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The idea behind Markov Chain Monte Carlo (MCMC) algorithms is
to construct a Markov chain, Xt, with stationary distribution π in the
hope that simulating the chain from some initial state, X0 = x0, and
for a long enough time T ∈ N, ensures that XT has approximately the
same distribution as the stationary distribution. Recall that a Markov
chain, Xt, is a Markov process {Xt : t ∈ N} whose stochastic dynamics
are fully determined by the initial states x0 and the distributions of the
transitions; P(Xi+1 ∈ A|Xi = x). The chains of interest will be time
homogeneous so that, for any (i, j, x) ∈ N2 × Rd, and any measurable
A ⊆ Rd,

P(Xj+1 ∈ A|Xj = x) = P(Xi+1 ∈ A|Xi = x) ,

and, therefore, the Markov chain is completely determined by its initial
state X0 = x0 and the transition distributions, defined, for any x ∈ Rd
and any measurable A ⊆ Rd, by

P (x,A) := P(X1 ∈ A|X0 = x) . (17)

The n-step transition distributions will be denoted by Pn;

Pn(x,A) := P(Xn ∈ A|X0 = x)

=

∫
A

Pn(x,dxn) =

∫
Xn−1×A

P (x, dx1)
n−1∏
i=1

P (xi,dxi+1) .

Intuitively, a stationary distribution, π, of a Markov Chain is one
such that, if the state of the chain at some time t has distribution π,
then the state of the chain at time t + 1, and, therefore, at any time
s ≥ t, has distribution π. Formally,

definition 2.3.6 (Stationary Distribution). A distribution π is called
a stationary distribution of a Markov chain with transition distributions
P (x, ·), if, for any measurable A ⊆ Rd,

π(A) =

∫
Rd

π(dx)P (x,A) .

Once a Markov Chain with stationary distribution π has been con-
structed, estimates to expectations of the form (8) can be formed using
the generic procedure given by Algorithm 3.
Unlike the Monte Carlo estimate given by (10), the MCMC estimate

given by (18) is not unbiased. The period {0, . . . , s} is known as the
burn-in period and is chosen by the practitioner as the point at which it
appears as though the chain has reached equilibrium. Chosen wisely, the
bias in the estimate (18) should be small7. Choosing an appropriate s
is an extremely important part of implementing an MCMC algorithm
in practice, and there are numerous heuristics that can be followed

7 It is possible to construct MCMC algorithms whose resulting estimates are unbiased
(see, for example, Section 3, Agapiou, Roberts, and Vollmer, 2018, and the more
generic formulation in Jacob, O’Leary, and Atchadé, 2020).
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Algorithm 3 Generic MCMC procedure .

1: Construct a Markov chain with transition densities P (x, y) and stationary dis-
tribution π.

2: Initialise the chain at x0 and choose the number of iterations T > 0.
3: for t = 0, . . . , T − 1 do
4: Simulate a realisation xt+1 with from P (xt, ·).
5: end for
6: Choose an s ∈ {0, . . . , T − 1} and form the Monte Carlo estimate of (8) as

I(xs:T ) :=
1

(T − s)
T∑

t=s+1

h(xt) . (18)

to guide this choice (see, for example, Chapter 6, Brooks et al., 2011).
However, it will not be discussed any further in this thesis. The first step
in implementing an MCMC algorithm is to construct a Markov chain
which has stationary distribution π (known as the target of the chain).
A sufficient condition for π to be a stationary distribution of a Markov
chain is that the Markov chain is reversible with respect to π (see, for
example, Proposition 1, Roberts and Rosenthal, 2004) which means
that initialising the chain at a random sample from π and running the
chain forwards is probabilistically equivalent to ending the chain at a
random sample from π and running the Markov chain backwards.

definition 2.3.7 (Reversible Chain). Let π : Rd → R be a distribu-
tion. A Markov chain with transition distributions P (x, ·) is reversible
with respect to π if, the function Q : B(Rd) × B(Rd) → R defined, for
any measurable sets A ⊆ Rd, B ⊆ Rd, by

Q(A,B) :=

∫
A

π(dx)P (x,B)

is symmetric.

As shall be shown in Section 2.3.6, constructing Markov chains with
a specified stationary distribution using this lemma is simple. However,
generally, this does not guarantee that the behaviour of the chain when
run for a long period of time, and, in particular, the behaviour of the
estimate (18) for large T , is good. Specifically, it does not guarantee
two properties which are of particular interest when constructing esti-
mators to expectations; convergence as T tends towards infinity (i.e. a
Law of Large Numbers result), and concentration as T tends towards
infinity (i.e. a Central Limit Theorem). To determine such results it is
necessary to discuss certain properties of a Markov chain. First, note
that if the Markov chain has a limiting density π, then π is also a sta-
tionary density for the Markov Chain (see, for instance, (10.5), Meyn
and Tweedie, 2009). Moreover, if it is assumed that the chain is φ-
irreducible (Definition 2.3.8) and aperiodic (Definition 2.3.9), then; the
chain has a unique stationary density, the limiting density of the chain
exists and is unique, and, therefore, the two are equivalent (Corollary
2.3.12). Furthermore, a Law of Large Numbers result for the MCMC
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estimate (18) holds (Theorem 2.3.13). A chain is irreducible if, regard-
less of where the chain is started, the chain can reach any set of positive
measure if the chain is run for long enough;

definition 2.3.8 (Irreducible Markov Chain). Let Xt be a Markov
chain with transition distributions P (x, ·). The chain is said to be irre-
ducible if there exists a σ-finite measure8, φ, such that, for any x ∈ Rd
and any measurable set A ∈ B(Rd) with φ(A) > 0, there exists a number
of steps tx,A ∈ N such that

P tx,A(x,A) = P(Xtx,A ∈ A|X0 = x) > 0 .

A chain is aperiodic if the chain does not cycle through disjoint sets;

definition 2.3.9 (Aperiodic Markov Chain). Let Xt be a Markov
chain with transition distributions P (x,A). The chain is said to be peri-
odic if there exists an r ≥ 2 and disjoint, measurable sets X0, . . . ,Xr−1 ∈
B(Rd) such that

P (x,X(i+1) mod r) = 1

for all x ∈ Xi and any i = 0, . . . , r − 1. If no such r exists then the
chain is said to be aperiodic.

The importance of these two conditions in ensuring the chain has
a unique limiting density can be seen by considering a chain whose
state space can be decomposed into two non-empty disjoint sets A
and B. Firstly, suppose the two sets are such that if x0 ∈ A, then
P(Xt ∈ A) = 0 for all t, and, if x0 ∈ B, then P(Xt ∈ B) = 0 for all
t. This reducible Markov chain is essentially the amalgamation of two
Markov chains, one with state space A, and the other with state space
B, and the behaviour of the Markov chain will be different depending
on whether the chain starts- and therefore always remains- in set A
or set B. Secondly, suppose the two sets are such that, for any even
t, P (Xt ∈ A) = 1, and for any odd t, P(Xt ∈ B) = 1 (and, therefore,
P(Xt ∈ A) = 0). This periodic Markov chain oscillates between two sets
and, therefore, cannot have a limiting density. The chains considered in
this thesis will generally have the stronger property of being irreducible
on one-step transitions. It is a simple result, which stems from the
discussion following the definition of irreducibility on Page 32, Roberts
and Rosenthal, 2004, that this property implies both irreducibility and
aperiodicity;

lemma 2.3.10. Let Xt be a Markov chain with transition distribu-
tions P (x, ·). Suppose the chain is one-step irreducible; that is, there
exists a σ-finite measure φ, such that, for any x ∈ Rd and any measur-
able set A ∈ B(Rd) with φ(A) > 0, P (x,A) > 0. Then Xt is irreducible
and aperiodic.

8 A measure µ on (Rd,B(Rd)) is σ-finite if Rd is the countable union of sets in B(Rd)
each of which has finite measure; that is, µ(I) <∞.
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The following theorem (see, for example, Nummelin, 1984, Tierney,
1994, Meyn and Tweedie, 2009, and Theorem 4, Roberts and Rosen-
thal, 2004) and corollary (see, for instance, Corollary 1, Tierney, 1994),
which extends the almost everywhere condition to the whole space, illus-
trate that the chain being irreducible and aperiodic implies equivalence
between the stationary and limiting distribution of the chain.

theorem 2.3.11. Suppose Xt is an irreducible and aperiodic Markov
chain with stationary distribution π. Then, for any A ∈ B(Rd),

lim
t↑∞
‖P t(x, ·)− π‖ = 0 , π - a.e. . (19)

corollary 2.3.12. Suppose Xt is an irreducible and aperiodic Markov
chain with stationary distribution π and transition distributions P (x, ·).
Suppose further that, for any x ∈ Rd, P (x, ·) � π. Then, for any
A ∈ B(Rd),

lim
t↑∞
‖P t(x, ·)− π‖ = 0 , for all x ∈ Rd.

Importantly, under these ergodicity assumptions, a Strong Law of
Large Numbers result holds for the MCMC estimate (18) (see, for ex-
ample, Theorem 17.0.1, Meyn and Tweedie, 2009);

theorem 2.3.13. Suppose Xt is an irreducible and aperiodic Markov
chain with stationary density π. Then, for any fixed s ∈ N and any π-
integrable h,

aslim
T↑∞

1

(T − s)

T∑
t=s+1

h(Xt) = π[h] . (20)

As shown in Corollary 6, Roberts and Rosenthal, 2004, aperiodicity
is not needed to demonstrate Theorem 2.3.13. Intuitively, this follows
since any irreducible and periodic chain can be decomposed into sev-
eral disjoint sub-chains each of which satisfies Theorem 2.3.13, and
the MCMC estimate of the original chain can be decomposed into a
weighted sum of MCMC estimates on the sub-chains.

While such ergodicity results give an idea of when a Markov chain
converges and demonstrate that a Strong Law of Large Numbers holds,
they give no indication of how fast such convergence occurs and, in
particular, when the MCMC estimates defined by Equation 18 satisfy
a Central Limit Theorem. Two rates of convergence considered in this
thesis are uniform and geometric ergodicity. The names of these forms
of ergodicity are unfortunate since in both cases the rate of convergence
is geometric and uniform across the state space. The difference, then,
is that the constant multiplier is uniform across the state space for
uniform ergodocity and dependent on where the chain is initialised for
geometric ergodicity. The intuition is clear; a chain is uniformly ergodic
if, wherever the chain is initialised, the difference between the n-step
transition distributions and the limiting distribution can be bounded by
the same quantity (that is, uniformly), and this bound decays geomet-
rically with a rate that is independent of where the chain is initialised.
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On the other hand, a chain is geometrically ergodic if the difference
can be bounded by a quantity which depends on where the chain was
initialised, and this bound decays geometrically with a rate that is in-
dependent of where the chain is initialised.

definition 2.3.14 (Uniform Ergodicity). Let Xt be a Markov chain
with transition distributions P (x, ·) and stationary distribution π. The
Markov chain is said to be uniformly ergodic if there exists a ρ < 1 and
an M <∞ such that, for any t ∈ N and any x ∈ Rd,

‖P t(x, ·)− π‖ ≤Mρt .

definition 2.3.15 (Geometric Ergodicity). Let Xt be a Markov
chain with transition distributions P (x, ·) and stationary distribution
π. The Markov chain is said to be geometrically ergodic if there exists
a ρ < 1 and a function m : Rd → [0,∞), such that, for any t ∈ N and
any x ∈ Rd,

‖P t(x, ·)− π‖ ≤ m(x)ρt .

For statements to be made about the two forms of ergodicity, the
idea of small sets and geometric drift conditions will be introduced.
For a given Markov Chain with transition distributions P (x, ·), a set
C is termed small if all transitions from within C have a component of
size ε in common9;

definition 2.3.16. Let Xt be a Markov chain with transition dis-
tributions P (x, ·). A set C is said to be ε-small for some ε > 0 if there
exists a probability measure v, with v(C) > 0, such that, for any x ∈ C,
v satisfies the minorization condition; P (x,A) ≥ εv(A), for any mea-
surable A ⊆ Rd. The measure v is called the minorization measure.

If a Markov chain Xt has stationary distribution π, then, for any ε-
small set C and minorized probability measure v, π has a component of
size ε in common with each of the transition distributions in {P (x, ·) :
x ∈ C} since, for any measurable A ⊆ X ,

π(A) =

∫
Rd

π(dx)P (x,A) ≥ εv(A) .

Thus, intuitively, if the Markov chain starts from an x ∈ C, then the
difference between π and P (x, ·) will, at most, be of size (1 − ε). In
other words; if the chain starts from an x ∈ C then, with probability
ε, the distribution of the chain after one step will, at least from a
probabilistic viewpoint, be π. Naturally, if the whole state space, Rd,
is small, convergence of the n-step transitions to π will occur at a rate
of (1 − ε)n. This intuition is formalised in the following theorem (see,
for example, Theorem 8, Roberts and Rosenthal, 2004, Proposition 2,
Tierney, 1994, and Theorem 16.0.2, Meyn and Tweedie, 2009);

9 This definition of a small set is simpler than that typically used in the literature.
Usually, the literature defines a small set with respect to general n-step transitions
as opposed to the 1-step transition definition considered in this thesis.
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theorem 2.3.17. Let Xt be a Markov chain with stationary distri-
bution π and transition distributions P (x, ·). Suppose that the whole
state space, Rd, is ε-small. Then, for any x ∈ Rd, and any n ∈ N,

‖Pn(x, ·)− π‖ ≤ (1− ε)n .

That is, the chain is uniformly ergodic.

It is often the case for Markov chains used in practice that the whole
state space is not small; one notable exception being an independence
sampler with bounded weights (Theorem 2.3.31). As a result, uniform
ergodicity is often too strong a condition to achieve. However, for many
Markov chains used in practice, it is possible to construct, and easily
define, sets C which are small. Since transitions from within C share a
component of size ε with π, intuition suggests that the chain will con-
verge quickly enough if the chain can return back to C quickly enough.
This intuition is formalised via a drift condition:Formally, a

geometric drift
condition. definition 2.3.18. Let Xt be a Markov chain with transition dis-

tributions P (x, ·). The Markov chain is said to satisfy a drift condi-
tion if there exists a positive function f , which is finite for at least
one x ∈ Rd, and positive, finite constants, α, β and γ < 1, such that
C := {x ∈ Rd : f(x) ≤ α} is ε-small for some ε > 0, and

EP (x,·)(f(Y )) ≤ f(x) + (γ − 1)(1 + f(x)) + β1C(x) . (21)

As stated, this definition of a geometric drift is seemingly stronger
than the usual definition of a geometric drift (see, for example, Meyn
and Tweedie, 1994, Section 3.4, Roberts and Rosenthal, 2004, and Sec-
tion 15.2.2, Meyn and Tweedie, 2009):

definition 2.3.19. Let Xt be a Markov chain with transition distri-
butions P (x, ·). In the literature, the Markov chain is said to satisfy a
drift condition if there exists a function v : Rd → [1,∞), which is finite
for at least one x ∈ Rd, an ε-small set C, and positive, finite constants,
β and γ < 1, such that

EP (x,·)(v(Y )) ≤ γv(x) + β1C(x) . (22)

However, as the following lemma shows, the two are equivalent and,
therefore, can be referred to interchangeably as the drift condition:

lemma 2.3.20. Let Xt be a Markov chain with transition distribu-
tions P (x, ·). Then Xt satisfies a drift condition in the sense of Defini-
tion 2.3.18 if, and only if, Xt satisfies a drift condition in the sense of
Definition 2.3.19.

Proof. See A.2.

Moreover, the former defintion is more intuitive. The former drift
condition asserts that

sup
x∈C

EP (x,·)(f(Y )) <∞ .
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That is, on average, from within C, the chain moves to regions where f
is bounded and, therefore, does not move too far away from the small
set C. Moreover, for x /∈ C, the condition asserts that

EP (x,·)(f(Y )) ≤ f(x) + (γ − 1)(1 + f(x)) < f(x) . (23)

That is, on average, from outside of C, the chain drifts back towards
regions where f is smaller than f(x) and, therefore, back towards the
small set C. Intuitively, from (23), how quickly the chain moves back
to the small set depends on x and, so, any convergence bound will
also depend on x. The following theorem shows that an irreducible,
aperiodic Markov chain which satisfies a drift condition is geometrically
ergodic (see, for instance, Theorem 9, Roberts and Rosenthal, 2004,
Theorem 15.0.1, Meyn and Tweedie, 2009);

theorem 2.3.21. Let Xt be an irreducible, aperiodic Markov chain
with stationary distribution π, and suppose that Xt satisfies a drift con-
dition. Then Xt is geometrically ergodic.

Importantly, from a practical perspective, Corollary 2.1 of Roberts
and Rosenthal, 1997 demonstrates that, for reversible chains, geomet-
ric ergodicity implies that an MCMC estimate constructed from the
chain started from the stationary distribution satisfies a Central Limit
Theorem for functions which are square-integrable with respect to π;

theorem 2.3.22. Let Xt be an irreducible and aperiodic Markov
chain with stationary distribution π, where it is assumed that X0 ∼ π.
Moreover, assume that Xt is reversible with respect to π, and that the
chain satisfies a drift condition. Then, for any function h with π[h2] <
∞,

dlim
n→∞

1√
n

n∑
i=0

[h(Xi)− π[h]] = Y

where Y ∼ N1(0, τVarπ(h(X))) and

τ := 1 + 2
∞∑
i=1

Corr(X0, Xi)

is the integrated autocorrelation time.

This theorem shows that the limiting variance of the MCMC esti-
mate depends on the Markov chain through the integrated autocorre-
lation time, τ , in the sense that the limiting variance is smaller if τ is
smaller. As a result, chains with a smaller integrated autocorrelation
time are preferred over chains with a larger integrated autocorrelation
time. Heuristically, this could be used to compare Markov Chain Monte
Carlo algorithms through finite sample approximations of the autocor-
relations at various lags. However, see Section 2.2.2, Sherlock, Fearn-
head, and Roberts, 2010 for a discussion about the drawbacks of such
an approach.
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Although drift conditions are extremely useful for demonstrating ge-
ometric ergodicty of certain Markov chains and, therefore, central limit
theorems of the resulting MCMC estimates, there are two practical is-
sues in using the drift condition to investigate geometric ergodicity in
some settings. Firstly, drift conditions do not directly allow the com-
parison of two Markov chains; that is, it is not immediately obvious
how to use a drift condition of one chain to derive a drift condition of
another, similar chain. Secondly, due to the freedom in being able to
choose the small set C and the so-called Lyapunov function v, it is ex-
tremely difficult to show a chain does not satisfy a drift condition and,
ultimately, to demonstrate that the MCMC estimate constructed from
a chain does not satisfy a central limit theorem. Fortunately, Theorem
2.3.25 below, which is an amalgamation of several different results from
the literature, demonstrates that, for non-negative chains (see Defini-
tion 2.3.23), geometric ergodicity of a chain is equivalent to the chain
having a non-zero conductance (see Definition 2.3.24), and both are
equivalent to the MCMC estimates satisfying a central limit theorem.
Before stating the theorem, the ideas of non-negative Markov chains
and conductance will be introduced;

definition 2.3.23. A Markov chain with transition distributions
P (x, ·) and stationary distribution π is said to be non-negative if, for
any function f : X → R which is square-integrable with respect to π,

〈Pf, f〉π :=

∫
X 2

π(dx)P (x,dy)f(x)f(y) ≥ 0 .

definition 2.3.24. Let Xt be a Markov chain with stationary dis-
tribution π and transition distributions P (x, ·). The conductance of any
measurable set A ⊆ X with 0 < π(A) < 1 is the quantity

κ(A) :=
1

π(A)π(Ac)

∫
A

π(dx)P (x,Ac) ,

and the conductance of the chain is

κ := inf
A∈Ω

κ(A) , (24)

where Ω := {A ⊆ X : A is measurable}.

Intuitively, if the conductance of a set A is small, then it is more
difficult for the chain to be within A and move to outside of A than
the stationary distribution suggests. Indeed, if there exists a set A
such that 0 < π(A) < 1 and κ(A) = 0, then, the sets A and Ac

partition the space, and the chain, once within A, can never leave.
Therefore, the chain is reducible. Moreover, if there exists a sequence
of measurable sets Ai such that 0 < π(Ai) < 1 for all i ∈ N and κ(Ai)
converges to 0 as i → ∞ and, thus, the conductance of the chain is
0, then, the larger i is, the more difficult the chain finds it be within
Ai and move outside of Ai relative to the stationary probabilities of Ai
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and Aci . This intuition suggests that convergence of chains with small
conductances is slower than chains with larger conductances. In fact,
for reversible, non-negative Markov chains, a non-zero conductance is
equivalent to geometric ergodicity, which, itself, is equivalent to the
corresponding MCMC estimates satisfying a central limit theorem. The
following theorem, which combines Theorems 5, 7, and 14 of Roberts
and Rosenthal, 2008, with Theorem 2.5, Lawler and Sokal, 1988, proves
this.

theorem 2.3.25. Let Xt be a non-negative Markov chain with tran-
sition distributions P (x, ·). Suppose that Xt is reversible with respect to
π. Then, the following are equivalent;

1. The chain has a non-zero conductance; that is κ > 0 where κ is
defined by Equation (24).

2. The chain is geometrically ergodic.

3. The MCMC estimate satisfies a Central Limit Theorem for func-
tions which are square-integrable with respect to π; that is, suppose
X0 ∼ π, then, for any function h with π[h2] <∞,

dlim
n→∞

1√
n

n∑
i=0

[h(Xi)− π[h]] = Y

where Y ∼ N1(0, τVarπ(h(X))) and

τ := 1 + 2
∞∑
i=1

Corr(X0, Xi)

is the integrated autocorrelation time.

Proof. See A.3.

As in Sherlock, Fearnhead, and Roberts, 2010, this thesis will use
the expected squared jump distance (ESJD) as a measure of efficiency
of a Markov chain Monte Carlo algorithm;

definition 2.3.26. Consider a MCMC algorithm with transition
density P (x, ·) targeting a d-dimensional distribution π. Let X ∼ π
and Y |X = x ∼ P (x, ·). Then, the expected squared jump distance is
defined to be E[‖Y −X‖2].

As shown by Sherlock, Fearnhead, and Roberts, 2010, maximising
this measure is equivalent to minimizing a weighted sum of the lag-1
autocorrelations. In practice one will not be able to calculate the ex-
pected squared jump distance. One can, however, monitor the running
mean squared jump distance of a chain as a proxy for the expected
squared jump distance;

definition 2.3.27. Consider a realisation, x1, x2, . . . , xT , of a Markov
chain Xt. Define the mean squared jump distance of the realisation to
be

1

(T − 1)

T∑
s=2

‖xs − xs−1‖2 .
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Given the latter is a proxy for the former we will, throughout this
thesis, for consistency, refer to the mean squared jump distance as the
expected squared jump distance as the context in which the phrase is
used will be sufficient to determine whether we are referring to Defini-
tion 2.3.26 or Definition 2.3.27.

2.3.6 Propose and Accept-Reject MCMC Algorithms

Let π(x) = γ(x)/γ(Rd) be a density of interest. In practice, γ(Rd) is typ-
ically unknown and the aim is to construct Markov chains which target
π; that is, Markov chains which have π as the stationary distribution.
This thesis will concentrate on the ubiquitous propose and accept-reject
Markov chains which, from a state x, propose a move to a state y from
a proposal distribution q(x, ·) with density q(x, y) and accept this move
with probability α(x, y). With a sensibly chosen acceptance probability
α, that depends on π and q, such chains are reversible with respect to
π (see, for example, Lemma 2.3.28). Moreover, with a sensibly chosen
proposal, such chains are irreducible and aperiodic and, by Corollary
2.3.12, such chains converge to the stationary distribution wherever the
chain is started. This section will introduce two commonly referenced
acceptance probabilities used in the literature; namely Barker’s accep-
tance and the Metropolis-Hastings (MH) acceptance and will show that
such forms of acceptance lead to reversible chains with respect to π; see
Lemma 2.3.28. Furthermore, two common proposals will be introduced;
namely the independent and random walk proposals and the ergodic
properties of such chains will be discussed.
The propose and accept-reject Markov chains have transition distri-

butions P (x, ·) of the form

P (x,A) =

∫
A

q(x, y)α(x, y)dy + δx(A)

∫
Rd

(1− α(x, y)) dy , (25)

where q(x, y) is a proposal density, α(x, y) is an acceptance probability,
and δx denotes the Dirac measure centred on x. A natural assumption
on the proposal density, which is satisfied for many of the proposals
considered in the literature, and for the proposals considered in this
thesis, is that γ (and hence π) be absolutely continuous with respect to
the proposal and, therefore, it is always possible to move, in one step,
to any state where π is non-zero. The weight of a proposed move is the
ratio of the density of the target at the proposed state over the density
of the proposal from the current state to the proposed state; that is,
w(x, y) := γ(y)/q(x, y).
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Barker’s algorithm and the Metropolis-Hastings (MH) algorithm are
propose and accept-reject MCMC algorithms with acceptance proba-
bilities αb and αm respectively, where

αb(x, y) :=
w(x, y)

w(y, x) + w(x, y)
, (26)

αm(x, y) := 1 ∧ w(x, y)

w(y, x)
. (27)

Trivially, both acceptance probabilities, when weighted by the reverse
transition, satisfy a certain symmetry; that is, both w(y, x)αb(x, y) and
w(y, x)αm(x, y) are symmetric. Moreover, the Metropolis-Hastings ac-
ceptance probability dominates Barker’s acceptance probability, but,
only, at most, by one half;

1

2
αm(x, y) ≤ αb(x, y) ≤ αm(x, y) . (28)

Intuitively, therefore, the Metropolis-Hastings algorithm will mix more
quickly than Barker’s propose algorithm. This intuition can be made
precise via a Peskun ordering argument (see Peskun, 1973, or, for in-
stance, Tierney, 1998, and Mira, 2001). It is tempting, therefore, to
concentrate on analysing the Metropolis-Hastings algorithm. However,
Barker’s acceptance probability has a number of properties which make
it particularly useful in certain situations. Of particular importance to
this thesis is the fact that themultiple-proposal extension of Barker’s ac-
ceptance probability to acceptance weights is used throughout particle
filtering schemes (see Section 2.4.1) and, therefore, throughout particle
MCMC schemes. The symmetry property satisfied for both acceptance
probabilities is sufficient to ensure that the Markov chains correspond-
ing to Barker’s algorithm or the Metropolis-Hastings algorithm are re-
versible with respect to the target distribution π and thus have π as a
stationary distribution (see, for example, Tierney, 1994, or Proposition
2, Roberts and Rosenthal, 2004, for the Metropolis-Hastings specific
result- the result for Barker’s algorithm is a trivial extension):

lemma 2.3.28. Let Xt be a propose-and-accept-reject Markov chain
with either Barker’s, or the Metropolis-Hastings’, acceptance probability
α(x, y). Then Xt is reversible with respect to π.

To prove ergodicity, a continuity constraint, which typically holds for
proposal densities used in practice, and holds for the proposal densities
discussed in this thesis, is imposed.

assumption 2.3.29 (Continuity of the Proposal). The proposal
density q(x, y) is continuous on Rd × Rd.

This extra assumption is sufficient to demonstrate the Markov chain
is one-step irreducible with respect to the target distribution π and,
therefore, by Lemma 2.3.10, to demonstrate that the chain is irreducible
and aperiodic. Hence, by Corollary 2.3.12, under such an assumption,
the chain is ergodic; that is, the chain converges to the stationary dis-
tribution everywhere, and, by Theorem 2.3.13, the resulting MCMC
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estimates satisfy a strong law of large numbers in the form of Equa-
tion (20). The following theorem formalised the one-step irreducibility
claim— the assertion for the Metropolis-Hastings sampler can be seen,
for instance on Page 31, Roberts and Rosenthal, 2004; the proof for
Barker’s random-walk sampler is a trivial extension that follows from
Inequality (28);

theorem 2.3.30. Let Xt be either Barker’s algorithm or the Metropolis-
Hastings algorithm with a proposal density q(x, y) which satisfies As-
sumption 2.3.29. Then Xt is one-step irreducible as defined in Lemma
2.3.10.

There are two commonly used proposals in the literature that will
be discussed in this thesis; the independent proposal which leads to
the independence sampler, and the random-walk proposal which leads
to the random-walk sampler. The independence sampler proposes a
new state y from a proposal q(·) independently of the current state x.
The random-walk sampler, on the other hand, proposes a new state y
independently of the local structure of the target π but in a way such
that y is a random perturbation from x; that is, Y |X = x ∼ Nd(x, ε

2Id)
for some pre-defined ε and, therefore,

q(x, y) = (2πε2)−k/2 exp[−(y − x)T (y − x)/(2ε2)] .

Intuitively, if the structure of the target π is known reasonably well,
and an implementable proposal q can be constructed which closely
matches this structure, then the independence sampler should perform
better than the naive random-walk sampler. However, for complex tar-
gets π where, either the structure is not known well, or, no feasibly
implementable q which matches the structure of π well can be con-
structed, then the random-walk sampler should perform better. In-
deed, if the target π is continuous then choosing ever smaller values
of ε will lead to proposals which, although will not be far from the
current state, will get accepted with probability close to one for the
Metropolis-Hastings random-walk sampler, and with probability close
to one-half for Barker’s random-walk sampler. Balancing the trade-off
between making large moves when moves are accepted and having a
large, so-called, acceptance rate will be discussed in more detail in Sec-
tion 2.3.6.3. In that section optimal-scaling results for the random-walk
sampler will be highlighted.

2.3.6.1 The Independence Sampler

The independence sampler proposes a new state y independently of the
current state x; that is, q(x, y) = q(y). In situations where the structure
of the target π is known reasonably well, and an implementable pro-
posal q can be constructed which closely matches this structure, then
the independence sampler will mix well. Intuitively, if one can choose
a q which, in the tails, dominates the target π, then the weight of the
current state w(x) = π(x)/q(x) will never get so big that the chain
finds it difficult to move. Therefore, on average, the chain will never
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find itself moving to regions of the space with ever larger weights and,
thus, to regions of the space which it finds ever difficult to leave. This
intuition is formalised in Theorem 2.3.31 which demonstrates that, for
both Barker’s and the Metropolis-Hastings independence sampler, the
MCMC estimates satisfy a central limit theorem if and only if q domi-
nates π in the tails. This Theorem is essentially a collection of results
found in the literature with a minor extension to cover Barker’s inde-
pendence sampler. Indeed, for the Metropolis-Hastings independence
sampler one can see, for example, Liu, 1996, Corollary 4, Tierney, 1994,
Theorem 1, Rosenthal, 1995, Theorem 1, Rosenthal, 2002, and Roberts
and Rosenthal, 2011 for the if implication, and, for instance, Theo-
rem 2.1, Mengersen and Tweedie, 1996, and Proposition 5.1, Roberts
and Tweedie, 1996 for the result that the sampler is not geometrically
ergodic if the importance weights are unbounded. The extension to
Barker’s independence sampler follows directly from Inequality 28;

theorem 2.3.31. Let Xt be either Barker’s or the Metropolis-Hastings
independence sampler. Suppose, further that the proposal satisfies As-
sumption 2.3.29. Then, the chain is uniformly ergodic if

ν := sup
x∈Rd

w(x) <∞ . (29)

Furthermore, the rate of convergence is (1−γ(Rd)ν−1/2)n for Barker’s
independence sampler and (1−γ(Rd)ν−1)n for the Metropolis Hastings
independence sampler. Finally, the MCMC estimates corresponding to
such chains satisfy central limit theorems for all functions which are
square-integrable with respect to π if and only if ν is finite.

It is clear from this theorem when one independence sampler should
be preferred over another. Indeed, as one would expect intuitively, an
independence sampler with a smaller value of ν is preferable. Note that,
for any proposal density q, ν ≥ 1, and this bound is achieved for q ≡ π.
Hence, again, as one would expect intuitively, to maximise the rate of
convergence for the independence sampler one should choose a proposal
q which is easy to simulate samples from, and which matches π closely.
Due to the independence between the proposal and the current state,
the independence sampler can be efficiently extended to a multiple-
proposal regime where, given a current state y0, a sequence, y1:N , of N
proposals are simulated independently and identically from q. Then, a
move to yi, for any i ∈ {0, . . . , N}, happens with probability αiN (y0:N ).
The transition distribution for such a sampler is given by

P (x,A) =

N∑
k=1

∫
· · ·
∫

A×Rd×(N−1)

N∏
i=1

q(yi)αkN (x, y1:N ) dykdy−k

+ δx(A)

∫
· · ·
∫

Rd×N

N∏
i=1

q(yi)

(
1−

N∑
k=1

αkN (x, y1:N )

)
dy1:N ,

(30)
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for any x ∈ Rd and any measurable A ⊆ Rd. Such a sampler is a spe-
cific case of the more general multiple-proposal samplers introduced in
Section 4.3.2.2, Lee, 2011. One can demonstate that the ergodic proper-
ties of the multiple-proposal independence sampler mirror the ergodic
properties of the single-proposal independence sampler. However, in
the interest of space, these results will not be stated or proved as part
of this thesis.

2.3.6.2 The Random-Walk Sampler

The random-walk sampler proposes a new state, y, independently of
the local structure of the target π but in a way such that y is a random
perturbation from x; that is, Y |X = x ∼ Nd(x, ε

2Id) for some pre-
defined ε > 0 10. By definition,

q(x, y) = (2πε2)−k/2 exp[−(y − x)T (y − x)/(2ε2)] .

In situations where, either the structure of the target π is not well
known, or, no feasibly implementable q which matches the structure
of π well can be constructed, then the random-walk sampler is prefer-
able over the independence sampler. Note that, although the weight is
defined as w(x, y) = γ(y)/q(x, y), the proposal density q is symmetric;
that is q(x, y) = q(y, x) for any (x, y) ∈ X 2, and, therefore, for both
Barkers and the Metropolis-Hastings acceptance probability, it is the
ratio

w(x, y)

w(y, x)
=
γ(y)q(y, x)

γ(x)q(x, y)
=
γ(y)

γ(x)

which is ultimately of interest. Hence, it is sufficient to consider the
pseudo-weight w̃(x) := γ(x). Intuitively, if π, and therefore γ, decays
sufficiently quickly in the tails then the symmetry of the proposal about
the current state of the chain will lead to a drift towards the parts
of the space where π has most mass; that is, a drift towards small
sets. This intuition is formally stated in Theorem 2.3.34, which con-
sists of a slight extension of Theorem 3.2, Mengersen and Tweedie,
1996 to cover Barkers random-walk sampler and combines this with
Theorem 2.3.25— which, itself, is a combination of several results in
the literature; see the proof of that theorem for references— to make
statements about central limit theorems. Indeed, this theorem demon-
strates that the MCMC estimates corresponding to Barker’s or the
Metropolis-Hastings random-walk sampler satisfy a central limit theo-
rem if π decays exponentially quickly in the tails. Firstly, the following
lemma shows that random-walk chains are non-negative; the assertion
about the Metropolis-Hastings random-walk sampler is demonstrated

10 This is a naive random-walk in the sense that it takes no account of the structure
of the target. In general a random-walk can use a covariance matrix which better
reflects the covariance matrix of the target. This tailored random-walk can have
better mixing properties then the naive approach detailed in this thesis (see, for
example, Theorem 6, Roberts and Rosenthal, 2001 and Sherlock, Fearnhead, and
Roberts, 2010).
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in Lemma 3.1, Baxendale, 2005, the result for Barker’s random-walk
sampler is a trivial extension which follows from Inequality (28):

lemma 2.3.32. Let Xt be either Barker’s, or, the Metropolis-Hastings
random-walk sampler; that is a proposer-and-accept-reject Markov chain
with proposal density

q(x, y) = (2πε2)−k/2 exp[−(y − x)T (y − x)/(2ε2)] ,

for some ε > 0. Then Xt is non-negative.

Secondly, the following defines what it means for π to decay expo-
nentially quickly in the tails in one dimension;

definition 2.3.33. In one dimension, π : R → R is said to decay
exponentially quickly in the tails if there exists positive constants m1,
m2, θ1, and θ2 such that, for any (x, y) ∈ R2,

π(y)/π(x) ≤ exp[−θ2(y − x)] , if y ≥ x ≥ m2,
π(y)/π(x) ≤ exp[−θ1(x− y)] , if y ≤ x ≤ −m1.

The following theorem on the existence of central limit theorems for
the random-walk sampler in one-dimension, which combines Theorem
3.2, Mengersen and Tweedie, 1996, with Theorem 2.3.25 demonstrates
that, in one dimension, exponential decay in the tails is sufficient to
prove the existence of central limit theorems for both Barker’s and the
Metropolis-Hastings random-walk sampler;

theorem 2.3.34. Let Xt be either Barker’s, or, the Metropolis-
Hastings random-walk sampler in one dimension; that is, a propose
and accept-reject Markov chain with proposal density

q(x, y) =
1√

2πε2
exp

(
− (y − x)2

2ε2

)
,

for some ε > 0. Further, suppose that π is greater than zero for any x ∈
R. Then, the MCMC estimates corresponding to such samplers satisfy
a central limit theorem for all functions which are square-integrable
with respect to π if π decays exponentially in the tails (in the sense
of Definition 2.3.33).

Proof. See A.4.

Under suitable extensions of the exponentially decaying tails condi-
tion to higher dimensions, the conclusions of Theorem 2.3.34 can be
extended (see Theorem 2.1, Roberts and Tweedie, 1996). While Theo-
rem 2.3.34 gives sufficient conditions on the target, under which, the
random-walk sampler produces MCMC estimates which satisfy central
limit theorems, it does not give guidance with regards to choosing a
good step-size; that is, a step-size which results in a Markov chain with
a high rate of mixing. To see the importance of the step-size on the
mixing properties of the random-walk sampler consider the following
example;
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Figure 2: A sample path of the process Xt as described in Example 1 with
α = 3/10, σ = 1/100, x0 = 100, r0 = 0.0, and T = 1000.

example 1. Let Xt be a growth process driven by a mean-reverting
process Rt and a reversion rate α;

Rt+1|Rt = rt ∼ N(αrt, σ
2) ,

Xt+1 = (1 +Rt+1)Xt .

The process Rt is an autocorrelated process which reverts towards 0 pro-
vided α < 1. The process Xt grows at the rate RtXt−1. A sample path of
the process; that is, a simulated dataset, can be seen in Figure 2. Given
the values of the process Xt, the values of the process Rt are trivially
given by Xt/Xt−1 − 1. Hence, for conducting Bayesian inference on
(α, σ, r0), it is sufficient to consider the posterior given R1:T . Assuming
a joint prior density f0 for the unknown parameters, Equation (7) gives
the posterior of the parameters given R1:T = r1:T ;

g(α, σ, r0|r1:T ) ∝ f0(α, σ, r0)σ−T exp

(
− 1

2σ2

T∑
t=1

(rt−αrt−1)2

)
, (31)

where, as is conventional, the posterior is only given up to a constant
of proportionality.

In the interest of simplicity suppose r0 and σ are fixed and known.
Moreover, suppose an improper, flat, prior for α; that is f0(α) = 1 for
any α ∈ R is imposed. By Equation (31), the posterior is given by

g(α|r1:T ) ∝ exp

(
− 1

2σ2

T∑
t=1

(rt−αrt−1)2

)
∝ exp

[
− r̄

2σ2

(
α− r̄

′

r̄

)2]
,

(32)
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Figure 3: An illustration of the behaviour of the Metropolis Hastings random-walk
sampler which targets (32) where σ = 1/100, r0 = 0.0, and the realisations
from the model, r1:1000 are the same as those shown in Figure 2. The
five rows, top to bottom, correspond to jump-sizes ε = 0.001, ε = 0.01,
ε = 0.05, ε = 0.1, and ε = 4.0 respectively, and the samplers were run
for ten thousand iterations. The first column shows histograms of the
simulated samples, with a plot of the true posterior probability density
function super-imposed. The second column shows the evolution of the
chain. The third and fourth columns show the evolution of the acceptance
rate and expected squared jump distance respectively.

where

r̄ :=
T∑
t=1

r2
t−1 , r̄′ :=

T∑
t=1

rt−1rt .

Hence, the posterior for α is actually a one-dimensional normal dis-
tribution with mean r̄′/r̄ and variance σ2/r̄. Figures 3 and 4 show,
respectively, the behaviour of the Metropolis-Hastings and Barker’s
random-walk sampler for five different choices of the jump-size ε.

It can be seen from the figures that, for both samplers, when the
jump-size, ε, is very small— ε = 0.001 for the top row in both figures—
the acceptance rate is very close to the limiting acceptance rate, which
is 1 for the Metropolis-Hastings sampler, and one-half for Barker’s sam-
pler (see the penultimate column in both figures), and the expected
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Figure 4: An illustration of the behaviour of Barker’s random-walk sampler which
targets (32) where σ = 1/100, r0 = 0.0, and the realisations from the
model, r1:1000 are the same as those shown in Figure 2. The five rows, top
to bottom, correspond to jump-sizes ε = 0.001, ε = 0.01, ε = 0.05, ε = 0.1,
respectively, and the samplers were run for ten thousand iterations. The
first column shows histograms of the simulated samples, with a plot of
the true posterior probability density function super-imposed. The second
column shows the evolution of the chain. The third and fourth columns
show the evolution of the acceptance rate and expected squared jump
distance respectively.
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squared jump distance is very close to zero (the last column in both
figures). Moreover, when the jump-size is large— ε = 4.0 for the bot-
tom row in both figures- the acceptance rate is close to zero and the
expected squared jump distance is very close to zero. In both cases
the chain does not mix well (the middle column in both figures), and
the density of samples do not represent the true density particularly
well (the first column in both figures). However, when ε is chosen to
be of an appropriate size (ε ∈ {0.01, 0.05, 0.1} for the middle three
rows), the acceptance rate is neither close to zero or one, the expected
squared jump distance is relatively large, the chain mixes well, and the
density of the samples represent the true density well. Furthermore,
the expected squared jump distance converges to the limiting expected
squared jump distance fairly quickly. This suggests that the expected
squared jump distance is a useful measure to monitor when tuning the
samplers.

2.3.6.3 Optimal Scaling

Given the observations at the end of the previous section it is natural
to ask if there is an optimal choice of jump-size which maximizes the
rate of mixing, thereby obtaining samples which optimally represent
the true density. Moreover, from a practical viewpoint, it is natural to
wonder if there a way to monitor the output from an MCMC algorithm
in such a way that one can tune the jump-size. In general, such optimal
scaling results are difficult to establish and depend heavily on the target
π∗. However, by considering the simpler problem of a target made of d
independent and identically distributed components which are smooth,
it is possible to derive optimal scaling results in the limit as d → ∞
which can then be used as general guidance for practitioners. Indeed,
consider the case where the target π∗ is of the form

π∗(x1:d) =
d∏
i=1

π(xi) ,

where each π is smooth (see the assumptions of Theorem 2.3.35 for a
precise statement). Moreover, suppose that the chain starts in station-
arity; that is, X0 ∼ π∗. Then, for the Metropolis-Hastings random-walk
sampler, as d → ∞, Roberts, Gelman, and Gilks, 1997 show that it is
optimal to choose the jump-size ε to be approximately 2.38/(ψ

√
d),

where

ψ :=
√

Eπ[g′(X)2] ,

and g(x) := log π(x). Roberts, Gelman, and Gilks, 1997 also show that
such a jump-size leads to an asymptotic expected acceptance rate of
approximately 0.234:

theorem 2.3.35. Let π∗ : Rd → (0,∞) be a target of the form

π∗(x1:d) =
d∏
i=1

π(xi) ,
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where π : R→ (0,∞) is twice continuously differentiable and the func-
tion g : R→ R, defined by g(x) := log π(x), satisfies

Eπ[g′(X)8] <∞ , Eπ[(g′′(X) + g′(X)2)4] <∞ .

Furthermore, for λ > 0, let X0 ∼ π, and Xt be a Metropolis-Hastings
random-walk sampler for π∗ on Rd with jump-size εd := λd−1/2. Finally,
for any t, let Y d

t be the first component of Xt speeded up by a factor
of d; that is, Y d

t := Xbdtc. Then, the process Y d
t converges weakly to a

diffusion process Yt which satisfies

dYt =
1

2
J̄(λ)g′(Yt) dt+

√
J̄(λ) dWt , (33)

where

J̄(λ) := 2λ2Φ

(
− λψ

2

)
,

Φ denotes the cumulative distribution function of a standard normal
random variable, and

ψ :=
√

Eπ[g′(X)2] .

J̄(λ) corresponds to the speed of the diffusion process Yt and is max-
imised when λ = λ̂ = 2β̂/ψ, where β̂ is the unique solution to

2Φ(−β) = βφ(β) .

Moreover, the limit, as d tends towards infinity, of the expected accep-
tance rate

α∗(εd) := E
(

1 ∧ π(X + εdZ)

π(X)

)
,

where Z ∼ Nd(0, 1) is a d-dimensional standard normal random vari-
able, is

ᾱ(λ) := lim
d↑∞

α∗(εd) = 2Φ

(
− λψ

2

)
. (34)

This gives an optimal asymptotic expected acceptance rate of ᾱ(λ̂) =
2Φ(−β̂) which is 0.234 to three decimal places.

The strength of the assumptions underpinning Theorem 2.3.35, along
with the asymptotic nature of the result, suggest that such a result is
only of theoretical interest. However, tuning the acceptance rate of
Metropolis-Hastings random-walk samplers to 0.234 has been shown to
be practically useful. Indeed, Roberts and Rosenthal, 2001 show that
the asymptotic acceptance rate of 0.234 is approximately optimal even
in dimensions as low as five. Moreover, Roberts and Rosenthal, 2001
show that the speed of the limiting diffusion (33), J̄(λ), when consid-
ered as a function of the asymptotic expected acceptance rate, ¯α(λ),
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Figure 5: A plot of the asymptotic expected squared jump distance (up to a con-
stant of proportionality) against the asymptotic acceptance rate for the
Metropolis-Hastings random-walk sampler.

is relatively flat around the optimum, thus suggesting that only ap-
proximately tuning such samplers to 0.234 is required to achieve good
mixing. This insensitivity to the tuning of the acceptance rate can be
seen theoretically in Figure 5 and, in practice, in Figure 3. Indeed, from
Figure 5, any asymptotic acceptance rate in [0.05, 0.54] gives a speed of
the diffusion that is above 60% of the maximum. As such, it is unnec-
essary to finely tune the jump-size to achieve the optimal acceptance
rate, provided the tuned acceptance rate is on the same scale as the
optimal asymptotic acceptance rate. This insensitivity is mirrored in
Example 1, as is highlighted in Figure 3, where any acceptance rate
in the interval [0.25, 0.9] results in good mixing. Furthermore, the op-
timal asymptotic expected acceptance rate of 0.234 has been shown to
hold under several relaxations of the independent and identically dis-
tributed assumption placed on the target (see, for instance, Roberts,
1998, Breyer and Roberts, 2000, and Roberts and Rosenthal, 2001).

Proving a diffusion limit for a MCMC algorithm, such as the one de-
rived in Theorem 2.3.35, is, in general, a difficult task. An alternative
approach, taken by Sherlock and Roberts, 2009, considers maximiz-
ing the asymptotic expected squared jump distance as the measure of
efficiency. They demonstrate the following result for the Metropolis-
Hastings random-walk sampler— the extension to Barker’s random-
walk sampler is trivial;

theorem 2.3.36. Let π∗ : Rd → (0,∞) be a target of the form

π∗(x1:d) =

d∏
i=1

π(xi) ,
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where π : R → (0,∞). Furthermore, let X0 ∼ π, and Xt be either
Barker’s or the Metropolis-Hastings random-walk sampler for π∗ with
jump-size εd := λd−1/2. Suppose that the following assumptions hold;

(C) The marginal density, π, is twice continuously differentiable.

(F) The first and second derivatives of the logarithm of the marginal
density, g(x) := log π(x), satisfy the following;

Eπ[g′(X)2] <∞ , Eπ[g′′(X)] <∞ .

(L) The second derivative of the logarithm of the marginal density is
Lipschitz continuous with Lipschitz constant a; that is, the func-
tion g(x) := log(π(x)) is such that, for any x1, x2 ∈ R,

|g′′(x2)− g′′(x1)| ≤ a|x2 − x1| .

(VG) The gradient of the marginal density vanishes in the tails; that is,

lim
x↑∞

π′(x) = lim
x↓−∞

π′(x) = 0 .

Then, the expected acceptance rate,

α∗(ε) := E[α(X,X + εZ)] ,

where Z ∼ N(0, 1) and X ∼ π, is such that

lim
d↑∞

α∗(λd−1/2) = ᾱ(λ) := E[α̃(exp(−λ2ψ2/2) exp(λψW ))] ,

where W ∼ N(0, 1), ψ :=
√
Eπ[g′(X)2], and α̃ is defined by α̃(z) :=

z/(1 + z) for Barker’s random-walk sampler and by α̃(z) := 1 ∧ z for
the Metropolis-Hastings random-walk sampler. Moreover, the expected
squared jump distance,

J(ε) := E[α(X,X + εZ)‖εZ‖2] ,

where Z ∼ N(0, 1) and X ∼ π is such that

lim
d↑∞

J(λd−1/2) = J̄(λ) := λ2ᾱ(λ) .

As shown in Sherlock and Roberts, 2009, such an approach leads to
the same result as Theorem 2.3.35;

corollary 2.3.37. Let the assumptions of Theorem 2.3.36 hold
and let Xt be the Metropolis-Hastings random-walk sampler. Then,

ᾱ(λ) = 2Φ

(
− λψ

2

)
.

Moreover,

J̄(λ) = 2λ2Φ

(
− λψ

2

)
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is maximised when λ = λ̂ = 2β̂/ψ, where β̂ > 0 is the unique solution
to

2Φ(−β) = βφ(β) .

β̂ ∈ (1,
√

2); in fact, β is 1.191 to three decimal places. This gives an
optimal asymptotic expected acceptance rate of ᾱ(λ̂) = 2Φ(−β̂), which
is 0.234 to three decimal places.

Moreover, Theorem 2.3.36 allows for the optimal scaling analysis of
Barker’s acceptance probability— the proof of which is given in the
Appendix as we failed to find the result in the literature;

corollary 2.3.38. Let the assumptions of Theorem 2.3.36 hold
and let Xt be Barker’s random-walk sampler. Then,

ᾱ(λ) = E[{1 + exp(λ2ψ2/2− λψW )}−1] .

Moreover, J̄(λ) = 2λ2ᾱ(λ) is maximised when λ = 2β̂/ψ, where β̂ is
the global maximum of

β2E[{1 + exp(2β2 − 2βW )}−1]

in the positive domain. Furthermore, J̄(2β/ψ) < 16β2ψ−2Φ(−β), and
β̂ is 1.228 to three decimal places, which gives an optimal asymptotic
expected acceptance rate of 0.159 to three decimal places.

Proof. See A.5.

As was the case for the Metropolis-Hastings random-walk sampler,
the tuning of the acceptance rate for Barker’s random-walk sampler is
fairly insensitive around the optimal asymptotic acceptance rate. This
can be seen theoretically in Figure 6 and, in practice, in Figure 4. In-
deed, from Figure 6, any asymptotic acceptance rate in [0.04, 0.3] gives
an asymptotic expected squared jump distance that is above 60% of
the maximum. As such, as was the case for the Metropolis-Hastings
random-walk sampler, it is unnecessary to finely tune the jump-size
to achieve the optimal acceptance rate, provided the tuned acceptance
rate is on the same scale as the optimal asymptotic acceptance rate.
This insensitivity is again mirrored in Example 1, as is highlighted in
Figure 4, where any acceptance rate in the interval [0.2, 0.4] results
in good mixing. Note, from Figure 5, that the efficiency, in terms of
the asymptotic expected squared jump distance, tends towards zero
as the asymptotic acceptance-rate tends towards zero and one for the
Metropolis-Hastings random-walk sampler. For Barker’s random-walk
sampler, as can be seen in Figure 6, the efficiency tends towards zero
as the acceptance-rate tends towards zero and one half. This matches
the intuition that the efficiency is worse as the jump-size gets very
small or very large. The optimal asymptotic expected squared jump dis-
tance for the Metropolis-Hastings random-walk sampler is around 38%
larger than the optimal asymptotic expected squared jump distance for
Barker’s random-walk sampler. This suggests that one can expect the
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Figure 6: A plot of the asymptotic expected squared jump distance (up to a
constant of proportionality) against the asymptotic acceptance rate for
Barker’s random-walk sampler.

Metropolis-Hastings random-walk sampler to be at least around 38%
more efficient then Barker’s random-walk sampler. From a practical
viewpoint, the approach taken by Sherlock and Roberts, 2009, and its
equivalency to the limiting diffusion approach of Roberts, Gelman, and
Gilks, 1997, suggests that the expected squared jump distance can be
used as a guide when tuning the Metropolis-Hastings random-walk sam-
pler. This suggestion can be seen to work well in practice for Example
1, as can be seen in Figures 4 and 3.

2.4 the filtering problem

There are two notable filtering models for which exact inference for
the filtering distributions can be achieved. The first is when the state
space is finite, in which case the forward-backward algorithm (see, for
example, Rabiner, 1989; Charniak, 1996; Russell and Norvig, 2003)
can be employed. The second is when the prior, transition, and ob-
servation densities satisfy certain Gaussian properties, in which case
the celebrated Kalman filter shows that all of the intermediate filter-
ing densities are Gaussian with means and variances that can be up-
dated sequentially via the so-called Kalman recursions (see, for exam-
ple, West and Harrison, 1999; Russell and Norvig, 2003; Grewal and
Andrews, 2011). However, many interesting filtering models do not ex-
hibit tractable distributions, and, while certain approximations, such
as the extended Kalman filter (see, for example, Lefebvre, Bruyninckx,
and Schutter, 2004, Rapp and Nyman, 2004, or Huang, Mourikis, and
Roumeliotis, 2008) and the unscented Kalman filter (see, for instance,
Julier and Uhlmann, 1997, Wan and Van Der Merwe, 2000, or Julier
and Uhlmann, 2004), can be successfully applied to approximate the
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filtering distributions for such models, it is difficult to gauge the error
in these approximations and, therefore, difficult to say from a practical
perspective whether the conclusions from such approximations can be
trusted or not.

While Markov Chain Monte Carlo algorithms (Section 2.3.5) are an
extremely useful set of algorithms for constructing estimators to ex-
pectations of functions with respect to some static distribution of in-
terest, such as, for example, the posterior of a set of parameters, they
are computationally costly and, therefore, inherently unsuited to sit-
uations where inference is needed to be performed sequentially. As a
result, using MCMC algorithms to conduct inference for the position
of a stochastic process which is evolving in real-time is infeasible. This
filtering problem occurs frequently in many contexts, including, for ex-
ample, tracking a moving object (see, for example, Gustafsson et al.,
2002; Brasnett et al., 2005; Mihaylova et al., 2014), learning about the
evoluation of an epidemic as it spreads (see, for instance, Yang, Kar-
speck, and Shaman, 2014; Del Moral and Murray, 2015; Smith, Ionides,
and King, 2017), and inferring properties of stock movements in real-
time (see, for example, Shephard, 1994; Barndorff-Nielsen, 1997; Kim,
Shephard, and Chib, 1998). By repeatedly mutating, correcting, and
resampling a set of weighted particles in such a way as to account for
the sequential evolution of the target densities and for the observa-
tions, Sequential Monte Carlo (SMC) methods (see, for instance, Kün-
sch, 2001; Cappé, Moulines, and Ryden, 2006; Doucet and Johansen,
2011; Doucet et al., 2001; Del Moral, 2012) can sequentially build er-
godic Monte Carlo appoximations to expectations defined with respect
to the target densities via the ratio of two unbiased estimators (see,
for example, Cappé, Moulines, and Ryden, 2006; Handel, 2009; Doucet
et al., 2001; Del Moral, 2012). Moreover, under suitable conditions on
the filtering model, the mutation step, and the resampling step, these
averages satisfy a Central Limit Theorem (see, for instance, Del Moral
and Guionnet, 1999; Del Moral and Miclo, 2000; Chopin, 2004; Cappé,
Moulines, and Ryden, 2006; Del Moral, 2012).
Consider, then, a d-dimensional Markov chain, Xt, which, for any

time t ∈ N, admits a transition density, ft(xt+1|xt); that is, for any
A ∈ B(Rd),

P(Xt ∈ A|Xt−1 = xt−1) =

∫
A

ft(xt|xt−1) dxt ,

and is such that X0 ∼ f0 for some continuous prior distribution f0.
Suppose, further, that noisy, and potentially partial, observations of the
Markov chain are available in the form of a sequence of k-dimensional
(where 1 ≤ k ≤ d) random variables, Y1:∞, which, given the sequence
X1:∞, are independent, and, for any t ∈ N, admit an observation den-
sity, gt(yt|xt); that is, for any A ∈ B(Rk),

P(Yt ∈ A|Xt = xt) =

∫
A

gt(yt|xt) dyt .
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Figure 7: An illustration of the filtering problem. The solid, semi-transparent
lines represent a sample path of a Lotka-Volterra diffusion (see, for
example, Wilkinson, 2006; Boys, Wilkinson, and Kirkwood, 2008, or
Section 3.1.2), where the blue line corresponds to the number of prey
and the orange line corresponds to the number of predators. The
crosses represent noisy observations of the prey only. The filtering
problem concerns learning about Xt- the number of predators and
prey— at time t = 20, given the observations.

At any time t ≥ 1 interest lies in the posterior distribution, denoted πt,
of the Markov chain, given the observations at any time at, or prior to,
t, which, via Bayes’ theorem, is equal to

πt(xt) =

gt(yt|xt)
∫
Rd

ft(xt|xt−1)πt−1(xt−1) dxt−1∫∫
R2d

gt(yt|xt)ft(xt|xt−1)πt−1(xt−1) dxt−1dxt

. (35)

The filtering problem consists of approximating expectations of the
form

πt[h] =

∫
Rd

h(xt)πt(xt) dxt ,

sequentially through time as the observations, yt, stream in. An illus-
tration of this statistical paradigm can be seen in Figure 7.

2.4.1 The Particle Filter

The particle filter allows approximations to πt[h] to be constructed for
a variety of filtering problems and these approximations satisfy several
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desirable properties. In essence, the particle filtering approach to the
filtering problem relies on the observation that, upon rewriting (35),

πt(xt) = γt(Rdt)−1

∫
Rd(t−1)

γt(x0:t) dx0:t−1 ,

where

γt(x0:t) = f0(x0)
t∏

s=1

fs(xs|xs−1)gs(ys|xs) ,

expectations of the form πt[h] can be rewritten as

πt[h] = γt(Rdt)−1

∫
Rdt

h(xt)γt(x0:t) dx0:t . (36)

With this rewrite of the problem, the particle filter can be seen as a dy-
namic generalisation of the normalized Importance Sampling estimator
of Section 2.3.2 where particles, x1:N

t , along with their corresponding
normalized weights, w̃1:N

t (x1:N
t ), are updated sequentially through time

to account for the evolution of the target densities πt.

2.4.1.1 Sequential Importance Sampling

A naive approach to constructing an estimator of πt[h] would involve
constructing a normalized importance sampling estimator (see Equa-
tion (14) of Section 2.3.3) of πt[h]. Let qt(x0:t) be a proposal density
which may or may not depend on any number of the observations y1:∞.
For any time t ∈ N, the importance weights, wt, are equal to

γt(x0:t)

qt(x0:t)
=
gt(yt|xt)ft(xt|xt−1)qt−1(x0:t−1)

qt(x0:t)
wt−1(x0:t−1) . (37)

Using such a general proposal, however, is computationally inefficient,
since, in general, simulating a path, x0:t, and calculating the likelihood
of that path, via qt(x0:t), will become ever more costly as time increases.
A more efficient approach is to use a sequential proposal;

qt(x0:t) = p0(x0)
t∏

s=1

ps(xs|x0:s−1) ,

since, then, for any time t ∈ N, the importance weights satisfy the
following recursion;

wt(x0:t) =
gt(yt|xt)ft(xt|xt−1)

pt(xt|x0:t−1)
wt−1(x0:t−1) , (38)

Hence, the normalized importance weights and the normalized impor-
tance sampling estimator of πt[h]; namely,

N∑
i=1

w̃
(i)
t (X

(1:N)
0:t )h(X

(i)
t ) , w̃

(i)
t (X

(1:N)
0:t ) = wt(X

(i)
0:t)

/ N∑
j=1

wt(X
(j)
0:t ) ,
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(39)

can be efficiently updated through time. Provided, for any t ∈ N,
supp(γt) ⊆ supp(qt), the sequential importance sampling estimator sat-
isfies the same ergodic properties as the normalized importance sam-
pling estimator. Unfortunately, due to the product form of the recursion
in Equation (37), the variance of the normalized weights will grow very
quickly and, therefore, the estimator of the form (39) using such weights
will have a large variance. This particle degeneracy problem makes the
use of the sequential importance sampling estimator impractical for
many scenarios of interest.

2.4.1.2 Sequential Importance Resampling

Resampling the particles at each time step according to the normalised
weights, w̃(1:N)

t , can overcome the particle degeneracy phenomenon by
discarding those particles with a relatively small weight and duplicating
and propagating those particles with a relatively large weight. This
thesis defines a resampling procedure as follows:

definition 2.4.1 (Resampling Procedure). Given a set of normalised
weights, w̃(1:N), a resampling procedure consists of the following three
steps;

1. The number of offspring assigned to each particle, denoted, O(1:N),
is sampled from a probability mass function κ̄(·|w̃(1:N)) such that
O(1) + . . .+O(N) = N , and;

a) For each i ∈ {1, . . . , N},

E(O(i)) = Nw̃(i) , (40)

so that, the larger w̃(i) is, the more offspring particle i has
on average.

b) For any permutation, σ, of {1, . . . , N},

κ̄(o(1:N)|w̃(1:N)) = κ̄(o(σ(1)), . . . , o(σ(N))|w̃(σ(1)), . . . , w̃(σ(N))) ,

(41)

so that, the assignment of the offspring does not depend on
the order of the weights.

2. Based on the number of offspring assigned to each particle, the
ancestors of each particle, denoted A(1:N), are determined in such
a way that, for any i ∈ {1, . . . , N},

N∑
j=1

1{i}(A
(j)) = O(i) . (42)

3. The new particles, whose ancestors are given by A(1:N), are then
all given an equal weight.
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Therefore, broadly speaking, the resampling procedure is a mapping
from a set of particles and weights {x(1:N)

t , w̃
(1:N)
t (x

(1:N)
t )} to a new set

of particles and weights {x(A
(1:N)
t )

t , 1/N}.

remark 2. In the literature, Condition (41) is not normally imposed.
Indeed, many properties of the sequential importance resampler do not
require this condition to hold. Moreover, not all resampling schemes
satisfy such a condition; for example, the commonly discussed stratified
and systematic resampling procedures do not satisfy (41). However, any
resampling scheme can be made to satisfy (41) if the weight and position
pairs are relabelled randomly. This condition results in the exchange-
ability (see Definition 2.1.2) of the paths generated by the Sequential
Importance Resampling procedure. This is not the only way to ensure
that the sample paths are exchangeable. Indeed, in the Particle Markov
Chain Monte Carlo literature- see, for instance, Andrieu, Doucet, and
Holenstein, 2010- exchangeability of paths can be ensured by randomly
permuting the ancestor variables; see the discussion following Assump-
tions 4.2.1 of Section 4.2. However, the condition imposed here ensures
that the resampling schemes are exchangeable on their own, without any
reliance on previous steps of the sequential importance resampler and,
therefore, under such a condition, exchangeability of the paths is clearer
and easier to demonstrate.

For brevity, the first two steps in the resampling procedure of Defi-
nition 2.4.1 can be combined into one step which involves simulating
a set of ancestors, A(1:N), from a probability mass function, κ, which
satisfies the following assumptions;

assumptions 2.4.2. Given a sequence of normalised weights, w̃(1:N),
the resampling probability mass function, κ(·|w̃(1:N)), is such that;

(U) For any k ∈ {1, . . . , N},

E
[ N∑
i=1

1k(A
(i))

∣∣∣∣ w̃(1:N)

]
= Nw̃(k) .

(E) For any permutation, σ, of {1, . . . , N},

κ(a(1:N)|w̃(1:N)) = κ(a(1:N)|w̃(σ(1)), . . . , w̃(σ(N))) .

remark 3. In practice, the assignment of the ancestors is done de-
terministically; that is,

A(j) = i , if
i−1∑
k=1

O(k) < j ≤
i∑

k=1

O(k) .

As such, if (40) and (41) hold, then so do Assumptions 2.4.2.

All the resampling schemes discussed in this thesis rely on transform-
ing a sequence u1:N ∈ [0, 1]N of sample random variables. Indeed, for
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any x1:N , and any j ∈ {0, . . . , N}, define sj(x1:N ) to be the sequence
of partial sums; that is,

s0(x1:N ) := 0 , sj(x1:N ) := x1+. . .+xj for any j ∈ {1, . . . , N}. (43)

For a given permutation, σ, of {1, . . . , N}, and a sequence of normalised
weights w̃(1:N), let w̃(1:N)

σ = (w̃(σ(1)), . . . , w̃(σ(N))) be the relabelled nor-
malised weights. Finally, let

Ij(σ) := (sj−1(w̃(1:N)
σ ), sj(w̃

(1:N)
σ )] ,

Then, given a sequence u1:N ∈ [0, 1]N of sample random variables,
the number of offspring associated with each permuted particle j ∈
{1, . . . , N} is given by

ojσ(u1:N ) :=
N∑
i=1

1Ij(σ)(ui) , (44)

Given ojσ(u1:N ) for each j ∈ {1, . . . , N}, one can set o(j) := o
(σ−1(j))
σ

where σ−1 denotes the inverse of the permutation σ. As shown in Theo-
rem 2.4.3 below, three well documented resampling schemes that satisfy
Assumption (40) and, therefore, Assumption 2.4.2 when combined with
Equation (42); multinomial, stratified, and systemic resampling, arise
from (44) via different choices for u1:N . Indeed, multinomial resampling
simulates a sequence U1:N of independent and identically distributed
standard uniform random numbers; that is, each Ui ∼ U(0, 1). Strati-
fied resampling, on the other hand, simulates an independent, but not
identically distributed, sequence U1:N ∈ [0, 1]N of random numbers
by choosing, for any i ∈ {1, . . . , N}, Ui ∼ Unif((i − 1)/N, i/N). Fi-
nally, systematic resampling simulates a dependent and not identically
distributed sequence U1:N ∈ [0, 1]N of random numbers by choosing
U1 ∼ Unif(0, 1/N) and then, for any i ∈ {2, . . . , N}, deterministically
setting Ui := U1 + (i − 1)/N . Multinomial resampling satisfies (41),
whereas stratified and systematic resampling do not. Therefore, in or-
der to satisfy (41), the weights need to be shuffled prior to applying
either the stratified or systematic resampling procedure. To be precise,
Algorithms 4, 5, and 6 illustrate, respectively, the multinomial, strat-
ified, and systematic resampling procedures as defined in this thesis.
Note that the stratified and systematic resampling implementations
depend on a shuffle and an inverse shuffle. See Definition B.0.11 and
Algorithms 24 and 25 for details.

Theorem 2.4.3 shows that all three of these resampling schemes sat-
isfy Assumption (40). Moreover, bounds on the difference between the
number of offpsring and its expectation are given and shown to be
tight- as far as we are aware, a formal proof of such bounds and their
tightness is novel;

theorem 2.4.3. Let w̃(1:N) be a sequence of normalised weights and
let O(1:N) be a sequence of offspring derived by multinomial, stratified,
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Algorithm 4 Multinomial Resampling

1: Simulate u1:N independently from a Unif(0, 1) distribution.
2: Calculate the partial sums sj(w̃(1:N)) for every j = 0, . . . , N .
3: for j = 1, . . . , N do
4: Set

o(j) =

N∑
i=1

1Ij(σ)(ui) .

5: end for

Algorithm 5 Stratified Resampling

1: Shuffle the weights; (w̃
(1:N)
σ , σ) = shuffle(w̃(1:N)).

2: for i = 1, . . . , N do
3: Sample ui from a Unif((i− 1)/N, i/N) distribution.
4: end for
5: Calculate the partial sums sj(w̃(1:N)

σ ) for every j = 0, . . . , N .
6: for j = 1, . . . , N do
7: Set

o(j)
σ =

N∑
i=1

1Ij(σ)(ui) .

8: end for
9: Invert the shuffle on the offspring; o(1:N) = inverse_shuffle(o

(1:N)
σ , σ).

or systematic resampling. Then, for any j ∈ {1, . . . , N}, E(O(j)) =
Nw̃(j). Moreover, for any permutation, σ, of {1, . . . , N},

κ̄(o(1:N)|w̃(1:N)) = κ̄(o(σ(1)), . . . , o(σ(N))|w̃(σ(1)), . . . , w̃(σ(N))) . (45)

Finally, for stratified resampling, |O(j) − Nw̃(j)| < 2 for any j ∈
{1, . . . , N} and this bound is tight. On the other hand, for systematic
resampling, |O(j) −Nw̃(j)| < 1 for any j ∈ {1, . . . , N} and this bound
is tight.

Proof. See A.6.

Any of the aforementioned resampling schemes can, in terms of com-
putational efficiency and/or statistical efficiency, be immediately im-
proved by only applying them to the residual weights as described
in Algorithm 711. Theorem 2.4.4 shows that residual resampling with
any resampling scheme which satisfies (40) satisfies (40) and, therefore,
Assumption 2.4.2 when combined with Equation (42). Moreover, The-
orem 2.4.4 shows that (41) also holds and, again, derives novel bounds
on the difference between the number of offpsring and its expectation,
and shows that these bounds are tight;

theorem 2.4.4. Let w̃(1:N) be a sequence of normalised weights.
Consider assigning N particles to offspring O(1:N) via residual resam-
pling (Algorithm 7) with any resampling scheme which, given normalised

11 In the literature residual resampling refers to multinomial resampling applied to the
residuals.
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Algorithm 6 Systematic Resampling

1: Shuffle the weights; (w̃
(1:N)
σ , σ) = shuffle(w̃(1:N)).

2: Sample u1 from a Unif(0, 1/N).
3: for i = 2, . . . , N do
4: Set ui = u1 + (i− 1)/N .
5: end for
6: Calculate the partial sums sj(w̃(1:N)

σ ) for every j = 0, . . . , N .
7: for j = 1, . . . , N do
8: Set

o(j)
σ =

N∑
i=1

1Ij(σ)(ui) .

9: end for
10: Invert the shuffle on the offspring; o(1:N) = inverse_shuffle(o

(1:N)
σ , σ).

Algorithm 7 Residual Resampling

1: Initialise by setting s = 0.
2: for j = 1, . . . , N do
3: Set o(j)

b = bNw̃(j)c.
4: Set s = s+ o

(j)
b .

5: Set w(j)
r = w̃(j) − o(j)

b /N .
6: end for
7: Normalize the residual weights by setting, for each j ∈ {1, . . . , N},

w̃(j)
r = w(j)

r /(w(1)
r + . . .+ w(N)

r ) .

8: Resample N − S particles with weights w̃(1:N)
r to get offsprings o(1:N)

r .
9: Set o(j) = o

(j)
b + o

(j)
r for all j ∈ {1, . . . , N}.

residual weights, w̃(1:N)
r , assignsM residual particles to offspring O(1:N)

r

according to the mass function κ̄r(·|w̃(1:N)
r ), which is such that

1. For any j ∈ {1, . . . , N}, E(O
(j)
r ) = Mw̃

(j)
r .

2. For any permutation, σ, of {1, . . . , N},

κ̄r(o
(1:N)
r |w̃(1:N)

r ) = κ̄r(o
(σ(1))
r , . . . , o(σ(N))

r |w̃(σ(1))
r , . . . , w̃(σ(N))

r ) .

Then, for any j ∈ {1, . . . , N}, E(O(j)) = Nw̃(j). Furtheremore, defining
κ̄(·|w̃(1:N)) to be the mass function of such a scheme,

κ̄(o(1:N)|w̃(1:N)) = κ̄(o(σ(1)), . . . , o(σ(N))|w̃(σ(1)), . . . , w̃(σ(N))) ,

for any permutation, σ, of the set {1, . . . , N}. Moreover, for any re-
sampling scheme used within residual resampling, −1 < O(j)−Nw̃(j) <
N−1. For multinomial residual resampling, this bound is tight. Further-
more, for stratified residual resampling, −1 < O(j)−Nw̃(j) < 2, and this
bound is tight. Finally, for systematic resampling, |O(j) − Nw̃(j)| < 1,
and this bound is tight.

Proof. See A.7.

remark 4. The proof of Theorem 2.4.3 demonstrates that multino-
mial, stratified, and systematic resampling all satisfy the assumption in
Theorem 2.4.4 on the resampling scheme used in residual resampling.



2.4 the filtering problem 51

remark 5. Systematic residual resampling does not improve the bounds
on O(j) − Nw̃(j) that systematic resampling provides. However, it is
more efficient in terms of computational cost.

