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Abstract

We investigate price duration variance estimators that have long been neglected in
the literature. In particular, we consider simple-to-construct non-parametric duration
estimators, and parametric price duration estimators using autoregressive conditional
duration specifications. This paper shows i) how price duration estimators can be
used for the estimation and forecasting of the integrated variance of an underlying
semi-martingale price process and ii) how they are affected by discrete and irregular
spacing of observations, market microstructure noise and finite price jumps. Specif-
ically, we contribute to the literature by constructing the asymptotic theory for the
non-parametric estimator with and without the presence of bid/ask spread and time
discreteness. Further, we provide guidance about how our estimators can best be im-
plemented in practice by appropriately selecting a threshold parameter that defines
a price duration event, or by averaging over a range of non-parametric duration esti-
mators. We also provide simulation and forecasting evidence that price duration esti-
mators can extract relevant information from high-frequency data better and produce
more accurate forecasts than competing realized volatility and option-implied variance

estimators, when considered in isolation or as part of a forecasting combination setting.
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1 Introduction

Precise volatility estimates are indispensable for many applications in finance. Over the last
two decades realized variance (RV) estimators of quadratic variation following Andersen,
Bollerslev, Diebold & Ebens (2001) and Barndorff-Nielsen & Shephard (2002) have become
the standard tool for the construction of daily variance estimators by exploiting intra-day
high-frequency data. In the presence of market microstructure (MMS) noise, apart from
some alternative methods (such as for example, those based on Fourier-Malliavin theory, see
Malliavin & Mancino (2009) and Mancino & Sanfelici (2012)), we could probably say that
there are four major approaches for the estimation of quadratic variation (QV) developed
in the literature. First, the sub-sampling method of Zhang, Mykland & Ait-Sahalia (2005)
and Ait-Sahalia, Mykland & Zhang (2011) combines realized volatility estimators computed
on different return sampling frequencies and gives rise to the two-scale and multi-scale real-
ized variance estimators, related to this approach is the Least Squares based IV estimation
framework of Nolte & Voev (2012). Second, Barndorff-Nielsen, Hansen, Lunde & Shephard
(2008) develop the class of realized kernel estimators. Third, Podolskij & Vetter (2009),
Jacod, Li, Mykland, Podolskij & Vetter (2009) and Christensen, Oomen & Podolskij (2014)
introduce the pre-averaging based realized volatility estimators. Fourth, Xiu (2010) develops
the class of QML integrated variance estimators, which is later extended to the multivariate
case by Shephard & Xiu (2017). Bandi & Russell (2011) investigate finite sample properties
of the kernel estimators and their optimal implementation. Liu, Patton & Sheppard (2015)
compare the accuracy of these and further estimators across multiple asset classes.

The observation error is also an important issue in volatility estimation with high fre-
quency data. While the underlying price process is assumed to be continuous, prices are in
reality observed at discrete times. Furthermore, it is also sensible to think of the time points
as random stopping times, or at least unregularly observed and possibly also endogenous
to the underlying price process. See Ait-Sahalia & Jacod (2014) for the general overview,
and Jacod (2008) and Vetter & Zwingmann (2017) for the detailed econometrics. Recently,
Bandi, Pirino & Reno (2017) and Bandi, Kolokolov, Pirino & Reno (2020) introduce the no-
tion of idleness and staleness in the price changes. These have very important implications in
volatility measurement under the semimartingale assumption as implied by the fundamental
theory of asset pricing.

This paper studies an alternative approach to volatility measurement and forecasting,
based on price duration. We consider both simple-to-construct non-parametric estimators

and parametric price duration estimators with autoregressive conditional duration (ACD)



specifications. In contrast to the GARCH, realized variance and option-implied variance
estimators, the price duration approach has received very little attention in the literature so
far.

Indeed, two hands suffice to count the studies carried out on duration based methods,
with the first detailed paper being Cho & Frees (1988). Earlier research focusses on paramet-
ric approaches, for example Engle & Russell (1998) and Gerhard & Hautsch (2002), which
consider ACD specifications to govern the price duration dynamics. With a parametric as-
sumption for the dynamic price duration process, not only an integrated variance estimator
but also a local (intra-day, spot) variance estimator can be obtained, as pointed out by
Tse & Yang (2012). All three ACD studies start from a point process concept to construct
volatility estimators, but provide little guidance on the practical task of selecting a good
price change threshold when MMS noise effects are present, which is important for imple-
mentation. Pelletier & Wei (2019) recently propose an intraday spot volatility estimator by
specifying stochastic models for the price durations and volatility simultaneously. Li, Nolte
& Nolte (2021) study a point process-based approach via Markov-Switching Autoregressive
Conditional Intensity models. A notable but neglected working paper by Andersen, Dobrev
& Schaumburg (2008) proposes a non-parametric price duration variance estimator similar
to ours but without the averaging feature. They show that duration estimators are more
efficient than noise-robust realized volatility estimators for price diffusions.

