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Abstract

We analyse predictions of future recruitment to a multi-centre clinical trial based

on a maximum-likelihood fitting of a commonly used hierarchical Poisson-Gamma

model for recruitments at individual centres. We consider the asymptotic accuracy

of quantile predictions in the limit as the number of recruitment centres grows

large and find that, in an important sense, the accuracy of the quantiles does

not improve as the number of centres increases. When predicting the number of

further recruits in an additional time period, the accuracy degrades as the ratio

of the additional time to the census time increases, whereas when predicting the

amount of additional time to recruit a further n+• patients, the accuracy degrades

as the ratio of n+• to the number recruited up to the census period increases. Our

analysis suggests an improved quantile predictor. Simulation studies verify that the

predicted pattern holds for typical recruitment scenarios in clinical trials and verify

the much improved coverage properties of prediction intervals obtained from our

quantile predictor. In the process of extending the applicability of our methodology,

we show that in terms of the accuracy of all integer moments it is always better to

approximate the sum of independent gamma random variables by a single gamma

random variable matched on the first two moments than by the moment-matched

Gaussian available from the central limit theorem.

Keywords: Asymptotic analysis; Asymptotic correction; Clinical trial recruitment; Multi-

centre clinical trial; Poisson process; Recruitment prediction interval.
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1 Introduction

randomised controlled trials represent the gold standard for evaluating the safety and efficacy of

a new healthcare intervention or treatment [Akobeng, 2005]. Such trials can require thousands

of patients, and so will typically recruit from tens or hundreds of centres. The timely recruitment

of patients is widely recognised as a key determinant of the success of a clinical trial [Carter,

2004]. Nonetheless, sources suggest as many as 86% of all clinical trials fail to reach their

required recruitment goals [Carlisle et al., 2015; Lamberti et al., 2012; Huang et al., 2018].

Failure to meet recruitment targets can have numerous negative implications, yet arguably the

most critical is inadequate statistical power. In such a scenario, there is an increased risk of

type II error, thus potentially preventing or delaying an effective treatment from being approved

[Treweek et al., 2013].

Recruitment of a patient to a clinical trial can be thought of as a three-stage process. Firstly,

some recruitment centres are initiated; more centres can be initiated as the trial progresses.

Secondly, a potential recruit is enroled at a given centre; after a lag, the potential recruit is

screened for suitability, and if suitable that patient is randomised onto a particular treatment.

Methods for predicting future recruitment usually model the probability of screening success

separately, so we focus on the second stage of the process.

Future recruitment is often predicted using deterministic methods, based on the number

already recruited up to that time, or historical data [Carter, Sonne, and Brady, 2005]. Such an

approach is inadequate due to the stochastic nature of the recruitment process, and a number

of stochastic models have been proposed.

Senn [1997] considers a Poisson-based model for a multicentre clinical trial where recruitment

follows a Poisson process with a fixed study-wide rate, λ � 0. The time to recruit a given number

of patients then follows a gamma distribution. The underlying assumption that recruitment

follows a Poisson process is well-accepted in the literature, with many articles exploring an

inhomogeneous model with a time-dependent rate [Carter, 2004, Carter et al., 2005, Tang et al.,

2012, Lan et al., 2019].

The basic Poisson model outlined above fails to incorporate variation in recruitment rate

across centres, as well as the uncertainty in the rate estimate. Anisimov and Fedorov [2007]

propose a random effects model in which recruitment follows a homogeneous Poisson process

within each centre, with the centre-specific rates viewed as a sample from a gamma distribution.

The time to recruit a given number of patients then follows a Pearson type VI distribution, whilst

the number recruited in a given time is negative binomial. This model accounts for staggered

centre initiation times and provides a method for predicting recruitment for new centres entering
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the trial. Citations of Anisimov and Fedorov [2007] on Google Scholar show that it has also been

used by major pharmaceutical companies and in statistical software to plan drug production

and distribution across centres during clinical trials. Further details of the model will be given

in Section 2.

The Anisimov and Fedorov model (henceforth AF) has been developed and extended in

numerous directions. For example, Bakhshi, Senn, and Phillips [2013] suggest an extra level of

hierarchy to incorporate variation from trial to trial in the gamma distribution parameters, with

an aim to forecast recruitment for trials yet to begin. Mijoule, Savy, and Savy [2012] propose

a Pareto mixture distribution for the centre rates in place of the gamma. Further, Lan et al.

