
A Passion for Security:
Intervening to Help Software Developers

Charles Weir
Security Lancaster

Lancaster University
United Kingdom

c.weir1 @lancaster.ac.uk

Ingolf Becker
Security and Crime Science
University College London

United Kingdom
i.becker @ucl.ac.uk

Lynne Blair
Computing and Communications

Lancaster University
United Kingdom

l.blair @lancaster.ac.uk

Abstract—While the techniques to achieve secure, privacy-
preserving software are now well understood, evidence shows
that many software development teams do not use them: they
lack the ‘security maturity’ to assess security needs and decide
on appropriate tools and processes; and they lack the ability to
negotiate with product management for the required resources.
This paper describes a measuring approach to assess twelve
aspects of this security maturity; its use to assess the impact of a
lightweight package of workshops designed to increase security
maturity; and a novel approach within that package to support
developers in resource negotiation. Based on trials in eight
organizations, involving over 80 developers, this paper
demonstrates that (1) development teams can notably improve
their security maturity even in the absence of security
specialists; and (2) suitably guided, developers can find effective
ways to promote security to product management. Empowering
developers to make their own decisions and promote security in
this way offers a powerful grassroots approach to improving the
security of software worldwide.

Keywords—Developer Centered Security; software security;
software developer; intervention; Design Based Research

I. INTRODUCTION
Software security and privacy are now major issues:

almost every day we hear that several more organisations’
software systems have been compromised [26].

While there are many aspects to an organization’s security
and privacy, the design and implementation of the software
used clearly has a significant impact on whether such breaches
happen. Two industry trends contribute to this: the increasing
use of microservices and Software as a Service (SaaS)
components, and the DevOps movement both mean that
security must be ‘in the code’ rather the responsibility of a
separate operations team. So, it is vital that developers be
effective at creating secure software.

Unfortunately, there is evidence that developers are not
delivering this security. A recent report from Veracode
concluded that “more than 85 percent of all applications have
at least one vulnerability in them; more than 13 percent of
applications have at least one very high severity flaw” [32]. A
report from Microsoft found that 28% of Software as a Service
applications were not supporting data encryption [23].
Clearly, industry practices are not yet sufficient to provide the

software security and privacy we need. So, how can one
support developers to deliver better security?

This research project addresses the objective of defining a
cost-effective intervention to support software development
teams in creating secure products and services. In earlier
work the authors identified requirements and an approach
using workshops to sensitize developers to the importance of
security [36]. Based on this they derived a set of requirements
for this package (Section III) and concluded the need for
objective assessment of its impact.

The primary research question of this paper, therefore, is:

RQ 1 What aspects of an intervention to a software
development team are effective at improving security,
and why?

The paper describes the design of a security-improving
intervention, its use in 8 different organizations, and the
practical and theoretical conclusions. The analysis looked for
and quantified improvements in ‘assurance techniques’:
process improvements, understanding and skills that would
generate better security in the longer term. The research makes
the following contributions:

• An existence proof that a simple ‘intervention package’
structured as a facilitated series of workshops can
improve the security of software developed by a team.

• Identification of the importance of representing security
enhancements in terms of their business benefit, and the
ability of developers to do so.

The rest of this paper is as follows. Section II discusses
relevant past research; section III describes and explains the
intervention package; section IV describes the research
method; section V explores the outcomes from using the
intervention with different groups; section VI discusses the
results; and section VII provides a conclusion.

II. BACKGROUND
Research related to interventions for secure software has

taken a variety of approaches: ways to get developers to adopt
process improvements; ways to get developers to adopt
analysis tools; consultancy and training interventions;
motivating developers to improve their processes; and

motivating employees more generally to adopt secure
practices. The following sections explore these approaches.

A. Adoption of Security-Enhancing Activities
One way to improve development security is to build a

process around it using a ‘Secure Development Lifecycle’
(SDL), a prescriptive set of instructions to managers,
developers and stakeholders on how to add security activities
to the development process [39]. However, research suggests
resistance from development teams to adopting a prescriptive
methodology. For example Conradi and Dybå deduced in a
survey that developers are skeptical about adopting the formal
routines found in traditional quality systems [10].

Van der Linden et al. found from a task-based study and
survey that developers tend to see only the activity of writing
code to be security-relevant, suggesting a need for a stronger
focus on the tasks and activities surrounding coding [20].
Caputo et al. concluded from three case studies a need for the
alignment of security goals with business goals [8]. And an
interview survey by Xie et al. suggests that developers make
security errors from treating security as “someone else’s
problem” [42].

Such et al. defined a taxonomy of twenty assurance
techniques from a survey of security specialists, finding wide
variations in the perceived cost-effectiveness of each [30].
Weir et al. surveyed successful app developers, finding less
than half using assurance techniques regularly [37].

This suggests a need for ways to encourage adoption.
Indeed, recently Assal and Chiasson identified from a
developer survey “a need for new, lightweight best practices
that take into account the realities and pressures of
development” [1].

B. Encouraging the Adoption of Tools
Witschey et al. concluded from an interview survey that

more experienced and more inquisitive developers are more
likely to adopt tools Key deterrents were the difficulty of
trialling new tools and that developers are unlikely to notice a
colleague using one [40]. Xiao et al. found from a similar
survey that the main reasons for adoption were
recommendation by trusted peers, including experts in
discussion forums; or company policies mandating the use of
such tools [41].

Bessey et al. describe the motivation and issues with
adopting code checkers for large codebases; for example that
a tool “needs to deliver a true defect in its first three error
messages” to generate a sale [6].