Any resampling leads to an immediate increase in the variance of
the normalized importance sampling estimator. However, resampling
also reduces the degeneracy of the particles and thereby, often, leads
to a decreased variance in the estimator for larger times t. It is this
reduction in degeneracy that makes the Sequantial Importance Resam-
pling estimator an effective estimator of πt[h]. It is natural to choose
a resampling scheme which aims to minimise the increase in variance
brought about by resampling; that is, one which aims to minimise the
resampling variance,

Var

[
1

N

N∑
i=1

Oi(w̃
(1:N)(x̃(1:N)))h(x(i))

]
. (46)

In light of Theorem 2.4.3, it is natural to conjecture that the resampling
variance for systematic resampling is no greater than the resampling
variance for stratified resampling which, itself, is no greater than the
resampling variance for multinomial resampling. Moreover, in light of
Theorem 2.4.4, it is also natural to conjecture that the resampling vari-
ance for residual resampling, which uses a given resampling scheme, is
no greater than the resampling variance of the given resampling scheme
used on its own. Douc, Cappé, and Moulines, 2005 show that stratified
resampling without shuffling has a smaller resampling variance than
multinomial resampling, and that multinomial residual resampling has
a smaller resampling variance than multinomial resampling. However,
Douc, Cappé, and Moulines, 2005 also show that it is not generally
true that systematic resampling without shuffling has a smaller resam-
pling variance than multinomial resampling— however they do suggest
that this might be true if one introduces a shuffle. As such, it is not
immediately clear which resampling scheme one should prefer over the
others. However, under certain conditions, multinomial and stratified
resampling, along with their residual extensions lead to Sequential Im-
portance Resampling Estimators which satisfy a Strong Law of Large
Numbers result and a Central Limit Theorem. Moreover, their resam-
pling variance is understood in closed form (see, for example, Del Moral
and Guionnet, 1999; Del Moral and Miclo, 2000; Chopin, 2004; Cappé,
Moulines, and Ryden, 2006; Del Moral, 2012). On the other hand, given
the dependence between the sampled offspring that is inherent with sys-
tematic and systematic residual resampling, theoretical guarantees for
these samplers is lacking. As such, this thesis will, henceforth, concen-
trate on the stratified residual resampling procedure.





3S IMULATING CONDIT IONED DIFFUS IONS

3.1 the introduction

Diffusions are a flexible class of continuous-time Markov processes whose
dynamics are completely characterized by specifying an instantaneous
change in mean (henceforth the drift) and an instantaneous variance
(henceforth the volatility). This makes them a useful class of processes
for building rich models and, as such, they are utilised in many scientific
disciplines, including, but not limited to, biology (see, for example, Go-
lightly and Wilkinson, 2011), finance (see, for instance, Aït-Sahalia and
Kimmel, 2007), and engineering (see, for example, Coffey, Kalmykov,
and Waldron, 2004). In biological applications, and, more generally, in
applications involving reaction networks, diffusions are often used as
approximate models for the evolution of the numbers of a set of species
within a reaction network. In particular, the chemical Langevin diffu-
sion is often used to approximate the chemical master equation (see, for
instance, Ethier and Kurtz, 1986; Van Kampen, 1992; Wilkinson, 2006;
Komorowski et al., 2009; Fearnhead, Giagos, and Sherlock, 2014).
A d-dimensional diffusion,Xt, (introduced in Section 2.1.4 of this the-

sis) can be defined as the solution to a stochastic differential equation
(SDE)

dXt = µ(Xt, t,Θ) dt+ σ(Xt, t,Θ) dWt , X0 = x0 , (47)

where t ∈ [0, T ], Wt is an r-dimensional Wiener process , and Θ ∈ Rm
is a vector of unknown parameters. The drift µ : Rd × [0,∞) × Rm →
Rd corresponds to the infinitesimal change in mean, and the volatility
ζ := σσ∗ : Rd × [0,∞) × Rm → Rd×d corresponds to the infinitesimal
variance in the sense that

E(Xt+∆t|Xt = x,Θ = θ) = x+ ∆tµ(x, t, θ) + o(∆t) , (48)
Var(Xt+∆t|Xt = x,Θ = θ) = ∆tζ(x, t, θ) + o(∆t) . (49)

Note that, throughout, to avoid confusion with the inter-observation
time, we use A∗ to denote the transpose of a vector or matrix A. Both
the drift and volatility depend on a vector of unknown parameters, Θ,
which has a prior density of p0(θ). These parameters (which drive the
evolution of Xt) often relate to quantities of interest, such as the birth
rate of a species, and in light of sparse, noisy, and partial observations
of the diffusion, inference for these parameters, along with paths of the
diffusion, can theoretically proceed in a Bayesian framework via the
particle MCMC methodology of Andrieu, Doucet, and Holenstein, 2010.
Such schemes rely on the construction of an unbiased approximation
to the likelihood of the observations, π, which is typically obtained

53
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through an importance-sampling and, more generally, particle-filtering
approach.
Sample paths of the diffusion are infinite-dimensional and therefore,

in practice, it is necessary to restrict attention to the construction of
finite-dimensional skeleton paths of the diffusion. Moreover, the transi-
tion density of a large class of diffusions is intractable and exact simu-
lation (see, for instance, Beskos, Papaspiliopoulos, and Roberts, 2006)
of a skeleton path is impossible for most multivariate diffusions. There-
fore, for many diffusions, it is necessary to approximate the transition
density along a fine grid of skeletal points by a Gaussian density using
an Euler-Maruyama (EM) step (see, for example, Kloeden and Platen,
1992 or Section 3.2).

As highlighted in Section 2.4.1.2 of this thesis, the efficiency of any
sequential importance resampling scheme and, therefore, of any particle
MCMC scheme depends on the variability of the importance weights.
Hence, the construction of proposal densities which are consistent with
respect to both the observations and the true diffusion is key to de-
signing computationally efficient algorithms. The forward simulation
(FS) proposal of Pedersen, 1995 (see Section 3.2.2) uses the EM ap-
proximation to simulate skeleton paths between consecutive observa-
tions. Such a proposal can suffer from poor performance, particularly
for informative observations, since it simulates paths independently of
the observations. The modified diffusion bridge (MDB) of Durham and
Gallant, 2002 (see Section 3.2.3) overcomes this deficiency by using an
EM approximation to the transition density between the current point
of the skeleton and any subsequent point, thus leading to a tractable,
Gaussian transition density between consecutive points of the skeleton
given the next observation. However, such a proposal performs poorly
if sample paths of the diffusion exhibit non-linear dynamics as is often
the case over relatively large inter-observation times. Lindström, 2012
tackles this issue by constructing a proposal which is a mixture between
the FS approach and the MDB approach (see Section 3.2.4). The down-
sides of such a proposal are that, firstly, it needs careful tuning, and,
secondly, it is not clear how the proposal behaves as the width of the
partition tends towards zero. These drawbacks also hold for the pro-
posal of Fearnhead, 2008 which comprises of a mixture between the FS
approach and an approach which simulates from the stationary distribu-
tion of the diffusion when it exists (see Section 3.2.4). Schauer, Meulen,
and Zanten, 2017 (and, also, Meulen and Schauer, 2017) take a different
approach and consider the form of the SDE satisfied by the diffusion
conditioned on the next observation; this, in general, has the same
volatility as the unconditioned diffusion and an extra term in the drift
(see, for example, Chapter IV, Section 39, Rogers and Williams, 2000b)
which guides the diffusion towards the observation. This extra term
depends on the transition density of the unconditioned diffusion and
thus, typically, needs to be approximated by the transition density of a
tractable diffusion before forward simulation of a skeleton path (via the
EM approximation) can proceed. Schauer, Meulen, and Zanten, 2017
prove that approximating the transition density of the unconditioned
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diffusion with the transition density of a diffusion driven by a linear
SDE leads to a diffusion which is absolutely continuous with respect to
the true, conditioned diffusion. Unfortunately, implementing such an
approach in a statistically efficient way can lead to a computationally
expensive algorithm as shown by (Whitaker et al., 2017).
The novel proposal introduced in Section 3.3 of this thesis can be seen

as a natural extension to the residual-bridge constructs of Whitaker et
al., 2017 who propose improving on the MDB approach by: construct-
ing a deterministic path which captures the non-linear dynamics of the
diffusion, applying the MDB approximation to the residual process de-
fined as the difference between the true diffusion and this path, and
then adding the path back on. An appropriate choice of the determinis-
tic path results in a residual whose dynamics are more linear and thus
a proposal density which is closer to the true transition density. It is
shown empirically in Whitaker et al., 2017 that, for several diffusions,
this proposal, when implemented within a Metropolis-Hastings impor-
tance sampler leads to a larger empirical acceptance probability than
a Metropolis-Hastings importance sampler which uses either the MDB
or the construct introduced by Lindström, 2012 as a proposal distri-
bution. Furthermore, this empirical acceptance probability is similar
to the empirical acceptance probability of a Metropolis-Hastings im-
portance sampler which uses the guided proposals of Schauer, Meulen,
and Zanten, 2017 as a proposal distribution but is achieved with a
considerably smaller computational cost. However, this residual-bridge
approach, while accounting for the variability in the drift, does not ac-
count for the variability in the volatility and can, therefore, perform
poorly in scenarios where the volatility varies substantially. This is of-
ten the case for larger inter-observation intervals, where the diffusion
itself moves substantially over the state space, and, for diffusions whose
volatility is time-inhomogeneous. The proposal introduced in this the-
sis generalizes the residual-bridge proposals of Whitaker et al., 2017
by applying the approximation used in the MDB to the difference be-
tween the true diffusion and a second, carefully chosen, approximate
diffusion which is coupled with the original diffusion via the same driv-
ing Brownian motion. By attempting to account for the variability in
the volatility, this new proposal can lead to greater statistical efficiency
in situations where the volatility varies considerably.
To compare different approaches to simulating conditioned diffusions,

we will, in this thesis, concentrate on three diffusions which commonly
occur in practice; the birth-death diffusion (BD, Section 3.1.1), the
Lotka-Volterra diffusion (LV, Section 3.1.2), and a diffusion correspond-
ing to a simple model of gene expression (GE, Section 3.1.3). After intro-
ducing these diffusions in the subsequent sections, we will, in Section
3.2, describe the general framework for simulating conditioned diffu-
sions along a discretised interval. Absolute continuity, and how it re-
lates to this thesis, will be briefly discussed in Section 3.2.1, after which,
the remainder of Section 3.2 will describe the approaches currently
taken in the literature. In Section 3.3 we will introduce new bridges
based on residual processes, discuss how these bridges build upon the



56 simulating conditioned diffusions

residual bridges proposed in Whitaker et al., 2017, and highlight, in
Section 3.3.1, the extra computational cost incurred when simulating
such bridges. Finally, in Section 3.3.2, we will conduct a simulation
study comparing the new residual bridge constructs with the residual
bridge constructs of Whitaker et al., 2017 (Section 3.2.5) and with the
MDB of Durham and Gallant, 2002 (Section 3.2.3). For clarity, and
to avoid duplicated results, we have avoided comparison of the new
bridges with each of the bridges introduced in this thesis. Comparisons
between the bridges introduced in this thesis can be found in the lit-
erature. Indeed, for a comparison between the MDB and the forward
simulation approach of Pedersen, 1995, see Durham and Gallant, 2002
and Fearnhead, 2008. The latter also compares these approaches with
the approach introduced in that article. Lindström, 2012 compares his
approach with the forward simulation approach, the MDB, and the
approach of Fearnhead, 2008. Finally, Whitaker et al., 2017 compare
the MDB, the Lindström bridge, and the guided proposals of Schauer,
Meulen, and Zanten, 2017 with the residual bridge constructs they in-
troduce.

3.1.1 The Birth-Death Diffusion

The Birth-Death diffusion (see, for example, Whitaker et al., 2017) is
an approximate model for the evolution of the number, Xt, of a species
which is subject to two forces; births and deaths, with rates per species
member of θ1 and θ2 respectively. Such a diffusion satisfies

dXt = (θ1 − θ2)Xt dt+
√

(θ1 + θ2)Xt dBt , X0 = x0

over the interval [0, T ].

3.1.2 The Lotka-Volterra Diffusion

The Lotka-Volterra diffusion (see, for instance, Wilkinson, 2006) is an
approximate model for the evolution of the numbers,Xt = [X

(1)
t , X

(2)
t ]∗,

of two species (prey and predators respectively) which are subject to
three forces; prey reproduce with rate θ1, predators reproduce through
eating prey with rate θ2, and predators die with rate θ3. Such a diffusion
satisfies[

dX
(1)
t

dX
(2)
t

]
=

[
θ1X

(1)
t − θ2X

(1)
t X

(2)
t

θ2X
(1)
t X

(2)
t − θ3X

(2)
t

]
dt

+

[
θ1X

(1)
t + θ2X

(1)
t X

(2)
t −θ2X

(1)
t X

(2)
t

−θ2X
(1)
t X

(2)
t θ2X

(1)
t X

(2)
t + θ3X

(2)
t

]1/2

dWt ,

where, for a matrix A, A1/2 denotes any matrix square-root, so that
(A1/2)(A1/2)∗ = A.
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3.1.3 A Diffusion for a Simple Gene Expression Model

In this subsection we introduce the diffusion which approximates a
simple model for gene expression (see, for instance, Komorowski et al.,
2009; Golightly, Henderson, and Sherlock, 2015). This diffusion approx-
imately describes the evolution of the numbers, Xt = [Rt, Pt]

T , of two
biochemical species (mRNA and protein molecules respectively) which
are subject to three forces; transcription with a time-inhomogeneous
rate kR(t), mRNA degradation with rate γR, translation with rate kP ,
and protein degradation with rate γP . As in Komorowski et al., 2009;
Golightly, Henderson, and Sherlock, 2015, we take the rate kR(t) to be
of the form

kR(t) = b0 exp(−b1(t− b2)2) + b3 ,

so that the complete vector of unknown parameters is

θ = (γR, γP , kP , b0, b1, b2, b3) .

Such a diffusion satisfies[
dRt

dPt

]
=

[
kR(t)− γRRt
kPRt − γPPt

]
dt+

[√
kR(t) + γRRt 0

0
√
kPRt + γPPt

]
dWt .

3.2 simulating conditioned diffusions

Let Xt be a d-dimensional diffusion satisfying Equation (47). Consider
the pre-defined sequence of times,

{(t0, . . . , tI) ∈ [0, T ]I+1 : 0 =: t0 < t1 < . . . < tI := T} .

We have noisy observations, (yt1 , . . . , ytI ) ∈ Rr×I , of the diffusion at
times (t1, . . . , tI) such that, for any i ∈ {1, . . . , I},

(Yti |Xti = x) ∼ N(Pix, Vi) ,

where Pi ∈ Rr×d, and Vi ∈ Rr×r is symmetric and positive-definite.
Denote the density of the i-th observation by gi(yti |xti) and between
any two consecutive times, ti and ti+1, define an equispaced partition,
P(i)

∆t, to be the set

{(ti[0], . . . , ti[Ki]) ∈ [ti, ti+1]Ki+1 : ti =: ti[0] < . . . < ti[Ki] := ti+1}

such that, for all j ∈ {0, . . . ,Ki}, ti[j] := ti+j∆t with ∆t > 0 and small.
For convenience, denote any variable ψti[j] by ψ(i)

j with ψti[0]
denoted

by ψ(i) so that, for instance, yt1[0]
= y(1) is the first observation, and

x
(I)
KI

= xT is the value of the path at the final time point. Denote the
transition density of the diffusion by

fs,tθ (x|z) := lim
ε↓0

P(Xt ∈ [x, x+ ε)|Xs = z,Θ = θ)/εd ,
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where

[x, x+ ε) := {v ∈ Rd : xi ≤ vi < xi + ε for all i ∈ {1, . . . , d}} .

Interest lies in π(θ, xP∆t
|y1:I) which is the posterior density for Θ and

the skeleton path defined at the points of P∆t := P0
∆t∪ . . .∪P

I−1
∆t . The

posterior density, π, is proportional to

π
(θ)
0 (θ)︸ ︷︷ ︸

Prior for θ

Prior for x(0)︷ ︸︸ ︷
π

(x(0))
0 (x(0))

I−1∏
i=0

(
gi+1(y(i+1)|x(i+1))︸ ︷︷ ︸
Observation density

Density of path between obs.︷ ︸︸ ︷
Ki∏
k=1

f
ti[k−1],ti[k]

θ (x
(i)
k |x

(i)
k−1)

)
.

The transition density for most diffusions is intractable and exact sim-
ulation techniques (Beskos, Papaspiliopoulos, and Roberts, 2006) are
primarily limited to diffusions which, under a suitable transformation,
have unit volatility and, therefore, are typically only applicable to one-
dimensional diffusions. Hence, for small ∆t > 0, it is usual to make
the following Euler-Maruyama (EM) approximation; f (t,t+∆t)

θ (x|z) ≈
f̂

(t,t+∆t)
θ (x|z), where we define

f̂
(t,t+∆t)
θ (x|z) := φ(x; z + ∆tµ(z, t, θ),∆tζ(z, t, θ)) ,

with φ(x;m,Ψ) denoting the density of a Gaussian random variable
whose mean and variance are m and Ψ respectively. We consider the
corresponding, approximate, posterior, π̂, which is proportional to

π
(θ)
0 (θ) π

(x(0))
0 (x(0))

I−1∏
i=0

gi+1(y(i+1)|x(i+1))

Ki∏
k=1

f̂
(tik−1

,tik )

θ (x
(i)
k |x

(i)
k−1) .

This approximation introduces a bias which decreases as ∆t decreases.
Therefore, a good proposal must be consistent with the diffusion for any
small ∆t > 0. Provided care is taken to construct a scheme which does
not mix poorly, using, for example, ideas in Golightly and Wilkinson,
2008, inference for this approximate target can proceed via the particle
marginal Metropolis-Hastings methodology of Andrieu, Doucet, and
Holenstein, 2010. Such a scheme involves iterating over different values
of θ and through the observations y(1), . . . , y(I). To simplify notation,
we henceforth drop θ, and to simplify exposition, and the subsequent
simulation study, we fix x(0) and consider only one observation at time
T . We emphasise that, from a statistical efficiency point of view, noth-
ing is lost in making these simplifications since none of the proposals
to be discussed in this thesis depend on more than the subsequent
observation, hence any difference in statistical efficiency for one obser-
vation will translate into a similar or greater (due to sequential effects)
difference in statistical efficiency over many observations. With these
simplifications the approximate target is

π̂(x1:K |y) =

g1(y|xK)

K∏
k=1

f̂ (tk−1,tk)(xk|xk−1)

∫
Rd×K

g1(y|xK)

K∏
k=1

f̂ (tk−1,tk)(xk|xk−1) dx1:K

,
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where, for ease of exposition, we have denoted any variable ψ(0)
j by ψj ,

K0 by K, t0j by tj , and y(1) by y. For inexact observations, which are
the focus of this chapter, any importance sampling-based approach re-
quires the sampling of N skeleton paths, denoted by {x(j)

1:K}Nj=1, from a
proposal, q(·|y), which is close to π̂, and the calculation of the impor-
tance weights of the form

wj = π̂(x
(j)
1:K |y)/q(x

(j)
1:K |y) . (50)

The optimal proposal, qOPT(·|y) = π̂(·|y), results in equal weights and,
therefore, zero variance. However, for most diffusions, such a proposal
cannot be implemented, thus necessitating the need to construct pro-
posals which aim to mimic the optimal proposal.

3.2.1 Absolute Continuity of Proposals

In theory, any discretized proposal, such as the ones considered in this
thesis, would have the desirable property that the proposal’s limiting
process, as ∆t ↓ 0, is absolutely continuous with respect to the true
conditioned diffusion. Therefore, decreasing ∆t will decrease the bias
in the approximate inference scheme without resulting in an ever in-
creasing variance, as measured by the variability in the weights. While
it is possible to prove this absolute continuity condition for some pro-
posals (see, for example, Delyon and Hu, 2006; Schauer, Meulen, and
Zanten, 2017, and Chapter 4, Papaspiliopoulos and Roberts, 2012), it
is beyond the scope of this thesis. Since we are already conducting ap-
proximate inference by discretizing the diffusion, the practical issue is
not so much about whether absolute continuity holds in theory, but
whether the variance of the weights is sufficiently small at the level
of discretization the practitioner feels appropriate. Therefore, for the
schemes we introduce in this thesis, we will instead demonstrate, nu-
merically, the robustness of such schemes to a decreasing ∆t. The ro-
bustness that we find strongly suggests that our proposals do, in fact,
have limiting processes which are absolutely continuous with respect
to the true conditioned diffusion.

3.2.2 Forward Simulation

The forward simulation (FS) approach of Pedersen, 1995 uses the pro-
posal

qFS(x1:K) =

K∏
k=1

f̂ (tk−1,tk)(xk|xk−1) ,

which leads to weights of the form wj = g(y|x(j)
K ); that is, the weights

are simply equal to the likelihood of the observation given the termi-
nal point of the diffusion. Such a proposal produces paths which are
consistent with the true diffusion but which can be inconsistent with
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Figure 8: Two sets of plots of fifty paths simulated using the FS approach
of Pedersen, 1995 on the Lotka-Volterra SDE introduced in Sec-
tion 3.1.2. The plots on the left are the fifty two-dimensional sim-
ulated paths with no transparency and the plots on the right are
the fifty two-dimensional paths with transparency inversely propor-
tional to their normalised weights so that the path with the largest
normalised weight has no transparency and paths with smaller nor-
malised weights are more transparent. The two-dimensional initial
condition and observation are illustrated with crosses.

the observation since xK is simulated irrespective of the value of y.
Therefore, if the noise in the observation is small, the variability of
the weights is likely to be large as only a few of the simulated end-
points, x(j)

K , will lie near the observation. This phenomena can be seen
in Figure 8 where we have simulated fifty paths from the Lotka-Volterra
SDE introduced in subsection 3.1.2 using the FS approach of Pedersen,
1995. For illustration purposes we have weighted each path under the
assumption that the noise in the observation is small1 and have plotted
the paths twice; the paths on the left have no transparency, whereas
the paths on the right have been plotted with a transparency inversely
proportional to their normalised weights, w̃j , so that the path with
the largest normalised weight has no transparency and the paths with
smaller normalised weights are more transparent. Thus, if there is large
variability in the weights, the number of partially visible paths will be
small, whereas, if there is small variability in the weights, the number
of partially visible paths will be large. It is clear from the figure that
two of the paths have the highest weight with the other paths having
almost zero weight. Moreover, as one would expect, those two paths
are precisely the paths whose endpoints lie closest to the observation.

1 In particular, for all the figures in this section, we have assumed that (Y |XK = x) ∼
N(x, 5I).
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3.2.3 The Modified Diffusion Bridge

The modified diffusion bridge (MDB) of Durham and Gallant, 2002
overcomes the drawback of the FS approach by forming a proposal
which depends on the observation y. Specifically, suppose that, at time
tk, we have simulated xk. Conditional on this point, form the approxi-
mate diffusion, XMDB

t , which satisfies, for t ∈ [tk, T ],

dXMDB
t = µ(xk, tk) dt+ σ(xk, tk) dWt , XMDB

k = xk . (51)

This approximation is equivalent to assuming that the EM approxima-
tion between the current time point and any subsequent time point is
exact and leads to the following joint distribution for the approximate
process,XMDB

t , at the next point of the partition and at the observation
time; [

XMDB
k+1

XMDB
K

] ∣∣∣∣(XMDB
k = xk) ∼ N(mMDB

k ,ΨMDB
k ) , (52)

where

mMDB
k :=

[
xk + ∆tµ(xk, tk)

xk + (T − tk)µ(xk, tk)

]
,

ΨMDB
k :=

[
∆tζ(xk, tk) ∆tζ(xk, tk)

∆tζ(xk, tk) (T − tk)ζ(xk, tk)

]
.

Consequently, the joint distribution for the approximate process at the
next point of the partition and the observation, Y , is given by[

XMDB
k+1

Y

] ∣∣∣∣(XMDB
k = xk) ∼ N(m̄MDB

k , Ψ̄MDB
k ) ,

where

m̄MDB
k :=

[
xk + ∆tµ(xk, tk)

P1xk + (T − tk)P1µ(xk, tk)

]
,

Ψ̄MDB
k :=

[
∆tζ(xk, tk) ∆tζ(xk, tk)P

∗
1

∆tP1ζ(xk, tk) (T − tk)P1ζ(xk, tk)P
∗
1 + V1

]
,

Standard manipulations for the multivariate normal distribution show
that

(XMDB
k+1 |XMDB

k = xk, Y = y) ∼ N(aMDB
k , CMDB

k ) , (53)

where

aMDB
k := xk + ∆tµ(xk, tk)

+ ∆tζ(xk, tk)P
∗
1 Γk(y − P1xk − (T − tk)P1µ(xk, tk)) ,

(54)

CMDB
k := ∆tζ(xk, tk)−∆t2ζ(xk, tk)P

∗
1 ΓkP1ζ(xk, tk) , (55)
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and

Γk := ((T − tk)P1ζ(xk, tk)P
∗
1 + V1)−1 .

The MDB proposal is therefore given by

qMDB(x1:K |y) =

K∏
k=1

φ(xk; a
MDB
k−1 , CMDB

k−1 ) ,

where φ denotes the density corresponding to a d-dimensional normal
distribution and aMDB

k−1 and CMDB
k−1 correspond to the mean (Equation

(54)) and variance matrix (Equation (55)) respectively, and, implicitly,
depend on xk−1, T , y, and tk−1. Thus, the importance weights are given
by

wj = g1(y|x(j)
K )

K∏
k=1

f̂ (tk−1,tk)(x
(j)
k |x

(j)
k−1)

φ(x
(j)
k ; aMDB

k−1 , CMDB
k−1 )

.

The approximate process, (51), is equivalent to assuming an EM ap-
proximation between the current time point and any subsequent time
point, hence paths simulated using the MDB exhibit linear dynamics.
Thus, even though paths simulated in this way are consistent with the
observation, they are inconsistent with any non-linear dynamics of the
true diffusion and, hence, can perform poorly in scenarios where the
true diffusion exhibits non-linear dynamics and particularly, therefore,
for relatively larger values of T . This behaviour, when compared to Fig-
ure 8, can be seen in Figure 9 where we have simulated fifty paths from
the Lotka-Volterra SDE introduced in Section 3.1.2 using the MDB of
Durham and Gallant, 2002. Again, for illustration purposes, paths have
been plotted twice; the paths on the left have no transparency, whereas
the paths on the right have transparency inversely proportional to their
normalised weights. It can be seen that, even though all of the paths
are consistent with the observation, none of the paths are consistent
with the dynamics of the true diffusion and hence one of the paths has
a much larger weight relative to the other paths.

3.2.4 The Fearnhead and Lindström Bridges

While paths simulated via the MDB are consistent with the observation,
they are, in general, inconsistent with the dynamics of the true diffusion
due to their linear transitions. On the other hand, paths simulated
via FS are consistent with the dynamics of the true diffusion, but are
inconsistent with the observation. This suggests that one can improve
upon both bridges by combining them in such a way that, initially, the
path’s transitions are mostly the same as the transitions of FS, with
little impact from the transitions corresponding to the MDB, but, as
the paths get closer to the observation, their transitions become more
similar to the transitions corresponding to the MDB. For geometrically
ergodic diffusions, Fearnhead, 2008, forms a proposal based on this
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Figure 9: A plot of fifty paths simulated using the MDB of Durham and Gal-
lant, 2002 on the Lotka-Volterra SDE introduced in Section 3.1.2.
As in Figure 8, the plots on the left are the fifty two-dimensional
simulated paths with no transparency and the plots on the right
are the fifty two-dimensional paths with transparency inversely pro-
portional to their normalised weights. The two-dimensional initial
condition and observation are illustrated with crosses.

intuition. Indeed, let f (t,T )(·|xt) be the distribution corresponding to
the random variable XT |Xt = xt. If the diffusion, Xt, is geometrically
ergodic, then there exists a stationary distribution, π, a constant,M >
0, and a rate of mixing, ρ > 0, such that

‖f (t,T )(·|xt)− π‖ < M exp[−ρ(T − t)] .

That is, f (t,T ) converges towards π at the rate exp[−ρ(T − t)]. Thus,
we can approximate f (t,T )(·|xt) by

(1− exp[−ρ(T − t)])π(·) + exp[−ρ(T − t)]f (t,T )(·|xt) . (56)

Suppose that, at time tk, we have simulated xk. The density corre-
sponding to the random variable Xtk+1

|(Xtk , Y ) = (xk, y) is, by Bayes’
Theorem, proportional to∫

Rd

g(y|xT )f (tk+1,T )(xT |xk+1)f (tk,tk+1)(xk+1|xk) dxT ,

which, by Equation (56), can be approximated by

(1− exp[−ρ(T − tk+1)])f (tk,tk+1)(xk+1|xk)
∫
Rd

g(y|xT )π(xT ) dxT

+ exp[−ρ(T − tk+1)]f (tk,tk+1)(xk+1|xk)
∫
Rd

g(y|xT )f (tk+1,T )(xT , xk+1) dxT .
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The density given by

f (tk,tk+1)(xk+1|xk)
∫
Rd

g(y|xT )f (tk+1,T )(xT , xk+1) dxT∫∫
R2d

f (tk,tk+1)(xk+1|xk)g(y|xT )f (tk+1,T )(xT , xk+1) dxTdxk+1

,

can be approximated by the density corresponding to the MDB, and the
density f (tk,tk+1)(xk+1|xk) can be approximated by a Euler-Maruyama
step, f̂ (tk,tk+1)(xk+1|xk). This suggests a proposal of the form

qFearn(xk+1|xk, y) = (1− exp[−α(T − tk+1)])βf̂ (tk,tk+1)(xk+1|xk)
+ exp[−α(T − tk+1)]qMDB(xk+1|xk, xT ) ,

for some α > 0 and β > 0, which leads to importance weights of the
form

wj = g1(y|x(j)
K )

K∏
k=1

f̂ (tk−1,tk)(x
(j)
k |x

(j)
k−1)

qFearn(x
(j)
k |x

(j)
k−1, y)

.

By replacing the variance of (XMDB
K |XMDB

k = xk) with a heuristically
motivated approximation to the Mean Squared Error (MSE), Lind-
ström, 2012 attempts to account for the bias in the Euler-Marayama
step. Indeed, the MSE for the Euler-Maruyama step for a small time-
step, ∆t, is given by

MSE(Xk+1|Xk = xk) = ∆tζ(xk, tk) + ∆t2D(xk, tk) + o(∆t) ,

where D(xk, tk) is an unknown matrix of size d × d (see, for example,
Kloeden and Platen, 1992). Therefore, an approximation of the MSE
from tk to T is given by

MSE(XK |Xk = xk) = (T − tk)ζ(xk, tk) + (T − tk)2D(xk, tk) .

A heuristic choice for D(xk, tk) assumes that D is a fraction of the
the variance ζ(xk, tk) over the time interval ∆t; that is D(xk, tk) =
γζ(xk, tk)/∆t for some γ > 0. For then, under this approximation,

MSE(XK |Xk = xk) = (T − tk)ζ(xk, tk)

(
1 +

(T − tk)γ
∆t

)
= (T − tk)ζ(xk, tk)(1 + γ(K − k)) .

That is, the approximate MSE is simply the variance inflated, and, this
inflation depends on the choice of γ. Here, γ = 0 means no inflation
(that is, no bias), whereas large values of γ mean high inflation (that
is, large bias), and on the the relative size of the interval (T − tk)
compared to ∆t; the larger the size, the greater the inflation (that is,
the more bias there is), whereas, the smaller the size, the smaller the
inflation (that is, the less bias there is). This makes sense intuitively.
Using this approximation in Equation (52), the Lindström bridge, given
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XLind
k = xk, has the following joint distribution for the approximate

process, XLind
t , at the next point of the partition and at the observation

time; [
XLind
k+1

XLind
K

] ∣∣∣∣(XLind
k = xk) ∼ N(mLind

k ,ΨLind
k ) ,

where

mLind
k :=

[
xk + ∆tµ(xk, tk)

xk + (T − tk)µ(xk, tk)

]
,

ΨLind
k :=

[
∆tζ(xk, tk) ∆tζ(xk, tk)

∆tζ(xk, tk) (T − tk)ζ(xk, tk)(1 + γ(K − k))

]
.

Therefore, following the same manipulations as Section 3.2.3,

(XLind
k+1 |XLind

k = xk, Y = y) ∼ N(aLind
k , CLind

k ) , (57)

where

aLind
k := xk + ∆tµ(xk, tk)

+ ∆tζ(xk, tk)P
∗
1 Γk(y − P1xk − (T − tk)P1µ(xk, tk)) ,

(58)

CLind
k := ∆tζ(xk, tk)−∆t2ζ(xk, tk)P

∗
1 ΓkP1ζ(xk, tk) , (59)

and

Γk := {P1[(T − tk)ζ(xk, tk)(1 + γ(K − k))]P ∗1 + V1}−1 .

The Lindström proposal is therefore given by

qLind(x1:K |y) =
K∏
k=1

φ(xk; a
Lind
k−1 , C

Lind
k−1 ) ,

where φ denotes the density corresponding to a d-dimensional normal
distribution and aLind

k−1 and CLind
k−1 correspond to the mean (Equation

(58)) and variance matrix (Equation (59)) respectively, and, implicitly,
depend on xk−1, T , y, and tk−1. Thus, the importance weights are given
by

wj = g1(y|x(j)
K )

K∏
k=1

f̂ (tk−1,tk)(x
(j)
k |x

(j)
k−1)

φ(x
(j)
k ; aLind

k−1 , C
Lind
k−1 )

.

If γ = 0, then we have the MDB of Durham and Gallant, 2002 (Section
3.2.3). However, taking γ ↑ ∞, gives Γk ↓ 0, and

aLind
k → xk + ∆tµ(xk, tk) ,

CLind
k → ∆tζ(xk, tk) .
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That is, we have the forward simulation approach of Pedersen, 1995
(Section 3.2.2). Therefore, like the Fearnhead bridge, the Linström
bridge is a mixture between forward simulation and the Modified Dif-
fusion Bridge.
While both the Fearnhead and Lindström bridges are appealing in-

tuitively, and have improved performance over the forward simulation
approach and the MDB, see Fearnhead, 2008, Lindström, 2012, and
Whitaker et al., 2017, they both require tuning of hyperparameters.
This tuning will be sensitive to; the diffusion for which the bridge is
being constructed, the observation, y, being conditioned upon, and any
parameters driving the diffusion. This makes them difficult to use in
practice.

3.2.5 Bridges Based on Residual Processes

Recall that, while paths simulated via the MDB are consistent with
the observation, they are, in general, inconsistent with the dynamics of
the true diffusion due to their linear transitions. Whitaker et al., 2017,
introduce residual-bridge proposals which deal with this issue, albeit
at a greater computational cost, by constructing a deterministic path,
ξt, which captures the non-linear dynamics of the true, conditioned
diffusion, and considering the residual process, Rt := Xt − ξt, which
satisfies, for t ∈ [0, T ],

dRt = (µ(Xt, t)− ξ′t)dt+ σ(Xt, t)dWt , R0 = 0 .

If ξt accurately captures the non-linear dynamics of the true, condi-
tioned diffusion, then the residual should exhibit behaviour which is
more linear, hence applying the MDB to the residual and adding back
ξt will result in a proposal which more closely resembles the optimal
proposal. Suppose, then, that, at time tk, we have simulated xk. Apply-
ing the MDB to the residual, Rt, gives the following joint distribution
for the approximate residual process, RRB

t , at the next point of the
partition and at the observation time;[

RRB
k+1

RRB
K

] ∣∣∣∣(XRB
k = xk) ∼ N(γRB

k , CRB
k ) ,

where

γRB
k :=

[
(xk − ξk) + ∆t(µ(xk, tk)− (ξk+1 − ξk)/∆t)

(xk − ξk) + (T − tk)(µ(xk, tk)− (ξk+1 − ξk)/∆t)

]

=

[
(xk − ξk+1) + ∆tµ(xk, tk)

(xk − ξk) + (T − tk)(µ(xk, tk)− (ξk+1 − ξk)/∆t)

]
,

CRB
k :=

[
∆tζ(xk, tk) ∆tζ(xk, tk)

∆tζ(xk, tk) (T − tk)ζ(xk, tk)

]
.

Here, XRB
t := RRB

t + ξt denotes the process which approximates the
true process and, as in Whitaker et al., 2017, we have approximated ξ′k
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via the chord between (tk, ξk) and (tk+1, ξk+1). Adding back ξt leads to
the following joint distribution for the approximate process, XRB

t , at
the next point of the partition and at the observation time;[

XRB
k+1

XRB
K

] ∣∣∣∣(XRB
k = xk) ∼ N

([
mRB
k+1

mRB
K

]
,ΨRB

k

)
,

where

mRB
k+1 := xk + ∆tµ(xk, tk) ,

mRB
K := xk + (ξK − ξk) + (T − tk)(µ(xk, tk)− (ξk+1 − ξk)/∆t) ,

ΨRB
k :=

[
∆tζ(xk, tk) ∆tζ(xk, tk)

∆tζ(xk, tk) (T − tk)ζ(xk, tk)

]
.

Therefore, the joint distribution for the approximate process at the next
point of the partition and the observation, Y , is given by[

XRB
k+1

Y

] ∣∣∣∣(XRB
k = xk) ∼ N

([
m̄RB
k+1

m̄RB
K

]
, Ψ̄RB

k

)
,

where

m̄RB
k+1 := xk + ∆tµ(xk, tk) ,

m̄RB
K := P1xk + P1(ξK − ξk) + (T − tk)P1(µ(xk, tk)− (ξk+1 − ξk)/∆t) ,

Ψ̄RB
k :=

[
∆tζ(xk, tk) ∆tζ(xk, tk)P

∗
1

∆tP1ζ(xk, tk) (T − tk)P1ζ(xk, tk)P
∗
1 + V1

]
.

Standard manipulations for the multivariate normal distribution show
that

(XRB
k+1|XRB

k = xk, Y = y) ∼ N(aRB
k , DRB

k ) , (60)

where

aRB
k := xk + ∆tµ(xk, tk) + ∆tζ(xk, tk)P

∗
1 ΓkEk (61)

DRB
k := ∆tζ(xk, tk)−∆t2ζ(xk, tk)P

∗
1 ΓkP1ζ(xk, tk) , (62)

and

Γk := ((T − tk)P1ζ(xk, tk)P
∗
1 + V1)−1 ,

Ek := y − P1xk − P1(ξK − ξk)
− (T − tk)P1(µ(xk, tk)− (ξk+1 − ξk)/∆t) .

The residual-bridge proposal is therefore given by

qRB(x1:K |y) =
K∏
k=1

φ(xk; a
RB
k−1, D

RB
k−1) ,
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where, as previously, φ denotes the density corresponding to a d-dimensional
normal distribution and aRB

k−1 and DRB
k−1 correspond to the mean (Equa-

tion (61)) and variance matrix (Equation (62)) respectively, and, im-
plicitly, depend on xk−1, T , y, ξk−1, ξK , and tk−1. Thus, the importance
weights are given by

wj = g1(y|x(j)
K )

K∏
k=1

f̂ (tk−1,tk)(x
(j)
k |x

(j)
k−1)

φ(x
(j)
k ; aRB

k−1, D
RB
k−1)

.

The performance of such a proposal clearly hinges on choosing a de-
terministic path ξt which has similar dynamics to the true diffusion.
One natural candidate (justified, for diffusions relating to the chemical
Langevin equation, by Theorem 2.1 in Chapter 11 of Ethier and Kurtz,
1986) for ξt is constructed by ignoring the volatility in the true diffu-
sion. That is, if we let ξt ≡ ηt be the path obtained by ignoring any
stochasticity in the evolution of the diffusion, then, from (48) we have
that ηt satisfies

ηt+∆t = ηt + ∆tµ(ηt, t) + o(∆t) ,

for any [t, t+ ∆t] ⊂ [0, T ). Therefore, ηt solves the ordinary differential
equation (ODE)

dηt
dt

= µ(ηt, t) , η0 = x0 , (63)

over [0, T ]. We denote the residual-bridge with this choice of ξt by
RBODE. This choice for ξt is independent of the observation and hence
can fail to capture the true dynamics of the conditioned diffusion, par-
ticularly when the noise in the observation, V1, is small, and the differ-
ence between the observation, y, and the endpoint of the deterministic
path, ηK , is large. Therefore, paths simulated using this proposal can be
inconsistent with the conditioned diffusion when the inter-observation
time, T , is relatively large, since, for larger T , the stochasticity in the
SDE results in dynamics which are inconsistent with ηt. As suggested
by Whitaker et al., 2017, this motivates constructing a path ξt which is
consistent with the conditioned diffusion by approximating the residual
Rt with a tractable process, R̂t, and choosing

ξt = ηt + E(R̂t|Y = y) .

One choice (justified, for diffusions relating to the chemical Langevin
equation, by Theorem 2.3 in Chapter 11 of Ethier and Kurtz, 1986)
for the tractable process, R̂t, is that given by the linear noise approx-
imation (LNA, see, for example, Komorowski et al., 2009; Fearnhead,
Giagos, and Sherlock, 2014). By Taylor expanding around ηt, defined by
(63), the LNA constructs an R̂t which satisfies a linear SDE, and, there-
fore, has Gaussian transition densities. Indeed, by taking a first-order
Taylor expansion of the drift and a zeroth-order Taylor expansion of
the square-root of the volatility, one arrives at an approximate process
R̂t which satisfies

dR̂t = J(ηt, t)R̂t dt+ σ(ηt, t) dWt , R̂0 = 0 , (64)
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over the interval [0, T ], where J(ηt, t) is the d×d Jacobian matrix whose
(i, j)-th entry is

J(ηt, t)ij :=
∂µ(x, t)i
∂xj

∣∣∣∣
x=ηt

.

Under this approximation, a tractable form for E(R̂t|Y = y) is available.
The following lemma (see, for instance, Whitaker et al., 2017) derives a
form which can be implemented in a computationally efficient manner
because the ODEs that need to be solved do not involve any matrix
inverses. Moreover, the ODEs only need to be solved once for a given
path ηt, irrespective of the simulated path xt.

lemma 3.2.1. Let R̂t be the process which satisfies (64) over the
interval [0, T ] and let Y be such that

(Y |R̂T = r) ∼ N(P (r + ηT ), V ) .

Then

E(R̂t|Y = y) = φtG
−1
t G∗TP

∗(PφTP ∗ + V )−1(y − PηT ) ,

where Gt and φt satisfy, for t ∈ [0, T ], the following ODEs;

dGt
dt

= J(ηt, t)Gt , G0 = I ,

dφt
dt

= J(ηt, t)φt + φtJ(ηt, t)
∗ + ζ(ηt, t) , φ0 = 0 .

Proof. See, for example, Whitaker et al., 2017, or A.8.

For most diffusions, Gt, and φt, will not be available analytically.
However, using the Fortran subroutine lsoda (introduced by Petzold,
1983), both can be numerically evaluated in an accurate and efficient
way at any point of the partition P0

∆t. We denote the residual-bridge
proposal with this choice of ξt by RBLNA. Fifty paths simulated from
the Lotka-Volterra SDE, introduced in Section 3.1.2, using the RBODE

and RBLNA proposals, along with the corresponding deterministic paths,
can be seen in Figures 10 and 11 respectively. As before, in both figures,
the paths have been plotted twice; the paths on the left of each figure
have no transparency, whereas the paths on the right of each figure
have transparency inversely proportional to their normalised weights.
In comparison with Figure 9, it can be seen that the paths in Figure 10
are more consistent with the true diffusion, while still being consistent
with the observation. Thus, the variability in the weights is smaller.
Morever, the paths in Figure 11 are more consistent with the condi-
tioned diffusion, since, as can be seen by comparing with the dashed
line in Figure 10, the deterministic path, ξt, better represents paths
of the conditioned diffusion. Therefore, the variability in the weights
is smaller. Although such approaches account for the non-linear dy-
namics of the diffusion, they still assume a constant volatility over the
region of interest. This leads to poor performance for diffusions whose
volatility varies greatly over this interval and, in particular, therefore,
for larger inter-observation times T , or, for diffusions whose volatility
is time-inhomogeneous.
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Figure 10: A plot of fifty paths simulated using the RBODE approach of
Whitaker et al., 2017 from the Lotka-Volterra SDE introduced
in Section 3.1.2. As with the previous figures, the plots on the
left are the fifty two-dimensional simulated paths with no trans-
parency, and the plots on the right are the fifty two-dimensional
paths with transparency inversely proportional to their normalised
weights. The two-dimensional initial condition and observation are
illustrated with crosses, and the deterministic path, ξt = ηt, is
plotted with a dashed line.

3.2.6 Bridges Based on Guided Proposals

The proposals introduced so far in this thesis, along with the novel pro-
posal that is to be introduced in the subsequent section, are all based on
approximating the unconditioned diffusion by a diffusion whose condi-
tioned counterpart is tractable. However, other approaches considered
in the literature, see, for example, Delyon and Hu, 2006, Papaspiliopou-
los and Roberts, 2012, and Schauer, Meulen, and Zanten, 2017, are
based upon directly approximating the true, conditioned diffusion. In-
deed, consider the d-dimensional diffusion, Xt, satisfying

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt .

The conditioned process X̃t := (Xt|Y = y) is also a diffusion, and
satisfies the SDE

dX̃t = [µ(X̃t, t)+ζ(X̃t, t)∇xt log πt(y|xt)|xt=X̃t ] dt+σ(X̃t, t) dWt , (65)

where ζ = σσ∗ and

πt(y|xt) :=

∫
Rd

g(y|xT )f (t,T )(xT |xt) dxT .

At any time, t, the likelihood of the observation given the current point
of the process, under the dynamics of the unconditioned diffusion; that
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Figure 11: A plot of fifty paths simulated using the RBLNA approach of
Whitaker et al., 2017 from the Lotka-Volterra SDE introduced in
Section 3.1.2. As with the previous figures, the plots on the left are
the fifty two-dimensional simulated paths with no transparency,
and the plots on the right are the fifty two-dimensional paths with
transparency inversely proportional to their normalised weights.
The two-dimensional initial condition and observation are illus-
trated with crosses, and the deterministic path, ξt = ηt+E(R̂t|Y =
y), is plotted with a dashed line.

is, πt(y|xt) is, in general, intractable. However, given a tractable ap-
proximation to this density, one can discretise (65) using, for instance,
an EM-step. Given (Y |XT = xT ) ∼ N(PxT , V ), a natural tractable
approximation to πt(y|xt), denoted π̃t(y|xt), arises from approximat-
ing the true diffusion, Xs, over the interval [0, T − t] and with initial
condition X0 = xt by a diffusion, X̃s, satisfying a linear SDE:

dX̃s = [a(s) + b(s)X̃s] ds+ σ̃(s) dWs , X̃0 = xt (66)

where a : [0,∞) → Rd, b : [0,∞) → Rd, σ̃ : [0,∞) → Rd×r, and Ws is
an r-dimensional Wiener process. Indeed, Lemma 3.2.2 which is a slight
extension of Lemma 3.2.1, shows that, when X̃s satisfies a linear SDE,
then (Y |X̃0 = xt) is normally distributed with a mean and variance
whose form is tractable:

lemma 3.2.2. Let X̃s be a d-dimensional diffusion satisfying (66)
over the interval [0, T − t], and suppose that (Y |X̃T−t = x̃T−t) ∼
N(Px̃T−t, V ) for some P ∈ Rr×d and some V ∈ Rd×d. Then

(Y |X̃0 = xt) ∼ N(PηT−t, PφT−tP ∗ + V ) .

where ηs and φs satisfy, for s ∈ [0, T − t], the following ODEs:

dηs
ds

= a(s) + b(s)ηs , η0 = xt ,

dφs
ds

= b(s)φs + φsb(s)
∗ + σ̃(s)σ̃(s)∗ , φ0 = 0 .
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Proof. See, for example, Fearnhead, Giagos, and Sherlock, 2014, or A.9.

Schauer, Meulen, and Zanten, 2017 demonstrate that the diffusion
X∗t satisfying the SDE

dX∗t = [µ(X∗t , t)+ζ(X∗t , t)∇xt log π̂t(y|xt)|xt=X∗t ] dt+σ(X∗t , t) dWt ;

that is, the SDE given by (65) with πt replaced by the approximation
π̂t, is absolutely continuous with respect to the true, conditioned dif-
fusion, X̃t. There are, of course, some natural choices for the linear
SDE, (66), used to approximate the true SDE. For instance, one could
take b(s) ≡ 0, a(s) ≡ µ(xt, t), and σ(s) ≡ σ(xt, t), which, for exact
observations; that is, P equal to the identity matrix and V equal to the
zero matrix, leads to a proposal which is very similar to the MDB of
Section 3.2.3 (see, for instance, Whitaker et al., 2017). Or, one could
take the LNA as the approximating linear diffusion (see Whitaker et
al., 2017). However, Whitaker et al., 2017 show that guided proposals
which are statistically efficient (such as those which use the LNA for
the approximating conditioned process) are generally too computation-
ally expensive for their overall efficiency (statistical effiency per unit of
time) to be competitively small.

3.3 new bridges based on residual processes

We propose an extension to the approach of Whitaker et al., 2017,
by constructing a process, Ut, which exhibits similar dynamics to the
true, conditioned diffusion, and considering the residual process, R̃t :=
Xt − Ut. We begin by constructing a deterministic path, ξt, which ex-
hibits similar dynamics to the true diffusion (for instance, the path on
which RBODE or RBLNA is based). We then use this path to construct
Ut which is coupled with the true diffusion through the same driving
Brownian motion in such a way that paths of Ut exhibit similar stochas-
tic behaviour to paths of Xt. Specifically, for an arbitrary u0, we define
Ut to be the process which satisfies

dUt = ξ′tdt+ σ(ξt, t)dBt , U0 = u0

over the interval [0, T ] and which is coupled with Xt through the same
driving Brownian motion, Bt. The residual process, R̃t, thus satisfies

dR̃t = (µ(Xt, t)− ξ′t)dt+ (σ(Xt, t)− σ(ξt, t))dBt ,

over the interval [0, T ], and with initial condition R̃0 = x0 − u0. We
proceed by making the same approximation used in the MDB: suppose
that we have simulated xk at time tk. Form an approximate process,
R̃MDB
t , which satisfies

dR̃MDB
t = (µ(xk, tk)− ξ′tk) dt+ (σ(xk, tk)− σ(ξk, tk)) dBt ,

over the interval [tk, T ], and has initial condition R̃MDB
k = xk − uk

(where, as we shall see, uk is the superfluous value of the process Ut at



3.3 new bridges based on residual processes 73

time tk). With this approximation, we have that, conditional on having
simulated xk at time tk, the process XRB

t := Ut + R̃MDB
t satisfies

dXRB
t = (ξ′t+µ(xk, tk)−ξ′tk) dt+(σ(ξt, t)+σ(xk, tk)−σ(ξk, tk)) dBt ,

over the interval [tk, T ], and has initial condition XRB
k = xk. Approxi-

mating σ by a piecewise constant function on the partition P∆t,

σ(ξu, u) =
K−1∑
k=0

σ(ξtk , tk)1[tk,tk+1)(u) ,

gives the following joint distribution for the approximate process, XRB,
at the next point of the partition and at the observation time:[

XRB
k+1

XRB
K

] ∣∣∣∣(XRB
k = xk) ∼ N

([
mRB
k+1

mRB
K

]
,ΨRB

k

)
,

where

mRB
k+1 := xk + ∆tµ(xk, tk) ,

mRB
K := xk + (ξK − ξk) + (T − tk)(µ(xk, tk)− (ξk+1 − ξk)/∆t) ,

ΨRB
k :=

[
∆tζ(xk, tk) ∆tζ(xk, tk)

∆tζ(xk, tk) ΦRB
k,K

]
,

ΦRB
k,K := ∆tζ(xk, tk) + ∆t

K−1∑
j=k+1

ϕjkϕ
∗
jk ,

and

ϕjk := σ(ξj , tj) + σ(xk, tk)− σ(ξk, tk) .

Thus, using (60), we see that

(XRB
k+1|XRB

k = xk, Y1 = y1) ∼ N(aRB
k , CRB

k ) , (67)

where

aRB
k := xk + ∆tµ(xk, tk) + ∆tζ(xk, tk)P

∗
1 ΓkDk (68)

CRB
k := ∆tζ(xk, tk)−∆t2ζ(xk, tk)P

∗
1 ΓkP1ζ(xk, tk) , (69)

and

Γk := (P1ΦRB
k,KP

∗
1 + V1)−1

Dk := y1 − P1xk − P1(ξK − ξk)
− (T − tk)P1(µ(xk, tk)− (ξk+1 − ξk)/∆t) .

This extended residual-bridge proposal is therefore given by

qRB(x1:K |y) =
K∏
k=1

φ(xk; a
RB
k−1, C

RB
k−1) ,
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where, as previously, φ denotes the density corresponding to a d-dimensional
normal distribution and aRB

k−1 and CRB
k−1 correspond to the mean (Equa-

tion (68)) and variance matrix (Equation (69)) respectively, and, im-
plicitly, depend on xk−1, T , y, ξk−1:K , and tk−1. Thus, the importance
weights are given by

wj = g1(y|x(j)
K )

K∏
k=1

f̂ (tk−1,tk)(x
(j)
k |x

(j)
k−1)

φ(x
(j)
k ; aRB

k−1, V
RB
k−1)

.

As with the residual bridge constructs of Whitaker et al., 2017, this pro-
posal attempts to take into account the variability of the drift. However,
unlike the constructs of Whitaker et al., 2017, this proposal also tries
to take into account the variability of the square-root of the volatil-
ity. Therefore, such a proposal should outperform the residual-bridge
constructs of Whitaker et al., 2017 in scenarios where the square-root
of the volatility exhibits large variation over the interval [0, T ] and,
thus, in particular, for relatively larger T , or, for volatilities which are
time-inhomogeneous. A trade-off arises since if the square-root of the
volatility varies too much then, in many cases of interest, constructing a
deterministic path, ξt, which accurately captures the true dynamics of
the diffusion will be tricky, if not impossible. To illustrate why this new
residual-bridge construct might be preferred over the residual-bridge
construct of Whitaker et al., 2017, consider constructing bridges to the
SDE

dXt = µ(t)dt+ σ(t)dBt , X0 = x0 ,

over the interval [0, T ]. It is clear that if one chooses ξt to be the solution
of the ODE

dξt
dt

= µ(t) , ξ0 = x0 ,

then, for any σ(t), this new proposal will, up to a discretisation error,
simulate exact bridges of Xt, whereas, the proposal of Whitaker et al.,
2017, will not. Moreover, the variability in the weights corresponding
to the residual-bridge proposals of Whitaker et al., 2017, will increase
the more σ(t) varies over the region of interest.

As with the residual-bridge construct of Whitaker et al., 2017, ξt can
be any deterministic path whose dynamics closely match those of the
true conditioned diffusion. We denote this new proposal, where ξt = ηt
with ηt defined by (63), by RBODE and, where ξt = ηt + E(R̂t|Y1 = y1)

with R̂t defined by (64), by RBLNA. Paths simulated using this proposal
look very similar to paths simulated using the residual bridge propos-
als of Whitaker et al., 2017, as can be seen by comparing Figures 10
and 11, with Figures 12 and 13 which show fifty paths simulated from
the Lotka-Volterra SDE introduced in Section 3.1.2 using the RBODE

and RBLNA approaches, respectively, along with the corresponding de-
terministic paths, ξt. As throughout this chapter, in both figures, the
paths have been plotted twice; the paths on the left of each figure have
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Figure 12: A plot of fifty paths simulated using the RB
ODE

approach intro-
duced in this chapter from the Lotka-Volterra SDE introduced in
Section 3.1.2. As with the previous figures the plots on the left are
the fifty two-dimensional simulated paths with no transparency and
the plots on the right are the fifty two-dimensional paths with trans-
parency inversely proportional to their normalised weights. The
two-dimensional initial condition and observation are illustrated
with crosses and the deterministic path, ξt = ηt, is plotted with a
dashed line.

no transparency, whereas the paths on the right of each figure have
transparency inversely proportional to their normalised weights. When
compared with Figure 10 the paths in Figure 12 are more consistent
with the true, conditioned diffusion. Thus, the variability in the weights
is smaller. Similarly, when compared with Figure 11 the paths in Figure
13 are more consistent with the true, conditioned diffusion. Thus, once
again, the variability in the weights is smaller.

3.3.1 Computational Considerations

Comparing the form of ΨRB
k with the form of ΨRB

k , it can be seen that
the residual-bridge proposals introduced in this chapter have a larger
computational cost compared to the corresponding residual-bridge pro-
posals of Whitaker et al., 2017. Indeed, at any iteration k ∈ {0, . . . ,K−
1}, we have K − k − 1 extra terms of the form

(σ(ξk, tk) + σ(xk, tk)− σ(ξk, tk))(σ(ξk, tk) + σ(xk, tk)− σ(ξk, tk))
∗ ,

to calculate. Given the dependence of these terms on xk, these terms
cannot be pre-computed. We point out, however, that this difference in
cost can be considerably reduced for diffusions relating to the chemical
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Figure 13: A plot of fifty paths simulated using the RB
LNA

approach intro-
duced in this chapter from the Lotka-Volterra SDE introduced in
Section 3.1.2. As with the previous figures the plots on the left are
the fifty two-dimensional simulated paths with no transparency and
the plots on the right are the fifty two-dimensional paths with trans-
parency inversely proportional to their normalised weights. The
two-dimensional initial condition and observation are illustrated
with crosses and the deterministic path, ξt = ηt + E(R̂t|Y 1 = y1),
is plotted with a dashed line.

Langevin diffusion (see, for example, Ethier and Kurtz, 1986), where
the volatility is of the form

ζ(x, t) = SΛ(x, t)2S∗ ,

where S ∈ Rd×r is a constant matrix, and Λ ∈ Rr×r is a diagonal
matrix. In this case, we can circumvent the calculation of partial sums of
symmetric matrices of size d×d involved in the calculation of ΨRB

K , and,
instead, calculate partial sums of vectors of size r by letting σ(x, t) =
SΛ(x, t), so that

ΨRB
K := ∆tζ(xk, tk) + S∆t

K−1∑
j=k+1

ϕjkϕ
∗
jkS
∗ ,

where

ϕjk := Λ(ξj , tj) + Λ(xk, tk)− Λ(ξk, tk) .

Thus, if r, the number of reactions, is significantly smaller than d2/2,
the computational cost of calculating ΨRB

k can be significantly reduced.

3.3.2 A Simulation Study

In this section we compare the performance of the residual-bridge con-
structs introduced in this thesis to the corresponding residual-bridge
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constructs of Whitaker et al., 2017, and the MDB construct of Durham
and Gallant, 2002, on three diffusions; the Birth-Death (BD) diffusion
(Section 3.1.1), the Lotka-Volterra (LV) diffusion (Section 3.1.2) and
a diffusion corresponding to a simple model of gene expression (GE,
Section 3.1.3). Due to the simplicity of the drift and volatility of the
BD diffusion, the term, ηt, defined by Equation (63), along with the
terms Gt and φt defined in Lemma 3.2.1 are analytically tractable with
ηt = x0 exp((θ1 − θ2)t), Gt = exp((θ1 − θ2)t), and

φt =
(θ1 + θ2)

(θ1 − θ2)
ηt(exp((θ1 − θ2)t)− 1) .

We use the same parameters, θ, and initial conditions, x0, as those used
in Whitaker et al., 2017, for the BD diffusion; θ = (θ1, θ2) = (0.1, 0.8),
x0 = 50, so that sample paths of the diffusion exhibit exponential decay.
We also use the same parameters, θ, and initial conditions, x0, as those
used in Whitaker et al., 2017 for the Lotka-Volterra diffusion;

θ = (θ1, θ2, θ3) = (0.5, 0.0025, 0.3) , x0 = (71, 79) ,

and we use the following parameters,

θ = (γR, γP , kP , b0, b1, b2, b3) = (0.7, 0.72, 3, 80, 0.05, 2, 50) ,

and initial condition x0 = (70, 70) for the diffusion corresponding to
the simple model of gene expression. We fix ∆t to be 0.01 for the
BD diffusion, 0.1 for the LV diffusion, and 0.01 for the GE diffusion.
We chose 10 equally-spaced values for T between; 0 and 2 for the BD
diffusion, 0 and 10 for the LV diffusion, and 0 and 4 for the GE diffusion.
To compare the performance of the proposals in challenging scenarios,
we choose P1 = I, and Σ1 = 10−12I, so that the observation, Y , is such
that

Y |XK = x ∼ N(x, 10−12I) ,

and, therefore, essentially corresponds to exact observations of the dif-
fusion2. For each value of T , we simulated 10, 000 values for Y (1)

T (where
we have emphasised the dependence on T ) using the EM approximation
to forward simulate values of the path at points of the partition. For
each collection of 10, 000 values we chose, for the BD diffusion, three
terminal points for yT , corresponding to the 2.5%, 50%, and 97.5%
quantiles. For the LV and GE diffusions, we first take the logarithm of
the 10, 000 simulated values of yT . Then we choose five terminal points
for log(yT ), corresponding to the mean, along with one-and-a-half stan-
dard deviations either side of the mean along the axes of the principal
components. Figure 14 shows a histogram of the 10, 000 simulated ob-
servations, yT , of the BD diffusion, where T = 2. The orange lines show

2 This small choice of variance in the observation is purely to generate challenging sce-
narios. In practice, if exact observations of the diffusion were available, the inference
procedure would be slightly different (see, for example, Pedersen, 1995; Durham and
Gallant, 2002) and is not considered in this thesis.



78 simulating conditioned diffusions

5 10 15 20 25 30

y

0

100

200

300

400

500

600

700

C
ou

nt
s

Figure 14: A histogram of the 10, 000 simulated observations, yT , of the BD
diffusion, where T = 2. The orange lines show the locations of the
2.5%, 50%, and 97.5% quantiles.

the locations of the 2.5%, 50%, and 97.5% quantiles. Figure 15 show
a scatter plot of the 10, 000 simulated, two-dimensional, observations,
yT of the LV diffusion, where T = 10. The orange dots show the loca-
tions of the points chosen, as described above, for the simulation study.
Similarly, Figure 16, shows a scatter plot of the 10, 000 simulated, two-
dimensional, observations, yT of the GE diffusion, where T = 4. Again,
the orange dots show the locations of the points chosen, as described
above, for the simulation study.
For each combination of (T, yT ), we ran the MDB of Durham and Gal-

lant, 2002, the residual-bridge construct of Whitaker et al., 2017, with
the two choices for ξt, RBODE and RBLNA, along with the residual-
bridge construct introduced in this thesis (Section 3.3) with the same
two choices for ξt, RB

ODE and RBLNA. For each of the five constructs,
we simulated N = 1, 000, 000 independent skeleton paths and calcu-
lated the effective sample size per second (ESS/s) from the normalised
importance weights (Section 2.3.4):

ESS/s (w̃1:N ) =
(w̃2

1 + . . .+ w̃2
N )−1

execution time in seconds
. (70)

For completeness we have included, in Appendix C, the average relative
effective sample sizes defined by

Rel. ESS (w̃1:N ) = N−1(w̃2
1 + . . .+ w̃2

N )−1 , (71)

along with the execution times for each proposal and for each combi-
nation of (T, yT ) for the BD, LV, and GE diffusions.
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Figure 15: A scatter plot of the 10, 000 simulated, two-dimensional, observa-
tions, yT of the LV diffusion, where T = 10. The orange dots show
the locations of the points chosen for the simulation study.

3.3.3 Results

To ease visualisation of comparative performance, Figures 17, 18 and
19, which illustrate the results for the BD, LV and GE diffusion respec-
tively, plot, for four pairs of proposals, the effective sample size per
second for one of the pair of proposals relative to the other for each
combination of (T, yT ) for which both proposals had an effective sam-
ple size of at least one hundred. A small effective sample size relative
to the maximum effective sample size possible (in this case one-million)
implies that, for that particular combination of (T, yT ), the proposal is
a poor approximation of the true conditioned diffusion, and, therefore,
the resulting weights are highly variable. As such, the ESS, which, as
detailed in Section 2.3.4, is really an approximation to the variance of
the idealised estimator divided by the variance of the Importance Sam-
pling estimator arising from the weights, has, as an approximation, a
large variance. Thus, including relative efficiencies of proposals where
one proposal has a small ESS is potentially misleading. This is why
we have “dropped” such relative efficiencies from the plots, and have
chosen an ESS of 100 as our threshold. The four pairs of proposals are
chosen to approximate the sequential ordering in which the chapter has
been presented. We emphasise that the larger the effective sample size
per second, the more computationally efficient the proposal is for that
particular choice of inter-observation time T and observation yT .
The figures illustrate that across all three diffusions the statistical

efficiency, in terms of the effective sample size per second, of the novel
residual-bridge proposals introduced in this thesis ranges from just over
half that of the efficiency of the equivalent residual-bridge proposals of
Whitaker et al., 2017 to several orders of magnitude more efficient. In
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Figure 16: A scatter plot of the 10, 000 simulated, two-dimensional, observa-
tions, yT of the GE diffusion, where T = 4. The orange dots show
the locations of the points chosen for the simulation study.

particular, our bridges tend to perform worse for the BD diffusion (Fig-
ure 17); our RBODE proposal is between 0.9 and 1.01 times as efficient
as the RBODE proposal of Whitaker et al., 2017, and our RBLNA pro-
posal is between 0.55 and 0.95 times as efficient as the RBLNA proposal
of Whitaker et al., 2017. In contrast our bridges tend to perform the
same or significantly better for the LV diffusion (Figure 18) and the
GE diffusion (Figure 19). Indeed, for the LV diffusion, our RBODE pro-
posal is between 0.86 and 119 times as efficient as the RBODE proposal
of Whitaker et al., 2017, and our RBLNA proposal is between 0.8 and
232 times as efficient as the RBLNA proposal of Whitaker et al., 2017.
Furthermore, for the GE diffusion our RBODE proposal is between 1.01
and 150 times as efficient as the RBODE proposal of Whitaker et al.,
2017, and our RBLNA proposal is between 0.88 and 85 times as efficient
as the RBLNA proposal of Whitaker et al., 2017. In all cases, the biggest
differences in efficiency occur for the larger inter-observation times. For
the BD diffusion, our residual-bridge proposals are least efficient, rela-
tive to the equivalent residual-bridge proposals of Whitaker et al., 2017
for the observation corresponding to the 5% quantile, which is very
close to zero. Moreover, the relative efficiency of our RBLNA proposal
decreases monotonically with increasing inter-observation time T . On
the other hand, for the LV and GE diffusions, the relative efficiency of
our residual-bridge proposals is almost montonically increasing with
increasing T , with the larger relative efficiencies occuring for those
inter-observation times which are at least one half of the maximum
inter-observation time considered. Furthermore, the improvement in ef-
ficiency, over the equivalent residual-bridge constructs of Whitaker et
al., 2017, are greater for the four non-central observations suggesting
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Figure 17: Plots of the comparative effective sample size per second for four
pairs of proposals and for a variety of combinations of (T, yT ) cor-
responding to the birth-death diffusion.

that our proposals are relatively more efficient when the observations
are extreme.
One drawback of the proposed residual-bridge constructs stems from

the fact that, at intermediate time points, discrepancies of sample paths
of the conditional diffusion from the deterministic path, ξt, can be rel-
atively large. Preserving the resulting discrepancies in the drift and
volatility, when for RBLNA these should be 0 at time T , for example,
must be sub-optimal. An interpolation scheme which is both justifiable
and computationally efficient, however, eludes us. These discrepancies
are particularly evident when paths of the diffusion are likely to come
close to a reflecting boundary of the diffusion since, in this case, the
approximating deterministic path produced by either the ODE or the
LNA often fails to capture the true dynamics of the diffusion. This
is what happens for the BD diffusion where the x-axis is a reflecting
boundary and justifies why the relative efficiency of our residual-bridge
proposals deteriorates the closer the observation is to the reflecting
boundary. We note that, for the BD diffusion, one can transform the
diffusion to a diffusion with unit volatility. Specifically, if we let

Zt := 2

√
Xt

(θ1 + θ2)
,

then Zt satisfies

dZt =

(
(θ1 − θ2)

2
Zt −

1

2Zt

)
dt+ dBt , Z0 = 2

√
x0

(θ1 + θ2)
.
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Figure 18: Plots of the comparative effective sample size per second for four
pairs of proposals and for a variety of combinations of (T, yT ) cor-
responding to the Lotka-Volterra diffusion.

As the volatility is constant, applying the residual-bridge construct in-
troduced in this chapter to the transformed diffusion is equivalent to
applying the residual-bridge construct of Whitaker et al., 2017 to the
transformed diffusion and thus the resulting effective sample sizes will
be identical (provided, of course, the same random numbers are used).
However, we emphasise that in most cases of practical interest one will
not be able to transform the diffusion to one of unit volatility, and,
therefore care must be taken when implementing the residual-bridge
constructs introduced in this thesis.

3.3.4 Absolute Continuity

As discussed in Section 3.2.1, proving absolute continuity of the novel
proposals introduced in this thesis is beyond the scope of this thesis.
However, in this section, we provide numerical evidence, via a simula-
tion study, suggesting that these residual-bridge proposals are robust
to a decreasing step-size, ∆t. This simulation study will partially ex-
tend the simulation study conducted in Section 3.3.2 by applying the
two residual-bridge constructs introduced in this thesis, RBODE and
RBLNA, to three diffusions; BD, LV, and GE. For consistency, we will
use the same parameters and initial conditions as those used in Section
3.3.2. To test the proposals in a broad variety of scenarios, we chose
three values for T ; (0.2, 1, 2) for the BD diffusion, (1, 4, 7) for the LV
diffusion, and (0.4, 2, 3.6) for the GE diffusion, corresponding to a small,
medium and large inter-observation interval. For each value of T , we
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Figure 19: Plots of the comparative effective sample size per second for four
pairs of proposals and for a variety of combinations of (T, yT ) cor-
responding to the Lotka-Volterra diffusion.

chose two observations yT from the set of observations simulated for
the simulation study detailed in Section 3.3.2 ; corresponding to the
centre of the simulated observations and one other chosen at random.
We chose five different values for ∆t; (0.01, 0.005, 0.001, 0.0005, 0.0001)
for the BD and GE diffusions and (0.1, 0.05, 0.01, 0.005, 0.001) for the
LV diffusion. For each proposal, and each combination of (T, yT ,∆t),
we simulated one million independent skeleton paths and calculated the
relative effective sample size (as defined by (71)) from the normalised
importance weights3.

3 For all of the models and observations, the observation variance that was used, 10−12,
is several orders of magnitude smaller than the eigenvalues of the variance matrix
at the observation, so the empirical evidence of absolute continuity is not affected
by this.
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Table 1: A table showing the relative effective sample sizes for one million independent skeleton paths simulated from the two proposals; RBODE and RBLNA for three diffusion models (BD, LV, and
GE), three inter-observation times (small, medium, and large), a sequence of decreasing step-sizes, and for two observations (the centre, and one other chosen at random for each combination of
(model, T, yT ), but fixed for the different step-sizes). The range of step-sizes are ∆t = 0.01, 0.005, 0.001, 0.0005, 0.0001 for the BD and GE diffusions, and ∆t = 0.1, 0.05, 0.01, 0.005, 0.001 for the
LV diffusion and the results are displayed in decreasing step-size order. That is, for each group of five results, corresponding to the different values for ∆t, the effective sample size corresponding
to the largest and smallest value for ∆t is at the top and bottom of the group respectively.

Proposal RBODE RBLNA

Diffusion Model Birth-Death Lotka-Volterra Gene-Expression Birth-Death Lotka-Volterra Gene-Expression

Observation ∆t Centre Other ∆t Centre Other ∆t Centre Other ∆t Centre Other ∆t Centre Other ∆t Centre Other

Small T

0.01 0.9992 0.9990 0.1 0.9719 0.9350 0.01 0.9370 0.8407 0.01 0.9992 0.9986 0.1 0.9716 0.9621 0.01 0.9372 0.9054

0.005 0.9995 0.9991 0.05 0.9733 0.9407 0.005 0.9408 0.8493 0.005 0.9995 0.9987 0.05 0.9731 0.9634 0.005 0.9409 0.9083

0.001 0.9997 0.9992 0.01 0.9744 0.9449 0.001 0.9441 0.8568 0.001 0.9997 0.9987 0.01 0.9744 0.9643 0.001 0.9442 0.9107

0.0005 0.9997 0.9992 0.005 0.9745 0.9455 0.0005 0.9444 0.8574 0.0005 0.9997 0.9987 0.005 0.9745 0.9644 0.0005 0.9445 0.9108

0.0001 0.9997 0.9992 0.001 0.9746 0.9460 0.0001 0.9446 0.8581 0.0001 0.9997 0.9987 0.001 0.9746 0.9644 0.0001 0.9447 0.9112

Medium T

0.01 0.9926 0.9878 0.1 0.6635 0.4122 0.01 0.4289 0.2497 0.01 0.9925 0.9393 0.1 0.6574 0.6387 0.01 0.4289 0.4029

0.005 0.9938 0.9890 0.05 0.6721 0.4396 0.005 0.4355 0.2263 0.005 0.9936 0.9408 0.05 0.6694 0.6514 0.005 0.4352 0.4118

0.001 0.9947 0.9898 0.01 0.6767 0.4598 0.001 0.4469 0.2814 0.001 0.9944 0.9419 0.01 0.6765 0.6593 0.001 0.4468 0.4190

0.0005 0.9948 0.9899 0.005 0.6746 0.4566 0.0005 0.4442 0.2721 0.0005 0.9945 0.9421 0.005 0.6749 0.6582 0.0005 0.4442 0.4107

0.0001 0.9948 0.9900 0.001 0.6755 0.4487 0.0001 0.4372 0.2666 0.0001 0.9946 0.9421 0.001 0.6757 0.6573 0.0001 0.4370 0.4077

Large T

0.01 0.9367 0.9171 0.1 0.3379 0.0971 0.01 0.1404 0.0740 0.01 0.9344 0.7875 0.1 0.3350 0.3172 0.01 0.1403 0.1231

0.005 0.9387 0.9208 0.05 0.3678 0.0839 0.005 0.1551 0.0806 0.005 0.9362 0.7926 0.05 0.3683 0.3289 0.005 0.1554 0.1401

0.001 0.9405 0.9232 0.01 0.3688 0.0753 0.001 0.1557 0.0905 0.001 0.9378 0.7964 0.01 0.3756 0.3377 0.001 0.1556 0.1508

0.0005 0.9406 0.9230 0.005 0.3709 0.0743 0.0005 0.1519 0.0785 0.0005 0.9378 0.7968 0.005 0.3772 0.3381 0.0005 0.1520 0.1502

0.0001 0.9406 0.9242 0.001 0.3664 0.0716 0.0001 0.1624 0.0776 0.0001 0.9378 0.7976 0.001 0.3727 0.3375 0.0001 0.1628 0.1227
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Table 1 collates the relative effective samples sizes for each diffusion
as a function of the observation time, T , the observation value, yT , and
step-size, ∆t. It shows that the relative effective sample size for the pro-
posals introduced in this chapter are consistent across varying values of
∆t for the scenarios considered in the simulation study. This, therefore,
suggests that our residual-bridge proposals can be implemented with-
out the need to consider the effect that decreasing the step-size, ∆t,
has on the resulting variability of the weights. Moreover, we stress that
the smallest ∆t considered here is on the border of what is computa-
tionally feasible, in the sense that any smaller ∆t, with the same inter-
observation interval T , will lead to an algorithm which is prohibitively
costly. Therefore, it can be argued that our residual-bridge proposals
are consistent for any step-size, ∆t, that may be used in practice for
the particular diffusions considered here.