Theoretical and empirical justifications for the duration based methods have been even
more scarce than the limited number of papers written. In this paper we aim to fill the
gap in the literature, and support the validity of their uses. Specifically, we establish the
asymptotic theory for the non-parametric duration based estimator when the underlying
process is an Ito6 semimiartingale. We also investigate how the asymptotics is influenced
by the presence of some microstructure noise, observation errors of discrete and irregular
forms and finite activity jumps. Further, we discuss practical ways to appropriately choose
the threshold parameter, which determines the size of the price change that defines the
event times. In addition, we show that the performance of price duration estimators can
be further improved by averaging over a range of price duration estimators with different
threshold values. Our simulation study shows that, in general, price duration estimators
produce lower Root Mean Squared Errors (RMSE) and QLIKE loss values than competing
realized volatility-type estimators. This is the case in setups with constant and stochastic
volatilities as well as those with noise and observation errors. Within a forecasting analysis we
provide evidence for Dow Jones Industrial Average (DJIA) index stocks that price duration

variance estimators, especially a parametric price duration estimator and an averaging non-



parametric estimator, extract relevant information from (high-frequency) data better, and
produce more accurate variance forecasts, than competing realized volatility-type and option-
implied variance estimators, when considered either in isolation or as part of a forecasting
combination.

Speaking further of the non-parametric price duration approach, we remark that there are
some different strands of research papers that can be related to ours. Fukasawa (2010a,b),
Fukasawa & Rosenbaum (2012), Li, Zhang & Zheng (2013) and Li, Mykland, Renault, Zhan
& Zheng (2014) study the RV estimators with respect to various stochastic sampling times. In
some particular special cases (regular grid), the estimators overlap with the non-parametric
duration estimator we consider, when there is no bid/ask spread and time discreteness. It
is shown in their papers that realized volatility-type estimators on an appropriate stochastic
sampling grid are asymptotically more efficient than calendar time analogues using a compa-
rable number of observations. Recently Li, Nolte & Nolte (2019) provide asymptotic results
for the general class of renewal process estimators which includes price duration and also
range based estimators as examples.

The parametric price duration variance estimator most similar to ours was proposed by
Tse & Yang (2012) using a computationally intensive semi-parametric estimation method
for an ACD specification. They show through simulation that the semi-parametric esti-
mation method can improve upon maximum-likelihood-estimation (MLE) coupled with an
Exponential distribution assumption for the scaled duration, but that the estimates are not
sensitive to the choice of the computation method. We thus continue employing MLE which
is straightforward to implement. Apart from using a new ACD model that can better ac-
commodate the long-range dependence in price durations, we improve upon their parametric
price duration estimator by replacing the Exponential distribution with a Burr distribu-
tion which significantly improves the density forecast results. Tse & Yang (2012) select the
threshold values by targeting a desired average duration but acknowledge that an optimal
choice is important. We address this issue by relating threshold choices to the level of the
bid/ask spread, with the underlying assumption that the bid/ask spread can be related to
the market’s level of volatility, since it’s well-known that spread and volatility are positively
correlated. We plot using empirical data an upward-sloping then stabilizing plot for the price
duration variance estimates against a large range of threshold values, similar to a volatil-
ity signature plot. We show that with our threshold selection rule the resulting variance
estimates reach the stabilizing region, thus balancing bias against efficiency. A forecasting
study confirms our parametric estimator’s superiority in predicting future stock volatilities,

by comparing it with 10 established RV-type estimators and one option-implied volatility

4



estimator.

The paper is organized in the following way. Section 2 lays out the theoretical foundations
for the duration based variance estimators, and derive the asymptotic properties thereof. In
particular, we establish the central limit theorems, and show how they are affected by the
presence of market microstructure noise, observation errors (time discreteness) and finite
activity jumps. Section 3 describes the high-frequency data used subsequently and provides
descriptive results that motivate the simulation study. Section 4 contains the simulation
study that assesses the effects of market microstructure noise components on our duration
based variance estimators, provides guidance on the choice of a preferred price change thresh-
old value, and compares the accuracy and efficiency of the duration based estimator with
competing estimators for both constant and stochastic volatility models. Section 5 contains
the empirical analysis of our estimators including a discussion on the construction of the
parametric duration based variance estimators and empirical evidence on the choice of a
preferred price change threshold value. Section 6 contains the forecasting study and Section

7 concludes.

2 Theoretical foundations

In Section 2.1 we provide the theoretical foundations for parametric and non-parametric
duration based variance estimators. Section 2.2 studies the asymptotic properties of our
non-parametric estimator in the presence of time discreteness, market microsturcture noise

such as the bid/ask spread and finite activity jumps.

2.1 Duration based integrated variance estimation

Suppose the efficient log-price process X, is a continuous It6 semimartingale defined on some

filtered probability space (Q, F, (F;)i=0, P) represented by
dXt = ,Lttdt + O'tth (1)

where W, is a standard Brownian motion and y; and oy are (F;)-adapted and locally-bounded.
These assumptions are sufficient for suppressing the drift term using standard methods via
Girsanov’s theorem, see Mykland & Zhang (2009). In this subsection we assume continuous
time observations on the price process; the issue of time discreteness is discussed later in

Section 2.2.