C. Consultancy and Training Interventions
Türpe et al. explored the effect of a single penetration

testing session and workshop on 37 members of a large
geographically-dispersed project. The results were not
encouraging; the main reason was that the workshop
consultant highlighted problems without offering much in the
way of solutions [31]. A study by Poller et al. followed an
unsuccessful attempt “to challenge and teach [the

developers] about security issues of their product”, finding
that pressure to add functionality meant that attention was not
given to security issues, and that normal work procedures did
not support security goals. The authors concluded that
successful interventions would need “to investigate the
potential business value of security, thus making it a more
tangible development goal” [25].

Considering book-based interventions, Yskout et al. tested
if ‘security patterns’ might be an effective intervention to
improve secure development in teams of student software
developers. The results suggested a benefit but were
statistically inconclusive [43]. A recent book by Bell et al.
provides practical support for developers and tool
recommendations [5].

D. Motivating Change in Development Teams
Looking at ways to motivate change in development

teams, Dybå concluded from a quantitative survey that
organizational factors were as least as important as technical
ones: actions need to be aligned with business goals; and that
employees take responsibility for the changes [12]. Beecham
et al. conducted a literature review of 92 papers on
programmer motivation in 2008, concluding that professional
programmers are motivated most by problem solving, by
working to benefit others and by technical challenges [4]. Hall
et al. framed these as intrinsic motivators, relating them to
self-determination theory [17].

Lopez et al. concluded that to encourage developer teams
in doing security there is a need to “raise developers’ security
awareness” [21], such as by using discussions about security
[22].

E. Conclusions
This previous work suggests a need for lightweight, cost-

effective, enhancements to development practices to improve
security. In particularly, it suggests raising a development
team’s security awareness, and aligning their security goals
with business goals.

III. THE INTERVENTION
The purpose of the project was defining a cost-effective

intervention to support software development teams in
creating secure products and services. Prior work by the
authors identified the following requirements for such an
intervention:

• Motivate developers to drive their own security
improvements [36];

• Encourage developers to adopt a subset of key assurance
techniques, specifically Threat Assessment,
Configuration Review, Automated Static Analysis,
Source Code Review, and Penetration Testing [36];

• Work without security specialists, since few teams have
access to them [37];

• Support developers currently using few or no Assurance
Techniques, since few use them [37]; and

• Work with teams, as a majority of developers do so [29]

The authors had expected such an intervention to take the
form of a website, a book or video [38]; or possibly a code
analysis tool [24]. In practice, we found that excellent
implementations already exist of such interventions, but the
need for improved security remains. Instead, we determined
that facilitated workshops with the teams would offer a good
approach, and that two Assurance Techniques are suitable for
such workshop sessions:

• Incentivization Session, and
• Threat Assessment

Based on early trials of a workshop-based intervention
[36] we concluded two further requirements:

• To make the intervention scalable to many teams, non-
researchers must lead the intervention, and

• A need for training to help developers promote security
mitigations to product management

A. Implementing the Incentivization Session
As an alternative to traditional fear-based security

motivation, we wanted an Incentivization Session that would
help developers engage with security better and lose their fear
of it. We used a facilitated game, the ‘Agile App Security
Game’ [35], in which participants work in groups as product
managers, selecting security-enhancing product
improvements with varying costs and learning whether their
choices deter attacks.

B. Implementing Threat Assessment
The Threat Assessment workshop was challenging to

implement. Though valuable, normal Threat Modelling
approaches [28] require considerable knowledge of possible
technical threats and preferably support from a professional
with a detailed understanding of both the industry sector and
current cyber threats to it; neither were available.

Instead we used a lightweight method, using an ideation
session [14] in which a facilitator writes down unfiltered
suggestions from the group of possible threat actors and
outcomes (this was later replaced by an approach involving
participants creating post-it notes with that content).
Following that, participants used colored dots to vote,
separately, on the most likely and the most impactful threats.

C. Facilitator Training
We trained one or two facilitators from each organisation,

and they then managed the intervention.

To motivate the developers, we encouraged the use of
‘self-actualization’ language and approaches rather than
commands and formal processes [15], avoiding terms like
“you must” or “it’s essential that”. Though the researchers
participated in the workshops, they provided only
occasionally comments and stories as participants.

We encouraged the facilitator to discuss, when opportunity
arose, the other key techniques identified in the requirements
in Section III: Configuration Review, Automated Static
Analysis, Source Code Review, and Penetration Testing.

D. Security Sales
In this workshop participants split into groups, and each

group addressed a different threat from the most important
five or so identified in the Threat Assessment. We made the
task approachable for developers by avoiding discussion of
‘selling’ or ‘persuasion’, two activities that do not form part
of a normal development role. The instruction for the
participants was to take one of the key threats and “work out
positive ways in which addressing that threat will benefit the
organisation”.

Each group discussed the threat they had chosen and wrote
notes on a whiteboard or flipchart page. A representative from
each group then presented their conclusions to the other
participants.

E. Intervention Schedule
Figure 1 shows a typical schedule for the interventions,

with different colors showing different sets of participants.
The work with each group spanned 3-4 months, with only two
days on site at the start and end. The involvement time was
limited to four months in order to get the feedback from the
exit interviews reasonably quickly. An online book, video, and
materials [34] supported the package.

IV. EVALUATION METHODOLOGY
Trialling this intervention with professional developers

required the involvement of the researchers both to train the
facilitators and to support the workshops. We considered
using Action Research [11], an accepted methodology used in
many forms of academic social research including software
engineering [27]. However, Action Research methodologies
are designed to focus on the clients, following one or more
clients through repeated research cycles. Here, by contrast, we
were focused on the intervention, and the clients changed
between research cycles. Accordingly, we used a different
methodology, Design-Based Research (DBR). This supports
different participants in each cycle of trials and focusses on
designing an artifact.

