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Abstrac® Predictionsof renewable energyRE) generation and
electricity load are critical to smart grid operation. However, the
prediction task remains challenging due to thentermittent and
chaoticcharacter of RE sources and the diverse user behawar and
power consumers.This paper presents anovel method for the
prediction of RE generation and electricity load using improved
stacked gated recurrent unit-recurrent neural network (GRU-
RNN) for both uni-variate and multi-variate scenarios First,
multiple sensitive monitoring parametes or historical electricity
consumption data are selected according to the correlation
analysisto form the input data. Second a stackedGRU-RNN using
asimplified GRU isconstructedwith improved training algorithm
based onAdaGrad and adjustable momentum. The modified
GRU-RNN structure and improved training method enhance
training efficiency and robustness Third , the stackedGRU-RNN
is used to establishan accurate mapping betweenthe selected
variables and RE generation or electricity load due to its self
feedback connections and improved training mechanismThe
proposed method isverified by using two experiments prediction
of wind power generation using multiple weather parameters and
prediction of electricity load with historical energy consumption
data. The experimental results demonstrate that the proposed
method outperforms state-of-the-art methods ofmachine learning
or deep learning in achieving an accurate energy predion for
effectivesmart grid operation.

Index Term® Stacked GRU-RNN, Renewable
prediction, Electricity load prediction, Smart grid.
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I. INTRODUCTION

With the integration of the latest information an
communication technology (ICT), the traditional grid i

transforming rapidlyinto a Smart Grid (SG). SG is
aiming to provide the consumers with a reliable, economic
sustainable, securand efficient energy supply by monitoring,
protecting, and optimizing the production, distribution, an
consumption of electric enerdyt]. The predictions of both

energy poduction and the electricity load play a vital rolea
balanced and secure grid scheduling and operaf&n
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significant uncertainties in energy product{éh. On the other
side, the increased diversitytbkbehaviorof the userandthe
consumergonnected temart deviceslectric vehiclegnd so
on, has increased the fluctuationtbg electricity load7].

In the past decade, extensive studies lhees conducted on
the prediction ofRE production and electricity logd@]. For
variousenergy managemeptirposesprediction with different
forecasting times horizons are considered such as-tehorf
mediumterm, and longerm, whereshortterm foreasting is
used for scheduling energy flow among power sources, loads
and storage devices, while meditenm and longerm
forecasting are mainly responsible for price settlement, load
dispatch and maintenance scheduliegpectivelyf9]. With the
increased amount of monitoring data from the SG and the
advanced data mining@chnologiesdatadriven approacheis
predictng energy production and consumptionvlagained
considerablattention[10]. Typical input data include selected
weathe forecast data and historical enenggagedata. Data
driven energy prediction methods can be classified into two
categories: statistical methods and machine leariig)
methods [11]. The statistical methods aim to build
mathematical relations betwegput and output data. Various
statistical approaches have been investigated including
autoregressive moving averaff?], Kalman filter[13], and
Markov chain model[14]. Compared with statistical methods,
ML methodshaveproducedmore promising results due to the
stronger ability in mapping the complex nonlinear irputput
relation[15]. Typical ML methods include the support vector
dmachine, random forest, and fuzzy lofi€].

s More recently, deep learning, with gsiperior capability in
discovering the inherent nonlinear features instead of using
dlandcraft features, has acreel remarkble performance in
many prediction applications including energy production and
{?oad forecasting[17]. Torres et al. proposed a &fe feed
orward neural networbased approach for solar power
forecasting using data from multiple sour¢eslar power and
weather forecast datf)8]. Hong et al. developed a hybrid deep
learningbased method for wind power prediction whéne

However, accurate prediction of energy production and load f&

still a challengingtask. On one side, thgediction ofenergy
production face new challenges due to the lagmle

integration of renewable energy (RE) sources such as solar
wind energy{3]. Power generation from renewable sources h

contiruously grown over the padecadéecause of thevaent
benefits of RE tahe sustainability oénergy and envirament.

In 2019, the cumulativeapacities ofwind energy and solar
energy in Européad reached up to 205GW and 131.9G

respectively, whichepresentedbout 18% of the electricity the
EU-28 consume], [5]. The $ares of renewables in the ne
electricity generatiomre over 46% and 49% in Germany and