3.4 summary

In this Chapter we introduced a new residual-bridge proposal for ap-
proximately simulating conditioned diffusions formed by applying the
modified diffusion bridge approximation of Durham and Gallant, 2002
to the difference between the true diffusion and a second, approximate,
diffusion driven by the same Brownian motion. By attempting to ac-
count for volatilities which are not constant, this proposal can lead to
gains in efficiency over the residual-bridge constructs of Whitaker et al.,
2017 in situations where the volatility varies considerably, as is often
the case for larger inter-observation times and for time-inhomogeneous
volatilities. We showed, via a simulation study in Section 3.3.2, how,
for larger inter-observation times, this new proposal led to larger- some-
times one to two orders of magnitude larger- relative effective sample
sizes per second compared to the residual-bridge constructs of Whitaker
et al., 2017, for both the Lotka-Volterra diffusion (3.1.2) and a simple
diffusion for gene expression (3.1.3). We highlighted that a drawback
of the new proposal is that, at inter-observation time points, discrepan-
cies of sample paths of the conditional diffusion from the deterministic
path, around which the new residual-bridge construct is centered, can
be relatively large. We demonstrated, in Section 3.3.2, how, for the
Birth-Death diffusion, these discrepancies become evident as neither
the approximating deterministic path produced by the ODE or the
LNA captures the true dynamics of the diffusion as the diffusion ap-
proaches the x-axis- a reflecting boundary of the diffusion. Indeed, we
showed that, for such a diffusion, these discrepancies led to lower rela-
tive effective sample sizes per second compared to the residual-bridge
constructs of Whitaker et al., 2017.





4EXCHANGEABLE PARTICLE MCMC

4.1 the introduction

Recently, efforts which utilise the sequential approaches introduced in
Section 2.4 within Markov Chain Monte Carlo algorithms of Section
2.3.5 have resulted in powerful MCMC schemes that are tailored to-
wards inference for densities with a certain, sequential, structure, such
as those densities which arise when conducting inference for stochas-
tic processes. Indeed, utilising the fact that sequential algorithms can,
up to a constant of proportionality, produce unbiased approximations
to expectations of functions defined on the path space (see, for exam-
ple, Proposition 7.4.1, Del Moral, 2012, and Proposition 1, Ala-Luhtala
et al., 2016), within an auxiliary variable, exact-approximate, frame-
work, Particle Markov Chain Monte Carlo (PMCMC) methods (An-
drieu, Doucet, and Holenstein, 2010; Lindsten and Schön, 2013; Lind-
sten, Jordan, and Schön, 2014; Chopin and Singh, 2015) are able to
conduct inference for the path of a stochastic process, and any pa-
rameters of the process, offline. Of particular interest to this thesis is
the Particle Gibbs Sampler (PGS), introduced in Andrieu, Doucet, and
Holenstein, 2010, which mimics an idealized Gibbs sampler by alternat-
ing between sampling parameters given a path, and, sampling a path
given the parameters. The latter step relies on a conditional particle fil-
ter, which, given a reference path, simulates N candidate paths, along
with corresponding weights, using a particle filter with N + 1 parti-
cles which has been conditioned on including the reference path as one
of the N + 1 paths simulated. The main drawback of the PGS stems
from the fact that the resampling step of the particle filter can result
in candidate paths of the process coalescing backwards through time.
This path degeneracy characteristic is accentuated when the dimension
of the path space is large, or, when the transition density in the muta-
tion step is such that the weights derived in the correction step have a
large variance (Pitt and Shephard, 1999; Doucet and Johansen, 2011;
Lin, Chen, and Liu, 2013). In both cases, the prominence of the path
degeneracy problem ultimately results in a PGS which mixes poorly
(Lindsten and Schön, 2013; Lindsten, Jordan, and Schön, 2014; Chopin
and Singh, 2015).
The Particle Gibbs with Ancestor Sampling (PGAS) approach of

Lindsten, Jordan, and Schön, 2014 (see also Lindsten et al., 2015) at-
tempts to overcome this path degeneracy problem by introducing an
ancestor sampling step into the PGS, which, at each time step, samples
a new history of the reference path, thus allowing the proposed paths
to degenerate to a path which is different from the reference path. By
allowing the degeneration path to differ from the reference path, the
PGAS algorithm can achieve much better mixing than the PGS (Lind-

87



88 exchangeable particle mcmc

sten, Jordan, and Schön, 2014). Unfortunately, the PGAS algorithm
relies on being able to calculate the likelihood of the reference path
having a particular history which makes the PGAS impossible to im-
plement in scenarios where this likelihood is intractable. Moreover, if
the weights of the particles have large variability, or, if the model is such
that the likelihood of the reference path having a history which is not
the same as the current history of the reference path is relatively small,
then the PGAS will offer little improvement over the PGS (Lindsten
et al., 2015). This makes the PGAS particularly ill-suited to conducting
inference for diffusions, and, while the rejuvenation approach of Lind-
sten et al., 2015 overcomes these limitations, it does so at the expense
of an increase in computational cost.
In a similar spirit to the Correlated Pseudo-Marginal Markov Chain

Monte Carlo (CPsMMCMC) method of Deligiannidis, Doucet, and Pitt,
2015, Dahlin et al., 2015, and Murray and Graham, 2016, this thesis
introduces a set of algorithms which attempt to overcome the path
degeneracy problem by making the proposed paths closer to the refer-
ence path being conditioned upon, and, therefore, make it more likely
that the chain moves to a path which is different from the reference
path. This is done by simulating particles within the Sequential Monte
Carlo procedure exchangeably as opposed to independently. As shown
in Algorithm 2, Section 2.1.2, exchangeable samples can, given a certain
level of smoothness, be made arbitrarily close to each other, and, there-
fore, the probability of moving from the reference path can be made
arbitrarily close to one. By using exchangeability to generalise the In-
dependence Sampler (Section 2.3.6.1) and the Particle Gibbs Sampler
(Section 4.2.4), the locality of moves in the Exchangeable Sampler (Sec-
tion 4.3) and the Exchangeable Particle Gibbs Sampler (Section 4.4)
can be controlled by a scaling parameter which can be tuned to op-
timise the mixing of the resulting procedure (see Sections 4.3.1 and
4.4.1). As a consequence, these samplers can lead to chains with better
mixing properties and, therefore, to MCMC estimators with smaller
variances. Moreover, provided one can sample particles by inverting a
cumulative distribution function (Algorithm 2), then such an approach
is computationally efficient and, unlike the CPsMMCMC approach, its
justification does not depend on the smoothness of the likelihood with
respect to all the underlying random numbers1.
In Section 4.2 we introduce particle MCMC methods and illustrate

their advantages and drawbacks. In particular, in Section 4.2.4, we
introduce the Particle Gibbs Sampler and demonstrate the path degen-
eration phenomena. As a precursor to the Exchangeable Particle Gibbs
Sampler— which attempts to overcome the path degeneracy problem
by generalising the Particle Gibbs Sampler— we introduce, in Section
4.3, the Exchangeable Sampler which is a generalisation of the multiple-
proposal Independence Sampler of Section 2.3.6.1. We prove, via Corol-
lary 4.3.7, that, under certain conditions, the Exchangeable Sampler is

1 It should be noted that in order to get ε-close paths, in the parlance of Section
2.1.2, there is a smoothness assumption when inverting the cumulative distribution
function (see the end of Section 2.1.2).
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geometrically ergodic even when the importance weights are unbounded
and, hence, in scenarios where the Independence Sampler cannot be ge-
ometrically ergodic. We investigate the assumptions underpinning the
result on several simple examples; one where the importance weight is
exponentially increasing in the tails, one where the importance weight
is polynomially increasing in the tails, and one where the importance
weight is bounded. In Section 4.3.1 we derive, through Theorem 4.3.17,
an optimal scaling result which gives the asymptotic form of the ac-
ceptance rate and the asymptotic form of expected squared jump dis-
tance in the Z-space in which the underlying exchangeable Normal
random variables reside. We then show, numerically, for a simple Gaus-
sian model, how well this result holds for finite d. In Section 4.3.2 we
conduct a simulation study for the Exchangeable Sampler in four sce-
narios; the first three corresponding to the simple examples for which
we investigated the geometric ergodicity assumptions, and the fourth
corresponding to a realistic example involving the simulation of a condi-
tioned Birth-Death diffusion. In Section 4.4 we introduce the Exchange-
able Particle Gibbs Sampler and show that it satisfies the same ergod-
icity properties as the Particle Gibbs Sampler. Then, in Section 4.4.1,
we derive, through Theorem 4.4.7, a form for the asymptotic expected
acceptance rate and the asymptotic expected squared jump distance for
the first component of the path in the Z-space for the Exchangeable
Particle Gibbs Sampler which targets a product density composed of
independent and identically distributed marginals. In an effort to give
guidance on how to scale the number of particles with the number of
observations, we go on to analyse these forms, both numerically, and
theoretically, through Corollary 4.4.9, and show that, asymptotically,
one should let the number of particles scale linearly with the number
of observations. Later in that section we show, numerically, for a Lin-
ear Gaussian model, how well this result holds for finite d. Finally, in
Section 4.4.2, we conduct a simulation study for the Exchangeable Par-
ticle Gibbs Sampler in two scenarios; the first corresponding to a Linear
Gaussian model, and the second corresponding to a Lotka-Volterra dif-
fusion model introduced in Chapter 3.

4.2 particle mcmc algorithms

Particle MCMC methods utilise the Sequential Importance Resam-
pling procedure of Section 2.4.1.2, which, to be consistent with the
literature— in particular the seminal work of Andrieu, Doucet, and
Holenstein, 2010— is really a specific case of the Sequential Monte
Carlo (SMC) approach. Suppose, then, that interest lies in targeting a
sequence of densities {πt(θ, x0:t) : t = 0, . . . , T}, where T is fixed and
where, for each t ∈ {0, . . . , T}, πt is defined on the space Rp×Rd×(t+1)

and is such that

πt(θ, x0:t) =
γt(θ, x0:t)

ηt
=
ηt(θ)

ηt

γt(θ, x0:t)

ηt(θ)
,
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for some known γt(θ, x0:t), and some, typically unknown, constant

ηt =

∫∫
Rp×Rd×(t+1)

γt(θ, x0:t) dθ dx0:t =

∫
Rp

ηt(θ) dθ .

Much like the Sequential Importance Resampler of Section 2.4.1.2,
the Sequential Monte Carlo procedure (Algorithm 8) relies upon a se-
quence of proposal densities p0(x0|θ), p1(x1|x0, θ), . . . , pT (xT |x0:T−1, θ),
and, given a set of normalized weights, w̃(1:N), an ancestral resampling
mechanism in the form of a probability mass function κ(·|w̃(1:N)). The

Algorithm 8 Sequential Monte Carlo Procedure

1: for i = 1, . . . , N do
2: Sample x(i)

0 with density p0(x
(i)
0 |θ) and set x̃(i)

0 = x
(i)
0 .

3: Calculate the i-th weight;

w0(x̃
(i)
0 ; θ) = γ0(θ, x

(i)
0 )/p0(x

(i)
0 |θ) .

4: end for
5: Normalize the weights by setting, for each i ∈ {1, . . . , N},

w̃
(i)
0 (x̃

(1:N)
0 ; θ) = w0(x̃

(i)
0 ; θ)/(w0(x̃

(1)
0 ; θ) + . . .+ w0(x̃

(N)
0 ; θ)) .

6: for t = 1, . . . , T do
7: Sample ancestors a(1:N)

t−1 with mass function κ(a
(1:N)
t−1 |w̃(1:N)

t−1 ).
8: for i = 1, . . . , N do

9: Sample x(i)
t with density pt(xt|x̃

(a
(i)
t−1)

t−1 , θ) and set x̃(i)
t := (x̃

(a
(i)
t−1)

t−1 , x
(i)
t ).

10: Calculate the i-th weight;

wt(x̃
(i)
t ; θ) =

γt(θ, x̃
(i)
t )

γt−1(θ, x̃
(a

(i)
t−1)

t−1 )pt(x
(i)
t |x̃

(a
(i)
t−1)

t−1 , θ)

.

11: end for
12: Normalize the weights by setting, for each i ∈ {1, . . . , N},

w̃
(i)
t (x̃

(1:N)
t ; θ) = wt(x̃

(i)
t ; θ)/(wt(x̃

(1)
t ; θ) + . . .+ wt(x̃

(N)
t ; θ)) .

13: end for

following assumptions are made on the proposal densities and the re-
sampling mechanism;

assumptions 4.2.1.

(S) For any θ ∈ Rp,

supp(γ0(θ, ·)) ⊆ supp(p0(·|θ)) ,

and, for any t ∈ {1, . . . , T}, and any (θ, x0:t−1) ∈ Rp × Rd×t,

supp(γt(θ, x0:t−1, ·)) ⊆ supp(γt−1(θ, x0:t−1)pt(·|x0:t−1, θ)) .

(U) Given a set of normalised weights, w̃(1:N),

E
[ N∑
i=1

1k(A
(i))

∣∣∣∣ w̃(1:N)

]
= Nw̃(k) ,

for any k ∈ {1, . . . , N}.
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(E) For any permutation, σ, of {1, . . . , N},

κ(a(1:N)|w̃(1:N)) = κ(a(1:N)|w̃(σ(1)), . . . , w̃(σ(N))) .

(P) For any (k,m) ∈ {1, . . . , N}2,

P(A(k) = m|w̃(1:N)) = w̃(m) .

The support condition, (S), ensures that, for any (θ, x0:t−1) ∈ Rp ×
Rd×t, it is possible to reach anywhere where γt(θ, x0:t−1, ·) is non-zero.
The unbiased assumption, (U), on the resampling mechanism ensures
that the estimator produced by the algorithm is unbiased (see, for exam-
ple, Proposition 1, Ala-Luhtala et al., 2016). Moreover, the exchange-
able assumption on the resampling mechanism, (E), ensures that the
determination of the ancestor variables does not depend on the order
of the weights and, therefore, that the indices have no effect on the
paths generated by the procedure. Finally, the permutation assump-
tion, (P), is a technical condition which will make demonstrating that
the Particle MH Sampler, the Particle Gibbs Sampler, and the Ex-
changeable Particle Gibbs Sampler correctly target the density of in-
terest, clearer. In practice, for the Sequential Monte Carlo procedure,
as highlighted in Remark 3 of Section 2.4.1.2, the ancestors are set
deterministically given the number of offspring, O(1:N), and, therefore,
(P) does not hold. However, if the ancestor variables are randomly per-
muted, then Assumption (P) holds given Assumption (U). Indeed, for
any j ∈ {0, . . . , N}, let sj(o(1:N)) denote the j-th partial sum of the
sequence o(1:N); that is, s0(o(1:N)) := 0 and, for any j ∈ {1, . . . , N},

sj(o
(1:N)) :=

j∑
k=1

o(k) .

If the ancestor variables are randomly permuted; that is, by letting, for
any k ∈ {1, . . . , N}, and any sk−1(O(1:N)) < j ≤ sk(O

(1:N)), A(j) =
σ(k), then, given Assumption (U),

P(A(k) = m|w̃(1:N)) =

N∑
n=1

P(A(k) = m|O(m) = n)P(O(m) = n|w̃(1:N))

=
N∑
n=1

n

N
P(O(m) = n|w̃(1:N))

= w̃(m) ,

for any (k,m) ∈ {1, . . . , N}2, and, therefore, Assumption (P) holds.

remark 6. Ultimately, interest is in paths generated by the SMC
procedure and not the corresponding indices. Assuming one uses an
exchangeable resampling mechanism, as we have done in this thesis—
property (E) of Assumptions 4.2.1— the indices have no effect on the
paths generated by the procedure, since the particles are propagated for-
ward independently of one another and irrespective of the actual value
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of the ancestor variables, and the determination of the ancestor vari-
ables does not depend on the order of the weights. Therefore, although
randomly permuting the ancestor variables ensures condition (P) of As-
sumptions 4.2.1 holds, thereby making some of the technical arguments
clearer, it is, in practice, not necessary.

It will be useful to define the joint mass-density function correspond-
ing to all the variables produced by the Sequential Monte Carlo proce-
dure;

Ψ(x
(1:N)
0:T , a

(1:N)
0:T−1|θ) :=

p∗0(x
(1:N)
0 |θ)

T∏
t=1

κ(a
(1:N)
t−1 |w̃

(1:N)
t−1 )p∗t (x

(1:N)
t |x̃(a

(1)
t−1)

t−1 , . . . , x̃
(a

(N)
t−1)

t−1 , θ) ,

(72)

where; to ease notation, the explicit dependence of the weights on θ

and x̃
(1:N)
t−1 has been dropped; we have recursively defined x̃

(i)
0 := x

(i)
0

and, for any t ∈ {2, . . . , T}, x̃(i)
t := (x̃

(a
(i)
t−1)

t−1 , x
(i)
t ); and

p∗0(x
(1:N)
0 |θ) :=

N∏
i=1

p0(x
(i)
0 |θ) , (73)

p∗t (x
(1:N)
t |x̃(a

(1)
t−1)

t−1 , . . . , x̃
(a

(N)
t−1)

t−1 , θ) :=

N∏
i=1

pt(x
(i)
t |x̃

(a
(i)
t−1)

t−1 , θ) . (74)

It will also be useful to define the lineage of particles back from a
certain point in time as this will provide a way of tracking particle
paths through time:

definition 4.2.2 (Lineage). Let a(1:N)
0:T−1 ∈ {1, . . . , N}N×T be ances-

tor variables simulated via the SMC procedure of Algorithm 8. The lin-
eage function at time t, denoted Lt : {1, . . . N}×{0, . . . , t} → {1, . . . , N},
is defined recursively by

Lt(k, t) := k , for any k ∈ {1, . . . , N}.
Lt(k, s) := a(Lt(k,s+1))

s , for any (k, s) ∈ {1, . . . , N} × {0, . . . , t− 1}.

By definition, for any t ∈ {1, . . . , T}, and any i ∈ {1, . . . , N},

x̃
(i)
t = (x

(Lt(i,0))
0 , . . . , x

(Lt(i,t−1))
t−1 , x

(Lt(i,t))
t ) .

4.2.1 The Pseudo-Marginal MH Sampler

Recall, from Algorithm 8, that the importance weight of the transition
of particle j at time t is given by

wt(x̃
(i)
t ; θ) =

γt(θ, x̃
(i)
t )

γt−1(θ, x̃
(a

(i)
t−1)

t−1 )pt(x
(i)
t |x̃

(a
(i)
t−1)

t−1 , θ)

.
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The first MCMC approach which utilises the Sequential Monte Carlo
procedure relies on the fact that the Sequential Monte Carlo estimator;

IT (θ, X̃
(1:N)
0:T ) :=

1

NT+1

T∏
t=0

N∑
j=1

wt(X̃
(j)
t ; θ) , (75)

which is a generalisation of the Sequential Importance Resampling es-
timator of Section 2.4.1.2, is an unbiased approximation of ηT (θ) (see,
for example, Proposition 7.4.1, Del Moral, 2012, or Proposition 1, Ala-
Luhtala et al., 2016):

theorem 4.2.3. Let X̃(1:N)
0:T be the paths generated by the Sequential

Monte Carlo procedure (Algorithm 8), and θ ∈ Rp. Then, for any t ∈
{0, . . . , T},

EΨ[IT (Θ, X̃
(1:N)
0:T )|Θ = θ] = ηT (θ) ,

where IT is the Sequential Monte Carlo estimator given by Equation
(75), and, given θ, Ψ is the density of the random variables generated
by the Sequential Monte Carlo estimator, given by Equation (72).

Such an estimator, therefore, can be used in place of the exact like-
lihood in a Markov Chain Monte Carlo algorithm (see the Pseudo-
Marginal MCMC approach in, for example, Beaumont, 2003 and An-
drieu and Roberts, 2009). The intuition behind such exact-approximate
methods is that, even though the approximation to the likelihood is not
exact, even up to a constant of proportionality, and, therefore, such an
MCMC scheme does not target the density of interest, it does target
an extended density which is the joint density of θ and the random
variables in the estimator. Moreover, given the unbiasedness property,
the marginal density for θ from the extended target is equal to the den-
sity of interest. Hence, the samples of θ generated by the algorithm—
obtained by ignoring the latent variables generated— target the den-
sity of interest. In summary, such an approach is targeting a density
defined in a higher-dimensional space whose marginal is the density of
interest. Formally, let

π(θ) :=

∫
Rd(T+1)

πT (θ, x0:T ) dx0:T

be the target of interest. Consider the extended target,

π+(θ, x
(1:N)
0:T , a

(1:N)
0:T−1) :=

IT (θ, x̃
(1:N)
0:T )

ηT
Ψ(x

(1:N)
0:T , a

(1:N)
0:T−1|θ) . (76)

This target is indeed a density whose marginal density for θ is π since,
by Theorem 4.2.3,

EΨ

[
IT (Θ, x̃

(1:N)
0:T )

ηT
|Θ = θ

]
=
ηT (θ)

ηT
.
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One can construct an MCMC algorithm which targets π+ as follows.
Suppose the chain is at state (θ, x

(1:N)
0:T , a

(1:N)
0:T−1). Then a new state

(θ∗, y(1:N)
0:T , b

(1:N)
0:T−1) can be proposed by proposing a θ∗ from some pro-

posal density q(·|θ)2 and proposing (y
(1:N)
0:T , b

(1:N)
0:T−1) via the Sequential

Monte Carlo procedure; that is, from Ψ(·|θ∗). The proposed new state
can then be accepted with either Barker’s or the Metropolis-Hastings
acceptance probability. The Metropolis-Hastings acceptance probabil-
ity is given by

1 ∧
π+(θ∗, y(1:N)

0:T , b
(1:N)
0:T−1)q(θ|θ∗)Ψ(x

(1:N)
0:T , a

(1:N)
0:T−1|θ)

π+(θ, x
(1:N)
0:T , a

(1:N)
0:T−1)q(θ∗|θ)Ψ(y

(1:N)
0:T , b

(1:N)
0:T−1|θ∗)

= 1 ∧
IT (θ∗, ỹ(1:N)

0:T )Ψ(y
(1:N)
0:T , b

(1:N)
0:T−1|θ∗)q(θ|θ∗)Ψ(x

(1:N)
0:T , a

(1:N)
0:T−1|θ)

IT (θ, x̃
(1:N)
0:T )Ψ(x

(1:N)
0:T , a

(1:N)
0:T−1|θ)q(θ∗|θ)Ψ(y

(1:N)
0:T , b

(1:N)
0:T−1|θ∗)

= 1 ∧
IT (θ∗, ỹ(1:N)

0:T )q(θ|θ∗)
IT (θ, x̃

(1:N)
0:T )q(θ∗|θ)

.

Similarly, Barker’s acceptance probability is given by

IT (θ∗, ỹ(1:N)
0:T )q(θ|θ∗)

IT (θ∗, ỹ(1:N)
0:T )q(θ|θ∗) + IT (θ, x̃

(1:N)
0:T )q(θ∗|θ)

.

As can be seen, the acceptance probability is the same as the acceptance
probability in the idealised case but with the unbiased approximation,
IT /ηT , of the likelihood π(θ), used in place of the likelihood (a fact
that was initially shown in Beaumont, 2003). Indeed, the idealised case
constructs a Markov Chain which, conditional on a current state θ,
proposes a new state θ∗ from q(·|θ) and accepts, in the random-walk
Metropolis-Hastings case, with probability

1 ∧ ηT (θ∗)q(θ|θ∗)
ηT (θ)q(θ∗|θ)

.

In full, the Pseudo-Marginal Metropolis-Hastings (PsMMH) sampler is
given by Algorithm 9.
For detailed results relating to the ergodicity of the Pseudo-Marginal

Metropolis-Hastings sampler see Andrieu and Roberts, 2009. Of course,
since the sampler in the extended space is a propose and accept-reject
MCMC algorithm targeting an extended density, then the results of Sec-
tion 2.3.6, in particular, Theorems 2.3.30, 2.3.31, and 2.3.34, are still
valid when considering the chain on the extended state space. Moreover,
ergodictiy, as given by Corollary 2.3.12, of the marginal chain— that is,
the chain that is induced by just considering how θ transitions— follows
from ergodicity of the extended chain— that is, the chain created by
the propose and accept-reject MCMC sampler on the extended space—
since, intuitively, the chance of moving to a state θ∗ in the marginal
space is greater than the chance of moving to a state (θ∗, y(1:N)

0:T , b
(1:N)
0:T−1),

2 See, for example, the independent and random-walk proposals of Section 2.3.5.
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Algorithm 9 Pseudo-Marginal Metropolis-Hastings Sampler

1: Initialise the chain at some θ0 ∈ Rp and choose the number of iterations, M .
2: Sample (x

(1:N)
0:T , a

(1:N)
0:T ) with density Ψ(·|θ0) defined by (72) via the SMC proce-

dure given by Algorithm 8.
3: Calculate Ĩ0 := IT (θ0, x̃

(1:N)
0:T ) as defined by (75).

4: for m = 0, . . . ,M − 1 do
5: Sample a θ∗ with density q(·|θm).
6: Sample (y

(1:N)
0:T , b

(1:N)
0:T ) with density Ψ(·|θ∗) defined by (72) via the SMC

procedure given by Algorithm 8.
7: Calculate Ĩ∗ := IT (θ∗, ỹ(1:N)

0:T ) as defined by (75).
8: Calculate the MH acceptance probability;

α(θm, θ
∗) := 1 ∧ Ĩ∗q(θ|θ∗)

Ĩmq(θ∗|θ)
.

9: With probability α(θm, θ
∗) set θm+1 = θ∗, Ĩm+1 = Ĩ∗; else set θm+1 = θm,

Ĩm+1 = Ĩm.
10: end for

for any particular (y
(1:N)
0:T , b

(1:N)
0:T−1), in the extended space. Furthermore,

since the bounding term of the total variation distance for uniformly er-
godic chains— see Definition 2.3.14— is independent of where the chain
starts, then uniform ergodicity of the marginal chain follows from uni-
form ergodicity of the extended chain. However, given the bound on
the total variation distance for geometrically ergodic chains depends
on where the chain was initialised, it is not necessarily the case, with-
out some extra assumptions, that geometric ergodicity of the marginal
chain follows from geometric ergodicity of the extended chain. For for-
mal details and a more thorough discussion, see Andrieu and Roberts,
2009.

To demonstrate the Pseudo-Marginal Metropolis-Hastings Sampler
consider the following Linear Gaussian model on a one-dimensional
state space:

example 2. Let X0 ∼ N(0, 1), and suppose that, for any t ∈ {1, . . . , 100},
the transition distributions are given by (Xt|Xt−1 = xt−1,Θ = θ) ∼
N(θxt−1, 1), and the observation distributions are given by Yt|Xt =
xt ∼ N(xt, 0.3). For simplicity, suppose that an improper, uniform over
R, prior is placed on Θ so that γ0(θ, x0) = φ(x0; 0, 1) and, therefore,
η0(θ) = 1. Moreover, suppose that, for any t ∈ {1, . . . , T}, γt is defined
recursively by

γt(θ, x0:t) = gt(yt|xt)φ(xt; θxt−1, 1)γt−1(θ, x0:t−1) ,

where φ(·;µ, σ2) denotes the density of a one-dimensional normal dis-
tribution with mean µ and variance σ2.

Using the bootstrap proposal; that is, p0(x0|θ) = φ(x0; 0, 1), and, for
any t ∈ {1, . . . , T}, pt(xt|xt−1, θ) = φ(xt; θxt−1, 1), we ran the PsMMH
for ten-thousand iterations with N ∈ {100, 1000, 10000, 100000} and
calculated the approximation to the log-likelihood for each simulated
θ. Figure 20 shows the approximations of the log-likelihood (left col-
umn), along with a histogram of the simulated θ samples (right column)
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Figure 20: Plots of the approximated log-likelhood (left column) and the his-
togram of simulated θ samples (right column) corresponding to
four simulations of the PsMMH sampler of ten-thousand iterations
each, where each simulation uses a different number of particles;
N = 100 for the top row, N = 1000 for the second row, N = 10000
for the third row, and N = 100000 for the bottom row. Each sub-
plot in the left column also shows the true log-likelihood, and each
subplot in the right column also shows the true posterior density;
both coloured in orange.

for each N ∈ {100, 1000, 10000, 100000}. The top row corresponds to
N = 100, the second row to N = 1000, the third row to N = 10000,
and the bottom row to N = 100000. The figure also shows a plot
of the true log-likelihood and the true target density. It can be seen
that, even though the approximations of the log-likelihood are noisy
when the number of particles is small, the sampler still targets the
correct density. This is because the approximations to the likelihood
are unbiased as is partially evidenced in the noise fluctuations in the
log-likehood approximation around the true log-likelihood. It can also
be seen that the approximations to the log-likelihood improve as the
number of particles increases and this, in turn, results in an empirical
density formed by the simulated samples which is closer to the true
density after ten-thousand iterations.

4.2.2 Conditional Sequential Monte Carlo

Before proceeding to discuss other particle MCMC algorithms it will
prove useful to first consider the Conditional Sequential Monte Carlo
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procedure. Given a reference path, the Conditional Sequential Monte
Carlo procedure proceeds by simulting N candidate paths, along with
corresponding weights, using the Sequential Monte Carlo procedure
with N + 1 particles which has been conditioned on including the ref-
erence path as one of the N + 1 paths simulated. Formally, dropping
the explicit dependence on θ, recall the joint mass-density function Ψ
corresponding to all the variables produced by the SMC procedure with
N + 1 particles:

Ψ(x
(0:N)
0:T , a

(0:N)
0:T−1|θ) :=

p∗0(x
(0:N)
0 |θ)

T∏
t=1

κ(a
(0:N)
t−1 |w̃

(0:N)
t−1 )p∗t (x

(0:N)
t |x̃(a

(0)
t−1)

t−1 , . . . , x̃
(a

(N)
t−1)

t−1 , θ) ,

where; to ease notation, the explicit dependence of the weights on x̃(1:N)
t−1

has been dropped; we have recursively defined x̃(i)
0 := x

(i)
0 and, for any

t ∈ {2, . . . , T}, x̃(i)
t := (x̃

(a
(i)
t−1)

t−1 , x
(i)
t ); and

p∗0(x
(0:N)
0 |θ) :=

N∏
i=0

p0(x
(i)
0 |θ) , (77)

p∗t (x
(0:N)
t |x̃(a

(0)
t−1)

t−1 , . . . , x̃
(a

(N)
t−1)

t−1 , θ) :=
N∏
i=0

pt(x
(i)
t |x̃

(a
(i)
t−1)

t−1 , θ) . (78)

The SMC procedure thus produces N + 1 paths of the form

(x
(LT (k,0))
0 , . . . , x

(LT (k,T ))
T )

where k ∈ {0, . . . , N}. At each step of the SMC procedure the parti-
cles are simulated forward independently of one another and thus the
only dependence on the other particles comes from the resampling step.
Therefore, the joint mass-density function of all the random variables
produced by the SMC procedure conditional on the k-th path being
fixed is given by

ψ(x
(0:N)
0:T \x̃

(k)
T , a

(0:N)
0:T−1\ã

(k)
T−1|k, x̃

(k)
T , ã

(k)
T−1, θ)

∝
N∏
i=0

i 6=LT (k,0)

p0(x
(i)
0 |θ)

T∏
t=1

κ(a
(0:N)
t−1 |w̃

(0:N)
t−1 )

P(A
(LT (k,t))
t−1 = a

(LT (k,t))
t−1 |w̃(0:N)

t−1 )

N∏
j=0

j 6=LT (k,t)

pt(x
(j)
t |x̃

(a
(j)
t−1)

t−1 , θ) .

(79)

Here, for simplicity, ã(k)
T denotes the path of ancestor variables; that is,

ã
(k)
T := a

(LT (k,1))
0 , . . . , a

(LT (k,T ))
T−1 ,

x
(0:N)
0:T \x̃

(k)
T denotes the sequence of variables x(0:N)

0:T with those corre-
sponding to the k-th path removed; that is,

x
(0:N)
0:T \x̃

(k)
T := x

(−LT (k,0))
0 , . . . , x

(−LT (k,T ))
T ,
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where, for any sequence y(0:N) and any i ∈ {0, . . . , N}, y(−i) denotes
the sequence y(0:N) with y(i) removed; that is,

y(−i) := y(0), . . . , y(i−1), y(i+1), . . . , y(N) ,

and, similarly, a(0:N)
0:T−1\ã

(k)
T−1 denotes the sequence of ancestor variables

a
(0:N)
0:T−1 with those ancestors corresponding to the k-th path removed;

that is,

a
(0:N)
0:T−1\ã

(k)
T−1 := a

(−LT (k,1))
0 , . . . , a

(−LT (k,T ))
T−1 .

The independence of the particles when simulating forward means that
simulating particles forward in the Conditional Sequential Monte Carlo
procedure is trivial. Thus, the only challenge is conditionally sampling
ancestors; that is, given a sequence of weights w̃(0:N), simulating a(−k)

with mass function

κ(a(0:N)|w̃(0:N))

P(A(k) = a(k)|w̃(0:N))
. (80)

Recall, from Section 2.4.1.2, that, for this thesis, a resampling pro-
cedure involves determining the number of offspring assigned to each
particle; denoted, O(0:N), by sampling from a probability mass function,
κ̄(·|w̃(0:N)), such that O(0) + . . .+O(N) = N + 1, and;

1. For each i ∈ {0, . . . , N},

E(O(i)) = (N + 1)w̃(i) ,

so that, the larger w̃(i) is, the more offspring particle i has on
average.

2. For any permutation, σ, of {0, . . . , N},

κ̄(o(0:N)|w̃(0:N)) = κ̄(o(σ(0)), . . . , o(σ(N))|w̃(σ(0)), . . . , w̃(σ(N))) ,

so that, the assignment of the offspring does not depend on the
order of the weights.

Thus, given a sequence of the number of offspring, O(0:N), assigned to
each particle, where O(k) ≥ 1, one can preserve A(k) = a(k) by simply
setting A(k) = a(k) and assigning A(−k) in such a way that

N∑
j=0
j 6=k

1{k}(A
(j)) = O(k) − 1 ,

and, for any i ∈ {0, . . . , N}\{k},

N∑
j=0
j 6=k

1{i}(A
(j)) = O(i) .
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Ultimately, then, the question becomes; how can one sample offspring
o(0:N) from a probability mass function κ̄(o(0:N)|w̃(0:N)) conditional on
o(k) ≥ 1. Recall, from Section 2.4.1.2, that we will concentrate on the
stratified residual resampling procedure. To this end, note, by Algo-
rithm 5, that, for stratified resampling, the weights are initially shuf-
fled before proceeding to determine which of the uniform samples lie in
which bucket. Therefore, one does not need to worry about the initial
ordering of the weights. Now, if w̃(k) ≥ 2/(N + 1), then, by Theorem
2.4.3, O(k) > (N + 1)w̃(k)− 2 ≥ 0. Thus O(k) ≥ 1. In this case, the con-
ditional stratified resampling implementation follows exactly the same
as the unconditional stratified resampling implementation given by Al-
gorithm 5. If, on the other hand, w̃(k) < 1/(N + 1), then, using the
notation of Section 2.4.1.2, the only uniform sample that can belong to
the set

(w̃(0)
σ + . . .+ w̃(σ(k)−1)

σ , w̃(0)
σ + . . .+ w̃(σ(k))

σ ]

is ud(N+1)sσ(k)(w̃
(0:N)
σ )e where

sσ(k)(w̃
(0:N)
σ ) = w̃(0)

σ + . . .+ w̃(σ(k))
σ .

Therefore, in this case, the conditional stratified resampling implemen-
tation follows the unconditional stratified resampling implementation
given by Algorithm 5 but where ud(N+1)sσ(k)(w̃

(0:N)
σ )e is not simulated,

since, from the condition, this will have to lie in the set (sσ(k)−1(w̃
(0:N)
σ ), sσ(k)(w̃

(0:N)
σ )].

In the third case, where w̃(k)
σ ∈ [1/(N + 1), 2/(N + 1)), the only uni-

form samples that can belong to the set (sσ(k)−1(w̃
(0:N)
σ ), sσ(k)(w̃

(0:N)
σ )]

are ub(N+1)sσ(k)(w̃
(0:N)
σ )c and ud(N+1)sσ(k)(w̃

(0:N)
σ )e. Therefore, one chooses

which of these to not simulate in a probabilistically way so that ud(N+1)sσ(k)(w̃
(0:N)
σ )e

is not simulated with probability

(N + 1)sσ(k)(w̃
(0:N)
σ )− b(N + 1)sσ(k)(w̃

(0:N)
σ )c

(N + 1)w̃
(σ(k))
σ

.

In full, Algorithm 10 gives an implementation of the conditional strati-
fied resampling procedure where the conditioning is on o(k) ≥ 1. As in
the unconditional case, the conditional stratified resampling procedure
can follow a residual sampling step. The conditional stratified resid-
ual resampling procedure is given by Algorithm 11. In full, the CSMC
procedure is given by Algorithm 12.

remark 7. There is a slight technical issue with the conditional re-
sampling schemes of 10 and 11 used in this thesis. Conditioning on a
particle having a particular ancestor, via (80), is stronger than condi-
tioning on that ancestor having at least one offspring. However, given
that the unconditional stratified resampling scheme, and its residual ex-
tension, have very little flexibility in the number of offspring that can be
assigned to each particle, as shown in Theorem 2.4.4, the distribution of
offspring when using these schemes will be very similar, respectively, to
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Algorithm 10 Conditional Stratified Resampling (Conditioned on o(k) ≥ 1)

1: Shuffle the weights; (w̃
(0:N)
σ , σ) = shuffle(w̃(0:N)).

2: Calculate the partial sums sj(w̃(0:N)
σ ) for every j = −1, . . . , N .

3: if w̃(k) ≥ 2/(N + 1) then
4: for i = 0, . . . , N do
5: Sample ui from a Unif(i/(N + 1), (i+ 1)/(N + 1)) distribution.
6: end for
7: for j = 0, . . . , N do
8: Set

o(j)
σ =

N∑
i=0

1Ij(σ)(ui) .

9: end for
10: Invert the shuffle on the offspring; o(0:N) = inverse_shuffle(o

(0:N)
σ , σ).

11: else
12: if w̃(k) ∈ [1/(N + 1), 2/(N + 1)) then
13: With probability

(N + 1)sσ(k)(w̃
(0:N)
σ )− b(N + 1)sσ(k)(w̃

(0:N)
σ )c

(N + 1)w̃
(σ(k))
σ

set l = d(N + 1)sσ(k)(w̃
(0:N)
σ )e. Else set l = b(N + 1)sσ(k)(w̃

(0:N)
σ )c.

14: else
15: Set l = d(N + 1)sσ(k)(w̃

(0:N)
σ )e.

16: end if
17: for i = 0, . . . , l − 2, l, . . . , N do
18: Sample ui from a Unif(i/(N + 1), (i+ 1)/(N + 1)) distribution.
19: end for
20: for j = 0, . . . , N do
21: Set

o(j)
σ =

N∑
i=1
i 6=l

1Ij(σ)(ui) .

22: end for
23: Invert the shuffle on the offspring; o(0:N) = inverse_shuffle(o

(0:N)
σ , σ).

24: Set o(k) = o(k) + 1.
25: end if
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Algorithm 11 Conditional Stratified Residual Resampling (Conditioned on o(k) ≥
1)

1: Initialise by setting s = 0.
2: for j = 0, . . . , N do
3: Set o(j)

b = b(N + 1)w̃(j)c.
4: Set s = s+ o

(j)
b .

5: Set w(j)
r = w̃(j) − o(j)

b /(N + 1).
6: end for
7: Normalize the residual weights by setting, for each j ∈ {0, . . . , N},

w̃(j)
r = w(j)

r /(w(0)
r + . . .+ w(N)

r ) .

8: if o(k)
b ≥ 1 then

9: Resample, using the unconditional stratified resampling scheme, N + 1 − S
particles with weights w̃(0:N)

r to get offsprings o(0:N)
r .

10: else
11: Resample, using the conditional stratified resampling scheme conditioned on

o
(k)
r ≥ 1, N + 1− S particles with weights w̃(0:N)

r to get offsprings o(0:N)
r .

12: end if
13: Set o(j) = o

(j)
b + o

(j)
r for all j ∈ {0, . . . , N}.

Algorithm 12 Conditional Sequential Monte Carlo Procedure (Conditioned on the
k-th path, (k, x̃

(k)
T , ã

(k)
T−1))

1: for i = 0, . . . ,LT (k, 0)− 1,LT (k, 0) + 1, . . . , N do
2: Sample x(i)

0 with density p0(x
(i)
0 |θ) and set x̃(i)

0 = x
(i)
0 .

3: Calculate the i-th weight;

w0(x̃
(i)
0 ; θ) = γ0(θ, x

(i)
0 )/p0(x

(i)
0 |θ) .

4: end for
5: Normalize the weights by setting, for each i ∈ {0, . . . , N},

w̃
(i)
0 (x̃

(0:N)
0 ; θ) = w0(x̃

(i)
0 ; θ)/(w0(x̃

(0)
0 ; θ) + . . .+ w0(x̃

(N)
0 ; θ)) .

6: for t = 1, . . . , T do
7: Sample ancestors a(−LT (k,t))

t−1 with mass function

κ(a
(0:N)
t−1 |w̃(0:N)

t−1 )

P(A
(LT (k,t))
t−1 = a

(LT (k,t))
t−1 |w̃(0:N)

t−1 )
,

using the conditional stratified residual resampling scheme (Algorithm 11).
8: for i = 0, . . . ,LT (k, t)− 1,LT (k, t) + 1, . . . , N do

9: Sample x(i)
t with density pt(xt|x̃

(a
(i)
t−1)

t−1 , θ) and set x̃(i)
t := (x̃

(a
(i)
t−1)

t−1 , x
(i)
t ).

10: Calculate the i-th weight;

wt(x̃
(i)
t ; θ) =

γt(θ, x̃
(i)
t )

γt−1(θ, x̃
(a

(i)
t−1)

t−1 )pt(x
(i)
t |x̃

(a
(i)
t−1)

t−1 , θ)

.

11: end for
12: Normalize the weights by setting, for each i ∈ {0, . . . , N},

w̃
(i)
t (x̃

(0:N)
t ; θ) = wt(x̃

(i)
t ; θ)/(wt(x̃

(0)
t ; θ) + . . .+ wt(x̃

(N)
t ; θ)) .

13: end for



102 exchangeable particle mcmc

0 20 40 60 80 100

t

−4

−2

0

2

4

6

x
t

Figure 21: A plot of the five-hundred and one paths generated by the Condi-
tional Sequential Monte Carlo procedure, which utilises the boot-
strap proposal, applied to the one-dimensional Linear Gaussian
model of Example 3.

the distribution of offspring when using the correctly conditioned strat-
ified resampling and residual stratified resampling schemes.

The conditional resampling step of the CSMC procedure can result in
candidate paths of the process coalescing backwards through time. To
see this, consider the one-dimensional Linear Gaussian model of Exam-
ple 3; that is, X0 ∼ N(0, 1), θ = 0.8, and, for any t ∈ {1, . . . , 100}, the
transition distributions are given by (Xt|Xt−1 = xt−1) ∼ N(θxt−1, 1),
and the observation distributions are given by Yt|Xt = xt ∼ N(xt, 0.3).
Using the bootstrap proposal; that is, p0(x0|θ) = φ(x0; 0, 1), and, for
any t ∈ {1, . . . , T}, pt(xt|xt−1, θ) = φ(xt; θxt−1, 1), we ran the Condi-
tional Sequential Monte Carlo procedure with N = 500 conditioned on
a reference path, x0:T which was obtained by running the unconditional
Sequential Monte Carlo procedure with ten-thousand particles and sam-
pling one of the ten-thousand paths according to the terminal weights.
Figure 21 shows the five-hundred and one paths generated by the Con-
ditional Sequential Monte Carlo procedure. The figure illustrates the
coalescing backwards through time behaviour of the procedure since, for
the earlier observation times, the five-hundred and one paths degener-
ate into only three paths. In general, this path degeneracy characteristic
is accentuated when the dimension of the path space is large, or, when
the transition density in the mutation step is such that the weights de-
rived in the correction step have a large variance (Pitt and Shephard,
1999; Doucet and Johansen, 2011; Lin, Chen, and Liu, 2013).
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4.2.3 Particle MH Samplers

As shown in Section 4.2.1, the Pseudo-Marginal Metropolis-Hastings
algorithm allows one to conduct inference for θ through an unbiased
approximation IT (θ, X̃

(1:N)
0:T ), to the likelihood ηT (θ). It can also be

extended to permit inference for the path x0:T . The key insight of An-
drieu, Doucet, and Holenstein, 2010 is that the Sequential Importance
Resampling estimator to πT [h] is a weighted sum over the paths simiu-
lated by the procedure. A similar observation holds for the Sequential
Monte Carlo estimator. Thus, one can extend the density given by (76)
further by considering the weight of any particular path; that is, one
can consider the extended density

π+(k, θ, x
(1:N)
0:T , a

(1:N)
0:T−1) :=

w̃
(k)
T (x̃

(1:N)
T ; θ)

IT (θ, x̃
(1:N)
0:T )

ηT
Ψ(x

(1:N)
0:T , a

(1:N)
0:T−1|θ) . (81)

Summing over the N values of k gives the density given in (76). Hence,
this is indeed a valid density. To show that such a density exhibits πT as
the marginal density for (θ, x̃

(k)
T ), it will first be useful to demonstrate

the equivalence of this target with the extended target given in Andrieu,
Doucet, and Holenstein, 2010:

lemma 4.2.4. Under property (P) of Assumptions 4.2.1, the extended
target given by (81), can be rewritten as

π+(k, θ, x
(1:N)
0:T , a

(1:N)
0:T−1)

= N−(T+1)γT (θ, x̃
(k)
T )

ηT
ψ(x

(1:N)
0:T \x̃

(k)
T , a

(1:N)
0:T−1\ã

(k)
T−1|k, x̃

(k)
T , ã

(k)
T−1, θ) ,

(82)

where ψ is the density corresponding to the Conditional Sequential
Monte Carlo procedure (see Section 4.2.2).

Proof. See A.10.

With this alternative representation for the extended density, it is
trivial to see that such a density exhibits πT as the marginal density
for (θ, x̃

(k)
T ). Indeed, integrating out all the variables not involved in the

path x̃(k)
T gives

∑
a

(1:N)
0:T−1\ã

(k)
T−1

∫
R+

π+(k, θ, x
(1:N)
0:T , a

(1:N)
0:T−1) d(x

(1:N)
0:T \x̃

(k)
T ) =

γT (θ, x̃
(k)
T )

ηT
= πT (θ, x̃

(k)
T ) ,

(83)

where, for notational simplicity, R+ := Rd×(T+1)×(N−1). The extended
density given by (81) suggests that one can conduct inference for the
path X0:T by running the SMC procedure to sample N candidate
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paths and proposing one of these candidate paths with weight w̃(k)
T .

This is precisely the Particle Independent Sampler of Andrieu, Doucet,
and Holenstein, 2010. Indeed, suppose the current state in the ex-
tended space is (k, x

(1:N)
0:T , a

(1:N)
0:T−1) and that θ is fixed. For notational

simplicity, θ will be dropped from the notation that follows. Simulate
a (k∗, y(1:N)

0:T , b
(1:N)
0:T−1) with proposal density

q(k∗, y(1:N)
0:T , b

(1:N)
0:T−1) = w̃

(k∗)
T (ỹ

(1:N)
T )Ψ(y

(1:N)
0:T , b

(1:N)
0:T−1) ,

by simulating N paths, (y
(1:N)
0:T , b

(1:N)
0:T−1), from Ψ using the SMC pro-

cedure (Algorithm 8), and choosing the k-th of those paths accord-
ing to the normalised terminal weight w̃(k∗)

T (ỹ
(1:N)
T ). The Metropolis-

Hastings acceptance probability, which leads to the Particle Indepen-
dent Metropolis-Hastings (PIMH) sampler, is given by

1 ∧
π+(k∗, y(1:N)

0:T , b
(1:N)
0:T−1)q(k, x

(1:N)
0:T , a

(1:N)
0:T )

π+(k, x
(1:N)
0:T , a

(1:N)
0:T−1)q(k∗, y(1:N)

0:T , b
(1:N)
0:T )

= 1 ∧
w̃

(k∗)
T (ỹ

(1:N)
T )IT (θ, ỹ

(1:N)
0:T )Ψ(y

(1:N)
0:T , b

(1:N)
0:T−1)w̃

(k)
T (x̃

(1:N)
T )Ψ(x

(1:N)
0:T , a

(1:N)
0:T−1)

w̃
(k)
T (x̃

(1:N)
T )IT (x̃

(1:N)
0:T )Ψ(x

(1:N)
0:T , a

(1:N)
0:T−1)w̃

(k∗)
T (ỹ

(1:N)
T )Ψ(y

(1:N)
0:T , b

(1:N)
0:T−1)

= 1 ∧
IT (ỹ

(1:N)
0:T )

IT (x̃
(1:N)
0:T )

.

Given an initial path x̃0:T from which to start the algorithm, one can
use the representation of the extended target density, given by (82)
in Lemma 4.2.4; and, in particular, the Conditional Sequential Monte
Carlo (CSMC) procedure (see Andrieu, Doucet, and Holenstein, 2010,
or Section 4.2.2), whose density is given by (79), to simulate the other
N − 1 initial, candidate, paths and calculate the initial approximation
to the likelihood; IT (x̃

(1:N)
0:T ). In full, assuming a fixed θ, the Particle In-

dependent Metropolis-Hastings (PIMH) Sampler is given by Algorithm
13.

It is trivial to extend such an algorithm to conduct inference for
πT (θ, x0:T ) where θ is not fixed. Indeed, if one constructs a proposal
qΘ(·|θ) for θ— see, for example, the independent and random-walk
proposals of Section 2.3.5— then one can target the extended density
π+(k, θ, x

(1:N)
0:T , a

(1:N)
0:T−1) given by (81) by proposing from

q(k∗, θ∗, y(1:N)
0:T , b

(1:N)
0:T−1|θ) = w̃

(k∗)
T (ỹ

(1:N)
T ; θ∗)Ψ(y

(1:N)
0:T , b

(1:N)
0:T−1|θ

∗)qΘ(θ∗|θ) ,

given a current state (k, θ, x
(1:N)
0:T , a

(1:N)
0:T−1), and accepting with probabil-

ity

1 ∧
IT (ỹ

(1:N)
0:T )q(θ|θ∗)

IT (x̃
(1:N)
0:T )q(θ∗|θ)

.

This is the Particle Marginal Metropolis-Hastings (PMMH) Sampler
of Andrieu, Doucet, and Holenstein, 2010, which, in full, is given by
Algorithm 14.
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Algorithm 13 Particle Independent Metropolis-Hastings Sampler

1: Initialise the chain at some x0:T ∈ Rd(T+1) and choose the number of iterations,
M .

2: Let k = 1, a(1)
t = 1 for all t ∈ {0, . . . , T − 1}, and x(1)

t = xt for all t ∈ {0, . . . , T}
so that x̃(1)

T = x0:T . Define xpath
0 := x̃

(1)
T .

3: Sample (x
(2:N)
0:T , a

(2:N)
0:T−1) with density ψ(·|1, x̃(1)

T , ã
(1)
T−1) defined by (79) via the

CSMC procedure (see Algorithm 12).
4: Calculate Ĩ0 := IT (x̃

(1:N)
0:T ) as defined by (75).

5: for m = 0, . . . ,M − 1 do
6: Sample (y

(1:N)
0:T , b

(1:N)
0:T ) with density Ψ(·) defined by (72) via the SMC proce-

dure given by Algorithm 8.
7: Calculate Ĩ∗ := IT (ỹ

(1:N)
0:T ) as defined by (75).

8: Sample a k∗ ∈ {1, . . . , N} with probability w̃(k∗)
T (ỹ

(1:N)
T ).

9: Calculate the MH acceptance probability;

α(xpath
m , ỹ

(k∗)
T ) := 1 ∧ Ĩ∗

Ĩm
.

10: With probability α(xpath
m , ỹ

(k∗)
T ) set xpath

m+1 = ỹ
(k∗)
T , Ĩm+1 = Ĩ∗; else set

xpath
m+1 = xpath

m , Ĩm+1 = Ĩm.
11: end for

Algorithm 14 Particle Marginal Metropolis-Hastings Sampler

1: Initialise the chain at some (θ0, x0:T ) ∈ Rp ×Rd(T+1) and choose the number of
iterations, M .

2: Let k = 1, a(1)
t = 1 for all t ∈ {0, . . . , T − 1}, and x(1)

t = xt for all t ∈ {0, . . . , T}
so that x̃(1)

T = x0:T . Define xpath
0 := x̃

(1)
T .

3: Sample (x
(2:N)
0:T , a

(2:N)
0:T−1) with density ψ(·|1, x̃(1)

T , ã
(1)
T−1, θ0) defined by (79) via the

CSMC procedure (see Algorithm 12).
4: Calculate Ĩ0 := IT (θ0, x̃

(1:N)
0:T ) as defined by (75).

5: for m = 0, . . . ,M − 1 do
6: Sample θ∗ with density q(·|θm)

7: Sample (y
(1:N)
0:T , b

(1:N)
0:T ) with density Ψ(·|θ∗) defined by (72) via the SMC

procedure given by Algorithm 8.
8: Calculate Ĩ∗ := IT (θ∗, ỹ(1:N)

0:T ) as defined by (75).
9: Sample a k∗ ∈ {1, . . . , N} with probability w̃(k∗)

T (ỹ
(1:N)
T ; θ∗).

10: Calculate the MH acceptance probability;

α(θm, x
path
m , θ∗, ỹ(k∗)

T ) := 1 ∧ Ĩ∗q(θ|θ∗)
Ĩmq(θ∗|θ)

.

11: With probability α(θm, x
path
m , θ∗, ỹ(k∗)

T ) set θm+1 = θ∗, xpath
m+1 = ỹ

(k∗)
T , Ĩm+1 =

Ĩ∗; else set θm+1 = θm, xpath
m+1 = xpath

m , Ĩm+1 = Ĩm.
12: end for
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For formal results relating to the ergodicity of the aforementioned
Particle MH Samplers see Andrieu, Doucet, and Holenstein, 2010. As
was the case for the PsMMH sampler, the results of Section 2.3.6, in
particular, Theorems 2.3.30, 2.3.31, and 2.3.34, are valid when consid-
ering the chain on the extended state space since the samplers in the
extended space are propose and accept-reject MCMC algorithms tar-
geting an extended density. Moreover, ergodictiy, as given by Corollary
2.3.12, of the marginal chain- that is, the chain that is induced by just
considering how (θ, xpath) transitions- follows from ergodicity of the
extended chain- that is, the chain created by the propose and accept-
reject MCMC sampler on the extended space- since, intuitively, the
chance of moving to a state (θ∗, ỹ(k)

T ) in the marginal space is greater
than the chance of moving to a state (θ∗, y(1:N)

0:T , b
(1:N)
0:T−1), for any par-

ticular (y
(1:N)
0:T \ỹ(k)

T , b
(1:N)
0:T−1\b̃

(k)
T−1), in the extended space. Furthermore,

again, as in the PsMMH case, uniform ergodicity of the marginal chain
follows from uniform ergodicity of the extended chain since the bound-
ing term of the total variation distance for uniformly ergodic chains-
see Definition 2.3.14- is independent of where the chain starts. For the
PIMH sampler the chain in the extended space is uniformly ergodic if
π+/q over the extended space is uniformly bounded (Theorem 2.3.31).
Therefore, with a fixed θ ∈ Rp, the PIMH Sampler is uniformly ergodic
if, for fixed, finite T , and any t ∈ {0, . . . , T},

sup
x0:t∈Rd(t+1)

wt(x0:t; θ) ≤ Ct(θ) <∞ , (84)

for some Ct(θ). Moreover, for the PMMH sampler, where the pro-
posal for θ∗ is taken to be an independent proposal; that is, qΘ(·|θ) =
qΘ(·), the chain is uniformly ergodic if, for fixed, finite T , and any
t ∈ {0, . . . , T}, Condition (84) holds and

sup
θ∈Rp

Ct(θ)

qΘ(θ)
<∞ .

However, the same complexities as those described for the PsMMH
Sampler hold when considering the inheritance of geometric ergodicity;
that is, since the bound on the total variation distance for geometrically
ergodic chains depends on where the chain was initialised, it is not
necessarily the case, without some extra assumptions, that geometric
ergodicity of the marginal chain follows from geometric ergodicity of
the extended chain.

To demonstrate the Particle Independent Metropolis-Hastings Sam-
pler, consider the Linear Gaussian model of Example 2 with a fixed
θ:

example 3. Let X0 ∼ N(0, 1), θ = 0.8, and suppose that, for any
t ∈ {1, . . . , 100}, the transition distributions are given by (Xt|Xt−1 =
xt−1) ∼ N(θxt−1, 1), and the observation distributions are given by
Yt|Xt = xt ∼ N(xt, 0.3). Then, γ0(x0) = φ(x0; 0, 1), and, for any t ∈
{1, . . . , T}, γt is defined recursively by

γt(x0:t) = gt(yt|xt)φ(xt; θxt−1, 1)γt−1(x0:t−1) ,
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Figure 22: A plot of the path which generated the observations and the ob-
servations themselves (top row), along with a plot of one-hundred
thinned simulated paths from the PIMH and the observations (bot-
tom row). The simulated paths have been made semi-transparent
for ease of visualisation.

where φ(·;µ, σ2) denotes the density of a one-dimensional normal dis-
tribution with mean µ and variance σ2.

Using the bootstrap proposal; that is, p0(x0|θ) = φ(x0; 0, 1), and, for
any t ∈ {1, . . . , T}, pt(xt|xt−1, θ) = φ(xt; θxt−1, 1), we ran the PIMH for
ten-thousand iterations with N = 100. Figure 22 shows one-hundred
thinned simulated paths from the PIMH alongside the true observations
(bottom row), in comparison to the path which generated the observa-
tions (top row). Figure 23, on the other hand, shows histograms of
the simulated samples for several points in time at which the observa-
tions occur (t ∈ {25, 50, 75, 100}), along with the true target density
at these points in time. The figures demonstrate that the PIMH works
as expected in this case. Indeed, Figure 22 highlights that the thinned
simulated paths align with the observations and the dynamics of a true
simulated path. Moreover, Figure 23 shows that the samples generated
by the PIMH form a good empirical approximation to the true density;
at least when viewed marginally at several points in time at which the
observations occur.
The drawback of the Particle Marginal Metropolis-Hastings Sampler

is that, at each iteration, the candidate paths, ỹ(1:N)
0:T , of the next state

of the chain are simulated via the SMC procedure (Algorithm 8) in-
dependently of the current path of the chain; that is, independently
of xpath

m . Therefore, the chain can get stuck on paths with a relatively
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Figure 23: A plot of the histograms of the samples generated by the PIMH
for several points in time at which the observations occurred (t ∈
{25, 50, 75, 100}), along with the true target density at these points
in time.

large weight which results in poor mixing of the chain. The Correlated
Pseudo-Marginal Markov Chain Monte Carlo (CPsMMCMC) approach
attempts to overcome this sticky behaviour by correlating all the un-
derlying random variables involved in the SMC procedure- including
those needed during the resampling steps, thereby attempting to simu-
late candidate paths which are close to the reference path (Deligianni-
dis, Doucet, and Pitt, 2015; Dahlin et al., 2015; Murray and Graham,
2016). While such an approach can be effective in practice, the limiting
justification relies on the smoothness of the SMC estimator considered
as a function of all the underlying random variables. This condition is,
in general, difficult to justify since the resampling steps in the SMC
procedure are necessarily discontinuous. Moreover, while the use of a
Hilbert sort procedure, as described in Deligiannidis, Doucet, and Pitt,
2015, can make the variability induced by the resampling step smaller,
it still does not guarantee smoothness of the approximation and, just
as importantly, is computationally costly to implement.

4.2.4 The Particle Gibbs Sampler

As discussed in the last Section, the Particle Marginal Metropolis-
Hastings algorithm of Andrieu, Doucet, and Holenstein, 2010 can be
utilised to conduct inference for the full joint target density πT (θ, x0:T ).
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However, as highlighted at the end of the last section, such an algo-
rithm can mix poorly due to the fact that the candidate paths are
simulated independently of the current path of the chain. While the
Correlated Pseudo-Marginal Markov Chain Monte Carlo method (Deli-
giannidis, Doucet, and Pitt, 2015; Dahlin et al., 2015; Murray and
Graham, 2016) can work well in practice, it relies on correlating all the
random variables involved in the Sequential Monte Carlo procedure,
including those involved in the resampling steps. The discontinuity of
the resampling steps means that, in general, the SMC estimator, con-
sidered as a function of the underlying random variables, is not smooth,
thus invalidating the formal justification of such an approach. The Par-
ticle Gibbs Sampler (PGS) of Andrieu, Doucet, and Holenstein, 2010,
on the other hand, attempts to overcome the poor mixing behaviour
of the PMMH Sampler by considering the path corresponding to the
current state of the chain when simulating candidate paths for the next
state of the chain. Indeed, the PGS mimics an idealized Gibbs Sampler
by alternating between sampling the parameters, θ, given a path, xpath

m ,
and, sampling a path given the parameters. The former step is achieved
by sampling a θ from the joint target, πT (θ, xpath

m ), conditioned on the
path xpath

m ; that is, sample a θ with density π
(θ)
T (·|xpath

m ). The latter
step relies on the Conditional Sequential Monte Carlo procedure (see
Section 4.2.2 and Algorithm 12), which, given a reference path, sim-
ulates N candidate paths, along with corresponding weights, using a
particle filter with N + 1 particles which has been conditioned on in-
cluding the reference path as one of the N + 1 paths simulated. As
was the case for the Particle Marginal Metropolis-Hastings algorithm
of Andrieu, Doucet, and Holenstein, 2010, one chooses one of the N +1
paths with probability proportional to the final weight. The difference
here is that because the current path is included in the N + 1 candi-
date paths there is no acceptance step. Note that, as is the case for
any Gibbs Sampler, in the situation where it is difficult to sample a
θ given a path, xpath

m , the first step of the Particle Gibbs Sampler can
be replaced by any valid MCMC step. For instance, one could replace
it with a Metropolis-Hastings propose and accept-reject step. In full,
the Particle Gibbs Sampler of Andrieu, Doucet, and Holenstein, 2010
is given by Algorithm 15. Formally, the sampler consists of a sequence
of Gibbs steps targeting the extended density π+(km, θm, y

(0:N)
0:T , b

(0:N)
0:T−1)

given by (81), and, therefore, has this extended density (which exhibits
the target πT as the marginal density) as the stationary density of the
resulting chain. To see this, consider the two forms of the extended
density, given by (81) and (82) respectively:

π+(km, θm, y
(0:N)
0:T , b

(0:N)
0:T−1)

= w̃
(km)
T (ỹ

(0:N)
T ; θm)

IT (θm, ỹ
(0:N)
0:T )

ηT
Ψ(y

(0:N)
0:T , b

(0:N)
0:T−1|θm)

= (N + 1)−(T+1)γT (θ, ỹ
(km)
T )

ηT
ψ(y

(0:N)
0:T \ỹ(km)

T , b
(0:N)
0:T−1\b̃

(km)
T−1 |km, ỹ

(km)
T , b̃

(km)
T−1 , θm) .



110 exchangeable particle mcmc

Algorithm 15 Particle Gibbs Sampler

1: Initialise the chain at some (θ0, x0:T ) ∈ Rp ×Rd(T+1) and choose the number of
iterations, M .

2: Let a(0)
t = 0 for all t ∈ {0, . . . , T − 1}, and x

(0)
t = xt for all t ∈ {0, . . . , T} so

that x̃(0)
T = x0:T . Define xpath

0 := x̃
(0)
T , apath

0 := ã
(0)
T , and k0 = 0.

3: for m = 0, . . . ,M − 1 do
4: Set b̃(km)

T = apath
m and ỹ(km)

T = xpath
m .

5: Sample θm+1 with density π(θ)
T (·|ỹ(km)

T ).
6: Sample (y

(0:N)
0:T \ỹ(km)

T , b
(0:N)
0:T−1\b̃

(km)
T−1 ) with density

ψ(y
(0:N)
0:T \ỹ(km)

T , b
(0:N)
0:T−1\b̃

(km)
T−1 |km, ỹ

(km)
T , b̃

(km)
T−1 , θm+1) ,

defined by (79) via the CSMC procedure (see Algorithm 12).
7: Sample a km+1 ∈ {0, . . . , N} with probability w̃(km+1)

T (ỹ
(0:N)
T ; θm+1).

8: Set xpath
m+1 = ỹ

(km+1)

T and apath
m+1 = b̃

(km+1)

T .
9: end for

As shown in Algorithm 15, given a current state, (km, θm, ỹ
(km)
T , b̃

(km)
T−1 ),

in the extended space, the Particle Gibbs Sampler cycles through the
following steps:

1. Sample a θm+1 from π
(θ)
T (·|ỹ(km)

T ).

2. Sample a sequence (y
(0:N)
0:T \ỹ(km)

T , b
(0:N)
0:T−1\b̃

(km)
T−1 ) with density

ψ(y
(0:N)
0:T \ỹ(km)

T , b
(0:N)
0:T−1\b̃

(km)
T−1 |km, ỹ

(km)
T , b̃

(km)
T−1 , θm+1) ,

defined by (79) via the CSMC procedure (see Algorithm 12).

3. Sample a km+1 ∈ {0, . . . , N} with probability w̃(km+1)
T (ỹ

(0:N)
T ; θm+1).

Note, by (83), that the extended target exhibits πT as the marginal den-
sity for (θ, ỹ

(km)
T ). Thus, using the terminology of Liu, 2001, Section 6.7,

the first step is a collapsed Gibbs step. The second step is a Gibbs step
on the extended space as can be seen from the second representation
of the extended target:

π+(k, θ, y
(0:N)
0:T , b

(0:N)
0:T−1)

= (N + 1)−(T+1)γT (θ, ỹ
(k)
T )

ηT
ψ(y

(0:N)
0:T \ỹ(k)

T , b
(0:N)
0:T−1\b̃

(k)
T−1|k, ỹ

(k)
T , b̃

(k)
T−1, θ) .

The third step is also a Gibbs step on the extended space as can be
seen from the first representation of the extended target:

π+(k, θ, y
(0:N)
0:T , b

(0:N)
0:T−1)

= w̃
(k)
T (ỹ

(0:N)
T ; θ)

IT (θ, ỹ
(0:N)
0:T )

ηT
Ψ(y

(0:N)
0:T , b

(0:N)
0:T−1|θ) .

Theorem 5 of Andrieu, Doucet, and Holenstein, 2010 demonstrates that,
if each step of the Particle Gibbs Sampler is irreducible and aperiodic,
then the Particle Gibbs Sampler is ergodic in the sense of Corollary
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2.3.12. As such, by Theorem 2.3.13, the MCMC estimates correspond-
ing to the samples generated by the Particle Gibbs Sampler satisfy a
Strong Law of Large Numbers result. In addition, Corollary 2 of Lind-
sten, Douc, and Moulines, 2015, and Theorem 1 of Andrieu, Lee, and
Vihola, 2018, essentially demonstrate that the sampler is uniformly er-
godic (Definition 2.3.14), if, at each time t ∈ {0, . . . , T},

sup
(x0:t,θ)∈Rd×t×Rp

wt(x0:t; θ) <∞ . (85)

They do this by showing that, under such an assumption, the chain
induced by the sampler satisfies a minorization condition (Definition
2.3.16) on the whole state space and, therefore, that the entire state
space is small; which, by Theorem 2.3.17, is sufficient to prove uni-
form ergodicity of the sampler3. This strong result demonstrates that,
under such an assumption, the difference between the chain’s t-step
transition distributions and the target can be bounded uniformly by a
term that is independent of where the chain started, and, that decays
geometrically. Indeed, Theorem 2.3.17 gives this rate in terms of the mi-
norization constant which is analysed in depth in both Lindsten, Douc,
and Moulines, 2015 and Andrieu, Lee, and Vihola, 2018. As a result,
not only does such a chain produce MCMC estimates which satisfy a
Central Limit Theorem— by Theorem 2.3.22— but one can choose the
number of iterations to run the chain for such that the difference to
stationarity is bounded by a given threshold. Furthermore, Theorem 1
of Andrieu, Lee, and Vihola, 2018 shows that condition (85) is neces-
sary for the sampler to be geometrically ergodic; that is, the Particle
Gibbs Sampler can not be geometrically ergodic if

sup
(x0:t,θ)∈Rd×t×Rp

wt(x0:t; θ) =∞ .