Let n be the parameter that defines the observation frequency and derives the asymp-
totics. For each trading day and a selected threshold 4, a set of event times {7, ;};z3 gop
is defined in terms of absolute cumulative price changes exceeding §. For asymptotic deriva-
tions, we suppose that the sequence of thresholds § =4, — 0 as n - oo. To elaborate, we
are considering a random sampling scheme of hitting times defined as 7,0 = 0 and

Taje1 = inf t>¢n], R,-x, o 0}. 2)

™n,j

Note that the resulting times form a sequence of strictly increasing stopping times. The total

number of price duration events, that is the number of ‘hits’ up to time ¢, is defined by
Npi:=max{j =0; 7;,, <t} (3)

Note that in the case of deterministic regular time sampling (calendar time sampling) for
example: 7,; = j/n; 7 = 1,...,n over [0,1], it follows that N,, = n and the rate of

-1/2

convergence 0, = n~ /. The object of interest is the quadratic variation [X, X]; which is

equal to the integrated variance a.s. (Jacod & Shiryaev (2003)):

]
[X. X]i= o ds (4)
0

Note that, from hereafter, subscripts will sometimes be omitted where no confusion is likely,

in particular the dependence of the processes upon the parameter n.

2.1.1 Non-parametric estimation

Below we sketch the underlying idea of our non-parametric duration based estimator and
motivate its use. Let z,; = 7,; — 7, j—1 denote the time duration between consecutive
events. For the conditional distribution of z, ;|F,; ,, we denote the density function by
f(@n,j|Fr.;_,), the cumulative distribution function by F'(z,;|F-,;_,) and the intensity (or
hazard) function by M, ;|F-,;_,) = f(@n1Fm;_.)/ (A — F(zn|Fm;_0))-

Following Engle & Russell (1998) and Tse & Yang (2012), duration based variance esti-
mators rely on a relationship between the conditional intensity function and the conditional
instantaneous variance of a step process. The step process { ¥t 0} is defined by X=X,
when ¢t [k, ;,j = 0} and by X< X1 whenever Tnj—1 < t < 7,;. The conditional

™n,j—1



instantaneous variance of Quals

1
2 . -
i Llino A var(Xma — @n,j—l)a Tnj—1 <1 < Tpj. (5)

As A approaches zero we may ignore the possibility of two or more events between times
t and t + A\, so that the only possible outcomes for XA — Xcdn be assumed to be 0, § and

—4. The probability of a non-zero outcome is determined by A(x,, ;|F~,;_,) and consequently

n,j
O'j:tj: (52)\(t - Tn,j—l“:q—n,j—l)a Tn,j—1 <t< Tn,j- (6)

The integral of J?mover a fixed time interval provides an approximation to the integral
of O'g(’t over the same time interval, and the approximation error disappears as § — 0.

The general duration based estimator of the integrated variance, IV, is given by

TN | i— - -
=1 ol gt= 6 At =Tpj-1|Fr;, dt
0 7 J=1 Tn,j—1
¥—O! 1 i
=—=6 In 1—=F z,4|F ., . (7)
j=1

In fact, the above estimator is ignoring price variation over the interval between the last
price event of the day at time 7, x and the end of the day, 7, ¢.q, Which is expected to be
of minor importance when ¢ is relatively small. A natural bias corrected general duration
based variance estimator is therefore

e F— s
=l ahdt =—=6  In(1 = F(2n;|Fn,,_,)) + 6 At = TunIFr)dt.  (8)
0 J=1 ™n,N

In practice, we do not know the true intensity function. We must therefore either estimate
the functions A(.|.) or we can replace the summed integrals in (7) by their expectations.
Noting that these expectations are always one, we can define the following estimator which

will be one of the main objects of study in this paper:

Definition 1. The non-parametric duration based variance estimator (NPDV) over the in-

terval [0,1] is defined by
NPDV, = NPDV,(§) := N, 02, (9)

where Ny, is as defined in (3).



This equals the quadratic variation of the approximating step process over a single day,
which we may hope is a good estimate of the quadratic variation of the price process over
the same time interval.! Below we show it is indeed the case. An equation like (9), for the
special case of constant volatility, can be found in the early investigations of duration based
methods by Cho & Frees (1988) and Marsh & Rosenfeld (1986). We note that in Andersen
et al. (2008), their approach is to estimate local volatility at each single time point, resulting
in a different form of the estimator. Also, they consider the case of constant volatility in the
first instance. A further discussion on the differences between our estimator and theirs is
provided in Section 2.2.1.

As aforementioned in the introduction and also briefly discussed in Fukasawa (2010a),
the NPDV estimator overlaps with the RV in some special cases. This happens when the
RV is stochastically sampled at times at which the price hits the regular (i.e. symmetric
and equidistant) grid of size §. It is however no longer the case when there is a bias due
to time discretization and/or microstructure noise; Section 2.2 details how the asymptotics
are affected. As for detailed discussions for the RV with respect to stochastic sampling, the
interested reader is referred to in Fukasawa (2010b), Fukasawa & Rosenbaum (2012), Li,
Zhang & Zheng (2013), Li et al. (2014) and references therein.

For the limiting theory, we shall impose the following condition within this section for

the mesh of the sampling interval.
Assumption A. The mesh of the sampling points satisfy the following:

mjax |7 j+1 — T il = 0p(1). (10)

Note that this assumption above makes the sequence of stopping times {7, ;} an adapted
subdivision of a Riemann sequence. We therefore obtain the Law of Large Numbers for (9)

in view of Jacod & Shiryaev (2003, Theorem 1.4.47), implying consistency of our estimator:
NPDV, 25 [X, X]; (11)

asn — oo (so that 6, - 0).