DBR has its roots, and is used most, in education research.
Its foundation lies in the ‘Design Experiments’ of Brown [7],
and Collins [9] working with teachers as co-experimenters. It
emphasizes the development of design theory in parallel with

FIGURE 1: INTERVENTION TIMELINE

10:00

12:00

14:00

16:00

18:00

Month 1 Month 2 Month 3 Month 4

Threat
Sales

Threat
assessment Follow-up Follow-up

Incentivisation

Facilitator Training Exit
interviews

Entry interviews

the creation of teaching innovations. DBR is now an accepted
research paradigm, used to develop improvements ranging
from tools to curricula [18], with a recent guide book for
practitioners [2].

The characteristics of Design-Based Research [33] are that
it is: pragmatic in that DBR aims to solve current real-world
problems, by creating and trialling interventions in parallel
with the creation of theory; grounded in the practicalities of
real-world trials in the “buzzing, blooming confusion of real-
life settings” [3]; interactive, iterative and flexible with an
iterative process involving multiple trials and experiments
taking place as the theory develops; integrative in that DBR
practitioners may integrate multiple methods, and vary these
over time [33]; and contextual in that results depend on the
context of the real-world trials.

A. Practical Design-Based Research
Figure 2, based on Ejersbo et al. [13], shows our

understanding of the two parallel cycles of DBR research,
creating theory and creating the artefact, with appropriate
interactions between the cycles.

The practical aspects of carrying out DBR are defined by
the ‘integrative’ nature of DBR: both design and assessment
techniques must come from other research methodologies
[33]. In this project we used the techniques of the Canonical
Action Research method [11]—though not that method’s
overriding paradigm.

B. Research Questions
The DBR method requires separate research questions for

the Design Practice cycle and the Design Theory cycle.
Accordingly, we broke down the main research question RQ 1
into sub-questions. Our first Design Practice question was a
measurement of the workshops’ effectiveness:

RQ 2 To what extent did the groups learn about and adopt
different security-enhancing activities as a result of
intervention?

The second Practice question asks in what situations the
intervention is likely to be most useful:

RQ 3 How does the impact of the intervention vary with
different company sizes, facilitation styles, security
expertise, and kinds of participants?

Turning to Design Theory questions, the suggestion from
previous research, of the benefit of “training to help
developers promote security mitigations to product
management” was unproven, and so needed testing:

RQ 4 Can having developers consider the positive benefits
of security and privacy mitigations lead to security
improvements in the development process?

Colleagues had suggested that developers would require
classroom training of techniques for risk assessment and
‘sales’. For these workshops we had assumed this was not the
case, though we had no a-priori justification for that:

RQ 5 Can teams of developers produce both adequate risk
and impact assessments and benefit analyses with
minimal guidance?

C. Methodology Implementation
We recruited groups in 8 different organizations, with

whom we carried out the intervention. First, we interviewed a
selection of the future participants to establish a baseline in
terms of their current understanding, practice and plans. We
then trained the facilitators, who led the intervention
workshops, and supported the follow-up sessions. About three
months from the start, we carried out ‘Exit Interviews’ with
the same participants as before. Both Entry and Exit
Interviews were semi-structured using open questions.

We recorded the audio of all the interviews and all the
workshops, then transcribed the interviews. In an iterative
process, two authors coded the interview transcripts using the
tool NVivo. Differences in coding were discussed and
resolved between us.

For the coding scheme, we identified a list of security-
improving activities, including Assurance Techniques such as
Pen Testing, and activities such as Contingency Planning,
Training, and Stakeholder Negotiation; plus Adoption Levels
for each (see Table 1). We were careful to distinguish changes
due to the interventions from those due to other external
factors; we did not code the latter.

From the coding, we determined the maximum Adoption
Level coded for each Assurance Technique for each group,
both ‘before’ and ‘after’ the intervention. Our ‘Inter-Rater
Reliability’ calculations used Krippendorff’s Alpha [16] to
compare the Adoption Levels calculated from the coding of
each coder rather than comparing the coding itself.

FIGURE 2: ACTIVITIES IN PRACTICAL DESIGN-BASED RESEARCH

Hypo-
thesis

Design

Data

Theory

Problem

Trial

Artefact
Design
Practice

Design
Theory

TABLE 1: ADOPTION LEVELS FOR EACH ASSURANCE TECHNIQUE

No mention No reference to it in the interview
Aware The team showed knowledge of it.
Planned Existing plans to incorporate it.
Using The team have used it.
Established The team use it in each new project.

This project was approved by the Lancaster University
Faculty of Science and Technology Research Ethics
committee.

V. RESULTS
Eight interventions were carried out with a total of 88

developers in eight different organizations, generating 21
hours of interview audio; and 47 hours of audio from training,
workshop and follow-up sessions. The final code book
contained 2859 references to 51 codes.

The Krippendorff’s Alpha metric after the first round of
coding was 0.18, indicating only slight agreement [16]. The
main cause was that the interviewees had not been asked
explicitly about their use of assurance techniques, in order to
avoid bias in the responses. This allowed several kinds of
discrepancy between the interpretations of the two coders.

Following a detailed discussion, the coders independently
recoded the interviews; the resulting Krippendorff’s Alpha
was 0.46: moderate agreement. This is as good as can
reasonably be expected, given the need for interpretation of
the text by the coders. The remaining discrepancies were
mainly due to omissions by one or other coder, so we used the
union of both sets of codings for the later analysis.

