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ABSTRACT 
Single multiplicative neuron artificial neural networks have different importance than many other 
artificial neural network models because they do not have complex architecture problem, too 
many parameters and they need more computation time to use. In single multiplicative neuron 
artificial neural network, it is assumed that there is a one data generation process for the time 
series. However, using a single model for all observations of time series may have misleading 
results. Many time series need an assumption that they have two data generation process or more. 
Based on this idea, the threshold model structure can be employed in a single multiplicative 
neuron model artificial neural network for taking into considering data generation processes 
problem. In this study, a new artificial neural network type is proposed and it is called a threshold 
single multiplicative neuron artificial neural network. It is assumed that time series have two data 
generation processes according to the architecture of single multiplicative neuron artificial neural 
network. Training algorithms are proposed based on harmony search algorithm and particle 
swarm optimization for threshold single multiplicative neuron artificial neural network. The 
proposed method is tested by various time series data sets and compared with well-known 
forecasting methods by considering different error measures. Finally, the performance of the 
proposed method is evaluated by a simulation study. 
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1. Introduction 
 
Artificial neural networks (ANNs), one of the commonly used artificial intelligence 
methods; are based on mathematical modelling of the learning process inspired by the 
human brain. ANNs are the structures formed by artificial neural neurons coming 
together. In general, ANNs have three layers: the input layer, hidden layer and the output 
layer. All layers have a significant effect on the performance of the network and 
especially the hidden layer has special importance since its number cannot be determined 
precisely. Based on this problem, Yadav et al. (2007) proposed the single multiplicative 
neuron model artificial neural networks (SMNM-ANN). In the studies about SMNM-
ANN, the model obtained from the network is only a single model and this situation can 
be accepted when time series is stationary. But a time series is not always stationary. It is 
not possible to encounter a stationary time series in real life. The time series include some 
components such as trend or/and seasonality. It is not realistic to explain and analyse this 
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type of time series with a single model. Besides, using a single model assumption may 
have misleading results.  

In this study, unlike the other studies about SMNM-ANN, a threshold value is used to 
obtain the output of the SMNM-ANN. With this obtained threshold value, it is determined 
which weight and bias values will be used to obtain the output of the system. The 
proposed new artificial neural network is called a threshold single multiplicative neuron 
artificial neural network (TS-SMNM-ANN). In the training of TS-SMNM-ANN, to find 
the optimum weight, bias and threshold values, harmony search algorithm (HSA) 
proposed by Geem et al. (2001) and particle swarm optimization (PSO) proposed by 
Kennedy and Eberhart (1995) are used separately.  

Although ANN is a machine learning algorithm, it is a nonlinear regression model. 
Just like nonlinear models, the parameters of it can be estimated with the Levenberg 
Marquart algorithm. In this study, the obtained model is a piecewise non-linear regression 
model and it has been focused on point estimation. 

One of the novelties of the proposed method is that two different models were obtained 
with the proposed method, unlike many ANN models. Moreover, the performance 
measures show that using two models give better analyse results than many artificial 
neural network models with a single model. 

To analyse the performance of the proposed method, Australian Beer Consumption 
(AUST) time series data between the years 1956 and 1994, Turkey Electricity 
Consumption (TEC) data observed monthly between the first month of 2002 and last 
month of 2013 and Taiwan Future Exchange (TAIFEX) data with observations between 
03.08.1998 and 30.09.1998 are analysed with both proposed methods and many methods 
proposed in the literature. Finally, a simulation study is made for the evaluation of the 
proposed method. 

The rest part of the paper can be outlined as below: The literature review of SMNM-
ANN is given in the second section of the paper. The third section is about HSA and the 
fourth section is about PSO. The proposed two training algorithms named threshold single 
multiplicative neuron model artificial neural networks with HSA (TS-SMNM-ANN-
HSA) and threshold single multiplicative neuron model artificial neural network with 
PSO (TS-SMNM-ANN-PSO) are given step by step with details in section five. Section 
six presents the results obtained from both proposed methods with some other methods 
proposed in the literature and also a simulation study is made in section seven. Finally 
section eight presents conclusions and discussions. 

 
2. Literature Review 
 
As mentioned before, SMNM-ANN was proposed by Yadav et al. (2007) and it is 
frequently used in many fields and especially in forecasting problems in recent years. 
SMNM-ANN does not include the determination of hidden layer unit number problem 
and it has both reasonable calculation time and superior forecasting performance. Popular 
areas where SMNM-ANN is used and the studies about these areas were summarized 
below. 

There are many studies use for forecasting aim, which is the most frequently used area, 
for SMNM-ANN. Zhao and Yang (2009) proposed a method that the training of SMNM-
ANN was done by PSO for the time series forecasting problem. Worasucheep and 
Chongstitvatana (2009) used a multi-strategy differential evolution algorithm (DEA) for 
financial prediction with SMNM-ANN. Wu et al. (2013) used online training algorithms 
based on SMNM-ANN for energy consumption estimation. Henao et al. (2013) proposed 
a hybrid method uses a combination of the SARIMA and SMNM-ANN to estimate 



electricity demand. Ilter et al. (2014) showed the effects of differencing and transforming 
in SMNM-ANN for forecasting. Wu et al. (2015) used SMNM-ANN for hourly wind 
speed estimation. Cui et al. (2015) proposed a new training algorithm for SMNM-ANN 
with firefly optimization algorithm for time series forecasting problem. Bas (2016) used 
differential evolution algorithm (DEA) for the training of SMNM-ANN in time series 
forecasting problem. Bas et al. (2016a) used the artificial bat algorithm (ABA) for the 
training of SMNM-ANN in time series forecasting problem.  Egrioglu et al. (2017) used 
a hybrid forecasting method based on exponential smoothing and SMNM-ANN for stock 
exchange data sets. Cagcag Yolcu et al. (2018) proposed an SMNM-ANN with the 
autoregressive coefficient for time series forecasting. In Cagcag Yolcu et al. (2018), the 
weights and biases of SMNM-ANN were obtained by way of autoregressive equations. 
Kolay (2019) used sine cosine algorithm for the training of SMNM-ANN for time series 
forecasting problem.  