We now move on to the limiting distribution.

1The asymptotic downward bias introduced by ignoring end of day effects is equal to 82/6 from Li et al.
(2019). A bias corrected version of (9) is therefore given by NP DV, = (N + 1/6)3.



Theorem 1. Suppose Assumption A holds. For all t we have the following convergence in

law to a mized normal distribution for the estimator defined in (9):

I:Il_f_—l 1

] I:IL 2
6.1 NPDV,—[X,X], — MN '@g 0% ds T (12)
0

Proof. See Web-Appendix C. n

Remark. The ‘symmetric nature’ of our sampling scheme (2) is worth noting, since
without it the bias may not asymptotically vanish, as pointed out by Fukasawa & Rosenbaum
(2012). We note that (12) is consistent with the limiting distribution of the realized variance
and renewal estimators in the special cases where all three estimators overlap, see Fukasawa
(2010b, Theorem 3.10), and Li, Nolte & Nolte (2019, Remark 4.3).

The NPDV has a lower limiting variance than that of the RV estimator sampled in
business time, or in conditionally independent time (e.g. Poisson type), or in equidistant

calendar time. See Hansen & Lunde (2006) and Ait-Sahalia & Jacod (2014, Chapter 9).

2.1.2 Parametric estimation

We now introduce some parametric approaches; detailed derivations of their asymptotic
theories are omitted. A parametric implementation of (7) requires the selection of appropriate
hazard functions A(.].). As first suggested by Engle & Russell (1998), we assume the durations

Tn;j = Tn,; — Tn,j—1 have conditional expectations 1; determined by F and that scaled

Tn,j—1

durations are independent variables. More precisely,

Tn,j = ¢n,j5n,j7 with wn,j = E[xn7j|FTn,j—1]7 (13)

and the scaled durations ¢; are i.i.d., positive random variables which are stochastically
independent of the expected durations 1);.

Autoregressive specifications for 1; are standard choices, such as the autoregressive con-
ditional duration (ACD) model of Engle & Russell (1998), the logarithmic ACD model of
Bauwens & Giot (2000), the augmented ACD model of Fernandes & Grammig (2006) and
others reviewed by Pacurar (2008). These specifications do not accommodate the long-range
dependence present in our durations data. As a practical alternative to the fractionally inte-
grated ACD model of Jasiak (1999), we develop the heterogenous autoregressive conditional
duration (HACD) model in the spirit of the HAR model for volatility introduced by Corsi
(2009). Short, medium and long range effects are arbitrarily associated with 1, 5 and 20



durations, and our HACD specification is then

Y = w+ axy j—1 + Py j—1 + Bo(Unj—s + ... F Uy j—1) + Ba(Ynj—20 + ... + 1y, -1). (14)

A flexible shape for the hazard function can be obtained by assuming the scaled durations
have a Burr distribution, as in Grammig & Maurer (2000) and Bauwens, Giot, Grammig &
Veredas (2004). Recently, in Pelletier & Wei (2019) a Gamma distribution is assumed for the
scaled durations. Note that the general Burr density and cumulative distribution functions,
as parameterized by Lancaster (1997) and Hautsch (2004), are given by

flé,n,v) = [1+ (/T Ty >0, (15)

]2
mwﬁ

and

F@lén.y) =1=[L+n/& T, y>0, (16)

with three positive parameters (&,7,7). The Weibull special case is obtained when  — 0
and its special case of an exponential distribution is given by also requiring v = 1. The mean

1 of the general Burr distribution is

1 1
p=Ee(n, ), with c(n,7) =B 1+t 7t =471 /pt+m)] (17)

with B(:,+) denoting the Beta function. For each scaled duration the mean is 1 so that &
is replaced by 1/c(n,~). For each duration ,; (having conditional mean ;) we replace £
by 1;/c(n,7). From (7) our parametric, duration based variance estimator, PDV over the
period [0, t], is therefore

2 e [ 1 1 L,TJ:I

5 .
PDV, = PDV(§) ==  log 1+7n cn )2 . (18)
T/ j:l ¢]

When we implement (18), we take account of the intraday pattern in the durations data.
The durations z; in (13) and (14) are replaced by the scaled quantities 2= x;/s; and each
expected duration ¢, is replaced by the scaled quantity Q/lezlu = 1j—y/Sj—u, with s;_, the
estimated average time between events at the time-of-day corresponding to time t4—,; each
term s;—, is obtained from a Nadaraya-Watson kernel regression, with Gaussian kernel and a
data-based automatic bandwidth as proposed by Silverman (1986), of price durations against
time-of-day using one month of durations data. Then 1; is replaced by s;/ J‘;'so the scaled

duration x;/1; in (18) is simply xﬁ"@/)]';' End of day bias correction is obtained by adding
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1/6 - 52 as above. The associated log-likelihood function for the Burr case is given by

log L(9) = ﬁ(n, 7 ?ﬁ“ [1+ n(ejcln, 1))~ - (19)
J
where &5 774 " Hollows the specification in (14), ¢(n,) is given by (17), initial values
for wj‘-:hre set to the the unconditional mean of le:ht the beginning of each day, and 6§ =
(w, o, B1, B2, B3,7,n) is the corresponding parameter vector.