These necessary and sufficient results align closely to the results derived
for the Independence Sampler; in particular, the results of Theorem
2.3.31, which states that the Independence Sampler is uniformly ergodic
if the independence weight, w(x) = π(x)/q(x), is such that

sup
x∈Rd

w(x) <∞ ,

and that this condition is necessary for the sampler to be geometrically
ergodic.
While such results give guarantees on the convergence of the Particle

Gibbs Sampler, they do not give guidance on how to choose the the num-
ber of particles, N . In particular, it is practically useful to know how N
should depend on T to get sufficiently good mixing without choosing N
too large. Clearly, the larger the value of T , the more information the
sampler has to infer, and so it is reasonable to believe that N must scale
with T somehow. However, choosing N too big means wasting computa-
tional effort and increasing run-times. On the other hand, choosing N

3 Theorem 3, Chopin, 2004 provides another proof that the Particle Gibbs Sampler is
uniformly erogodic under slightly stronger assumptions.
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too small may potentially result in poor mixing. In the latter case the
sampler would have to be run for more iterations to produce samples
that accurately represent the target, and, this increase in the number
of iterations would, again, increase the computational effort and run-
times. Propositions 4 and 5, Lindsten, Douc, and Moulines, 2015, and
Theorem 3 of Andrieu, Lee, and Vihola, 2018 demonstrate that, under
suitable strong-mixing conditions, it is sufficient to scale the number of
particles, N , linearly with T in order to obtain a non-degenerate lower-
bound on the minorizing constant in the limit as T →∞. In Theorem 6,
Lindsten, Douc, and Moulines, 2015 show that, under weaker, moment
conditions, the minorization constant is probabilistically bounded be-
low in the limit as T →∞ provided one scales the number of particles,
N , superlinearly with T— see Lindsten, Douc, and Moulines, 2015 for
a detailed statement of this result. Practically speaking, this suggests,
as one would intuit, that the number of particles required to achieve
a sampler with good rates of mixing depends on the problem at hand,
and, ultimately, on how well-behaved the SMC weights,

wt(x̃
(i)
t ; θ) =

γt(θ, x̃
(i)
t )

γt−1(θ, x̃
(a

(i)
t−1)

t−1 )pt(x
(i)
t |x̃

(a
(i)
t−1)

t−1 , θ)

,

are.
To demonstrate the Particle Gibbs Sampler (PGS), consider, again,

the one-dimensional Linear Gaussian model of Example 3; that is,
X0 ∼ N(0, 1), θ = 0.8, and, for any t ∈ {1, . . . , 100}, the transition
distributions are given by (Xt|Xt−1 = xt−1) ∼ N(θxt−1, 1), and the
observation distributions are given by Yt|Xt = xt ∼ N(xt, 0.3). Using
the bootstrap proposal; that is, p0(x0|θ) = φ(x0; 0, 1), and, for any
t ∈ {1, . . . , T}, pt(xt|xt−1, θ) = φ(xt; θxt−1, 1), we ran the PGS for
ten-thousand iterations with N = 100. Figure 24 shows one-hundred
thinned simulated paths from the PGS alongside the true observations
(bottom row), in comparison to the path which generated the obser-
vations (top row). Figure 25, on the other hand, shows histograms of
the simulated samples for several points in time at which the observa-
tions occur (t ∈ {25, 50, 75, 100}), along with the true target density at
these points in time. The figures demonstrate that, for this example,
although the PGS produces sample paths which are an okay empirical
approximation to the true density— at least when viewed marginally
at several points in time at which the observations occur— the samples
do not represent as good an approximation as those produced by the
Particle Independent Metropolis-Hastings— as can be seen by compar-
ing with Figures 22 and 23. In particular, Figure 25, when compared
with Figure 23, highlights that the empirical approximation to the true
marginal density at each t ∈ {1, . . . , 100} provided by the simulated
samples is worse the smaller t is. This behaviour stems from the fact
that, as highlighted at the end of Section 4.2.2, the conditional resam-
pling step of the Conditional Sequential Monte Carlo procedure can
result in candidate paths of the process coalescing backwards through
time; a feature that can be seen clearly in Figure 24. Although, in this
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Figure 24: A plot of the path which generated the observations and the ob-
servations themselves (top row), along with a plot of one-hundred
thinned simulated paths from the PGS and the observations (bot-
tom row). the simulated paths have been made semi-transparent
for ease of visualisation.

simple case, the sampler mixes fairly well, in general this path degener-
acy characteristic can ultimately result in a PGS which mixes poorly
(Lindsten and Schön, 2013; Lindsten, Jordan, and Schön, 2014; Chopin
and Singh, 2015).
The Particle Gibbs with Ancestor Sampling (PGAS) approach of

Lindsten, Jordan, and Schön, 2014 (see also Lindsten et al., 2015) at-
tempts to overcome the path degeneracy problem of the PGS by intro-
ducing an ancestor sampling step into the PGS, which, at each time
step, samples a new history of the reference path, thus allowing the
proposed paths to degenerate to a path which is different from the
reference path. By allowing the degeneration path to differ from the
reference path, the PGAS algorithm can achieve much better mixing
than the PGS (Lindsten, Jordan, and Schön, 2014). Unfortunately, the
ancestral sampling step relies on being able to calculate the likelihood of
the reference path having a particular history which makes the PGAS
impossible to implement in scenarios where this likelihood is intractable.
Moreover, if the weights of the particles have large variability, or, if the
model is such that the likelihood of the reference path having a history
which is not the same as the current history of the reference path is rela-
tively small, then the PGAS will offer little improvement over the PGS
(Lindsten et al., 2015). This makes the PGAS particularly ill-suited
to conducting inference for diffusions, since; firstly, the likelihood cor-
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Figure 25: A plot of the histograms of the samples generated by the PGS
for several points in time at which the observations occurred (t ∈
{25, 50, 75, 100}), along with the true target density at these points
in time.

responding to a particle that was propagated according to one of the
proposals introduced in Chapter 3 is intractable and computationally
costly to approximate, and, secondly, as highlighted in Chapter 3, the
variance of the weights corresponding to the proposals introduced in
Chapter 3 can be very large. While the rejuvenation approach of Lind-
sten et al., 2015 overcomes these limitations, it does so at the expense
of a significant increase in computational cost.

4.3 the exchangeable sampler

In a similar spirit to the Correlated Pseudo-Marginal Markov Chain
Monte Carlo method of Deligiannidis, Doucet, and Pitt, 2015, Dahlin
et al., 2015, and Murray and Graham, 2016, we attempt to overcome
the path degeneracy problem of the Particle Gibbs Sampler and the
limitations, as highlighted at the end of the previous section, of the
Particle Gibbs with Ancestor Sampling approach of Lindsten, Jordan,
and Schön, 2014, and Lindsten et al., 2015 by making the proposed
paths closer to the reference path being conditioned upon, and, there-
fore, make it more likely that the chain moves to a path which is dif-
ferent from the reference path. This is done by simulating particles
within the Sequential Monte Carlo procedure exchangeably as opposed
to independently. By only correlating the random variables associated
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with the propagation of the particles, and not the random variables as-
sociated with the resampling steps, we avoid the practically unrealistic
assumptions necessary for the limiting justification of the CPsMMCMC
algorithm.
Before introducing the Exchangeable Particle Gibbs Sampler, we

start, in this section, by introducing the Exchangeable Sampler which is
a generalisation of the Independence Sampler of Section 2.3.6.1. As the
name suggests, the Exchangeable Sampler generalisation is obtained by
proposing a sample conditional on the current state of the chain in an
exchangeable way (see Section 2.1.2 for an introduction to exchange-
ability); that is, in such a way that the joint density of the proposal
and the current state is symmetric, while still emitting a proposal den-
sity q as the marginal density4. As highlighted in Section 2.1.2, and
detailed in Algorithm 2 and the discussion thereafter, exchangeability
allows one to propose a state which is close to the current state, where,
as with the Random-Walk Sampler, the closeness of the proposal is
adjustable through a tunable jump-size. Moreover, the user is free to
construct a marginal proposal, q, which matches the structure of the
target in cases where this is known reasonably well. Furthermore, as
one shall see, the weight of the transition is independent of the current
state of the chain, thus allowing one to easily extend the Exchangeable
Sampler to a multiple-proposal regime, as was the case for the Indepen-
dence Sampler. The Exchangeable Sampler, therefore, shares the same
advantages as those the Random-Walk Sampler has, while also sharing
the same advantages as those the Independence Sampler has.
Suppose, then, that one has a target density π(x) = γ(x)/η with

support on Rd, where

η :=

∫
X

γ(x) dx

is a, potentially unknown, constant. Suppose further that the current
state of the chain is x. As with the Independence Sampler, let q0 :
Rd → R be a marginal density chosen to match the target as closely
as possible. Moreover, let q1 : Rd ×Rd → R be a joint density which is
exchangeable (see Definition 2.1.2), and which emits q0 as the marginal
density; that is,

q0(y0) =

∫
Rd

q1(y0, y1) dy1 , q0(y1) =

∫
Rd

q1(y0, y1) dy0 .

Consider proposing a state y1 with conditional density q̃1(y1|y0) =
q1(y0, y1)/q0(y0) where, for notational simplicity, y0 = x. Set the new
state, x∗, say, to be y1 with the Metropolis-Hastings acceptance prob-
ability

αm(y0:1) := 1 ∧ w(y1)

w(y0)
,

4 Exchangeability of the joint density ensures that there is a unique marginal density
regardless of which variables are marginalised out.
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where, analogously to the Independence Sampler, w denotes the transi-
tion weight ; w(z) := γ(z)/q0(z), and set x∗ to be y0 otherwise. Detailed
balance holds since

π(y0)q̃1(y1|y0)αm(y0:1) = π(y0)
q1(y0:1)

q0(y0)
αm(y0:1)

= η−1w(y0)q1(y0:1)αm(y0:1)

= η−1q1(y0:1)[w(y0) ∧ w(y1)] ,

which, since q1 is exchangeable, is a symmetric function of y0:1. There-
fore, the chain induced by such a procedure is reversible with respect
to π (see Definition 2.3.7). Alternatively, one could use Barker’s accep-
tance probability;

αb(y0:1) =
w(y1)

w(y0) + w(y1)
,

and the conclusions would still hold since

π(y0)q̃1(y1|y0)αb(y0:1) = η−1q1(y0:1)
w(y0)w(y1)

w(y0) + w(y1)
,

is a symmetric function of y0:1. As can be seen, the acceptance probabil-
ities for the Exchangeable Sampler are the same as the acceptance prob-
abilities for the Independence Sampler. Therefore, the single-proposal
Exchangeable Sampler outlined above can be efficiently extended to
the multiple-proposal regime. Indeed, letting αiN (y0:N ) be the multiple-
proposal extension of either Barker’s acceptance probability;

αbi,N (y0:N ) =
w(yi)

w(y0) + . . .+ w(yN )
, (86)

or the Metropolis-Hastings’ acceptance probability

αmi,N (y0:N ) :=
w(yi)

w(y0) + . . .+ w(yN )− [w(yk) ∧ w(y0)]
, (87)

for the i-th proposal, then Algorithm 16 gives the procedure for the
multiple-proposal Exchangeable Sampler; henceforth, simply, the Ex-
changeable Sampler.

remark 8. We note that Tjelmeland, 2004 provides a general frame-
work for multiple-proposal samplers where the transition step involves
simulating N proposals from a conditional proposal q̃N (y1:N |y0) and
choosing a move to yk with some probability. In the framework Tjelme-
land, 2004 presents, one does not need to know the marginal distri-
bution, q0, to implement the algorithm. Moreover, the two proposals
described in Tjelmeland, 2004 are such that the proposal q̃N satisfies
a certain symmetry, much like the random-walk sampler does; that is,
q̃N (y1:N |y0) = q̃N (y0:i−1, yi+1:N |yi) for any i ∈ {1, . . . , N}. As such,
for both these proposals, the transition weight, much like the transition
weight for the random-walk sampler, is simply γ(·). The first proposal
is very similar to the proposal we introduce in Algorithm 18 in the
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Algorithm 16 Multiple-Proposal Exchangeable Sampler

1: Initialise the chain at some x0 ∈ Rd and choose the number of iterations T > 0.
2: Let qN (y0:N ) be an exchangeable density whose marginal density is q0(·).
3: Define, as the proposal density,

q̃N (y1:N |y0) =
qN (y0:N )

q0(y0)
.

4: for t = 0, . . . , T − 1 do
5: Let y0 := xt.
6: Propose a sequence y1:N from q̃N (·|y0).
7: For each k ∈ {1, . . . , N} calculate αk,N (y0:N ).
8: Set α0,N (y0:N ) = 1− (α1,N (y0:N ) + . . .+ αN,N (y0:N )).
9: Set xt+1 = yk with probability αkN (y0:N ).
10: end for

case where the target and the marginal are both Normal distributions.
The second mimics random-walk proposals while keeping the proposals
equidistant from one another. Much like the Exchangeable Sampler in-
troduced in this thesis, it is the symmetry that simplifies the transition
weight and leads to an efficient sampler. The approaches described in
Tjelmeland, 2004 are a natural alternative to the Exchangeable Sampler
introduced in this thesis and so it would be interesting to compare the
two approaches and, even, extend the results derived in this thesis to the
methods described in Tjelmeland, 2004. Unfortunately, due to finding
the results in Tjelmeland, 2004 during the write-up of this thesis, we
have not done this comparison and/or extension of results.

In one-dimension one can use the conditional form of Algorithm
2, which is a multiple-sample extension of the preconditioned Crank-
Nicolson proposal introduced in Cotter et al., 2013, to generate propos-
als in an exchangeable way while, retaining q0 as the marginal density,
and also allowing the flexibility of making the proposal as close as one
wants to the current state of the chain via a tunable jump-size, ε. The
full procedure is given by Algorithm 17. This procedure can be easily

Algorithm 17 Exchangeable Proposal q̃N (y1:N |y0) With Marginal q0 and Jump-
Size ε ∈ (0,

√
2) for d = 1.

1: Let Φ denote the distribution function of a standard normal random variable and
Q0 denote the cumulative distribution function corresponding to the marginal
density q0.

2: Set δ := ε/
√

2.
3: Calculate z0 = Φ−1(Q0(y0)).
4: Sample ẑ0 from a N(0, 1) distribution.
5: Set θ =

√
1− δ2z0 + δẑ0.

6: for i = 1, . . . , N do
7: Sample ẑi from a N(0, 1) distribution.
8: Set zi = θ

√
1− δ2 + δẑi.

9: Set yi = Q−1
0 (Φ(zi)).

10: end for

extended to a general dimension, d, provided there exists an invertible
mapping, h : Rd → Rd, such that, if Z1:d ∼ Nd(0, Id), where Id de-
notes the d-dimensional identity matrix, then h(Z1:d) ∼ q0(·). The full
procedure is given by Algorithm 18.
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Algorithm 18 Exchangeable Proposal q̃N (y1:N |y0) With Marginal q0 and Jump-
Size ε ∈ (0,

√
2) for General d.

1: Let h : Rd → Rd be an invertible mapping, such that, if Z1:d ∼ Nd(0, Id), where
Id denotes the d-dimensional identity matrix, then h(Z1:d) ∼ q0(·).

2: Set δ := ε/
√

2.
3: Calculate z0 = h−1(y0).
4: Sample ẑ0 from a Nd(0, Id) distribution.
5: Set θ =

√
1− δ2z0 + δẑ0.

6: for i = 1, . . . , N do
7: Sample ẑi from a Nd(0, Id) distribution.
8: Set zi = θ

√
1− δ2 + δẑi.

9: Set yi = h(zi).
10: end for

remark 9. In practice, it is not neccessary to know how to do the
inversion since the first step of the procedure, z0 = h−1(y0), can be
omitted provided one stores, in memory, the z0 corresponding to the
current state of the chain. However, the exposition of the Exchangeable
Sampler and the Exchangeable Particle Gibbs Sampler of section 4.4 is
clearer if the proposal is explicitly conditional on y0.

remark 10. The implementation given by Algorithm 18 uses the
same jump-size, ε, for each of the d dimensions. However, exchange-
ability of the proposal density and the results that follow still hold if one
uses a different jump-size, εi, say, for each of the dimensions. The ben-
efit of doing this would be to take larger jumps in the dimensions where
one knew that the proposal in that dimension was closer to the target.
For instance, consider simulating a conditioned diffusion as described in
Chapter 3. The proposals described in that chapter of the thesis, like the
Modified Diffusion Bridge (Section 3.2.3), for example, tend to be bet-
ter approximations to the true conditioned diffusion as time gets closer
to the time that the observation being conditioned upon occurs. As a
result, it would be prudent, in such examples, to use a larger jump-size
closer to the time of the observation and a smaller jump-size further
away. However, to ease exposition, we will assume a fixed ε for each of
the d dimensions.

If q0 is continuous, then Algorithm 18 is the combination of trans-
formations under continuous functions, with sampling from continuous
distributions. Thus, it follows that, if q0 is continuous on Rd, then the
proposal, q̃N , is continuous on Rd×(N+1). Moreover, by construction, for
any x ∈ Rd and ε > 0, zi ∈ (−∞,∞)d for any i ∈ {1, . . . , N}. Hence,
yi ∈ {y ∈ Rd : q0(y) > 0} for each i ∈ {1, . . . , N}. Therefore,

{y1:N ∈ Rd×N : q̃N (y1:N |x) > 0} ≡ {y ∈ Rd : q0(y) > 0}N .

lemma 4.3.1. Let q0 be continuous on Rd and, for any ε ∈ (0,
√

2),
let q̃N (·|·) be the proposal density corresponding to Algorithm 18. Then
q̃N (·|·) is continuous on Rd×(N+1) and

{y1:N ∈ Rd×N : q̃N (y1:N |x) > 0} ≡ {y ∈ Rd : q0(y) > 0}N . (88)
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Figure 26: Plots of the histograms (left) and of ten-thousand samples simu-
lated from q̃1(·|−3) using Algorithm 18, where the marginal density,
q0, corresponds to a N(0, 1) distribution. Each row corresponds to
a different choice of the jump-size, ε ∈ {0.2, 0.5, 1.0,

√
2}, where

the top row corresponds to the largest jump-size, ε =
√

2, and
the bottom to the smallest, ε = 0.2. The right column shows the
boxplots of the corresponding differences between the simulated
samples and the initial state, y1 − y0.

Before discussing the ergodic properties of the Exchangeable Sam-
pler for a general N , it will be useful to demonstrate how, in practice,
the choice of the jump-size ε affects the closeness of the proposals. To
this end, this thesis will consider two illuminating examples. Firstly,
consider the simple case where q0 corresponds to a N(0, 1) distribution.
Suppose y0 = −3 and consider simulating ten-thousand independent
samples from q̃1(·|y0) using Algorithm 18. The left column of Figure 26
shows the histograms of the simulated samples for different choices of
the jump-size, ε ∈ {0.2, 0.5, 1.0,

√
2} where the top row corresponds to

the largest jump-size, ε =
√

2, and the bottom to the smallest, ε = 0.2.
Note that the largest jump-size, ε =

√
2, corresponds to the case of

independent proposals. The right column of Figure 26 shows, via box-
plots, the corresponding differences between the simulated samples and
the initial state, y1 − y0. It is clear from the figure that, the smaller
the jump-size, the closer the samples are to the initial state y0. This
behaviour is the same as the behaviour of samples proposed via the
Random-Walk Sampler. However, it is also clear that, unlike the be-
haviour of samples proposed via the Random-Walk Sampler, the larger
the jump-size the closer the empirical distribution function correspond-
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ing to the samples resembles that of a N(0, 1). Moreover, because the
majority of the mass of a N(0, 1) distribution lies within the range
(−3, 3) and the initial state is −3, the distribution of the difference
between the simulated proposals and the initial state, y1− y0 is, on av-
erage, positive. Again, this is unlike the Random-Walk Sampler whose
proposals have a difference from the current state which is symmetric
around zero.
Secondly, consider the more complicated case where π corresponds

to the conditioned Birth-Death diffusion of Section 3.1.1 and q0 corre-
sponds to the Modified Diffusion Bridge proposal of Section 3.2.3— see
Chapter 3 for more details regarding simulating conditioned diffusions.
Specifically, recall, from Section 3.2.3, that, in one-dimension, the MDB
proposal of a discretised path of the diffusion, x1:K , say, takes the form

qMDB
0 (x1:K |y) =

K∏
k=1

φ(xk; a
MDB
k−1 , CMDB

k−1 ) ,

where φ denotes the density corresponding to a one-dimensional normal
distribution and aMDB

k−1 and CMDB
k−1 correspond to the mean (Equation

(54)) and variance (Equation (55)) respectively, and, implicitly, depend
on xk−1, T , y, and tk−1. Such a proposal is equivalent to proposingK in-
dependent N(0, 1) random variables, Z1:K , and transforming those ran-
dom variables appropriately by sequentially setting, for k ∈ {1, . . . ,K},
Xk = aMDB

k−1 +
√
CMDB
k−1 Zk. Thus, simulating exchangeable paths corre-

sponds to simulating sequences of K independent N(0, 1) random vari-
ables in an exchangeable way. Given a high-weighted proposal path, y0,
simulated from the MDB, consider simulating one-hundred exchange-
able samples from q̃100(·|y0) using Algorithm 18. Figure 27 contains
plots of one-hundred samples from q̃100(·|y0) for different choices of the
jump-size, ε ∈ {0.1, 0.6, 1.0,

√
2}, alongside the path being conditioned

upon, y0. The top row corresponds to the largest jump-size, ε =
√

2,
and the bottom to the smallest, ε = 0.1. The left column shows the
path being conditioned upon, y0, in orange along with the simulated
exchangeable paths in blue. The right column shows the same thing
but where the transparency of the simulated paths have been set to
be inversely proportional to the corresponding normalised weights, and
where the normalisation has occurred including the weight of the path
being conditioned upon. It is clear from the figure that, the smaller
the jump-size, the closer the simulated paths are to the initial path y0.
Moreover, the weights are less variable and the path being conditioned
upon dominates less. Furthermore, as was the case for the previous
example, the larger the jump-size, the closer the simulated paths re-
semble simulated paths from the MDB. In this case, the weights are
more variable, and the path being conditioned upon dominates— note
that, in the independent case; that is, where ε =

√
2, the simulated

paths are essentially invisible highlighting the fact that, in this case,
the path being conditioned upon essentially has a normalised weight of
1.
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Figure 27: Plots of one-hundred samples from q̃100(·|y0), using Algorithm 18,
where the marginal density, q0, corresponds to the Modified Dif-
fusion Bridge proposal of Section 3.2.3 and the target conditioned
diffusion corresponds to the Birth-Death diffusion of Section 3.1.1.
Here, the path being conditioned upon, y0, is a high-weighted sam-
ple from the MDB. Each row corresponds to a different choice
of the jump-size, ε ∈ {0.1, 0.6, 1.0,

√
2}, where the top row corre-

sponds to the largest jump-size, ε =
√

2, and the bottom to the
smallest, ε = 0.1. The left column shows the path being condi-
tioned upon, y0, in orange along with the simulated exchangeable
paths in blue. The right column shows the same thing but where
the transparency of the simulated paths have been set to be in-
versely proportional to the corresponding normalised weights, and
where the normalisation has occurred including the weight of the
path being conditioned upon.

The Exchangeable Sampler, with proposal density given by Algo-
rithm 18, satisfies some fundamental properties regarding reversibility,
irreducibility, and non-negativity:

theorem 4.3.2. Let Xt be the Markov chain corresponding to the
Exchangeable Sampler with either Barker’s or the Metropolis-Hastings
acceptance probability. Suppose the sampler targets π using the proposal
density, q̃N (·|x), corresponding to Algorithm 18 which emits q0 as the
marginal density, where q0 is continuous on Rd, and

{y ∈ Rd : γ(y) > 0} ⊆ {y ∈ Rd : q0(y) > 0} .

Moreover, let ε ∈ (0,
√

2] be arbitrary. Then, the chain is;

1. Reversible with respect to π.
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2. One-step irreducible as defined in Lemma 2.3.10.

3. Non-negative.

Proof. See A.11.

This theorem, in conjunction with Lemma 2.3.10, Corollary 2.3.12,
and Theorem 2.3.13, demonstrates that the Markov chain correspond-
ing to the Exchangeable Sampler which targets π, has π as the limiting
distribution of the chain and that the resulting MCMC estimates sat-
isfy a Strong Law of Large Numbers result; (20). The non-negativity
result will also allow us to make use of Theorem 2.3.25 to prove that,
under certain conditions, the Exchangeable Sampler is geometrically
ergodic for any N ∈ N. First, we prove the following theorem which
gives general conditions under which propose and accept-reject Markov
chains satisfy a geometric drift condition;

theorem 4.3.3. Let Xt be a propose and accept-reject Markov chain
with state space X , a proposal density q(y|x), and an acceptance prob-
ability α(x, y). Suppose that there exists a function p : X → [0,∞),
which is finite for at least one x ∈ X , and constants, ρ∗ ∈ (1,∞) and
δ > 0, such that, with C := {x ∈ X : p(x) ≤ ρ∗}, the following hold;

(S) C is a small set.

(IM) For any x /∈ C,

Eq(·|x)

[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)]
< −δ

(UI) There exists a positive τ <∞ such that

µτ := sup
x/∈C

Eq(·|x)

[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)2

1Pτ (x)(Y )

]
<∞ ,

where Pτ (x) := {z ∈ X : τp(x) ≤ p(z)}.

(B) For P1(x) defined in property (UI),

ξ := sup
x∈C

Eq(·|x)[α(x, Y )(p(Y )− p(x))1P1(x)(Y )] <∞ .

Then, Xt satisfies a geometric drift condition. That is, letting P (x, ·)
denote the transition distributions of the chain, there exists a function
v : Rd → [1,∞), which is finite for at least one x ∈ Rd, an ε-small set
C, and positive, finite constants, β and γ < 1, such that

EP (x,·)(v(Y )) ≤ γv(x) + β1C(x) .

Proof. See A.12.
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Before showing how this theorem can be applied, it is worthwhile to
highlight the implications of each of the assumptions. Assumption (S)
of the theorem states that the set on which the function p is relatively
small is a small set. Therefore, the interesting behaviour of the chain
occurs when p is relatively large. Assumption (IM) asserts that, off the
small set; that is, when p is relatively large, the impetus of the chain
is to move to regions where p is smaller. In other words, there is a
drift towards smaller p when p is large. Assumption (UI) ensures that
moves from outside the small set C to regions where p is relatively much
larger are uniformly well-behaved. Finally, assumption (B) asserts that,
on average, any move from within the small set C to a region where p
is relatively larger is not such that, in this region, p is too large. While
such a theorem may seem a little contrived, its applicability can be seen
immediately by using it to provide an alternative proof of the geometric
ergodicity result of Theorem 2.3.34:

theorem 4.3.4. Let Xt be the Metropolis-Hastings random-walk sam-
pler in one dimension; that is, a propose-and-accept-reject Markov chain
with proposal density

q(x, y) =
1√

2πε2
exp

(
− (y − x)2

2ε2

)
for some ε > 0. Further, suppose that π is greater than zero for any
x ∈ R, and that π decays exponentially in the tails (in the sense of
Definition 2.3.33). Then, Xt is geometrically ergodic.

Proof. See A.13.

Importantly, when combined with Theorem 4.3.2, Theorem 4.3.3 al-
lows us to give a set of intuitive sufficient conditions, under which the
Exchangeable Sampler is geometrically ergodic and has corresponding
MCMC estimates which satisfy a central limit theorem for all functions
which are square-integrable with respect to π. Firstly, we show that any
compact set on which the transition weight is bounded above is small:

lemma 4.3.5. Let Xt be the Markov chain corresponding to the Ex-
changeable Sampler with either Barker’s or the Metropolis-Hastings ac-
ceptance probability, and with N = 1. Suppose, further, that the pro-
posal density, q̃1(·|x), is the density corresponding to Algorithm 18 and
emits q0 as the marginal density, where q0 is continuous on Rd, and

{y ∈ Rd : γ(y) > 0} ⊆ {y ∈ Rd : q0(y) > 0} .

Moreover, let ε ∈ (0,
√

2] be arbitrary. Then, any compact set of the
form {x ∈ X : w(x) ≤ w̄}, for some w̄ > 0, is small.

Proof. See A.14.

With Lemma 4.3.5 in hand, we are now ready to state and prove
two Corollaries which provide sufficient conditions under which the
Exchangeable Sampler is geometrically ergodic for N = 1. The first
corresponds to the case where the transition weights are bounded, and
the second corresponds to the case where the weights are unbounded:
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corollary 4.3.6. Let Xt be the Markov chain corresponding to the
Exchangeable Sampler which satisfies the assumptions of Lemma 4.3.5.
Suppose there exists positive, finite, constants w∗ < 1, w∗, and δ, such
that:

(B) The transition weight, w(x) := γ(x)/q0(x) is bounded by w∗ for
any x ∈ X .

(C) The set C := {x ∈ X : w∗ ≤ w(x)} is compact.

(IM) For any x /∈ C,

Eq̃1(·|x)

[
α(x, Y ) log

(
w∗ +

w(x)

w(Y )

)]
< −δ .

Then Xt is geometrically ergodic.

Proof. See A.15.

corollary 4.3.7. Let Xt be the Markov chain corresponding to the
Exchangeable Sampler which satisfies the assumptions of Lemma 4.3.5.
Suppose there exists positive, finite, constants w∗ > 1 and δ, such that:

(C) The set C := {x ∈ X : w(x) ≤ w∗} is compact.

(IM) For any x /∈ C,

Eq̃1(·|x)

[
α(x, Y ) log

(
1

w∗
+
w(Y )

w(x)

)]
< −δ .

(UI) There exists a positive τ <∞ such that

µτ := sup
x/∈C

Eq(·|x)

[
log

(
1

w∗
+
w(Y )

w(x)

)2

1Pτ (x)(Y )

]
<∞ ,

where Pτ (x) := {z ∈ X : τ−1w(z) ≥ w(x)}.

(B) For P1(x) defined in property (UI),

ξ := sup
x∈C

Eq(·|x)[w(Y )1P1(x)(Y )] <∞ .

Then Xt is geometrically ergodic.

Proof. See A.16.

In order to extend these corollaries and give sufficient conditions
under which the Exchangeable Sampler is geometrically ergodic for
general N ∈ N, and, ultimately, under which the corresponding MCMC
estimates satisfy a central limit theorem for all functions which are
square-integrable with respect to π, we need a further assumption that
ensures that the ratio of the weights is uniformly bounded in probability
so that no one proposal leads to a weight which dominates:
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assumption 4.3.8. For any N ∈ N, µN (r)→ 1 as r →∞, where

µN (r) := inf
x∈X

Pq̃N (·|x)

(
rw(Y1) ≥ max

i=2,...,N
w(Yi)

)
.

theorem 4.3.9. Let Xt be the Markov chain corresponding to the
Exchangeable Sampler which satisfies the assumptions of Lemma 4.3.5.
Suppose that, either assumptions (B), (C), and (IM) of Corollary 4.3.6
hold, or that assumptions (C), (IM), (UI), and (B) of Corollary 4.3.7
hold. Finally, suppose that Assumption 4.3.8 holds. Then, Xt is ge-
ometrically ergodic and the MCMC estimates corresponding to such
a sampler satisfy a central limit theorem for all functions which are
square-integrable with respect to π.

Proof. See A.17.

In general, given a target, π, and a proposal, q0, it is difficult to show
that, either assumptions (B), (C), and (IM) of Corollary 4.3.6, or as-
sumptions (C), (IM), (UI), and (B) of Corollary 4.3.7, hold. However,
from a practical viewpoint, it is often simple to investigate such assump-
tions numerically, and, therefore, provide a certain level of numerical
justification for using the Exchangeable Sampler in such a situation.
The following illuminating examples highlight several interesting sce-
narios that may occur in practice:

example 4. Consider the case where the target, π(x), is a N(0, 1)
distribution, and, the marginal proposal, q0(x), is a N(0, σ2) distribu-
tion, where σ2 := (2τ + 1)−1 for some τ > 0 (i.e. σ2 < 1). In this
scenario the tails of the proposal are exponentially lighter than the tails
of the target. Indeed, the weight, w(x) = π(x)/q0(x), is proportional to
exp(τx2) and, therefore, unbounded. As a result, one would expect that
the sampler is not geometrically ergodic since, the further into the tails
the sampler goes, the larger the weight and the increase in the weight
is exponential. It is shown in Lemma 4.3.10 that, for this example, for
any ε ∈ (0,

√
2], assumption (IM) of Corollary 4.3.7 is violated and,

therefore, Theorem 4.3.9 does not apply.

lemma 4.3.10. Let π(x) be the density corresponding to a N(0, 1)
distribution and q0(x) be the density corresponding to a N(0, σ2) distri-
bution where σ2 := (2τ + 1)−1 for some τ > 0. Suppose the proposal
density, q̃1, is the density corresponding to Algorithm 17 and emits q0

as the marginal density. Let ε ∈ (0,
√

2] be arbitrary. Then, for any
δ > 0, there exists a x∗ > 0 such that, for any x ≥ x∗, and any w∗ > 1,

Eq̃1(·|x)

[
α(x, Y ) log

(
1

w∗
+
w(Y )

w(x)

)]
> −δ .

That is, Assumption (IM) of Corollary 4.3.7 can not hold.

Proof. See A.18.
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example 5. Consider the case where the target, π(x), is a Gamma(α1, β)
distribution, and, the marginal proposal, q0(x), is a Gamma(α2, β) dis-
tribution where α1 > α2. In this scenario, as with the previous example,
the tails of the proposal are lighter than the tails of the target, however,
only polynomially so. Indeed, the weight, w(x) = π(x)/q0(x), is pro-
portional to x(α1−α2) and, therefore, unbounded. As a result, one would
expect that the sampler is geometrically ergodic since, even though the
further into the tails the sampler goes, the larger the weight, the rate
of increase is only polynomial. The sufficient conditions for geometric
ergodicity in the case where N = 1, as given by Corollary 4.3.7, rely on
the three quantities:

Eq̃1(·|x)

[
α(x, Y ) log

(
1

w∗
+
w(Y )

w(x)

)]
,

Eq̃1(·|x)

[
log

(
1

w∗
+
w(Y )

w(x)

)2

1Pτ (x)(Y )

]
,

Eq̃1(·|x)[w(Y )1P1(x)(Y )] ,

where Pτ (x) := {z ∈ X : τ−1w(z) ≥ w(x)}. Consider the case where
β = 1, α1 = 5.5, and α2 = 0.5, so that α1 − α2 = 5. Take w∗ = 105.
Then C = [0, 10). Figure 28 shows plots of Monte Carlo approximations
of the quantities

Eq̃1(·|x)

[
α(x, Y ) log

(
1

w∗
+
w(Y )

w(x)

)]
, (89)

Eq̃1(·|x)

[
log

(
1

w∗
+
w(Y )

w(x)

)2]
, (90)

Eq̃1(·|x)[w(Y )] , (91)

in the first, second, and third columns respecively. The plots in the first
two columns are over the interval x ∈ [10, 5000) ⊂ Cc, whereas the plots
in the last column are over the interval [0, 10) = C. Each row corre-
sponds to a different choice of the jump-size, with ε = 1.0 for the top
row, and ε = 0.5, ε = 0.2, ε = 0.05 for the second, third and fourth row
respectively. The Monte Carlo approximation to the expectations have
been calculated with one-hundred thousand samples. The plots show, at
least empirically, that, for these choices of ε,

Eq̃1(·|x)

[
α(x, Y ) log

(
1

w∗
+
w(Y )

w(x)

)]
< 0 ,

Eq̃1(·|x)

[
log

(
1

w∗
+
w(Y )

w(x)

)2]
<∞ ,

for any x ∈ [10, 5000) ⊂ Cc, and

sup
x∈C

Eq̃1(·|x)[w(Y )] <∞ .

Thus, these plots suggest that, for ε ∈ {0.05, 0.2, 0.5, 1.0}, the condi-
tions of Corollary 4.3.7 hold, the Exchangeable Sampler is geometri-
cally ergodic for N = 1, and the MCMC estimates satisfy a central
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limit theorem for all functions which are square-integrable with respect
to π. Recall that, for general N , it is, by Theorem 4.3.9, sufficient to
consider the quantity

µN (r) := inf
x∈X

Pq̃N (·|x)

(
rw(Y1) ≥ max

i=2,...,N
w(Yi)

)
, (92)

given in Assumption 4.3.8. Figure 29 shows plots of Monte Carlo ap-
proximations of the quantity given by (92) over the interval log(r) ∈
[0, 50] for a range of values for N . Each plot corresponds to a differ-
ent jump-size, with ε = 1.0 for the top-left plot, and ε = 0.5, ε = 0.2,
ε = 0.05 for the top-right, bottom-left and bottom-right plot respectively.
The Monte Carlo approximation to the probabilities have been calcu-
lated with one-hundred thousand samples and the infimum has been
empirically approximated by taking the minimum over a range of val-
ues of x in the interval (10−10, 101.5). These plots suggest that, for
ε ∈ {0.05, 0.2, 0.5, 1.0}, Assumption 4.3.8 holds. Thus, in conjunction
with Figure 28, this suggests that, at least empirically, the conditions
of Theorem 4.3.9 hold, the Exchangeable Sampler is geometrically er-
godic for any N ∈ N, and the MCMC estimates satisfy a central limit
theorem for all functions which are square-integrable with respect to π.

example 6. Consider the case where the target, π(x), is a N(0, 1)
distribution, and, the marginal proposal, q0(x), is a T(ν) distribution.
In this case the weight, w(x) = π(x)/q0(x), is proportional to

exp

(
− x2

2

)(
1 +

x2

ν

)(1+ν)/2

.

As |x| → ∞, w(x) ↓ 0. Therefore, the weight is bounded. As such,
one would expect that, in this scenario, the Exchangeable Sampler is
geometrically ergodic. The sufficient condition for geometric ergodicity
in the case where N = 1, as given by Corollary 4.3.6, relies on the
quantity:

Eq̃1(·|x)

[
α(x, Y ) log

(
w∗ +

w(x)

w(Y )

)]
.

Consider the case where ν = 5, and take w∗ = 10−10. Then, approx-
imately, C = [−5.81, 5.81]. Figure 30 shows plots of Monte Carlo ap-
proximations of the quantity

Eq̃1(·|x)

[
α(x, Y ) log

(
w∗ +

w(x)

w(Y )

)]
, (93)

for x in [−12.28,−5.81) and x in (5.81, 12.28] in the first and second
column respectively. Each row corresponds to a different choice of the
jump-size, with ε = 1.2 for the top row, and ε = 1.0, ε = 0.8, ε = 0.5
for the second, third and fourth row respectively. The Monte Carlo ap-
proximations to the expectations have been calculated with one-hundred
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Figure 28: Plots of Monte Carlo approximations of the quantities given by
(89), (90), and (91) in the first, second and third columns respec-
tively. The plots in the first two columns are over the interval
x ∈ [10, 5000) ⊂ Cc, whereas the plots in the last column are
over the interval [0, 10) = C. Each row corresponds to a different
choice of the jump-size, with ε = 1.0 for the top row, and ε = 0.5,
ε = 0.2, ε = 0.05 for the second, third and fourth row respectively.
The Monte Carlo approximation to the expectations have been cal-
culated with one-hundred thousand samples.

thousand samples. The plots show, at least empirically, that, for these
choices of ε,

Eq̃1(·|x)

[
α(x, Y ) log

(
w∗ +

w(x)

w(Y )

)]
< 0 ,

for any x ∈ [−12.28,−5.81) ∪ (5.81, 12.28]. Thus, these plots suggest
that, for ε ∈ {0.5, 0.8, 1.0, 1.2}, the conditions of Corollary 4.3.6 hold,
the Exchangeable Sampler is geometrically ergodic for N = 1, and the
MCMC estimates satisfy a central limit theorem for all functions which
are square-integrable with respect to π. As was the case for the previous
example, for general N , it is, by Theorem 4.3.9, sufficient to consider
the quantity (92) given in Assumption 4.3.8. Figure 31 shows plots
of Monte Carlo approximations of the quantity given by (92) over the
interval log(r) ∈ [0, 200] for a range of values for N . Each plot corre-
sponds to a different jump-size, with ε = 1.2 for the top-left plot, and
ε = 1.0, ε = 0.8, ε = 0.5 for the top-right, bottom-left and bottom-right
plot respectively. The Monte Carlo approximations to the probabilities
have been calculated with one-hundred thousand samples and the infi-
mum has been empirically approximated by taking the minimum over a
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Figure 29: Plots of Monte Carlo approximations of the quantity given by (92)
over the interval log(r) ∈ [0, 50] for a range of values for N . Each
plot corresponds to a different jump-size, with ε = 1.0 for the
top-left plot, and ε = 0.5, ε = 0.2, ε = 0.05 for the top-right,
bottom-left and bottom-right plot respectively. The Monte Carlo
approximation to the probabilities have been calculated with one-
hundred thousand samples and the infimum has been empirically
approximated by taking the minimum over a range of values of x
in the interval (10−10, 101.5).

range of values of x in the interval (−1000, 1000). These plots suggest
that, for ε ∈ {0.5, 0.8}, Assumption 4.3.8 may not hold. Thus, for these
choices of ε, the conditions of Theorem 4.3.9 may not hold. However,
the plots do suggest that, for ε ∈ {1.0, 1.2}, Assumption 4.3.8 does hold.
Thus, in conjunction with Figure 28, this suggests that, at least em-
pirically, for these choices of the jump-size, the conditions of Theorem
4.3.9 hold, the Exchangeable Sampler is geometrically ergodic for any
N ∈ N, and the MCMC estimates satisfy a central limit theorem for all
functions which are square-integrable with respect to π.

As with the Random-Walk Sampler of Section 2.3.6.2, while Theo-
rem 4.3.9 gives sufficient conditions on the target under which the Ex-
changeable Sampler produces MCMC estimates which satisfy central
limit theorems, it does not give guidance with regards to choosing a
good step-size; that is, a step-size which results in a Markov chain with
a high rate of mixing. Moreover, in comparison with the Random-Walk
Sampler, the Exchangeable Sampler has the added complexity that one
is also free to choose the marginal proposal q0 and the number of sam-
ples N to improve the mixing of the chain. To see the importance of
the step-size and the number of samples on the mixing properties of
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Figure 30: Plots of Monte Carlo approximations of the quantity given by (93),
for x approximately in [−12.28,−5.81) and x approximately in
(5.81, 12.28] in the first and second column respectively. Each row
corresponds to a different choice of the jump-size, with ε = 1.2 for
the top row, and ε = 1.0, ε = 0.8, ε = 0.5 for the second, third
and fourth row respectively. The Monte Carlo approximation to
the expectations have been calculated with one-hundred thousand
samples.

the Exchangeable Sampler, consider, again, Example 5. Figures 32, 33,
and 34 show, respectively, the behaviour of the Exchangeable sampler
with N = 1, N = 10, and N = 100. In each figure the behaviour of the
sampler has been illustrated for ε ∈ {0.05, 0.2, 0.5, 1.0,

√
2}.

It can be seen from Figure 32 that, in the case of N = 1, when
the jump-size, ε, is small, the acceptance rate- seen in the penultimate
column— is very close to one and the expected squared jump distance—
seen in the last column— is close to zero (as can be seen in the top
row of the figure). Moreover, in the independent case; that is, when the
jump-size is equal to

√
2, the acceptance rate is close to zero and the

expected squared jump distance is close to zero (as can be seen in the
bottom row of the figure). In both cases the chain does not mix well—
as can be seen from the second column— and the density of samples
do not represent the true density particularly well —as can be seen in
the first column. However, when ε is chosen to be of an appropriate size
(ε ∈ {0.2, 0.5, 1.0}), the acceptance rate is neither close to zero or one,
the expected squared jump distance is relatively large, the chain mixes
relatively well, and the density of the samples represent the true density
well (as can be seen in the middle three rows of the figure). It can be
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Figure 31: Plots of Monte Carlo approximations of the quantity given by (92)
over the interval log(r) ∈ [0, 200] for a range of values for N . Each
plot corresponds to a different jump-size, with ε = 1.2 for the top-
left plot, and ε = 1.0, ε = 0.8, ε = 0.5 for the top-right, bottom-left
and bottom-right plot respectively. The Monte Carlo approxima-
tion to the probabilities have been calculated with one-hundred
thousand samples and the infimum has been empirically approxi-
mated by taking the minimum over a range of values of x in the
interval (−1000, 1000).

seen from Figures 33 and 34 that the larger the number of samples; that
is, the larger the value for N , the larger the exepcted squared jump
distance one can achieve with the Exchangeable Sampler, the larger
the optimal acceptance rate, and the larger the optimal scaling. It can
be seen from all three figures that the expected squared jump distance
converges to the limiting expected squared jump distance fairly quickly.
As was the case for the Random-Walk sampler in Section 2.3.6.2, this
suggests that the expected squared jump distance is a useful measure
to monitor when tuning the Exchangeable Sampler.

4.3.1 Optimal Scaling

Given the observations at the end of the previous section, and the com-
parisons to the Random-Walk sampler of Section 2.3.6.2, it is natural
to ask, for the Exchangeable Sampler, if one can derive optimal scaling
results which are in the same spirit as the optimal scaling results of
Section 2.3.6.3; that is, results which practitioners can use as a general
guide on how to choose the jump-size so as to maximize the rate of mix-
ing of the chain. We follow a similar approach to that taken by Sherlock
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Figure 32: An illustration of the behaviour of the Exchangeable sampler, with N =
1, which targets a Gamma(5.5, 1.0) distribution using a Gamma(0.5, 1.0)
distribution as the marginal proposal q0. The five rows, top to bottom,
correspond to jump-sizes ε = 0.05, ε = 0.2, ε = 0.5, ε = 1.0, and ε =

√
2

respectively, and the samplers were run for ten-thousand iterations. The
first column shows histograms of the simulated samples, with a plot of
the true target density super-imposed. The second column shows the
evolution of the chain. The third and fourth columns show the evolution
of the acceptance rate and the expected squared jump distance respec-
tively.
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Figure 33: An illustration of the behaviour of the Exchangeable sampler, with
N = 10, which targets a Gamma(5.5, 1.0) distribution using a
Gamma(0.5, 1.0) distribution as the marginal proposal q0. The five rows,
top to bottom, correspond to jump-sizes ε = 0.05, ε = 0.2, ε = 0.5,
ε = 1.0, and ε =

√
2 respectively, and the samplers were run for ten

thousand iterations. The first column shows histograms of the simu-
lated samples, with a plot of the true target density super-imposed. The
second column shows the evolution of the chain. The third and fourth
columns show the evolution of the acceptance rate and the expected
squared jump distance respectively.
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Figure 34: An illustration of the behaviour of the Exchangeable sampler, with
N = 100, which targets a Gamma(5.5, 1.0) distribution using a
Gamma(0.5, 1.0) distribution as the marginal proposal q0. The five rows,
top to bottom, correspond to jump-sizes ε = 0.05, ε = 0.2, ε = 0.5,
ε = 1.0, and ε =

√
2 respectively, and the samplers were run for ten

thousand iterations. The first column shows histograms of the simu-
lated samples, with a plot of the true target density super-imposed. The
second column shows the evolution of the chain. The third and fourth
columns show the evolution of the acceptance rate and the expected
squared jump distance respectively.
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and Roberts, 2009, who maximize the expected squared jump distance
as the measure of efficiency. Unfortunately, the transformation, h, which
transforms the variables z1:N to proposals y1:N— see Algorithm 18—
makes theoretically analysing the expected squared jump distance on
the state space of the chain difficult. Instead, then, we consider the ex-
pected squared jump distance on the space in which the variables z1:N

lie. To see that this is a reasonable metric to evaluate, consider, again,
applying the Metropolis-Hastings Exchangeable Sampler to Example
5. Figure 35 shows plots of the expected squared jump distance in the
original, X-space, against the expected squared jump distance in the
underlying, Z-space, for a range of jump-sizes ε ∈ (0,

√
2), and for a

range of values of N . Each expected squared jump distance was calcu-
lated from the output of the sampler run for ten-thousand iterations.
The figure suggests that, for this example, the expected squared jump
distances, although on different scales, are closely correlated with one
another and, so, in terms of a metric for measuring the performance of
the sampler, the two can be used interchangeably. Moreover, Figure 36
illustrates plots of the acceptance rate against the the expected squared
jump distances in the X-space and Z-space of the Metropolis-Hastings
Exchangeable sampler with a range of values for N . The acceptance
rates and expected squared jump distances were calculated for a range
of jump-sizes ε ∈ (0,

√
2) and the samplers were run for ten-thousand

iterations. The figure suggests that the expected squared jump distance
as a function of the acceptance rate has similar properties in both the
X-space and Z-space. In particular, both achieve their optimum at
around the same point and both are fairly insensitive to the accep-
tance rate around the optimum. Indeed, for N = 1, any acceptance
rate in [0.18, 0.66] achieves an expected squared jump distance in both
the X-space and Z-space which is above 60% of the maximum. For
N = 10, N = 50, and N = 100 this insensitivity interval becomes
[0.41, 0.9], [0.54, 0.96], and [0.62, 0.97] respectively. Therefore, for this
example, monitoring either the expected squared jump distance in the
X-space or the expected sqaured jump distance in the Z-space, as a
function of the acceptance rate, will lead to similar conclusions and,
thus, again, in terms of a metric for measuring the performance of the
sampler, the two can be used interchangeably. Of course, in general,
such a metric will only make sense if the transformation, h, is suitably
smooth, so that closeness in the Z-space will result in closeness in the
X-space. Indeed, from Section 2.1.2, Lipschitz continuity of h with a
suitably small Lipschitz constant would be sufficient to justify the use
of such a metric.
In order to theoretically analyse the expected squared jump distance

and the expected acceptance rate in the Z-space, we consider a specific
form of the Exchangeable Sampler which targets a density, π∗, of a
product form by using a marginal density, q∗0, which is also of a product
form:
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Figure 35: An illustration of the correlation between the expected squared jump
distances in the X-space and Z-space of the Metropolis-Hastings Ex-
changeable sampler, with a range of values for N , which targets a
Gamma(5.5, 1.0) distribution using a Gamma(0.5, 1.0) distribution as
the marginal proposal q0. The expected squared jump distances were
calculated for a range of jump-sizes ε ∈ (0,

√
2) and the samplers were

run for ten-thousand iterations.
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Figure 36: Plots of the acceptance rate against the the expected squared jump
distances in the X-space (orange line) and Z-space (blue line) of the
Metropolis-Hastings Exchangeable sampler, with a range of values for N ,
which targets a Gamma(5.5, 1.0) distribution using a Gamma(0.5, 1.0)
distribution as the marginal proposal q0. The acceptance rates and ex-
pected squared jump distances were calculated for a range of jump-sizes
ε ∈ (0,

√
2) and the samplers were run for ten-thousand iterations.
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definition 4.3.11. Let the number of samples, N ∈ N, the dimen-
sion, d, and the jump-size, ε ∈ (0,

√
2), be fixed. Consider the Exchange-

able Sampler given by Algorithm 16 which targets the density

π∗(x(1:d)) :=

d∏
i=1

π(x(i)) ,

by using the marginal proposal density

q∗0(x(1:d)) :=
d∏
i=1

q0(x(i)) ,

as part of Algorithm 18 to generate proposals. Specifically, let X(1:d)

be an independent sequence of random variables where each X(i) ∼
π. Suppose q0 is a one-dimensional density with cumulative density
function Q0. Let the transformation, h∗, be given by

h∗(z(1:d)) := (Q−1
0 [Φ(z(1))], . . . , Q−1

0 [Φ(z(d))]) ,

where Φ denotes the cumulative density function corresponding to a
standard normal random variable. Then, by Theorem 2.3.2, if Z(1:d) ∼
Nd(0, Id), then h∗(Z(1:d)) ∼ q∗0. Now, let h := Q−1

0 ◦Φ, so that, if X(i) ∼
π, then Z(i) = h−1(X(i)) has density πZ(z(i)) := π[h(z(i))]|h′(z(i))|.
Note that the transformation h∗ satisfies the necesarry assumptions of
the exchangeable proposal given by Algorithm 18. Suppose Z(1:d)

0 ∼ π∗Z ,
where

π∗Z(z
(1:d)
0 ) :=

d∏
i=1

πZ(z
(i)
0 ) ,

and let Ẑ(1:d)
0:N be an independent sequence of d-dimensional random vari-

ables such that, for any k ∈ {0, . . . , N}, Ẑ(1:d)
k ∼ Nd(0, Id). For each

k ∈ {1, . . . , N} define

Z
(1:d)
k := (1− δ2)Z

(1:d)
0 + δ

√
1− δ2Ẑ

(1:d)
0 + δẐ

(1:d)
k ,

where δ := ε/
√

2. Furthermore, for any k ∈ {1, . . . , N}, let α∗k,N (w∗0:N )
be the multiple-proposal extension of either Barker’s acceptance proba-
bility (Equation (86)) or the Metropolis-Hastings acceptance probability
(Equation (87)) expressed in terms of the transition weights, which are
of the form w∗ = π∗/q∗0; that is, either

α∗k,N (w∗0:N ) =
w∗k

w∗0 + . . .+ w∗N
, or, α∗k,N (w∗0:N ) =

w∗k
w∗0 + . . .+ w∗N − [w∗k ∧ w∗0]

.

Let g∗ := w∗ ◦ h∗; that is,

g∗(z(1:d)) :=
d∏
i=1

w[h(z(i))] ,
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where w = π/q0 is the marginal transition weight. Finally, let g := w◦h.
Then, we define the expected squared jump distance to be

JN (ε) := E
[ N∑
k=1

α∗k,N (g∗(Z(1:d)
0 ), . . . , g∗(Z(1:d)

N ))‖Z(1:d)
k −Z(1:d)

0 ‖2
]
,

(94)

and the expected acceptance rate to be

αN (ε) := E
[ N∑
k=1

α∗k,N (g∗(Z(1:d)
0 ), . . . , g∗(Z(1:d)

N ))

]
. (95)

To derive an optimal scaling result for the expected squared jump
distance and expected acceptance rate, given by Equations (94) and
(95) respectively, the following assumptions on the density πZ and the
transition weight expressed in terms of z; that is, h∗, are needed:

assumptions 4.3.12.

(B) Let Z ∼ πZ , where πZ is as defined in Definition 4.3.11:

(B.a) For any k ∈ {1, . . . , 4}, E[|Z|k] <∞.

(B.b) The logarithm of the marginal transition weight expressed
in terms of z; that is, p(z) := log[g(z)], where g := w◦h, and
w, h are defined in Definition 4.3.11, is twice differentiable
and satisfies

E[p′(Z)2] <∞ , E[p′′(Z)2] <∞ .

(L) The second derivative of p is Lipschitz continuous with Lipschitz
constant a; that is, for any z0:1 ∈ h−1(X )× h−1(X ),

|p′′(z1)− p′′(z0)| ≤ a|z1 − z0| .

(G) The gradient of the transition weight expressed in terms of z; that
is, g′, is sufficiently well-behaved in the tails in the sense that

lim
z↑∞

g′(z)φ(z) = lim
z↓−∞

g′(z)φ(z) = 0 ,

where φ is the density of a standard normal random variable.

Before stating the main theorem, a few preliminary results are pre-
sented. The first derives a relationship between the first and second
derivative of the logarithm of the transition weight expressed in terms
of z:

lemma 4.3.13. Let p(z) := log[g(z)], where g := w ◦h, and h, w are
defined in Definition 4.3.11. Then, under Assumptions 4.3.12,

E[p′(Z)2] = −E[p′′(Z)− Zp′(Z)] ,

where Z ∼ πZ , and πZ is as defined in Definition 4.3.11.
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Proof. See A.19.

The second Lemma derives an approximation on the difference be-
tween the logarithm of the marginal density π at a current state and a
proposed state:

lemma 4.3.14. Let Ẑ0:1, Z0 be an independent tuple of random vari-
ables where Ẑi ∼ N(0, 1) for i ∈ {0, 1}, and Z0 ∼ πZ , where πZ is
defined in Definition 4.3.11. Let

Z1 := (1− δ2)Z0 + δ
√

1− δ2Ẑ0 + δẐ1 ,

for some δ ∈ (0, 1), and p(z) := log[g(z)], where g := w ◦ h, and h, w
are defined in Definition 4.3.11. Then, under Assumptions 4.3.12,

p(Z1)−p(Z0) = δC1(Ẑ0:1, Z0) + δ2C2(Ẑ0:1, Z0) + δ3R(Ẑ0:1, Z0:1, δ) ,

where

C1(Ẑ0:1, Z0) := p′(Z0)(Ẑ0+Ẑ1) , C2(Ẑ0:1, Z0) :=
1

2
(Ẑ0+Ẑ1)p′′(Z0)−Z0p

′(Z0) ,

and |R(Ẑ0:1, Z0:1, δ)| ≤ R∗(Ẑ0:1, Z0) where R∗ is independent of Z1 and
δ, and E[R∗(Ẑ0:1, Z0)] <∞.

Proof. See A.20.

Using these two lemmas, a third lemma decomposes the difference
between the logarithm of the weight, expressed in terms of z, at any
of the N proposed states and the logarithm of the weight, expressed in
terms of z, at a current state into two random variables whose limiting
behaviour as d tends towards infinity, and as δ is scaled appropriately,
is known:

lemma 4.3.15. Let p(z) := log[g(z)], where g := w ◦h, and h, w are
defined in Definition 4.3.11. Moreover, let (Z

(1:d)
0 , Ẑ

(1:d)
0:N ) be an inde-

pendent sequence of random variables, where, for any k ∈ {0, . . . , N},
Ẑ

(1:d)
k ∼ Nd(0, Id), and, for any i ∈ {1, . . . , d}, Z(i)

0 ∼ πZ , where πZ is
as defined in Definition 4.3.11. For each k ∈ {1, . . . , N} define

Z
(1:d)
k := (1− δ2

d)Z
(1:d)
0 + δd

√
1− δ2

dẐ
(1:d)
0 + δdẐ

(1:d)
k ,

where δd := λd−1/2/
√

2 for some λ > 0. Define ϕ := E[p′(Z(1)
0 )2]. Then,

for any k ∈ {1, . . . , N}, we have, under Assumptions 4.3.12,

d∑
i=1

[p(Z
(i)
k )− p(Z(i)

0 )] = Dk(d) + Uk(d) ,

where {Dk(d) : d ∈ N} is a collection of random variables such that

plim
d↑∞

Dk(d) = −λ
2ϕ

2
,
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and {Uk(d) : d ∈ N} is a collection of random variables such that

dlim
d↑∞

(U1(d), . . . , UN (d)) = (U1, . . . , UN ) ,

where, for each k ∈ {1, . . . , N}, Uk := A + Bk, and (A,B1:N ) is a
collection of independent random variables where

A ∼ N

(
0,
λ2ϕ

2

)
,

and, for any k ∈ {1, . . . , N},

Bk ∼ N

(
0,
λ2ϕ

2

)
.

Proof. See A.21.

A fourth lemma derives two results concerning the limit of an appro-
priately scaled jump:

lemma 4.3.16. Let (Z
(1:d)
0 , Ẑ

(1:d)
0:1 ) be an independent sequence of ran-

dom variables, where, for any k ∈ {0, 1}, Ẑ(1:d)
k ∼ Nd(0, Id), and, for

any i ∈ {1, . . . , d}, Z(i)
0 ∼ πZ , where πZ is as defined in Definition

4.3.11. Define

Z
(1:d)
1 := (1− δ2

d)Z
(1:d)
0 + δd

√
1− δ2

dẐ
(1:d)
0 + δdẐ

(1:d)
1 ,

where δd := λd−1/2/
√

2 for some λ > 0. Then, under Assumptions
4.3.12,

lim
d↑∞

E[‖Z(1:d)
1 −Z(1:d)

0 ‖2] = λ2 , lim
d↑∞

E[(‖Z(1:d)
1 −Z(1:d)

0 ‖2−λ2)2] = 0 .

Proof. See A.22.

With these preliminary results in place, an optimal scaling result
for the Exchangeable Sampler with either Barker’s or the Metroplis-
Hastings acceptance probability can be demonstrated;

theorem 4.3.17. Consider the Exchangeable Sampler given in Def-
inition 4.3.11 which targets a density, π∗, of a product form by using
a marginal density, q∗0, which is also of a product form. Suppose that
Assumptions 4.3.12 hold. Then, using the multiple-proposal extension
of Barker’s acceptance probability (Equation (86)),

lim
d↑∞

α(λd−1/2) = ᾱb(λ) := 1−E
[{

1+exp(−ξ2) exp(ξW0)
N∑
k=1

exp(ξWk)

}−1]
,

(96)

where ξ := λ
√
ϕ/
√

2, ϕ is defined in Lemma 4.3.15, and W0:N is an in-
dependent sequence of one-dimensional standard Normal random vari-
ables. Moreover,

lim
d↑∞

J(λd−1/2) = J̄b(λ) := λ2ᾱb(λ) . (97)
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Using the multiple-proposal extension of the Metropolis-Hastings accep-
tance probability (Equation (87)),

lim
d↑∞

α(λd−1/2) = ᾱm(λ)

:=
N∑
k=1

exp(ξWk)

exp(ξ2 − ξW0) + s(W1:N )− [exp(ξ2 − ξW0) ∧ exp(ξWk)]
,

(98)

where

s(w1:N ) :=
N∑
j=1

exp(ξWj) ,

and, as previously, ξ := λ
√
ϕ/
√

2, ϕ is defined in Lemma 4.3.15, and
W0:N is an independent sequence of one-dimensional standard Normal
random variables. Moreover,

lim
d↑∞

J(λd−1/2) = J̄m(λ) := λ2ᾱm(λ) . (99)

Proof. See A.23.

When N = 1,

ᾱb(λ) = E
[

exp(−ξ2) exp(
√

2ξW )

1 + exp(−ξ2) exp(
√

2ξW )

]
,

where W ∼ N(0, 1). Moreover,

ᾱm(λ) = E
[

exp(ξW1)

exp(ξ2 − ξW0) + exp(ξW1)− [exp(ξ2 − ξW0) ∧ exp(ξW1)]

= E
[

exp(−ξ2) exp(
√

2ξW )

1 + exp(−ξ2) exp(
√

2ξW )− [1 ∧ exp(−ξ2) exp(
√

2ξW )]

]
= E

[
1 ∧ exp(−ξ2) exp(

√
2ξW )

]
,

where W ∼ N(0, 1). Thus, in the case of N = 1, the optimal scaling re-
sult for the Exchangeable Sampler, given by Theorem 4.3.17, matches
the optimal scaling result for the Random-Walk Sampler, given by The-
orem 2.3.36. Therefore, the results of Corollaries 2.3.37 and 2.3.38 im-
mediately follow. Unfortunately, for general N ∈ N, the asymptotic
quantities given by Theorem 4.3.17 are intractable. However, Figures
37 and 38 show plots of the asymptotic expected efficiency5; that is,
the asymptotic expected squared jump distance over the number of
particles, up to a constant of proportionality, against the asymptotic
acceptance rate for Barker’s Exchangeable Sampler and the Metropolis-
Hastings Exchangeable Sampler respectively. Each figure shows the re-
lationship for N ∈ {1, 10, 100, 1000}. Note that, for both samplers, the

5 This definition of efficiency assumes that the computational complexity scales lin-
early with N .
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Figure 37: Plots of the asymptotic expected efficiency, up to a constant of propor-
tionality, against the asymptotic acceptance rate for Barker’s Exchange-
able Sampler for a range of values for N .

optimal acceptance rate gets closer to one as the value for N increases.
Also, the optimal efficiency is the largest, over the values of N consid-
ered, for N = 1. Moreover, for both cases, and for each value of N , the
optimal asymptotic expected efficiency is fairly insensitive to choices of
the asymptotic acceptance rate around the optimum. Indeed, consider
Barker’s Exchangeable Sampler. For N = 1, an asymptotic acceptance
rate in the interval [0.04, 0.33] leads to an asymptotic expected effi-
ciency which is above 60% of the optimal. For N = 10, N = 100, and
N = 1000 this interval becomes [0.12, 0.73], [0.21, 0.9], and [0.23, 0.95]
respectively. On the other hand, for the Metropolis-Hastings Sampler
with N = 1, any asymptotic acceptance rate in the interval [0.06, 0.53]
leads to an asymptotic expected efficiency which is above 60% of the
optimal. For N = 10, N = 100, and N = 1000 this interval becomes
[0.13, 0.81], [0.19, 0.9], and [0.23, 0.96] respectively. As such, as was the
case for the Random-walk Sampler, it is unnecessary to finely tune the
jump-size to achieve the optimal acceptance rate provided the tuned
acceptance rate is on the same scale as the optimal asymptotic accep-
tance rate. Although these observations are purely theoretical, due to
asymptotic nature of the conclusions and the strong assumptions on
the target, the insensitivity to fine-tuning of the acceptance rate can
be seen in Example 5, as was highlighted in Figures 32, 33, and 34, and
discussed at the end of the last section.
Figures 37 and 38 highlight the theoretical behaviour of the asymp-

totic efficiency as a function of the asymptotic acceptance rate. While
monitoring the running sample efficiency in order to tune the value of
the jump-size is a sensible strategy one can use in practice to optimise
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Figure 38: Plots of the asymptotic expected efficiency, up to a constant of pro-
portionality, against the asymptotic acceptance rate for the Metropolis-
Hastings Exchangeable Sampler for a range of values for N .

the mixing of the chain, it is prudent to understand to what extent
such theoretical results hold for finite d. To this end, we will consider
the simple task of targeting the d-dimensional posterior corresponding
to the likelihood (Y |X = x) ∼ Nd(x, 0.3Id) and a Nd([0.8, . . . , 0.8], Id)
prior, by using the Exchangeable Sampler (Algorithm 16) with the prior
as the marginal proposal density. Here, Id denotes the d-dimensional
identity matrix. Note that this scenario is a d-dimensional extension
of the Linear Gaussian model given by Example 2 in the case where
X0 is fixed to be 1 and T = 1; this observation is noteworthy as we
will, in Section 4.4.1, use the same d-dimensional extension with T > 1
to numerically assess the theoretical optimal scaling results for the Ex-
changeable Particle Gibbs Sampler of Section 4.4— which we derive
in that section— for finite d. The transition weight in this scenario is
given by

w(x, y) ∝ exp(−10‖y − x‖2/6) .

For each d ∈ {1, 2, 5, 10, 25, 50}, we set y to be the d-dimensional vector
filled with 0.8; that is, y = E(Y ), and simulated the Exchangeable Sam-
pler for one-hundred-thousand iterations for eachN ∈ {1, 10, 50, 100, 1000}
and for ten values of ε linearly spaced on the interval [0.05,

√
2]; that is

ε ∈ {0.05, 0.05+(
√

2−0.05)/9, 0.05+2(
√

2−0.05)/9, . . . ,
√

2}. For each
run of the sampler we calculated the acceptance rate and the expected
squared-jump distance in the Z-space. Figures 39 and 40 show, respec-
tively, plots of the sample efficiency against the sample acceptance rate
for Barker’s and the Metropolis-Hastings Exchangeable Sampler for this
scenario and for d ∈ {1, 2, 5, 10, 25, 50} and N ∈ {1, 10, 50, 100, 1000}.
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The figures show that, up to a constant of proportionality, the be-
haviour of the sample efficiency against the sample acceptance rate
for d ∈ {25, 50} matches the theoretical behaviour, shown in Figures
37 and 38, exactly. However, for smaller d, this is not the case. Indeed,
even though, for d = 10, the optimal sample acceptance rate occurs
around the same place as the theoretical optimal acceptance rate, and
the behaviour of the sample efficiency for higher sample acceptance
rates matches the behaviour of the theoretical efficiency for higher ac-
ceptance rates, the curves do not cover the same range of acceptance
rates as the theoretical curves do. Specifically, smaller sample accep-
tance rates are not achieved for d = 10. This lack of range for the
sample acceptance rate, resulting in only partial matches of the sample
curves to the theoretical curves, is exaggerated the smaller d is and the
larger N is. This is because, when N is larger, one can choose a larger
jump-size to get the same acceptance rate as for a smaller N , and, due
to the nature of the Exchangeable Sampler, the maximum jump-size is
pinned at ε =

√
2. Indeed, for d ∈ {1, 2}, one should choose ε =

√
2 in

order to optimise the mixing of the chain regardless of the value of N .
Note that, whatever the dimension, the plots suggest that the value of
N which optimises the efficiency is always N = 1 which matches the
advice derived from the theoretical results.
It is important to note that, in practice, the computational cost might

not scale like N and so, for these scenarios, this definition of efficiency
would not be the correct one. For example, one might be able to make
use of parallel computations to simulateN > 1 particles simultaneously;
that is, with approximately the same computationl cost as it would
take to simulate one particle. In these scenarios, it is probable that
the maximum number of particles one can simulate simultaneously will
correspond to the value of N which optimises the efficiency.

4.3.2 A Simulation Study

In this section we will look at the performance of the Exchangeable
Sampler in four examples. In the first example we will consider the
case where the target, π(x), is a N(0, 1) distribution, and, the marginal
proposal, q0(x), is a N(0, 1/2) distribution. As highlighted in Example
4, in this case the transition weight, w(x) = π(x)/q0(x), is proportional
to exp(3x2/2) and, therefore, has exponentially increasing tails. As a
result, one would expect that the sampler is not geometrically ergodic
since, the further into the tails the sampler goes, the larger the weight,
and the increase in the weight is exponential. Indeed, it was shown in
Lemma 4.3.10 that, for this example, for any ε ∈ (0,

√
2], assumption

(IM) of Corollary 4.3.7 is violated and, therefore, Corollary 4.3.9 does
not apply. In the second example we will consider the case where the
target, π(x), is a Gamma(5.5, 1.0) distribution, and, the marginal pro-
posal, q0(x), is a Gamma(0.5, 1.0) distribution. In this scenario, as in
the first example, the tails of the proposal are lighter than the tails of
the target. However, for this scenario, the tails are polynomially lighter
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Figure 39: Plots of the sample efficiency against the sample acceptance rate for
Barker’s Exchangeable Sampler which targets the d-dimensional pos-
terior corresponding to the likelihood (Y |X = x) ∼ Nd(x, 0.3Id) and
a Nd([0.8, . . . , 0.8], Id) prior, by using the prior as the marginal pro-
posal density. Each plot corresponds to a different value of N ∈
{1, 10, 50, 100, 1000}, and, for each N , we ran the Exchangeable Sam-
pler for d ∈ {1, 2, 5, 10, 25, 50} and for ten values of ε linearly spaced
on the interval [0.05,

√
2]; that is ε ∈ {0.05, 0.05 + (

√
2− 0.05)/9, 0.05 +

2(
√

2− 0.05)/9, . . . ,
√

2}.
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Figure 40: Plots of the sample efficiency against the sample acceptance rate for
the Metropolis-Hastings Exchangeable Sampler which targets the d-
dimensional posterior corresponding to the likelihood (Y |X = x) ∼
Nd(x, 0.3Id) and a Nd([0.8, . . . , 0.8], Id) prior, by using the prior as the
marginal proposal density. Each plot corresponds to a different value
of N ∈ {1, 10, 50, 100, 1000}, and, for each N , we ran the Exchangeable
Sampler for d ∈ {1, 2, 5, 10, 25, 50} and for ten values of ε linearly spaced
on the interval [0.05,

√
2]; that is ε ∈ {0.05, 0.05 + (

√
2− 0.05)/9, 0.05 +

2(
√

2− 0.05)/9, . . . ,
√

2}.
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as opposed to exponentially lighter. Indeed, the transition weight is
proportional to

√
x. As a result, one would expect that the sampler is

geometrically ergodic since, even though the further into the tails the
sampler goes the larger the weight, the rate of increase of the weight
is only polynomial. The figures and discussion in Example 5 provide
empirical evidence that the conditions of Theorem 4.3.9 hold for some
values of ε and N and, therefore, that, for these values of ε and N , the
Exchangeable Sampler is geometrically ergodic in this scenario and the
MCMC estimates satisfy a central limit theorem for all functions which
are square-integrable with respect to π. In the third example, we will
consider the case where the target, π(x), is a N(0, 1) distribution, and,
the marginal proposal, q0(x), is a T(5) distribution. In this scenario the
transition weight is bounded. Indeed, the weight is proportional to

exp

(
− x2

2

)(
1 +

x2

ν

)(1+ν)/2

,

which is a continuous function on R which tends towards zero as |x|
tends towards infinity. As a result, one would expect that the sampler is
geometrically ergodic for any ε. The figures and discussion in Example
6 provide empirical evidence that the conditions of Theorem 4.3.9 hold
for some values of ε and N but not others, and, therefore, that, for
some values of ε and N , the Exchangeable Sampler is geometrically
ergodic in this scenario and the MCMC estimates satisfy a central
limit theorem for all functions which are square-integrable with respect
to π. In the final example, we will consider the more realistic scenario
where π corresponds to the conditioned Birth-Death diffusion of Section
3.1.1 and q0 corresponds to the Modified Diffusion Bridge proposal of
Section 3.2.3— see Chapter 3 for more details regarding simulating
conditioned diffusions. Specifically, recall, from Section 3.2.3, that, in
one-dimension, the MDB proposal of a discretised path of the diffusion,
x1:K , say, takes the form

qMDB
0 (x1:K |y) =

K∏
k=1

φ(xk; a
MDB
k−1 , CMDB

k−1 ) ,

where φ denotes the density corresponding to a one-dimensional normal
distribution and aMDB

k−1 and CMDB
k−1 correspond to the mean (Equation

(54)) and variance (Equation (55)) respectively, and, implicitly, depend
on xk−1, T , y, and tk−1. Such a proposal is equivalent to proposingK in-
dependent N(0, 1) random variables, Z1:K , and transforming those ran-
dom variables appropriately by sequentially setting, for k ∈ {1, . . . ,K},
Xk = aMDB

k−1 +
√
CMDB
k−1 Zk. Thus, simulating exchangeable paths corre-

sponds to simulating sequences of K independent N(0, 1) random vari-
ables in an exchangeable way. For this example, as in Section 3.3.2, we
use the same parameters, θ, and initial conditions, x0, as those used
in Whitaker et al., 2017; θ = (θ1, θ2) = (0.1, 0.8), x0 = 50, so that
sample paths of the diffusion exhibit exponential decay. Moreover, as
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Figure 41: A histogram of the ten-thousand simulated observations, yT , of the
BD diffusion, where T = 4. The orange line shows the location of
the mean observation.

in Section 3.3.2, we fix ∆t to be 0.01, T to be 4, and choose P1 = I,
and Σ1 = 10−12I, so that the observation, Y , is such that

Y |XK = x ∼ N(x, 10−12I) ,

and, therefore, essentially corresponds to exact observations of the dif-
fusion. To choose an observation to condition on, as we did in Section
3.3.2, we simulated ten-thousand values for Y (1)

T using the EM approx-
imation to forward simulate values of the path at each point of the
partition. We then chose the mean of the simulated terminal endpoints
as the observation to condition upon. Figure 41 shows a histogram of
the ten-thousand simulated observations, yT , of the BD diffusion, where
T = 4. The orange line shows the location of the mean observation.
For each scenario, we ran the Exchangeable Sampler for each of the

forty combinations of

(ε,N) ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,
√

2}×{1, 10, 50, 100, 1000}

for one-hundred-thousand iterations. For all but the birth-death exam-
ple, we initialised the Exchangeable Sampler at the mean of the target.
For the birth-death example, we chose an initial path by simulating one-
hundred paths via the MDB and choosing the path with the highest
weight as our initial path. For each run of each example we calculated
the sample efficiency; that is, the sample squared jump distance divided
by the number of particles, in the X-space, along with the acceptance
rate. For all but the Birth-Death diffusion example, we also calculate
the Kolmogorov-Smirnov statistic (see Hollander and Wolfe, 1973, for
example) between the simulated samples, x1:M , and the true target, Π,
as a measure of how well the simulated samples represent the truth:

κ(Π, x1:M ) := sup
x∈R

∣∣∣∣Π(x)− 1

M

M∑
t=1

1(−∞,x](xt)

∣∣∣∣ . (100)
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For the Birth-Death diffusion example we simulate samples represent-
ing the truth by running an Independence Sampler (Section 2.3.6.1)
with the residual-bridge construct of Whitaker et al., 2017, where ξt =
E(R̂t|Y = y) and R̂t is the process satisfying the diffusion of the Lin-
ear Noise Approxtimation; that is, satisfies the SDE 64, as the pro-
posal. Specifically, recall, from Section 3.2.5, that, in one-dimension,
the residual-bridge proposal of a discretised path of the diffusion, x1:K ,
say, takes the form

qRB
0 (x1:K |y) =

K∏
k=1

φ(xk; a
RB
k−1, D

RB
k−1) ,

where φ denotes the density corresponding to a one-dimensional normal
distribution and aRB

k−1 and DRB
k−1 correspond to the mean (Equation

(61)) and variance matrix (Equation (62)) respectively, and, implicitly,
depend on xk−1, T , y, ξk−1, ξK , and tk−1. To get a good representation
of the truth, we run the independence sampler for one-million iterations
and, for simplicity and brevity, we focus on the two-hundreth element of
each of the sample paths; x200. Given the samples are pinned at both
the start and end of the inter-observation period, it is reasonable to
focus on samples at the middle of the inter-observation period as these
will exhibit the most variation and, therefore, will be the hardest to
represent. We calculate the two-sample Kolmogorov-Smirnov statistic
(see Hollander and Wolfe, 1973, for example) between the two-hundreth
element of the samples simulated via the Exchangeable Sampler, x(1:M),
and the true samples, x(1:M∗)

∗ , as a measure of how well the simulated
samples represent the truth:

κ(x
(1:M∗)
∗ , x(1:M)) := sup

x∈R

∣∣∣∣ 1

M∗

M∗∑
t=1

1(−∞,x](x
(t)
∗ )− 1

M

M∑
t=1

1(−∞,x](x
(t))

∣∣∣∣ .
(101)

Here, for notational simplicity, we have dropped any explicit reference
to the fact that we are considering the two-hundreth element of each
of the sample paths.

