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AbstractðPredictions of renewable energy (RE) generation and 

electricity load are critical  to smart grid operation. However, the 

prediction task remains challenging due to the intermittent and 

chaotic character of RE sources, and the diverse user behavior and 

power consumers. This paper presents a novel method for the 

prediction of RE generation and electricity load using improved 

stacked gated recurrent unit-recurrent neural network (GRU-

RNN) for both uni -variate and multi -variate scenarios. First, 

multiple  sensitive monitoring parameters or histori cal electricity 

consumption data are selected according to the correlation 

analysis to form the input data. Second, a stacked GRU-RNN using 

a simplified GRU is constructed with improved training algorithm 

based on AdaGrad and adjustable momentum. The modified 

GRU-RNN structure and improved training method enhance 

training efficiency and robustness. Third , the stacked GRU-RNN 

is used to establish an accurate mapping between the selected 

variables and RE generation or electricity load due to its self-

feedback connections and improved training mechanism. The 

proposed method is verified by using two experiments: prediction 

of wind power generation using multiple weather parameters and 

prediction of electricity load with histori cal energy consumption 

data. The experimental results demonstrate that the proposed 

method outperforms state-of-the-art  methods of machine learning 

or deep learning in achieving an accurate energy prediction for 

effective smart grid operation.  

 
Index TermsðStacked GRU-RNN, Renewable energy 

prediction, Electricity load prediction, Smart grid. 

I. INTRODUCTION 

ith the integration of the latest information and 

communication technology (ICT), the traditional grid is 

transforming rapidly into a Smart Grid (SG). SG is 

aiming to provide the consumers with a reliable, economical, 

sustainable, secure, and efficient energy supply by monitoring, 

protecting, and optimizing the production, distribution, and 

consumption of electric energy [1]. The predictions of both 

energy production and the electricity load play a vital role in a 

balanced and secure grid scheduling and operation [2]. 

However, accurate prediction of energy production and load is 

still a challenging task. On one side, the prediction of energy 

production faces new challenges due to the large-scale 

integration of renewable energy (RE) sources such as solar and 

wind energy [3]. Power generation from renewable sources has 

continuously grown over the past decade because of the evident 

benefits of RE to the sustainability of energy and environment. 

In 2019, the cumulative capacities of wind energy and solar 

energy in Europe had reached up to 205GW and 131.9GW 

respectively, which represented about 18% of the electricity the 

EU-28 consumed [4], [5]. The shares of renewables in the net 

electricity generation are over 46% and 49% in Germany and 

Spain, the two leading countries in RE usage in EU. However, 

the intermittent and random nature of RE sources brings 

significant uncertainties in energy production [6]. On the other 

side, the increased diversity of the behavior of the users and the 

consumers connected to smart devices, electric vehicles and so 

on, has increased the fluctuation of the electricity load [7]. 

In the past decade, extensive studies have been conducted on 

the prediction of RE production and electricity load [8]. For 

various energy management purposes, prediction with different 

forecasting times horizons are considered such as short-term, 

medium-term, and long-term, where short-term forecasting is 

used for scheduling energy flow among power sources, loads 

and storage devices, while medium-term and long-term 

forecastings are mainly responsible for price settlement, load 

dispatch and maintenance scheduling, respectively [9]. With the 

increased amount of monitoring data from the SG and the 

advanced data mining technologies, data-driven approaches in 

predicting energy production and consumption have gained 

considerable attention [10]. Typical input data include selected 

weather forecast data and historical energy usage data. Data-

driven energy prediction methods can be classified into two 

categories: statistical methods and machine learning (ML)  

methods [11]. The statistical methods aim to build 

mathematical relations between input and output data. Various 

statistical approaches have been investigated including 

autoregressive moving average [12], Kalman filter [13], and 

Markov chain model [14]. Compared with statistical methods, 

ML methods have produced more promising results due to the 

stronger ability in mapping the complex nonlinear input-output 

relation [15]. Typical ML methods include the support vector 

machine, random forest, and fuzzy logic [16].  

More recently, deep learning, with its superior capability in 

discovering the inherent nonlinear features instead of using 

handcraft features, has achieved remarkable performance in 

many prediction applications including energy production and 

load forecasting [17]. Torres et al. proposed a deep feed-

forward neural network-based approach for solar power 

forecasting using data from multiple sources (solar power and 

weather forecast data) [18]. Hong et al. developed a hybrid deep 

learning-based method for wind power prediction where the 

convolutional neural network was used to extract features of 

volatile wind power time-series [19]. However, the temporal 

correlation of the time series data was not considered by using 

either the fully connected neural networks or convolutional 

neural network (CNN). With its unique self-feedback 

connections, recurrent neural network (RNN) has outperformed 

the regular DNN and CNN in time-series prediction [20]. 