The theoretical framework above is for the logarithms of prices. It is much easier to set
the threshold to be a dollar quantity related to the magnitude of the bid/ask spread. We then
replace the log-price X; in (2) by the price P, = exp(X;). As a small change ¢ in the price
is equivalent to a change §/P; in the log-price, we can define the following (asymptotically

equivalent) alternative definitions for our estimators:

€ 52]
NPDV, = 2” (20)
Jj=0 " 7n,j
and
52 e - T ;':'2
PDV,= " log 1+mn c,7v)"> /P .. (21)
n =0 %‘ '

These alternative definitions will be used in Sections 4 and beyond for computational prac-
ticality. Obviously, their asymptotic equivalence with the previous definitions can be easily
seen via Taylor series expansion for logarithms.

Speaking from a practical point of view, we see that the non-parametric estimator can
easily be constructed with a reasonable number of events N = N; over the interval [0, ],
which represents a day for example. On the other hand, the additional parametric form
assumption of the parametric estimator also guarantees a volatility estimator for small N
and yields for example a local (intraday) volatility estimator. The end of day bias correction

is now to add §2/(6P%) to these estimators.

2.2 Time discreteness and market microstructure noise
2.2.1 Time discretization

To investigate the effect of time discretization on our estimation theory, we first suppose
that the observations are first sampled according to a Poisson process, after which the hit-

ting time sampling we reviewed in the previous section is considered. Poisson sampling is
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a widely implemented random sampling scheme within the high frequency framework. It
is a continuous-time version of Bernoulli process modelling whose inter-arrival time is geo-
metric. For example, Campbell, Lo & MacKinlay (1997) state that their non-synchronous
trading model converges to the continuous time Poisson process (under suitable normalisa-
tion). However, due to its exogenous nature, Poisson sampling does not take the information
of the price process into account. This form of limitation has been discussed in the litera-
ture, for example in Ait-Sahalia & Jacod (2014) and Li et al. (2014). The setup we consider
in this subsection can be viewed as “integrating” the exogenous and endogenous aspects in
the sampling procedure. This allows us to cover a wide range of plausible situations from a
practical point of view, but as a cost to pay the rate of convergence slows down.

Suppose the stopping times 1,, = {7,,0, 71, ..., } follow a Poisson process with intensity
A. For the asymptotics, the sequence of positive numbers A = A, is set to approach to zero,
since it represents the time to next “arrival”, which should decrease as the number of sample
increases. We then consider time points chosen according to the hitting time procedure we
defined above. That is, the sampling times under consideration are given by

Tawy i=inf ¢ m>TD g{ - X, mia j [, {0} (22)

n,1!?

Therefore, the total number of hitting times become Nn"jt =max{j = 0; Tj%I < t}, and our

non-parametric estimator becomes
NPDV, = N, 2. (23)

Since we are essentially selecting those times which satisfy the “criteria” out of the sample
set 1, the generalized thinning argument of Poisson processes applies. Therefore, it follows

that (conditionally on F, ;) we have

,_] +1 mELUTn j (24>

where e [Cexdp(1) and
Vs :Ptgg — X §>5 . (25)

nj+1 ™.j

The sequence of positive (F;)-measurable processes (v,,) can be understood as representing

the “likelihood” of the Poisson time points being selected.

Lemma 1. Suppose oy in (1) is bounded above by some positive constant o—for all t. Then

12



it follows that v, ; = Op(A3/6,), and the sampling points {Tn%}j (24) satisfy Assumption
A when O, = o(6X/°).

Proof. This is proved along with Theorem 2 in Web-Appendix C. Note that the boundedness
of ¢ is a often improsed in the literature as an innocuous assumption, see for example, Li et

al. (2014). 0

Furthermore, with standard renewal arguments, it is rather straightforward to see that
the following structural assumption below (Assumption B) holds for the sequence of stopping
times {7,;};. The implication is that 7, is now F;Z; measurable while still being defined

on the original space Q.

Assumption B. The hitting time 7,-,; defined in (22) is an (F;}-stopping time where the
o-field F"is bigger than or equal to F defined in (1), and the probability measure P is
defined on F"

The limiting distribution now follows. Note that (26) can be broadly seen as a generalized
version of the CLT of Andersen et al. (2008, page 17), where a directional local volatility

estimator is considered on a pre-defined fixed time grid.

Theorem 2. Suppose oy in (1) is bounded above by some positive constant o—for all t, and
A, = O(63/%). Assume also that there exists a non-vanishing cadlag process v, which is
the probability limit of the (F.)-progressively measurable process v, defined in (25). Then
under Assumption B, for all t we have the following convergence in law to a mized normal

distribution for the estimator (23):

:IIZI L1

- -
0

where B, is the bias term due to time descretization, which is of order Op(A2 /52).

Proof. See Web-Appendix C. n
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2.2.2 Market microstructure noise

Next we consider the bid/ask spread, which is arguably one of the most important market
microstructure noise components for transaction price datasets. We discuss how it affects
the limiting theory of the non-parametric duration based volatility estimator.