There are some studies use SMNM-ANN in fuzzy time series methods. Aladag (2013) 
used SMNM-ANN to determine fuzzy relations in a fuzzy time series model. Cagcag 
Yolcu (2013) proposed a hybrid fuzzy time series approach based on fuzzy clustering and 
SMNM-ANN. Egrioglu et al. (2014) proposed a fuzzy time series method on SMNM-
ANN and membership values. Yolcu (2017) proposed a new high order multivariate 
fuzzy time series forecasting model. In this model, SMNM-ANN was used to define 
multivariate fuzzy relations. Cagcag Yolcu and Lam (2017) proposed a combined robust 
fuzzy time series method uses SMNM-ANN to determine fuzzy relations. Cagcag Yolcu 
and Alpaslan (2018) proposed a hybrid fuzzy time series model uses SMNM-ANN.  

There are also some studies use SMNM-ANN for different aims. Burse et al. (2010) 
proposed an improved backpropagation (BP) algorithm to avoid local minima in SMNM-
ANN. Kolay et al. (2016) used SMNM-ANN for the classification of some data sets and 
compared it with some ANNs types. Kandpal and Ashish (2017) compared SMNM-ANN 
with multilayer perceptron for classification.  Basiouny et al. (2017) used SMNM-ANN 
and PCA algorithms for Wi-Fi fingerprinting for the indoor positioning system. Kandpal 
and Mehta (2019) and Sharma et al. (2019) used SMNM-ANN for classification. Nigam 
(2019) used SMNM-ANN in reinforcement learning.  

In all these studies mentioned by the SMNM-ANN, the model obtained at the end of 
the training process is only a single model and root mean square error (RMSE) and/or 
mean absolute percentage error (MAPE) criteria are generally used as error metrics in 
these studies. The advantages and disadvantages of the proposed method can be given as 
follows. 

 
• The proposed method in this paper is the first method for SMNM-ANN uses a 

threshold mechanism. 
• The proposed method can be used when a time series has a trend or/and seasonality. 
• The proposed method uses HSA and PSO artificial intelligence optimization 

techniques for the training of SMNM-ANN instead of using a derivative-based method 
such as Levenberg Marquardt. 

• The proposed threshold mechanism can be adapted to the many artificial neural 
network models. 

• Using two models instead of a single model increase the number of parameters to be 
optimized. 

 
 
 
 



3. Harmony Search Algorithm 
 
HSA was proposed by Geem et al. (2001) and it is an optimization algorithm based on 
the principle of obtaining the best harmonic melody with the notes played by musicians 
in an orchestra. While the aesthetic quality of notes and tones played with different 
instruments is improved by practising in music studies, this improvement in function 
solution is achieved by successive iterations. The HSA aims to investigate whether the 
solution vector (harmony) obtained by certain updates is better than the worst solution in 
the memory or not. If the obtained solution vector is better than the worst solution vector 
in the harmony memory according to the objective function, the obtained solution vector 
is replaced by the worst solution vector, otherwise, it is held in the harmony memory. The 
HSA is given step by step in Algorithm 1. 
 
Algorithm 1. The steps of HSA 
 
Step 1. Determination of algorithm parameters 
The parameters to be used in HSA are as follows. 
𝐻𝐻𝐻𝐻: Harmony Memory 
𝐻𝐻𝐻𝐻𝐻𝐻: Harmony Memory Search 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻: Harmony Memory Considering Rate 
𝑃𝑃𝑃𝑃𝐻𝐻: Pitch Adjusting Rate 
𝑛𝑛: The number of variables 
Step 2. Creating harmony memory 
 
HM for the HSA is created as in Equation (1). 

          𝐻𝐻𝐻𝐻 = �
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Here, 𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1,2, …𝐻𝐻𝐻𝐻𝐻𝐻 ; 𝑗𝑗 = 1,2,⋯ ,𝑛𝑛 is expressed as the note value in the musician's 
memory and generated randomly. For example; 𝑥𝑥12 is the value of the first note of the 
second musician's memory. In HSA, each solution vector is represented by 𝑥𝑥𝑖𝑖′, 𝑖𝑖 =
1, 2,⋯ ,𝐻𝐻𝐻𝐻𝐻𝐻. There are HMS solution vectors in HSA. The representation of the first 
solution vector is given in Equation 2.  
 

                                  𝑥𝑥1′ = [𝑥𝑥11, 𝑥𝑥12,⋯ , 𝑥𝑥1𝑛𝑛]          (2) 
 

Step 3. Calculation of objective function values 
 
The objective function values are calculated for each randomly generated solution vector 
as in Equation (2). Here, 𝑓𝑓(𝑥𝑥1′) represents the value of the objective function calculated 
for the first solution vector. 
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Step 4. Developing the new harmony 
 
The probability of 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 takes a value between 0 and 1 and 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is the probability of 
selecting a value from the existing values in the 𝐻𝐻𝐻𝐻, (1 − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) is the ratio of selecting 
a random value from the possible value ranges. The value of the first decision variable 
(𝑥𝑥𝑖𝑖1𝑛𝑛𝑛𝑛𝑛𝑛) for the new vector is selected from any value within the specified 𝐻𝐻𝐻𝐻 range. 
Accordingly, the new harmony is obtained with the help of Equation (4). 
 

        𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = �  𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 ∈ �𝑥𝑥𝑖𝑖𝑖𝑖; i = 1, ,2,⋯ , HMS� rnd < HMCR
𝑈𝑈(0,1)𝑥𝑥(𝑚𝑚𝑚𝑚𝑥𝑥 −𝑚𝑚𝑖𝑖𝑛𝑛) + 𝑚𝑚𝑖𝑖𝑛𝑛 otherwise

                   (4) 

 
The 𝑃𝑃𝑃𝑃𝐻𝐻 parameter determines whether the tone adjustment can be applied to each 

decision variable selected from memory with the possibility of 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 or not. 
 

                 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ = �𝑌𝑌𝑌𝑌𝑌𝑌 rnd < PAR
𝑁𝑁𝑁𝑁 otherwise                        (5) 

 
In Equation (5), 𝑟𝑟𝑛𝑛𝑟𝑟 is a randomly generated number between 𝑈𝑈(0,1). If this 

generated random number is smaller than the PAR ratio, this value is replaced with the 
value closest to it. If tone adjustment is to be made for each 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 decision variable and 
it is assumed that 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 is the next value in the value vector that the decision variable 
can take, the new value of 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛(𝑘𝑘) is set as in Equation (6); 

 
                                𝑥𝑥𝑖𝑖𝑖𝑖 ← 𝑥𝑥𝑖𝑖𝑖𝑖(𝑘𝑘 ± 𝑚𝑚)          (6) 
 

In Equation (6), 𝑚𝑚 ∈ {⋯ ,−2,−1, 1, 2,⋯ } is the neighbourhood depth index. In the 
literature, values between 0.7-0.95 for 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 and 0.05-0.7 for 𝑃𝑃𝑃𝑃𝐻𝐻 are possible values. 
(Geem, 2006) 
 
Step 5. Updating of harmony memory 
 
If the new harmony vector is better than the worst vector in the 𝐻𝐻𝐻𝐻 according to the 
objective function, the worst vector is removed from memory and replaced with the new 
harmony vector 𝐻𝐻𝐻𝐻. 
 
Step 6. Checking stopping condition 
 
Steps 4 - 6 are repeated until the termination criterion is met. The flowchart of HSA was 
given in Figure 1. 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 1. Flowchart for HSA 
 

 
4. Particle Swarm Optimization 
 
PSO is an optimization algorithm proposed by Kennedy and Eberhart (1995), inspired by 
the behaviour of bird flocks. One of the most important advantages of PSO is that it does 
not require derivative information in the optimization process. Searching food for birds 
is similar to searching a solution for a problem. Each solution called as a particle in PSO 
is a bird in search space. The value of the coordinates in the function that means the 
success value of the particle is a measure of the distance of a bird to food. A particle has 
to keep its coordinates, speed and coordinates with the highest success achieved. The 
change of the coordinate and velocity values in the solution space is a combination of the 
best coordinates of their neighbours and their best coordinates. Although it has been 
achieved successful results, many contributions have been made to increase the speed of 
convergence. The first contribution is using the inertia weight parameter proposed by Shi 
and Eberhart (1998). With this approach, the velocity value in the previous iteration is 
included in the velocity update. Another contribution is the linear change of cognitive, 
social coefficient values and inertia weight within iterations. The improved PSO (IPSO) 
with contributions is given below in steps with Algorithm 2. 
 
Algorithm 2. The steps of IPSO 
 
Step 1. Determination of algorithm parameters. 
The parameters to be used in the algorithm are as follows and are initially determined. 
The number of Particles (𝑃𝑃𝑌𝑌)  
Particle positions (𝑃𝑃𝑃𝑃) 
Particle velocities (𝑉𝑉) 
Cognitive coefficient (𝑐𝑐1) 

START 

Determine the 
parameters of  HSA 

Create the harmony 
memory 

Calculate the fitness 
function value for each 

harmony 
Develop new harmony by 

using HMCR and PAR 
parameters 

 

Update the harmony 
memory 

Check the stopping 
condition 

END 

Yes 

No 



Social coefficient ( 𝑐𝑐2) 
Inertia weight (𝑤𝑤) 
Number of variables(𝑛𝑛) 
 
Step 2. The determination of particle positions and velocities. 
Considering the number of particles and variables in the PSO, the particle size (𝑃𝑃𝑃𝑃) with 
𝑃𝑃𝑌𝑌𝑥𝑥𝑛𝑛 dimension and velocity (𝑣𝑣) values are generated as in Equations (7-8), respectively. 
 

                               𝑃𝑃𝑃𝑃 = � 

𝑃𝑃11 𝑃𝑃12 ⋯ 𝑃𝑃1𝑛𝑛
𝑃𝑃21 𝑃𝑃22 ⋯ 𝑤𝑤2𝑛𝑛
⋮ ⋮ ⋮ ⋮

𝑃𝑃𝑃𝑃𝑃𝑃1 𝑃𝑃𝑃𝑃𝑃𝑃2 ⋯ 𝑤𝑤𝑃𝑃𝑃𝑃𝑛𝑛

  �                 (7) 
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Here; 𝑃𝑃𝑖𝑖𝑖𝑖 is 𝑖𝑖𝑖𝑖ℎ position value of  𝑗𝑗𝑖𝑖ℎ particle and 𝑉𝑉𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖ℎ velocity value of  𝑗𝑗𝑖𝑖ℎ particle 
and they are generated randomly.  ( 𝑖𝑖 = 1,2, … ,𝑃𝑃𝑌𝑌 ; 𝑗𝑗 = 1,2,⋯ ,𝑛𝑛).  
 