A. Summary of Participating Groups
The participant groups were recruited opportunistically

through industry contacts, university outreach and conference
presentations. Groups are identified with a letter, starting with
D (since three organizations had been involved in early trials);
individual members we interviewed are identified using the
team letter and a number: ‘D1’. All of the developers
interviewed were male, as were all managers and testers; three
product managers were female: these numbers are consistent
with industry norms [29].

 Figure 3 visualizes the groups, plotting the organization
sizes (from F’s 20 to K’s 15,000) against an estimate of their
‘secure software capability maturity’ [19] based on the
groups’ discussions during the workshops. Ring sizes show
the number of participants (3 in F to 16 in K); ring centers
show the facilitators; colors and lowercase letters show the job
roles.

B. Practical Results
Table 2 shows the full list of Techniques derived from the

coding. Horizontal lines divide them into three categories:
Vulnerability Finding (top) to find specific vulnerabilities in
created software; Process Improvements to create an
environment to better support the creation of secure code; and
Education (bottom) to teach participants and stakeholders.

Table 3 shows the anonymized details of the organizations
involved, the groups we worked with, and the key outcomes
from each intervention.

We encouraged facilitators to use their own facilitation styles,
and saw a variety of such styles in the workshops. The
Security Specialists, E1 J1 and J2 used a ‘dominant’ style, in
which they and one or two others did most of the talking; in
groups D, F, G and H there was a ‘Listening’ style, in which
one facilitator controlled sessions, but encouraged wide
participation. Finally, groups I and K had a ‘Peer’ style, setting
only the workshop structure and letting the teams work
independently

FIGURE 3: COMPOSITION OF THE PARTICIPATING GROUPS

Manager Developer
Product QA
Security

D

E

F

G
J

H I K

Increasing Company Size

In
cr

ea
sin

g
Se

cu
rit

y

d

d

d

d
d

d

d

dp

p

p

q

q
ddd

s

s

p

TABLE 2: ASSURANCE TECHNIQUES

Automated Pen. Testing Using an automated tool to look for common vulnerabilities in a website or web service.
Automated Static Analysis Using automated tools to look for common vulnerabilities in source or binary code.
Configuration Review Choosing secure components and frameworks, and keeping them up to date
Code Review Scheduled meetings or pair programming to analyse code for security defects
Penetration Testing Having a security specialist look for vulnerabilities accessible via the web.
Threat Assessment Design-level analysis of possible attackers, motives, and vulnerability locations.
Product Negotiation Empowering product management to make security decisions.
Contingency Plan The advance creation of a plan to handle security incidents.
Security Champion Assigning a development team member, not usually a security expert, with a particular interest in

security as the go-to person for security issues within the development team.
Standardisation The creation of standard security configurations, ways of working, or ‘Secure Development

Lifecycles’, plus auditing processes to validate these.
On-the-job Training Mentoring or informal workshops, used regularly with the development team
Further Workshops Using the entire package with other teams, the same team in a new project, or new members.

By assigning ordinal ratings to the engagement levels as
shown in Table 1, we calculated an indication of the ‘Impact’
of the intervention—the extent to which the intervention
affected the group’s use of the technique. Of course, this
‘Impact’ calculation is merely an indication: a two-unit Impact
(change in engagement) might be from No Mention to

Planned, or from Planned to Established; these changes are not
semantically equivalent.

Figure 4 thus provides an answer to RQ 2 “To what extent
did the groups learn about and adopt different security-
enhancing activities as a result of intervention?” The size of

TABLE 3: ORGANIZATIONS, GROUPS AND KEY OUTCOMES

 Organisation Team Threat Sales Outcomes Main Outcomes
D A project team within a

university, funded by a
government grant to promote
business innovation by
developing proof of concept
(PoC) applications.

Aware of the importance of
software security but had
little practical knowledge;
worked on several different
projects at a time.

Identified that the threat
and risk assessment itself
was a valuable asset to
their clients

Identified need to support their
clients in identifying security
issues when the clients came to
implement applications based
on the PoCs.

E A government department
delivering software for
sensitive government
applications. The group
worked on a high-
confidentiality product.

Less experienced than
average for the industry,
though the session leader
E1 is an experienced
security specialist

Realized that while every
security enhancement was
essential, the ordering of
their implementation could
be altered to suit the client.

Improved understanding in the
team of the importance of
Threat Assessment and
Product Negotiation.

F A small surveying company
delivering a Geographical
Information System product
and related services.

A previous developer had
implemented some security
aspects; the current team
had little knowledge.

‘Lined up’ security
improvements to be
incorporated in the
enhancements when new
clients wanted them

Fixed several security issues in
customer handling and created
a list of issues which were later
used as the basis for a new
customer engagement to fix
the following year.

G A web applications developer
delivering a wide variety of
applications for clients.

The two leads G1 and G2
were expert in software
security but were expected
to provide costly security
enhancements ‘free’.

Found an impressively
simple way to discuss
security cost-benefit with a
client: gold level hosting,
silver and bronze security.

Incorporated new way to
discuss security with
customers. G1 later expanded
it to five options to include
other aspects of security.

H A small company selling a
range of Internet of Things
(IoT) devices and their
associated infrastructure.

The group justifiably
consider themselves good
at software security;

Identified that their
security story was a major
Unique Selling Point
against competitors.

Following the workshop, they
plan further training.

I A well-established company
providing the infrastructure for
a commodity trading. Planning
move from perimeter security
to cloud-based services.

The company has
considerable internal
expertise in security,
especially I2. However, the
developers were less
experienced.