[2019] and Urbas, Sherlock, and Metcalfe [2020] both incorporate time-varying rates into the

AF model, whilst also incorporating parameter uncertainty using the Bayesian paradigm.

Alternative methods have been suggested for modelling patient recruitment outside the

Poisson approach, including Monte Carlo simulation [Abbas, Rovira, and Casanovas, 2007],

time series analysis [Haidich and Ioannidis, 2001], Brownian motions [Lai et al., 2001, Zhang

and Lai, 2011], and a nonparametric approach [Ying, Heitjan, and Chen, 2004].

We investigate future predictions based on a maximum likelihood fit of the AF model to

multi-centre recruitment data, where a total of N• patients has been recruited over C centres

by a census time, t. We then consider two prediction objectives, where prediction intervals are

required for either (1) the total number N+
• recruited over some additional time t+, or (2) the

total time T+ to obtain n+• additional recruits. In this section, for brevity, we focus on objective

(1); similar methods and results are obtained for objective (2).

Within the AF model, the distribution of the predicted number of recruits, eN+
• , has a

negative binomial distribution, which depends on the observed data via the maximum likelihood

estimates of the model parameters (MLEs); in contrast, the true number recruited, N+
• �

Poisson(λ•t
+), where λ• is the sum of the recruitment rates of the individual centres. Let bqp

be the pth quantile of eN+
• ; i.e., the predicted quantile. We first investigate Pp := P (N+

• � bqp)
in the limit as C ! 1, and empirically for finite C, and show that the key determinant

of the behaviour is the ratio t+/t. The desirable result of Pp = p is only recovered in the

limit as t+/t ! 0, whereas in more typical scenarios Pp can be very different from p. The

underlying reason for this is that the uncertainty in the MLEs is not being accounted for. Our

asymptotic approximation to Pp feeds in to a new methodology which allows us to produce

tractable prediction intervals, which have a coverage that is very close to that intended, and

with a fraction of the computational cost of any bootstrap-based scheme.

Our theory, and hence our adjusted interval, is derived under the assumption that all centres
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opened at the same time; however, sometimes this is not the case. For example, given a predicted

shortfall, perhaps based on our theory, it may be decided to open a new set of centres as well

as keeping the existing centres going. Alternatively, or in addition, the existing centres may

have been opened at different times. Guided by our theory, we provide an intuitive, tractable

methodology for creating a prediction interval in such cases and demonstrate its accuracy in

practice via extensive simulation studies.

Section 2 describes the AF model in detail, and Section 3.1 provides the asymptotic analysis

in the case where all centres opened at the same time and details the methodology for creating

prediction intervals with almost perfect coverage. Section 3.2 describes an empirical extension

to this methodology for situations where the centres opened at different times. Our results

and methods are verified via a detailed simulation study in Section 4, and then applied to a

clinical-trial recruitment data set in Section 4.3. We conclude in Section 5 with a discussion.

First, however, we define the notations that will be used throughout.

1.1 Notations

Let C be the number of centres, and for c = 1, . . . , C, let tc and Nc represent the time for which

centre c was open before the census time and number recruited in centre c during the time

tc. The shorthand N refers to the vector (N1, . . . , NC), we let N• :=
PC

c=1Nc, and when all

centres are open for the same time we denote that time by t. For Objective One, let t+ be the

additional time ahead at which predictions will be made, and let N+
c be the number recruited

in centre c in that time, with N+
• =

PC
c=1N

+
c . For Objective Two, let n+• be the additional

number of recruits sought and let T+ be the additional time taken to recruit this number. Table

1 below summarises these notations, and others that will be introduced later.

The negative binomial distribution of the number of successes until there are a failures when

the probability of success is p is denoted NB(a, p). We use the notation
p! and ) to indicate

convergence in probability and in distribution, respectively, and Φ to indicate the cumulative

distribution function of a N(0, 1) random variable.
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Table 1: Common notations used in this article. Objectives One and Two are abbreviated

to O1 and O2, respectively.