Step 3. Determination of 𝑃𝑃𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖 and 𝐺𝐺𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖 depending on the objective function value. 
The objective function values are calculated for each randomly generated solution vector. 
The best positions of the particles are stored in the 𝑃𝑃𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖 vectors. The best state of all 
particles is indicated by 𝑃𝑃𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖𝑔𝑔   

or 𝐺𝐺𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖. 𝑃𝑃𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖𝑔𝑔   
and 𝐺𝐺𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖 vectors are given in Equations 

(9-10). 
                       𝑃𝑃𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖 𝑖𝑖 = [𝑃𝑃𝑖𝑖1 𝑃𝑃𝑖𝑖2 … 𝑃𝑃𝑖𝑖𝑛𝑛];  𝑖𝑖 = 1,2, . . ,𝑃𝑃𝑌𝑌        (9) 
                       𝑃𝑃𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖𝑔𝑔   

= 𝐺𝐺𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖 =  [𝑃𝑃𝑔𝑔1 𝑃𝑃𝑔𝑔2 … 𝑃𝑃𝑔𝑔𝑛𝑛]      (10) 
Step 4. Updating the inertia weight (w), cognitive coefficient (𝑐𝑐1) and social coefficient 
(𝑐𝑐2) 
To increase the convergence speed of PSO, the coefficients w, 𝑐𝑐1 and 𝑐𝑐2 are updated in 
the iterations as in Equation (11-13) 
                                   𝑤𝑤 = (𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑤𝑤𝑚𝑚𝑖𝑖𝑛𝑛) ×  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
+ 𝑤𝑤𝑚𝑚𝑖𝑖𝑛𝑛       (11) 

𝑐𝑐1 = �𝑐𝑐1𝑓𝑓 − 𝑐𝑐1𝑖𝑖�  × 𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝑐𝑐1𝑖𝑖       (12) 

𝑐𝑐2 = �𝑐𝑐2𝑓𝑓 − 𝑐𝑐2𝑖𝑖�  × 𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝑐𝑐2𝑖𝑖       (13) 

Here, (𝑐𝑐1𝑓𝑓 , 𝑐𝑐1𝑖𝑖), (𝑐𝑐2𝑓𝑓 , 𝑐𝑐2𝑖𝑖) and (𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚,𝑤𝑤𝑚𝑚𝑖𝑖𝑛𝑛) are the maximum and minimum values 
for the cognitive coefficient, social coefficient and inertia weight, respectively. 𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘 is 
the maximum number of iterations and 𝑘𝑘 is the number of iterations.  
Step 5. Calculation and update of new velocities and positions. The new velocity and 
position values are calculated by Equations (14-15). 

𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚+1 = 𝑤𝑤 × 𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚 + 𝑐𝑐1  ×  𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟1 × �𝑃𝑃𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚 −  𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚� + 𝑐𝑐2  × 𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟2 ×  �𝐺𝐺𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖

𝑚𝑚 −  𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚�    (14) 
𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚+1 = 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 +  𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚+1                                         (15) 

Step 6. Checking stopping condition  
Repeat Step 3 - Step 5 until the termination criterion is met. The flowchart of IPSO was 
given in Figure 2. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Flowchart for IPSO 
 
 
5. Threshold Single Multiplicative Neuron Model Artificial Neural Network and 

Training Algorithms  
 
The threshold SMNM-ANN (TS-SMNM-ANN) has a dual structure in its calculation 
formulas. The architecture of the TS-SMNM-ANN is given in Figure 3.  
 

 
  
 
Figure 3. The architecture of TS-SMNM-ANN 
 
In Figure 3, 𝑋𝑋𝑖𝑖−1,𝑋𝑋𝑖𝑖−2,⋯ ,𝑋𝑋𝑖𝑖−𝑚𝑚 and 𝑋𝑋𝑖𝑖−1,𝑋𝑋𝑖𝑖−2,⋯ ,𝑋𝑋𝑖𝑖−𝑞𝑞 are the inputs for the first and 
second multiplicative neuron model. Which model's weight and bias values should be 
used to obtain the output of the network is determined by a parameter  𝛿𝛿 given in Equation 
(16). 
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                             𝛿𝛿 = �1 𝑋𝑋𝑖𝑖−𝑑𝑑 < 𝑐𝑐
0 𝑋𝑋𝑖𝑖−𝑑𝑑 ≥ 𝑐𝑐           (16) 

 
In Equation (16), 𝑐𝑐 is the threshold value, 𝑟𝑟 is a randomly generated integer value and 

𝑋𝑋𝑖𝑖−𝑑𝑑 is the lag value compared with the threshold. According to the 𝛿𝛿 value obtained 
from this equation, the net value of the network determined according to the number of 
inputs of the model to be used are calculated with Equation (17) and the output of the 
network is obtained with Equation (18). 
 

          𝑛𝑛𝑌𝑌𝑖𝑖 = �
∏ 𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖−𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑚𝑚
𝑖𝑖=1 𝛿𝛿 = 1

∏ 𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖−𝑖𝑖 + 𝑚𝑚𝑖𝑖
𝑞𝑞
𝑖𝑖=1 𝛿𝛿 = 0       (17) 

𝑋𝑋�𝑖𝑖 = 1
1+exp (−𝑛𝑛𝑛𝑛𝑖𝑖)

                                          (18)  
 

The training algorithms used in the training of threshold SMNM-ANN were given in 
Algorithms 3 and 4, respectively.  
 