Specifically, assume that at general times ¢t we observe a contaminated noisy log price

1 L1 ¢ L1
Y;:|ngt+§Dt§ EXt+*Dt y (27)

2
where ¢ denotes2 the size of the bid/ask spread and P, is the unobserved true price. Further,
D; is the binary variable that takes the value of 1 when Y; represents the log of an ask price
at time ¢, and —1 when Y; represents the log of a bid price at time ¢.

Microstructure noise as a whole is often modeled as some additive random error ¢, see
Zhang et al. (2005), Hansen & Lunde (2006), Bandi & Russell (2008). Our assumption (27)
can be understood as a detailed specification thereof for addressing the bid/ask spread, i.e.
et = (¢/2)D;. In the context of stochastic sampling for the realized volatility, Fukasawa
(2010a) deals with the bid-ask spread component of a different specification.

We assume that ¢ is constant throughout the day and does not depend on n, which
is consistent with the standard practice of modelling E(e;) as fixed. As Zhang (2011) and
Ait-Sahalia and Jacod (2014, 7.1.1) discuss, a shrinking noise asymptotics is sometimes,
albeit relatively uncommonly, considered e.g. to examine the bias-variance tradeoff in detail.
As such we also consider the case where ¢ depend on n and shrinks asymptotically, i.e.
¢ = 6u,(- 0), see below.

We suppose that Y; takes prices on the ask side with probability p, and on the bid side
with probability p,(= 1—p,). For example, we may set them to be 0.5 so that both situations
would happen with equal probability. Note that we do not consider the time discretization
issue for expositional simplicity in this subsection.

We set the price events to occur at {T,Ej};y;‘[’llt, where NEt denotes the total number of
hitting times over the interval [0, ¢]. In line with our previous definition, these hitting times
are now alternatively defined as follows:

1 1 1
g@ﬂ. , ~ Yo g= @jf,?jﬂ — X +5¢ Do — Do E@ d. (28)

n,j+

The setting suggests that an event is triggered by the combined magnitudes of the unobserved
efficient price change component (XTEJ_+1 - XTnDj) and the bid/ask spread component 1/2 -

{DTnmj+1 - DTE',-}' The bid/ask spread component can therefore take three values: either
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—1,0, or 1, which together with an upward (downward) move of the log price component

constitutes the following three possible scenarios:

I.

I1.

Bid-Bid or Ask-Ask

When both the first price and the last price of the price duration lie on the same side
of the limit order book, i.e. bid-bid or ask-ask, we note that the contribution from the
bid-ask spread becomes zero. This means the price component itself solely triggers a
price event in our construction, and the noise induced by the presence of bid-ask spread

cancels out automatically:

11 LA
NPDV, =N, 02=N,), Yo —Y.o (29)
) ’ n,j ][ n,j
= NTIL:,lt XTnDj+1 XTnDj ’

So, we can see the robustness of our estimator to the noise in the modelling procedure.

Asymptotic theory follows straightforwardly.

Bid-Ask

In this case, the preceeding binary variable D. in (28) takes the value of —1 while the
other is 1. It turns out that the magnitude of the noise ¢ from the spread plays a key
role as we sketch now. We see that

(1 [ Ry DY
NPDV, = N2 = N Xooo  — X0 +g (30)

n,j+1 n,j

by construction. In the meantime, applying the triangle inequality on (28) we see that

Ko —xp oo 1)

n.j

with an implicit assumption that § = ¢?. This suggests that the noise induced in this
situation is equivalent to requiring a “lower bar” (of & — ¢) for the unobserved price

process in triggering a price event.

Standard arguments relating to the limiting behavior of the conditional first mo-
ment of price change imply that the leading bias term comes from the term ¢? - NEt

which is positive. This highlights the possible opposite roles that ¢ and ¢ play to the

2In practice & will always be chosen to be larger than ¢. We discuss the case 8 < ¢ in the context of the
simulation study in Section 4.
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I11.

magnitude of bias. Specifically, the bias increases in ¢, while it decreases in ¢ (as an

increase in § reduces N).

As for the asymptotics where each term is set to depend upon n, we recall that
NEt = 0,(5,?), so we require at least ¢ = ¢, = 0(d,) in order to eliminate the bias,
see proof of Theorem 3 for details. Note that in Theorem 3 below, we impose a slightly
weaker condition of O(9,,) so that the explicit form of the limiting bias can be specified.
Obviously, this can be smoothed away upon imposing a stronger condition ¢, = 0(9,),

for example.

Ask-Bid
This case is similar to the second situation. The preceeding binary variable D. in (28)

takes the value of +1 while the other is —1. So it follows that

(1] 1
NPDV,=N"62=N", Xo —Xo —¢°, (32)
y 5 n,j+1 n,j
and similarly as before,
g(7'rlnjj+1 - XTnDj & 0+¢. (33>

The leading bias term is still ¢2 - N,Et (and the same arguments for the asymptotics
therefore applies). So we expect an upward bias in the estimation, although the down-
ward bias contribution from the cross term in (32) suggests that the magnitude of
the bias can be slightly lower than the “bid-ask” case in the finite sample. Roughly
speaking, this is in line with the “higher bar” we end up requiring in (33).

Note that even in the second and third cases, we can see that the noise induced

by bid-ask spreads can be easily tracked down.