C # centres

t (global) census time

tc time centre c is open before census

Nc # recruits at centre c at census time

N•
PC

c=1 nc

nc realisation of Nc

n• realisation of N•

T+ time from census until n+
• new recruits

t+ realisation of T+ (O2) or specified additional recruitment time after census (O1)

N+
c # recruits at centre c during specified time t+

N+
•

PC
c=1N

+
c

n+
• realisation of N+

• (O1) or specified total # additional recruits required (O2)bqp estimated pth quantile for N+
•brp estimated pth quantile for T+

2 Model and prediction set up

2.1 Model, data and likelihood

The model assumes that the recruitment rate at centre c, for c = 1, . . . , C, is λc, where each λc

is drawn independently from

λc � Gam(α, β). (1)

Data for centre c are n1c , . . . , n
tc
c , nc :=

Ptc
s=1 n

s
c and n• =

PC
c=1 nc. The likelihood for centre c

is

L(α, β, θ;n1:tcc ) =

Z ∞
0

β�

Γ(α)
λ�−1 exp(�βλ)

tcY
s=1

λn
s
c

nsc!
exp(�λ)dλ

/ β�

Γ(α)

Z ∞
0

λ�+nc−1 exp[�λ(β + tc)]dλ

=
Γ(α+ nc)

Γ(α)

β�

(β + tc)�+nc
.

Hence, up to an additive constant, the log-likelihood given data nsc, s = 1, . . . , t, c = 1, . . . , C,
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is

`(α, β) = Cα log β �
CX
c=1

(α+ nc) log(β + tc)� C log Γ(α) +

CX
c=1

log Γ(α+ nc). (2)

Thus n = (n1, . . . , nC) is a sufficient statistic. In the special case where t1 = � � � = tC = t,

the second term in (2) reduces to �(Cα+ n•) log(β + t) and, as we shall see in Lemma 1, bα/bβ
depends on n only through n•.

2.2 Prediction

Since Ncjλc � Po(λctc), given a prior of Gam(bα, bβ) for λc and an observation of nc, the posterior

distribution for λc is Gam(bα + nc, bβ + tc). The distribution of λ• :=
PC

c=1 λc is not tractable

in general, but in the special case where t1 = � � � = tC = t, λ• � Gam(Cbα + n•, bβ + t). In this

case, since N+
• jλ• � Po(λ•t

+), marginalising over λ•, the predicted total recruitment in further

time t+ is

eN+
• � NB

�
Cbα+ n•,

t+bβ + t+ t+

�
, (3)

which has moments of

E
h eN+
•

i
=
Cbα+N•bβ + t

� t+ and Var
h eN+
•

i
=
Cbα+N•bβ + t

� t+ �
bβ + t+ t+bβ + t

. (4)

Alternatively, if the number of additional recruits is fixed at n+• then, T+jλ• � Gam(n+• , λ•),

so in the case where t1 = � � � = tC = t, the predicted further time eT+ to recruit these has a

Pearson VI distribution [e.g. Johnson, Kotz, and Balakrishnan, 1994] with a density of

f(et+) =
Γ(Cbα+ n• + n+• )

Γ(Cbα+ n•)Γ(n+• )

bβCb�+n•(et+)n
+
• −1

(bβ + t+ et+)Cb�+n•+n
+
•
. (5)

Thus eT+ has moments of:

E
h eT+

i
=

(bβ + t)n+•
Cbα+N � 1

and Var
h eT+

i
= E

h eT+
i
� (bβ + t)(Cα+N• + n+• � 1)

(Cα+N• � 1)(Cα+N• � 2)
. (6)

3 Asymptotic analysis and methodology

We consider the properties of the quantile estimates under repeated sampling, so that N is a

random variable, and bα and bβ are, therefore, random. We examine the probability under the

true data-generating mechanism that the quantity of interest, N+
• or T+, will be less than its

predicted quantile. This leads to a tractable formula for an alternative probability, p∗(p), such

that P (N+
• � bqp∗) � p or P (T+ � brp∗) � p, and hence to prediction intervals with close to the

intended coverage. In Section 3.1 we consider the scenario where all centres have been open for

the same time; an intuitive extension for the more general scenario is given in Section 3.2.
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3.1 All centres opened simultaneously

When all centres have been open for the same time,t, N � � Po(� � t) is the key (random)

summary of the data, instead of n� for the speci�c realisation; thus b� and b� are random.