Algorithm 3: The training of threshold multiplicative neuron model with HSA (TS-
SMNM-ANN- HSA) 
 
Step 1. Determine the parameters of TS-SMNM-ANN-HSA 
 
𝑚𝑚: the number of inputs for the model of observations smaller than the threshold value. 
𝑞𝑞: the number of inputs for the model of observations bigger than the threshold value. 
𝐻𝐻𝐻𝐻: harmony memory 
𝐻𝐻𝐻𝐻𝐻𝐻: harmony memory capacity 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻: Harmony memory consideration rate 
𝑃𝑃𝑃𝑃𝐻𝐻: tone adjustment ratio 
𝑐𝑐: threshold value 
𝑟𝑟: the lag compared with the threshold 
 
Step 2. Creating of the harmony memory 
 
The harmony memory was created as in Equation (19) 
 

𝐻𝐻𝐻𝐻 =

⎣
⎢
⎢
⎡
 

𝑤𝑤11 ⋯ 𝑤𝑤1𝑚𝑚
𝑤𝑤21 ⋯ 𝑤𝑤2𝑚𝑚
⋮ ⋮ ⋮

𝑤𝑤𝐻𝐻𝐻𝐻𝐻𝐻1 ⋯ 𝑤𝑤𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚

  

𝑏𝑏11 ⋯ 𝑏𝑏1𝑚𝑚
𝑏𝑏21 ⋯ 𝑏𝑏2𝑚𝑚
⋮ ⋮ ⋮

𝑏𝑏𝐻𝐻𝐻𝐻𝐻𝐻1 ⋯ 𝑏𝑏𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚

  

𝜃𝜃11 ⋯ 𝜃𝜃1𝑞𝑞
𝜃𝜃21 ⋯ 𝜃𝜃2𝑞𝑞
⋮ ⋮ ⋮

𝜃𝜃𝐻𝐻𝐻𝐻𝐻𝐻1 ⋯ 𝜃𝜃𝐻𝐻𝐻𝐻𝐻𝐻𝑞𝑞

  

𝑚𝑚11 ⋯ 𝑚𝑚1𝑞𝑞
𝑚𝑚21 ⋯ 𝑚𝑚2𝑞𝑞
⋮ ⋮ ⋮

𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻1 ⋯ 𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻𝑞𝑞

  

𝑐𝑐1 𝑟𝑟1
𝑐𝑐2 𝑟𝑟2
⋮ ⋮

𝑐𝑐𝐻𝐻𝐻𝐻𝐻𝐻 𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻⎦
⎥
⎥
⎤
      (19) 

 
Step 3. Calculation of the objective function value 
 

It is determined which weight and bias values to be used to obtain the forecast of the 
system according to the relation between threshold value 𝑐𝑐 and the lag value 𝑋𝑋𝑖𝑖−𝑑𝑑𝑖𝑖 given 
in Equation (18). The objective function value of each harmony is calculated with RMSE 
criterion given in Equation (20) by using the obtained output values �𝑋𝑋�𝑖𝑖�and target values 
𝑋𝑋𝑖𝑖. 

𝐻𝐻𝐻𝐻𝐻𝐻𝑅𝑅 = �∑ (𝑋𝑋𝑡𝑡−𝑋𝑋�𝑡𝑡)2𝑛𝑛
𝑡𝑡=1

𝑛𝑛
                  (20) 

 



Step 4. Development of the new harmony 
 

In this Step, the new harmony is developed based on HMCR and PAR parameters. 
 
Step 4.1. All weight and bias values in the harmony memory, the threshold value and the 
lag value to be compared with the threshold value are updated by using Equations (21). 
 
𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 = �

𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 ∈ �𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖; i = 1, ,2,⋯ , HMS, j = 1, ,2,⋯ , m�  rnd < HMCR
𝑈𝑈(0,1)𝑥𝑥�max�𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖� − min�𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖��+ min�𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖�; i = 1, ,2,⋯ , HMS, j = 1, ,2,⋯ , m 𝑁𝑁𝑖𝑖ℎ𝑌𝑌𝑟𝑟𝑤𝑤𝑖𝑖𝑌𝑌𝑌𝑌

                  (21) 

 
The new harmony created for the model with (𝑚𝑚, 𝑞𝑞) input is given in Figure 4.  
 

𝑤𝑤′
1 ⋯ 𝑤𝑤′

𝑚𝑚 𝑏𝑏′1 ⋯ 𝑏𝑏′𝑚𝑚 𝜃𝜃′1 ⋯ 𝜃𝜃′𝑞𝑞 𝑚𝑚′1 ⋯ 𝑚𝑚′𝑞𝑞 𝑐𝑐′ 𝑟𝑟′ 
 
Figure 4. New harmony created for the model with (𝑚𝑚, 𝑞𝑞) input 
 
Step 4.2. In the new harmony obtained as a result of the HMCR process, the tone 
adjustment process made by PAR parameter is performed for the variable values selected 
from the harmony memory by using Equation (22) and new adjusted value of 𝐻𝐻𝐻𝐻′

𝑖𝑖(𝑘𝑘) is 
given in Equation (23). 
 

                            𝐻𝐻𝐻𝐻′
𝑖𝑖 = �

𝐻𝐻𝐻𝐻𝑖𝑖 ± 𝑟𝑟𝑌𝑌𝑑𝑑𝑖𝑖ℎ(𝑃𝑃𝑃𝑃𝐻𝐻 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)  rnd < PAR
𝑤𝑤′

𝑖𝑖 𝑁𝑁𝑖𝑖ℎ𝑌𝑌𝑟𝑟𝑤𝑤𝑖𝑖𝑌𝑌𝑌𝑌                  (22) 

 𝑤𝑤𝑑𝑑′𝑖𝑖 ← 𝑤𝑤′
𝑖𝑖 ± 𝑘𝑘(𝑃𝑃𝑃𝑃𝐻𝐻 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)                        (23) 

 
As a result of the PAR process, the updated harmony is given in Figure 5. 