Remark. As aforementioned, for the limiting theory below we let ¢ depend upon n. This

is to control the asymptotic bias in relation to the threshold parameter d,,. We note that in

the asymptotic distribution below, if ¢ = ¢, is chosen to be of order 0(d,) the asymptotic

bias in (34) vanishes in the limit, implying certain degree of robustness of our estimator to

bid/ask spread (of this particular specification).

Theorem 3. Suppose the NPDV estimator is defined according to the hitting time scheme

(28), and suppose ¢ = ¢, = C.9, for some positive constant C.. Then, for all t we have the
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following convergence in law to a mized normal distribution for the estimator (23):

1 1
- 1, 1 1o ]
57U NPDV - [X,X] -5 MN 82 1=, —p) | 2 o2dst (34)
0
asn — o9,
Proof. See Web-Appendix C. O

Lastly, let us further consider the possibility of having finite number of jumps, and con-

. . . . D D Lo
sider the case where a jump of size x occurs over the interval [, 7, ;4] i.e.

g, g: 149 C1 1
0 —Y.o o0 —Xo +—-¢ Do —D.,o +k (35)
n,j+1 n,j nj+1 n.j 2 nj+1 n,j

As we expect || [ da price jump would most likely trigger an immediate price event.
Yet its impact on the integrated variance estimator is substantially mitigated as only one
duration event is caused and thus k is effectively truncated. In addition, as the occurrences
of large jumps are rare, we expect them to have very limited influence on the duration based
variance estimator. However, when we have a finite number of many small jumps of size
similar to 9, they are likely to affect the estimator. In the asymptotics, it is straightforward
to see that they would appear in the form of the squared sum of 3.

In the simulation study in Section 4, we further evaluate the performance of our duration
based variance estimators under different market microstructure noise scenarios. To obtain
some representative input parameters for this study we first report a descriptive analysis of

our high-frequency data.

3 Data properties

In the empirical analysis we use 20 of the 30 stocks of the Dow Jones Industrial Average
(DJIA) index. The tick-by-tick trades and quotes data spanning 11 years (2769 trading
days) from January 2002 to December 2012 are obtained from the New York Stock Exchange
(NYSE) TAQ database and are time-stamped to a second. All 20 stocks have their primary
listing at NYSE.?

3From the list of 30 DJIA stocks as of December 2012, BAC, CSCO, CVX, HPQ, PFE, TRV, UNH, and
VZ are excluded because of incomplete data samples. INTC and MSFT are excluded because their primary
listing is at NASDAQ.

On 1 August, 2006, NASDAQ started to operate as an independent registered national securities exchange
for NASDAQ listed securities, separate from the National Association of Securities Dealer (NASD) which has
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The raw data is cleaned using the methods of Barndorff-Nielsen, Hansen, Lunde & Shep-
hard (2009). Data entries, trades and quotes, that meet one or more of the following con-
ditions are deleted: 1) entries outside of the normal 9:30am to 4pm daily trading session;
2) entries with either bid, ask or transaction price equal to zero; 3) transaction prices that
are above the ask price plus the bid/ask spread or below the bid price minus the bid/ask
spread; 4) entries with negative bid/ask spread; 5) entries with spread larger than 50 times
the median spread of the day; 6) entries for which the mid-quote deviates by more than
10 mean-absolute-deviations from a rolling centered median (excluding the observation un-
der consideration) of 50 observations (25 observations before and 25 after). When multiple
transaction, bid or ask prices have the same time stamp, the median price is used. We match
trades with corresponding bid and ask quotes using a refined Lee and Ready algorithm as
outlined in Nolte (2008), which yields the bid/ask spreads.

The list of stocks and their descriptive statistics for the whole sample period are presented
in Table 1. Table 1 shows means and medians for bid/ask spreads and inter-trade times, as
well as means for the prices and volatilities, sorted in ascending order of their mean spread
level in the first column. The mean values of daily average bid/ask spreads range from 1.3
to 3.7 cents, and from 4.15 to 9.08 seconds for average inter-trade times. The corresponding
medians range from 1 to 3 cents, and 3.83 to 7.98 seconds, respectively, implying right-
skewed distributions for both variables. Table 1 also presents means and medians for a
simple measure of a jump frequency. A jump is recorded when the absolute value of a price
change exceeds five times the average bid/ask spread for a given day. The mean is 0.3 to 1.89
while the median is 0 to 1 jump per day. We also observe that the average level of volatility
across the whole sample period lies between 16% and 32%, while the average price level
ranges from $26 to $99. We observe that the average bid/ask spread is roughly increasing
with the average price level. In our empirical analysis we select four reference stocks on
the basis of their bid/ask spread levels: Home Depot (HD), McDonald’s (MCD), American
Express (AXP), and International Business Machines (IBM).