Subsequently included
security requirements in
discussions with new
clients

Following the initial
workshops, they re-ran both
Threat Assessment and Threat
Sales workshops to gain a
more complete idea of the
threats and impact on
customers. They also ran
workshops with further
development teams.

J A well-established large
company providing web
interfaces for retailers. The
particular group involved had
the responsibility of creating
tools and services to support
deployment

The group was a team of
about a dozen creating
deployment tools and
included security
specialists J1 and J2.

Devised several
functionality and process
improvements for their
(internal) customers

While some of the participants
may well have learned from
the workshops there were no
detected improvements in
understanding and technique
use.

K A well-established company
with a few hundred employees
creating tools for developers.

The group has a strong
emphasis on agile
development processes,
and team interaction. All
the participants were
developers.

Each of four subgroups
delivered a convincing
sales pitch for a security
improvement.

Analysis showed an increase
in awareness in the teams of
some of the assurance
techniques.

each bubble indicates the final engagement level after the
intervention; the color shows the change attributed to the
intervention: amber for a change of 1 to 2 levels; red for 3 to
4 levels.

As the figure shows, the use of Threat Assessment and
Product Negotiation had dramatically improved in a majority
of groups; use of Penetration Testing and Use of Checklists
were not affected at all. Group J showed little change as a
result of the intervention; all the others did see at least some
changes. Groups I, J chose to carry out further workshops
independently from the researchers, and D, E, F, G and I all
showed major improvements in their use of Threat Assurance
and Product Negotiation.

C. Technique Adoption by Different Categorizations of
Group
Turning to RQ 3 “How does the impact of the intervention

vary with different company sizes, facilitation styles, security
expertise, and kinds of participants?”, Table 4 calculates
average impact values for different categorizations of the
groups. The deeper shadings show the higher values in each
categorization; the red-green colors distinguish different
categorizations. The shading in the first column delineates the
types of assurance technique (Vulnerability Finding, Process
Improvements, and Training), while the figures on the bottom
line show the average increment over all assurance techniques
for each category.

D. Positive Benefits of Security and Privacy
To address the theory-based research question RQ 4 “Can

having developers consider the positive benefits of security
and privacy mitigations lead to security improvements in the
development process?”, we looked for cases where the Threat
Sales activity lead to ‘security improvements in the
development process’.

Group D identified in the Threat Sales discussion that the
threat and risk assessment itself was a valuable asset to their
clients as part of their proof-of-concept developments. They
now incorporate a security discussion in their ‘handover
document’ for every project they do:

Now, after the workshop I think it was, we
redesigned our handover template, which is
where we now have a specific section for
security [in every release] (D4)

Group F realized that they could ‘line up’ security
improvements to be incorporated in the enhancements when
new clients wanted them:

Yes, .. we have picked up some new contracts,
and … they will require us to implement pretty
much everything that we had listed… (F1)

Group G identified the ‘Gold, Silver, Bronze’ approach to
selling security enhancement costs to their clients.

To make that process a lot simpler for our sales
team, [G1] did a lot of the leg work and setting
up a Gold, Silver and Bronze package to say
“right, answer these 10 questions”, and then …
this is the package that you need'. (G6)

Group I subsequently included security requirements in
discussions with new clients:

So, we are giving the Product Owners some
more insight into why you would do this stuff,
and where the value is. (I1)

While we do not have evidence that the Threat Sales
activity generated value in every case, the experience of
Groups D and F, in particular, indicate that the activity of
getting developers to consider the positive benefits of security

FIGURE 4: CHANGES IN ASSURANCE TECHNIQUE USAGE FOR ALL GROUPS

Axis Title

Automated Pen Testing

Automated Static Analysis

Configuration Review

Code Review

Penetration Testing

Threat Assessment

Product Negotiation

Contingency Plan

Security Champion

Standardisation

On-the-job Training

Further Workshops

D E F G H I J K

Size Key: Final Engagement

Established

Using

Planned

Aware

Colour Key: Impact of Intervention

No change

Moderate change

Major change

D E F G H I J K
Automated Pen. Test.

Auto. Static Analysis

Configuration Review

Security Code Review

Penetration Testing

Threat Assessment

Product Negotiation

Contingency Plan

Security Champion

Standardisation

On-the-job Training

Further Workshops

Axis Title

Automated Pen Testing

Automated Static Analysis

Configuration Review

Code Review

Penetration Testing

Threat Assessment

Product Negotiation

Contingency Plan

Security Champion

Standardisation

On-the-job Training

Further Workshops

D E F G H I J K

Size Key: Final Engagement

Established

Using

Planned

Aware

Colour Key: Impact of Intervention

No change

Moderate change

Major change

Established

Using

Planned

Aware

No change

Moderate

Major

Final
engagement:

Impact:

Axis Title

Automated Pen Testing

Automated Static Analysis

Configuration Review

Code Review

Penetration Testing

Threat Assessment

Product Negotiation

Contingency Plan

Security Champion

Standardisation

On-the-job Training

Further Workshops

D E F G H I J K

Size Key: Final Engagement

Established

Using

Planned

Aware

Colour Key: Impact of Intervention

No change

Moderate change

Major change

can help get resources allocated to security improvements. We
conclude, therefore, that the answer to RQ 4 is yes.