Spain, the two leading countries in RE usage in iHtlvever,

the intermittent and random nature of RE sources brin

convoldional neural network was used to extract features of
volatile wind power timeseries[19]. However, the temporal
SRyelation of the time series data was not considered by using
gét er the fully connected neural networks amnvolutional
neural network (CNN). With its unique selfeedback
connections, recurrent neural network (RNN) has outperformed
the regular DNN and CNN in timgeries prediction20].
owever, RNN has the problem of gradient vanishimlgich
prevents it from learning lontgrm dependecy [21]. As an
tenhanced variant of the classical RNN, latmprt term
memorybased RNN (LSTWMRNN) is construced to address
the gradient vanishing problemand it has been applied in
Sgergy prediction [22]. To further improve modeling



performancéased oi.STM-RNN, gated recurrent unibased
RNN (GRU-RNN) has beerdevelopedsince 2014However,
the computational cost @RU-RNN can still be higtor long
sequential dat§23]. Further investigationn reducing model
parameters and improving training efficientyy needed to
develop accurate and efficientethods forthe prediction of
renewableenergy generation and elecirjcload with increasd
uncetaintiesfrom both supply and demand

The presenpaper proposea novelprediction methodor RE
production ancelectricity load based oan impgoved stacked
GRU-RNN with reduced model parameters andewtraining
mechanism The experimerdl results on wind energy and
electricity load predictions confirm the superior prediction
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wherex; is the input sample at timeh, is thehiddenoutput at
timet; h.1is thehiddenoutputat thepreviousinstant U is the
activation functios of the threegates; G represerg the

activation functios ofthe input and outpuayers | denotes
the dot product operationV, , W; , Wy , W,, denotethe
weight that connectthe input layer anthe LSTM unit; Wy,

performance of the proposed method compared with existirdyhi , Wrr , Who denotethe selfconnectionweights between

machine learning and deep learning methoflke main
contributions of tk papemare as follows:

1) A new framework forboth the prediction ofrenewable
energyandelectricity load is proposed hysingimproved
stacked GRLRNN. The developed approacanperform
accurate energyrediction using timeseries data with
monitoring paameters.

2)
parameters. The improvedR&-RNN reduces the model

complexity which saves the computational cost and

requires less training data

The ftaining algorithm of the staked GRURNN is

improved byadding a noveddjustablanomentunscheme

The adaptive learning rateused in the proposeahethod

results in a more effective trainipgocess

The proposed method can deal with both rudfiate and
uni-variate casesThe effectiveness of thenethod is
demonstrated byonductingtwo experiments including
multi-variate wind energy prediction and uni-variate

electricity loadprediction

The rest of the paperis organizedas follows. Section Il
briefly introduces classical LSTMRNN. Theproposednethod
is givenin Sectionlll . SectionlV presentdwo case usingtwo
openaccess datasetonsistsof wind power generation in
Germany and electricity load in Spaifihe conclusioa and
possiblefuturework aregivenin SectionV.

3)

4)

Il. INTRODUCTIONTOLSTM-RNN

By incorporatingneurons withself-feedback connections
RNN achieves thainique capability of modelng time-series
data whencompared wittother types of deep learning moslel
such asCNN, deep belief network OBN), and stacked
autoencodefSAE). LSTM-RNN wasdevelopedo addresshe
gradient vanishingroblemwhenfinding long-term tempord
correlations in time serieAs shown inFig. 1, LSTM-RNN is
constructed by usingSTM units to repla@ the traditional
hiddenneuronsEachLSTM unitis composeaf aninput gate
(iy), aforget gatg(f,), anoutput gate€ o, ), anda memory cell

(ct). Theoperatiosin LSTM-RNN can besxpressed by
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the current time andthe previous time-1; by, is thebias of
the inputlayer, bi, b¢, b, arethebiassof the three gates in
theLSTM unit, and pi, pr, Po are the weights conneatjthe

peepholes anthethree gatesThrough training,heseweights
and biasesare optimized by the stochastic gradient descent
(SGD) algorithm to minimize thenean square error (MSE)

Modified GRU-RNN structure is used with fewer modelPetween thactualand predicted outpwialues.
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Fig. 1. The nmodel archite¢ureof LSTM-RNN.
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Fig. 2. The nodel archite¢ure of a classicGRU-RNN.
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A. StackedNovelGRU-RNN

Fig. 2 showsthemodelarchitectureof aclassicGRU, which
is formed byonly two gates calleceset gatendupdate gate
The eset gatdr,) is used tadecide whether all or part of.1
(previoug is taken into consideratiorThe purpose othe
update gatéz) is to decidehow much oh; (currenj is updated
based orthe stateof the candidatdayer (). For atime-series
sample sefx}, thecalculaton procedurs of GRU are

THE PROPOSEDMETHOD
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whereVy;, Vx, andVy arethe weights connecting theénput
layer andthe update gate, reset gate and candidajer,

respectively Unz, Un, and Uy arethe self-connection weiglst
betweerthe current timé andthe previous timé-1; b, by, and
b. arethebiasesof theupdate gate, reset gagedthecandidate
layer inthe GRU unit respectively