 
𝑤𝑤𝑑𝑑′1 ⋯ 𝑤𝑤𝑑𝑑′𝑚𝑚 𝑏𝑏𝑑𝑑′1 ⋯ 𝑏𝑏𝑑𝑑′𝑚𝑚 𝜃𝜃𝑑𝑑′1 ⋯ 𝜃𝜃𝑑𝑑′𝑞𝑞 𝑚𝑚𝑑𝑑′1 ⋯ 𝑚𝑚𝑑𝑑′𝑞𝑞 𝑐𝑐𝑑𝑑′ 𝑟𝑟𝑑𝑑′ 

 
Figure 5. Updated harmony for the model with (𝑚𝑚, 𝑞𝑞) input as a result of PAR operation 
 
Step 5. Updating harmony memory 
 

If the RMSE value of the harmony obtained by HMCR and PAR operations is smaller 
than the harmony with the worst RMSE value in the harmony memory, the harmony in 
the harmony memory is removed from the memory and the harmony obtained by HMCR 
and PAR operations is replaced of it; if not, no changes are made to the HM. 
 
Step 6. Stop condition check 
 

If it is reached to the maximum number of iterations or the RMSE value is less than a 
certain error (𝜀𝜀) value, the stop condition is met. Otherwise, Step 4 - Step 6 is repeated. 
 
Algorithm 4: The training of threshold multiplicative neuron model with PSO (TS-
SMNM-ANN- PSO) 
 
Step 1. Determine the parameters used in the training process of TS-SMNM-ANN- PSO. 
  
𝑚𝑚: the number of inputs for the model created before the threshold 



𝑞𝑞: the number of inputs for the model created after the threshold 
𝑃𝑃𝑌𝑌: the number of particles 
𝑃𝑃𝑃𝑃: particle position matrix 
𝑉𝑉: particle velocity matrix 
𝐻𝐻: threshold  
𝑟𝑟: the lag compared with the threshold 
 
Step 2. Determine the particle positions and velocities 
 
The PP matrix with 𝑃𝑃𝑌𝑌𝑥𝑥[2(𝑚𝑚 + 𝑞𝑞) + 2] positions is created as in Equation (24).  
 

𝑃𝑃𝑃𝑃 =

⎣
⎢
⎢
⎡
 

𝑤𝑤11 ⋯ 𝑤𝑤1𝑚𝑚
𝑤𝑤21 ⋯ 𝑤𝑤2𝑚𝑚
⋮ ⋮ ⋮

𝑤𝑤𝑃𝑃𝑃𝑃1 ⋯ 𝑤𝑤𝑃𝑃𝑃𝑃𝑚𝑚

  

𝑏𝑏11 ⋯ 𝑏𝑏1𝑚𝑚
𝑏𝑏21 ⋯ 𝑏𝑏2𝑚𝑚
⋮ ⋮ ⋮

𝑏𝑏𝑃𝑃𝑃𝑃1 ⋯ 𝑏𝑏𝑃𝑃𝑃𝑃𝑚𝑚

  

𝜃𝜃11 ⋯ 𝜃𝜃1𝑞𝑞
𝜃𝜃21 ⋯ 𝜃𝜃2𝑞𝑞
⋮ ⋮ ⋮

𝜃𝜃𝑃𝑃𝑃𝑃1 ⋯ 𝜃𝜃𝑃𝑃𝑃𝑃𝑞𝑞

  

𝑚𝑚11 ⋯ 𝑚𝑚1𝑞𝑞
𝑚𝑚21 ⋯ 𝑚𝑚2𝑞𝑞
⋮ ⋮ ⋮

𝑚𝑚𝑃𝑃𝑃𝑃1 ⋯ 𝑚𝑚𝑃𝑃𝑃𝑃𝑞𝑞

  

𝐻𝐻1 𝑟𝑟1
𝐻𝐻2 𝑟𝑟2
⋮ ⋮
𝐻𝐻𝑃𝑃𝑃𝑃 𝑟𝑟𝑃𝑃𝑃𝑃⎦

⎥
⎥
⎤

=  

⎣
⎢
⎢
⎡
  

𝑃𝑃1𝑖𝑖 
𝑃𝑃2𝑖𝑖 
⋮
𝑃𝑃𝑖𝑖𝑖𝑖 ⎦

⎥
⎥
⎤
   (24) 

 
Step 3. Determine 𝑃𝑃𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖 and 𝐺𝐺𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖 depending on the objective function value. The 
objective function value is calculated for each particle by using similar calculations in 
Step 3 of the previous algorithm. 
 
Step 4. Update 𝑤𝑤 inertia weight, 𝑐𝑐1cognitive coefficient and 𝑐𝑐2 social coefficients by 
using the linear increase or decrease formulas as given in the PSO algorithm.  
 
Step 5. Calculate and update the new velocities and positions. 
 

The new velocity and position values are calculated by using Equations (25-26). Here 
𝑐𝑐1 and 𝑐𝑐2 are the cognitive and social coefficients respectively, in many studies, it is seen 
that good results are obtained when 𝑐𝑐1= 𝑐𝑐2 = 2. 𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟1 and 𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟2 are randomly selected 
values generated by 𝑈𝑈(0,1).  
 
𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚+1 = 𝑤𝑤 × 𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚 + 𝑐𝑐1 𝑥𝑥 𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟1𝑥𝑥 �𝑃𝑃𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖

𝑚𝑚 −  𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚� + 𝑐𝑐2 𝑥𝑥 𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟2𝑥𝑥 �𝐺𝐺𝑏𝑏𝑛𝑛𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚 −  𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚�     (25) 

  
𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚+1 = 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 +  𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚+1                   (26) 
 

Step 6. Stop condition check. If it is reached to the maximum number of iterations or the 
RMSE value is less than a certain error (𝜀𝜀) value, the stop condition is met. Otherwise, 
Step 4 - Step 6 is repeated. 
 