E. Skills Not Associated with Developers
Considering the second theory-based research question

RQ 5 “Can teams of developers produce both adequate risk
and impact assessments and benefit analyses with minimal
guidance?”, we found that, surprisingly, none of the teams
had any trouble with risk assessment. Even Group D, who are
producing proof of concept apps for companies and are not
therefore domain experts for their products, had little
difficulty:

We’ve identified huge risks that they need to
consider before they ever get anywhere near an
actual working product. (Participant, Group D)

Team E learned and took away the prioritization process:

We had a follow-on session afterwards where
we took everything away, … and sat down and
thought “what do we need to do next”. (E3)

For Group F, F1 produced a table of risks and impacts
based on their discussion. Group G had no problem with risk
assessments, since G1 and G2 were familiar with the
likelihood of attacks on the websites they managed. Group H
simply had their most expert members (H1, H3) identify the
most likely threats by placing asterisks on the flipchart. Group
I did similar. Group J had J1 and J2 (facilitators and also
security experts) do the assessment. Group K successfully
used a post-it approach, with very little facilitation, for the risk
assessment; with separate dot-voting to identify the most
likely and the most impactful threats.

In summary, all the groups found effective ways to assign
risk to each of the threats they identified.

The benefit analysis outcomes from Threat Sales
workshop are shown in column 4 of Table 3. They were also
surprisingly satisfactory, given the lack of specific training
given the group.

It seems reasonable to conclude that the developers in the
groups had the necessary skills and insights required, and thus
that the answer to RQ 5 is affirmative.

VI. DISCUSSION
As Section IV explains, Design-Based Research (DBR)

has been used mostly in the field of education research. While
the creation of an intervention in the field of Developer-
centred Security is arguably a form of education, we are not
aware of other researchers using DBR in this field. In this
research, as Section V shows, DBR has provided an effective
basis for trialling, evaluating, and deducing theory from the
use of an intervention.

A. Outcomes from Workshops
The workshops concentrated on two aspects of security:

using Threat Assessment to help participants focus their
security effort on the appropriate threats; and using Threat
Sales to present security requirements as positive
opportunities to product management. It was therefore
encouraging that the results in Figure 4 show that all the
groups completed the intervention with an understanding of
Threat Assessment and Stakeholder Negotiation, and, in a
large majority of cases, incorporated those techniques into
their ways of working. For half the groups involved this
represented a large improvement over their previous practice.

Given the purpose of the new intervention package was to
encourage others to use the package and lead sessions, it was
encouraging that two companies did so; it was disappointing
that a larger number had not got around to it after several
months, even if they expressed intentions of doing so.

B. Variation of Results with Different Situations
We highlight some points of interest from the

categorizations of impact in Table 4:

The intervention was adopted most by medium sized
companies: such companies will have latent security

TABLE 4: IMPACT AVERAGED BY GROUP ATTRIBUTES

All Org. size Facilitation Sec. maturity Prod.mgr Facilitator
Large Med. Small Dom. Listen. Peer High Med Low Yes No Mgr. Sec. Dev.

Count in each category 8 3 3 2 2 4 2 2 4 2 4 4 4 2 2
Automated Pen Testing 0.5

1.3

1.

1.

1.

1.

Auto. Static Analysis 0.6 0.3 1. 0.5

1.3

0.8 1. 1. 0.3 1.3

Configuration Review 0.1 0.3

0.5

0.5

0.3

0.5

Code Review 0.4

0.3 1.

0.5 0.5

0.3 1. 0.5 0.3 0.5

0.5
Penetration Testing

Threat Assessment 1.6 1. 2.3 1.5

2.3 2.

1.8 3. 2.3 1. 3.

0.5
Product Negotiation 2.1 2.7 2. 1.5 2. 2.3 2. 2. 1.5 3.5 2. 2.3 3. 2. 0.5
Contingency Plan 0.4

1.5

0.8

1.5 0.8

0.8

Security Champion 0.3

0.7

1.

0.5

0.5

0.5

Standardisation 0.1

0.5

0.3

0.3

0.3

0.5
On-the-job Training 1.

1.3 2.

1. 2.

1.5 1. 2.

1.5

1.

Further Workshops 1.3 0.3 2.3 1. 0.5 1. 2.5 0.5 2.3

1.8 0.8 1.3 0.5 2.
Average over all 0.7 0.4 0.9 0.8 0.3 0.9 0.8 0.3 0.8 0.9 1. 0.4 1.1 0.3 0.4

expertise but no formal security function, making this
intervention particularly useful for them.

Sessions facilitated by managers appear more effective
than those facilitated by developers or security specialists:
This may reflect better training in facilitation-related skills
given to managers; it may also reflect greater power amongst
managers to introduce new techniques.

The presence or absence of a product manager in the
group had negligible effect on the adoption of Stakeholder
Negotiation: This was a surprise. The author had expected a
product manager would encourage emphasis and therefore
improvements in this, but the results do not show that effect.
The presence of a product manager did, however, encourage
the incorporation of other assurance techniques.

Peer-based learning appears as effective as more active
forms of facilitation: This offers the possibility of modifying
the intervention workshops to be entirely peer-to-peer
learning; making fewer demands on future facilitators.

Of course, given the sample size of 8 groups, these results
are merely indicative and not statistically valid as indicators.

C. Skills Not Associated with Developers
Section V.E’s answer to RQ 5 was that, surprisingly,

developers found it easy both to assess the impact and
likelihood of successful threat activities; and to think up ways
of ‘selling’ security improvements to Product Management.

While we have no way of validating their results, we
believe that their assessments will be sufficient for the
purpose:

• With risk assessment, the consequence of getting a risk
assessment wrong is much less than the consequence of
not doing it at all.

• With sales, where Product Managers were present, they
engaged very well with the process and found it valuable.
This suggests that others may also find the results useful.