Importantly, in this case b�= b� depends onN only through N � .

Lemma 1. When t1 = � � � = tC = t, the MLE for the likelihood in (2) satis�es b�= b� = N � =(Ct).

Proof. Set  = �=� ; from the invariance principle it is su�cient to show that b = N � =(Ct).

Substituting for � and ignoring terms only in � , (2) becomes:

`(�;  ) = � C� log  � (C� + N � ) log(�= + t)

= N � log  � (C� + N � ) log(� + t ):

Thus

@ ` =
N �


�

C� + N �

� + t
� t =

�
 (� + t )

(N � � Ct ) ;

which is zero (and a maximum for `) when  = N � =(Ct), as required.

We now state our main result.

Theorem 1. Consider an in�nite sequence of recruitment scenarios indexed by the number of

recruitment centres, C = 1 ; 2; : : : . In each scenario,C, after each centre has been opened for

a �xed common time t, (�; � ) is estimated from data N (C) by maximising (2). It is used in

(3) to estimate the pth quantile, q(C)
p , of the total number, N +( C)

� of recruits in an additional,

�xed time t+ ; it is also used in (5) to estimate the pth quantile, r (C)
p , of the time, T+( C) until

a further n+( C) recruits have been obtained. Denoting the quantile estimates asbq(C)
p and br (C)

p ,

respectively, the following results hold with Z � N (0; 1).

1.

lim
C!1

P
�

N +( C)
� � bq(C)

p j N (C)
�

D= �

( r
t+

t
Z + � � 1(p)

s

1 +
t+ =�

1 + t=�

)

:

However, for largeC, bq(C)
p =q(C)

p � 1 = O(1=
p

C); moreover

bq(C)
1� p=2 � bq(C)

p=2

q(C)
1� p=2 � q(C)

p=2

�

s

1 +
t+ =�

1 + t=�
:

2. If as C ! 1 , n+( C)
� =C ! a > 0,

lim
C!1

P
�

T+( C) � br (C)
p j N (C)

�
D= �

( r
a�
�t

Z + � � 1(p)

s

1 +
a=�

1 + t=�

)

:
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However, br (C)
p =r(C)

p � 1 = O(1=
p

C); moreover

br (C)
1� p=2 � br (C)

p=2

r (C)
1� p=2 � r (C)

p=2

�

s

1 +
�=a

1 + t=�
:

Theorem 1 is proved in Appendix A. We discuss the consequences forN +
� in detail; those

for T+ are analogous.

Theorem 1 con�rms the intuition that the width of any con�dence interval estimated using

(b�; b� ) is wider than that which would be obtained were the total intensity, � � , known precisely;

however it also shows that the ratio approaches 1 as the census time increases. More importantly,

for the median, Theorem 1 suggests thatP(N +
� � bq0:5) � �(

p
t+ =tZ ), so that when t+ � t ,

this probability is approximately uniformly distributed on [0 ; 1]. By contrast, when t+ << t the

probability concentrates at � 0:5 as is desirable, and whent+ >> t the probability concentrates

around 0 and 1 each with a mass of 0:5, which is not desirable. The theoretical densities for

P(N +
� � bq0:5) as a function of t (with t+ = 400 � t) are given in Figure 1. For more general

quantiles, with t �xed, as t+ ! 0, the probability approaches a point mass atp as desired,

but as t+ ! 1 the same concentration around 0 and 1 happens, however, the mass on 1 is

P
n

Z � �
p

t=(� + t)� � 1(p)
o

= � f
p

t=(� + t)� � 1(p)g.

Figure 1: Theoretical density ofP(N +
� � bq0:5) as a function of census time,t, with

t+ = 400 � t, � = 2, � = 150 and C = 150.

Despite this decidedly unintuitive behaviour of the quantile probabilities, Theorem 1 also
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shows that the relative error in the quantile estimate decays in proportion to 1=
p

C as expected.

The resolution of this apparent contradiction lies in the fact that whilst the quantiles for N +
� and

eN +
� themselves areO(C), both the discrepancy between themand the widths of the distributions

are O(
p

C). The discrepancy between the quantiles also decreases to 0 ast+ =t # 0, so depending

on this ratio the two distributions can closely overlap or almost entirely diverge (t+ >> t ).