However, RNN has the problem of gradient vanishing, which 

prevents it from learning long-term dependency [21]. As an 

enhanced variant of the classical RNN, long-short term 

memory-based RNN (LSTM-RNN) is constructed to address 

the gradient vanishing problem, and it has been applied in 

energy prediction [22]. To further improve modeling 
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performance based on LSTM-RNN, gated recurrent unit-based 

RNN (GRU-RNN) has been developed since 2014. However, 

the computational cost of GRU-RNN can still be high for long 

sequential data [23]. Further investigation in reducing model 

parameters and improving training efficiency is needed to 

develop accurate and efficient methods for the prediction of 

renewable energy generation and electricity load with increased 

uncertainties from both supply and demand. 

The present paper proposes a novel prediction method for RE 

production and electricity load based on an improved stacked 

GRU-RNN with reduced model parameters and a new training 

mechanism. The experimental results on wind energy and 

electricity load predictions confirm the superior prediction 

performance of the proposed method compared with existing 

machine learning and deep learning methods. The main 

contributions of the paper are as follows: 

1) A new framework for both the prediction of renewable 

energy and electricity load is proposed by using improved 

stacked GRU-RNN. The developed approach can perform 

accurate energy prediction using time-series data with 

monitoring parameters.  

2) Modified GRU-RNN structure is used with fewer model 

parameters. The improved GRU-RNN reduces the model 

complexity which saves the computational cost and 

requires less training data. 

3) The training algorithm of the stacked GRU-RNN is 

improved by adding a novel adjustable momentum scheme. 

The adaptive learning rate used in the proposed method 

results in a more effective training process.  

4) The proposed method can deal with both multi-variate and 

uni-variate cases. The effectiveness of the method is 

demonstrated by conducting two experiments including 

multi-variate wind energy prediction and uni-variate 

electricity load prediction. 

The rest of the paper is organized as follows. Section II  

briefly introduces classical LSTM-RNN. The proposed method 

is given in Section III . Section IV presents two cases using two 

open-access datasets consists of wind power generation in 

Germany and electricity load in Spain. The conclusions and 

possible future work are given in Section V. 

II. INTRODUCTION TO LSTM-RNN 

By incorporating neurons with self-feedback connections, 

RNN achieves the unique capability of modeling time-series 

data, when compared with other types of deep learning models 

such as CNN, deep belief network (DBN), and stacked 

autoencoder (SAE). LSTM-RNN was developed to address the 

gradient vanishing problem when finding long-term temporal 

correlations in time series. As shown in Fig. 1, LSTM-RNN is 

constructed by using LSTM units to replace the traditional 

hidden neurons. Each LSTM unit is composed of an input gate 

( ti ), a forget gate ( tf ), an output gate ( to ), and a memory cell 

( tc ). The operations in LSTM-RNN can be expressed by 
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where xt is the input sample at time t; ht is the hidden output at 

time t; ht-1 is the hidden output at the previous instant; ů is the 

activation functions of the three gates; ű represents the 

activation functions of the input and output layers; Ų  denotes 

the dot product operation; ihW , iiW , ifW , ioW  denote the 

weights that connect the input layer and the LSTM unit; hhW , 

hiW , hfW , hoW  denote the self-connection weights between 

the current time t and the previous time t-1; hb  is the bias of 

the input layer, ib , fb , ob  are the biases of the three gates in 

the LSTM unit; and ip , fp , op  are the weights connecting the 

peepholes and the three gates. Through training, these weights 

and biases are optimized by the stochastic gradient descent 

(SGD) algorithm to minimize the mean square error (MSE) 

between the actual and predicted output values. 

 

Fig. 1. The model architecture of LSTM-RNN. 
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Fig. 2. The model architecture of a classic GRU-RNN. 

III.  THE PROPOSED METHOD 

A. Stacked Novel GRU-RNN 

Fig. 2 shows the model architecture of a classic GRU, which 

is formed by only two gates called reset gate and update gate. 

The reset gate (r t) is used to decide whether all or part of ht-1 

(previous) is taken into consideration. The purpose of the 

update gate (zt) is to decide how much of ht (current) is updated 

based on the state of the candidate layer (ct). For a time-series 

sample set { xt} , the calculation procedures of GRU are  
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1( )t xz t hz t zs -= + +z V x U h b                             (9) 
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where Vxz , Vxr, and Vxc are the weights connecting the input 

layer and the update gate, reset gate and candidate layer, 

respectively; Uhz, Uhr, and Uhc are the self-connection weights 

between the current time t and the previous time t-1; bz, br, and 

bc are the biases of the update gate, reset gate, and the candidate 

layer in the GRU unit, respectively. 