6. Applications 
 
In the application part of the paper, Australian beer consumption data (AUST) time series 
data with 148 observations between the years 1956 and 1994, Turkey Electricity 
Consumption (TEC) data observed monthly between the first month of 2002 and last 
month of 2013 and Taiwan Future Exchange (TAIFEX) data with observations between 
03.08.1998 and 30.09.1998 were analysed. To compare the performance of the proposed 
methods, the proposed methods were compared with many methods in terms of both 
RMSE and mean absolute percentage error (MAPE) criteria given in Equations (20) and 
(27) respectively. 

         𝐻𝐻𝑃𝑃𝑃𝑃𝑅𝑅 = 1
𝑛𝑛
∑ �𝑦𝑦𝑡𝑡−𝑦𝑦�𝑡𝑡

𝑦𝑦𝑡𝑡
�𝑛𝑛

𝑖𝑖=1         (27) 



 
The number of observations of each data set and the number of test data set of each 

data set analysed in this paper, the number of inputs for the model created before threshold 
(𝑚𝑚) and the number of inputs for the model created after the threshold (𝑞𝑞) and the optimal 
𝑚𝑚 and 𝑞𝑞 values were given in Table 1 for both TS-SMNM-ANN-PSO and TS-SMNM-
ANN-HSA. 

 
Table 1. Some features for data sets 
 

   Tried Values TS-SMNM-
ANN-PSO 

TS-SMNM-
ANN-HSA 

Data 
The number 
of 
observations 

ntest 𝑚𝑚 𝑞𝑞 Optimal 𝑚𝑚, 𝑞𝑞 
values 

Optimal 𝑚𝑚, 𝑞𝑞 
values 

AUST 125 16 2,4,8 2,4,8 4 4 8 4 
TEC 135 12 5:15 5:15 14 6 12 10 
TAIFEX 145 16 1:10 1:10 10 2 1 1 

 
In this part of the paper, firstly, AUST time series data set was analysed with Multi-

layer feed-forward neural network (ML-FF-ANN), Multilayer neural network based on 
PSO (ML-PSO-ANN), SMNM-ANN based on BP (BP-SMNM-ANN), SMNM-ANN 
based on PSO (PSO-SMNM-ANN), SMNM-ANN based on DEA  (DEA-SMNM-ANN) 
proposed by Bas (2016), Radial basis artificial neural network (RB-ANN), Elman ANN 
(E-ANN), multiplicative seasonal ANN (MS-ANN) proposed by Aladag et al. (2013), 
SMNM-ANN based on ABA  (ABA-SMNM-ANN) proposed by Bas et al. (2016a), 
multilayer feed-forward network based on trimmed mean neuron model (TMNM-MFF) 
proposed by Yolcu et al. (2015)  and Pi-Sigma ANN (PS-ANN) except TS-SMNM-ANN-
HSA and TS-SMNM-ANN-PSO methods. The RMSE and MAPE results obtained from 
the methods mentioned above for AUST test data were given in Table 2.  
 
Table 2. The RMSE and MAPE values obtained from all methods for AUST test data 
 

Methods RMSE MAPE 
BP-SMNM-ANN 74.2551 0.0983% 
ML-PSO-ANN 44.7780 0.0856% 
RB-ANN 41.7000 0.0686% 
TS-SMNM-ANN-HAS 33.3777 0.0633% 
PSO-SMNM-ANN 26.7831 0.0489% 
ML-FF-ANN 24.1052 0.0476% 
E-ANN 22.6581 0.0436% 
MS-ANN 22.1700 0.0394% 
TMNM-MFF 21.0623 0.0399% 
PS-ANN 20.0886 0.0352% 
DEA-SMNM-ANN 19.7819 0.0372% 
TS-SMNM-ANN-PSO 18.8777 0.0331% 
ABA-SMNM-ANN 17.7054 0.0323% 

 
Table 2 shows that although TS-SMNM-ANN-PSO method is the second-best method 

in terms of both RMSE and MAPE criteria the performance of TS-SMNM-ANN-HSA 
method is not good as TS-SMNM-ANN-PSO method for AUST test data. 
Secondly, TEC time series data was analysed with BP-SMNM-ANN, MLP-ANN, ABA-
SMNM-ANN proposed by Bas et al. (2016a), ML-PSO-ANN, SMNM-ANN, PS-ANN 
and PSO-SMNM-ANN methods except for TS-SMNM-ANN-HSA and TS-SMNM-



ANN-PSO methods. The RMSE and MAPE results obtained from the methods mentioned 
above for TEC test data were given in Table 3. 
 
Table 3. The RMSE and MAPE values obtained from all methods for TEC test data 
 

 
Methods RMSE MAPE 

BP-SMNM-ANN 4243944603 19.54% 
MLP-ANN 1065900000 3.98% 
ABA-SMNM-ANN 924149635 3.73% 
ML-PSO-ANN 915190000 3.39% 
SMNM-ANN 813260000 3.01% 
TS-SMNM-ANN-HSA 772262044 3.15% 
PS-ANN 697763268 2.81% 
PSO-SMNM-ANN 672790000 2.89% 
TS-SMNM-ANN-PSO 605542432 2.38% 

 
Table 3 shows that TS-SMNM-ANN-PSO method is the best method in terms of both 

RMSE and MAPE criteria. Besides, the performance of TS-SMNM-ANN-HSA method 
is not good as TS-SMNM-ANN-PSO method for TEC test data. 

Finally, TAIFEX data was analyzed by BP-SMNM-ANN, PS-ANN, Lee et al. (2007), 
robust learning algorithm for SMNM-ANN (R-SMNM-ANN) proposed by Bas et al. 
(2016b), Lee et al. (2008), PSO-SMNM-ANN, Hsu et al. (2010), ABA-SMNM-ANN 
proposed by Bas et al. (2016a), DEA-SMNM-ANN proposed by Bas (2016), Aladag et 
al. (2009) methods except for TS-SMNM-ANN-HSA and TS-SMNM-ANN-PSO 
methods. 
The RMSE and MAPE results obtained from the methods mentioned before for TAIFEX 
test data are given in Table 4. 
 