Thus, even though the point estimate of a quantile may be accurate relative to the size of

the quantile (O(
p

C) compared with O(C)), unless t+ << t , prediction intervals will not, in

general, provide the intuitive and desirable coverage properties:P(bq0:05 � N +
� � bq0:95) � 0:9,

for example. However, the (asymptotically) correct coverage can be recovered by adjusting the

interval, based on Theorem 1, as we now describe.

Theorem 1 suggests that to obtain a predictive value with the true (asymptotic in C)

probability p of it not being exceeded, we must target a valuep� such that

p = E

"

�

( r
t+

t
Z + � � 1(p� )

s
� + t + t+

� + t

)#

:

Writing b for � � 1(p� )
p

(� + t + t+ )=(� + t) and letting Z 0 � N(0; 1) be independent ofZ , the

right hand side may be rewritten as

P

 

Z 0 �

r
t+

t
Z + b

!

= P

 r

1 +
t+

t
N(0; 1) � b

!

= �

0

@ b
q

1 + t+

t

1

A :

Rearranging gives r
t + t+

t
� � 1(p) =

s
� + t + t+

� + t
� � 1(p� );

so

p� = �

( s
(� + t)( t + t+ )
t(� + t + t+ )

� � 1(p)

)

: (7)

In practice we do not know � , and necessarily substitute b� for this value. The estimator b�

is consistent for � , and so we might expect this approximation to be reasonable. Section 4.2

provides empirical veri�cation that adjustments based on this approximation lead to substantial

improvements in coverage.

3.2 Di�erent centre opening times

We now consider the scenario wheret1 = � � � = tC does not hold. In this case the posterior for

� � is intractable and, hence, so are the distributions for eN +
� and eT+ . Furthermore, Lemma 1

does not hold.
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Although the distribution of � � is intractable, its moments are not:

E [� � ] =
CX

c=1

b� + nc

b� + tc
and Var [� � ] =

CX

c=1

b� + nc

( b� + tc)2
:

Theorem 2. Let X 1; : : : ; X n be independent random variables withX i � Gam(� i ; � i ). De�ne

Sn =
P n

i =1 X i , � n = E[Sn ] and � 2
n = Var[Sn ]. Consider two approximations to Sn obtained by

matching the �rst two moments:

Z � N(� n ; � 2
n )

G � Gam(�; � );

with �=� = � n and �=� 2 = � 2
n . Denoting the j the cumulants of Sn , Z and G by � Sn

j , � Z
j and

� G
j , respectively, 0< � Sn

1 = � Z
1 = � G

1 = � n and 0 < � Sn
2 = � Z

2 = � G
2 = � 2

n by design, and the

following holds for all j � 3:

0 = � Z
j < � G

j � � Sn
j :

Theorem 2 is proved in Appendix B. Since the moment generating function of a random

variable is M (t) = exp f K (t)g, where K (t) is the cumulant generating function, the coe�cient

of tn in M (t) is a linear combination products of the cumulants � 1; : : : ; � n where all coe�cients

are positive. This immediately leads to the following:

Corollary 1. With Sn , Z and G as de�ned in Theorem 2, E[Z j ] = E[Gj ] = E[Sj
n ] for j = 1 ; 2,

and for all integer j � 3,

E[Z j ] < E[Gj ] � E[Sj
n ]:

Theorem 2 and Corollary 1 show that a moment-matched gamma approximation toSn is, in

a sense, strictly better than the moment-matched Gaussian approximation available through the

central limit theorem. We, therefore, make the approximation [see also Lemma 2.2 in Anisimov,

2011] that

� �
D
� � �

� � Gam(Cb� + n�
� ; b� + t � );

where n�
� and t � are chosen so that the �rst two moments of � �

� match those of � � . Figure C.1

in Appendix C, and the accompanying text, demonstrate the accuracy of this approximation

for two scenarios relevant to trial recruitment that we will describe in Section 4.2.