We conclude that there is no need in future interventions
to provide more sophisticated training in either risk
assessment or sales; most teams will be able to carry out both
workshops without it.

D. Threats to Validity
We have considered the following types of validity:

Internal Validity: Were the measured improvements
caused by the workshops? Since the majority of improvements
were in areas directly addressed by the workshops (Figure 4),
it is reasonable to assume a causal relationship here.

Conclusion Validity: Can we derive convincing theory
from the results? The Krippendorff’s Alpha of 0.46 indicates
only moderate agreement between developers, suggesting that
the measurements depend more than we would like on the skill
and bias of the coders: it was difficult to identify initial
adoption of Assurance Techniques since the Entry interviews
did not ask explicitly about techniques. The sample size of 8

workshops is insufficient for a test of statistical significance;
therefore, the results here should be taken as an indication
rather than definite proof of the workshops’ effectiveness.

Construct Validity: Does the experimental model reflect
reality? The research measured the self-reported activities and
knowledge; clearly it would be better to measure the resulting
process or the security of the artefacts produced.
Unfortunately, the latter is practically impossible in
engagements of this kind, so this remains a limitation of this
kind of study. A further limitation is the granularity of the
adoption measurements used. Automatic Static Analysis, for
example, could range from a simple pattern-based solution to
a complex tool integrated into the CI system. Future studies
might differentiate types of adoption.

External Validity: How far can we generalize the results?
Participant companies were self-selected; the variety of the
teams involved suggests that the workshops will work in many
situations, but this research provides an indication rather than
proof.

E. Future Work
The package used in these trials has a practical limitation:

it requires time input from a researcher to train the facilitators.
This severely restricts its scalability to a wider audience of
development teams, and hence the academic impact it can
have.

However, the success of the workshops as peer-to-peer
exercises, where the facilitator only provided instructions,
opens the possibility of a new version of the intervention that
needs no direct training, and therefore can scale without limit.

VII. CONCLUSIONS
Recall the research question for this work: RQ 1 “What

aspects of an intervention to a software development team are
effective at improving security, and why?”

The trials showed that the intervention led to
improvements in security process or understanding with all
the groups who used it except the most security expert one.
All three workshops were effective at helping improving
security; developers proved adept even at risk assessment and
creating positive representations of security improvements
(Section VI.C).

The intervention had most impact where the workshops
were facilitated by managers (Section VI.B), and were
adopted most by medium sized companies; those that will
have latent security expertise but no formal security function.

The findings from this project promise a new version of
the package that can scale without limit and pave the way to
the creation and trial of such a new package (Section VI.E).
The lead author is currently working on a project to do exactly
that.

VIII. BIBLIOGRAPHY
[1] Assal, H. and Chiasson, S. Security in the Software Development

Lifecycle. Symposium on Usable Privacy and Security - SOUPS,

USENIX Association (2018), 281–296.

[2] Bakker, A. Design Research in Education: A Practical Guide for Early
Career Researchers. Routledge, Abingdon, 2018.

[3] Barab, S. and Squire, K. Design-Based Research: Putting a Stake in the

Ground. Journal of the Learning Sciences 13, (2004).

[4] Beecham, S., Baddoo, N., and Hall, T. Motivation in Software

Engineering: A Systematic Literature Review. Information and
Software Technology 50, 9 (2008), 860–878.

[5] Bell, L., Brunton-Spall, M., Smith, R., and Bird, J. Agile Application
Security: Enabling Security in a Continuous Delivery Pipeline.

O’Reilly, Sebastopol, CA, 2017.

[6] Bessey, A., Engler, D., Block, K., et al. A Few Billion Lines of Code

Later. Communications of the ACM 53, 2 (2010), 66–75.

[7] Brown, A.L. Design Experiments : Theoretical and Methodological

Challenges in Creating Complex Interventions in Classroom Settings.

Journal of the Learning Sciences 2, 2 (1992), 141–178.

[8] Caputo, D.D., Pfleeger, S.L., Sasse, M.A., Ammann, P., Offutt, J., and

Deng, L. Barriers to Usable Security? Three Organizational Case

Studies. IEEE Security and Privacy 14, 5 (2016), 22–32.

[9] Collins, A. Toward a Design Science of Education. In New Directions
in Educational Technology. Springer, 1992, 15–22.

[10] Conradi, R. and Dybå, T. An Empirical Study on the Utility of Formal

Routines to Transfer Knowledge and Experience. ACM SIGSOFT
Software Engineering Notes 26, 5 (2001), 268–276.

[11] Davison, R.M., Martinsons, M.G., and Kock, N. Principles of

Canonical Action Research. Information Systems Journal 14, 1 (2004),

65–86.

[12] Dybå, T. An Empirical Investigation of the Key Factors for Success in

Software Process Improvement. IEEE Transactions on Software
Engineering 31, 5 (2005), 410–424.

[13] Ejersbo, L.R., Engelhardt, R., Frølunde, L., Hanghøj, T., Magnussen,

R., and Misfeldt, M. Balancing Product Design and Theoretical

Insights. In The Handbook of Design Research Methods in Education.

Routledge, 2008, 149–164.

[14] Fisher, R., Ury, W.L., and Patton, B. Getting to Yes: Negotiating
Agreement Without Giving In. Penguin, 2011.

[15] Gagné, M. and Deci, E.L. Self-Determination Theory and Work

Motivation. Journal of Organizational Behavior 26, 4 (2005), 331–362.

[16] Gwet, K.L. Handbook of Inter-Rater Reliability: The Definitive Guide
to Measuring the Extent of Agreement Among Raters. Advanced

Analytics LLC, 2014.