Training an effective GRURNN with long sequential data is
still time-consumingTo tacklethis problem, weutilize agate
variantof the classi€&GRU-RNN. Specifically, in ourdeveloped
GRU-RNN, each gate is computed usiogly the previous
hidden state and the bjawhich largely reducethe total
number ofthe trainedparametersThe atevariant of the
proposedsRU-RNN can be expressed:by

z=s(U,h, b) 13
rt =5(Uhrht—1 -br) (14)
In practice the timeseriessignak with multiple parameters

oftenshowhighly nonlinear andhon-stationarycharacteristis
Therefore to performaccurate and reliablmapping multiple
GRU-RNN layers could be stackedcorstructastacked GRU
RNN. As shown irFig. 3, by introducing aregression layeat
the top, the stacked GRRNN can be usedor predicton,
defined as

¥ =5(Uyhht 'by)

whereﬁ represerd the predicted outpudfter the regression

(15

layer, Uyh represerd the weight for theregression Iayerby

represerd the bias for theregression layerandthe regression
layeralsoemploysS asthe activation function

egression
layer

Fig. 3. Stacked GRLRNN for prediction usingime series

B. Modification ofthetraining algorithm

Like the classical RNN and LSTHRNN, the GRURNN
typically useshe SGDalgorithmwith momentunto adjust the
weights and biases byginimizing the MSEbetween thectual
outpus and predicted outpsit expressed as

E=&_(y, ¥)?/2T
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(16)
17)

where E isthe MSE function, d, represerg the parameter set
at the gth iteration consising of differentweights and biases

given in Egs.(1-15); Y, denotesthe actualoutput T is the
total number oftraining samplesand /7 is the learning raten

the basidraining algorithm the learning rateand momentum
both stay the sameduring the training process,which is
inadequatéo effectively adjust all theveights andiasesf the
GRU-RNN. Despite AdaGradstrategyimproves the training
performance to some degree by adjustinglélaening rate in
reattime, the momentumstill stays the sameavhich maystill
lead toslow convergence and overfitting

In the presenpaper, taovercome the limitation cAdaGrad
and furtherenhance théraining performancea new modified
training algorithmusingAdaGradandadjustablenomentunis
developedo enablean adaptivdearning rateand momentum
at different gradientsluringthe training process'headaptive
learningprinciple isexpresseasfollows:
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where Eq.(19) represents thadjustable momentunk,, /1, ,

Oy b, representhe MSE, learning rategradient momentum

factor and trained parameter setat the gth iteration

respectively / represersta small positive numbrédefault 1e
8); k is the hitial coefficient ofadjustablemomentum term
and /1, istheinitial learning rate.

C. Flowchart of the proposed method

This paper presents novel method for the prediction of
renewable energygeneration and electricity load using
improvedstacked GRURNN. The flowchat of the proposed
method is shown ifrig. 4. Themain steps are as follows.
Step 1: Collect the historical time-series dataontaining the
monitoring parametersf the energy productioandelectricity
load
Step 2:Select the sensitiveonitoring parameteiaccording to
thecorrelation analysibetween th@parametes andoutput
Step3: Divide the samples intwainingand testingets
Step 4: Build a stackedGRU-RNN model with the proposed
GRU structure anthe improvedtraining algorithm Train the
model with training samples to establisim accurate mapping
between the selected monitoring parametersfamdutput
Step5: Verify thepredictionperformance of thetackedsRU-
RNN modelusingthetesting samples

IV. EXPERIMENTAL EVALUATION

To evaluate the effectivenes$ the propose@pproachfor
both the prediction ofrenewable energy and electricity load
two experimens are conductedwind energy prediion using
multiple weather parameters and electricity load prediction
usinghistorical load data.



Selection and pre-processing of multi-parameters

Multi-parameters monitoring at different time and stations Observation stationsin different areas
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Fig. 4. Theoverall framework of the proposed method.

TABLE |

DESCRPTIONSOF THE INPUT AND OUTPUT VARIABLES

Descrptions Threedimensional inpuvariables Onedimensional outpwariable
V1 V2 V_50m DE_wind _generation_actual
Physical Velocity at height hl (2 meter: Velocity at height & (10 Velocity at 50 meters above Actual wind generation
meaning above displacement height)  meters above displacement  theground
height)
Units [m/s] [m/s] [m/s] [MW]
Namesof files Weather_data_ GER_2016.csv Weather_data_GER_2016.csv Weather_data_ GER_2016.cs' Solar wind energy productioDE.csv
Locatiorsin files  Column E ColumnF ColumnG ColumnD
S -
T 23
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=
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Fig. 6. The outputvariablefor theentireyear.
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Fig.5. Theaveragevalues otthe three inputariables during theentireyear:(a)

Number of data points (hours)

V1; (b) V2; (c)V_50m

1) Data description and experimental setup

In this experimentthe dataset containintpe hourly actual
wind energygeneration for 2016 Germanytogether with the
hourly weather conditions at 256 locations in the country is