Table 4. The RMSE and MAPE values obtained from all methods for TAIFEX test data 
 

Methods RMSE MAPE 
BP-SMNM-ANN 108.1627 1.17% 
Lee et al. (2008) 102.9600 1.14% 
PS-ANN 94.1439 1.01% 
Lee et al. (2007) 93.4900 1.09% 
R-SMNM-ANN 89.9655 0.90% 
PSO-SMNM-ANN 88.5839 0.87% 
Aladag et al. (2009) 83.5800 0.96% 
Hsu et al. (2010) 80.0200 0.87% 
ABA-SMNM-ANN 79.8623 0.95% 
DEA-SMNM-ANN 79.2514 0.95% 
TS-SMNM-ANN-HSA 77.4153 0.88% 
TS-SMNM-ANN-PSO 77.0761 0.87% 

 
Table 4 shows that TS-SMNM-ANN-PSO method is the best method in terms of both 

RMSE and MAPE criteria and TS-SMNM-ANN-HSA method is the second-best method 
in terms of both MAPE criteria for TAIFEX test data. 
 

7. Simulation Study 

To emphasize the efficiency of the proposed methods in the paper, a simulation study was 
performed. In the simulation study, the performance of the TS-SMNM-ANN-HSA and 



TS-SMNM-ANN-PSO methods were compared with BP-SMNM-ANN, DEA-SMNM-
ANN, PSO-SMNM-ANN and ML-PSO-ANN methods. In the simulation study, a data 
set for TS-SMNM-ANN was generated. 
 
Algorithm 3. Creating a data set for TS-SMNM-ANN 
 
Step 1. Let 𝑛𝑛𝑚𝑚𝑛𝑛 and 𝑛𝑛𝑞𝑞𝑛𝑛 be the number of the inputs, first observations of time series 
𝑋𝑋0 = �𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥max (𝑛𝑛𝑚𝑚1,𝑛𝑛𝑞𝑞1)� generated with U (0, 0.01). 
 
Step 2. Since the number of inputs is determined as 𝑛𝑛𝑚𝑚𝑛𝑛 and 𝑛𝑛𝑞𝑞𝑛𝑛, the total number of 
biases and weights are 2(𝑛𝑛𝑚𝑚1 + 𝑛𝑛𝑞𝑞1). The bias and weight values are generated with 
U (0, 1) respectively. 
 
Step 3. The time series with 𝑛𝑛 elements is calculated by using Equation 28 with the help 
of Equation (16).   
 

                     𝑋𝑋𝑖𝑖 = �
∏ 𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖−𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑛𝑛𝑚𝑚𝑛𝑛 
𝑖𝑖=1 ; 𝑖𝑖𝑓𝑓 𝛿𝛿 = 1

∏ 𝜃𝜃𝑖𝑖𝑋𝑋𝑖𝑖−𝑖𝑖 + 𝑚𝑚𝑖𝑖
𝑛𝑛𝑞𝑞𝑛𝑛
𝑖𝑖=1 ; 𝑖𝑖𝑓𝑓 𝛿𝛿 = 0   (28) 

 
The time series to be generated can have 𝑛𝑛 observations by discarding the first 
max (𝑛𝑛𝑚𝑚1, 𝑛𝑛𝑞𝑞1) observation values from the data set (𝑥𝑥𝑖𝑖) by considering Equations (16) 
and (28). 
 
Step 4. 𝑛𝑛 error values corresponding to these 𝑛𝑛 observations are generated by 𝑁𝑁(0,𝜎𝜎2) 
that means (𝜀𝜀𝑖𝑖) and the time series 𝑦𝑦𝑖𝑖 is created by the sum of both. 
 
As a result, a time series 𝑦𝑦𝑖𝑖 for TS-SMNM-ANN is generated by this algorithm. The 
analysis results obtained with the simulated data were given in Table 5. A time series with 
250 observations were generated with Algorithm 3 and the last 45 observations of this 
generated time series were taken as the test set. Besides, the optimal number of for both 
inputs so the number of bias and weight values were taken as 5. 
 
Table 5. The RMSE and MAPE values obtained from some methods for the simulated 
test data 
 

Methods RMSE MAPE 
BP-SMNM-ANN 2.7713 3.43% 
PSO-SMNM-ANN 1.9204 1.00% 
ML-PSO-ANN 1.8369 1.01% 
PS-ANN 1.8800 1.20% 
TS-SMNM-ANN-HSA 1.8355 0.98% 
TS-SMNM-ANN-PSO 1.8366 0.97% 

 
Table 5 shows that TS-SMNM-ANN-PSO method is the best method and TS-SMNM-

ANN-HSA method is the second-best method in terms of MAPE criteria for the simulated 
test data. TS-SMNM-ANN-HSA method is the best method and TS-SMNM-ANN-PSO 
method is the second-best method in terms of RMSE criteria for the simulated test data 
when compared with some methods in the literature. 
 
8. Conclusions and Discussions 



 
In this study, two different models were obtained by using a threshold value instead of a 
single model, and the parameters obtained as a result of the training of the SMNM-ANN 
were obtained by HSA and PSO methods. When the performance of the proposed 
methods is examined; it is seen that TS-SMNM-ANN-PSO method gives better results 
than TS-SMNM-ANN-HSA method. Besides, the proposed methods are proof that using 
two models improve forecasting performance. The proposed methods can be used when 
a time series has a trend or/and seasonality. In the future studies, it is planned to apply the 
logic of threshold to many artificial neural network models and to obtain different models 
by using multiple threshold values instead of a single threshold value and also work on 
different time-series data. 
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