The posterior distribution for � �
� is exactly that which would arise given the Gam(Cb�; b� )

prior if each centre had been open for the same time oft � and a total of n�
� patients had

been recruited. Thus, if the MLEs from this `data', b� � and b� � were to satisfy b� � = b� and
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b� � = b� then the theory from Section 3.1 would follow through exactly. In reality, whatever

the partitioning of n�
� across centres, the data would typically lead to slightly di�erent MLEs

b� � 6= b� and b� � 6= b� ; nevertheless, in the proof of Theorem 1 the most important aspect of the

MLEs is their ratio. From Lemma 1, b� � =b� � = n�
� =Ct� , and empirical comparisons ofn�

� =Ct�

against b�= b� (see Appendix C) showed a relative error of less than 0:1%.

The methodology for constructing prediction intervals for either eN +
� or eT+ then proceeds

as in Section 3.1, usingb� and b� under the assumption that � � � � �
� .

4 Empirical veri�cation of theory and methodology

Simulations were carried out to test the asymptotic theory and methods proposed in this paper

for �nite numbers of centres, C. A large number (20000 unless otherwise stated) of realisations

of the parameters � 1; : : : ; � C , and hence the sample (n1; : : : ; nC ) were simulated for a given

set of parameter values. For each realisation, the parameters� and � were estimated using

maximum likelihood and the quantile of interest, qp or rp was estimated. Either P(N +
� � bqp) or

P(T+ � brp) was then calculated exactly using the known (simulated)� 1; : : : ; � C . The results

outlined below will primarily focus on predicting N +
� .

Unless speci�ed otherwise, the following parameter values were used:� = 2, � = 150,

C = 150, t = 200. The latter two values are the defaults used when considering varying census

times and centre numbers respectively.

When predicting N +
� , the total trial length was set to � = t + t+ = 400, since with the

default C, E [N � + N +
� ] = C(�=� )( t + t+ ) = 800, a reasonable size for a Phase III clinical trial.

Furthermore, the census time t was chosen fromT1 = f 50; 100; 150; 200; 250; 300; 350g and

the number of centres, C, was chosen fromC1 = f 20; 50; 100; 150; 200; 250; 300; 400g. When

examining predictions of T+ we �xed n+
� = 200 and selectedt 2 T2 = f 50; 100; 150; 200; 300;

500; 1000g and C 2 C2 = f 20; 50; 100; 150; 200; 300; 500; 1000g.

When conducting simulations with varying number of centres, we set� = C to maintain

a �xed expected number of recruits per unit time. In Appendix D.1 we explore an alternative

scenario where� = 150 is �xed as C varies.

4.1 Veri�cation of Theorem 1

Figure 2 shows the empirical distribution of P(N +
� � bqp) over repeated simulation and, hence,

estimates bqp, for the median, p = 0 :5. The left panel varies the census timest 2 T1 , whilst

the right panel �xes t (and hencet+ = � � t) and varies the number of centres,C 2 C1 . The
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Figure 2: Estimated density (over repeated sampling) ofP(N +
� � bq0:5) for each t 2 T1

with t+ = 400 � t (left) and for eachC 2 C1 with t = t+ = 200 and � = C (right).

shape of the density function forP(N +
� � bqp) depends on the ratio oft+ =t and shows very little

variation with C, just as described in Section 3.1, and matching almost perfectly the relevant

theoretical curves in Figure 1. In particular, when t = t+ , as in all cases in the right panel, the

distribution is very close to uniform, empirically verifying the, perhaps unintuitive, result that

increasing the number of centres in the trial, thus increasing the sample size upon which the

MLEs are based, does not a�ect the accuracy of the quantile estimates. The theory predicts

that the lines in the right panel should be horizontal; however, there is a slight positive gradient.

This is because the theory is based on a continuous approximation whereasN +
� is a discrete

random variable. The density function for P(N +
� < bqp) (not shown) exhibits a slight negative

gradient, supporting this explanation.

Figure 3 repeats Figure 1 and the left panel of Figure 2 but for thep = 0 :25 quantile. Again,

the empirical results match the theory almost perfectly. As with p = 0 :5, the estimate improves

with increasing census time, but as predicted in Section 3.1, whent � t+ , the mass is now not

evenly distributed between the regions close to 0 and close to 1.

When predicting quantiles for T+ , Theorem 1 suggests that the accuracy of the quantile

is primarily dependent on the ratio of n+
� =n� . Thus with a �xed n+

� and t, and with � = C,

there is essentially no change in the prediction accuracy; Figure 4 captures the close agreement

between the theoretical predictions and empirical results in this case.
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