4.3.3 Results

Starting with the scenario where the transition weight has exponentially
increasing tails (Example 4 with σ2 = 1/2); Figures 42, 43, and 44 show,
respectively; a plot of the sample efficiency in the X-space against the
jump-size, ε, for each value of N ; a plot of the sample efficiency in the
X-space against the sample acceptance rate for each value of N ; and
a plot of the Kolmogorov-Smirnov (KS) statistic, (100), against the
jump-size for each value of N . Figure 42 shows that, for each value
of N , the maximum sample efficiency is achieved with the maximal
jump-size, ε =

√
2, which corresponds to independent samples. The

most efficient choice of N is given by N = 1. Figure 43 highlights that



4.3 the exchangeable sampler 151

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

ε

10−7

10−6

10−5

10−4

10−3

10−2

10−1

S
a
m

p
le

E
ffi

ci
en

cy

N = 1

N = 10

N = 50

N = 100

N = 1000

Figure 42: A plot of the sample efficiency in theX-space against the jump-size,
ε, for each value of N ∈ {1, 10, 50, 100, 1000} of the Exchangeable
Sampler targeting a N(0, 1) distribution by using a N(0, 1/2) dis-
tribution as the marginal proposal distribution. The sampler was
run for one-hundred-thousand iterations.

the optimal acceptance rate is larger the larger the value of N . On the
other hand, Figure 44 illustrates that the KS statistic is minimised for
values of ε not necessarily equal to the maximal value

√
2. Indeed, that

figure suggests that, the smaller the value of N , the smaller the value
of ε which corresponds to the minimal value of the KS statistic, which
suggests that, even though the sample efficiency is maximised when
ε =
√

2, this might not represent the optimal jump-size in the sense of
producing samples which most closely represent the target.
Figure 45 shows histograms of the samples simulated by the Ex-

changeable Sampler for N = 1 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, where ε = 0.01 for the top-left

subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the subplot in
the second row and the first column, and so on. With the same layout,
Figure 46 shows, at each of the one-hundred-thousand iterations, the
states of the Exchangeable Sampler for N = 1 and the same set of jump-
sizes. Figure 45 highlights that, for the relatively larger jump-sizes, the
simulated samples do not represent the true target well in the tails.
Figure 46 shows that this is happening because the sampler gets stuck
for periods of time when the chain goes out into the tails of the target
distribution which is exactly what we expect given the exponentially in-
creasing transition weight in the tails. Of course, if we were to start the
chain far out into the tails, the chain would struggle to move for these
relatively larger values of ε. As such, in this instance, even though larger
values of the jump-size result in larger expected squared jump distances
in the X-space (as shown in Figure 42), smaller values of the jump-size
lead to samplers which are less prone to get stuck in the tails (as il-
lustrated in Figure 45) and whose resulting samples more accurately
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Figure 43: A plot of the sample efficiency in the X-space against the sample
acceptance rate for each value of N ∈ {1, 10, 50, 100, 1000} of the
Exchangeable Sampler targeting a N(0, 1) distribution by using a
N(0, 1/2) distribution as the marginal proposal distribution. The
sampler was run for one-hundred-thousand iterations.

represent the true target (as highlighted in Figures 43 and 45), and
are, therefore, preferable. This sticky behaviour is amplified for larger
values of N since, the larger the value of N , the greater the chance of
proposing a state in the tails which has a large weight. This can be seen
in Figures 86, 87, 88, and 89 which show, for N = 10, N = 50, N = 100,
and N = 1000, respectively, histograms of the samples simulated by the
Exchangeable Sampler at each of the one-hundred-thousand iterations
for a variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, as

well as in Figures 90, 91, 92, and 93 which show, for N = 10, N = 50,
N = 100, and N = 1000, respectively, the states of the Exchangeable
Sampler at each of the one-hundred-thousand iterations for the same
set of jump-sizes.
For the second scenario, where the transition weight has polynomi-

ally increasing tails (Example 5 with α1 = 5.5, α2 = 0.5, and β = 1);
Figures 47, 48, and 49 show, respectively; a plot of the sample effi-
ciency in the X-space against the jump-size, ε, for each value of N ; a
plot of the sample efficiency in the X-space against the sample accep-
tance rate for each value of N ; and a plot of the Kolmogorov-Smirnov
(KS) statistic, (100), against the jump-size for each value of N . Fig-
ure 47 shows that the larger the value of N , the larger the jump-size
which achieves the maximum sample efficiency; that is, the larger the
value of N , the bigger the jumps you can take. Similarly, Figure 49
illustrates that the larger the value of N , the larger the jump-size
which minimises the KS statistic. Figure 48 highlights that the op-
timal acceptance rate is larger the larger the value of N . All three
figures suggest, as one would expect in this scenario, that choosing
an ε less than

√
2; that is, not using independent samples, leads to a
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Figure 44: A plot of the Kolmogorov-Smirnov statistic, (100), against the
jump-size for each value of N ∈ {1, 10, 50, 100, 1000} of the Ex-
changeable Sampler targeting a N(0, 1) distribution by using a
N(0, 1/2) distribution as the marginal proposal distribution. The
sampler was run for one-hundred-thousand iterations.

better sampler. Figure 50 shows histograms of the samples simulated
by the Exchangeable Sampler for N = 1 and for a variety of jump-
sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, where ε = 0.01 for the

top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on. With the
same layout, Figure 51 shows, at each of the one-hundred-thousand
iterations, the states of the Exchangeable Sampler for N = 1 and for
a variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}. Fig-

ure 50 highlights that at the larger and smaller end of the jump-size
scale, the simulated samples do not represent the true target well in the
tails. As was the case for the first example, Figure 51 shows that this
is happening because, for the relatively larger jump-sizes, the sampler
gets stuck for periods of time when the chain goes out into the tails
of the target distribution, which is exactly what we expect given the
polynomially increasing transition weight in the tails. As highlighted
previously, if we were to start the chain far out into the tails, the chain
would struggle to move for the relatively larger values of ε. Moreover,
for the relatively smaller jump-sizes, the sampler exhibits random-walk
behaviour where, at each iteration, although the chain is moving, it is
not moving very far. Unlike the first example, the sticky behaviour seen
here is less pronounced for the larger values of N . This is because, even
though the larger the value of N , the greater the chance of proposing
a state in the tails which has a large weight, the weight increases only
polynomially in the tails and thus the drift towards regions of the space
where the target has more mass still occurs. This is backed up by the
empirical evidence given in the discussion and figures of Examples 5
which suggest that the sampler is indeed geometrically erogodic in this
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Figure 45: Histograms of the samples simulated by the Exchangeable Sampler
targeting a N(0, 1) distribution by using a N(0, 1/2) distribution as
the marginal proposal distribution for N = 1 and for a variety of
jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, where ε =

0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.25 for the subplot in the second row and the first column,
and so on. The orange line in each figure corresponds to the true
density.

scenario for ε <
√

2. The discussion and figures in Example 5 also sug-
gest that the Exchangeable Sampler is geometrically ergodic for larger
N provided ε <

√
2. This can be seen in practice in Figures 94, 95, 96,

and 97 which show, for N = 10, N = 50, N = 100, and N = 1000,
respectively, histograms of the samples simulated by the Exchangeable
Sampler at each of the one-hundred-thousand iterations for a variety of
jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, as well as in Fig-

ures 98, 99, 100, and 101 which show, for N = 10, N = 50, N = 100,
and N = 1000, respectively, the states of the Exchangeable Sampler at
each of the one-hundred-thousand iterations for a variety of jump-sizes,
ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}.

For the third scenario, where the transition weight is bounded (Ex-
ample 6 with ν = 5); Figures 52, 53, and 54 show, respectively; a plot
of the sample efficiency in the X-space against the jump-size, ε, for
each value of N ; a plot of the sample efficiency in the X-space against
the sample acceptance rate for each value of N ; and a plot of the
Kolmogorov-Smirnov (KS) statistic, (100), against the jump-size for
each value of N . Figure 52 shows that for each value of N , the choice
of the jump-size that maximises the sample efficiency is ε =

√
2; that is,

for each value of N , taking independent samples achieves the optimal
sample efficiency. The figure also shows that the curves of the sample
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Figure 46: Plots of the states of the Exchangeable Sampler targeting a N(0, 1)
distribution by using a N(0, 1/2) distribution as the marginal pro-
posal distribution for N = 1 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each of the one-hundred-

thousand iterations. ε = 0.01 in the top-left subplot, ε = 0.1 in the
top-right subplot, ε = 0.25 in the subplot in the second row and
the first column, and so on.

efficiency against the jump-size do not differ much across the values
of N . Figure 53 highlights that the optimal acceptance rate, although
larger the larger the value of N , also does not differ much across the
values of N . Similarly, Figure 54 illustrates that the KS statistic as a
function of ε is also invariant to the choice of N . All three figures sug-
gest, as one would expect in this scenario where the transition weight
is bounded, that the optimal choice of the jump-size is ε =

√
2; that is,

using independent samples. Figure 55 shows histograms of the samples
simulated by the Exchangeable Sampler for N = 1 and for a variety
of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, where ε = 0.01

for the top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for
the subplot in the second row and the first column, and so on. With
the same layout, Figure 56 shows, at each of the one-hundred-thousand
iterations, the states of the Exchangeable Sampler for N = 1 and for a
variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}. Figure

55 highlights that, for the very small jump-size, the simulated sam-
ples do not represent the true target well. Figure 56 shows that this is
because the sampler exhibits random-walk behaviour where, at each it-
eration, although the chain is moving, it is not moving very far. Figure
56 also shows that, unlike the previous two examples, for any value of ε,
the chain does not exhibit sticky behaviour. As a result, for any value
of ε, the simulated samples provide a good representation of the target.
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Figure 47: A plot of the sample efficiency in the X-space against the jump-
size, ε, for each value of N ∈ {1, 10, 50, 100, 1000} of the Exchange-
able Sampler targeting a Gamma(5.5, 1) distribution by using a
Gamma(0.5, 1/2) distribution as the marginal proposal distribu-
tion. The sampler was run for one-hundred-thousand iterations.

These figures suggest that the sampler is geometrically erogodic in this
scenario for every value of ε, even though the discussion and figures in
Example 6 could not provide evidence of this. Moreover, Figures 102,
103, 104, and 105 which show, for N = 10, N = 50, N = 100, and
N = 1000, respectively, histograms of the samples simulated by the
Exchangeable Sampler at each of the one-hundred-thousand iterations
for a variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, as

well as Figures 106, 107, 108, and 109 which show, for N = 10, N = 50,
N = 100, and N = 1000, respectively, the states of the Exchangeable
Sampler at each of the one-hundred-thousand iterations for a variety of
jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, suggest that the

sampler is geometrically erogodic for all values of ε and all values of N .

For the fourth scenario, where the target is the conditioned Birth-
Death diffusion of Section 3.1.1 and q0 corresponds to the Modified
Diffusion Bridge proposal of Section 3.2.3, Figures 57 and 58 show,
respectively; a plot of the sample efficiency in the X-space against
the jump-size, ε, for each value of N ; and a plot of the sample ef-
ficiency in the X-space against the sample acceptance rate for each
value of N . Figure 59 shows a plot of the two-sample Kolmogorov-
Smirnov (KS) statistic, (101), calculated for the two-hundredth ele-
ment of the sample paths, against the jump-size for each value of N .
Figure 57 shows that, the larger the value of N , the larger the opti-
mal jump-size which achieves the maximum sample efficiency; that is,
the larger the value of N , the bigger the jumps you can take. Figure
58 highlights that the optimal acceptance rate is larger the larger the
value of N . Figure 59 illustrates that, for any value of N , the choice



4.3 the exchangeable sampler 157

0.0 0.2 0.4 0.6 0.8 1.0

Acceptance Rate

10−3

10−2

10−1

S
a
m

p
le

E
ffi

ci
en

cy

N = 1

N = 10

N = 50

N = 100

N = 1000

Figure 48: A plot of the sample efficiency in the X-space against the sample
acceptance rate for each value of N ∈ {1, 10, 50, 100, 1000} of the
Exchangeable Sampler targeting a Gamma(5.5, 1) distribution by
using a Gamma(0.5, 1) distribution as the marginal proposal distri-
bution. The sampler was run for one-hundred-thousand iterations.

of jump-size which minimises the two-sample KS statistic is less than√
2. All three figures suggest that choosing an ε less than

√
2; that is,

not using independent samples, leads to a better sampler. Figure 60
shows histograms of the two-hundreth element of each of the sample
paths simulated by the Exchangeable Sampler for N = 1 and for a
variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, where

ε = 0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.25 for the subplot in the second row and the first column, and
so on. With the same layout, Figure 61 shows, at each of the one-
hundred-thousand iterations, the two-hundreth element of the states of
the Exchangeable Sampler for N = 1 and for a variety of jump-sizes,
ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}. Figure 60 highlights that at

the larger and smaller end of the jump-size scale, the simulated sam-
ples do not represent the true target well. As has been highlighted in
some of the previous scenarios, Figure 61 shows that this is happen-
ing because, for the relatively larger jump-sizes, the sampler gets stuck
for periods of time when the chain goes out into the tails of the tar-
get distribution. As highlighted in those other examples, if we were to
start the chain far out into the tails, the chain would struggle to move
for the relatively larger values of ε. Moreover, for the relatively smaller
jump-sizes, the sampler exhibits random-walk behaviour where, at each
iteration, although the chain is moving, it is not moving very far. The
sticky behaviour seen here suggests that the Exchangeable Sampler in
this scenario is not geometrically ergodic for ε =

√
2. However, the fig-

ures suggest that the sampler is geometrically ergodic for any ε <
√

2.
This sticky behaviour is less pronounced for the larger values of N
which suggests, as was the case for the scenario where the target and
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Figure 49: A plot of the Kolmogorov-Smirnov statistic, (100), against the
jump-size for each value of N ∈ {1, 10, 50, 100, 1000} of the Ex-
changeable Sampler targeting a Gamma(5.5, 1) distribution by us-
ing a Gamma(0.5, 1) distribution as the marginal proposal distri-
bution. The sampler was run for one-hundred-thousand iterations.

marginal proposal distributions were both of a Gamma form, that the
transition weight in this scenario is sufficienty well behaved. While this
sticky behaviour is less pronounced the larger the value of N , it is still
present and suggests that, no matter the value of N , the chain is not
geometrically ergodic for ε =

√
2. Indeed, one can see this by looking

at Figures 110, 111, 112, and 113 which show, for N = 10, N = 50,
N = 100, and N = 1000, respectively, histograms of the two-hundreth
element of each of the sample paths simulated by the Exchangeable
Sampler at each of the one-hundred-thousand iterations for a variety of
jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, as well as Figures

114, 115, 116, and 117 which show, for N = 10, N = 50, N = 100, and
N = 1000, respectively, the two-hundreth element of the states of the
Exchangeable Sampler at each of the one-hundred-thousand iterations
for a variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}.

These figures also suggest, as was the case for the scenario where both
the target and marginal proposal were Gamma distributions, that the
the Exchangeable Sampler is geometrically ergodic for any value of N
provided ε <

√
2.
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Figure 50: Histograms of the samples simulated by the Exchangeable Sampler
targeting a Gamma(5.5, 1) distribution by using a Gamma(0.5, 1)
distribution as the marginal proposal distribution forN = 1 and for
a variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}

where ε = 0.01 for the top-left subplot, ε = 0.1 for the top-right
subplot, ε = 0.25 for the subplot in the second row and the first
column, and so on. The orange line in each figure corresponds to
the true density.
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Figure 51: Plots of the states of the Exchangeable Sampler targeting a
Gamma(5.5, 1) distribution by using a N(0.5, 1) distribution as
the marginal proposal distribution for N = 1 and for a variety
of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each of

the one-hundred-thousand iterations. ε = 0.01 in the top-left sub-
plot, ε = 0.1 in the top-right subplot, ε = 0.25 in the subplot in
the second row and the first column, and so on.
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Figure 52: A plot of the sample efficiency in theX-space against the jump-size,
ε, for each value of N ∈ {1, 10, 50, 100, 1000} of the Exchangeable
Sampler targeting a N(0, 1) distribution by using a T(5) distribu-
tion as the marginal proposal distribution. The sampler was run
for one-hundred-thousand iterations.
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Figure 53: A plot of the sample efficiency in the X-space against the sam-
ple acceptance rate for each value of N ∈ {1, 10, 50, 100, 1000} of
the Exchangeable Sampler targeting a N(0, 1) distribution by us-
ing a T(5) distribution as the marginal proposal distribution. The
sampler was run for one-hundred-thousand iterations.
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Figure 54: A plot of the Kolmogorov-Smirnov statistic, (100), against the
jump-size for each value of N ∈ {1, 10, 50, 100, 1000} of the Ex-
changeable Sampler targeting a N(0, 1) distribution by using a T(5)
distribution as the marginal proposal distribution. The sampler was
run for one-hundred-thousand iterations.
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Figure 55: Histograms of the samples simulated by the Exchangeable Sampler
targeting a N(0, 1) distribution by using a T(5) distribution as the
marginal proposal distribution for N = 1 and for a variety of jump-
sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where ε = 0.01 for

the top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for
the subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.
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Figure 56: Plots of the states of the Exchangeable Sampler targeting a N(0, 1)
distribution by using a T(5) distribution as the marginal pro-
posal distribution for N = 1 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each of the one-hundred-

thousand iterations. ε = 0.01 in the top-left subplot, ε = 0.1 in the
top-right subplot, ε = 0.25 in the subplot in the second row and
the first column, and so on.
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Figure 57: A plot of the sample efficiency in the X-space against the jump-
size, ε, for each value of N ∈ {1, 10, 50, 100, 1000} of the Ex-
changeable Sampler targeting a conditioned Birth-Death diffusion
by using the Modified Diffusion Bridge proposal of Section 3.2.3
as the marginal proposal distribution. The sampler was run for
one-hundred-thousand iterations.
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Figure 58: A plot of the sample efficiency in the X-space against the sample
acceptance rate for each value of N ∈ {1, 10, 50, 100, 1000} of the
Exchangeable Sampler targeting a conditioned Birth-Death diffu-
sion by using the Modified Diffusion Bridge proposal of Section
3.2.3 as the marginal proposal distribution. The sampler was run
for one-hundred-thousand iterations.
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Figure 59: A plot of the two-sample Kolmogorov-Smirnov statistic calculated
for the two-hundreth element of the sample paths, (101), against
the jump-size for each value of N ∈ {1, 10, 50, 100, 1000} of the
Exchangeable Sampler targeting a conditioned Birth-Death diffu-
sion by using the Modified Diffusion Bridge proposal of Section
3.2.3 as the marginal proposal distribution. The sampler was run
for one-hundred-thousand iterations. Here, in order to get sam-
ples representing the truth needed to calculate the two-sample
Kolmogorov-Smirnov statistic, an independence sampler which
used the residual-bridge construct of Whitaker et al., 2017 was
ran for one-million iterations.
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Figure 60: Histograms of the two-hundreth element of each of the sam-
ple paths simulated by the Exchangeable Sampler targeting a
conditioned Birth-Death diffusion by using the Modified Diffu-
sion Bridge proposal of Section 3.2.3 as the marginal proposal
distribution. for N = 1 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where ε = 0.01 for the top-

left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.
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Figure 61: Plots of the two-hundreth element of the states of the Exchangeable
Sampler targeting a conditioned Birth-Death diffusion by using the
Modified Diffusion Bridge proposal of Section 3.2.3 as the marginal
proposal distribution for N = 1 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each of the one-hundred-

thousand iterations. ε = 0.01 in the top-left subplot, ε = 0.1 in the
top-right subplot, ε = 0.25 in the subplot in the second row and
the first column, and so on.



4.4 the exchangeable particle gibbs sampler 167

4.4 the exchangeable particle gibbs sampler

In the previous section, as a precursor to introducing the Exchangeable
Particle Gibbs Sampler, we introduced the Exchangeable Sampler as a
generalisation of the Independence Sampler. We theoretically demon-
strated, through Theorem 4.3.9, that such a sampler can be geometri-
cally ergodic and produce MCMC estimates which satisfy a central limit
theorem for all functions which are square-integrable with respect to π
even when the transition weight is unbounded, provided the weight is
sufficiently well behaved in the tails. This is in contrast to the Indepen-
dence Sampler which can not be geometrically ergodic if the transition
weight is unbounded (Theorem 2.3.31). We then showed, via a simula-
tion study in Section 4.3.2, that, in practice, tuning the jump-size in
the Exchangeable Sampler can offer substantial improvements in the
rate of mixing over the Independence Sampler, particularly for scenarios
where the transition weight is unbounded. Much like the Particle Gibbs
Sampler can be seen as an extension to Barker’s (multiple-proposal) In-
dependence Sampler, the Exchangeable Particle Gibbs Sampler (xPGS)
can be seen as an extension to the Exchangeable Sampler with Barker’s
acceptance probabillity. Before introducing the Exchangeable Particle
Gibbs Sampler, we note that there are other approaches in the litera-
ture that, at each time step of the Sequential Monte Carlo procedure,
attempt to introduce some dependence between the propogated par-
ticles. While fundamentally different to the approach outlined in this
thesis, they are motivated by the same considerations. In particular,
Bizjajeva and Olsson, 2016 introduce a blockwise propogation scheme
where each particle produces α, say, negatively correlated offspring sim-
ulated from some Markovian kernel. In addition, at each observation
time, the Embedded Hidden Markov Model of Neal, Beal, and Roweis,
2004 uses a Markov chain to simulate dependent pool states, and the
introduction of sequential dependence between pool states at different
observation times in Shestopaloff and Neal, 2018 leads to an algorithm
which has connections to particle MCMC methods where there is de-
pendence between the propogated particles (as discussed in Section
4.3 of Shestopaloff and Neal, 2018). To introduce the Exchangeable
Particle Gibbs Sampler, we start by introducing the Exchangeable Se-
quential Monte Carlo (xSMC) procedure, which is an extension of the
Sequential Monte Carlo procedure obtained by propagating particles
exchangeably as opposed to independently. Consider, then, the SMC
procedure of Algorithm 8. At each step, t, of the procedure the par-

ticles, denoted x̃
(a

(1:N)
t−1 )

t−1 , are propagated forward by sampling each x(i)
t

with density pt(xt|x̃
(a

(i)
t−1)

t−1 ) independently of one another. Recall that
the proposals are freely chosen by the practitioner, provided that, for
any θ ∈ Rp,

supp(γ0(θ, ·)) ⊆ supp(p0(·|θ)) ,

and, for any t ∈ {1, . . . , T}, and any (θ, x0:t−1) ∈ Rp × Rd×t,

supp(γt(θ, x0:t−1, ·)) ⊆ supp(γt−1(θ, x0:t−1)pt(·|x0:t−1, θ)) .
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With the same choice of the proposal densities, pt, the xSMC procedure,

at each time t ∈ {0, . . . , T}, samples x(1:N)
t with density p(N)

t (x
(1:N)
t |x̃(a

(1:N)
t−1 )

t−1 ),
where p(N)

t is an exchangeable density with marginals pt; that is, p
(N)
t

satisfies the following assumptions;

assumptions 4.4.1.

(X) For any permutation, σ, of {1, . . . , N},

p
(N)
t (y1:N |x1:N ) = p

(N)
t (yσ(1), . . . , yσ(N)|xσ(1), . . . , xσ(N)) .

(M) For any i ∈ {1, . . . , N},∫
p

(N)
t (y1:N |x1:N ) dy(−i) = pt(yi|xi) .

In full, the xSMC procedure is given by Algorithm 19 and relies upon
the following:

1. A sequence of marginal proposal densities,

p0(x0|θ), p1(x1|x0, θ), . . . , pT (xT |x0:T−1, θ) .

2. A sequence of proposal densities,

p
(N)
0 (x

(1:N)
0 |θ), p(N)

1 (x
(1:N)
1 |x(1:N)

0 , θ), . . . , p
(N)
T (x

(1:N)
T |x(1:N)

0:T−1, θ) ,

which satisfy the properties of Assumptions 4.4.1.

3. An ancestral resampling mechanism in the form of a probabil-
ity mass function κ(·|w̃(1:N)), where w̃(1:N) is a given set of nor-
malised weights.

The following assumptions, which are the same as Assumptions 4.2.1,
are made on the marginal proposal densities and the resampling mech-
anism;

assumptions 4.4.2.

(S) For any θ ∈ Rp,

supp(γ0(θ, ·)) ⊆ supp(p0(·|θ)) ,

and, for any t ∈ {1, . . . , T}, and any (θ, x0:t−1) ∈ Rp × Rd×t,

supp(γt(θ, x0:t−1, ·)) ⊆ supp(γt−1(θ, x0:t−1)pt(·|x0:t−1, θ)) .

(U) Given a set of normalised weights, w̃(1:N),

E
[ N∑
i=1

1k(A
(i))

∣∣∣∣ w̃(1:N)

]
= Nw̃(k) ,

for any k ∈ {1, . . . , N}.
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(E) For any permutation, σ, of {1, . . . , N},

κ(a(1:N)|w̃(1:N)) = κ(a(1:N)|w̃(σ(1)), . . . , w̃(σ(N))) .

(P) For any (k,m) ∈ {1, . . . , N}2,

P(A(k) = m|w̃(1:N)) = w̃(m) .

As detailed previously in Section 4.2, the support condition, (S),
ensures that, for any (θ, x0:t−1) ∈ Rp × Rd×t, it is possible to reach
anywhere where γt(θ, x0:t−1, ·) is non-zero. The unbiased assumption,
(U), on the resampling mechanism, along with the exchangeable and
marginal assumption on the joint proposal densities (Assumptions 4.4.1)
ensures that the estimator produced by the algorithm is unbiased (see
Theorem 4.4.3 below). Moreover, the exchangeable assumption on the
resampling mechanism, (E), and on the joint proposal densities, (X),
ensure that the determination of the ancestor variables does not depend
on the order of the weights and, therefore, that the indices have no ef-
fect on the paths generated by the procedure. Finally, the permutation
assumption, (P), is a technical condition which will make demonstrat-
ing that the Exchangeable Particle Gibbs Sampler correctly targets
the density of interest, clearer. As highlighted in Remark 3 of Section
2.4.1.2, in practice, for the Sequential Monte Carlo procedure, the an-
cestors are set deterministically given the number of offspring, O(1:N),
and, therefore, (P) does not hold. However, if the ancestor variables
are randomly permuted, then Assumption (P) holds given Assumption
(U).

remark 11. As highlighted in Remark 6, interest is ultimately in
paths generated by the SMC procedure and not the corresponding indices.
The indices have no effect on the paths generated by the procedure since
the particles are propagated forward in an exchangeable way by property
(X) of Assumptions 4.4.1 and irrespective of the actual value of the
ancestor variables; the ancestor variables are only needed to label where
each particle proceeded from. Moreover, property (E) of Assumptions
4.4.2 ensures that the determination of the ancestor variables does not
depend on the order of the weights. Therefore, in practice, it is not
necessary to randomly permute the ancestor variables.

As with (72), we define the joint mass-density function corresponding
to all the variables produced by the Exchangeable Sequential Monte
Carlo procedure;

Ψ(x
(1:N)
0:T , a

(1:N)
0:T−1|θ) :=

p
(N)
0 (x

(1:N)
0 |θ)

T∏
t=1

κ(a
(1:N)
t−1 |w̃

(1:N)
t−1 )p

(N)
t (x

(1:N)
t |x̃(a

(1)
t−1)

t−1 , . . . , x̃
(a

(N)
t−1)

t−1 , θ) ,

(102)

where; to ease notation, the explicit dependence of the weights on θ and
x̃

(1:N)
t−1 has been dropped; and we have recursively defined x̃

(i)
0 := x

(i)
0
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Algorithm 19 Exchangeable Sequential Monte Carlo Procedure

1: Sample x(1:N)
0 with density p(N)

0 (x
(1:N)
0 |θ) and set x̃(1:N)

0 = x
(1:N)
0 .

2: for i = 1, . . . , N do
3: Calculate the i-th weight;

w0(x̃
(i)
0 ; θ) = γ0(θ, x

(i)
0 )/p0(x

(i)
0 |θ) .

4: end for
5: Normalize the weights by setting, for each i ∈ {1, . . . , N},

w̃
(i)
0 (x̃

(1:N)
0 ; θ) = w0(x̃

(i)
0 ; θ)/(w0(x̃

(1)
0 ; θ) + . . .+ w0(x̃

(N)
0 ; θ)) .

6: for t = 1, . . . , T do
7: Sample ancestors a(1:N)

t−1 with mass function κ(a
(1:N)
t−1 |w̃(1:N)

t−1 ).

8: Sample x(1:N)
t with density p(N)

t (x
(1:N)
t |x̃(a

(1:N)
t−1 )

t−1 , θ).
9: for i = 1, . . . , N do

10: Set x̃(i)
t := (x̃

(a
(i)
t−1)

t−1 , x
(i)
t ).

11: end for
12: for i = 1, . . . , N do
13: Calculate the i-th weight;

wt(x̃
(i)
t ; θ) =

γt(θ, x̃
(i)
t )

γt−1(θ, x̃
(a

(i)
t−1)

t−1 )pt(x
(i)
t |x̃

(a
(i)
t−1)

t−1 , θ)

.

14: end for
15: Normalize the weights by setting, for each i ∈ {1, . . . , N},

w̃
(i)
t (x̃

(1:N)
t ; θ) = wt(x̃

(i)
t ; θ)/(wt(x̃

(1)
t ; θ) + . . .+ wt(x̃

(N)
t ; θ)) .

16: end for
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and, for any t ∈ {2, . . . , T}, x̃(i)
t := (x̃

(a
(i)
t−1)

t−1 , x
(i)
t ). The xSMC procedure

produces an estimator of the same form as the Sequential Monte Carlo
estimator (given by (75));

IT (θ, X̃
(1:N)
0:T ) :=

1

NT+1

T∏
t=0

N∑
j=1

wt(X̃
(j)
t ; θ) , (103)

which, as with the Sequential Monte Carlo estimator, is an unbiased
approximation of ηT (θ):

theorem 4.4.3. Let X̃(1:N)
0:T be the paths generated by the Exchange-

able Sequential Monte Carlo procedure (Algorithm 19), and θ ∈ Rp.
Then, for any t ∈ {0, . . . , T},

EΨ[IT (Θ, X̃
(1:N)
0:T )|Θ = θ] = ηT (θ) ,

where IT is the Exchangeable Sequential Monte Carlo estimator given by
Equation (103), and, given θ, Ψ is the density of the random variables
generated by the Exchangeable Sequential Monte Carlo estimator, given
by Equation (102).

Proof. See A.24.

The Conditional Exchangeable Sequential Monte Carlo (CxSMC)
procedure follows immediately from the Exchangeable Sequential Monte
Carlo procedure, where the conditional propagation of particles at time
t, given the known propagation of the j-th particle, is denoted

p̃
(N+1)
t (x

(0:LT (k,t)−1)
t , x

(LT (k,t)+1:N)
t |x(LT (k,t))

t , x̃
(a

(0:N)
t−1 )

t−1 , θ)

=
p

(N+1)
t (x

(0:N)
t |x̃(a

(0:N)
t−1 )

t−1 , θ)

pt(x
(LT (k,t))
t |x̃(LT (k,t−1))

t−1 , θ)
. (104)

As with the Conditional Sequential Monte Carlo, it will be useful
to state the joint mass-density function of all the random variables
produced by the xSMC procedure conditional on the k-th path being
fixed:

ψ(x
(0:N)
0:T \x̃

(k)
T , a

(0:N)
0:T−1\ã

(k)
T−1|k, x̃

(k)
T , ã

(k)
T−1, θ)

∝ p̃(N+1)
0 (x

(0:LT (k,0)−1)
0 , x

(LT (k,0)+1:N)
0 |x(LT (k,0))

0 , θ)

T∏
t=1

κ(a
(0:N)
t−1 |w̃

(0:N)
t−1 )

P(A
(LT (k,t))
t−1 = a

(LT (k,t))
t−1 |w̃(0:N)

t−1 )

× p̃(N+1)
t (x

(0:LT (k,t)−1)
t , x

(LT (k,t)+1:N)
t |x(LT (k,t))

t , x̃
(a

(0:N)
t−1 )

t−1 , θ)
(105)

To implement the Conditional Exchangeable Sequential Monte Carlo
procedure one needs a sequence of proposal densities,

p
(N+1)
0 (x

(0:N)
0 |θ), p(N+1)

1 (x
(0:N)
1 |x̃(a

(0:N)
0 )

0 , θ), . . . , p
(N+1)
T (x

(0:N)
T |x̃(a

(0:N)
T−1 )

T−1 , θ) ,
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Algorithm 20 Conditional Exchangeable Sequential Monte Carlo Procedure (Con-
ditioned on the k-th path, (k, x̃

(k)
T , ã

(k)
T−1))

1: Sample x(0)
0 , . . . , x

(LT (k,0)−1)
0 , x

(LT (k,0)+1)
0 , . . . , x

(N)
0 with density

p̃
(N+1)
0 (x

(0:LT (k,0)−1)
0 , x

(LT (k,0)+1:N)
0 |x(LT (k,0))

0 , θ)

=
p

(N+1)
0 (x

(0:N)
0 |θ)

p0(x
(LT (k,0))
0 |θ)

.

2: for i = 0, . . . ,LT (k, 0)− 1,LT (k, 0) + 1, . . . , N do
3: Set x̃(i)

0 := x
(i)
0 .

4: end for
5: for i = 1, . . . , N do
6: Calculate the i-th weight;

w0(x̃
(i)
0 ; θ) = γ0(θ, x

(i)
0 )/p0(x

(i)
0 |θ) .

7: end for
8: Normalize the weights by setting, for each i ∈ {0, . . . , N},

w̃
(i)
0 (x̃

(0:N)
0 ; θ) = w0(x̃

(i)
0 ; θ)/(w0(x̃

(0)
0 ; θ) + . . .+ w0(x̃

(N)
0 ; θ)) .

9: for t = 1, . . . , T do
10: Sample ancestors a(−LT (k,t))

t−1 with mass function

κ(a
(0:N)
t−1 |w̃(0:N)

t−1 )

P(A
(LT (k,t))
t−1 = a

(LT (k,t))
t−1 |w̃(0:N)

t−1 )
,

using the conditional stratified residual resampling scheme (Algorithm 11).
11: Sample x(0)

t , . . . , x
(LT (k,t)−1)
t , x

(LT (k,t)+1)
t , . . . , x

(N)
t with density

p̃
(N+1)
t (x

(0:LT (k,t)−1)
t , x

(LT (k,t)+1:N)
t |x(LT (k,t))

t , x̃
(a

(0:N)
t−1 )

t−1 , θ)

=
p

(N+1)
t (x

(0:N)
t |x̃(a

(0:N)
t−1 )

t−1 , θ)

pt(x
(LT (k,t))
t |x̃(LT (k,t−1))

t−1 , θ)
.

12: for i = 0, . . . ,LT (k, t)− 1,LT (k, t) + 1, . . . , N do

13: Set x̃(i)
t := (x̃

(a
(i)
t−1)

t−1 , x
(i)
t ).

14: end for
15: for i = 0, . . . ,LT (k, t)− 1,LT (k, t) + 1, . . . , N do
16: Calculate the i-th weight;

wt(x̃
(i)
t ; θ) =

γt(θ, x̃
(i)
t )

γt−1(θ, x̃
(a

(i)
t−1)

t−1 )pt(x
(i)
t |x̃

(a
(i)
t−1)

t−1 , θ)

.

17: end for
18: Normalize the weights by setting, for each i ∈ {0, . . . , N},

w̃
(i)
t (x̃

(0:N)
t ; θ) = wt(x̃

(i)
t ; θ)/(wt(x̃

(0)
t ; θ) + . . .+ wt(x̃

(N)
t ; θ)) .

19: end for
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which satisfy the properties of Assumptions 4.4.1. We also need to be
able to simulate from the conditional propagation density, given by
(104). As for the Exchangeable Sampler, one can, for general d, and
at each time t ∈ {0, . . . , T − 1}, use Algorithm 21, which is a slight
extension of Algorithm 18, to propagate the particles forward in an ex-
changeable way; that is, satisfying property (X) of Assumptions 4.4.1,

whilst retaining pt(·|x̃
(a

(i)
t−1)

t−1 , θ), for i ∈ {1, . . . , N}, as the marginal den-
sities. Therefore, such a proposal density satisfies Assumptions 4.4.1,
while at the same time allowing for the flexibility of making the pro-
posals as close together as one wants via a tunable jump-size, εt.

Algorithm 21 Exchangeable Proposal p̃(N+1)
t (y1:N |y0, x0:N , θ) With Marginal pt

and Jump-Size εt ∈ (0,
√

2) for General d.

1: Let ht : Rd × Rd → Rd be a mapping such that, if Z1:d ∼ Nd(0, Id) where Id
denotes the d-dimensional identity matrix, then ht(Z1:d, x) ∼ pt(·|x, θ), and that,
for any x ∈ Rd, the function gt,x : Rd → Rd , defined by gt,x(y) := ht(y, x), is
invertible.

2: Set δt := εt/
√

2.
3: Calculate z0 = g−1

t,x0
(y0).

4: Sample ẑ0 from a Nd(0, Id) distribution.
5: Set ϕt =

√
1− δ2

t z0 + δtẑ0.
6: for i = 1, . . . , N do
7: Sample ẑi from a Nd(0, Id) distribution.
8: Set zi = ϕt

√
1− δ2

t + δtẑi.
9: Set yi = ht(zi, xi).
10: end for

remark 12. Recall from the Exchangeable Sampler of Section 4.3,
that, as highlighted in Remark 9, in practice, it is not neccessary to
know how to do the inversion since the first step of the procedure,
z0 = g−1

t,x0
(y0), can be omitted, provided one stores, in memory, the z0

corresponding to the current state of the chain. However, the exposition
of the Exchangeable Particle Gibbs Sampler is clearer if the proposal is
explicitly conditional on y0.

remark 13. The implementation given by Algorithm 21, much like
Algorithm 18 of Section 4.3, uses the same jump-size, εt, for each of the
d dimensions. However, as highlighted in Remark 10 for the Exchange-
able Sampler, exchangeability of the proposal density and the results that
follow still hold if one uses a different jump-size, εt,i, say, for each of
the dimensions. Again, as highlighted in Remark 10, the benefit of doing
this would be to take larger jumps in the dimensions where one knew
that the proposal, in that dimension, was closer to the target. However,
as with the Exchangeable Sampler, to ease exposition, we will assume
a fixed εt for each of the d dimensions.

remark 14. The implementation of the Conditional Exchangeable
Sequential Monte Carlo procedure, given by Algorithm 20, which utilises
the proposal given by Algorithm 21, allows for the use of a different
jump-size, εt, at each time t ∈ {0, . . . , T}, to propagate the particles
forward. In general, because there are fewer future resampling steps the
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further in time, t, the procedure is, it would be prudent to use a smaller
jump-size the smaller the value of t and a bigger jump-size the larger the
value of t. While a non-constant choice for the jump-size sequence, ε0:t,
allows for greater flexibility and a more effective procedure, investigating
such choices is beyond the scope of this thesis.

To see how reducing the jump-sizes lessens the path degeneration
problem, consider, as with the Conditional Sequential Monte Carlo pro-
cedure of Section 4.2.2, the one-dimensional Linear Gaussian model of
Example 3; that is, X0 ∼ N(0, 1), θ = 0.8, and, for any t ∈ {1, . . . , 100},
the transition distributions are given by (Xt|Xt−1 = xt−1) ∼ N(θxt−1, 1),
and the observation distributions are given by Yt|Xt = xt ∼ N(xt, 0.3).
Using the bootstrap proposal as the marginal proposal density; that
is, p0(x0|θ) = φ(x0; 0, 1), and, for any t ∈ {1, . . . , T}, pt(xt|xt−1, θ) =
φ(xt; θxt−1, 1), we ran the Conditional Exchangeable Sequential Monte
Carlo (Algorithm 20) using the proposal given by Algorithm 21 with
N = 500 for six different choices of the sequence ε0:T . We used the
same reference path, x0:T , as that used in Section 4.2.2. Figure 62
shows plots of the five-hundred and one paths generated by the Con-
ditional Exchangeable Sequential Monte Carlo procedure, where each
subplot corresponds to a different jump-size, ε, which we have kept
fixed for each time t ∈ {0, . . . , T}; that is, for each t ∈ {0, . . . , T},
εt = ε. From left to right and top to bottom, the subplots corre-
spond to ε ∈ {0.05, 0.2, 0.5, 0.75, 1.0,

√
2}. The figure illustrates that,

the smaller the jump-size, the less likely the paths are to coalesce back-
wards through time; that is, the less likely the paths are to degenerate
to the path being conditioned upon. This is because, the smaller the
jump-size, the less variable the weights and, therefore, the less likely
the conditioned path is to be replicated more than the compulsory once
during resampling.
The Exchangeable Particle Gibbs Sampler is the Particle Gibbs Sam-

pler but with the Conditional Sequential Monte Carlo procedure re-
placed with the Conditional Exchangeable Sequential Monte Carlo pro-
cedure (Algorithm 20). In full, the Exchangeable Particle Gibbs sampler
is given by Algorithm 22.
Much like the Particle Gibbs Sampler, the Exchangeable Particle

Gibbs Sampler consists of a sequence of Gibbs steps on an extended
space which targets the extended density;

π+(k, θ, x
(1:N)
0:T , a

(1:N)
0:T−1) :=

w̃
(k)
T (x̃

(1:N)
T ; θ)

IT (θ, x̃
(1:N)
0:T )

ηT
Ψ(x

(1:N)
0:T , a

(1:N)
0:T−1|θ) , (106)

where Ψ is the density of the random variables generated by the Ex-
changeable Sequential Monte Carlo procedure, given by Equation (102).
Summing over the N values of k gives

IT (θ, x̃
(1:N)
0:T )

ηT
Ψ(x

(1:N)
0:T , a

(1:N)
0:T−1|θ) ,
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Figure 62: Plots of the five-hundred and one paths generated by the Con-
ditional Exchangeable Sequential Monte Carlo procedure, utilis-
ing the bootstrap propsal as the marginal proposal and Algo-
rithm 21 to propagate the particles, applied to the one-dimensional
linear Gaussian model of Example 3. Each subplot corresponds
to a different jump-size, ε, which we have kept fixed for each
time t ∈ {0, . . . , T}; that is, for each t ∈ {0, . . . , T}, εt = ε.
From left to right and top to bottom, the subplots correspond to
ε ∈ {0.05, 0.2, 0.5, 0.75, 1.0,

√
2}.

which, by Theorem 4.4.3, is a valid joint mass-density function. Thus,
π+ is a valid joint mass-density function. As we did for the Particle
Gibbs Sampler in Lemma 4.2.4, it will be useful to rewrite the target
in order to demonstrate that it exhibits πT as the marginal density for
(θ, x̃

(k)
T );

lemma 4.4.4. Under property (P) of Assumptions 4.4.2, the extended
target, π+, given by (106), can be rewritten as

π+(k, θ, x
(1:N)
0:T , a

(1:N)
0:T−1)

= N−(T+1)γT (θ, x̃
(k)
T )

ηT
ψ(x

(1:N)
0:T \x̃

(k)
T , a

(1:N)
0:T−1\ã

(k)
T−1|k, x̃

(k)
T , ã

(k)
T−1, θ) ,

(107)

where ψ is the density corresponding to the Conditional Exchangeable
Sequential Monte Carlo procedure.

Proof. Given (104), the proof follows exactly the same as the proof of
Lemma 4.2.4 which is given by A.10.
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Algorithm 22 Exchangeable Particle Gibbs Sampler

1: Initialise the chain at some (θ0, x0:T ) ∈ Rp ×Rd(T+1) and choose the number of
iterations, M .

2: Let a(0)
t = 0 for all t ∈ {0, . . . , T − 1}, and x

(0)
t = xt for all t ∈ {0, . . . , T} so

that x̃(0)
T = x0:T . Define xpath

0 := x̃
(0)
T , apath

0 := ã
(0)
T , and k0 = 0.

3: for m = 0, . . . ,M − 1 do
4: Set b̃(km)

T = apath
m and ỹ(km)

T = xpath
m .

5: Sample θm+1 with density π(θ)
T (·|ỹ(km)

T ).
6: Sample (y

(0:N)
0:T \ỹ(km)

T , b
(0:N)
0:T−1\b̃

(km)
T−1 ) with density

ψ(y
(0:N)
0:T \ỹ(km)

T , b
(0:N)
0:T−1\b̃

(km)
T−1 |km, ỹ

(km)
T , b̃

(km)
T−1 , θm+1) ,

defined by (105) via the CxSMC procedure (see Algorithm 20).
7: Sample a km+1 ∈ {0, . . . , N} with probability w̃(km+1)

T (ỹ
(0:N)
T ; θm+1).

8: Set xpath
m+1 = ỹ

(km+1)

T and apath
m+1 = b̃

(km+1)

T .
9: end for

With this alternative representation for the extended density, it is
trivial to see that such a density exhibits πT as the marginal density
for (θ, x̃

(k)
T ). Indeed, integrating out all the variables not involved in the

path x̃(k)
T gives

∑
a

(1:N)
0:T−1\ã

(k)
T−1

∫
R+

π+(k, θ, x
(1:N)
0:T , a

(1:N)
0:T−1) d(x

(1:N)
0:T \x̃

(k)
T ) =

γT (θ, x̃
(k)
T )

ηT
= πT (θ, x̃

(k)
T ) ,

(108)

where, for notational simplicity, R+ := Rd×(T+1)×(N−1). As with the jus-
tification of the Particle Gibbs Sampler given in Section 4.2.4, to show
that the Exchangeable Particle Gibbs Sampler consists of a sequence of
Gibbs steps, we consider the two forms of the extended density, given
by (106) and (107) respectively:

π+(km, θm, y
(0:N)
0:T , b

(0:N)
0:T−1)

= w̃
(km)
T (ỹ

(0:N)
T ; θm)

IT (θm, ỹ
(0:N)
0:T )

ηT
Ψ(y

(0:N)
0:T , b

(0:N)
0:T−1|θm)

= (N + 1)−(T+1)γT (θ, ỹ
(km)
T )

ηT
ψ(y

(0:N)
0:T \ỹ(km)

T , b
(0:N)
0:T−1\b̃

(km)
T−1 |km, ỹ

(km)
T , b̃

(km)
T−1 , θm) .

As shown in Algorithm 22, given a current state, (km, θm, ỹ
(km)
T , b̃

(km)
T−1 ),

in the extended space, the Exchangeable Particle Gibbs Sampler cycles
through the following steps:

1. Sample a θm+1 from π
(θ)
T (·|ỹ(km)

T ).

2. Sample a sequence (y
(0:N)
0:T \ỹ(km)

T , b
(0:N)
0:T−1\b̃

(km)
T−1 ) with density

ψ(y
(0:N)
0:T \ỹ(km)

T , b
(0:N)
0:T−1\b̃

(km)
T−1 |km, ỹ

(km)
T , b̃

(km)
T−1 , θm+1) ,

defined by (105) via the CxSMC procedure (see Algorithm 20).
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3. Sample a km+1 ∈ {0, . . . , N} with probability w̃(km+1)
T (ỹ

(0:N)
T ; θm+1).

Note, by (108), that the extended target exhibits πT as the marginal
density for (θ, ỹ

(km)
T ). Thus, using the terminology of Liu, 2001, Sec-

tion 6.7, the first step is a collapsed Gibbs step. The second step is
a Gibbs step on the extended space as can be seen from the second
representation of the extended target:

π+(k, θ, y
(0:N)
0:T , b

(0:N)
0:T−1)

= (N + 1)−(T+1)γT (θ, ỹ
(k)
T )

ηT
ψ(y

(0:N)
0:T \ỹ(k)

T , b
(0:N)
0:T−1\b̃

(k)
T−1|k, ỹ

(k)
T , b̃

(k)
T−1, θ) .

The third step is also a Gibbs step on the extended space as can be
seen from the first representation of the extended target:

π+(k, θ, y
(0:N)
0:T , b

(0:N)
0:T−1)

= w̃
(k)
T (ỹ

(0:N)
T ; θ)

IT (θ, ỹ
(0:N)
0:T )

ηT
Ψ(y

(0:N)
0:T , b

(0:N)
0:T−1|θ) .

With exactly the same proof as that of Theorem 5, Andrieu, Doucet,
and Holenstein, 2010, one can, as with the Particle Gibbs Sampler,
demonstrate that if each Gibbs step of the Exchangeable Particle Gibbs
sampler is irreducible and aperiodic, then the Exchangeable Particle
Gibbs Sampler is ergodic in the sense of Corollary 2.3.12. As such, by
Theorem 2.3.13, the MCMC estimates corresponding to the samples
generated by the Particle Gibbs Sampler satisfy a Strong Law of Large
Numbers result. In addition, recall from Theorem 4.3.9 of Section 4.3
that the Exchangeable Sampler, which is a generalisation of the Inde-
pendence Sampler, can be geometrically ergodic even if the transition
weight is unbounded, provided the weight does not increase too quickly
in the tails. Indeed, Section 4.3 highlights, via Example 5, a scenario
where the Exchangeable Sampler is geometrically ergodic and where
the transition weight is polynomially increasing in the tails. This is in
contrast to the Independence Sampler which, via Theorem 2.3.31, can
not be geometrically ergodic if the transition weight is unbounded. The
Exchangeable Particle Gibbs Sampler, which is an extension of the Ex-
changeable Sampler, is a generalisation of the Particle Gibbs Sampler,
which, itself, is an extension of the Independence Sampler. Recall, from
Section 4.2.4, that the Particle Gibbs Sampler is uniformly ergodic if,
at each time t ∈ {0, . . . , T},

sup
(x0:t,θ)∈Rd×t×Rp

wt(x0:t; θ) <∞ ;

that is, if, at each time t ∈ {0, . . . , T}, the transition weight at time t
is uniformly bounded. Moreover, if this assumption does not hold then
the Particle Gibbs Sampler can not be geometrically ergodic. Therefore,
it is natural to conjecture that, under certain conditions, the Exchange-
able Particle Gibbs Sampler can be geometrically ergodic even if the
weights, w0:T , are unbounded, provided the weights do not increase
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too quickly in the tails. Even when the Exchangeable Particle Gibbs
Sampler is not geometrically ergodic, the flexibility of being able to
control how close the proposed paths are to the path being conditioned
upon by tuning a sequence of jump-sizes, ε0:T , means that, in prac-
tice, one has the abillity to tune the algorithm to optimise the rate
of mixing, and therefore provide a more efficient algorithm than the
Particle Gibbs Sampler. Moreover, unlike the Particle Gibbs with An-
cestor Sampling approach of Lindsten, Jordan, and Schön, 2014, the
main requirement needed to be able to implement the Exchangeable
Particle Gibbs Sampler is the ability, at each time t ∈ {0, . . . , T}, to be
able to transform a sequence of independent standard Normal random
variables to random variables with a marginal density pt and, there-
fore, implement Algorithm 21. While this is not always possible to do
in a computationally efficient way, it is often possible using the inverse
transform of Theorem 2.3.2. Of particular importance to this thesis,
it is possible to implement Algorithm 21 in an efficient way when the
marginal proposal density corresponds to a conditioned diffusion pro-
posal of Chapter 3 since, in this case, the proposal density consists of a
sequence of Gaussian increments. See, for example, Section 4.3 for de-
tails on how to implement Algorithm 21 in the case where the marginal
proposal density corresponds to the Modified Diffusion Bridge applied
to the conditioned Birth-Death diffusion.

4.4.1 Optimal Scaling

In the previous section we introduced the Exchangeable Particle Gibbs
Sampler which extends the Particle Gibbs Sampler through the intro-
duction of a jump-size which can be tuned to make the proposed paths
at each step of the sampler closer to the path being conditioned upon.
This flexibility allows one to improve the rate of mixing of the sampler
by carefully selecting the jump-size. In this section, we will, under fairly
stringent assumptions, derive optimal scaling results which are in the
same spirit as the optimal scaling results of Sections 2.3.6.3 and 4.3.1;
that is, results which practitioners can use as a general guide on how
to choose the jump-size so as to maximize the rate of mixing of the
Markov Chain induced by the sampler. As previously, we will, as in
Sherlock and Roberts, 2009, use the expected squared jump distance
as the measure of efficiency. As in Section 4.3.1, due to the difficulty of
theoretically analysing the transformation which maps the underlying
Normal random variables to the proposals, we consider the transformed
space on which the Normal random variables lie. Moreover, recall that
the motivation for the Exchangeable Particle Gibbs Sampler was to re-
duce the path degeneracy problem and, therefore, improve the mixing
of the elements of the paths at times, t, closer to 0. Thus, we will take
the expected squared jump distance in the first component of the path
as a measure of efficiency. Heuristically, maximizing this measure of
efficiency will generally reduce the degeneracy of the paths and, hence,
optimize the rate of mixing across all components of the path.
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In order to theoretically analyse the expected squared jump distance
and the expected acceptance rate for the first component of the path in
the Z-space, we consider a specific form of the Exchangeable Particle
Gibbs Sampler which targets a density, π∗T , of a product form by using
a sequence of marginal densities, p∗0:T , which, themselves, are also of a
product form:

definition 4.4.5. Let the number of samples, N ∈ N, the dimen-
sion, d, the jump-size, ε ∈ (0,

√
2), and T be fixed. Consider the Ex-

changeable Particle Gibbs Sampler (Algorithm 22) which targets the
density

π∗T (x
(1:d)
0:T ) :=

T∏
t=0

d∏
i=1

π(x
(i)
t ) ,

by using a sequence, p∗0:T , of marginal proposal densities of the form

p∗t (x
(1:d)
t ) = p∗(x(1:d)

t ) :=
d∏
i=1

p(x
(i)
t ) ,

as part of Algorithm 21 to generate proposal paths through the Condi-
tional Exchangeable Sequential Monte Carlo procedure (Algorithm 20).
Specifically, let X(1:d)

0:T be an independent sequence of random variables
where, for any (t, i) ∈ {0, . . . , T} × {1, . . . , d}, X(i)

t ∼ π. Suppose p is
a one-dimensional density with cumulative density function P . Let the
transformation, h∗, be given by

h∗(z(1:d)) := (P−1[Φ(z(1))], . . . , P−1[Φ(z(d))]) ,

where Φ denotes the cumulative density function corresponding to a
standard normal random variable. Then, by Theorem 2.3.2, if Z(1:d) ∼
Nd(0, Id), then h∗(Z(1:d)) ∼ p∗. Now, let h := P−1 ◦Φ so that, if X(i)

t ∼
π, then Z

(i)
t = h−1(X

(i)
t ) has density πZ(z

(i)
t ) := π[h(z

(i)
t )]|h′(z(i))|.

Note that the transformation h∗ satisfies the necesarry assumptions of
the exchangeable proposal given by Algorithm 21. Suppose, for each t ∈
{0, . . . , T}, Z(1:d)

t,0 ∼ π∗Z where

π∗Z(z
(1:d)
t,0 ) :=

d∏
i=1

πZ(z
(i)
t,0) ,

and let Ẑ(1:d)
t,0:N be an independent sequence of d-dimensional random

variables such that, for any k ∈ {0, . . . , N}, Ẑ(1:d)
t,k ∼ Nd(0, Id). For

each k ∈ {1, . . . , N} define

Z
(1:d)
t,k := (1− δ2)Z

(1:d)
t,0 + δ

√
1− δ2Ẑ

(1:d)
t,0 + δẐ

(1:d)
t,k ,

where δ := ε/
√

2. Furthermore, for any k ∈ {1, . . . , N}, let α∗k,N (w∗0:N )
be the multiple-proposal extension Barker’s acceptance probability (Equa-
tion (86)) expressed in terms of the transition weights, which are of the
form w∗ = π∗/p∗, where

π∗(x(1:d)
t ) :=

d∏
i=1

π(x
(i)
t ) ;



180 exchangeable particle mcmc

that is,

α∗k,N (w∗0:N ) =
w∗k

w∗0 + . . .+ w∗N
.

Let g∗ := w∗ ◦ h∗; that is,

g∗(z(1:d)) :=
d∏
i=1

w[h(z(i))] ,

where w = π/p is the marginal transition weight. Finally, let g := w◦h,
and LT denote the lineage function as defined in Definition 4.2.2. Then,
at each time t ∈ {0, . . . , t}, we define the expected squared jump distance
for the first component of the path in the z-space to be

Jt,N (ε) := E
[ N∑
k=1

α∗k,N (g∗(Z(1:d)
t,0 ), . . . , g∗(Z(1:d)

t,N ))‖Z(1:d)
0,Lt(k,0)−Z

(1:d)
0,0 ‖

2

]
,

(109)

and the expected probability that an ancestor, which is not being condi-
tioned upon, is not equal to zero to be

αt,N (ε) := E
[ N∑
k=1

α∗k,N (g∗(Z(1:d)
t,0 ), . . . , g∗(Z(1:d)

t,N ))

]
. (110)

To derive an optimal scaling result for the expected squared jump
distance and expected acceptance rate for the first component of the
path in the Z-space, given by Equations (109) and (110) respectively,
the following assumptions on the densities πZ and the transition weight
expressed in terms of z; that is, h∗, are needed:

assumptions 4.4.6.

(B) Let Z ∼ πZ , where πZ is as defined in Definition 4.4.5:

(B.a) For any k ∈ {1, . . . , 4}, E[|Z|k] <∞.

(B.b) The logarithm of the marginal transition weight expressed in
terms of z; that is, q(z) := log[g(z)], where g := w ◦ h, and
w, h are defined in Definition 4.4.5, is twice differentiable
and satisfies

E[q′(Z)2] <∞ , E[q′′(Z)2] <∞ .

(L) The second derivative of q is Lipschitz continuous with Lipschitz
constant a; that is, for any z0:1 ∈ h−1(X )× h−1(X ),

|q′′(z1)− q′′(z0)| ≤ a|z1 − z0| .

(G) The transition weight expressed in terms of z; that is, g′, is suffi-
ciently well-behaved in the tails in the sense that

lim
z↑∞

g′(z)φ(z) = lim
z↓−∞

g′(z)φ(z) = 0 ,

where φ is the density of a standard normal random variable.
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With these assumptions in place, an optimal scaling result for the
Exchangeable Particle Gibbs Sampler can be demonstrated;

theorem 4.4.7. Consider the Exchangeable Particle Gibbs Sampler
given in Definition 4.4.5 which targets a density, π∗T , of a product form
by using a sequence of marginal densities, p∗0:T , which, themselves, are
also of a product form. Suppose that Assumptions 4.4.6 hold. Then, for
any t ∈ {0, . . . , T},

lim
d↑∞

αt,N (λd−1/2) = ᾱN (λ) := 1−E
[{

1+exp(−ξ2) exp(ξW0)
N∑
k=1

exp(ξWk)

}−1]
,

(111)

where ξ := λ
√
ϕ/
√

2, ϕ := E[q′(Z2
0 )], Z0 ∼ πZ where πZ is as de-

fined in Definition 4.4.5, and W0:N is an independent sequence of one-
dimensional standard Normal random variables. Moreover,

lim
d↑∞

JT,N (λd−1/2) = J̄T,N (λ) := ᾱN (λ)T lim
d↑∞

J0,N (λd−1/2) = λ2ᾱN (λ)(T+1) .

(112)

Note that ᾱN (λ)T is the asymptotic expected probability of moving to a
path which is not the path being conditioned upon; that is, the asymp-
totic acceptance rate.

Proof. See A.25.

As with the quantities in Theorem 4.3.17, the asymptotic quantities
given by Theorem 4.4.7 are intractable. For any fixed (N,T ) ∈ N2,
one can, as we did for the Exchangeable Sampler in Section 4.3.1, nu-
merically analyse the asymptotic expected squared jump distance for
the first component of the path in the Z-space; that is, J̄T,N (λ), as a
function of the asymptotic acceptance rate; that is, ᾱN (λ)T in order
to derive practical guidance on how to tune the jump-size to optimise
the rate of mixing. However, as with the Particle Gibbs Sampler, it is
practically useful to know how N should depend on T to get sufficiently
good mixing without choosing N too large. As highlighted in Section
4.2.4, the larger the value of T , the more information the sampler has to
infer, and so it is reasonable to believe that N must scale with T some-
how. However, choosing N too big means wasting computational effort
and increasing run-times. On the other hand, choosing N too small
may potentially result in poor mixing. In the latter case the sampler
would have to be run for more iterations to produce samples that accu-
rately represent the target, and, this increase in the number of iterations
would, again, increase the computational effort and run-times. Recall,
from Section 4.2.4, that, for the Particle Gibbs Sampler, Propositions 4
and 5, Lindsten, Douc, and Moulines, 2015, and Theorem 3 of Andrieu,
Lee, and Vihola, 2018 demonstrate that, under suitable strong-mixing
conditions, it is sufficient to scale the number of particles, N , linearly
with T in order to obtain a non-degenerate lower-bound on the minoriz-
ing constant in the limit as T → ∞. In Theorem 6, Lindsten, Douc,
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and Moulines, 2015 show that, under weaker, moment conditions, the
minorization constant is probabilistically bounded below in the limit as
T → ∞ provided one scales the number of particles, N , superlinearly
with T (see Lindsten, Douc, and Moulines, 2015 for a detailed state-
ment of the result). Given such results in the literature, it is reasonable
to conjecture that, for the Exchangeable Particle Gibbs Sampler, one
should, in some sense, scale the number of particles, N , at most linearly
with T . To this end, we consider the asymptotic efficiency which we
define to be the the asymptotic expected squared jump distance for the
first component of the path in the z-space over the number of particles;
that is,

eT,N (λ) := N−1J̄T,N (λ) , (113)

where J̄T,N is given by (112). Efficiency, when defined in this way, is
therefore the expected squared jump distance per unit of computational
cost, assuming that the computational cost of the Exchangeable Par-
ticle Gibbs Sampler scales linearly with the number of particles, N .
To derive a result on how N should scale with T , we first prove the
following bounds on the asymptotic expected acceptance rate, ᾱN (λ);

theorem 4.4.8. Let ρN be the asymptotic expected rejection rate
defined by ρN (λ) := 1− ᾱN (λ), where ᾱN is defined by (111). Then,

(N+1)−1 ≤ ρN (λ) ≤ E{[1+N exp(−ξ2 +ξZ
√

1 + 1/N)]−1} , (114)

where Z ∼ N(0, 1).

Proof. See A.26.

Using this bound we can demonstrate that, scaling N with T appro-
priately, one can control the asymptotic efficiency ;

corollary 4.4.9. Consider the Exchangeable Particle Gibbs Sam-
pler given in Definition 4.4.5 which targets a density, π∗T , of a product
form by using a sequence of marginal densities, p∗0:T , which, themselves,
are also of a product form. Let eT,N denote the asymptotic efficiency,
defined by (113), and suppose that Assumptions 4.4.6 hold. Then, for
any β ∈ (0, 1) and c0 > 0, if we let N := c0T

(1−β), then

lim
T↑∞

NeT,N (λ) = 0 .

Moreover, for any c0 > 0, if we let N := c0T , then there exist constants
c̃1 > 0 and c̃2 > 0 such that

λ2 exp(−c̃2) ≤ lim
T↑∞

NeT,N (λ) ≤ λ2 exp(−c̃1) .

Finally, for any β > 0 and c0 > 0, if we let N := c0T
(1+β), then

lim
T↑∞

NeT,N (λ) = 1 .

Proof. See A.27.
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It is clear from Corollary 4.4.9 that, if one scales N sub-linearly with
T , then the asymptotic efficiency scales like 0 as T tends towards infin-
ity. However, if N scales linearly with T , then the asymptotic efficiency
scales like T−1 as T tends towards infinity. Finally, if N scales super-
linearly with T , then the asymptotic efficiency scales like T−(1+β) as
T tends towards infinity. This suggests, therefore, that, in order to op-
timise the efficiency of the Exchangeable Particle Gibbs Sampler, one
should scale the number of particles linearly with T at least for large
enough T . To see this numerically, note that λ2 = 2ξ2/ϕ. Therefore,

eT,N (λ) = ẽT,N (ξ) :=
2ξ2

Nϕ
α̃N (ξ)(T+1) ,

where

α̃N (ξ) := 1− E
[{

1 + exp(−ξ2) exp(ξW0)

N∑
k=1

exp(ξWk)

}−1]
.

Hence, for each T , one can numerically find the optimal N∗(T ) and
optimal scaling, ξ∗(T );

(N∗(T ), ξ∗(T )) := arg min
(N,ξ)∈N×[0,∞)

[N−1ξ2α̃N (ξ)(T+1)] .

Figure 63 shows that the optimal value of N scales linearly with T ;
roughly, N∗(T ) = 5T/2, and that the optimal scaling and optimal
asymptotic acceptance rate scale sub-linearly with T . This visualisation
numerically corroborates the optimal scaling results of Corollary 4.4.9.
Now that we have given guidance on choosing N , it remains to de-

scribe how one should tune the acceptance rate in order to maximise the
rate of mixing of the sampler. To this end, Figure 64 shows a plot of the
true asymptotic expected efficiency (blue line) and a lower bound on
the asymptotic expected efficiency provided by Theorem 4.4.8 (orange
line), up to a constant of proportionality, against the asymptotic accep-
tance rate for the Particle Gibbs Sampler for a variety of pairs (T,N);
(T,N) ∈ {(1, 2), (5, 12), (10, 25), (50, 125), (100, 250), (500, 1250)}. Note
that we have taken T ∈ {1, 5, 10, 50, 100, 500} and set N = 5T/2 as
the resuts of Figure 63 suggest. As was the case for the Exchangeable
Sampler, the optimal asymptotic expected efficiency is fairly insensitive
to choices of the asymptotic acceptance rate around the optimum. This
is true for every value of (T,N) considered. Indeed, for (T,N) = (1, 2),
an asymptotic acceptance rate in the interval [0.2, 0.56] leads to an
asymptotic expected efficiency which is above 60% of the optimal. This
interval is similar for the other values of (T,N). As such, as was the case
for the Exchangeable Sampler of Section 4.3, it is unnecessary to finely
tune the jump-size to achieve the optimal acceptance rate, provided the
tuned acceptance rate is on the same scale as the optimal asymptotic
acceptance rate. Also, note that the value of the asymptotic acceptance
rate which optimses the asymptotic efficiency is very close to the value
of the asymptotic acceptance rate which optimses the lower bound on
asymptotic efficiency- as given by Theorem 4.4.8. As such, for any pair
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Figure 63: Plots of the optimal value of N (top subplot), optimal value of
ξ (middle subplot), and optimal acceptance rate (bottom subplot)
against T . The top subplot also includes the line N = 5T/2 in
orange.

(T,N), one can find a target acceptance rate by optimising the lower
bound on the asymptotic efficiency.
Figure 64 highlights the theoretical behaviour of the asymptotic effi-

ciency as a function of the asymptotic acceptance rate, and, as was the
case for the end of Section 4.3.1, while monitoring the running sample
efficiency in order to tune the value of the jump-size is a sensible strat-
egy one can use in practice to optimise the mixing of the chain, it is
prudent to understand to what extent such theoretical results hold for
finite d and for models with non-independent transition distributions.
To this end, we will consider a d-dimensional extension of the Linear
Gaussian model given by Example 2; that is, let X0 ∼ Nd(0, Id), and
suppose that, for any t ∈ {1, . . . , T}, we have the transition distribu-
tions given by (Xt|Xt−1 = xt−1) ∼ Nd(0.8xt−1, Id), and observation
distributions given by Yt|Xt = xt ∼ Nd(xt, 0.3Id). For simplicity, sup-
pose that an improper, uniform over R, prior is placed on Θ so that
γ0(θ, x0) = φd(x0; 0, Id) and, therefore, η0(θ) = 1. Moreover, suppose
that, for any t ∈ {1, . . . , T}, γt is defined recursively by

γt(θ, x0:t) = gt(yt|xt)φd(xt; θxt−1, Id)γt−1(θ, x0:t−1) ,

where φd(·;µ,Σ) denotes the density of a d-dimensional normal dis-
tribution with mean vector µ and variance-covariance matrix Σ. For
each d ∈ {1, 2, 5, 10, 25, 50} we simulate a sequence y1:T of observa-
tions from this model, and, given this sequence we simulated, for each
T ∈ {5, 10, 50, 100}, the Exchangeable Particle Gibbs Sampler for ten-
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Figure 64: Plots of the true asymptotic expected efficiency (blue line) and a lower
bound on the asymptotic expected efficiency provided by Theorem 4.4.8
(orange line), up to a constant of proportionality, against the asymptotic
acceptance rate for the Particle Gibbs Sampler for a variety of pairs
(T,N).

thousand iterations using the bootstrap proposals; that is, p0(x0|θ) =
φd(x0; 0, Id), and, for any t ∈ {1, . . . , T}, pt(xt|xt−1, θ) = φd(xt; 0.8xt−1, Id),
as the marginal proposal densities for eachN ∈ {1, 2, 5, 12, 25, 125, 250, 1250},
and for ten values of ε linearly spaced on the interval [0.01,

√
2]; that

is ε ∈ {0.01, 0.01 + (
√

2− 0.01)/9, 0.01 + 2(
√

2− 0.01)/9, . . . ,
√

2}. For
each run of the sampler, we calculated the acceptance rate and the
mean squared-jump distance for the first component of the path in the
Z-space. Figure 65 shows, for each d ∈ {1, 2, 5, 10, 25, 50}, a plot of the
value of N in the set {1, 2, 5, 12, 25, 125, 250, 1250} that optimises the
efficiency as a function of T ∈ {5, 10, 50, 100} for the Exchangeable Par-
ticle Gibbs Sampler for this scenario. The figure shows that, although,
for this scenario, the relationship between the value of T and the value
of N which optimises the efficiency is not N∗(T ) = 5T/2 as the the-
oretical behaviour shown in Figure 63 suggests, the optimal value of
N does appear to scale linearly with T which is what Corollary 4.4.9
suggests. Figures 66 and 67 show, respectively, for each d ∈ {1, 2}, and
each d ∈ {5, 10, 25, 50}, plots of the sample efficiency against the sam-
ple acceptance rate for the Exchangeable Particle Gibbs Sampler for
this scenario and for pairs of (T,N) in {(1, 2), (5, 12), (10, 25), (50, 125)}.
Figure 67 shows that, for d ≥ 5, although the behaviour of the sample
efficiency as a function of the sample acceptance rate does not match ex-
actly the theoretical behaviour given by Figure 64, the behaviour is very
similar. Indeed, the optimal acceptance rate is; around 0.4 for (T,N) =
(1, 2) and (T,N) = (5, 12), and around 0.5 for (T,N) = (10, 25) and
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(T,N) = (50, 125), compared to a theoretical optimal acceptance rate
of around 0.4 for (T,N) = (1, 2), and just below 0.4 for (T,N) = (5, 12),
(T,N) = (10, 25) and (T,N) = (50, 125). Moreover, the insensitivity of
the choices of the acceptance rate around the optimum is similar to the
insensitivity around the optimum in the theoretical case. In summary,
for d ≥ 5, in this particular scenario, one can get close to the optimal
rate of mixing by using the theoretical optimal scaling results to tune
the sampler. Figure 66, on the other hand, shows that, for d ∈ {1, 2},
the behaviour of the sample efficiency as a function of the sample accep-
tance rate is very different from the theoretical behaviour. In particular,
the range of acceptance rates is much less than the theoretical range.
For d = 1, for instance, one should choose ε =

√
2 in order to optimise

the mixing of the sampler regardless of the values considered for the
pair (T,N). This is because, as was the case in Section 4.3.1, for smaller
d, one can choose a larger jump-size to get the same acceptance rate
for a larger d, and this is truer the smaller T is. For d = 2, on the other
hand, one should, for each pair (T,N), choose a jump-size less than

√
2

to optimise the mixing of the sampler. Indeed, the optimal acceptance
rate is; slightly larger than 0.2 for (T,N) = (1, 2) and (T,N) = (5, 12),
around 0.3 for (T,N) = (10, 25), and around 0.4 for (T,N) = (50, 125).
Moreover, for d = 2, the sample efficiency is fairly insensitive to choices
of the acceptance rate around the optimal acceptance rate. Therefore,
even for d = 2 for this scenario, one can use the theoretical optimal
scaling results to tune the sampler.