Training an effective GRU-RNN with long sequential data is 

still time-consuming. To tackle this problem, we utilize a gate-

variant of the classic GRU-RNN. Specifically, in our developed 

GRU-RNN, each gate is computed using only the previous 

hidden state and the bias, which largely reduces the total 

number of the trained parameters. The gate-variant of the 

proposed GRU-RNN can be expressed by: 

1( )t hz t zs -= +z U h b                             (13) 

1( )t hr t rs -= +r U h b                             (14) 

In practice, the time-series signals with multiple parameters 

often show highly nonlinear and non-stationary characteristics. 

Therefore, to perform accurate and reliable mapping, multiple 

GRU-RNN layers could be stacked to construct a stacked GRU-

RNN. As shown in Fig. 3, by introducing a regression layer at 

the top, the stacked GRU-RNN can be used for prediction, 

defined as: 

Ĕ ( )t yh t ys= +y U h b                             (15) 

where Ĕty  represents the predicted output after the regression 

layer; yhU  represents the weight for the regression layer; yb

represents the bias for the regression layer; and the regression 

layer also employs s as the activation function. 
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Fig. 3. Stacked GRU-RNN for prediction using time series. 

B. Modification of the training algorithm 

Like the classical RNN and LSTM-RNN, the GRU-RNN 

typically uses the SGD algorithm with momentum to adjust the 

weights and biases by minimizing the MSE between the actual 

outputs and predicted outputs, expressed as  

2

1
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= -ä y y                         (16) 
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where E  is the MSE function, qɗ represents the parameter set 

at the thq  iteration consisting of different weights and biases 

given in Eqs.(11-15); ty  denotes the actual output; T is the 

total number of training samples; and h is the learning rate. In 

the basic training algorithm, the learning rate and momentum 

both stay the same during the training process, which is 

inadequate to effectively adjust all the weights and biases of the 

GRU-RNN. Despite AdaGrad strategy improves the training 

performance to some degree by adjusting the learning rate in 

real-time, the momentum still stays the same, which may still 

lead to slow convergence and overfitting. 

In the present paper, to overcome the limitation of AdaGrad 

and further enhance the training performance, a new modified 

training algorithm using AdaGrad and adjustable momentum is 

developed to enable an adaptive learning rate and momentum 

at different gradients during the training process. The adaptive 

learning principle is expressed as follows: 

1 1( ) ( )q q q q q qq qEh b+ -= - Ö µ µ + Ö -ɗ ɗ ɗ ɗ ɗ          (18) 
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where Eq.(19) represents the adjustable momentum;qE , qh , 

qg , qb  represent the MSE, learning rate, gradient, momentum 

factor and trained parameter set at the thq  iteration, 

respectively; l represents a small positive number (default 1e-

8); k is the initial coefficient of adjustable momentum term; 

and 
0h  is the initial learning rate. 

C. Flowchart of the proposed method 

This paper presents a novel method for the prediction of 

renewable energy generation and electricity load using 

improved stacked GRU-RNN. The flowchart of the proposed 

method is shown in Fig. 4. The main steps are as follows. 

Step 1: Collect the historical time-series data containing the 

monitoring parameters of the energy production and electricity 

load. 

Step 2: Select the sensitive monitoring parameters according to 

the correlation analysis between the parameters and output. 

Step 3: Divide the samples into training and testing sets. 

Step 4: Build a stacked GRU-RNN model with the proposed 

GRU structure and the improved training algorithm. Train the 

model with training samples to establish an accurate mapping 

between the selected monitoring parameters and the output. 

Step 5: Verify the prediction performance of the stacked GRU-

RNN model using the testing samples.  

IV. EXPERIMENTAL EVALUATION  

To evaluate the effectiveness of the proposed approach for 

both the prediction of renewable energy and electricity load, 

two experiments are conducted: wind energy prediction using 

multiple weather parameters and electricity load prediction 

using historical load data.  
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Fig. 4. The overall framework of the proposed method. 
TABLE I 

DESCRIPTIONS OF THE INPUT AND OUTPUT VARIABLES  

Descriptions Three-dimensional input variables One-dimensional output variable 

V1 V2 V_50m DE_wind_generation_actual 

Physical 

meanings 

Velocity at height h1 (2 meters 

above displacement height) 

Velocity at height h2 (10 

meters above displacement 

height) 

Velocity at 50 meters above 

the ground 

Actual wind generation 

Units [m/s] [m/s] [m/s] [MW]  

Names of files  Weather_data_GER_2016.csv Weather_data_GER_2016.csv Weather_data_GER_2016.csv Solar wind energy production DE.csv 

Locations in files  Column E Column F Column G Column D 

 
 

  

 

 
 
Fig. 5. The average values of the three input variables during the entire year: (a) 

V1; (b) V2; (c) V_50m.  

 

 

Fig. 6. The output variable for the entire year.  

A. Experiment one: Wind energy prediction 

1) Data description and experimental setup 

In this experiment, the dataset containing the hourly actual 

wind energy generation for 2016 in Germany together with the 

hourly weather conditions at 256 locations in the country is 
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