[17] Hall, T., Sharp, H., Beecham, S., Baddoo, N., and Robinson, H. What

Do We Know about Developer Motivation? IEEE Software 25, 4

(2008), 92–94.

[18] Hoadley, C., Baumgartner, E., Bell, P., et al. Design-Based Research:

An Emerging Paradigm for Educational Inquiry. Educational
Researcher 32, 1 (2002), 5–8.

[19] ISO/IEC. 21827:2008 - Systems Security Engineering - Capability

Maturity Model. 2008, 144.

[20] van der Linden, D., Anthonysamy, P., Nuseibeh, B., et al.

Schrödinger’s Security: Opening the Box on App Developers’ Security

Rationale. International Conference on Software Engineering - ICSE,

IEEE (2020).

[21] Lopez, T., Sharp, H., Tun, T., Bandara, A., Levine, M., and Nuseibeh,

B. Hopefully We Are Mostly Secure: Views on Secure Code in

Professional Practice. Workshop on Cooperative and Human Aspects of
Software Engineering - CHASE, IEEE (2019), 61–68.

[22] Lopez, T., Sharp, H., Tun, T., Bandara, A., Levine, M., and Nuseibeh,

B. Talking about Security with Professional Developers. Workshop on
Conducting Empirical Studies in Industry - CESSER-IP, IEEE

Computer Society (2019).

[23] Microsoft. Microsoft Security Intelligence Report, Volume 23. 2018.

https://info.microsoft.com/rs/157-gqe-382/images/en-us_cntnt-ebook-

sir-volume-23_march2018.pdf.

[24] Nguyen, D.C., Wermke, D., Backes, M., Weir, C., and Fahl, S. A Stitch

in Time: Supporting Android Developers in Writing Secure Code.

Conference on Computer and Communications Security - CCS, ACM

(2017).

[25] Poller, A., Kocksch, L., Türpe, S., Epp, F.A., and Kinder-Kurlanda, K.

Can Security Become a Routine? A Study of Organizational Change in

an Agile Software Development Group. Conference on Computer
Supported Cooperative Work - CSCW, ACM (2017), 2489–2503.

[26] RiskBased Security. Mid Year Data Breach Report. 2019, 1–14.

https://pages.riskbasedsecurity.com/hubfs/Reports/2019/2019 MidYear

Data Breach QuickView Report.pdf.

[27] Santos, P. and Travassos, G. Action Research Use in Software

Engineering: An Initial Survey. Symposium on Empirical Software
Engineering and Measurement - ESEM, IEEE (2009), 414–417.

[28] Shostack, A. Threat Modeling: Designing for Security. John Wiley &

Sons, 2014.

[29] Stack Overflow. Annual Developer Survey 2016.

https://insights.stackoverflow.com/survey/2016.

[30] Such, J.M., Gouglidis, A., Knowles, W., Misra, G., and Rashid, A.

Information Assurance Techniques: Perceived Cost Effectiveness.

Computers and Security 60, (2016), 117–133.

[31] Türpe, S., Kocksch, L., and Poller, A. Penetration Tests a Turning Point

in Security Practices? Organizational Challenges and Implications in a

Software Development Team. Workshop on Security Information
Workers - SIW, USENIX Association (2016).

[32] Veracode. State of Software Security Report Volume 9. 2018.

https://info.veracode.com/report-state-of-software-security-volume-

9.html.

[33] Wang, F. and Hannafin, M.J. Design-Based Research and Technology-

Enhanced Learning Environments. Educational Technology Research
and Development 53, 4 (2005), 5–23.

[34] Weir, Charles; Knight, Jack; Ford, N. Developer Security Essentials.

https://www.securedevelopment.org.

[35] Weir, C. The Agile App Security Game: Leader’s Instructions. 2018.

https://www.securedevelopment.org/resources/agile-security-game/.

[36] Weir, C., Becker, I., Noble, J., et al. Interventions for Long-Term

Software Security: Creating a Lightweight Program of Assurance

Techniques for Developers. Software - Practice and Experience,

October (2019), 275–298.

[37] Weir, C., Hermann, B., and Fahl, S. From Needs to Actions to Secure

Apps? The Effect of Requirements and Developer Practices on App

Security. 29th USENIX Security Symposium (USENIX Security 20),
(2020).

[38] Weir, C., Rashid, A., and Noble, J. Reaching the Masses: A New

Subdiscipline of App Programmer Education. Symposium on the
Foundations of Software Engineering Proceedings: Visions and
Reflections - FSE, ACM (2016).

[39] De Win, B., Scandariato, R., Buyens, K., Grégoire, J., and Joosen, W.

On the Secure Software Development Process: CLASP, SDL and

Touchpoints Compared. Information and Software Technology 51, 7

(2009), 1152–1171.

[40] Witschey, J., Xiao, S., and Murphy-Hill, E. Technical and Personal

Factors Influencing Developers’ Adoption of Security Tools. Workshop
on Security Information Workers - SIW, (2014), 23–26.

[41] Xiao, S., Witschey, J., and Murphy-Hill, E. Social Influences on Secure

Development Tool Adoption: Why Security Tools Spread. Conference
on Computer Supported Cooperative Work - CSCW, ACM (2014),

1095–1106.

[42] Xie, J., Lipford, H.R., and Chu, B. Why Do Programmers Make

Security Errors? IEEE Symposium on Visual Languages and Human
Centric Computing, (2011), 161–164.

[43] Yskout, K., Scandariato, R., and Joosen, W. Do Security Patterns

Really Help Designers? International Conference on Software
Engineering - ICSE, IEEE (2015), 292–302.