4.4.2 A Simulation Study

In this section we will look at the performance of the Exchangeable
Particle Gibbs Sampler in two examples. In the first example we will
consider the Linear Gaussian model of Example 3; that is,X0 ∼ N(0, 1),
θ = 0.8, and, for any t ∈ {1, . . . , 100}, the transition distributions are
given by (Xt|Xt−1 = xt−1) ∼ N(θxt−1, 1), and the observation distri-
butions are given by Yt|Xt = xt ∼ N(xt, 0.3). We will use the boot-
strap proposals as the marginal proposal densities; that is, p0(x0|θ) =
φ(x0; 0, 1), and, for any t ∈ {1, . . . , T}, pt(xt|xt−1, θ) = φ(xt; θxt−1, 1).
Note that, for this example, the transition weights are given by

wt(x̃
(i)
t ; θ) = φ(yt;xt, 0.3) ,

and are, therefore, bounded. Thus, by Corollary 2 of Lindsten, Douc,
and Moulines, 2015, and Theorem 1 of Andrieu, Lee, and Vihola, 2018,
the Particle Gibbs Sampler is uniformly ergodic as discussed in Section
4.2.4. Choosing the same observations as those given in Figure 22, we
ran the Exchangeable Particle Gibbs Sampler for each of the thirty-two
combinations of

(ε,N) ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,
√

2}×{50, 100, 250, 1000}

for one-hundred-thousand iterations. To garner an initial reference path,
we ran the Sequential Monte Carlo procedure (Algorithm 8) with N
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Figure 65: For each d ∈ {1, 2, 5, 10, 25, 50}, a plot of the value of T ∈ {5, 10, 50, 100}
against the value of N in the set {1, 2, 5, 12, 25, 125, 250, 1250} which
optimises the efficiency for the Exchangeable Particle Gibbs Sampler
which targets the d-dimensional extension of the Linear Gaussian model
given by Example 2 by using the bootstrap proposals as the marginal
proposal densities.
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Figure 66: Plots, for each d ∈ {1, 2}, and each (T,N) ∈
{(1, 2), (5, 12), (10, 25), (50, 125)}, of the sample efficiency against
the sample acceptance rate for the Exchangeable Particle Gibbs
Sampler which targets the d-dimensional extension of the Linear
Gaussian model given by Example 2 by using the bootstrap proposals
as the marginal proposal densities.
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Figure 67: Plots, for each d ∈ {5, 10, 25, 50}, and each (T,N) ∈
{(1, 2), (5, 12), (10, 25), (50, 125)}, of the sample efficiency against
the sample acceptance rate for the Exchangeable Particle Gibbs
Sampler which targets the d-dimensional extension of the Linear
Gaussian model given by Example 2 by using the bootstrap proposals
as the marginal proposal densities.
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particles and chose the path with the largest terminal weight, w̃(k)
T . To

generate a good representation of the truth, we ran the Particle Gibbs
Sampler (Section 4.2.4) with ten-thousand particles for one-million it-
erations. We will compare the performance of the samplers on the first
component of the simulated paths. As discussed when motivating the
optimal scaling results of Section 4.4.1, maximizing the performance of
the samplers for the first component of the simulated paths, will, in
general, lessen the path degeneracy phenomena and, hence, optimize
the rate of mixing across all components of the path. For each run of
the sampler, we calculated the sample efficiency; that is, the sample
squared jump distance divided by the number of particles, along with
the acceptance rate for the first component of the path in the X-space.
We also calculate the two-sample Kolmogorov-Smirnov statistic given
by (101) between the first element of the samples simulated via the
Exchangeable Particle Gibbs Sampler and the first element of the true
samples as a measure of how well the simulated samples represent the
truth.
In the second example we will consider a Lotka-Volterra diffusion

(see Section 3.1.2) which we observe at regular intervals. In partic-
ular, we take θ = (θ1, θ2, θ3) = (0.5, 0.0025, 0.3) to be the parame-
ters driving the diffusion, x0 = (150, 79) to be the initial conditions,
and consider the model where, the observation distributions, for any
t ∈ {2, 4, . . . , 20}, are given by Yt|Xt = xt ∼ N2(xt, 10−12I2)- thereby,
essentially, corresponding to exact observations of the diffusion- and, for
any t ∈ {2, 4, . . . , 20}, the transition, (Xt|Xt−2 = xt−2), corresponds to
the Lotka-Volterra diffusion; that is, Xt = [X

(1)
t , X

(2)
t ]∗, where[

dX
(1)
t

dX
(2)
t

]
=

[
θ1X

(1)
t − θ2X

(1)
t X

(2)
t

θ2X
(1)
t X

(2)
t − θ3X

(2)
t

]
dt

+

[
θ1X

(1)
t + θ2X

(1)
t X

(2)
t −θ2X

(1)
t X

(2)
t

−θ2X
(1)
t X

(2)
t θ2X

(1)
t X

(2)
t + θ3X

(2)
t

]1/2

dWt .

Here, for a matrix A, A1/2 denotes any matrix square-root, so that
(A1/2)(A1/2)∗ = A. We set ∆t = 0.1 and used the EM approximation
(Section 3.2.2) to forward simulate values of the diffusion, and then
used the observation distribution, Yt|Xt = xt ∼ N2(xt, 10−12I2), to
simulate a sequence of observations, y2, y4, . . . , y20. The observations
and the paths that generated them can be seen in Figure 68. For the
proposal densities for the transitions between observation times, we use
the Modified Diffusion Bridge proposal of Section 3.2.3 with ∆t = 0.1-
see Chapter 3 for more details regarding simulating conditioned diffu-
sions. Specifically, recall, from Section 3.2.3, that, in two-dimensions,
the MDB proposal of a discretised path of the diffusion between two
observation times, x∗1:K , say, takes the form

qMDB
0 (x∗1:K |y∗) =

K∏
k=1

φ(x∗k; a
MDB
k−1 , CMDB

k−1 ) ,
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Figure 68: A plot of the observations y2, y4, . . . , y20 (orange crossed) and the
path that generated them (blue solid lines) that will be used as
the sequence of observations in the simulation study for the Lotka-
Volterra diffusion.

where φ denotes the density corresponding to a two-dimensional normal
distribution and aMDB

k−1 and CMDB
k−1 correspond to the mean (Equation

(54)) and variance (Equation (55)) respectively, and, implicitly, depend
on x∗k−1, T

∗, y∗, and t∗k−1. Here; y
∗ denotes the observation which is

being conditioned upon, T ∗ denotes the time corresponding to that
observation, and t∗k−1 denotes the value of the path at the (k − 1)-st
inter-observation time. Such a proposal is equivalent to proposing 2K
independent N(0, 1) random variables, Z1:K , where each Zk is formed
of two independent N(0, 1) random variables; that is, Zk = (Z

(1)
k , Z

(2)
k )-

one for each of the two dimensions— and transforming those random
variables appropriately by sequentially setting, for k ∈ {1, . . . ,K},
Xk = aMDB

k−1 +
√
CMDB
k−1 Zk. We ran the Exchangeable Particle Gibbs

Sampler for each of the thirty-two combinations of

(ε,N) ∈ {0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,
√

2}× {10, 50, 100, 250} ,

for one-hundred-thousand iterations. To garner an initial reference path,
we ran the Sequential Monte Carlo procedure (Algorithm 8) with N

particles and choose the path with the largest terminal weight, w̃(k)
T . To

generate a good representation of the truth, we ran the Particle Gibbs
Sampler (Section 4.2.4) with one-thousand particles for one-million it-
erations using the residual-bridge construct of Whitaker et al., 2017,
where ξt = E(R̂t|Y = y) and R̂t is the process satisfying the diffusion
of the Linear Noise Approxtimation; that is, satisfies the SDE 64, as
the proposal for the transition between observations. Specifically, re-
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call, from Section 3.2.5, that, in two-dimensions, the residual-bridge
proposal of a discretised path of the diffusion, x∗1:K , say, takes the form

qRB
0 (x∗1:K |y∗) =

K∏
k=1

φ(x∗k; a
RB
k−1, D

RB
k−1) ,

where φ denotes the density corresponding to a two-dimensional nor-
mal distribution and aRB

k−1 and DRB
k−1 correspond to the mean (Equation

(61)) and variance matrix (Equation (62)) respectively, and, implicitly,
depend on x∗k−1, T

∗, y∗, ξk−1, ξK , and t∗k−1. We will compare the per-
formance of the samplers on the element of the simulated paths corre-
sponding to t = 1. As discussed when motivating the optimal scaling
results of Section 4.4.1, maximizing the performance of the samplers
for the section of the path corresponding to the first inter-observation
time, will, in general, lessen the path degeneracy phenomena and, hence,
optimize the rate of mixing across all components of the path. More-
over, given the samples are pinned at both the start and end of the
inter-observation periods, it is reasonable to focus on samples at the
middle of the first inter-observation period as these will exhibit the
most variation and, therefore, combined with the path degeneracy phe-
nomena, will be the hardest to represent. For each run of the sampler,
we calculated the sample efficiency; that is, the sample squared jump
distance divided by the number of particles, along with the acceptance
rate, for the section of the path in the X-space corresponding to the
first inter-observation time period. We also calculate the two-sample
Kolmogorov-Smirnov statistic given by (101) between the element of
the sample paths, simulated via the Exchangeable Particle Gibbs Sam-
pler, corresponding to t = 1 and the same corresponding element for
the true sample paths as a measure of how well the simulated samples
represent the truth.

4.4.3 Results

Starting with the Linear Gaussian model; Figures 69 and 70 show, re-
spectively; a plot of the sample efficiency for the first component of the
sample paths in the X-space against the jump-size, ε, and against the
acceptance rate, for each value of N . Figure 71 shows a plot of the two-
sample Kolmogorov-Smirnov (KS) statistic, (101)— calculated for the
first element of the samples simulated via the Exchangeable Particle
Gibbs Sampler and the first element of the true samples— against the
jump-size for each value of N . Figure 69 shows that the maximum sam-
ple efficiency is achieved when one takes N = 250 and the jump-size, ε,
to be the maximal jump-size; that is ε =

√
2, which corresponds to the

Particle Gibbs Sampler. This optimal choice for N , in this case, lines up
with the optimal scaling results of Section 4.4.1 which suggests taking
N = 5T/2 to optimise efficiency. Simiarly, when N = 1000, the optimal
efficiency is achieved for the maximimal jump-size. On the other hand,
for N ∈ {50, 100}, the optimal efficiency occurs for values of the jump-
size that are less than

√
2. Similarly, Figure 71 demonstrates that the
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Figure 69: A plot of the sample efficiency for the first component of the sample
paths in the X-space against the jump-size, ε, for each value of N ∈
{50, 100, 250, 1000} of the Exchangeable Particle Gibbs Sampler
applied to the Linear Gaussian model and using the bootstrap
proposals as the marginal proposal densities. The sampler was run
for one-hundred-thousand iterations.

two-sample KS statistic is minimised for; ε =
√

2 whenN ∈ {250, 1000},
and ε <

√
2 when N ∈ {50, 100}. Clearly, this is because, the larger the

value of N , the bigger jumps you can take while still maintaining the
same level of acceptance rate, and, this increase in jump-size, results in
better mixing of the chain and samples which are a better representa-
tion of the truth- at least when considering the first component of the
sample paths marginally. Indeed, Figure 70 highlights that the optimal
acceptance rate is larger the larger the value of N . All three figures sug-
gest that the optimal choice of the jump-size, ε, in this case, depends
on the choice on the number of particles N . Of course, to maximize
efficiency, one would take N = 250 and take ε =

√
2; that is, one would

use the Particle Gibbs Sampler with N = 250.
Figure 72 shows histograms of the first component of the sample

paths simulated by the Exchangeable Particle Gibbs Sampler for the
optimal choice of N ; that is, N = 250, and for a variety of jump-sizes,

ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,
√

2} ,

where ε = 0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.25 for the subplot in the second row and the first column, and
so on. With the same layout, Figure 73 shows, at each of the one-
hundred-thousand iterations, the first component of the states of the
Exchangeable Particle Gibbs Sampler for N = 250, and for a variety of
jump-sizes,

ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,
√

2} .

Figure 72 highlights that, for all but the smaller two jump-sizes; that
is, for every ε ∈ {0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, the first components of
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Figure 70: A plot of the sample efficiency for the first component of the
sample paths in the X-space against the sample acceptance rate
for the first component of the sample paths for each value of
N ∈ {50, 100, 250, 1000} of the Exchangeable Sampler Gibbs Sam-
pler applied to the Linear Gaussian model and using the bootstrap
proposals as the marginal proposal densities. The sampler was run
for one-hundred-thousand iterations.

the simulated paths accurately represent the truth. Moreover, the figure
also shows that, for ε = 0.1, the first components of the simulated paths
are a good representation of the truth; although, the mass in the center
of the true distribution is slightly under-represented. The good mixing
of the Exchangeable Particle Gibbs Sampler for these choices of the
jump-size can be seen in Figure 73. It can also be seen, from this figure,
that, when the jump-size is chosen to be very small; that is ε = 0.01,
the sampler exhibits random walk behaviour and the chain does not
mix very well. This, in turn, leads to samples which do not correctly
represent the truth- as can be seen in Figure 72. For N = 250, and any
jump-size, the sampler does not exhibit any sticky behaviour, even as it
goes out into the tails, as can be seen in Figure 73. This suggests that,
for these values of N and ε, the Exchangeable Particle Gibbs Sampler
is geometrically ergodic for this example6. Similar statements can be
made for the case where N = 1000- as can be seen in Figures 120 and
123, which show, respectively; histograms of the first component of the
sample paths simulated by the Exchangeable Particle Gibbs Sampler,
and the evolution of the first component of the states for N = 1000
and for a variety of jump-sizes,

ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,
√

2} .

Figures 118, 121, and Figures 119, 122, show the histograms and evo-
lutions for the same set of jump-sizes, and for N = 50 and N = 100,

6 Of course, since the weights are bounded, the chain is actually uniformly ergodic by
Corollary 2 of Lindsten, Douc, and Moulines, 2015, and Theorem 1 of Andrieu, Lee,
and Vihola, 2018.
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Figure 71: A plot of the two-sample Kolmogorov-Smirnov statistic, (101)- cal-
culated for the first element of the samples simulated via the Ex-
changeable Particle Gibbs Sampler applied to the Linear Gaussian
model and using the bootstrap proposals as the marginal proposal
densities, and the first element of the true samples- against the
jump-size for each value of N ∈ {50, 100, 250, 1000}. The sampler
was run for one-hundred-thousand iterations.

respectively. It can be seen that, for these N - as suggested by Figures
69, 70, and 71- the largest choice of the jump-size; that is, ε =

√
2, leads

to a relatively sticky chain, which results in samples which represent
the truth less well relative to smaller choices of the jump-size.
For the Lotka-Volterra diffusion model; Figures 74 and 75 show, re-

spectively; a plot of the sample efficiency, for the section of the path
in the X-space corresponding to the first inter-observation time period,
against the jump-size, ε, and against the acceptance rate, for each value
of N . Figure 76 shows a plot of the two-sample Kolmogorov-Smirnov
(KS) statistic, (101)— calculated for the t = 1 element of the sam-
ple paths produced by the Exchangeable Particle Gibbs Sampler and
the same element for the true sample paths— against the jump-size
for each value of N . Figure 74 shows that the maximum sample effi-
ciency is achieved when one takes N = 10 and the jump-size, ε, to
be equal to 0.1. The figure also shows that, regardless of the value
of N , the jump-size which maximises the sample efficiency is signifi-
cantly less than

√
2. In fact, for any N , when the jump-size is chosen

to be
√

2; that is, we use independent proposals, the sample efficiency
is essentially zero. Thus, in this case, the Particle Gibbs Sampler ex-
hibits extremely poor mixing. Simiarly, Figure 76 demonstrates that
the two-sample KS statistic is minimised for values of the jump-size
that are significantly less than

√
2, and, when ε =

√
2, the statistic is

very close to its maximal possible value, one. Therefore, in this case,
the Particle Gibbs Sampler produces samples which are a very poor
representation of the truth. Moreover, this figure shows that, although
choosing N = 10 and ε = 0.1 maximises the efficiency of the sampler-
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Figure 72: Histograms of the first component of the sample paths simulated
by the Exchangeable Particle Gibbs Sampler- applied to the Linear
Gaussian model and using the bootstrap proposals as the marginal
proposal densities- with N = 250, and for a variety of jump-sizes,
ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, where ε = 0.01 for the

top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.

in terms of the expected squared jump distance per particle— such a
choice does not lead to samples which represent the truth— at least in
terms of the element of the path at t = 1 viewed marginally— the best.
Indeed, for N = 100 or N = 250, and ε around 0.2, the two-sample
KS statistic is almost an order of magnitude smaller than it is when
N = 10 and ε = 0.1. Of course, this is not a fair comparison, since run-
ning the sampler with N = 100 is about an order of magnitude slower
than running the sampler with N = 10, so the chain, in the latter case,
can be run for longer and, therefore, potentially produce samples which
better represent the truth for a fixed computational cost. As has been
the case for all the examples considered in this thesis, Figure 75 high-
lights that the optimal acceptance rate is larger the larger the value of
N . All three figures suggest that, for this example, the Particle Gibbs
Sampler performs very poorly.
Figure 77 shows histograms of the t = 1 element of the sample paths

simulated via the Exchangeable Particle Gibbs Sampler for the optimal
choice of N ; that is, N = 10, and for a variety of jump-sizes,

ε ∈ {0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,
√

2} ,

where ε = 0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.15 for the subplot in the second row and the first column, and so
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Figure 73: Plots of the first component of the states of the the Exchange-
able Particle Gibbs Sampler- applied to the Linear Gaussian
model and using the bootstrap proposals as the marginal pro-
posal densities- with N = 250, and for a variety of jump-sizes,
ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, where ε = 0.01 for the

top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on.

on. With the same layout, Figure 78 shows, at each of the one-hundred-
thousand iterations, the t = 1 element of the states of the Exchangeable
Particle Gibbs Sampler for N = 10, and for a variety of jump-sizes,

ε ∈ {0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,
√

2} .

Figure 77 highlights that, for the smallest jump-size and for the four
largest jump-sizes; that is, for every ε ∈ {0.01, 0.3, 0.5, 0.75,

√
2}, the

t = 1 elements of the simulated paths are a poor representation of the
truth. Indeed, for ε ∈ {0.5, 0.75,

√
2}, the samples do not even form a vis-

ible density. Figure 78 shows that this is because, for ε ∈ {0.5, 0.75,
√

2},
the chain only moves a few times in the one-hundred-thousand itera-
tions. Moreover, for ε = 0.3, even though the chain does move, it is
relatively sticky and, therefore, does not move much. For the smallest
value of the jump-size; that is, ε = 0.01, the chain exhibits random-
walk behaviour. On the other hand, for ε ∈ {0.1, 0.25, 0.2}, the chain
mixes well and this leads to samples which are an okay representation
of the truth. These figures would hence suggest that, in this case, the
Exchangeable Particle Gibbs Sampler is potentially geometrically er-
godic, particularly for smaller values of the jump-size. As Figure 71
suggests, for ε <

√
2, increasing N leads to samplers whose chains are

significantly less sticky and, therefore, whose samples are a better rep-
resentation of the truth. This can be seen in Figures 124, 125, and
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Figure 74: A plot of the sample efficiency, for the section of the path in the
X-space corresponding to the first inter-observation time period,
against the jump-size, ε, for each value of N ∈ {10, 50, 100, 250},
of the Exchangeable Particle Gibbs Sampler applied to the Lotka-
Volterra diffusion model and using the Modified Diffusion Bridge
proposal of Section 3.2.3 as the marginal proposal distribution. The
sampler was run for one-hundred-thousand iterations.

126, which show, for N = 50, N = 100, and N = 250, respectively,
histograms of the t = 1 element of the sample paths simulated via the
Exchangeable Particle Gibbs Sampler for a variety of jump-sizes,

ε ∈ {0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,
√

2} ,

as well as Figures 127, 128, and 129, which show, for N = 50, N = 100,
and N = 250, respectively, the t = 1 element of the states of the
Exchangeable Particle Gibbs Sampler for a variety of jump-sizes,

ε ∈ {0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,
√

2} .

All these figures suggest that, for any N and ε <
√

2, the Exchange-
able Particle Gibbs Sampler is potentially geometrically ergodic. Note
that, for any value of N considered, the chain corresponding to the
Exchangeable Particle Gibbs Sampler with ε =

√
2; that is, the chain

corresponding to the Particle Gibbs Sampler, is extremely sticky, mov-
ing only a few times in one-hundred-thousand iterations. This suggests
that, in this case, regardless of the value of N , the Particle Gibbs Sam-
pler is not geometrically ergodic.

4.5 summary

In this Chapter we introduced two new classes of Markov Chain Monte
Carlo samplers, named the Exchangeable Sampler and the Exchange-
able Particle Gibbs Sampler. At each iteration, the Exchangeable Sam-
pler use exchangeablility to simulate multiple, weighted proposals whose
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Figure 75: A plot of the sample efficiency, for the section of the path in the
X-space corresponding to the first inter-observation time period,
sample acceptance rate for each value of N ∈ {10, 50, 100, 250},
of the Exchangeable Particle Gibbs Sampler applied to the Lotka-
Volterra diffusion model and using the Modified Diffusion Bridge
proposal of Section 3.2.3 as the marginal proposal distribution. The
sampler was run for one-hundred-thousand iterations.

weights indicate how likely the chain is to move to such a proposal,
thereby generalising the multiple-proposal Independence Sampler. The
Exchangeable Particle Gibbs Sampler generalises the Particle Gibbs
Sampler by allowing the particles in the Conditional Sequential Monte
Carlo procedure to be simulated exchangeably. By generalising the Inde-
pendence Sampler and the Particle Gibbs Sampler respectively, these
new samplers allow for the locality of moves to be controlled by a
scaling parameter, which can be tuned to optimise the mixing of the
resulting MCMC procedure, while still benefiting from the increase in
acceptance probability that typically comes with using multiple propos-
als. These samplers can lead to chains with better mixing properties,
and, therefore, to MCMC estimators with smaller variances than their
corresponding algorithms based on independent proposals. We showed,
numerically, in Section 4.3.2 for the Exchangeable Sampler, and Sec-
tion 4.4.2 for the Exchangeable Particle Gibbs Sampler, how the intro-
duction of a tunable jump-size can lead to significantly more efficient
samplers compared to their independent counterparts. Of particular
relevance to this thesis, we showed that both the Exchangeable Sam-
pler and the Exchangeable Particle Gibbs Sampler were significantly
more efficient than their independent counterparts when conducting
inference for diffusions using the Modified Diffusion Bridge proposal of
Section 3.2.3. We also provided, via Theorem 4.3.9, sufficient conditions
under which the Exchangeable Sampler is geometrically ergodic. In par-
ticular, we showed that the Exchangeable Sampler can be geometrically
ergodic even when the importance weights are unbounded and, hence,
in scenarios where the Independence Sampler cannot be geometrically
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Figure 76: A plot of the two-sample Kolmogorov-Smirnov statistic, (101)- cal-
culated for the t = 1 element of the sample paths simulated via
the Exchangeable Particle Gibbs Sampler applied to the Lotka-
Volterra diffusion model and using the Modified Diffusion Bridge
proposal of Section 3.2.3 as the marginal proposal distribution, and
the same element for the true sample paths- against the jump-size
for each value of N ∈ {10, 50, 100, 250}. The sampler was run for
one-hundred-thousand iterations.

ergodic. To provide guidance in the practical implementation of the Ex-
changeable Sampler and the Exchangeable Particle Gibbs Sampler, we
derived, in Sections 4.3.1 and 4.4.1, asymptotic expected squared-jump
distance results, and demonstrated, numerically, how the theory plays
out in practice when d is finite.
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Figure 77: Histograms of the t = 1 element of the sample paths, simu-
lated via the Exchangeable Particle Gibbs Sampler applied to
the Lotka-Volterra diffusion model and using the Modified Dif-
fusion Bridge proposal of Section 3.2.3 as the marginal proposal
distribution, for N = 10, and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,

√
2}, where ε = 0.01 for the top-

left subplot, ε = 0.1 for the top-right subplot, ε = 0.15 for the
subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.
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Figure 78: Plots of the t = 1 element of the states of the the Exchange-
able Particle Gibbs Sampler- applied to the Linear Gaussian
model and using the bootstrap proposals as the marginal pro-
posal densities- for N = 10, and for a variety of jump-sizes,
ε ∈ {0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,

√
2}, where ε = 0.01 for the

top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.15 for the
subplot in the second row and the first column, and so on.





5CONCLUS ION AND FURTHER WORK

In this thesis we built upon two strands of recent research related to
conducting Bayesian inference for stochastic processes.
In our first contribution, we introduced a new residual-bridge pro-

posal for approximately simulating conditioned diffusions formed by
applying the modified diffusion bridge approximation of Durham and
Gallant, 2002 to the difference between the true diffusion and a second,
approximate, diffusion driven by the same Brownian motion. This new
proposal attempts to account for volatilities which are not constant
and can, therefore, lead to gains in efficiency over recently proposed
residual-bridge constructs (Whitaker et al., 2017) in situations where
the volatility varies considerably, as is often the case for larger inter-
observation times and for time-inhomogeneous volatilities. We showed,
in Section 3.3.2, via a simulation study, how, for larger inter-observation
times, this new proposal led to larger- sometimes one to two orders of
magnitude larger- relative effective sample sizes per second compared
to the residual-bridge constructs of Whitaker et al., 2017, for both the
Lotka-Volterra diffusion (3.1.2) and a simple diffusion for gene expres-
sion (3.1.3). We highlighted that a drawback of the new proposal is that,
at inter-observation time points, discrepancies of sample paths of the
conditional diffusion from the deterministic path, around which the
residual-bridge is centered, can be relatively large. We demonstrated
how, for the Birth-Death diffusion, these discrepancies become evident
as neither the approximating deterministic path produced by the ODE
or the LNA captures the true dynamics of the diffusion as the diffusion
approaches the x-axis- a reflecting boundary of the diffusion. Indeed,
we showed that, for the Birth-Death diffusion, these discrepancies led
to lower relative effective sample sizes per second compared to the
residual-bridge constructs of Whitaker et al., 2017. This is not neces-
sarily a drawback of the residual-bridge construct itself, per se, but
a drawback which stems from the deterministic path upon which the
residual-bridge is constructed. Of course, using the determinstic path
to approximate the volatility as well as the drift amplifies the prob-
lem and makes the bridge less robust compared to the constructs of
Whitaker et al., 2017.

One natural direction for further work involves tackling the drawback
of the new residual-bridge construct. In particular, developing a bridge
which attempts to account for volatilities which are not constant, but
which also is robust against situations where the approximating path
fails to capture the true dynamics of the diffusion. As noted in this the-
sis, we struggled to find a justifiable and computationally efficient inter-
polation scheme which, instead of preserving the discrepancies in the
drift and volatility over the inter-observation time, attempted to ensure
these were 0 at time T . However, one avenue that was not investigated

203
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fully involves trying to use a sample path as the path around which the
new residual-bridge construct is based. Indeed, one could imagine sim-
ulating a sample path, xt, either by the constructs of Whitaker et al.,
2017 or by the constructs introduced in this thesis, and then using this
sample path, that is, setting ξt = xt, to construct the residual;

dR̃t = (µ(Xt, t)− ξ′t)dt+ (σ(Xt, t)− σ(ξt, t))dBt .

By using a sample path which aims to better represent the true dynam-
ics of the conditioned diffusion, as the path around which the residual-
bridge is constructed, one can, potentially, make the novel residual-
bridge construct introduced in this thesis more efficient statistically,
and more robust. Of course, the performance of such a procedure will
strongly depend on how well the initial sample path represents a sam-
ple from the true conditioned diffusion; that is, if the sample path
constructed initially is not a good representation of the true condi-
tioned diffusion, then, the discrepancies of the true sample paths of
the conditioned diffusion from the sample path upon which the resid-
ual is based, will potentially be large. Therefore, such a proposal will
potentially have the same drawbacks as the residual-bridge constructs
introduced in this thesis. Moreover, having to simulate two paths to
get one sample path essentially means doubling the cost per sample.
Therefore, such an approach would need to significantly improve the
effective sample size in order to achieve a competitive level of efficiency.
One is almost always interested in simulating many of these paths as
part of another procedure; like a particle filter, for instance. Therefore,
one can potentially tackle both these problems by first pre-simulating a
smaller number of sample paths and then using these sample paths- by
taking their weighted mean, say- to construct a path, ξt, upon which
to base the residual bridge. By pre-simulating, for instance, 10% of the
number of sample paths one plans to simulate, one would only increase
the computational cost by, at most, 10%- and, potentially, may even
lead to a smaller computational cost since one would not have solve
as many ODEs. Furthermore, by using a selection of conditioned sam-
ple paths, one can potentially construct a path, upon which to build
the residual bridge, that accurately captures the true dynamics of the
conditioned diffusion. Of course, where the initial starting points for
the sample paths are different, such as in a particle filter where the
observations are noisy, for instance, one would have to be careful about
how the pre-simulated paths are constructed and combined.
In our second contribution, we introduced two new classes of Markov

Chain Monte Carlo samplers, named the Exchangeable Sampler and the
Exchangeable Particle Gibbs Sampler, which, at each iteration, use ex-
changeablility to simulate multiple, weighted proposals whose weights
indicate how likely the chain is to move to such a proposal. By gen-
eralising the Independence Sampler and the Particle Gibbs Sampler
respectively, these new samplers allow for the locality of moves to be
controlled by a scaling parameter which can be tuned to optimise the
mixing of the resulting MCMC procedure, while still benefiting from the
increase in acceptance probability that typically comes with using mul-
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tiple proposals. These samplers can lead to chains with better mixing
properties, and, therefore, to MCMC estimators with smaller variances
than their corresponding algorithms based on independent proposals.
We showed, numerically, in Section 4.3.2 for the Exchangeable Sampler,
and Section 4.4.2 for the Exchangeable Particle Gibbs Sampler, how the
introduction of a tunable jump-size can lead to significantly more effi-
cient samplers compared to their independent counterparts. In particu-
lar, in the T = 1 scenario, when the transition weight was unbounded,
and, therefore, when the Independence Sampler could not be geomet-
rically ergodic, the Exchangeable Sampler had better performance for
values of ε <

√
2; that is, when the samples were not simulated inde-

pedently from one another. Moreover, both the Exchangeable Sampler
and the Exchangeable Particle Gibbs Sampler were significantly more
efficient than their independent counterparts when conducting infer-
ence for diffusions using the Modified Diffusion Bridge proposal of Sec-
tion 3.2.3. We also provided, via Theorem 4.3.9, sufficient conditions
under which the Exchangeable Sampler is geometrically ergodic. In par-
ticular, we showed that the Exchangeable Sampler can be geometrically
ergodic even when the importance weights are unbounded and, hence,
in scenarios where the Independence Sampler cannot be geometrically
ergodic. We gave numerical support to this theorem by investigating the
assumptions for three examples; one where the transition weight was
exponentially increasing in the tails, one where the transition weight
was polynomially increasing in the tails, and one where the transition
weight was bounded, and seeing how the sampler performed in prac-
tice in the simulation study of Section 4.3.2. To provide guidance in
the practical implementation of the Exchangeable Sampler and the Ex-
changeable Particle Gibbs Sampler, we derived, in Sections 4.3.1 and
4.4.1, asymptotic expected squared-jump distance results, and demon-
strated, numerically, how the theory plays out in practice when d is
finite.
There are several directions for further work relating to the Exchange-

able Sampler and the Exchangeable Particle Gibbs Sampler. The first
involves investigating further the ergodicity properties of the Exchange-
able Particle Gibbs Sampler. Recall, from Theorem 2.3.31, that the
Independence Sampler is uniformly ergodic if and only if the impor-
tance weight is bounded. Moreover, Corollary 2 of Lindsten, Douc, and
Moulines, 2015, and Theorem 1 of Andrieu, Lee, and Vihola, 2018,
demonstrate that the Particle Gibbs Sampler, which can viewed as an
extension of the Independence Sampler, is uniformly ergodic if the tran-
sition weights, at each time step, are uniformly bounded. Finally, Theo-
rem 4.3.9 provides sufficient conditions under which the Exchangeable
Sampler, which, itself, is a generalisation of the Independence Sam-
pler, is geometrically ergodic. In particular, the Exchangeable Sam-
pler can be geometrically ergodic even when the importance weights
are unbounded. Therefore, it is natural to conjecture that, under cer-
tain conditions, the Exchangeable Particle Gibbs Sampler, which is an
extension of the Exchangeable Sampler, and a generalisation of the
Particle Gibbs Sampler, can be geometrically ergodic even if the tran-
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sition weights are unbounded, provided the weights do not increase
too quickly in the tails. Investigating this conjecture is an important
direction for future work.
The second direction concerns Remark 14. Recall that the Exchange-

able Particle Gibbs Sampler relies on the Conditional Exchangeable
Sequential Monte Carlo (CxSMC) procedure, which is given by Algo-
rithm 20. The CxSMC procedure considered in this thesis utilises the
proposal given by Algorithm 21, which allows for the use of a different
jump-size, εt, at each time t ∈ {0, . . . , T}, to propagate the particles
forward. In this thesis, we have restricted ourselves to letting the jump-
size be static; that is, εt = ε for all t ∈ {0, . . . , T}. However, in general,
because there are fewer future resampling steps the further in time, t,
the procedure is, it would be prudent to use a smaller jump-size the
smaller the value of t and a bigger jump-size the larger the value of t.
Intuitively, one would expect that the optimal function of εt, with re-
spect to time t, is some concave curve between 1 and T , where εT = 1.
This intuition is partially confirmed by the proof, given by A.25, of
the optimal scaling result of Theorem 4.4.7. Investigating this idea is
another clear direction for future work.
The third direction stems from Remark 8. Tjelmeland, 2004 provides

a general framework for multiple-proposal samplers. In the framework
Tjelmeland, 2004 presents, one does not need a marginal distribution
to implement the algorithm. Moreover, the two proposals described in
Tjelmeland, 2004 are such that the resulting joint proposal satisfies a
certain symmetry, much like the random-walk sampler. As such, for
both those proposals, the transition weight, much like the transition
weight for the random-walk sampler, is simply the target density up
to a constant of proportionality. In the case where the target and the
marginal are both Normal distributions, the first proposal presented
in Tjelmeland, 2004 is very similar to the proposal we introduce in
Algorithm 18. The second proposal, on the other hand, mimics the
random-walk proposal whilst keeping the proposals equidistant from
one another. Much like the Exchangeable Sampler introduced in this
thesis, it is this symmetry that simplifies the transition weight and leads
to an efficient sampler. The approaches described in Tjelmeland, 2004
are a natural alternative to the Exchangeable Sampler introduced in
this thesis. Like the Exchangeable Sampler, they can also be extended
to a T > 1 setting. Therefore, another interesting piece of work would
involve comparing the two approaches in both the T = 1 and T > 1
settings and extending the results derived in this thesis to the methods
described in Tjelmeland, 2004.



BIBL IOGRAPHY

Agapiou, Sergios, Gareth O. Roberts, and Sebastian J. Vollmer (Aug. 2018). “Un-
biased Monte Carlo: Posterior estimation for intractable/infinite-dimensional
models”. In: Bernoulli 24.3, pp. 1726–1786. doi: 10.3150/16- BEJ911. url:
https://doi.org/10.3150/16-BEJ911.

Aït-Sahalia, Yacine and Robert Kimmel (2007). “Maximum likelihood estimation
for stochastic volatility models”. In: Journal of Financial Economics 83.413.

Akeret, J., A. Refregier, A. Amara, S. Seehars, and C. Hasner (Aug. 2015). “Approx-
imate Bayesian computation for forward modeling in cosmology”. In: JCAP 8,
043, p. 043. doi: 10.1088/1475-7516/2015/08/043.

Ala-Luhtala, Juha, Nick Whiteley, Kari Heine, and Robert Piché (2016). “An Intro-
duction to Twisted Particle Filters and Parameter Estimation in Non-Linear
State-Space Models”. In: IEEE Transactions on Signal Processing 64, pp. 4875–
4890.

Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein (2010). “Particle Markov
chain Monte Carlo methods”. In: Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 72.3, pp. 269–342. issn: 1467-9868. doi: 10.1111/
j.1467-9868.2009.00736.x.

Andrieu, Christophe, Anthony Lee, and Matti Vihola (May 2018). “Uniform ergodic-
ity of the iterated conditional SMC and geometric ergodicity of particle Gibbs
samplers”. In: Bernoulli 24.2, pp. 842–872. doi: 10.3150/15- BEJ785. url:
https://doi.org/10.3150/15-BEJ785.

Andrieu, Christophe and Gareth O. Roberts (Apr. 2009). “The pseudo-marginal ap-
proach for efficient Monte Carlo computations”. In: Ann. Statist. 37.2, pp. 697–
725. doi: 10.1214/07-AOS574. url: https://doi.org/10.1214/07-AOS574.

Andrieu, Christophe, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan
(2003). “An Introduction to MCMC for Machine Learning”. In: Machine Learn-
ing 50.1, pp. 5–43. issn: 1573-0565. doi: 10.1023/A:1020281327116.

Ash, R.B. and C. Doléans-Dade (2000). Probability and Measure Theory. Harcourt/A-
cademic Press. isbn: 9780120652020.

Atchadé, Yves F. and François Perron (2007). “On the geometric ergodicity of
Metropolis-Hastings algorithms”. In: Statistics 41.1, pp. 77–84. doi: 10.1080/
10485250601033214. eprint: http://dx.doi.org/10.1080/10485250601033214.

Ball, Frank and Peter Neal (2008). “Network epidemic models with two levels of
mixing”. In: Mathematical Biosciences 212.1, pp. 69 –87. issn: 0025-5564. doi:
https://doi.org/10.1016/j.mbs.2008.01.001.

Barndorff-Nielsen, Ole E. (1997). “Normal Inverse Gaussian Distributions and Stochas-
tic Volatility Modelling”. In: Scandinavian Journal of Statistics 24.1, pp. 1–13.
issn: 1467-9469. doi: 10.1111/1467-9469.00045.

Baxendale, Peter H. (Feb. 2005). “Renewal theory and computable convergence
rates for geometrically ergodic Markov chains”. In: Ann. Appl. Probab. 15.1B,
pp. 700–738. doi: 10.1214/105051604000000710. url: https://doi.org/10.
1214/105051604000000710.

Beaumont, Mark A. (2003). “Estimation of Population Growth or Decline in Genet-
ically Monitored Populations”. In: Genetics 164.3, pp. 1139–1160. issn: 0016-
6731. eprint: http://www.genetics.org/content/164/3/1139.full.pdf.

Berntsen, Jarle, Terje O. Espelid, and Alan Genz (Dec. 1991). “An Adaptive Algo-
rithm for the Approximate Calculation of Multiple Integrals”. In: ACM Trans.
Math. Softw. 17.4, pp. 437–451. issn: 0098-3500. doi: 10.1145/210232.210233.

Beskos, Alexandros, Omiros Papaspiliopoulos, and Gareth O. Roberts (Dec. 2006).
“Retrospective exact simulation of diffusion sample paths with applications”.
In: Bernoulli 12.6, pp. 1077–1098. doi: 10.3150/bj/1165269151.

Billingsley, P. (1995). Probability and Measure. Wiley Series in Probability and Statis-
tics. Wiley. isbn: 9780471007104.

Bizjajeva, Svetlana and Jimmy Olsson (Oct. 2016). “Antithetic sampling for sequen-
tial Monte Carlo methods with application to state-space models”. English. In:

207

https://doi.org/10.3150/16-BEJ911
https://doi.org/10.3150/16-BEJ911
https://doi.org/10.1088/1475-7516/2015/08/043
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.3150/15-BEJ785
https://doi.org/10.3150/15-BEJ785
https://doi.org/10.1214/07-AOS574
https://doi.org/10.1214/07-AOS574
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1080/10485250601033214
https://doi.org/10.1080/10485250601033214
http://dx.doi.org/10.1080/10485250601033214
https://doi.org/https://doi.org/10.1016/j.mbs.2008.01.001
https://doi.org/10.1111/1467-9469.00045
https://doi.org/10.1214/105051604000000710
https://doi.org/10.1214/105051604000000710
https://doi.org/10.1214/105051604000000710
http://www.genetics.org/content/164/3/1139.full.pdf
https://doi.org/10.1145/210232.210233
https://doi.org/10.3150/bj/1165269151


208 bibliography

Annals of the Institute of Statistical Mathematics 68.5, pp. 1025–1053. issn:
0020-3157. doi: 10.1007/s10463-015-0524-y.

Boys, R. J., D. J. Wilkinson, and T. B. L. Kirkwood (2008). “Bayesian inference for
a discretely observed stochastic kinetic model”. In: Statistics and Computing
18.2, pp. 125–135. issn: 1573-1375. doi: 10.1007/s11222-007-9043-x.

Brasnett, PA, LS Mihaylova, CN Canagarajah, and DR Bull (Jan. 2005). “Particle
filtering with multiple cues for object tracking in video sequences”. In: IS &
T/SPIE 17th Annual Symposium Image and Video Communications Process-
ing 2005, San Jose, CA, USA. Vol. 5685. SPIE–The International Society for
Optical Engineering, pp. 430 –441. doi: 10.1117/12.585882.

Breyer, L.A. and G.O. Roberts (2000). “From metropolis to diffusions: Gibbs states
and optimal scaling”. In: Stochastic Processes and their Applications 90.2, pp. 181
–206. issn: 0304-4149. doi: https://doi.org/10.1016/S0304- 4149(00)
00041- 7. url: http://www.sciencedirect.com/science/article/pii/
S0304414900000417.

Brooks, S., A. Gelman, G. Jones, and X.L. Meng (2011). Handbook of Markov Chain
Monte Carlo. Chapman & Hall/CRC Handbooks of Modern Statistical Meth-
ods. CRC Press. isbn: 9781420079425.

Cancès, Eric, Frédéric Legoll, and Gabriel Stoltz (2007). “Theoretical and numerical
comparison of some sampling methods for molecular dynamics”. In: ESAIM:
M2AN 41.2, pp. 351–389. doi: 10.1051/m2an:2007014.

Capinski, M. and E. Kopp (2013). Measure, Integral and Probability. Springer Un-
dergraduate Mathematics Series. Springer London. isbn: 9781447136316.

Cappé, O., E. Moulines, and T. Ryden (2006). Inference in Hidden Markov Models.
Springer Series in Statistics. Springer New York. isbn: 9780387289823.

Charniak, E. (1996). Statistical Language Learning. A Bradford book. A Bradford
Book. isbn: 9780262531412.

Chopin, Nicolas (Dec. 2004). “Central limit theorem for sequential Monte Carlo
methods and its application to Bayesian inference”. In: Ann. Statist. 32.6,
pp. 2385–2411. doi: 10.1214/009053604000000698.

Chopin, Nicolas and Sumeetpal S. Singh (Aug. 2015). “On particle Gibbs sampling”.
In: Bernoulli 21.3, pp. 1855–1883. doi: 10.3150/14-BEJ629.

Coffey, W., Y.P. Kalmykov, and J.T. Waldron (2004). The Langevin Equation:
With Applications to Stochastic Problems in Physics, Chemistry, and Electrical
Engineering. Series in contemporary chemical physics. World Scientific. isbn:
9789812384621.

Conway, J.B. (1994). A Course in Functional Analysis. Graduate Texts in Mathe-
matics. Springer New York. isbn: 9780387972459.

Cotter, S. L., G. O. Roberts, A. M. Stuart, and D. White (2013). “MCMC Methods
for Functions: Modifying Old Algorithms to Make Them Faster”. In: Statistical
Science 28.3, pp. 424–446. issn: 08834237, 21688745. url: http://www.jstor.
org/stable/43288425.

Dahlin, J., F. Lindsten, J. Kronander, and T. B. Schön (Nov. 2015). “Accelerat-
ing pseudo-marginal Metropolis-Hastings by correlating auxiliary variables”. In:
ArXiv e-prints. arXiv: 1511.05483 [stat.CO].

Del Moral, P. (2012). Feynman-Kac Formulae: Genealogical and Interacting Particle
Systems with Applications. Probability and Its Applications. Springer New York.
isbn: 9781468493931.

Del Moral, P. and A. Guionnet (May 1999). “Central limit theorem for nonlinear
filtering and interacting particle systems”. In: Ann. Appl. Probab. 9.2, pp. 275–
297. doi: 10.1214/aoap/1029962742.

Del Moral, P. and L. Miclo (2000). “Branching and interacting particle systems ap-
proximations of feynman-kac formulae with applications to non-linear filtering”.
In: Séminaire de Probabilités XXXIV. Ed. by Jacques Azéma, Michel Ledoux,
Michel Émery, and Marc Yor. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 1–145. isbn: 978-3-540-46413-6. doi: 10.1007/BFb0103798.

Del Moral, Pierre, Arnaud Doucet, and Ajay Jasra (Feb. 2012). “On adaptive re-
sampling strategies for sequential Monte Carlo methods”. In: Bernoulli 18.1,
pp. 252–278. doi: 10.3150/10-BEJ335. url: https://doi.org/10.3150/10-
BEJ335.

https://doi.org/10.1007/s10463-015-0524-y
https://doi.org/10.1007/s11222-007-9043-x
https://doi.org/10.1117/12.585882
https://doi.org/https://doi.org/10.1016/S0304-4149(00)00041-7
https://doi.org/https://doi.org/10.1016/S0304-4149(00)00041-7
http://www.sciencedirect.com/science/article/pii/S0304414900000417
http://www.sciencedirect.com/science/article/pii/S0304414900000417
https://doi.org/10.1051/m2an:2007014
https://doi.org/10.1214/009053604000000698
https://doi.org/10.3150/14-BEJ629
http://www.jstor.org/stable/43288425
http://www.jstor.org/stable/43288425
http://arxiv.org/abs/1511.05483
https://doi.org/10.1214/aoap/1029962742
https://doi.org/10.1007/BFb0103798
https://doi.org/10.3150/10-BEJ335
https://doi.org/10.3150/10-BEJ335
https://doi.org/10.3150/10-BEJ335


bibliography 209

Del Moral, Pierre and Lawrence Murray (2015). “Sequential Monte Carlo with Highly
Informative Observations”. In: SIAM/ASA Journal on Uncertainty Quantifica-
tion 3.1, pp. 969–997. doi: 10.1137/15M1011214. eprint: https://doi.org/10.
1137/15M1011214.

Deligiannidis, G., A. Doucet, and M. K. Pitt (Nov. 2015). “The Correlated Pseudo-
Marginal Method”. In: ArXiv e-prints. arXiv: 1511.04992 [stat.CO].

Delyon, Bernard and Ying Hu (2006). “Simulation of conditioned diffusion and appli-
cation to parameter estimation”. In: Stochastic Processes and their Applications
116.11, pp. 1660 –1675. issn: 0304-4149. doi: https://doi.org/10.1016/j.
spa.2006.04.004. url: http://www.sciencedirect.com/science/article/
pii/S0304414906000469.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag. isbn:
9783540963059.

Diaconis, P. and D. Freedman (Aug. 1980). “Finite Exchangeable Sequences”. In:
Ann. Probab. 8.4, pp. 745–764. doi: 10.1214/aop/1176994663. url: https:
//doi.org/10.1214/aop/1176994663.

Donsker, M.D. (1951). An Invariance Principle for Certain Probability Limit Theo-
rems. American Mathematical Society. Memoirs.

Dooren, Paul van and Luc de Ridder (1976). “An adaptive algorithm for numerical
integration over an n-dimensional cube”. In: Journal of Computational and
Applied Mathematics 2.3, pp. 207 –217. issn: 0377-0427. doi: http://dx.doi.
org/10.1016/0771-050X(76)90005-X.

Douc, R., O. Cappé, and E. Moulines (2005). “Comparison of resampling schemes
for particle filtering”. In: Proceedings of the 4th International Symposium on
Image and Signal Processing and Analysis, 2005. Vol. 1. IEEE, pp. 64–69.

Doucet, A., A. Smith, N. de Freitas, and N. Gordon (2001). Sequential Monte Carlo
Methods in Practice. Information Science and Statistics. Springer New York.
isbn: 9781441928870.

Doucet, Arnaud and Adam M. Johansen (2011). “A Tutorial on Particle Filtering
and Smoothing: Fifteen Years Later”. In: The Oxford Handbook of Nonlinear
Filtering. Ed. by D. Crisan and B. Rozovsky. Oxford University Press.

Durham, Garland B and A. Ronald Gallant (2002). “Numerical Techniques for
Maximum Likelihood Estimation of Continuous-Time Diffusion Processes”. In:
Journal of Business & Economic Statistics 20.3, pp. 297–338. doi: 10.1198/
073500102288618397. eprint: http://dx.doi.org/10.1198/073500102288618397.

Durrett, R. (2010). Probability: Theory and Examples. Cambridge series on statistical
and probabilistic mathematics. Cambridge University Press. isbn: 9780511918445.

Durstenfeld, Richard (July 1964). “Algorithm 235: Random Permutation”. In: Com-
mun. ACM 7.7, pp. 420–. issn: 0001-0782. doi: 10.1145/364520.364540. url:
http://doi.acm.org/10.1145/364520.364540.

Ethier, S.N. and T.G. Kurtz (1986). Markov Processes: Characterization and Con-
vergence. Wiley Series in Probability and Statistics. Wiley.

Fearnhead, Paul (2008). “Computational methods for complex stochastic systems:
a review of some alternatives to MCMC”. In: Statistics and Computing 18.2,
pp. 151–171. issn: 1573-1375. doi: 10.1007/s11222-007-9045-8.

Fearnhead, Paul, Vasilieos Giagos, and Chris Sherlock (2014). “Inference for reaction
networks using the linear noise approximation”. In: Biometrics 70.2, pp. 457–
466. issn: 1541-0420. doi: 10.1111/biom.12152.

Fill, James Allen (Feb. 1998). “An interruptible algorithm for perfect sampling via
Markov chains”. In: Ann. Appl. Probab. 8.1, pp. 131–162. doi: 10.1214/aoap/
1027961037.

Foss, S. G. and R. L. Tweedie (1998). “Perfect Simulation and Backward Coupling”.
In: Stochastic Models 14.1-2, pp. 187–203.

Gelman, A., J.B. Carlin, H.S. Stern, and D.B. Rubin (2003). Bayesian Data Analysis,
Second Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor &
Francis. isbn: 9781420057294.

Genz, Alan (1991). “An adaptive numerical integration algorithm for simplices”. In:
Computing in the 90’s: The First Great Lakes Computer Science Conference
Kalamazoo, Michigan, USA, October 18–20, 1989 Proceedings. Ed. by Naveed

https://doi.org/10.1137/15M1011214
https://doi.org/10.1137/15M1011214
https://doi.org/10.1137/15M1011214
http://arxiv.org/abs/1511.04992
https://doi.org/https://doi.org/10.1016/j.spa.2006.04.004
https://doi.org/https://doi.org/10.1016/j.spa.2006.04.004
http://www.sciencedirect.com/science/article/pii/S0304414906000469
http://www.sciencedirect.com/science/article/pii/S0304414906000469
https://doi.org/10.1214/aop/1176994663
https://doi.org/10.1214/aop/1176994663
https://doi.org/10.1214/aop/1176994663
https://doi.org/http://dx.doi.org/10.1016/0771-050X(76)90005-X
https://doi.org/http://dx.doi.org/10.1016/0771-050X(76)90005-X
https://doi.org/10.1198/073500102288618397
https://doi.org/10.1198/073500102288618397
http://dx.doi.org/10.1198/073500102288618397
https://doi.org/10.1145/364520.364540
http://doi.acm.org/10.1145/364520.364540
https://doi.org/10.1007/s11222-007-9045-8
https://doi.org/10.1111/biom.12152
https://doi.org/10.1214/aoap/1027961037
https://doi.org/10.1214/aoap/1027961037


210 bibliography

A. Sherwani, Elise de Doncker, and John A. Kapenga. New York, NY: Springer
New York, pp. 279–285. isbn: 978-0-387-34815-5. doi: 10.1007/BFb0038504.

Geweke, John (1989). “Bayesian Inference in Econometric Models Using Monte Carlo
Integration”. In: Econometrica 57.6, pp. 1317–1339. issn: 00129682, 14680262.

Glasserman, P. (2010). Monte Carlo Methods in Financial Engineering. Stochastic
Modelling and Applied Probability. Springer New York. isbn: 9781441918222.

Golightly, A. and D.J. Wilkinson (2008). “Bayesian inference for nonlinear multivari-
ate diffusion models observed with error”. In: Computational Statistics & Data
Analysis 52.3, pp. 1674 –1693. issn: 0167-9473. doi: http://dx.doi.org/10.
1016/j.csda.2007.05.019.

Golightly, Andrew, Daniel A. Henderson, and Chris Sherlock (2015). “Delayed ac-
ceptance particle MCMC for exact inference in stochastic kinetic models”. In:
Statistics and Computing 25.5, pp. 1039–1055. issn: 1573-1375. doi: 10.1007/
s11222-014-9469-x. url: http://dx.doi.org/10.1007/s11222-014-9469-x.

Golightly, Andrew and Darren J. Wilkinson (2011). “Bayesian parameter inference
for stochastic biochemical network models using particle Markov chain Monte
Carlo”. In: Interface Focus 1.6, pp. 807–820. issn: 2042-8898. doi: 10.1098/
rsfs.2011.0047.

Grewal, M.S. and A.P. Andrews (2011). Kalman Filtering: Theory and Practice
Using MATLAB. Wiley. isbn: 9781118210468.

Gustafsson, F., F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson,
and P.-J. Nordlund (Feb. 2002). “Particle Filters for Positioning, Navigation,
and Tracking”. In: Trans. Sig. Proc. 50.2, pp. 425–437. issn: 1053-587X. doi:
10.1109/78.978396.

Handel, Ramon van (2009). “Uniform time average consistency of Monte Carlo par-
ticle filters”. In: Stochastic Processes and their Applications 119.11, pp. 3835 –
3861. issn: 0304-4149. doi: http://dx.doi.org/10.1016/j.spa.2009.09.004.

Hewitt, E and L.J. Savage (Jan. 1955). “Symmetric measures on cartesian products”.
In: Transactions of the American Mathematical Society 80, pp. 470–501. doi:
10.1090/s0002-9947-1955-0076206-8.

Hinrichs, Aicke, Erich Novak, Mario Ullrich, and Henryk Woźniakowski (2014). “The
curse of dimensionality for numerical integration of smooth functions II”. In:
Journal of Complexity 30.2. Dagstuhl 2012, pp. 117 –143. issn: 0885-064X. doi:
http://dx.doi.org/10.1016/j.jco.2013.10.007.

Hobert, James P., Galin L. Jones, Brett Presnell, and Jeffrey S. Rosenthal (2002).
“On the applicability of regenerative simulation in Markov chain Monte Carlo”.
In: Biometrika 89.4, pp. 731–743. doi: 10.1093/biomet/89.4.731. eprint:
/oup/backfile/content_public/journal/biomet/89/4/10.1093/biomet/89.
4.731/2/890731.pdf.

Hollander, M. and D.A. Wolfe (1973). Nonparametric statistical methods. Wiley Se-
ries in Probability and Statistics - Applied Probability and Statistics Section.
Wiley. isbn: 9780471406358.

Huang, Guoquan P, Anastasios I Mourikis, and Stergios I Roumeliotis (2008). “Anal-
ysis and improvement of the consistency of extended Kalman filter based SLAM”.
In: 2008 IEEE International Conference on Robotics and Automation. IEEE,
pp. 473–479.

Jacob, Pierre E., John O’Leary, and Yves F. Atchadé (2020). “Unbiased Markov
chain Monte Carlo methods with couplings”. In: Journal of the Royal Statistical
Society Series B 82.3, pp. 543–600. doi: 10.1111/rssb.12336.

Jewell, C.P, M.J Keeling, and G.O Roberts (2008). “Predicting undetected infections
during the 2007 foot-and-mouth disease outbreak”. In: Journal of The Royal
Society Interface. issn: 1742-5689. doi: 10.1098/rsif.2008.0433.

Julier, Simon J and Jeffrey K Uhlmann (1997). “New extension of the Kalman filter
to nonlinear systems”. In: Signal processing, sensor fusion, and target recogni-
tion VI. Vol. 3068. International Society for Optics and Photonics, pp. 182–
193.

Julier, Simon J and Jeffrey K Uhlmann (2004). “Unscented filtering and nonlinear
estimation”. In: Proceedings of the IEEE 92.3, pp. 401–422.

Kahn, H. and A. W. Marshall (1953). “Methods of Reducing Sample Size in Monte
Carlo Computations”. In: Journal of the Operations Research Society of Amer-

https://doi.org/10.1007/BFb0038504
https://doi.org/http://dx.doi.org/10.1016/j.csda.2007.05.019
https://doi.org/http://dx.doi.org/10.1016/j.csda.2007.05.019
https://doi.org/10.1007/s11222-014-9469-x
https://doi.org/10.1007/s11222-014-9469-x
http://dx.doi.org/10.1007/s11222-014-9469-x
https://doi.org/10.1098/rsfs.2011.0047
https://doi.org/10.1098/rsfs.2011.0047
https://doi.org/10.1109/78.978396
https://doi.org/http://dx.doi.org/10.1016/j.spa.2009.09.004
https://doi.org/10.1090/s0002-9947-1955-0076206-8
https://doi.org/http://dx.doi.org/10.1016/j.jco.2013.10.007
https://doi.org/10.1093/biomet/89.4.731
/oup/backfile/content_public/journal/biomet/89/4/10.1093/biomet/89.4.731/2/890731.pdf
/oup/backfile/content_public/journal/biomet/89/4/10.1093/biomet/89.4.731/2/890731.pdf
https://doi.org/10.1111/rssb.12336
https://doi.org/10.1098/rsif.2008.0433


bibliography 211

ica 1.5, pp. 263–278. issn: 00963984. url: http://www.jstor.org/stable/
166789.

Kallenberg, O. (1997). Foundations of Modern Probability. Probability and Its Ap-
plications. Springer-Verlag New York. isbn: 9780387949574.

Kim, Sangjoon, Neil Shephard, and Siddhartha Chib (1998). “Stochastic Volatility:
Likelihood Inference and Comparison with ARCH Models”. In: The Review of
Economic Studies 65.3, pp. 361–393. issn: 00346527, 1467937X.

Kloeden, P.E. and E. Platen (1992). Numerical Solution of Stochastic Differential
Equations. Applications of Mathematics. Springer-Verlag. isbn: 9783540540625.

Komorowski, Michał, Bärbel Finkenstädt, Claire V. Harper, and David A. Rand
(2009). “Bayesian inference of biochemical kinetic parameters using the linear
noise approximation”. In: BMC Bioinformatics 10.1, pp. 1–10. issn: 1471-2105.
doi: 10.1186/1471-2105-10-343.

Kong, Augustine (1992). “A note on importance sampling using standardized weights”.
In: University of Chicago, Dept. of Statistics, Tech. Rep 348.

Kong, Augustine, Jun S. Liu, and Wing Hung Wong (1994). “Sequential Imputations
and Bayesian Missing Data Problems”. In: Journal of the American Statistical
Association 89.425, pp. 278–288. issn: 01621459. url: http://www.jstor.org/
stable/2291224.

Kuhner, Mary K. (2006). “LAMARC 2.0: maximum likelihood and Bayesian estima-
tion of population parameters”. In: Bioinformatics 22.6, p. 768. doi: 10.1093/
bioinformatics/btk051.

Künsch, H.R. (2001). “State space and hidden Markov models”. In: Complex Stochas-
tic Systems. Ed. by O.E. Barndorff-Nielsen, D.R. Cox, and C. Klüppelberg.
CRC Press, pp. 109 –173. doi: 10.1201/9781420035988.

L’Ecuyer, Pierre (1994). “Uniform random number generation”. In: Annals of Oper-
ations Research 53.1, pp. 77–120. issn: 1572-9338. doi: 10.1007/BF02136827.
url: https://doi.org/10.1007/BF02136827.

Lawler, Gregory F. and Alan D. Sokal (1988). “Bounds on the L2 Spectrum for
Markov Chains and Markov Processes: A Generalization of Cheeger’s Inequal-
ity”. In: Transactions of the American Mathematical Society 309.2, pp. 557–580.
issn: 00029947.

Lee, Anthony (2011). “On auxiliary variables and many-core architectures in com-
putational statistics”. PhD thesis. University of Oxford.

Lefebvre, Tine, Herman Bruyninckx, and Joris De Schutter (2004). “Kalman filters
for non-linear systems: a comparison of performance”. In: International Journal
of Control 77.7, pp. 639–653. doi: 10.1080/00207170410001704998. eprint:
https://doi.org/10.1080/00207170410001704998. url: https://doi.org/
10.1080/00207170410001704998.

Lelièvre, Tony and Gabriel Stoltz (May 2016). “Partial differential equations and
stochastic methods in molecular dynamics”. In: Acta Numerica 25, pp. 681–
880. doi: 10.1017/S0962492916000039.

Lin, Ming, Rong Chen, and Jun S. Liu (2013). “Lookahead Strategies for Sequential
Monte Carlo”. In: Statistical Science 28.1, pp. 69–94. issn: 08834237, 21688745.

Lindsten, F. and T.B. Schön (2013). Backward Simulation Methods for Monte Carlo
Statistical Inference. Vol. 6. Foundations and Trends® in Machine Learning 1.
Now Publishers, pp. 1–143. isbn: 9781601986986.

Lindsten, F., P. Bunch, S. S. Singh, and T. B. Schön (May 2015). “Particle ancestor
sampling for near-degenerate or intractable state transition models”. In: ArXiv
e-prints. arXiv: 1505.06356 [stat.CO].

Lindsten, Fredrik, Randal Douc, and Eric Moulines (2015). “Uniform Ergodicity
of the Particle Gibbs Sampler”. In: Scandinavian Journal of Statistics 42.3,
pp. 775–797. doi: 10.1111/sjos.12136. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/sjos.12136. url: https://onlinelibrary.
wiley.com/doi/abs/10.1111/sjos.12136.

Lindsten, Fredrik, Michael I. Jordan, and Thomas B. Schön (Jan. 2014). “Particle
Gibbs with Ancestor Sampling”. In: J. Mach. Learn. Res. 15.1, pp. 2145–2184.
issn: 1532-4435.

http://www.jstor.org/stable/166789
http://www.jstor.org/stable/166789
https://doi.org/10.1186/1471-2105-10-343
http://www.jstor.org/stable/2291224
http://www.jstor.org/stable/2291224
https://doi.org/10.1093/bioinformatics/btk051
https://doi.org/10.1093/bioinformatics/btk051
https://doi.org/10.1201/9781420035988
https://doi.org/10.1007/BF02136827
https://doi.org/10.1007/BF02136827
https://doi.org/10.1080/00207170410001704998
https://doi.org/10.1080/00207170410001704998
https://doi.org/10.1080/00207170410001704998
https://doi.org/10.1080/00207170410001704998
https://doi.org/10.1017/S0962492916000039
http://arxiv.org/abs/1505.06356
https://doi.org/10.1111/sjos.12136
https://onlinelibrary.wiley.com/doi/pdf/10.1111/sjos.12136
https://onlinelibrary.wiley.com/doi/pdf/10.1111/sjos.12136
https://onlinelibrary.wiley.com/doi/abs/10.1111/sjos.12136
https://onlinelibrary.wiley.com/doi/abs/10.1111/sjos.12136


212 bibliography

Lindström, Erik (2012). “A regularized bridge sampler for sparsely sampled diffu-
sions”. In: Statistics and Computing 22.2, pp. 615–623. issn: 1573-1375. doi:
10.1007/s11222-011-9255-y.

Liu, J.S. (2001). Monte Carlo Strategies in Scientific Computing. Springer Series in
Statistics. Springer New York. isbn: 9780387952307.

Liu, Jun S. (1996). “Metropolized independent sampling with comparisons to re-
jection sampling and importance sampling”. In: Statistics and Computing 6.2,
pp. 113–119. issn: 1573-1375. doi: 10.1007/BF00162521. url: https://doi.
org/10.1007/BF00162521.

Mengersen, K. L. and R. L. Tweedie (Feb. 1996). “Rates of convergence of the
Hastings and Metropolis algorithms”. In: Ann. Statist. 24.1, pp. 101–121. doi:
10.1214/aos/1033066201.

Meulen, Frank van der and Moritz Schauer (2017). “Bayesian estimation of dis-
cretely observed multi-dimensional diffusion processes using guided proposals”.
In: Electron. J. Statist. 11.1, pp. 2358–2396. doi: 10.1214/17-EJS1290. url:
https://doi.org/10.1214/17-EJS1290.

Meyn, Sean P. and R. L. Tweedie (Nov. 1994). “Computable Bounds for Geometric
Convergence Rates of Markov Chains”. In: Ann. Appl. Probab. 4.4, pp. 981–
1011. doi: 10.1214/aoap/1177004900. url: https://doi.org/10.1214/aoap/
1177004900.

Meyn, Sean and Richard L. Tweedie (2009). Markov Chains and Stochastic Stability.
2nd ed. Cambridge Mathematical Library. Cambridge University Press. doi:
10.1017/CBO9780511626630.

Mihaylova, Lyudmila, Avishy Y. Carmi, François Septier, Amadou Gning, Sze Kim
Pang, and Simon Godsill (2014). “Overview of Bayesian sequential Monte Carlo
methods for group and extended object tracking”. In: Digital Signal Processing
25, pp. 1 –16. issn: 1051-2004. doi: http://dx.doi.org/10.1016/j.dsp.
2013.11.006. url: http://www.sciencedirect.com/science/article/pii/
S1051200413002716.

Mira, Antonietta (Nov. 2001). “Ordering and Improving the Performance of Monte
Carlo Markov Chains”. In: Statist. Sci. 16.4, pp. 340–350. doi: 10.1214/ss/
1015346319. url: https://doi.org/10.1214/ss/1015346319.

Murray, Iain and Matthew Graham (2016). “Pseudo-Marginal Slice Sampling”. In:
Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics. Ed. by Arthur Gretton and Christian C. Robert. Vol. 51. JMLR:
W&CP. Cadiz, Spain, pp. 911–919.

Neal, Peter J. and Gareth O. Roberts (2004). “Statistical inference and model selec-
tion for the 1861 Hagelloch measles epidemic”. In: Biostatistics 5.2, p. 249. doi:
10.1093/biostatistics/5.2.249.

Neal, Radford M., Matthew J. Beal, and Sam T. Roweis (2004). “Inferring State
Sequences for Non-linear Systems with Embedded Hidden Markov Models”. In:
Advances in Neural Information Processing Systems 16. Ed. by S. Thrun, L. K.
Saul, and B. Schölkopf. MIT Press, pp. 401–408. url: http://papers.nips.
cc/paper/2391-inferring-state-sequences-for-non-linear-systems-
with-embedded-hidden-markov-models.pdf.

Nummelin, Esa (1984). General Irreducible Markov Chains and Non-Negative Op-
erators. Cambridge Tracts in Mathematics. Cambridge University Press. doi:
10.1017/CBO9780511526237.

Oh, Man-Suk and James O. Berger (1992). “Adaptive importance sampling in Monte
Carlo integration”. In: Journal of Statistical Computation and Simulation 41.3-
4, pp. 143–168. doi: 10.1080/00949659208810398. eprint: http://dx.doi.
org/10.1080/00949659208810398.

Owen, Art B. (2013). Monte Carlo theory, methods and examples.
Owen, Art and Yi Zhou (2000). “Safe and Effective Importance Sampling”. In: Jour-

nal of the American Statistical Association 95.449, pp. 135–143. issn: 01621459.
Papaspiliopoulos, Omiros and Gareth Roberts (2012). “Importance sampling tech-

niques for estimation of diffusion models”. In: Statistical methods for stochastic
differential equations 124, pp. 311–340.

https://doi.org/10.1007/s11222-011-9255-y
https://doi.org/10.1007/BF00162521
https://doi.org/10.1007/BF00162521
https://doi.org/10.1007/BF00162521
https://doi.org/10.1214/aos/1033066201
https://doi.org/10.1214/17-EJS1290
https://doi.org/10.1214/17-EJS1290
https://doi.org/10.1214/aoap/1177004900
https://doi.org/10.1214/aoap/1177004900
https://doi.org/10.1214/aoap/1177004900
https://doi.org/10.1017/CBO9780511626630
https://doi.org/http://dx.doi.org/10.1016/j.dsp.2013.11.006
https://doi.org/http://dx.doi.org/10.1016/j.dsp.2013.11.006
http://www.sciencedirect.com/science/article/pii/S1051200413002716
http://www.sciencedirect.com/science/article/pii/S1051200413002716
https://doi.org/10.1214/ss/1015346319
https://doi.org/10.1214/ss/1015346319
https://doi.org/10.1214/ss/1015346319
https://doi.org/10.1093/biostatistics/5.2.249
http://papers.nips.cc/paper/2391-inferring-state-sequences-for-non-linear-systems-with-embedded-hidden-markov-models.pdf
http://papers.nips.cc/paper/2391-inferring-state-sequences-for-non-linear-systems-with-embedded-hidden-markov-models.pdf
http://papers.nips.cc/paper/2391-inferring-state-sequences-for-non-linear-systems-with-embedded-hidden-markov-models.pdf
https://doi.org/10.1017/CBO9780511526237
https://doi.org/10.1080/00949659208810398
http://dx.doi.org/10.1080/00949659208810398
http://dx.doi.org/10.1080/00949659208810398


bibliography 213

Papoulis, A., S.U. Pillai, and S.U. Pillai (2002). Probability, Random Variables, and
Stochastic Processes. McGraw-Hill electrical and electronic engineering series.
McGraw-Hill. isbn: 9780073660110.

Pedersen, Asger Roer (1995). “A New Approach to Maximum Likelihood Estima-
tion for Stochastic Differential Equations Based on Discrete Observations”. In:
Scandinavian Journal of Statistics 22.1, pp. 55–71. issn: 03036898, 14679469.

Peskun, P. H. (1973). “Optimum Monte-Carlo Sampling Using Markov Chains”. In:
Biometrika 60.3, pp. 607–612. issn: 00063444. url: http://www.jstor.org/
stable/2335011.

Petzold, Linda (1983). “Automatic Selection of Methods for Solving Stiff and Nons-
tiff Systems of Ordinary Differential Equations”. In: SIAM Journal on Scientific
and Statistical Computing 4.1, pp. 136–148. doi: 10.1137/0904010.

Pitt, Michael K. and Neil Shephard (1999). “Filtering via Simulation: Auxiliary
Particle Filters”. In: Journal of the American Statistical Association 94.446,
pp. 590–599. issn: 01621459.

Propp, James and David Wilson (1998). “Coupling from the past: a user’s guide”. In:
Microsurveys in Discrete Probability. Ed. by D. Aldous and J. Propp. Vol. 41.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society, pp. 181–192.

Rabiner, L. R. (1989). “A tutorial on hidden Markov models and selected appli-
cations in speech recognition”. In: Proceedings of the IEEE 77.2, pp. 257–286.
issn: 0018-9219. doi: 10.1109/5.18626.

Rambharat, Bhojnarine R. and Anthony E. Brockwell (Mar. 2010). “Sequential
Monte Carlo pricing of American-style options under stochastic volatility mod-
els”. In: Ann. Appl. Stat. 4.1, pp. 222–265. doi: 10.1214/09-AOAS286.

Rapp, Knut and Per-Ole Nyman (2004). “Stability Properties of the Discrete-Time
Extended Kalman Filter”. In: IFAC Proceedings Volumes 37.13. 6th IFAC Sym-
posium on Nonlinear Control Systems 2004 (NOLCOS 2004), Stuttgart, Ger-
many, 1-3 September, 2004, pp. 1377 –1382. issn: 1474-6670. doi: https://doi.
org/10.1016/S1474-6670(17)31420-9. url: http://www.sciencedirect.
com/science/article/pii/S1474667017314209.

Richard, Jean-Francois and Wei Zhang (2007). “Efficient high-dimensional impor-
tance sampling”. In: Journal of Econometrics 141.2, pp. 1385 –1411. issn: 0304-
4076. doi: http://dx.doi.org/10.1016/j.jeconom.2007.02.007.

Robert, C. and G. Casella (2004). Monte Carlo Statistical Methods. Springer Texts
in Statistics. Springer New York. isbn: 9781475741452.

Roberts, G. O., A. Gelman, and W. R. Gilks (Feb. 1997). “Weak convergence and
optimal scaling of random walk Metropolis algorithms”. In: Ann. Appl. Probab.
7.1, pp. 110–120. doi: 10.1214/aoap/1034625254.

Roberts, G. O. and R. L. Tweedie (Mar. 1996). “Geometric convergence and central
limit theorems for multidimensional Hastings and Metropolis algorithms”. In:
Biometrika 83.1, pp. 95–110. issn: 0006-3444. doi: 10.1093/biomet/83.1.95.
eprint: http://oup.prod.sis.lan/biomet/article-pdf/83/1/95/709644/83-
1-95.pdf. url: https://doi.org/10.1093/biomet/83.1.95.

Roberts, Gareth O. (1998). “Optimal Metropolis algorithms for product measures
on the vertices of a hypercube”. In: Stochastics and Stochastic Reports 62.3-4,
pp. 275–283. doi: 10.1080/17442509808834136. eprint: https://doi.org/10.
1080/17442509808834136. url: https://doi.org/10.1080/17442509808834136.

Roberts, Gareth O. and Jeffrey S. Rosenthal (1998a). “Markov-Chain Monte Carlo:
Some Practical Implications of Theoretical Results”. In: The Canadian Jour-
nal of Statistics / La Revue Canadienne de Statistique 26.1, pp. 5–20. issn:
03195724.

Roberts, Gareth O. and Jeffrey S. Rosenthal (1998b). “Optimal scaling of discrete
approximations to Langevin diffusions”. In: Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 60.1, pp. 255–268. issn: 1467-9868.
doi: 10.1111/1467-9868.00123.

Roberts, Gareth O. and Jeffrey S. Rosenthal (Nov. 2001). “Optimal scaling for var-
ious Metropolis-Hastings algorithms”. In: Statist. Sci. 16.4, pp. 351–367. doi:
10.1214/ss/1015346320.

http://www.jstor.org/stable/2335011
http://www.jstor.org/stable/2335011
https://doi.org/10.1137/0904010
https://doi.org/10.1109/5.18626
https://doi.org/10.1214/09-AOAS286
https://doi.org/https://doi.org/10.1016/S1474-6670(17)31420-9
https://doi.org/https://doi.org/10.1016/S1474-6670(17)31420-9
http://www.sciencedirect.com/science/article/pii/S1474667017314209
http://www.sciencedirect.com/science/article/pii/S1474667017314209
https://doi.org/http://dx.doi.org/10.1016/j.jeconom.2007.02.007
https://doi.org/10.1214/aoap/1034625254
https://doi.org/10.1093/biomet/83.1.95
http://oup.prod.sis.lan/biomet/article-pdf/83/1/95/709644/83-1-95.pdf
http://oup.prod.sis.lan/biomet/article-pdf/83/1/95/709644/83-1-95.pdf
https://doi.org/10.1093/biomet/83.1.95
https://doi.org/10.1080/17442509808834136
https://doi.org/10.1080/17442509808834136
https://doi.org/10.1080/17442509808834136
https://doi.org/10.1080/17442509808834136
https://doi.org/10.1111/1467-9868.00123
https://doi.org/10.1214/ss/1015346320


214 bibliography

Roberts, Gareth O. and Jeffrey S. Rosenthal (2004). “General state space Markov
chains and MCMC algorithms”. In: Probab. Surveys 1, pp. 20–71. doi: 10.1214/
154957804100000024.

Roberts, Gareth O. and Jeffrey S. Rosenthal (June 2008). “Variance bounding
Markov chains”. In: Ann. Appl. Probab. 18.3, pp. 1201–1214. doi: 10.1214/07-
AAP486. url: https://doi.org/10.1214/07-AAP486.

Roberts, Gareth O. and Jeffrey S. Rosenthal (2011). “Quantitative Non-Geometric
Convergence Bounds for Independence Samplers”. In: Methodology and Com-
puting in Applied Probability 13.2, pp. 391–403. issn: 1573-7713. doi: 10.1007/
s11009-009-9157-z. url: https://doi.org/10.1007/s11009-009-9157-z.

Roberts, Gareth and Jeffrey Rosenthal (1997). “Geometric Ergodicity and Hybrid
Markov Chains”. In: Electron. Commun. Probab. 2, pp. 13–25. doi: 10.1214/
ECP.v2-981.

Rogers, L.C.G. and D. Williams (2000a). Diffusions, Markov Processes, and Mar-
tingales: Volume 1, Foundations. Cambridge Mathematical Library. Cambridge
University Press. isbn: 9780521775946.

Rogers, L.C.G. and D. Williams (2000b). Diffusions, Markov Processes and Mar-
tingales: Volume 2, Itô Calculus. Cambridge Mathematical Library. Cambridge
University Press. isbn: 9780521775939.

Rosenthal, Jeffrey S. (1995). “Minorization Conditions and Convergence Rates for
Markov Chain Monte Carlo”. In: Journal of the American Statistical Associa-
tion 90.430, pp. 558–566. issn: 01621459. url: http://www.jstor.org/stable/
2291067.

Rosenthal, Jeffrey S. (2001). “A review of asymptotic convergence for general state
space Markov chains”. In: Far East Journal of Theoretical Statistics 5.1, pp. 37–
50.

Rosenthal, Jeffrey (2002). “Quantitative Convergence Rates of Markov Chains: A
Simple Account”. In: Electron. Commun. Probab. 7, pp. 123–128. doi: 10.1214/
ECP.v7-1054. url: https://doi.org/10.1214/ECP.v7-1054.

Russell, Stuart J. and Peter Norvig (2003). Artificial Intelligence: A Modern Ap-
proach. 2nd ed. Pearson Education. isbn: 0137903952.

Schauer, Moritz, Frank van der Meulen, and Harry van Zanten (Nov. 2017). “Guided
proposals for simulating multi-dimensional diffusion bridges”. In: Bernoulli 23.4A,
pp. 2917–2950. doi: 10.3150/16-BEJ833.

Sen, Deborshee, Ajay Jasra, and Yan Zhou (2017). “Some contributions to sequential
Monte Carlo methods for option pricing”. In: Journal of Statistical Computation
and Simulation 87.4, pp. 733–752. doi: 10.1080/00949655.2016.1224238.

Shephard, Neil (1994). “Local scale models”. In: Journal of Econometrics 60.1,
pp. 181 –202. issn: 0304-4076. doi: http://dx.doi.org/10.1016/0304-
4076(94)90043-4.

Sherlock, Chris, Paul Fearnhead, and Gareth O. Roberts (May 2010). “The Random
Walk Metropolis: Linking Theory and Practice Through a Case Study”. In:
Statist. Sci. 25.2, pp. 172–190. doi: 10.1214/10-STS327. url: https://doi.
org/10.1214/10-STS327.

Sherlock, Chris and Gareth Roberts (Aug. 2009). “Optimal scaling of the random
walk Metropolis on elliptically symmetric unimodal targets”. In: Bernoulli 15.3,
pp. 774–798. doi: 10.3150/08-BEJ176.

Shestopaloff, Alexander Y. and Radford M. Neal (Sept. 2018). “Sampling Latent
States for High-Dimensional Non-Linear State Space Models with the Embed-
ded HMM Method”. In: Bayesian Anal. 13.3, pp. 797–822. doi: 10.1214/17-
BA1077. url: https://doi.org/10.1214/17-BA1077.

Shreve, S.E. (2004). Stochastic Calculus for Finance: Continuous-time models. Springer
finance. Springer. isbn: 9780387401010.

Smith, A. F. M. and G. O. Roberts (1993). “Bayesian Computation Via the Gibbs
Sampler and Related Markov Chain Monte Carlo Methods”. In: Journal of
the Royal Statistical Society. Series B (Methodological) 55.1, pp. 3–23. issn:
00359246.

Smith, R.A., E.L. Ionides, and A.A. King (Apr. 2017). “Infectious Disease Dynamics
Inferred from Genetic Data via Sequential Monte Carlo”. In: Mol Biol Evol. doi:
10.1093/molbev/msx124.

https://doi.org/10.1214/154957804100000024
https://doi.org/10.1214/154957804100000024
https://doi.org/10.1214/07-AAP486
https://doi.org/10.1214/07-AAP486
https://doi.org/10.1214/07-AAP486
https://doi.org/10.1007/s11009-009-9157-z
https://doi.org/10.1007/s11009-009-9157-z
https://doi.org/10.1007/s11009-009-9157-z
https://doi.org/10.1214/ECP.v2-981
https://doi.org/10.1214/ECP.v2-981
http://www.jstor.org/stable/2291067
http://www.jstor.org/stable/2291067
https://doi.org/10.1214/ECP.v7-1054
https://doi.org/10.1214/ECP.v7-1054
https://doi.org/10.1214/ECP.v7-1054
https://doi.org/10.3150/16-BEJ833
https://doi.org/10.1080/00949655.2016.1224238
https://doi.org/http://dx.doi.org/10.1016/0304-4076(94)90043-4
https://doi.org/http://dx.doi.org/10.1016/0304-4076(94)90043-4
https://doi.org/10.1214/10-STS327
https://doi.org/10.1214/10-STS327
https://doi.org/10.1214/10-STS327
https://doi.org/10.3150/08-BEJ176
https://doi.org/10.1214/17-BA1077
https://doi.org/10.1214/17-BA1077
https://doi.org/10.1214/17-BA1077
https://doi.org/10.1093/molbev/msx124


bibliography 215

Sobolev, S.L. and V.L. Vaskevich (2013). The Theory of Cubature Formulas. Vol. 415.
Mathematics and Its Applications. Springer Netherlands. isbn: 9789401589130.

Stroock, D.W. and S.R.S. Varadhan (1997). Multidimensional Diffusion Processes.
Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg.
isbn: 9783540903536.

Süli, E. and D.F. Mayers (2003). An Introduction to Numerical Analysis. Cambridge
University Press. isbn: 9780521810265.

Tierney, Luke (Dec. 1994). “Markov Chains for Exploring Posterior Distributions”.
In: Ann. Statist. 22.4, pp. 1701–1728. doi: 10.1214/aos/1176325750.

Tierney, Luke (Feb. 1998). “A note on Metropolis-Hastings kernels for general state
spaces”. In: Ann. Appl. Probab. 8.1, pp. 1–9. doi: 10.1214/aoap/1027961031.
url: https://doi.org/10.1214/aoap/1027961031.

Tjelmeland, Håkon (2004). Using all Metropolis-Hastings proposals to estimate mean
values. Tech. rep. Trondheim, Norway: Norwegian University of Science and
Technology.

Toutenburg, H. (1971). “Fisher, R. A., and F. Yates: Statistical Tables for Biological,
Agricultural and Medical Research. 6th Ed. Oliver & Boyd, Edinburgh and Lon-
don 1963. X, 146 P. Preis 42 s net”. In: Biometrische Zeitschrift 13.4, pp. 285–
285. doi: 10.1002/bimj.19710130413. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/bimj.19710130413. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/bimj.19710130413.

Van Kampen, N.G. (1992). Stochastic Processes in Physics and Chemistry. North-
Holland Personal Library. Elsevier Science. isbn: 9780080571386.

Wan, Eric A and Rudolph Van Der Merwe (2000). “The unscented Kalman fil-
ter for nonlinear estimation”. In: Proceedings of the IEEE 2000 Adaptive Sys-
tems for Signal Processing, Communications, and Control Symposium (Cat. No.
00EX373). Ieee, pp. 153–158.

West, M. and J. Harrison (1999). Bayesian Forecasting and Dynamic Models. Springer
Series in Statistics. Springer.

Whitaker, Gavin A., Andrew Golightly, Richard J. Boys, and Chris Sherlock (2017).
“Improved bridge constructs for stochastic differential equations”. In: Statistics
and Computing 27.4, pp. 885–900. issn: 1573-1375. doi: 10.1007/s11222-016-
9660-3.

Wiener, Norbert (1923). “Differential-Space”. In: Journal of Mathematics and Physics
2.1-4, pp. 131–174. doi: 10.1002/sapm192321131. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/sapm192321131. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/sapm192321131.

Wilkinson, D.J. (2006). Stochastic Modelling for Systems Biology. Chapman & Hal-
l/CRCMathematical & Computational Biology. Taylor & Francis. isbn: 9781584885405.

Williams, D. (1991). Probability with Martingales. EBL-Schweitzer. Cambridge Uni-
versity Press. isbn: 9781139640923.

Yang, Wan, Alicia Karspeck, and Jeffrey Shaman (Apr. 2014). “Comparison of Fil-
tering Methods for the Modeling and Retrospective Forecasting of Influenza
Epidemics”. In: PLOS Computational Biology 10.4, pp. 1–15. doi: 10.1371/
journal.pcbi.1003583.

de Finetti, B. (1931). “Funzione caratteristica di un fenomeno aleatorio”. In: Atti
della R. Accademia Nazionale dei Lincei, Ser. 6. Memorie, Classe di Scienze
Fisiche, Matematiche e Naturali 4, pp. 251–299.

https://doi.org/10.1214/aos/1176325750
https://doi.org/10.1214/aoap/1027961031
https://doi.org/10.1214/aoap/1027961031
https://doi.org/10.1002/bimj.19710130413
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.19710130413
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.19710130413
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.19710130413
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.19710130413
https://doi.org/10.1007/s11222-016-9660-3
https://doi.org/10.1007/s11222-016-9660-3
https://doi.org/10.1002/sapm192321131
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sapm192321131
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sapm192321131
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm192321131
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm192321131
https://doi.org/10.1371/journal.pcbi.1003583
https://doi.org/10.1371/journal.pcbi.1003583




APROOFS

a.1 proof of lemma 2.1.3

For any i 6= j, and any k ∈ {1, . . . , N},
E[‖X(k)

i −X(k)
j ‖2] = E[c2k(Zi − Zj)2] ,

where Zi, Zj ∼ N(0, 1). Hence,

E[‖X(k)
i −X(k)

j ‖2] = 2c2k .

a.2 proof of lemma 2.3.20

Firstly, note that, for a fixed set C, inequalities (21) and (22) are equivalent, since,
with v(x) := 1 + f(x), the former holds if, and only if,

EP (x,·)(1 + f(Y )) ≤ γ(1 + f(x)) + β1C(x) ,

which gives the latter. As a result Definition 2.3.18 implies Definition 2.3.19. Now,
suppose that Xt is a Markov chain which satisfies a drift condition in the sense of
2.3.19; that is, there exists a function v : X → [1,∞), an ε-small set C, and positive,
finite constants, β and γ < 1, such that

EP (x,·)(v(Y )) ≤ γv(x) + β1C(x) .

Let α be a finite constant such that α > β/(1 − γ) − 1; the existence of which is
guaranteed since β <∞ and γ < 1, and define

Cα := {x ∈ C : v(x) ≤ α+ 1} = {x ∈ C : f(x) ≤ α} ,
where f(x) := v(x)− 1, and γα := γ + β/(1 + α) > γ. By definition of α,

γα < γ + (1− γ) = 1 .

Clearly, since Cα ⊆ C, if x ∈ Cα, then
EP (x,·)(v(Y )) ≤ γv(x) + β < γαv(x) + β ,

and, if x /∈ C, then
EP (x,·)(v(Y )) ≤ γv(x) < γαv(x) .

So all that remains is to consider the case when x ∈ C\Cα. By definition v(x) > α+1,
hence

EP (x,·)(v(Y )) ≤ γv(x) + β < [γ + β/(1 + α)]v(x) = γαv(x) .

Therefore, Xt satisfies a drift condition in the sense of Definition 2.3.18.

a.3 proof of theorem 2.3.25

By Theorem 5 of Roberts and Rosenthal, 2008, geometric ergodicity is equivalent
to the chain being variance bounding (see the definition in Section 2 of that paper).
Moreover, by Theorem 7 of the same paper, variance bounding is equivalent to the
MCMC estimates satisfying a central limit theorem for any function h which is
square-integrable with respect to the unique stationary distribution π. Furthermore,
by Theorem 14 of that paper, variance bounding is equivalent to the chain have
a non-zero right spectral gap, ρ, (see, for instance, Conway, 1994 for a definition).
Now, Theorem 2.1 of Lawler and Sokal, 1988 provides the following bounds on the
right spectral gap in terms of the conductance of the chain;

κ2/8 ≤ ρ ≤ κ .
Hence, the chain having a non-zero right spectral gap is equivalent to the chain
having a non-zero conductance, thus completing the proof.
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a.4 proof of theorem 2.3.34

Mengersen and Tweedie, 1996 show that the Metropolis-Hastings random-walk sam-
pler is geometrically ergodic under such conditions. By Lemma 2.3.32, the Metropolis-
Hastings random-walk sampler is non-negative. Hence, by Theorem 2.3.25, the chain
has a non-zero conductance and, therefore, by Theorem 2.1, Lawler and Sokal, 1988,
has a non-zero right spectral gap, ρ. Note that αb(x, y) ≥ αm(x, y)/2. Therefore,
letting EP (f) := 〈f, f〉 − 〈f, Pf〉 be the Dirichlet form associated with a Markov
chain with transition distribution P (see, for example Roberts and Rosenthal, 2008),
EPb(f) ≥ EPm(f)/2, where Pb and Pm denote the transition distributions corre-
sponding to Barker’s and the Metropolis-Hastings random-walk samplers respec-
tively. Therefore (see, for example, Roberts and Rosenthal, 2008), defining ρb and ρm
to be the right-spectral gaps corresponding to Barker’s and the Metropolis-Hastings
random-walk samplers respectively, ρb ≥ ρm/2. Hence, Barker’s random-walk sam-
pler has a non-zero right spectral gap and, therefore, by Theorem 2.3.25, the MCMC
estimates corresponding to either Barker’s, or the Metropolis-Hastings random walk
sampler satisfy a central limit theorem for all functions which are square-integrable
with respect to π.

a.5 proof of corollary 2.3.38

By Theorem 2.3.36,

ᾱ(λ) = E
[

exp(−λ2ψ2/2 + λψW )

1 + exp(−λ2ψ2/2 + λψW )

]
= E[{1 + exp(λ2ψ2/2− λψW )}−1] .

Let β := λψ/2. The aim is to maximise J̄(2β/ψ) = 8β2ψ−2ᾱ(2β/ψ). Now,

ᾱ(2β/ψ) =

∞∫
−∞

φ(z)

1 + exp(2β2 + 2βz)
dz .

To derive an upper bound on this consider the two disjoint sets, (−∞,−β) and
[−β,∞), which cover the real line. Firstly, exp(2β2 + 2βz) > 0 for any z and β.
Hence,

−β∫
−∞

φ(z)

1 + exp(2β2 + 2βz)
dz < Φ(−β) .

Secondly, by Lemma B.0.7,

∞∫
−β

φ(z)

1 + exp(2β2 + 2βz)
dz < exp(−2β2)

∞∫
−β

exp(−2βz)φ(z) dz

= exp(−2β2)E[exp(−2βZ)1[−β,∞)(Z)]

= 1− Φ(β)

= Φ(−β) .

Therefore, ᾱ(2β/ψ) < 2Φ(−β). Figure 79 shows a plot of β2ᾱ(2β/ψ) against β for
β ∈ [0, 2]. There is a local maxima of β2ᾱ(2β/ψ) at β̂ = 1.228 to three decimal
places, and β̂2ᾱ(2β̂/ψ) is equal to 0.240 to three decimal places. Moreover, from the
proof of Corollary 2.3.37, β2Φ(−β) is decreasing for β > 2. Hence, for β > 2,

β2ᾱ(2β/ψ) < 2β2Φ(−β) < 8Φ(−2) < 0.2 < 0.240 .

Combining this with Figure 79 demonstrates that the global maximum of β2ᾱ(2β/ψ)
in the positive domain is 1.228 to three decimal places.



appendix 219

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

β

0.00

0.05

0.10

0.15

0.20

0.25

β
2
ᾱ
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Figure 79: A plot of β2ᾱ(2β/ψ) against β for β ∈ [0, 2].

a.6 proof of theorem 2.4.3

For any j ∈ {1, . . . , N}, and some permutation, σ, of {1, . . . , N},

E(O(σ(j))) =

N∑
i=1

E[1(sj−1(w̃(σ(1):σ(N))),sj(w̃
(σ(1):σ(N)))](Ui)]

=

N∑
i=1

P(sj−1(w̃(σ(1):σ(N))) < Ui ≤ sj(w̃(σ(1):σ(N)))) .

For multinomial resampling, Ui ∼ Unif(0, 1) for any i ∈ {1, . . . , N}, and σ is the
identity permutation. Therefore, for any (i, j) ∈ {1, . . . , N}2,

P(sj−1(w̃(σ(1):σ(N))) < Ui ≤ sj(w̃(σ(1):σ(N)))) = sj(w̃
(1:N))−sj−1(w̃(1:N)) = w̃(j) .

Hence, E(O(j)) = Nw̃(j). For stratified and systematic resampling, Ui ∼ Unif((i −
1)/N, i/N) for any i ∈ {1, . . . , N}, and σ is random. Hence, for any j ∈ {1, . . . , N},
if i > dNsj(w̃(σ(1):σ(N)))e, or i ≤ bNsj−1(w̃(σ(1):σ(N)))c,

P(sj−1(w̃(σ(1):σ(N))) < Ui ≤ sj(w̃(σ(1):σ(N)))) = 0 .

Moreover, for any i ∈ {dNsj−1(w̃(σ(1):σ(N)))e+ 1, . . . , bNsj(w̃(σ(1):σ(N)))c},

P(sj−1(w̃(σ(1):σ(N))) < Ui ≤ sj(w̃(σ(1):σ(N)))) = 1 .

Therefore, for brevity, dropping the partial sums’ dependence on w̃(σ(1):σ(N)),

O(σ(j)) = bNsjc−dNsj−1e+1(bNsjc/N,sj ](UdNsje)+1(sj−1,dNsj−1e/N ](UdNsj−1e) .

(115)

Now,

P(bNsjc/N < UdNsje ≤ sj) = Nsj − bNsjc ,
P(sj−1 < UdNsj−1e ≤ dNsj−1e/N) = dNsj−1e −Nsj−1 .

Hence,

E(O(σ(j))) = N(sj − sj−1) = Nw̃(σ(j)) .

Moreover, from Equation (115) and Lemma B.0.12,

O(σ(j)) ≥ bNsjc − dNsj−1e > N(sj − sj−1)− 2 = Nw̃(σ(j)) − 2 .
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To obtain the upper bound on O(σ(j)) −Nw̃(σ(j)), one can consider subtracting the
indicators of the uniforms that might fall out of the interval, as opposed to adding
the indicators of the uniforms that might fall inside the interval as Equation (115)
does. From this viewpoint,

O(σ(j)) = dNsje−bNsj−1c−1(sj ,dNsje/N ](UdNsje)−1(bNsj−1c/N,sj−1](UdNsj−1e) .

(116)

Thus, by Lemma B.0.12,

O(σ(j)) ≤ dNsje − bNsj−1c < N(sj − sj−1) + 2 = Nw̃(σ(j)) + 2 .

To prove the tightness of the upper bound in the case of stratified resampling, con-
sider, for any ε ∈ (0, 1/3), the normalised weight vector

w̃(1:3) = (1/3− ε, 1/3 + 2ε, 1/3− ε) ,

and suppose u1 ∈ (1/3 − ε, 1/3], and u3 ∈ (2/3, 2/3 + ε]. Then, assuming σ is the
identity permutation, o2 = 3, yet 3w̃2 = 1 + 6ε. Thus,

lim
ε↓0

(o2 − 3w̃2) = 2 .

Similarly, to demonstrate the tightness of the lower bound, consider, for any ε ∈
(0, 1/2), the normalised weight vector

w̃(1:3) = (ε, 1− 2ε, ε) ,

and suppose u1 ∈ [0, ε), u3 ∈ (1−ε, 1]. Then, assuming σ is the identity permutation,
o2 = 1, yet 3w̃2 = 3− 6ε. Thus,

lim
ε↓0

(o2 − 3w̃2) = −2 .

To obtain the bounds for systematic resampling, consider, again, Equation (115).
Firstly, suppose that

U1 +
bNsj−1c

N
= UdNsj−1e ∈

(bNsj−1c
N

, sj−1

]
,

and w̃(σ(j)) ≥ (bNsjc − bNsj−1c)/N . Then,

sj−1 − bNsj−1c/N ≤ sj − bNsjc/N ,

and, therefore,

U1 +
bNsjc
N

= UdNsje ∈
(bNsjc

N
, sj

]
.

Hence, O(σ(j)) = bNsjc − dNsj−1e+ 1, and

O(σ(j)) −Nw̃σ(j) ≤ bNsjc − dNsj−1e+ 1− bNsjc+ bNsj−1c = 0 .

Suppose, on the other hand, that w̃(σ(j)) < (bNsjc − bNsj−1c)/N . Then,

O(σ(j)) −Nw̃(σ(j)) > bNsjc − dNsj−1e − bNsjc+ bNsj−1c = −1 .

Secondly, suppose that,

U1 +
bNsj−1c

N
= UdNsj−1e ∈

(
sj−1, dNsj−1e

N

]
,

and w̃(σ(j)) ≤ (bNsjc − bNsj−1c)/N . Then,

sj − bNsjc/N ≤ sj−1 − bNsj−1c/N ,

and, therefore,

U1 +
bNsjc
N

= UdNsje ∈
(
sj ,
dNsje
N

]
.
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Hence, O(σ(j)) = bNsjc − dNsj−1e+ 1, and

O(σ(j)) −Nw̃(σ(j)) ≥ bNsjc − dNsj−1e+ 1− bNsjc+ bNsj−1c = 0 .

Suppose, on the other hand, that w̃(σ(j)) > (bNsjc − bNsj−1c)/N . Then,

O(σ(j)) −Nw̃(σ(j)) < bNsjc − dNsj−1e+ 2− bNsjc+ bNsj−1c = 1 .

To prove the tightness of the upper bound, consider, again, for any ε ∈ (0, 1/3), the
normalised weight vector

w̃(1:3) = (1/3− ε, 1/3 + 2ε, 1/3− ε) .

Suppose that u1 ∈ (1/3 − ε, 1/3]. Then, u3 ∈ (1 − ε, 1]. Hence, assuming σ is the
identity permutation, o(2) = 2, yet 3w̃(2) = 1 + 6ε. Therefore,

lim
ε↓0

(o(2) − 3w̃(2)) = 1 .

Similarly, to demonstrate the tightness of the lower bound, consider, again, for any
ε ∈ (0, 1/6), the normalised weight vector

w̃(1:3) = (ε, 1− 2ε, ε) .

Suppose that u1 ∈ (0, ε). Then, u3 ∈ (2/3, 2/3 + ε). Note that, 2/3 + ε < 2/3 +
1/6 = 5/6 = 1− ε. Therefore, assuming σ is the identity permutation, o(2) = 2, yet
3w̃(2) = 3− 6ε. Hence,

lim
ε↓0

(o(2) − 3w̃(2)) = −1 .

As the weights are shuffled at the start of both the stratified and systematic re-
sampling procedures, Equation (45) holds for these procedures. The offspring in
multinomial resampling, O(1:N), ultimately depend on the terms

1(sj−1(w̃(1:N)),sj(w̃
(1:N))](Ui)

for any (i, j) ∈ {1, . . . , N}2. Hence κ̄(o(1:N)|w̃(1:N)) ultimately depends on

P(Ui ∈ (sj−1(w̃(1:N)), sj(w̃
(1:N))])

for any (i, j) ∈ {1, . . . , N}2. This term is equal to P(Ui ∈ (0, w̃(j)])) since Ui ∼
Unif(0, 1). Hence, the order of weights does not matter, and (45) holds.

a.7 proof of theorem 2.4.4

By definition, O(j) = bNw̃(j)c+O
(j)
r , and

w̃(j)
r =

w̃(j) −O(j)
r /N

N∑
j=1

(w̃(j) −O(j)
r /N)

=
Nw̃(j) − bNw̃(j)c

N − S .

Moreover, by assumption, E(O
(j)
r ) = (N − S)w̃

(j)
r . Therefore, E(O(j)) = Nw̃(j).

Furthermore, O(j) ≥ bNw̃(j)c > Nw̃(j) − 1, and,

|O(j)−Nw̃(j)| = |O(j)−bNw̃(j)c− (Nw̃(j)−bNw̃(j)c)| = |O(j)
r − (N −S)w̃(j)

r | .

Hence, the bounds obtained for systematic resampling in Theorem 2.4.3 hold for
systematic residual resampling. Moreover, for stratified resampling, by Theorem
2.4.3,

O(j) −Nw̃(j) < |O(j)
r − (N − S)w̃(j)

r | < 2 .

To obtain the general bound of O(j) −Nw̃(j) < N − 1 suppose, for a contradiction,
that O(j)−Nw̃(j) ≥ N −1. Without loss of generality, it can be assumed that j = 1.
If w̃(1) = 0, then O(1) = 0. Hence, O(1) = N and w̃(1) ≤ 1/N . However, if this is the
case, then w̃(2) +. . .+w̃(N) = 1−w̃(1) ≥ 1−1/N . Therefore, there must exist at least
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one j 6= 1 such that w̃(j) ≥ 1/N ; for, if not, then w̃(2) + . . .+ w̃(N) < (N − 1)/N =
1 − 1/N . Hence there exists a j 6= 1 such that O(j) ≥ 1 thus contradicting the
assumption that O(1) = N . Thus O(j) − Nw̃(j) < N − 1. To prove the tightness
of the lower bound for multinomial, stratified, and systematic residual resampling,
consider, for any ε ∈ (0, 1/2), the normalised weight vector

w̃(1:2) = (1− ε, ε) .

The residual normalised weight vector is thus

w̃(1:2)
r = (1− 2ε, 2ε) .

Suppose u1 ∈ (1 − 2ε, 1). Then, assuming σ is the identity permutation, o(1) = 1,
yet 2w̃(1) = 2− 2ε. Therefore,

lim
ε↓0

(o(1) − 2w̃(1)) = −1 .

To demonstrate the tightness of the upper bound for multinomial residual resam-
pling, consider, for any ε ∈ (0, 1− 1/N), the normalised weight vector

w̃(1:N) = (1/N + ε, 1/N − ε/(N − 1), 1/N − ε/(N − 1), . . . , 1/N − ε/(N − 1)) .

The residual normalised weight vector is thus

w̃(1:N)
r = (Nε/(N−1), 1/(N−1)−Nε/(N−1)2, 1/(N−1)−Nε/(N−1)2, . . . , 1/(N−1)−Nε/(N−1)2) .

Suppose u1:N−1 ∈ (0, Nε/(N − 1)). Then o(1) = N , yet Nw̃(1) = 1 +Nε. Therefore,

lim
ε↓0

(o(1) −Nw̃(1)) = N − 1 .

The prove the tightness of the upper bound for stratified residual resampling, con-
sider, as in Theorem 2.4.3, for any ε ∈ (0, 1/3), the normalised weight vector

w̃(1:3) = (1/3− ε, 1/3 + 2ε, 1/3− ε) .

The residual normalised weight vector is thus

w̃(1:3)
r = (1/2− 3ε/2, 3ε, 1/2− 3ε/2) .

Suppose u1 ∈ (1/2− 3ε/2, 1/2] and u2 ∈ (1/2, 1/2 + 3ε/2). Then, assuming σ is the
identity permutation, o2 = 3, yet 3w̃(2) = 1 + 6ε. Therefore,

lim
ε↓0

(o(2) − 3w̃(2)) = 2 .

The tightness of the upper bound for residual systematic resampling follows via the
same argument, except, now, since u1 ∈ (1/2− 3ε/2, 1/2], then u2 ∈ (1− 3ε/2, 1] so
that, assuming σ is the permutation identity, o(2) = 2, and

lim
ε↓0

(o(2) − 3w̃(2)) = 1 .

Equation (41) trivially holds since the only non-deterministic component of the
residual resampling procedure happens during the resampling of the residuals and
this is exchangeable by assumption.

a.8 proof of lemma 3.2.1

Define the generator, Gt, as the solution to

dGt
dt

= J(ηt, t)Gt , G0 = I ,

over the interval [0, T ]. Consider the process G−1
t R̂t which satisfies

d(G−1
t R̂t) = dG−1

t R̂t +G−1
t dR̂t

= −G−1
t dGtG

−1
t R̂t +G−1

t J(ηt, t)R̂tdt+G−1
t σ(ηt, t)dBt

= G−1
t σ(ηt, t)dBt .
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Therefore, for any 0 ≤ s ≤ t ≤ T , G−1
t R̂t is normally distributed with

E(G−1
t R̂t) = 0 , Cov(G−1

s R̂s, G
−1
t R̂t) =

s∫
0

G−1
u ζ(ηu, u)G−∗u du ,

where G−∗ is shorthand for (G−1)∗, and A∗ denotes the transpose of the matrix A.
Let ψt be the solution to

dψt
dt

= G−1
t ζ(ηt, t)G

−∗
t , ψ0 = 0 , (117)

over the interval [0, T ]. Then[
R̂t

Y

]
∼ N

([
0

PηT

]
,

[
GtψtG

∗
t GtψtG

∗
TP
∗

PGTψtG
∗
t PGTψTG

∗
TP
∗ + V

])
.

Therefore, by Lemma B.0.8,

E(R̂t|Y = y) = GtψtG
∗
TP
∗(PGTψTG

∗
TP
∗ + V )−1(y − PηT ) .

To circumvent the need to calculate ψt, and, therefore, avoid solving the costly ODE
(117) which contains inverses on the right-hand side, we let φt := GtψtG

∗
t and note

that φt solves

dφt
dt

=
dGt
dt

ψtG
∗
t +Gtψt

dG∗t
dt

+Gt
dψt
dt

G∗t

= J(ηt, t)GtψtG
∗
t +GtψtG

∗
tJ(ηt, t)

∗ + ζ(ηt, t)

= J(ηt, t)φt + φtJ(ηt, t)
∗ + ζ(ηt, t) ,

over the interval [0, T ] with initial condition φ0 = 0.

a.9 proof of lemma 3.2.2

Let ηs be defined as the solution to

dηs
ds

= a(s) + b(s)ηs , η0 = xt ,

over the interval [0, T−t], and define Zs := X̃s−ηs. Then, Zs is a diffusion satisfying
the SDE

dZs = b(s)Zs ds+ σ(s) dWs , Z0 = 0 .

Next, let Gs be defined as the solution to

dGs
ds

= b(s)Gs , G0 = I ,

over the interval [0, T−t]. ConsiderG−1
s Zs which satisfies d(G−1

s Zs) = G−1
s σ(s) dWs.

Thus, G−1
s Zs is normally distributed for any time s ∈ [0, T − t], with E[G−1

s Zs] = 0
for any s ∈ [0, T − t] and

Cov(G−1
u Zu, G

−1
s Zs) =

u∫
0

G−1
v σ(v)σ(v)∗G−∗v dv

for any 0 ≤ u < s ≤ T − t. Thus, letting ψs be defined as the solution to

dψs
ds

= G−1
s σ(s)σ(s)∗G−∗s , ψ0 = 0 ,

over the interval [0, T − t],

(ZT−t|Z0 = 0) ∼ N(0, GT−tψT−tG
∗
T−t) .

Therefore,

(X̃T−t|X̃0 = xt) ∼ N(ηT−t, GT−tψT−tG
∗
T−t) .
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Thus, since (Y |X̃T−t = x̃T−t) ∼ N(P x̃T−t, V ),

(Y |X̃0 = xt) ∼ N(PηT−t, PGT−tψT−tG
∗
T−tP

∗ + V ) .

Now, as in A.8, letting φs := GsψsG
∗
s and noting that φs solves

dφs
ds

= b(s)φs + φsb(s)
∗ + σ(s)σ(s)∗ , φ0 = 0

over the interval [0, T − t],

(Y |X̃0 = xt) ∼ N(PηT−t, PφT−tP
∗ + V ) .

a.10 proof of lemma 4.2.4

Consider

wT (x̃
(k)
T ; θ)Ψ(x

(1:N)
0:T , a

(1:N)
0:T−1|θ)

ψ(x
(1:N)
0:T \x̃

(k)
T , a

(1:N)
0:T−1\ã

(k)
T−1|k, x̃

(k)
T , ã

(k)
T−1, θ)

= wT (x̃
(k)
T ; θ)p0(x

(LT (k,0))
0 |θ)

T∏
i=1

P(A
(L(k,t)
T

)

t−1 = a
(LT (k,t))
t−1 |w̃(1:N)

t−1 )pt(x
(LT (k,t))
t |x̃(LT (k,t−1))

t−1 , θ) .

By property property (P) of Assumptions 4.2.1, and the definition of the Lineage
function LT (Definition 4.2.2),

P(A
(L(k,t)
T

)

t−1 = a
(LT (k,t))
t−1 |w̃(1:N)

t−1 ) = w̃
(LT (k,t−1))
t−1 .

Moreover,

w0(x̃
(LT (k,0))
0 ; θ)p0(x̃

(LT (k,0))
0 |θ) = γ0(θ, x̃

(LT (k,0))
0 ) ,

and, for any t ∈ {1, . . . , T},

wt(x̃
(LT (k,t)); θ)pt(x

(LT (k,t))
t |x̃(LT (k,t−1))

t−1 , θ) =
γt(θ, x̃

(LT (k,t))
t )

γt−1(θ, x̃
(LT (k,t−1))
t−1 )

.

Therefore, dropping the explicit dependence of the weights on θ,

wT (x̃
(k)
T ; θ)Ψ(x

(1:N)
0:T , a

(1:N)
0:T−1|θ)

ψ(x
(1:N)
0:T \x̃

(k)
T , a

(1:N)
0:T−1\ã

(k)
T−1|k, x̃

(k)
T , ã

(k)
T−1, θ)

=
γ0(θ, x̃

(LT (k,0))
0 )

w0(x̃
(1)
0 ) + . . .+ w0(x̃

(N)
0 )

T−1∏
t=1

γt(θ, x̃
(LT (k,t))
t )

γt−1(θ, x̃
(LT (k,t−1))
t−1 )

1

wt(x̃
(1)
t ) + . . .+ wt(x̃

(N)
t )

× γT (θ, x̃
(k)
T )

γT−1(θ, x̃
(LT (k,T−1))
T−1 )

= γT (θ, x̃
(k)
T )

( T−1∏
t=0

N∑
i=1

wt(x̃
(i)
t )

)−1

= N−(T+1) γT (θ, x̃
(k)
T )

IT (θ, x̃
(1:N)
0:T )

N∑
i=1

wT (x̃
(k)
T ; θ) .

Rearranging gives the required result.

a.11 proof of theorem 4.3.2

For any k ∈ {1, . . . , N}, define

Pk(x,B) :=

∫
· · ·
∫

B×Rd×(N−1)

q̃N (y1:N |x)αk,N (x, y1:N ) dykdy−k ,
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and

Qk(A,B) :=

∫
A

π(dx)Pk(x,B) .

Qk is symmetric since the joint proposal, qN (x, y1:N ), is an exchangeable density
and, therefore,

Qk(A,B)

=
1

γ(Rd)

∫
· · ·
∫

A×B×Rd×(N−1)

q0(x)q̃N (y1:N |x)w(x)αk,N (x, y1:N ) dxdykdy−k

=
1

γ(Rd)

∫
· · ·
∫

A×B×Rd×(N−1)

qN (x, y1:N )w(yk)αk,N (yk, y1:k−1, x, yk+1:N ) dxdykdy−k

=
1

γ(Rd)

∫
· · ·
∫

A×B×Rd×(N−1)

qN (yk, y1:k−1, x, yk+1:N )w(yk)αk,N (yk, y1:k−1, x, yk+1:N ) dxdykdy−k

=

∫
B

π(dyk)Pk(yk, A) .

Moreover, define

PR(x,B) := δx(B)

∫
· · ·
∫

Rd×N

q̃N (y1:N |x)

(
1−

N∑
k=1

αk,N (x, y1:N )

)
dy1:N ,

and

QR(A,B) :=

∫
A

π(dx)PR(x,B) .

QR is symmetric since

QR(A,B) =

∫
· · ·
∫

(A∩B)×Rd×N

π(x)q̃N (y1:N |x)

(
1−

N∑
k=1

αk,N (x, y1:N )

)
dx dy1:N .

Thus,

Q(A,B) =

∫
A

π(dx)P (x,B) =

N∑
k=1

Qk(A,B) +QR(A,B) ,

is symmetric. Hence, Xt is reversible with respect to π. Next consider, for any set
A ⊆ Rd,

P (x,A) ≥
N∑
k=1

Pk(x,A) ≥ β
N∑
k=1

∫
· · ·
∫

AN

q̃N (y1:N |x)αmk,N (x, y1:N ) dy1:N , (118)

where β = 1 for the Metropolis-Hastings independence sampler, and β = 1/2 for
Barker’s independence sampler. Let A be such that π(A) > 0. Then, there exists an
nA ∈ N such that π(A ∩ BnA) > 0 where Bn is the closed ball of radius n centred
on 0. Let CA,x := A ∩BnA\{x}. Then

P (x,A) ≥ 1

2

N∑
k=1

∫
CN
A,x

q̃N (y1:N |x)αmk,N (x, y1:N ) dy1:N .

For any I ⊆ {1, . . . , N}, define

ΩI := {y1:N ∈ CNA,x : w(x) ≥ w(yi) for every i ∈ I and w(yi) ≥ w(x) for any i /∈ I.} ,
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and let Γ := {y ∈ CA,x : w(y) ≥ w(x)}. Moreover, for brevity, let PN := P({1, . . . , N}).
Then

P (x,A) ≥ 1

2

∑
I∈PN

∫∫
CN
A,x
∩ΩI

q̃N (y1:N |x)

N∑
k=1

αmk,N (x, y1:N ) dy1:N .

Now, by Lemma B.0.3,

N∑
k=1

αmk,N (x, y1:N ) ≥


1

|I|w(x)

∑
i∈I

w(yi) if I 6= ∅

1 if I = ∅
,

By assumption, q0 is positive on {y ∈ Rd : γ(y) > 0}. Hence, by (88), q̃N (·|x) is
positive on {y ∈ Rd : γ(y) > 0}N for any x ∈ Rd. Hence, there exists an η0 > 0 such
that

inf
y1:N∈CNA,x

q̃N (y1:N |x) ≥ η0 > 0 .

Thus ∫∫
CN
A,x
∩Ω∅

q̃N (y1:N |x) dy1:N ≥ η0Leb(CA,x ∩ Γ)N .

Moreover, for any I 6= ∅,∫∫
CN
A,x
∩ΩI

q̃N (y1:N |x)

N∑
k=1

αmk,N (x, y1:N ) dy1:N

≥ q0(x)

|I|γ(x)

∫∫
CN
A,x
∩ΩI

q̃N (y1:N |x)
∑
j∈I

π(yj)

q(yj)
dy1:N

≥ 1

|I|γ(x)

∑
j∈I

∫∫
CN
A,x
∩ΩI

q̃N (y1:j−1, x, yj+1:N |yj)π(yj) dy1:N ,

where the last line follows since the joint density, qN , is symmetric. By assumption,
q0 is continuous on Rd. Therefore, by Lemma 4.3.1, q̃N (·|·) is continuous on Rd×(N+1).
Moreover, by assumption,

{y ∈ Rd : γ(y) > 0} ⊆ {y ∈ Rd : q0(y) > 0} .

Thus, by Lemma 4.3.1, q̃N (y1:N |x) > 0 for any x ∈ Rd such that γ(x) > 0, and any
y1:N ∈ AN . Hence, for any j ∈ {1, . . . , N}, there exists an ηj > 0 such that

inf
y1:N∈CNA,x

q̃N (y1:j−1, x, yj+1:N |yj) ≥ ηj > 0 .

Therefore,∫∫
CN
A,x
∩ΩI

q̃N (y1:N |x)

N∑
k=1

αmk,N (x, y1:N ) dy1:N

≥ 1

|I|γ(x)

∑
j∈I

ηjπ(CA,x ∩ Γc)Leb(CA,x ∩ Γc)|I|−1Leb(CA,x ∩ Γ)N−|I| .

Hence

P (x,A) ≥1

2
η0Leb(CA,x ∩ Γ)N

+
1

2|I|γ(x)

∑
I∈PN\{∅}

∑
j∈I

ηjπ(CA,x ∩ Γc)Leb(CA,x ∩ Γc)|I|−1Leb(CA,x ∩ Γ)N−|I| .
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To demonstrate that this is positive assume, for a contradiction, that Leb(CA,x∩Γ) =
0, and, either π(CA,x ∩Γc) = 0, or Leb(CA,x ∩Γc) = 0, where Leb denotes Lebesgue
measure. π is absolutely continuous with respect to Lebesgue measure, hence this
assumption implies that π(CA,x) = 0, thus contradicting the definition of BnA .
Hence P (x,A) > 0. Next, to show that the Exchangeable Sampler is non-negative,
consider

〈Pf, f〉 ≥
N∑
k=1

∫
Rd×(N+1)

q̃N (y1:N |x)π(x)αk,N (x, y1:N )f(x)f(yk) dxdy1:N .

For any z1:N ∈ Rd×N , define ξ : Rd×N → R by

ξ(z1:N ) := [w(z1) + . . .+ w(zN )]−1 .

By a multiple-proposal extension of Inequality (28), and Lemma B.0.1,

αk,N (x, y1:N ) ≥ 1

2
w(yk)[ξ(y1:N ) ∧ ξ(y1:k−1, x, yk+1:N )]

=
γ(yk)

2q(yk)

∞∫
0

1[0,ξ(y1:N )](s)1[0,ξ(y1:k−1,xyk+1:N )](s) ds ,

Therefore, defining

ψk(x, y1:N , s) := 1[0,ξ(y1:N )](s)1[0,ξ(y1:k−1,xyk+1:N )](s) ,

we have

〈Pf, f〉 ≥ 1

2γ(Rd)

N∑
k=1

∫
Rd×(N+1)

∞∫
0

q̃N (y1:N |x)

q0(yk)
γ(x)f(x)γ(yk)f(yk)ψk(x, y1:N , s) dsdxdy1:N

≥ 1

2γ(Rd)

N∑
k=1

∫
Rd×(N+1)

∞∫
0

qN (x, y1:N )w(x)f(x)w(yk)f(yk)ψk(x, y1:N , s) dsdxdy1:N .

Consider the joint density qN (x, y1:N ). LetX be the random variable associated with
x, Z0 be the random variable associated with z0, defined by Algorithm 18, Θ be the
random variable associated with θ, also defined by Algorithm 18, and so on. X has
density q0. Thus Z0 = h−1(X) ∼ Nd(0, Id). Consider, then, the joint distribution of
Θ and Zi for any i ∈ {0, . . . , N}, which is given by[

Θ

Zi

]
∼ N

([
0

0

]
,

[
Id

√
1− δ2Id√

1− δ2Id Id

])
.

Moreover, given θ, the sequence Z0:N is independent. Therefore, the joint density of
Z0:N , denoted qZN (z0:N ), is given by

qZN (z0:N ) =

∫
Rd

N∏
i=0

qZ(zi|θ)qΘ(θ) dθ ,

where qΘ : Rd → (0,∞), and qZ(·|θ) : Rd → (0,∞) are densities defined by

qΘ(θ) ∝ exp(−θT θ/2) ,

qZ(zi|θ) ∝ exp

[
− 1

2δ2
(zi −

√
1− δ2θ)T (zi −

√
1− δ2θ)

]
.

Therefore,

q(y0:N ) =

∫
Rd

qΘ(θ)
N∏
i=0

q∗(yi|θ) dθ ,

where

q∗(yi|θ) = qZ(h−1(yi)|θ)| det J(yi)| ,
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and det J(yi) denotes the determinant of the Jacobian matrix J(yi) which is the
d× d matrix whose (j, k)-th entry is given by

J(yi)jk :=
∂yij
∂zik

∣∣∣∣
zi=h−1(yi)

,

where yij denotes the j-th element of yi, and zik the k-th element of zi. Hence,

qN (y0:N ) =

∫
Rd

ζk(θ, x, y−k)ζk(θ, yk, y−k) dθ ,

where

ζk(θ, w, y−k) := q∗(w|θ)
[
qΘ(θ)

N∏
i=1
i 6=k

q∗(yi|θ)
]1/2

.

Thus,

〈Pf, f〉 ≥ 1

2γ(Rd)

N∑
k=1

∫
Rd×(N−1)

∞∫
0

∫
Rd

gk(θ, s, y−k)2 dθdsdy−k ,

where

gk(θ, s, y−k) :=

∫
Rd

ζk(θ, t, y−k)w(t)f(t)1[0,ξ(y1:k−1,t,yk+1:N )](s) dt .

Therefore, 〈Pf, f〉 ≥ 0, and Xt is non-negative.

a.12 proof of theorem 4.3.3

For any η > 0, define vη : X → [1,∞) by vη(x) := (1 + p(x))η. Denote, by P (x, ·),
the transition distributions of the chain Xt and consider, for any x /∈ C,

EP (x,·)(vη(Y ))

vη(x)
=

∫
X

q(y|x)α(x, y)
vη(y)

vη(x)
dy +

∫
X

q(y|x)(1− α(x, y)) dy

= 1−
∫
q(y|x)α(x, y)

(
1− vη(y)

vη(x)

)
dy .

Firstly, to demonstrate the drift condition off of the small set C, it is sufficient to
show that there exists a ζ > 0 and an η > 0 such that, for any x /∈ C,

1− EP (x,·)(vη(Y ))

vη(x)
= E

{
α(x, Y )

[
1−

(
1 + p(Y )

1 + p(x)

)η]}
≥ ζ .

Moreover, by assumption, for any x /∈ C, p(x) > ρ∗. Hence, (1 + p(y))/(1 + p(x)) <
1/ρ∗+p(y)/p(x), and it is sufficient to show that there exists a ρ∗ ∈ (1,∞), a ζ > 0,
and an η > 0 such that, for all x /∈ C,

E
{
α(x, Y )

[
1−

(
1

ρ∗
+
p(Y )

p(x)

)η]}
≥ ζ . (119)

Define

fη(x, y) := α(x, y)[1− (1/ρ∗ + p(y)/p(x))η]

g(x, y) := −α(x, y) log(1/ρ∗ + p(y)/p(x))

Then, by Lemma B.0.4, for any (x, y) ∈ X 2,

0 ≥ fη(x, y)− ηg(x, y) ≥ −α(x, y)
η2

2
log

(
1

ρ∗
+
p(y)

p(x)

)2

. (120)

By Assumption (IM), there exists a ρ∗ ∈ (1,∞) and a δ > 0 such that E[g(x, Y )] ≥ δ
for any x /∈ C. Hence, if there exists an η > 0 and a ζ > 0 such that, for any x /∈ C,

E[fη(x, Y )− ηg(x, Y )] ≥ ζ − ηδ , (121)
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then

E[fη(x, Y )] ≥ ζ − ηδ + ηδ = ζ > 0 ,

and (119) holds. Define hη(x, y) := fη(x, y)−ηg(x, y). Then, by Inequality (120), for
any fixed (x, y) ∈ X 2, hη(x, y) ↑ 0 as η ↓ 0, and, although for any fixed η, the bound
on hη given by Inequality (120) could tend towards negative infinity as p(y)/p(x)
tends towards infinity (depending on the behaviour of α in the limit), Assumption
(UI) ensures that there exists a positive τ < ∞ such that this divergence is uni-
formly well-behaved on {z ∈ X : τp(x) ≤ p(z)}, thereby allowing us to demonstrate
Inequality (121). Consider the disjoint sets

X1(x) := {y ∈ X : 1/ρ∗ + p(y)/p(x) ≤ 1} ,
X2(x) := {y ∈ X : τp(x) ≤ p(y)} ∩ X c1 (x) ,

X3(x) := {y ∈ X : τp(x) > p(y)} ∩ X c1 (x) .

which cover X . By definition, 1/ρ∗ + p(y)/p(x) ≤ 1 for any y ∈ X1(x). Hence, since
p(y)/p(x) > 0,

log

(
1

ρ∗
+
p(y)

p(x)

)2

≤ log(ρ∗)
2 ,

for any y ∈ X1(x). Therefore, by Inequality (120), and the fact that α ≤ 1,

E[hη(x, Y )1X1(x)(Y )] ≥ −η
2

2
log(ρ∗)

2 .

Moreover, by Inequality (120), the fact that α ≤ 1, and the fact that, for any
y ∈ X3(x), τp(x) > p(y) and 1/ρ∗ + p(y)/p(x) > 1,

E[hη(x, Y )1X3(x)(Y )] ≥ −η
2

2
E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)2

1X3(x)(Y )

]
≥ −η

2

2
E[α(x, Y ) log(ρ−1

∗ + τ)2
1X3(x)(Y )]

≥ −η
2

2
log(ρ−1

∗ + τ)2 .

By definition, X2(x) = Pτ (x) ∩ X c1 (x), where Pτ (x) = {z ∈ X : τp(x) ≤ p(z)}.
Hence, by Inequality (120), and the definition of µτ from Assumption (UI),

E[hη(x, Y )1X2(x)(Y )] ≥ −η
2

2
E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)2

1Pτ (x)∩Xc1 (x)(Y )

]
≥ −η

2

2
µτ .

Combining these three inequalities gives,

E[hη(x, Y )] ≥ −η
2

2

[
µτ + log(ρ−1

∗ + τ)2 + log(ρ∗)
2

]
, (122)

which is true for any x /∈ C. By Assumption (UI), µτ <∞, and τ <∞, and, so, one
can choose an η to be such that

0 < η < 1 ∧ 2δ

[
µτ + log(ρ−1

∗ + τ)2 + log(ρ∗)
2

]−1

.

With this definition,

η2

2

[
µτ + log(ρ−1

∗ + τ)2 + log(ρ∗)
2

]
< δη . (123)

Set

ζ := ηδ − η2

2

[
µτ + log(ρ−1

∗ + τ)2 + log(ρ∗)
2

]
. (124)
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By (123), ζ > 0, and, by (122),

E[hη(x, Y )] ≥ ζ − ηδ
for any x /∈ C, thereby demonstrating (121), and demonstrating the drift condition
off the small set. To demonstrate the drift condition on the small set, consider, for
any x ∈ C,

EP (x,·)(vη(Y )) =

∫
X

q(y|x)α(x, y)(vη(y)− vη(x)) dy+

∫
X

q(y|x)α(x, y)vη(x) dy .

Since x ∈ C, then p(x) ≤ ρ∗. Hence, since η ∈ (0, 1) by construction, vη(x) ≤
(1 + ρ∗)

η < (1 + ρ∗), and the second integral is bounded by (1 + ρ∗). Furthermore,
if y ∈ Qcx where Qx := {z ∈ X : p(x) ≤ p(z)}, then vη(y)− vη(x) < 0. Moreover, if
y ∈ Qx, then, by Lemma B.0.5,

vη(y)− vη(x) < p(y)− p(x) .

Hence, by Assumption (B), the first integral is bounded by ξ <∞, therefore demon-
strating the drift condition on the small set.

a.13 proof of theorem 4.3.4

Lemma 1.2 of Mengersen and Tweedie, 1996 demonstrates that any compact set is
small. Let p : R → [1,∞) be defined by p(x) := exp(|x|). Then, C := {x ∈ R :
p(x) ≤ ρ∗}, which is compact for any ρ∗ > 0, is small for any ρ∗ > 0. Let x ∈ R be
such that x ≥ m∗ > m2 > 0, where m∗ is arbitrary. Consider the four disjoint sets

X1 := (−∞,−m2] ,

X2 := (−m2,m2) ,

X3 := [m2, x) ,

X4 := [x,∞) ,

which cover R. For the moment, let ρ∗ ∈ (1,∞) be arbitrary and consider y ∈
X4 = [x,∞). Since π decays exponentially quickly in the tails, then π(y)/π(x) ≤
exp(−θ2(y − x)) ≤ 1. Thus,

E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)
1X4(Y )

]
≤ E{exp[−θ2(Y − x)] log(ρ−1

∗ + exp(Y − x))1X4(Y )}
= E[exp(−θ2εZ) log(ρ−1

∗ + exp(εZ))1[0,∞)(Z)] , (125)

where Z ∼ N(0, 1). Next, note that, if y ∈ X3 = [m2, x), then x − y ∈ (0, x −m2],
and, since π decays exponentially in the tails, π(y)/π(x) ≥ exp(θ2(x−y)) ≥ 1. Thus,
α(x, y) = 1, and

E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)
1X3(Y )

]
= E[log(ρ−1

∗ + exp[−(x− Y )])1X3(Y )]

= E[log(ρ−1
∗ + exp(−εZ))1[0,ε−1(x−m2))(Z)] , (126)

where Z ∼ N(0, 1). Now, if y ∈ X2 = (−m2,m2), then −x + |y| < m2 − m∗. Let
ρ−1
∗ ≤ 1− exp(m2 −m∗). If y ∈ X2, then

ρ−1
∗ + exp(−x+ |y|) < ρ−1

∗ + exp(m2 −m∗) ≤ 1 .

Thus,

E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)
1X2(Y )

]
< 0 . (127)

Finally, note that ρ−1
∗ + exp(−x− y) ≥ 1 if and only if

y ≤ −x+ log

(
ρ∗

ρ∗ − 1

)
=: ϕ .
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Thus,

E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)
1X1(Y )

]
≤ E

[
log

(
1

ρ∗
+exp[−x−y]

)
1(−∞,ϕ∧−m2)(Y )

]
.

Moreover, since x ≥ m∗, then −x− y = (x− y)− 2x ≤ (x− y)− 2m∗. Thus,

E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)
1X1(Y )

]
≤ E

[
log

(
1

ρ∗
+ exp[(x− y)− 2m∗]

)
1(−∞,ϕ∧−m2)(Y )

]
≤ E

[
log

(
1

ρ∗
+ exp[εZ − 2m∗]

)
1(ε−1{(x−ϕ)∨(x+m2)},∞)(Z)

]
. (128)

where Z ∼ N(0, 1). Combining inequalities (125), (126), (127), and (128) gives

E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)]
< E[exp(−θ2εZ) log(ρ−1

∗ + exp(εZ))1[0,∞)(Z)]

+ E[log(ρ−1
∗ + exp(−εZ))1[0,ε−1(x−m2))(Z)]

+ E
[

log

(
ρ−1
∗ + exp[εZ − 2m∗]

)
1(ε−1{(x−ϕ)∨(x+m2)},∞)(Z)

]
.

The integrand in each expectation on the right-hand side is dominated by an expo-
nentially decaying term. Hence, for each expectation on the right-hand side, there
exists an integrable function which dominates the integrand and the assumptions for
the dominated convergence theorem hold. By definition, x ≥ m∗. Thus, as m∗ ↑ ∞,
x ↑ ∞. Taking the limit, firstly as ρ∗ ↑ 0, then as m∗ ↑ ∞, gives, for the first two
terms,

lim
m∗↑∞

lim
ρ∗↑∞

E[exp(−θ2εZ) log(ρ−1
∗ + exp(εZ))1[0,∞)(Z)] = E[εZ exp(−θ2εZ)1[0,∞)(Z)] ,

lim
m∗↑∞

lim
ρ∗↑∞

E[log(ρ−1
∗ + exp(−εZ))1[0,ε−1(x−m2))(Z)] = E[−εZ1[0,∞)(Z)] .

By construction, for the final term, ρ−1
∗ + exp(εz− 2m∗) ≥ 0 for z ∈ (ε−1{(x−ϕ)∨

(x+m2)},∞). Moreover, since x ≥ m∗, then

x− ϕ = 2x− log

(
ρ∗

ρ∗ − 1

)
≥ 2m∗ − log

(
ρ∗

ρ∗ − 1

)
,

and, therefore,

lim
m∗↑∞

lim
ρ∗↑∞

(x− ϕ) =∞ .

Hence, taking the limit, firstly as ρ∗ ↑ ∞, then as m∗ ↑ ∞, gives, for the final term,

lim
m∗↑∞

lim
ρ∗↑∞

E
[

log

(
ρ−1
∗ + exp[εZ − 2m∗]

)
1(ε−1{(x−ϕ)∨(x+m2)},∞)(Z)

]
= 0 .

Combining this with the limits obtained from the first two terms demonstrates that
there exists a large enough ρ∗ ∈ (1,∞) and a large enough m∗ > m2 such that

E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)]
< E[εZ(exp(−θ2εZ)− 1)1[0,∞)(Z)] ,

where Z ∼ N(0, 1). Hence, there exists a large enough ρ∗ ∈ (1,∞), and a δ > 0 such
that C := {x ∈ X : p(x) ≤ ρ} is small, and for any x ∈ Cc ∩ [0,∞),

Eq(·|x)

[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)]
< −δ .

A similar argument holds if one starts by assuming that x ≤ m∗ < m1. Thus,
property (IM) of Theorem 4.3.3 is satisfied. Now, define P+

r (x) := Pr(x) ∩ [0,∞),
P−r (x) := Pr(x) ∩ (−∞, 0), suppose x > 0, and consider

E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)2

1P+
r (x)

(Y )

]
≤ 1√

2πε2

∫
P+
r (x)

log

(
ρ−1
∗ +exp(y−x)

)2

exp

(
− (y − x)2

2ε2

)
dy .
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Note that y ∈ P+
r (x) if and only if (y − x) ≥ 0. Therefore, making the substitution

s := y − x,

E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)2

1P+
r (x)

(Y )

]
≤ 1√

2πε2

∞∫
0

log

(
ρ−1
∗ +exp(s)

)2

exp

(
− s2

2ε2

)
ds ,

which is bounded since the integrand is dominated by an exponentially decaying
term. Next, consider

E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)2

1P−r (x)
(Y )

]
≤ 1√

2πε2

∫
P−r (x)

log

(
ρ−1
∗ + exp(−x− y)

)2

exp

(
− (y − x)2

2ε2

)
dy .

Note that y ∈ P−r (x) if and only if y ≤ −x. Therefore, making the substitution
s := y − x,

E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)2

1P−r (x)
(Y )

]
≤ 1√

2πε2

−2x∫
−∞

log

(
ρ−1
∗ +exp(−2x−s)

)2

exp

(
− s2

2ε2

)
ds .

For s ≤ −2x, −2x− s ≥ 0. Hence,

E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)2

1P−r (x)
(Y )

]
≤ 1√

2πε2

0∫
−∞

log

(
ρ−1
∗ +exp(−s)

)2

exp

(
− s2

2ε2

)
ds .

Again, this last quantity is bounded since the integrand is dominated by an expo-
nentially decaying term. Thus,

sup
x∈Cc∩[0,∞)

E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)2

1Pr(x)(Y )

]
<∞ .

A similar argument shows that

sup
x∈Cc∩(−∞,0)

E
[
α(x, Y ) log

(
1

ρ∗
+
p(Y )

p(x)

)2

1Pr(x)(Y )

]
<∞ .

Therefore, condition (UI) of Theorem 4.3.3 holds with τ = 1. The inequality logic
to demonstrate condition (B) is very similar. Indeed, suppose x ∈ C ∩ [0,∞) and
consider

E
[
p(x)α(x, Y )

(
p(Y )

p(x)
− 1

)
1P+

1 (x)
(Y )

]
= E

[
p(x)α(x, Y )

(
exp(y − x)− 1

)
1P+

1 (x)
(Y )

]
≤ ρ∗E

[(
exp(y − x)− 1

)
1P+

1 (x)
(Y )

]
,

where the last line follows since p(x) ≤ ρ∗ for x ∈ C. Note that y ∈ P+
1 (x) if and

only if y ≥ x. Therefore, making the substitution s := y − x,

E[α(x, Y )(p(Y )− p(x))1P+
1 (x)

(Y )] ≤ ρ∗√
2πε2

∞∫
0

(exp(s)− 1) exp

(
− s2

2ε2

)
ds .

Next, consider

E
[
p(x)α(x, Y )

(
p(Y )

p(x)
−1

)
1P−1 (x)

(Y )

]
≤ ρ∗E

[(
exp(−x− y)−1

)
1P+

1 (x)
(Y )

]
.
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Note that y ∈ P−1 (x) if any only if y ≤ −x. Therefore, making the substitution
s := y − x,

E[α(x, Y )(p(Y )− p(x))1P−1 (x)
(Y )]

≤ ρ∗√
2πε2

−2x∫
−∞

(exp(−2x− s)− 1) exp

(
− s2

2ε2

)
ds .

For s ≤ −2x, −2x− s ≥ 0. Hence,

E[α(x, Y )(p(Y )−p(x))1P−1 (x)
(Y )] ≤ ρ∗√

2πε2

0∫
−∞

(exp(−s)−1) exp

(
− s2

2ε2

)
ds .

Combining the two results gives

sup
x∈C∩[0,∞)

E[α(x, Y )(p(Y )− p(x))1P1(x)(Y )] <∞ .

A similar argument shows that

sup
x∈C∩(−∞,0)

E[α(x, Y )(p(Y )− p(x))1P1(x)(Y )] <∞ .

Therefore, condition (B) of Theorem 4.3.3 holds. Hence, by Theorem 4.3.3, the chain
is geometrically ergodic.

a.14 proof of lemma 4.3.5

Let w̄ > 0 be arbitrarily chosen such that C := {x ∈ X : w(x) ≤ w̄} is a compact
set. Let D ⊆ X be any compact set such that

inf
(x,y)∈C×D

q̃1(y|x) ≥ η > 0 , and Leb(D) > 0 .

The existence of such a set D is guaranteed by Lemma 4.3.1. Let P (x, ·) be the
proposal distribution corresponding to the chain and, for any x ∈ C, and any A ⊆ X ,
consider

P (x,A) ≥
∫
A

α(x, y)q̃1(y|x) dy ≥ β
∫

A∩D

αm(x, y)q̃1(y|x) dy ,

where αm corresponds to the Metropolis-Hastings acceptance probability (given by
(27)), and, β = 1 for the Exchangeable Sampler with the Metropolis-Hastings ac-
ceptance probability, and β = 1/2 for the Exchangeable Sampler with Barker’s
acceptance probability. The weights are bounded by w̄ on the set C, hence, for
x ∈ C,

P (x,A) ≥
∫

A∩D

(
1 ∧ w(y)

w̄

)
q̃1(y|x) dy ≥ ηλ(A) ,

where

λ(A) :=

∫
A∩D

(
1 ∧ w(y)

w̄

)
dy .

By assumption, Leb(D) > 0, and, so, since the integrand is positive and continuous,
λ is a measure. Moreover, 0 < λ(X ) ≤ P (x,X )/η = 1/η <∞. Thus, v := λ/λ(X ) is
a probability measure and

P (x,A) ≥ ηλ(X )v(A) .

Hence, C is small.
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a.15 proof of corollary 4.3.6

Taking p = w−1 we will show that the assumptions of Theorem 4.3.3 hold, therefore
allowing us to use this theorem to deduce geometric ergodicity. Firstly, by assump-
tions (B) and (C), C := {x ∈ X : w∗ ≤ w(x)} = {x ∈ X : w(x)−1 ≤ w−1

∗ } is a
compact set on which the weights are bounded. Thus, by Lemma 4.3.5, C is a small
set, and Assumption (S) of Theorem 4.3.3 holds. Secondly, Assumption (IM) is a
rewrite of Assumption (IM) of Theorem 4.3.3 with w−1 in place of p and w−1

∗ in
place of ρ∗. Hence, trivially, Assumption (IM) of Theorem 4.3.3 holds. Thirdly, note
that, for τ > 1, if y ∈ Pτ (x), then w(y)/w(x) ≤ τ−1 < 1. Thus, for y ∈ Pτ (x),

α(x, y) log

(
w∗ +

w(x)

w(y)

)2

≤ w(y)

w(x)
log

(
w∗ +

w(x)

w(y)

)2

.

Hence, to demonstrate Assumption (UI) of Theorem 4.3.3, it is sufficient to show
that

lim
z↓0

h(z) = 0 ,

where h(z) := z log(w∗ + z−1)2. Rewriting h as h(z) = z[log(1 + w∗z) − log(z)]2|
highlights the fact that it is sufficient to show that

lim
z↓0

z log(z) = lim
z↓0

z log(z)2 = 0 . (129)

Both these limits follow from L’Hôpital’s rule. Indeed,

lim
z↓0

z log(z) = lim
z↓0

log(z)

1/z
= − lim

z↓0
1/z

1/z2
= 0 .

Moreover,

lim
z↓0

z log(z)2 = lim
z↓0

log(z)2

1/z
= −2 lim

z↓0
log(z)/z

1/z2
= −2 lim

z↓0
z log(z) .

Therefore, Assumption (UI) of Theorem 4.3.3 holds. Finally, to demonstrate As-
sumption (B) of Theorem 4.3.3, note that w(x)α(x, y) = w(y)α(y, x). Therefore,
since, for x ∈ C, w(x) ≥ w∗,

α(x, y)w(y)−1 = α(y, x)w(x)−1 ≤ w(x)−1 ≤ w−1
∗ .

Hence, for x ∈ C,
α(x, y)(w(y)−1 − w(x)−1) < α(x, y)w(y)−1 ≤ w−1

∗ .

Thus, Assumption (B) of Theorem 4.3.3 holds.

a.16 proof of corollary 4.3.7

Taking p = w we will show that the assumptions of Theorem 4.3.3 hold, therefore
allowing us to use this theorem to deduce geometric ergodicity. Firstly, by assump-
tion, C := {x ∈ X : w(x) ≤ w∗} is a compact set on which the weights are bounded.
Thus, by Lemma 4.3.5, C is a small set, and Assumption (S) of Theorem 4.3.3 holds.
Secondly, Assumption (IM) is a rewrite of Assumption (IM) of Theorem 4.3.3 with
w in place of p and w∗ in place of ρ∗. Hence, trivially, Assumption (IM) of Theorem
4.3.3 holds. Thirdly, note that, for τ > 1, if y ∈ Pτ (x), then w(x)/w(y) ≤ τ−1 < 1.
Thus, for y ∈ Pτ (x),

α(x, y) log

(
1

w∗
+
w(y)

w(x)

)2

≤ w(y)

w(x)
log

(
1

w∗
+
w(y)

w(x)

)2

.

Thus, Assumption (UI) of Theorem 4.3.3 follows from Assumption (UI) of this corol-
lary. Finally, note that, if y ∈ P1(x), then w(x) ≤ w(y). Therefore, by Assumption
(B),

Eq(·|x)[α(x, Y )(w(Y )− w(x))1P1(x)(Y )] ≤ Eq(·|x)[w(Y )1P1(x)(Y )] <∞ .

Hence, Assumption (B) of Theorem 4.3.3 holds.
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a.17 proof of theorem 4.3.9

Let PN (x, ·) be the transition distributions of the chain, κN (A) the conductance of
any measurable set A ⊆ X ; that is,

κN (A) :=
1

π(A)π(Ac)

∫
A

π(dx)PN (x,Ac) ,

and κN the conductance of the chain; that is,

κN := inf
A∈Ω

κN (A) ,

where Ω := {A ⊆ X : A is measurable}. Suppose N = 1. Either the assumptions of
Corollary 4.3.6 hold, or the assumptions of Corollary 4.3.7 hold. Hence, for N = 1,
the sampler is geometrically ergodic. Moreover, by Theorem 4.3.2, the chain, Xt, is
non-negative and reversible with respect to π. Therefore, by Theorem 2.3.25, the
MCMC estimates corresponding to the chain satisfy a central limit theorem for
all functions which are square-integrable with respect to π. Moreover, by Theorem
2.3.25, the chain has a non-zero conductance; that is, κ1 > 0. To demonstrate the
result for general N ∈ N, we will show that the conductance of the chain, for general
N ; that is, κN , is non-zero and, again, appeal to Theorem 4.3.2 and Theorem 2.3.25.
To this end, define, for any N ∈ N, each i = 1, . . . , N , any r > 0, any measurable
A ⊆ X , and any measurable Λ ⊆ XN , let

D
(i)
N (r) := {y1:N ∈ XN : w(yk) ≤ rw(yi) for all k ∈ {1, . . . , N}\{i}} ,

P
(i)
N (x,A) :=

∫∫
A×XN−1

q̃N (y1:N |x)αi,N (x, y1:N ) dyidy−i ,

I(i)(x,Λ) :=

∫
Λ

q̃N (y1:N |x)αm1,1(x, yi) dyidy−i ,

where αmi,N denotes the the multiple-proposal Metropolis-Hastings acceptance proba-
bility (Equation (87)). By a multiple-proposal extension of Inequality (28), αi,N (y0:N ) ≥
αmi,N (y0:N )/2 for any y0:N ∈ XN+1. Suppose y1:N ∈ D(i)

N (r), then

αmi,N (y0:N ) =
w(yi)

w(y0) + . . .+ w(yN )− [w(yi) ∧ w(y0)]

≥ w(yi)

w(y0) + [1 + (N − 1)r]w(yi)− [w(yi) ∧ w(y0)]
.

If w(y0) ≤ w(yi), then

w(yi)

w(y0) + [1 + (N − 1)r]w(yi)− [w(yi) ∧ w(y0)]
=

1

[1 + (N − 1)r]
.

On the other hand, if w(y0) ≥ w(yi), then

w(yi)

w(y0) + [1 + (N − 1)r]w(yi)− [w(yi) ∧ w(y0)]
=

w(yi)

w(y0) + (N − 1)rw(yi)

≥ 1

[1 + (N − 1)r]

w(yi)

w(y0)
.

Therefore, for y1:N ∈ D(i)
N (r), αi,N (y0:N ) ≥ ξN (r)αm1,1(y0, yi) where

ξN (r) :=
1

2[1 + (N − 1)r]
.

Thus, for any measurable A ⊆ X ,

P
(i)
N (x,Ac) ≥ ξN (r)I(i)[x, (Ac ×XN−1) ∩D(i)

N (r)]

= ξN (r){I(i)[x,Ac ×XN−1]− I(i)[x, (Ac ×XN−1) ∩D(i)
N (r)c]}

≥ ξN (r){I(i)[x,Ac ×XN−1]− I(i)[x,Di
N (r)c]} .
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Note that, y1:N ∈ D
(i)
N (r)c if and only if rw(yi) < w(yk) for at least one k 6= i.

Therefore,

D
(i)
N (r)c =

{
y1:N ∈ XN : max

k∈{1,...,N}\{i}
w(yk) > rw(yi)

}
.

Hence, since α1,1(x, y) ≤ 1 for any (x, y) ∈ X 2, then

I(i)[x,D
(i)
N (r)c] =

∫
D

(i)
N

(r)c

q̃N (y1:N |x)α1,1(x, yi) dyidy−i

≤
∫

D
(i)
N

(r)c

q̃N (y1:N |x) dyidy−i

≤ µ̄(i)
N (r) ,

where

µ̄
(i)
N (r) := sup

x∈X
Pq̃N (·|x)

(
max

k∈{1,...,N}\{i}

w(Yk)

w(Yi)
> r

)
.

The joint proposal, qN (x, y1:N ) = q̃N (y1:N |x)q0(x), is exchangeable. Therefore, for
any i ∈ {1, . . . , N}, µ̄(i)

N (r) = µ̄
(1)
N (r). Moreover, µ̄(1)

N (r) = 1 − µN (r), where µN (r)
is defined in Assumption 4.3.8. Moreover,

I(i)[x,Ac ×XN−1] =

∫
Ac×XN−1

q̃N (y1:N |x)α1,1(x, yi) dyidy−i

=

∫
Ac

q̃1(yi|x)α1,1(x, yi) dyi = P
(1)
1 (x,Ac) .

Hence

P
(i)
N (x,Ac) ≥ ξN (r)[P

(1)
1 (x,Ac)− µ̄(i)

N (r)] . (130)

For any measurable sets A ⊆ X and B ⊆ X , let

QN (A,B) :=

∫
A

π(dx)PN (x,B) .

Then, as in the proof of Theorem 4.3.2 (see A.11),

QN (A,B) =
N∑
i=1

Q
(i)
N (A,B) +Q∗N (A,B) ,

where

Q
(i)
N (A,B) :=

∫
A

π(dx)P
(i)
N (x,B) , Q∗N (A,B) :=

∫
A

π(dx)P ∗N (x,B) ,

and

P ∗N (x,B) := δx(B)

∫
· · ·
∫

Rd×N

q̃N (y1:N |x)

(
1−

N∑
i=1

αi,N (x, y1:N )

)
dy1:N .

For any measurable A ⊆ X , Q∗N (A,Ac) = 0. Thus

κN (A) =
1

π(A)π(Ac)
QN (A,Ac) =

N∑
i=1

κ
(i)
N (A) ,

where

κ
(i)
N (A) :=

1

π(A)π(Ac)

∫
A

π(dx)P
(i)
N (x,Ac) dx .
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By Assumption 4.3.8, µN (r) → 1 as r → ∞. Thus, µ̄(i)
N → 0 as r → ∞ for any

i ∈ {1, . . . , N}. Hence, since κ1 > 0, there exists a β ∈ (0, 1) and an r∗ > 0 such
that µ(i)

N (r∗) ≤ (1− β)κ1 for any i ∈ {1, . . . , N}. Thus, by (130),

κ
(i)
N (A) ≥ ξN (r∗)[κ1(A)− (1− β)κ1] ≥ βξN (r∗) ,

which is true for any i ∈ {1, . . . , N}. Therefore, κN (A) ≥ NβξN (r∗). This lower
bound is independent of the set A, hence, κN > 0. By Theorem 4.3.2, the chain, Xt,
is non-negative and reversible with respect to π. Therefore, by Theorem 2.3.25, the
MCMC estimates corresponding to the chain satisfy a central limit theorem for all
functions which are square-integrable with respect to π.

a.18 proof of lemma 4.3.10

For brevity, we will, throughout the proof, drop the explicit dependence of the
expectation on q̃1. By (28), it is sufficient to show the result for the case where α
corresponds to the Metropolis-Hastings acceptance probability. We will demonstrate
that

lim
x↑∞

E
[
α(x, Y ) log

(
w(Y )

w(x)

)
1P(x)(Y )

]
= 0 , (131)

where P(x) := {z ∈ X : w(z) ≤ w(x)}. For, if this is true, then, for any δ > 0, there
exists an x∗ > 0 such that, for any x ≥ x∗,

E
[
α(x, Y ) log

(
w(Y )

w(x)

)
1P(x)(Y )

]
> −δ .

Therefore, for any δ > 0, there exists an x∗ > 0 such that, for any x ≥ x∗, and any
w∗ > 0,

E
[
α(x, Y ) log

(
1

w∗
+
w(Y )

w(x)

)]
> E

[
α(x, Y ) log

(
w(Y )

w(x)

)]
> E

[
α(x, Y ) log

(
w(Y )

w(x)

)
1P(x)(Y )

]
> −δ .

Now,

E
[
α(x, Y ) log

(
w(Y )

w(x)

)
1P(x)(Y )

]
= E

[
w(Y )

w(x)
log

(
w(Y )

w(x)

)
1P(x)(Y )

]
= τE[(Y 2 − x2) exp[τ(Y 2 − x2)]1P(x)(Y )] ,

where P(x) := {z ∈ X : z2 ≤ x2}, and, since the proposal, q̃1 corresponds to
Algorithm 17,

Y = σ(1− η2)x+ ση
√

2− η2Z ,

where Z ∼ N(0, 1), and η := ε/
√

2. By Lemma B.0.13,

P(Y 2 ≥ x2−m) =


1 if x2 ≤ m ,

2− Φ

(√
x2−m−µ̂x

σ̂

)
− Φ

(√
x2−M+µ̂x

σ̂

)
if x2 > m ,

(132)

for any m > 0, where µ̂ := σ(1 − η2) and σ̂ := ση
√

2− η2. By assumption, σ < 1
and (1− δ2) ∈ [0, 1). Thus, µ̂x < x. Hence, (

√
x2 −M − µx) tends towards infinity

as x tends towards infinity. Therefore, by (132),

lim
x↑∞

P[(Y 2 − x2) ≥ −m] = 0 ,

for any m > 0. Hence,

lim
x↑∞

P[(Y 2 − x2)1P(x)(Y ) ≥ −m] = 0 ,
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for any m > 0. That is,

plim
x↑∞

[(Y 2 − x2)1P(x)(Y )] = −∞ .

By the continuous mapping theorem, for any τ > 0,

plim
x↑∞

[
τ(Y 2 − x2) exp[τ(Y 2 − x2)]1P(x)(Y )

]
= 0 .

For any τ > 0, the function f(z) := τz exp(τz)1(−∞,0](z) is bounded. Hence, by the
dominated convergence theorem, the limit in (131) holds.

a.19 proof of lemma 4.3.13

Note that p′(z) = g′(z)/g(z). Thus,

E[p′(Z)2] =

∞∫
−∞

p′(z)
g′(z)

g(z)
πZ(z) dz .

Now,

πZ(z)

g(z)
=
π(h∗(z))|h′∗(z)|

w[h∗(z)]
= q0[h∗(z)]|h′∗(z)|γ(X )−1 .

Therefore,

E[p′(Z)2] = γ(X )−1

∞∫
−∞

p′(z)g′(z)q0[h∗(z)]|h′∗(z)| dz = γ(X )−1E[p′(V )g′(V )] ,

where V has density q0[h∗(v)]|h′∗(v)|. By definition, if X ∼ q0, then h−1
∗ (X) ∼

N(0, 1). Hence, φ(v) = q0[h∗(v)]|h′∗(v)|. Thus,

E[p′(Z)2] = γ(X )−1

∞∫
−∞

p′(v)g′(v)φ(v) dv

= γ(X )−1

[
p′(v)g(v)φ(v)

]∞
−∞
− γ(X )−1

∞∫
−∞

g(v)[p′′(v)− vp′(v)]φ(v) dv .

Note that

γ(X )−1g(v)φ(v) = γ(X )−1g(v)q0[h∗(v)]|h′∗(v)| = πZ(v) .

Moreover, p′(v)g(v) = g′(v). Therefore, by property (G) of Assumptions 4.3.12,

E[p′(Z)2] = −E[p′′(Z)− Zp′(Z)] .

a.20 proof of lemma 4.3.14

Let B(Ẑ0:1, Z0) := (Ẑ0 + Ẑ1)− δZ0, and, for i ∈ {1, 2, 3}, let

Ri(Ẑ0:1, Z0:1, δ) := δ−(i+2)(Z1 − Z0)i − δ−2B(Ẑ0:1, Z0)i . (133)

Suppressing the necessary arguments, we note the following relationships;

R2 = δ2R2
1 + 2R1B , R3 = δ4R3

1 + 3BR2 − 3B2R1 . (134)

Let κ(Z0:1) := p′(Z0)(Z1−Z0) +p′′(Z0)(Z1−Z0)2/2. By property (B.b) of Assump-
tions 4.3.12, p is twice differentiable. Hence, by Lemma B.0.6,

p(Z1)− p(Z0) = κ(Z0:1) +
1

2
[p′′(Z0 + t(Z0:1)(Z1 − Z0))− p′′(Z0)](Z1 − Z0)2
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for some t(Z0:1) such that |t(Z0:1)| ≤ 1. Note that we can rewrite κ as

κ(Z0:1) = δC1(Ẑ0:1, Z0) + δ2C2(Ẑ0:1, Z0) + δ3p′(Z0)R1(Ẑ0:1, Z0:1, δ)

+
1

2
δ4p′′(Z0)R2(Ẑ0:1, Z0:1, δ) +

1

2
p′′(Z0)δ3(δZ2

0 − 2(Ẑ0 + Ẑ1)Z0) ,

so that

p(Z1)− p(Z0)− δC1(Ẑ0:1, Z0)− δ2C2(Ẑ0:1, Z0) = δ3R(Ẑ0:1, Z0:1, δ)

where

R(Ẑ0:1, Z0:1, δ) := p′(Z0)R1(Ẑ0:1, Z0:1, δ) +
1

2
δp′′(Z0)R2(Ẑ0:1, Z0:1, δ)

+
1

2
p′′(Z0)(δZ2

0 − 2(Ẑ0 + Ẑ1)Z0)

+
1

2
δ−3(p′′(Z0 + t(Z0:1)(Z1 − Z0))− p′′(Z0))(Z1 − Z0)2 .

Using the fact that δ ∈ (0, 1) we bound the modulus of each of these terms by
quantities which are independent of δ and Z1 so that, as claimed, the modulus
of their sum is bounded by some R∗(Ẑ0:1, Z0). Then, using the Cauchy-Schwartz
inequality, along with Assumptions 4.3.12, we bound the expectation of this quantity.
Firstly, by property (L) of Assumptions 4.3.12, we have

δ−3|p′′(Z0 + t(Z0:1)(Z1 − Z0))− p′′(Z0)||(Z1 − Z0)2|
≤ δ−3a|t(Z0:1)||Z1 − Z0|3

≤ δ−3a|Z1 − Z0|3

≤ a|δ2R3(Ẑ0:1, Z0:1, δ) +B(Ẑ0:1, Z0)3|
≤ a(|R3(Ẑ0:1, Z0:1, δ)|+ |B(Ẑ0:1, Z0)3|) ,

where, in the second inequality, we have used the fact that |t(Z1:2)| ≤ 1, in the third
inequality, we have used Definition (133) and, in the fourth inequality, we have used
the fact that δ ∈ (0, 1). Secondly, since δ ∈ (0, 1),

|δZ2
0 − 2(Ẑ0 + Ẑ1)Z0| ≤ |Z0|2 + 2|Ẑ0 + Ẑ1||Z0| .

Thirdly, note that

R1(Ẑ0:1, Z0:1, δ) = −δ−2(1−
√

1− δ2)Ẑ0 .

δ ∈ (0, 1), so δ = sin θ for some θ ∈ (0, π/2). Therefore,

δ2 − (1−
√

1− δ2) = sin θ2 − (1− cos θ) = cos θ − (cos θ)2 ≥ 0 .

Thus 0 ≤ 1−
√

1− δ2 ≤ δ2 and

|R1(Ẑ0:1, Z0:1, δ)| ≤ |Ẑ0| .
Hence, using the relationships given by (134), along with the fact that δ ∈ (0, 1), we
have

|R2(Ẑ0:1, Z0:1, δ)| ≤ |Ẑ0|2 + 2|Ẑ0||B(Ẑ0:1, Z0)| ,
|R3(Ẑ0:1, Z0:1, δ)| ≤ |Ẑ0|3 + 3|B(Ẑ0:1, Z0)||Ẑ0|2 + 9|B(Ẑ0:1, Z0)|2|Z̄0| .

Moreover, we also have that

|B(Ẑ0:1, Z0)| ≤ |Ẑ0 + Ẑ1|+ |Z0| .
Therefore,

|R(Ẑ0:1, Z0:1, δ)| ≤ R∗(Ẑ0:1, Z0) := |p′(Z0)||Ẑ0|+|p′′(Z0)|r1(|Ẑ0|, |Ẑ1|, |Z0|)+r2(|Ẑ0|, |Ẑ1|, |Z0|) ,
where r1 and r2 are polynomials in their arguments. The order of x2 in the polyno-
mials r1(x0:2) and r2(x0:2) is 2 and 3 respectively. By Cauchy-Schwartz,

E[|R(Ẑ0:1, Z0:1, δ)|] ≤
√

E[p′(Z0)2]

√
E[Ẑ2

0 ] +
√

E[p′′(Z0)2]

√
E[r1(|Ẑ0|, |Ẑ1|, |Z0|)2]

+ E[|r2(|Ẑ0|, |Ẑ1|, |Z0|)|] .
Recall that Ẑi ∼ N(0, 1) for any i ∈ {0, 1}. Therefore, for any i ∈ {0, 1}, E[|Ẑ0|k] <
∞ for any finite k ∈ N. Thus, by property (B) of Assumptions 4.3.12, E[R∗(Ẑ0:1, Z0)] ≤
κ∗ <∞ as required.
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a.21 proof of lemma 4.3.15

Firstly, since the random variables Z(1:d)
1 , . . . , Z

(1:d)
N are identically distributed, it

suffices to consider the result for k = 1. Let C1, C2 and R be as defined in Lemma
4.3.14. Via the tower property of expectations, for any i ∈ {1, . . . , d},

E[C1(Ẑ
(i)
0:1, Z

(i)
0 )2] = E[p′(Z(i)

0 )2(Ẑ
(i)
0 + Ẑ

(i)
1 )2]

= E[p′(Z(i)
0 )2E[(Ẑ

(i)
0 + Ẑ

(i)
1 )2]] .

Ẑ
(i)
0 and Ẑ(i)

1 are standard normal random variables. Hence, by Lemma 4.3.13,

E[C1(Ẑ
(i)
0:1, Z

(i)
0 )2] = 2E[p′(Z(i)

0 )2] (135)

= −2E[p′′(Z(i)
0 )− Z(i)

0 p′(Z(i)
0 )]

= −2E
{
E
[

1

2
p′′(Z(i)

0 )(Ẑ
(i)
0 + Ẑ

(i)
1 )2 − Z(i)

0 p′(Z(i)
0 )

]}
= −2E[C2(Ẑ

(i)
0:1, Z

(i)
0 )] .

Next, we define

C4(Ẑ
(i)
0:1, Z

(i)
0 ) := C1(Ẑ

(i)
0:1, Z

(i)
0 )2 + 2C2(Ẑ

(i)
0:1, Z

(i)
0 ) ,

so that E[C4(Ẑ
(i)
0:1, Z

(i)
0 )] = 0. Let

D
(1)
1 (d) := δ3

d

d∑
i=1

R(Ẑ
(i)
0:1, Z

(i)
0:1, δd) ,

D
(2)
1 (d) :=

δ2
d

2

d∑
i=1

C4(Ẑ
(i)
0:1, Z

(i)
0 ) ,

D
(3)
1 (d) := −δ

2
d

2

d∑
i=1

C1(Ẑ
(i)
0:1, Z

(i)
0 )2 .

Define D1(d) := D
(1)
1 (d) +D

(2)
1 (d) +D

(3)
1 (d). Then,

D1(d) = δ2
d

d∑
i=1

C2(Ẑ
(i)
0:1, Z

(i)
0 ) + δ3

d

d∑
i=1

R(Ẑ
(i)
0:1, Z

(i)
0:1, δd) .

We consider the limits in probability of each of the D(j)
1 terms. Firstly,

|D(1)
1 (d)| ≤ λ3

23/2d1/2

(
1

d

d∑
i=1

|R(Ẑ
(i)
0:1, Z

(i)
0:1, δd)|

)
≤ λ3

23/2d1/2

(
1

d

d∑
i=1

R∗(Ẑ(i)
0:1, Z

(i)
0 )

)
,

where, by Lemma 4.3.14, R∗ is independent of Z(i)
1 and δd, and, therefore, indepen-

dent of d. Moreover, by the same lemma, R∗ is such that E[R∗(Ẑ(i)
0:1, Z

(i)
0 )] < ∞.

Hence, by the weak law of large numbers,

plim
d→∞

1

d

d∑
i=1

R∗(Ẑ(i)
0:1, Z

(i)
0 ) = E[R∗(Ẑ(i)

0:1, Z
(i)
0 )] <∞ .

Thus,

plim
d↑∞

D
(1)
1 = 0 .

Secondly,

D
(2)
1 (d) =

λ2

4

(
1

d

d∑
i=1

C4(Ẑ
(i)
0:1, Z

(i)
0 )

)
.
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Recall that E[C4(Ẑ
(i)
0:1, Z

(i)
0 )] = 0. Thus, the weak law of large numbers gives

plim
d↑∞

D
(2)
1 (d) = 0 .

Thirdly,

D
(3)
1 (d) = −λ

2

4

1

d

d∑
i=1

C1(Ẑ
(i)
0:1, Z

(i)
0 )2 .

Equation (135) gives E[C1(Ẑ
(i)
0:1, Z

(i)
0 )2] = 2ϕ. Thus, by the weak law of large num-

bers,

plim
d↑∞

D
(3)
1 (d) = −λ

2ϕ

2
.

Hence, by Slutsky’s theorem,

plim
d↑∞

D1(d) = −λ
2ϕ

2
.

Now, define, for any k ∈ {1, . . . , N},

Uk(d) :=

d∑
i=1

[p(Z
(i)
k )− p(Z(i)

0 )]−Dk(d) .

Consider k = 1. By Lemma 4.3.14,

U1(d) = δd

d∑
i=1

C1(Ẑ
(i)
0:1, Z

(i)
0 ) = δd

d∑
i=1

p′(Z(i)
0 )(Ẑ

(i)
0 + Ẑ

(i)
1 ) .

Given Z(1:d)
0 = z

(1:d)
0 , U1(d) is a linear combination of normal random variables and

so is itself a normal random variable. The same holds true for any Uj(d), where
j ∈ {2, . . . , N}. Thus (U1(d), . . . , UN (d)|Z(1:d)

0 = z
(1:d)
0 ) is an N -dimensional normal

random variable. Hence, it suffices to calculate its mean vector and variance matrix.
Firstly, for any j = 1, . . . , N ,

E[Uj(d)|Z(1:d)
0 = z

(1:d)
0 ] = δd

d∑
i=1

p′(z(i)
0 )E[Ẑ

(i)
0 + Ẑ

(i)
j ] = 0 ,

since Ẑ(i)
0 and Ẑ(i)

j are standard normal random variables. Secondly, for any (j1, j2) ∈
{1, . . . , N}2, we have

Cov[Uj1(d) , Uj2(d) | Z(1:d)
0 = z

(1:d)
0 ]

= δ2
d

d∑
i=1

Cov[C1(Ẑ
(i)
0 , Ẑ

(i)
j1
, Z

(i)
0 ) , C1(Ẑ

(i)
0 , Ẑ

(i)
j2
, Z

(i)
0 ) | Z(1:d)

0 = z
(1:d)
0 ]

= δ2
d

d∑
i=1

Cov[p′(Z(i)
0 )(Ẑ

(i)
0 + Ẑ

(i)
j1

) , p′(Z(i)
0 )(Ẑ

(i)
0 + Ẑ

(i)
j2

) | Z(1:d)
0 = z

(1:d)
0 ]

= δ2
d

d∑
i=1

p′(z(i)
0 )2(1 + 1{j1}(j2)) ,

since C1(Ẑ
(j1)
0:1 , Z

(j1)
0 ) is independent of C1(Ẑ

(j2)
0:1 , Z

(j2)
0 ) when j1 6= j2, and since

(Ẑ
(j1)
0:1 , Ẑ

(j2)
0:1 ) is a sequence of independent standard normal random variables. Thus,

if we let

T (d) :=
1

d

d∑
i=1

p′(Z(i)
0 )2 ,

then, for any j ∈ {1, . . . , N},

(Uj(d)|T (d) = t) =
√
t/ϕUj ,
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where Uj = A + Bj , and (A,B1:N ) is a collection of independent random variables
such that A ∼ N(0, λ2ϕ/2), and Bj ∼ N(0, λ2ϕ/2). Therefore, Uj(d) =

√
T (d)/ϕUj .

By the weak law of large numbers,

plim
d↑∞

T (d) = E[p′(Z(i)
0 )2] = ϕ .

Hence, by Slutsky’s theorem,

dlim
d↑∞

(U1(d), . . . , UN (d)) = U1:N ,

as required.

a.22 proof of lemma 4.3.16

First note that

E[‖Z(1:d)
1 − Z(1:d)

0 ‖2] = E
[ d∑
i=1

(Z
(i)
1 − Z(i)

0 )2

]
= dE[(Z

(1)
1 − Z(1)

0 )2] .

By definition

Z
(1)
1 − Z(1)

0 = −δ2
dZ

(1)
0 + δd

√
2− δ2

dW ,

where W is a standard normal random variable. Hence,

E(Z
(1)
1 − Z(1)

0 ) = −δ2
dµ1

where µ1 := E[Z
(1)
0 ]. Moreover,

E[(Z
(1)
1 − Z(1)

0 )2] = Var(Z
(1)
1 − Z(1)

0 ) + δ4
dµ

2
1

= δ4
dVar(Z

(1)
0 ) + δ2

d(2− δ2
d) + δ4

dµ
2
1

= δ4
d(µ2 − 1) + 2δ2

d ,

where µ2 := E[(Z
(1)
0 )2]. Thus, given property (B.a) of Assumptions 4.3.12,

lim
d↑∞

E[‖Z(1:d)
1 − Z(1:d)

0 ‖2] = lim
d↑∞
{dE[(Z

(1)
1 − Z(1)

0 )2]} = λ2 . (136)

Secondly, note that, by Equation (136),

lim
d↑∞

E[(‖Z(1:d)
1 − Z(1:d)

0 ‖2 − λ2)2] = lim
d↑∞

Var(‖Z(1:d)
1 − Z(1:d)

0 ‖2)

= lim
d↑∞

dVar[(Z
(1)
1 − Z(1)

0 )2] .

Now,

Var[(Z
(1)
1 − Z(1)

0 )2] = Var[δ4
d(Z

(1)
0 )2 + δ2

d(2− δ2
d)W 2 − 2δ3

d

√
2− δ2

dZ
(1)
0 W ] .

W is a standard normal random variable that is independent of Z(1)
0 . Thus, E(W 3) =

E(W ) = 0, and, Cov(W 2 , Z
(1)
0 W ) = 0. Hence,

Var[(Z
(1)
1 − Z(1)

0 )2] = δ8
dVar[(Z

(1)
0 )2] + δ4

d(2− δ2
d)2Var(W 2) + 4δ6

d(2− δ2
d)Var[Z

(1)
0 W ]

= δ8
d(µ4 − µ2

2) + δ4
d(2− δ2

d)2 + 4δ6
d(2− δ2

d)µ2 ,

where µ4 := E[(Z
(1)
0 )4]. Thus, Var[(Z

(1)
1 −Z(1)

0 )2] is a polynomial in δd whose largest
power of d is in the term δ4

d = λ4/(4d2). Therefore, by property (B.a) of Assumptions
4.3.12,

lim
d↑∞

E[(‖Z(1:d)
1 − Z(1:d)

0 ‖2 − λ2)2] = 0 .
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a.23 proof of theorem 4.3.17

Consider the multiple-proposal extension of Barker’s acceptance probability,

α∗k,N (w∗0:N ) =
w∗k

w∗0 + . . .+ w∗N
.

Then,

N∑
k=1

α∗k,N (w∗0:N ) = 1− w∗0
w∗0 + . . . w∗N

= 1−
[
1 +

N∑
k=1

w∗k
w∗0

]−1

.

By Definition 4.3.11,

g∗(z(1:d)) = w∗[h∗(z(1:d))] =

d∏
i=1

w[h(z(i))] =

d∏
i=1

g(z(i)) .

Thus,

α∗k,N (g∗(Z(1:d)
0 ), . . . , g∗(Z(1:d)

N )) = 1−
[
1 +

N∑
k=1

d∏
i=1

g(Z
(i)
k )

g(Z
(i)
0 )

]−1

= 1−
{

1 +

N∑
k=1

exp

[ d∑
i=1

p(Z
(i)
k )− p(Z(i)

0 )

]}−1

,

where p(z) := log[g(z)]. By Lemma 4.3.15,

α∗k,N (g∗(Z(1:d)
0 ), . . . , g∗(Z(1:d)

N )) = 1−
{

1 +

N∑
k=1

exp[Dk(d) + Uk(d)]

}−1

,

where, for any {Dk(d) : (k, d) ∈ {1, . . . , N} × N} is a collection of random variables
such that

plim
d↑∞

Dk(d) = −λ
2ϕ

2
,

and {Uk(d) : (k, d) ∈ {1, . . . , N} × N} is a collection of random variables such that

dlim
d↑∞

(U1(d), . . . , UN (d)) = (U1, . . . , UN ) ,

where, for each k ∈ {1, . . . , N}, Uk := A + Bk, and (A,B1:N ) is a collection of
independent random variables where

A ∼ N

(
0,
λ2ϕ

2

)
,

and, for any k ∈ {1, . . . , N},

Bk ∼ N

(
0,
λ2ϕ

2

)
.

The non-negative function f : R2N → [0, 1] defined by

f(u1:N , d1:N ) :=

[
1 +

N∑
k=1

exp(dk + uk)

]−1

is continuous and bounded above by 1, hence, by the continuous mapping theorem
and the dominated convergence theorem, we have

lim
d↑∞

α(λd−1/2) = 1− lim
d↑∞

E
[{

1 +

N∑
k=1

exp(Dk(d) + Uk(d))

}−1]

= 1− E
[{

1 + exp(−λ2ϕ/2) exp(A)
N∑
k=1

exp(Bk)

}−1]
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Letting ξ := λ
√
ϕ/
√

2, W0 := A/ξ, and, for any k ∈ {1, . . . , N}, Wk := Bk/ξ, gives
(96). Next, consider

|J(λd−1/2)− λ2ᾱb(λ)|

=

∣∣∣∣E[ N∑
k=1

α∗k,N (g∗(Z(1:d)
0 ), . . . , g∗(Z(1:d)

N ))‖Z(1:d)
k − Z(1:d)

0 ‖2
]
− λ2ᾱb(λ)

∣∣∣∣
≤
∣∣∣∣E[ N∑

k=1

α∗k,N (g∗(Z(1:d)
0 ), . . . , g∗(Z(1:d)

N ))(‖Z(1:d)
k − Z(1:d)

0 ‖2 − λ2)

]∣∣∣∣+ |λ2(α(λd−1/2)− ᾱb(λ))

∣∣∣∣ .
The second term tends towards zero as d tends towards ∞ by Lemma 4.3.16. More-
over, using the Cauchy-Schwartz inequality and the fact that α∗k,N (w∗1:N ) ≤ 1 for
any k ∈ {1, . . . , N}, and any w∗1:N ∈ [0,∞)N , the first term is equal to

N |E[α∗1,N (g∗(Z(1:d)
0 ), . . . , g∗(Z(1:d)

N ))(‖Z(1:d)
1 −Z(1:d)

0 ‖2−λ2)]| ≤ N{E[(‖(Z(1:d)
1 −Z(1:d)

0 ‖2−λ2)2]|}1/2 ,

which, via Lemma 4.3.16, tends towards zero as d tends towards ∞. Next, consider
the multiple-proposal extension of the Metropolis-Hastings acceptance probability;

α∗k,N (w∗0:N ) =
w∗k

w∗0 + . . .+ w∗N − [w∗k ∧ w∗0 ]
.

The proof follows from similar reasoning. First,

N∑
k=1

α∗k,N (w∗0:N ) =

N∑
k=1

w∗k/w
∗
0

1 + w∗1/w
∗
0 + . . . w∗N/w

∗
0 − [1 ∧ w∗k/w∗0 ]

.

As previously, by Lemma 4.3.15, for any k ∈ {1, . . . , N},

w∗k
w∗0

= exp

[ d∑
i=1

p(Z
(i)
k )− p(Z(i)

0 )

]
= exp[Dk(d)− Uk(d)] .

The non-negative function f : R2N → [0, 1] defined by

f(u1:N , d1:N ) :=

N∑
k=1

exp(dk + uk)

1 + exp(d1 + u1) + . . .+ exp(dN + uN )− [1 ∧ exp(dk + uk)]
,

is continuous and bounded above by 1, hence, by the continuous mapping theorem
and the dominated convergence theorem, we have

lim
d↑∞

α(λd−1/2) = lim
d↑∞

E
[ N∑
k=1

α∗k,N (g∗(Z(1:d)
0 ), . . . , g∗(Z(1:d)

N ))

]

= E
[ N∑
k=1

exp(−ξ2) exp(A) exp(Bk)

1 + exp(−ξ2) exp(A)s(B1:N )− [1 ∧ exp(−ξ2) exp(A) exp(Bk)]

]
,

where,

s(b1:N ) =

N∑
k=1

exp(bk) ,

and, as before, ξ := λ
√
ϕ/
√

2. Now, letting W0 := A/ξ, and, for any k ∈ {1, . . . , N},
Wk := Bk/ξ, gives (98). The proof of (99) follows in exactly the same manner as
the proof of (97) and, thus, is omitted.

a.24 proof of theorem 4.4.3

For any t ∈ {0, . . . , T} let It : Rp×Rd×N × . . .×Rd×(t+1)×N → [0,∞) be defined by

It(θ, X̃
(1:N)
0 , . . . , X̃

(1:N)
t ) :=

1

N t+1

t∏
s=0

N∑
j=1

ws(X̃
(j)
s ) .
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Moreover, recursively define µt : Rp × Rd×(t+1) → [0,∞) by

µT (θ, x0:T ) = 1 ,

µt(θ, x0:t) =

∫
Rd

γt+1(θ, x0:t+1)

γt(θ, x0:t)
µt+1(θ, x0:t+1) dxt+1 .

Furthermore, for any t ∈ {0, . . . , T − 1}, define the filtration, Ft, by

Ft := (X̃
(1:N)
0 , . . . , X̃

(1:N)
t , A

(1:N)
0 , . . . , A

(1:N)
t−1 ) .

Note that

It+1(θ, X̃
(1:N)
0 , . . . , X̃

(1:N)
t+1 )

N∑
i=1

w̃
(i)
t+1(X̃

(1:N)
t+1 ; θ) =

1

N
It(θ, X̃

(1:N)
0 , . . . , X̃

(1:N)
t )

N∑
i=1

wt+1(X̃
(i)
t+1; θ) .

Therefore, dropping the explicit arguments of It and It+1,

E
[
It+1

N∑
i=1

w̃
(i)
t+1(X̃

(1:N)
t+1 ; θ)µt+1(θ, X̃

(i)
t+1)|Ft

]

=
1

N
ItE
[ N∑
i=1

wt+1(X̃
(i)
t+1; θ)µt+1(θ, X̃

(i)
t+1)|Ft

]

=
1

N
ItE
[ N∑
i=1

∫
Rd×N

γt+1(θ, X̃
(A

(i)
t )

t , x
(i)
t+1)µt+1(θ, X̃

(A
(i)
t )

t , x
(i)
t+1)

γt(θ, X̃
(A

(i)
t )

t )pt+1(x
(i)
t+1|X̃

(A
(i)
t )

t , θ)

× p∗t+1(x
(1:N)
t+1 |X̃

(A
(1:N)
t )

t , θ) dx
(1:N)
t+1 |Ft

]

=
1

N
ItE
[ N∑
i=1

∫
Rd

γt+1(θ, X̃
(A

(i)
t )

t , x
(i)
t+1)µt+1(θ, X̃

(A
(i)
t )

t , x
(i)
t+1)

γt(θ, X̃
(A

(i)
t )

t )pt+1(x
(i)
t+1|X̃

(A
(i)
t )

t , θ)

× pt+1(x
(i)
t+1|X̃

(A
(i)
t )

t , θ) dx
(i)
t+1|Ft

]
=

1

N
ItE
[ N∑
i=1

µt(θ, X̃
(A

(i)
t )

t )|Ft
]

=
1

N
ItE
[ N∑
j=1

µt(θ, X̃
(j)
t )

N∑
i=1

1{j}(A
(i)
t )|Ft

]

= It

N∑
j=1

w̃
(j)
t (X̃

(1:N)
t ; θ)µt(θ, X̃

(j)
t ) ,
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where the fourth line follows from property (M) of Assumptions 4.4.1, and the last
line follows from property (U) of Assumptions 4.4.2. Thus,

EΨ[IT (Θ, X̃
(1:N)
0 , . . . , X̃

(1:N)
T )|Θ = θ]

= EΨ

[
IT

N∑
i=1

w̃
(i)
T (X̃

(1:N)
T ; θ)µT (θ, X̃

(i)
T )

]

= EΨ

[
I0

N∑
i=1

w̃
(i)
0 (X̃

(1:N)
0 ; θ)µ0(θ, X̃

(i)
0 )

]

=
1

N
E
[ N∑
i=1

w0(X̃
(i)
0 ; θ)µ0(θ, X̃

(i)
0 )

]

=
1

N

N∑
i=1

∫
Rd×N

γ0(θ, x
(i)
0 )

p0(x
(i)
0 |θ)

µ0(θ, x
(i)
0 )p∗0(x

(1:N)
0 |θ) dx

(1:N)
0

=
1

N

N∑
i=1

∫
Rd

γ0(θ, x
(i)
0 )

p0(x
(i)
0 |θ)

µ0(θ, x
(i)
0 )p0(x

(i)
0 |θ) dx

(i)
0

=

∫
Rd

γ(θ, x0)

∫
Rd

γ1(θ, x0:1)

γ0(θ, x0)
µ1(θ, x0:1) dx1dx0

=

∫
Rd(T+1)

γ0(θ, x0)

T−1∏
t=0

γt+1(θ, x0:t+1)

γt(θ, x0:t)
dx0:T

=

∫
Rd(T+1)

γT (θ, x0:T ) dx0:T ,

where the sixth line follows from property (M) of Assumptions 4.4.1.

a.25 proof of theorem 4.4.7

Assertion (111) follows immediately from (96) of Theorem 4.3.17. To demonstrate
(112) we start by showing that, for any t ∈ {0, . . . , T − 1},

Jt+1,N (ε) = αt+1,N (ε)Jt,N (ε) .

To see this, note that, for any k ∈ {1, . . . , N}, Lt+1(k, 0) depends only on the values
Lt+1(k, 1), . . . ,Lt+1(k, t) which, themselves, depend only on the values A(0:N)

0:t . For
any s ∈ {0, . . . , t}, the values A(0:N)

s depend only on the values

α∗0,N (g∗(Z(1:d)
s,0 ), . . . , g∗(Z(1:d)

s,N )), . . . , α∗N,N (g∗(Z(1:d)
s,0 ), . . . , g∗(Z(1:d)

s,N )) .

Therefore, by linearity and independence,

Jt+1,N (ε) = E
[ N∑
k=1

α∗k,N (g∗(Z(1:d)
t+1,0), . . . , g∗(Z(1:d)

t+1,N ))‖Z(1:d)

0,Lt+1(k,0) − Z
(1:d)
0,0 ‖2

]

=

N∑
k=1

E[α∗k,N (g∗(Z(1:d)
t+1,0), . . . , g∗(Z(1:d)

t+1,N ))]E[‖Z(1:d)

0,Lt+1(k,0) − Z
(1:d)
0,0 ‖2] .

For any k ∈ {1, . . . , N}, Lt+1(k, t) = j, where j ∈ {1, . . . , N}, with probability

α∗j,N (g∗(Z(1:d)
t,0 ), . . . , g∗(Z(1:d)

t,N )) .

Hence,

Jt+1,N (ε) =

N∑
k=1

E[α∗k,N (g∗(Z(1:d)
t+1,0), . . . , g∗(Z(1:d)

t+1,N ))]

× E
[ N∑
j=1

α∗j,N (g∗(Z(1:d)
t,0 ), . . . , g∗(Z(1:d)

t,N ))‖Z(1:d)

0,Lt(j,0) − Z
(1:d)
0,0 ‖2

]
= αt+1,N (ε)Jt,N (ε) .
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Applying this result repeatedly gives

JT,N (ε) =

T∏
t=1

αt,N (ε)J0,N (ε) .

(112) now follows from (111) and (97) of Theorem 4.3.17.

a.26 proof of theorem 4.4.8

From (111),

ρN (λ) = E
[{

1 + exp(−ξ2) exp(ξW0)

N∑
k=1

exp(ξWk)

}−1]
,

where ξ := λ
√
ϕ/
√

2, ϕ := E[q′(Z2
0 )], Z0 ∼ πZ where πZ is as defined in Definition

4.4.5, and W0:N is an independent sequence of one-dimensional standard Normal
random variables. The function f : [0,∞) → (0, 1] defined by f(x) : 1/(1 + x) is
convex. Moreover,

E
[

exp(−ξ2) exp(ξW0)

N∑
k=1

exp(ξWk)

]
= N exp(−ξ2)E[exp(ξW0)]E[exp(ξW1)]

= N exp(−ξ2) exp(ξ2/2) exp(ξ2/2)

= N .

Therefore, ρN (λ) ≥ 1/(N + 1). Furthermore, by Jensen’s inequality,

N∑
k=1

exp(ξWk) ≥ N exp

(
ξ

N

N∑
k=1

Wk

)
.

Hence,

exp(ξW0)

N∑
k=1

exp(ξWk) ≥ N exp

(
ξW0 +

ξ

N

N∑
k=1

Wk

)

= N exp

(
ξ

√
1 +

1

N
Z

)
,

where Z ∼ N(0, 1), thereby demonstrating the upper bound.

a.27 proof of corollary 4.4.9

Note, from Theorem 4.4.8, that

1 ≤ lim
N↑∞

NρN (λ) ≤ E[exp(ξ2 − ξZ)] .

Hence, there exist two constants, c̃1 and c̃2, and an N0 ∈ N such that, for any
N ≥ N0,

c̃1 ≤ NρN (λ) ≤ c̃2 .

Note that

NeT,N (λ) = λ2(1− ρN (λ))(T+1) = λ2

(
1− NρN (λ)

N

)(T+1)

.

Hence, for any N ≥ N0,

λ2

(
1− c̃2

N

)(T+1)

≤ NeT,N (λ) ≤ λ2

(
1− c̃1

N

)(T+1)

.

The result now follows immediately.





BTECHNICAL LEMMATA

lemma b.0.1. Let f, g : X → [0,∞) be two positive functions defined on X . Then
the following relation

f(x) ∧ g(y) =

∞∫
0

1[0,f(x)](s)1[0,g(y)](s) ds ,

where a ∧ b is the minimum of a and b, holds.

Proof. Note that h(x, y, s) := 1[0,f(x)](s)1[0,g(y)](s) is equal to 1 if and only if s ≤
f(x) and s ≤ g(y), otherwise h(x, y, s) = 0. Hence

∞∫
0

1[0,f(x)](s)1[0,g(y)](s) ds =

f(x)∧g(y)∫
0

ds = f(x) ∧ g(y)

as required.

lemma b.0.2. Let α, r1, and r2 be non-negative numbers such that r2 ≥ r1. Then

r1 + α

r2 + α
≥ r1

r2
.

Proof. Note that, by assumption, αr2 ≥ αr1. Hence r1r2+αr2 ≥ r1r2+αr1. Dividing
by r2(r2 + α) gives the result.

lemma b.0.3. Let N ∈ N, and let z0:N be a sequence of non-negative numbers.
Define I = {i ∈ {1, . . . , N} : z0 ≥ zi}. Then, the following inequality holds;

N∑
k=1

zk
z0 + . . .+ zN − [z0 ∧ zk]

≥


1

|I|z0

∑
i∈I

zi if I 6= ∅

1 if I = ∅
,

where |I| denotes the cardinality of the set I.

Proof. Firstly, consider the case where I = ∅. Then, by definition, zk > z0 for any
k = 1, . . . , N . Hence

N∑
k=1

zk
z0 + . . .+ zN − [z0 ∧ zk]

=

N∑
k=1

zk
z1 + . . .+ zN

= 1 .

Next, consider the case where I 6= ∅. Then,

z1 + . . .+ zN ≤ |I|z0 +
∑
i/∈I

zi .

Moreover, if k ∈ I, then

z0 + . . .+ zN − zk ≤ |I|z0 +
∑
i/∈I

zi .

Therefore, defining

SJ :=
∑
j∈J

zj ,

the following inequality holds;

N∑
k=1

zk
z0 + . . .+ zN − [z0 ∧ zk]

≥
N∑
k=1

zk
|I|z0 + SIc

,

249



250 appendix

Hence, by Lemma B.0.2,

N∑
k=1

zk
z0 + . . .+ zN − [z0 ∧ zk]

≥ SI + SIc

|I|z0 + SIc
≥ 1

|I|z0

∑
k∈I

zk ,

since SIc ≥ 0.

lemma b.0.4. Let η > 0 and ψ > 0. Then

0 ≥ 1− ψη + η log(ψ) ≥ −η
2

2
log(ψ)2 .

Proof. By Taylor’s theorem there exists a φ with |φ| ≤ |η log(ψ)| such that

ψη = exp(η log(ψ)) = 1 + η log(ψ) + φ2/2 .

Hence

1− ψη + η log(ψ) = −φ2/2 .

The result follows since η2 log(ψ)2 ≥ φ2 ≥ 0.

lemma b.0.5. Suppose z2 ≥ z1 > 0. Then, for any η ∈ (0, 1),

(1 + z2)η − (1 + z1)η < (z2 − z1) .

Proof. By the mean value theorem, there exists a z∗ ∈ (z1, z2) such that

(1 + z2)η − (1 + z1)η = η(1 + z∗)
η−1(z2 − z1) .

The result follows since η ∈ (0, 1) and z∗ > 0.

lemma b.0.6. Let f : [a, b] → R be a k-times differentiable function. Then, for
any j ≤ k, and any (x1, x2) ∈ (a, b)2, there exists a t := t(x1, x2) ∈ (−1, 1) such that

f(x2)−f(x1) =

j∑
i=1

(x2 − x1)i

i!
f (i)(x1)+

(x2 − x1)j

j!
[f (j)(x1+t(x2−x1))−f (j)(x1)] .

(137)

Proof. This lemma is a simple application of Taylor’s theorem. Indeed, there exists
a ξ satisfying |ξ − x1| < |x2 − x1| such that

f(x2)− f(x1) =

j−1∑
i=1

(x2 − x1)i

i!
f (i)(x1) +

(x2 − x1)j

j!
f (j)(ξ) .

Let t := (ξ − x1)/(x2 − x1). Then, by assumption, |t| < 1 and, since

f (j)(ξ) = f (j)(x1 + t(x2 − x1)) = f (j)(x1) + [f (j)(x1 + t(x2 − x1))− f (j)(x1)] ,

equation (137) holds.

lemma b.0.7. Let Z ∼ N(0, 1) be a one-dimensional standard normal random
variable. Then, for any (a, b, c, d, z0, z1) ∈ R6,

E[(aZ + b) exp(cZ + d)1[z0,z1](Z)]

= exp(c2/2 + d){a[φ(z0 − c)− φ(z1 − c)] + (ac+ b)[Φ(z1 − c)− Φ(z0 − c)]} ,

where φ and Φ respectively denote the probability density function and the cumulative
distribution function of a one-dimensional standard normal random variable.
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Proof. A straightforward calculation shows that

E[(aZ + b) exp(cZ + d)1[z0,z1](Z)]

=

z1∫
z0

(az + b) exp(cz + d)φ(z) dz

= exp(c2/2 + d)

z1∫
z0

(az + b)φ(z − c) dz

= exp(c2/2 + d)

z1∫
z0

(a(z − c) + (ac+ b))φ(z − c) dz ,

from which the result follows.

lemma b.0.8. Let X := [X1, X2]T be an (m + n)-dimensional random variable
with a Nm+n(µ,Σ) distribution, where

µ :=

(
µ1

µ2

)
, Σ :=

(
Σ11 Σ12

ΣT12 Σ22

)
,

and µ1 ∈ Rm, µ2 ∈ Rn, Σ11 ∈ Rm×m, Σ12 ∈ Rm×n, Σ22 ∈ Rn×n. Then

(X1|X2 = x2) ∼ Nm(µ1 + Σ12Σ−1
22 (x2 − µ2) , Σ11 − Σ12Σ−1

22 ΣT12) .

Proof. Let q̃(x1|x2) be the density corresponding to the random variable X1|X2 =
x2, and let q be the density corresponding to the random variable X. Then

q̃(x1|x2) ∝ q(x) ∝ exp(−(x− µ)T Σ̄(x− µ)/2) ,

where

Σ̄ := Σ−1 =

(
Σ̄11 Σ̄12

Σ̄T12 Σ̄22

)
,

and Σ̄11 ∈ Rm×m, Σ̄12 ∈ Rm×n, Σ̄22 ∈ Rn×n. Thus, a direct calculation gives

q̃(x1|x2) ∝ exp(−(x1−µ1+Σ̄−T11 Σ̄12(x2−µ2))T Σ̄11(x1−µ1+Σ̄−T11 Σ̄12(x2−µ2))/2) .

Therefore,

X1|X2 = x2 ∼ Nm(µ1 − Σ̄−T11 Σ̄12(x2 − µ2) , Σ̄−1
11 ) .

The inverse of a block matrix is well established, and the following is easy to assert;

Σ̄11 = (Σ11 − Σ12Σ−1
22 ΣT12)−1 , Σ̄12 = −Σ̄11Σ12Σ−1

22 .

Thus, by symmetry of Σ11 and Σ22,

Σ̄−1
11 = Σ11 − Σ12Σ−1

22 ΣT12 , Σ̂−T11 Σ̂12 = −Σ12Σ−1
22 ,

as required.

definition b.0.9 (Binary Search). For a sorted sequence x1:N ; that is, a sequence
such that xi ≤ xj whenever i 6= j, a binary search for the location of y in x1:N ;
denoted binsearch(x1:N , y), is an algorithm (Algorithm 23) that returns the unique
integer k ∈ {0, . . . , N + 1} such that y > xi for any i ≤ k, and y ≤ xj for any j > k.

lemma b.0.10. The binary search algorithm, binsearch(x1:N , y), takes at most
1 + dlog2(2bN/2c)e steps to return.

Proof. The worst possible case is when y ≤ x1 and, in that case, it is clear that the
number of calls to binsearch needed is 1 + dlog2(2bN/2c)e.
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Algorithm 23 Binary Search; binsearch(x1:N , y).

1: if N = 1 then
2: Set k = 0 if y ≤ x1 else set k = 1.
3: else
4: Set i = N/2 if N is even else set i = (N + 1)/2.
5: Set k = i+ binsearch(xi+1:N , y) if y > xi else set k = binsearch(x1:i, y).
6: end if
7: Return k

definition b.0.11 (Shuffle). For a sequence, x1:N , a shuffle, denoted shuffle(x1:N ),
is an algorithm (Algorithm 24) that chooses a permutation, σ, of the set {1, . . . , N}
uniformly at random from the N ! different possible permutations. This thesis im-
plements the Fisher-Yates shuffle (see, for instance, Toutenburg, 1971) as given by
Durstenfeld, 1964. For any given shuffle, σ, and a shufffled sequence x1:N , the inverse
shuffle, denoted inverse_shuffle(x1:N , σ) is an algorithm (Algorithm 25) that inverts
the shuffle; that is, y1:N = inverseshuffle(x1:N , σ) is such that, for any i ∈ {1, . . . , N},
yi = xσ−1(i).

Algorithm 24 Shuffle; shuffle(x1:N ).

1: Initialise by setting σ(i) = i for all i ∈ {1, . . . , N} and xs1:N = x1:N .
2: for i = 1, . . . , N − 1 do
3: Sample j from a Unif({i, . . . , N}) distribution.
4: Swap xsi with xsj .
5: Swap σ(i) with σ(j).
6: end for
7: Return (xs1:N , σ).

Algorithm 25 Inverse Shuffle; inverse_shuffle(xs1:N , σ).

1: for i = 1, . . . , N do
2: Set xσ(i) = xsi .
3: end for
4: Return x1:N .

lemma b.0.12. Let (a, b) ∈ R2 be such that b ≥ a. Then

dbe − bac < (b− a) + 2 , bbc − dae > (b− a)− 2 .

Proof. Let u : R → [0, 1) and l : R → [0, 1) be the functions defined, respectively,
by

u(x) = dxe − x , l(x) = x− bxc .

Then,

dbe − bac = (b− a) + (u(b) + l(a)) < (b− a) + 2 ,

thus proving the first assertion. Moreover,

bbc − dae = (b− a)− (u(a) + l(b)) > (b− a)− 2 ,

thus proving the second assertion.

lemma b.0.13. Let X ∼ N(µ, σ2) for some µ ∈ R and some σ ∈ (0,∞). Then

P(X2 ≤ x) = Φ

(√
x− µ
σ

)
+ Φ

(√
x+ µ

σ

)
− 1 .
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Proof. A direct calculation gives

P(X2 ≤ x) = P(−√x ≤ X ≤ √x)

= P
(
−
√
x+ µ

σ
≤ X − µ

σ
≤
√
x− µ
σ

)
= P

(
X − µ
σ

≤
√
x− µ
σ

)
− P

(
X − µ
σ

≥
√
x+ µ

σ

)
.





CEXTRA RESULTS

c.1 raw results for the conditioned diffusion simulation study
in section 3.3.2

In this appendix we include, for completeness, the raw relative effective sample sizes
(as defined by (71)) and the average execution times (in seconds) for each proposal
and each combination of (T, yT ) for the BD, LV, and GE diffusions detailed in
Section 3.3.2. Recall that, for each combination of (T, yT ), we simulated one million
independent skeleton paths using five different proposals; the MDB of Durham and
Gallant, 2002, the residual-bridge proposal of Whitaker et al., 2017 with the two
choices for ξt, RBODE and RBLNA, and the residual-bridge proposal introduced in
this paper with the same two choices for ξt, RB

ODE and RBLNA. For each proposal
and each combination of (T, yT ) we calculated the normalised weights for each of the
one million paths according to (50) and used these to calculate the relative effective
sample size (Rel. ESS) defined by (71). We also noted the average execution time
(wall time) in seconds over ten identical runs for each algorithm. The relative effective
sample sizes and average execution times can be seen, respectively, in Figures 80 and
83 for the BD diffusion, in Figures 81 and 84 for the LV diffusion, and Figures 82
and 85 for the GE diffusion.

c.2 extra results for the exchangeable sampler simulation
study in section 4.3.2

In this appendix we include more detailed figures of the behaviour of the Exchange-
able Sampler for values of N > 1 for the examples detailed in Section 4.3.2. For
the Exchangeable Sampler which targets a N(0, 1) distribution by using a N(0, 1/2)
distribution as the marginal proposal, Figures 86, 87, 88, and 89 show, for N = 10,
N = 50, N = 100, and N = 1000, respectively, histograms of the samples simu-
lated by the Exchangeable Sampler at each of the one-hundred-thousand iterations
for a variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}. Furthermore,

Figures 90, 91, 92, and 93 show, forN = 10,N = 50,N = 100, andN = 1000, respec-
tively, the states of the Exchangeable Sampler at each of the one-hundred-thousand
iterations for a variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}.

Similarly, for the Exchangeable Sampler which targets a Gamma(5.5, 1) distribu-
tion by using a Gamma(0.5, 1) distribution as the marginal proposal, Figures 94,
95, 96, and 97 show, for N = 10, N = 50, N = 100, and N = 1000, respectively,
histograms of the samples simulated by the Exchangeable Sampler at each of the one-
hundred-thousand iterations for a variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}.

Furthermore, Figures 98, 99, 100, and 101 show, for N = 10, N = 50, N = 100, and
N = 1000, respectively, the states of the Exchangeable Sampler at each of the one-
hundred-thousand iterations for a variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}.

For the Exchangeable Sampler which targets a N(0, 1) distribution by using a T(5)
distribution as the marginal proposal, Figures 102, 103, 104, and 105 show, for N =
10, N = 50, N = 100, and N = 1000, respectively, histograms of the samples simu-
lated by the Exchangeable Sampler at each of the one-hundred-thousand iterations
for a variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}. Furthermore,

Figures 106, 107, 108, and 109 show, for N = 10, N = 50, N = 100, and N = 1000,
respectively, the states of the Exchangeable Sampler at each of the one-hundred-
thousand iterations for a variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}.

For the Exchangeable Sampler which targets a conditioned Birth-Death diffusion
of Section 3.1.1 by using the Modified Diffusion Bridge proposal of Section 3.2.3
as the marginal proposal distribution, Figures 110, 111, 112, and 113 show, for
N = 10, N = 50, N = 100, and N = 1000, respectively, histograms of the two-
hundreth element of each of the sample paths simulated by the Exchangeable Sam-
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Figure 80: Plots of the relative effective sample sizes (as defined by (71)) for
five proposals and for a variety of combinations of (T, yT ) corre-
sponding to the BD diffusion.

pler at each of the one-hundred-thousand iterations for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}. Furthermore, Figures 114, 115, 116, and 117

show, for N = 10, N = 50, N = 100, and N = 1000, respectively, the two-hundreth
element of the states of the Exchangeable Sampler at each of the one-hundred-
thousand iterations for a variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}.

c.3 extra results for the exchangeable particle gibbs sam-
pler simulation study in section 4.4.2

In this appendix we include more detailed figures of the behaviour of the Exchange-
able Particle Gibbs Sampler for the examples detailed in Section 4.4.2. For the Ex-
changeable Particle Gibbs Sampler applied to the Linear Gaussian model of Example
3, and using the bootstrap proposals as the marginal proposal densities, Figures 118,
119, and 120, show, for N = 50, N = 100, and N = 1000, respectively, histograms
of the first component of the sample paths simulated by the Exchangeable Particle
Gibbs Sampler at each of the one-hundred-thousand iterations for a variety of jump-
sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}. Furthermore, Figures 121, 122, and

123, show, for N = 50, N = 100, and N = 1000, respectively, the first component
of the one-hundred-thousand states of the Exchangeable Particle Gibbs Sampler for
N = 250 and for a variety of jump-sizes,

ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,
√

2} .

For the Exchangeable Particle Gibbs Sampler applied to the Lotka-Volterra dif-
fusion and using the Modified Diffusion Bridge proposal of Section 3.2.3 as the
marginal proposal distribution, Figures 124, 125, and 126, show, for N = 50, N =
100, and N = 250, respectively, histograms of the t = 1 element of the sample paths,
simulated via the Exchangeable Particle Gibbs Sampler, for a variety of jump-sizes,

ε ∈ {0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,
√

2} .
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Figure 81: Plots of the relative effective sample sizes (as defined by (71)) for
five proposals and for a variety of combinations of (T, yT ) corre-
sponding to the LV diffusion.

Furthermore, Figures 127, 128, and 129, show, for N = 50, N = 100, and N = 250,
respectively, the t = 1 element of the states of the Exchangeable Particle Gibbs
Sampler for a variety of jump-sizes,

ε ∈ {0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,
√

2} .
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Figure 82: Plots of the relative effective sample sizes (as defined by (71)) for
five proposals and for a variety of combinations of (T, yT ) corre-
sponding to the GE diffusion.
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Figure 83: Plots of the average execution times for five proposals and for a va-
riety of combinations of (T, yT ) corresponding to the BD diffusion.
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Figure 84: Plots of the average execution times for five proposals and for a va-
riety of combinations of (T, yT ) corresponding to the LV diffusion.
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Figure 85: Plots of the average execution times for five proposals and for a va-
riety of combinations of (T, yT ) corresponding to the GE diffusion.
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Figure 86: Histograms of the samples simulated by the Exchangeable Sampler
targeting a N(0, 1) distribution by using a N(0, 1/2) distribution
as the marginal proposal distribution for N = 10 and for a variety
of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where ε =

0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.25 for the subplot in the second row and the first column,
and so on. The orange line in each figure corresponds to the true
density.
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Figure 87: Histograms of the samples simulated by the Exchangeable Sampler
targeting a N(0, 1) distribution by using a N(0, 1/2) distribution
as the marginal proposal distribution for N = 50 and for a variety
of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where ε =

0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.25 for the subplot in the second row and the first column,
and so on. The orange line in each figure corresponds to the true
density.
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Figure 88: Histograms of the samples simulated by the Exchangeable Sampler
targeting a N(0, 1) distribution by using a N(0, 1/2) distribution as
the marginal proposal distribution for N = 100 and for a variety
of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where ε =

0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.25 for the subplot in the second row and the first column,
and so on. The orange line in each figure corresponds to the true
density.
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Figure 89: Histograms of the samples simulated by the Exchangeable Sampler
targeting a N(0, 1) distribution by using a N(0, 1/2) distribution as
the marginal proposal distribution for N = 1000 and for a variety
of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where ε =

0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.25 for the subplot in the second row and the first column,
and so on. The orange line in each figure corresponds to the true
density.
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Figure 90: Plots, of the states of the Exchangeable Sampler targeting a
Gamma(0, 1) distribution by using a Gamma(0, 1/2) distribution
as the marginal proposal distribution for N = 10 and for a variety
of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each of

the one-hundred-thousand iterations. ε = 0.01 in the top-left sub-
plot, ε = 0.1 in the top-right subplot, ε = 0.25 in the subplot in
the second row and the first column, and so on.
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Figure 91: Plots, of the states of the Exchangeable Sampler targeting a N(0, 1)
distribution by using a N(0, 1/2) distribution as the marginal pro-
posal distribution for N = 50 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each of the one-hundred-

thousand iterations. ε = 0.01 in the top-left subplot, ε = 0.1 in the
top-right subplot, ε = 0.25 in the subplot in the second row and
the first column, and so on.
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Figure 92: Plots, of the states of the Exchangeable Sampler targeting a N(0, 1)
distribution by using a N(0, 1/2) distribution as the marginal pro-
posal distribution for N = 100 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each of the one-hundred-

thousand iterations. ε = 0.01 in the top-left subplot, ε = 0.1 in the
top-right subplot, ε = 0.25 in the subplot in the second row and
the first column, and so on.
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Figure 93: Plots, of the states of the Exchangeable Sampler targeting a N(0, 1)
distribution by using a N(0, 1/2) distribution as the marginal pro-
posal distribution for N = 1000 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each of the one-hundred-

thousand iterations. ε = 0.01 in the top-left subplot, ε = 0.1 in the
top-right subplot, ε = 0.25 in the subplot in the second row and
the first column, and so on.
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Figure 94: Histograms of the samples simulated by the Exchangeable
Sampler targeting a Gamma(5.5, 1) distribution by using a
Gamma(0.5, 1) distribution as the marginal proposal distribu-
tion for N = 10 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where ε = 0.01 for the top-

left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.
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Figure 95: Histograms of the samples simulated by the Exchangeable
Sampler targeting a Gamma(5.5, 1) distribution by using a
Gamma(0.5, 1) distribution as the marginal proposal distribu-
tion for N = 50 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where ε = 0.01 for the top-

left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.
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Figure 96: Histograms of the samples simulated by the Exchangeable
Sampler targeting a Gamma(5.5, 1) distribution by using a
Gamma(0.5, 1) distribution as the marginal proposal distribu-
tion for N = 100 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where ε = 0.01 for the top-

left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.
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Figure 97: Histograms of the samples simulated by the Exchangeable
Sampler targeting a Gamma(5.5, 1) distribution by using a
Gamma(0.5, 1) distribution as the marginal proposal distribu-
tion for N = 1000 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where ε = 0.01 for the top-

left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.
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Figure 98: Plots, of the states of the Exchangeable Sampler targeting a
Gamma(5.5, 1) distribution by using a Gamma(0.5, 1) distribution
as the marginal proposal distribution for N = 10 and for a variety
of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each of

the one-hundred-thousand iterations. ε = 0.01 in the top-left sub-
plot, ε = 0.1 in the top-right subplot, ε = 0.25 in the subplot in
the second row and the first column, and so on.
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Figure 99: Plots of the states of the Exchangeable Sampler targeting a
Gamma(5.5, 1) distribution by using a Gamma(0.5, 1) distribution
as the marginal proposal distribution for N = 50 and for a variety
of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each of

the one-hundred-thousand iterations. ε = 0.01 in the top-left sub-
plot, ε = 0.1 in the top-right subplot, ε = 0.25 in the subplot in
the second row and the first column, and so on.
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Figure 100: Plots of the states of the Exchangeable Sampler targeting a
Gamma(5.5, 1) distribution by using a Gamma(0.5, 1) distribu-
tion as the marginal proposal distribution for N = 100 and for
a variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2},

at each of the one-hundred-thousand iterations. ε = 0.01 in the
top-left subplot, ε = 0.1 in the top-right subplot, ε = 0.25 in the
subplot in the second row and the first column, and so on.
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Figure 101: Plots of the states of the Exchangeable Sampler targeting a
Gamma(5.5, 1) distribution by using a Gamma(0.5, 1) distribu-
tion as the marginal proposal distribution for N = 1000 and for
a variety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2},

at each of the one-hundred-thousand iterations. ε = 0.01 in the
top-left subplot, ε = 0.1 in the top-right subplot, ε = 0.25 in the
subplot in the second row and the first column, and so on.
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Figure 102: Histograms of the samples simulated by the Exchangeable Sam-
pler targeting a N(0, 1) distribution by using a T(5) distribution
as the marginal proposal distribution for N = 10 and for a vari-
ety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where

ε = 0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.25 for the subplot in the second row and the first column,
and so on. The orange line in each figure corresponds to the true
density.
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Figure 103: Histograms of the samples simulated by the Exchangeable Sam-
pler targeting a N(0, 1) distribution by using a T(5) distribution
as the marginal proposal distribution for N = 50 and for a vari-
ety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where

ε = 0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.25 for the subplot in the second row and the first column,
and so on. The orange line in each figure corresponds to the true
density.
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Figure 104: Histograms of the samples simulated by the Exchangeable Sam-
pler targeting a N(0, 1) distribution by using a T(5) distribution
as the marginal proposal distribution for N = 100 and for a vari-
ety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where

ε = 0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.25 for the subplot in the second row and the first column,
and so on. The orange line in each figure corresponds to the true
density.
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Figure 105: Histograms of the samples simulated by the Exchangeable Sam-
pler targeting a N(0, 1) distribution by using a T(5) distribution
as the marginal proposal distribution for N = 1000 and for a vari-
ety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where

ε = 0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.25 for the subplot in the second row and the first column,
and so on. The orange line in each figure corresponds to the true
density.
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Figure 106: Plots, of the states of the Exchangeable Sampler targeting a
N(0, 1) distribution by using a T(5) distribution as the marginal
proposal distribution for N = 10 and for a variety of jump-
sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each of the

one-hundred-thousand iterations. ε = 0.01 in the top-left subplot,
ε = 0.1 in the top-right subplot, ε = 0.25 in the subplot in the
second row and the first column, and so on.
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Figure 107: Plots of the states of the Exchangeable Sampler targeting a
N(0, 1) distribution by using a T(5) distribution as the marginal
proposal distribution for N = 50 and for a variety of jump-
sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each of the

one-hundred-thousand iterations. ε = 0.01 in the top-left subplot,
ε = 0.1 in the top-right subplot, ε = 0.25 in the subplot in the
second row and the first column, and so on.
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Figure 108: Plots of the states of the Exchangeable Sampler targeting a N(0, 1)
distribution by using a T(5) distribution as the marginal proposal
distribution for N = 100 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each of the one-hundred-

thousand iterations. ε = 0.01 in the top-left subplot, ε = 0.1 in
the top-right subplot, ε = 0.25 in the subplot in the second row
and the first column, and so on.
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Figure 109: Plots of the states of the Exchangeable Sampler targeting a N(0, 1)
distribution by using a T(5) distribution as the marginal proposal
distribution for N = 1000 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each of the one-hundred-

thousand iterations. ε = 0.01 in the top-left subplot, ε = 0.1 in
the top-right subplot, ε = 0.25 in the subplot in the second row
and the first column, and so on.
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Figure 110: Histograms of the two-hundreth element of each of the sam-
ple paths simulated by the Exchangeable Sampler targeting a
conditioned Birth-Death diffusion by using the Modified Diffu-
sion Bridge proposal of Section 3.2.3 as the marginal proposal
distribution. for N = 10 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where ε = 0.01 for the top-

left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.
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Figure 111: Histograms of the two-hundreth element of each of the sam-
ple paths simulated by the Exchangeable Sampler targeting a
conditioned Birth-Death diffusion by using the Modified Diffu-
sion Bridge proposal of Section 3.2.3 as the marginal proposal
distribution. for N = 50 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where ε = 0.01 for the top-

left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.
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Figure 112: Histograms of the two-hundreth element of each of the sample
paths simulated by the Exchangeable Sampler targeting a con-
ditioned Birth-Death diffusion by using the Modified Diffusion
Bridge proposal of Section 3.2.3 as the marginal proposal dis-
tribution. for N = 100 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where ε = 0.01 for the top-

left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.
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Figure 113: Histograms of the two-hundreth element of each of the sample
paths simulated by the Exchangeable Sampler targeting a con-
ditioned Birth-Death diffusion by using the Modified Diffusion
Bridge proposal of Section 3.2.3 as the marginal proposal dis-
tribution. for N = 1000 and for a variety of jump-sizes, ε ∈
{0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2} where ε = 0.01 for the top-

left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.



288 appendix

10

20

30

x
t

10

20

30

x
t

10

20

30

x
t

0 2000 4000 6000 8000 10000

Iteration

10

20

30

x
t

0 2000 4000 6000 8000 10000

Iteration

Figure 114: Plots, of the two-hundreth element of the states of the Exchange-
able Sampler targeting a conditioned Birth-Death diffusion by
using the Modified Diffusion Bridge proposal of Section 3.2.3 as
the marginal proposal distribution for N = 10 and for a variety
of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each

of the one-hundred-thousand iterations. ε = 0.01 in the top-left
subplot, ε = 0.1 in the top-right subplot, ε = 0.25 in the subplot
in the second row and the first column, and so on.
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Figure 115: Plots, of the two-hundreth element of the states of the Exchange-
able Sampler targeting a conditioned Birth-Death diffusion by
using the Modified Diffusion Bridge proposal of Section 3.2.3 as
the marginal proposal distribution for N = 50 and for a variety
of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each

of the one-hundred-thousand iterations. ε = 0.01 in the top-left
subplot, ε = 0.1 in the top-right subplot, ε = 0.25 in the subplot
in the second row and the first column, and so on.
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Figure 116: Plots, of the two-hundreth element of the states of the Exchange-
able Sampler targeting a conditioned Birth-Death diffusion by
using the Modified Diffusion Bridge proposal of Section 3.2.3 as
the marginal proposal distribution for N = 100 and for a variety
of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each

of the one-hundred-thousand iterations. ε = 0.01 in the top-left
subplot, ε = 0.1 in the top-right subplot, ε = 0.25 in the subplot
in the second row and the first column, and so on.
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Figure 117: Plots, of the two-hundreth element of the states of the Exchange-
able Sampler targeting a conditioned Birth-Death diffusion by
using the Modified Diffusion Bridge proposal of Section 3.2.3 as
the marginal proposal distribution for N = 1000 and for a variety
of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, at each

of the one-hundred-thousand iterations. ε = 0.01 in the top-left
subplot, ε = 0.1 in the top-right subplot, ε = 0.25 in the subplot
in the second row and the first column, and so on.
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Figure 118: Histograms of the first component of the sample paths simu-
lated by the Exchangeable Particle Gibbs Sampler- applied to
the Linear Gaussian model and using the bootstrap proposals
as the marginal proposal densities- with N = 50, and for a vari-
ety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, where

ε = 0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.25 for the subplot in the second row and the first column,
and so on. The orange line in each figure corresponds to the true
density.
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Figure 119: Histograms of the first component of the sample paths simu-
lated by the Exchangeable Particle Gibbs Sampler- applied to
the Linear Gaussian model and using the bootstrap proposals
as the marginal proposal densities- with N = 100, and for a vari-
ety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, where

ε = 0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.25 for the subplot in the second row and the first column,
and so on. The orange line in each figure corresponds to the true
density.
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Figure 120: Histograms of the first component of the sample paths simu-
lated by the Exchangeable Particle Gibbs Sampler- applied to
the Linear Gaussian model and using the bootstrap proposals as
the marginal proposal densities- with N = 1000, and for a vari-
ety of jump-sizes, ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, where

ε = 0.01 for the top-left subplot, ε = 0.1 for the top-right subplot,
ε = 0.25 for the subplot in the second row and the first column,
and so on. The orange line in each figure corresponds to the true
density.
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Figure 121: Plots of the first component of the states of the the Exchange-
able Particle Gibbs Sampler- applied to the Linear Gaussian
model and using the bootstrap proposals as the marginal pro-
posal densities- with N = 50, and for a variety of jump-sizes,
ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, where ε = 0.01 for the

top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on.
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Figure 122: Plots of the first component of the states of the the Exchange-
able Particle Gibbs Sampler- applied to the Linear Gaussian
model and using the bootstrap proposals as the marginal pro-
posal densities- with N = 100, and for a variety of jump-sizes,
ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, where ε = 0.01 for the

top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on.
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Figure 123: Plots of the first component of the states of the the Exchange-
able Particle Gibbs Sampler- applied to the Linear Gaussian
model and using the bootstrap proposals as the marginal pro-
posal densities- with N = 1000, and for a variety of jump-sizes,
ε ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.2,

√
2}, where ε = 0.01 for the

top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.25 for the
subplot in the second row and the first column, and so on.
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Figure 124: Histograms of the t = 1 element of the sample paths, simu-
lated via the Exchangeable Particle Gibbs Sampler applied to
the Lotka-Volterra diffusion model and using the Modified Dif-
fusion Bridge proposal of Section 3.2.3 as the marginal pro-
posal distribution, for N = 50, and for a variety of jump-sizes,
ε ∈ {0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,

√
2}, where ε = 0.01 for the

top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.15 for the
subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.



appendix 299

180 190 200 210 220 230 240 250 260

0.00

0.02

0.04

0.06

0.08

180 190 200 210 220 230 240 250 260

0.00

0.02

0.04

180 190 200 210 220 230 240 250 260

0.00

0.02

0.04

180 190 200 210 220 230 240 250 260

0.00

0.02

0.04

180 190 200 210 220 230 240 250 260

0.00

0.02

0.04

180 190 200 210 220 230 240 250 260

0.00

0.02

0.04

180 190 200 210 220 230 240 250 260

xt

0.00

0.05

0.10

180 190 200 210 220 230 240 250 260

xt

0.0

0.5

1.0

1.5

Figure 125: Histograms of the t = 1 element of the sample paths, simu-
lated via the Exchangeable Particle Gibbs Sampler applied to
the Lotka-Volterra diffusion model and using the Modified Dif-
fusion Bridge proposal of Section 3.2.3 as the marginal pro-
posal distribution, for N = 100, and for a variety of jump-sizes,
ε ∈ {0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,

√
2}, where ε = 0.01 for the

top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.15 for the
subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.
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Figure 126: Histograms of the t = 1 element of the sample paths, simu-
lated via the Exchangeable Particle Gibbs Sampler applied to
the Lotka-Volterra diffusion model and using the Modified Dif-
fusion Bridge proposal of Section 3.2.3 as the marginal pro-
posal distribution, for N = 250, and for a variety of jump-sizes,
ε ∈ {0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,

√
2}, where ε = 0.01 for the

top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.15 for the
subplot in the second row and the first column, and so on. The
orange line in each figure corresponds to the true density.
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Figure 127: Plots of the t = 1 element of the states of the the Exchange-
able Particle Gibbs Sampler- applied to the Linear Gaussian
model and using the bootstrap proposals as the marginal pro-
posal densities- for N = 50, and for a variety of jump-sizes,
ε ∈ {0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,

√
2}, where ε = 0.01 for the

top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.15 for the
subplot in the second row and the first column, and so on.
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Figure 128: Plots of the t = 1 element of the states of the the Exchange-
able Particle Gibbs Sampler- applied to the Linear Gaussian
model and using the bootstrap proposals as the marginal pro-
posal densities- for N = 100, and for a variety of jump-sizes,
ε ∈ {0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,

√
2}, where ε = 0.01 for the

top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.15 for the
subplot in the second row and the first column, and so on.
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Figure 129: Plots of the t = 1 element of the states of the the Exchange-
able Particle Gibbs Sampler- applied to the Linear Gaussian
model and using the bootstrap proposals as the marginal pro-
posal densities- for N = 250, and for a variety of jump-sizes,
ε ∈ {0.01, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75,

√
2}, where ε = 0.01 for the

top-left subplot, ε = 0.1 for the top-right subplot, ε = 0.15 for the
subplot in the second row and the first column, and so on.
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