To obtain an idea of the time variation of the key variables, we plot (log) bid/ask spread,
(log) inter-trade time, and (log) annualized volatility calculated using (20) for AXP from
2002 to 2012 in Figure 1. We observe that periods of higher volatility coincide with periods

of wider bid/ask spreads and more frequent trades. We observe very much the same pattern

a different set of trading and reporting rules. This break is also reflected in the TAQ data, which started to
record trades and quotes with exchange code “Q“ instead of “T”. Before 1 August, 2006, the average numbers
of jumps (recorded when the absolute value of a price change is larger than 5 times the day’s average spread)
per day for INTC and MSFT are 8.08 and 10.37, and after that date the averages are 0.97 and 1.29 jumps
per day. Given this structural break for both stocks, we decided to exclude them from the data sample.
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Table 1: Descriptive statistics for 20 DJIA stocks

Stock  bid/ask spread inter-trade times number of jumps price volatility

mean median mean median mean median mean mean
T 0.013  0.01 7.74 7.98 0.56 0.00 26.49 0.23
GE 0.014 0.01 5.66 4.91 0.30 0.00 28.93 0.26
DIS 0.015 0.01 6.60 6.52 0.84 0.00 29.16 0.25
HD 0.016  0.01 6.15 5.91 0.77 0.00 35.49 0.25
AA 0.016  0.01 9.08 7.60 0.62 0.00 26.54 0.32
KO 0.017  0.01 6.74 6.56 0.96 0.00 49.53 0.16
JPM  0.017 0.01 4.97 5.02 0.97 0.00 38.68 0.32
MRK 0.017  0.01 6.68 6.23 1.26 0.00 38.18 0.21
MCD 0.018 0.02 7.19 6.94 1.01 0.00 50.58 0.20
WMT 0.018 0.01 5.84 5.17 1.04 0.00 52.88 0.18
XOM 0.019 0.02 4.15 3.83 1.27 0.00 67.30 0.21
JNJ 0.019 0.01 6.12 5.87 1.23 0.00 62.04 0.16
DD 0.019 0.02 7.66 7.19 1.01 0.00 43.93 0.23
AXP  0.019 0.02 6.84 6.85 1.22 0.00 48.01 0.29
PG 0.020  0.02 6.24 6.07 1.35 1.00 63.57 0.16
BA 0.025 0.02 7.57 7.09 1.65 1.00 64.33 0.23
UTX  0.027 0.02 7.96 7.47 1.89 1.00 70.65 0.20
CAT 0.028 0.03 7.27 6.42 1.18 1.00 71.24 0.25
MMM 0.030 0.02 7.83 7.36 1.65 1.00 82.36 0.18
IBM 0.037  0.03 5.95 5.44 1.51 1.00 99.10 0.19

Notes: Descriptive statistics for the daily average bid/ask spread (in dollars), the daily
average time between consecutive transactions (in seconds), the number of large price jumps
per day, the transaction price, and the annualized volatility. A “large jump” is recorded when
the absolute value of a price change exceeds 5 times the average bid/ask spread of the day.
“Volatility” is calculated using (20) and then converted to an annualized standard deviation.

for all other NYSE stocks in our sample.

Figure 1: Bid/ask spread, inter-trade times and volatility for American Express (AXP)
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Notes: Time series of logs of inter-trade time, volatility, and bid/ask spread from 2002 to
2012. Bid/ask spread is the average spread in dollars per day and inter-trade time is the
average duration per day (in seconds). The annualized volatility is calculated using (20).
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In Section 4, we carry out a comprehensive simulation study to analyze the properties
of the duration based variance estimators. We will consider as a benchmark a scenario with
25% annualized volatility and 6 seconds average inter-trade time, which corresponds approx-
imately to the average levels in Table 1. Likewise, to assess the effect of bid/ask spreads, we

will consider scenarios with varying spreads from 1 to 4 cents.

4 Simulation results

We first assess the effects of market microstructure (MMS) as well as price jumps on the non-
parametric duration estimator assuming constant volatility. Then we compare the bias and
accuracy of duration and RV-type estimators for a variety of well-known stochastic volatility

processes.

4.1 Constant volatility case

We separate the MMS noise into time-discretization (A), bid/ask spread (<), and price-
discretization components. We investigate the separate and combined effects of the noise
components as well as jumps on the non-parametric duration based volatility estimator,
NPDV (hereafter NP for convenience), in a Monte Carlo study with 10000 replications.
The performance of NP depends on the selection of the threshold value §. Following the
discussion of the two main sources of noise, bid/ask spread and time-discretization, we discuss

the tradeoff between efficiency and bias in the context of choosing a preferred threshold value
§H

4.1.1 Time-discretization

We first look at the effect of time discretization we studied in Section 2.2.1. For practical
implementation, let us consider a discrete-time setting in which we estimate the integrated
variance over one trading day. We first discretize the diffusion process on a half-second
interval so that there are 46800 efficient returns from a normal distribution in a 6.5-hour
daily trading session. Upon this foundation process, we sample trade points according to
random Bernoulli distributions with probabilities 1/2, 1/6, and 1/12, resulting in three
further time-discretized processes with average inter-trade times equal to 1, 3, and 6 seconds
respectively. Note that this is in line with the previously-discussed time discretization via

Poisson sampling in the continuous case.
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For any time-discretized process we now let A denote its expected inter-trade time.
Specifically, we employ the following simulation setup to obtain the discretized versions

of the log-price X; in (1) and its corresponding price P;:

Xo = |n(P()), (36)
—1
Xs = Xs1+ox 1/468007,, fors=1,...,46800, (37)
By [Bernoulli(1/(2 - A)), (38)
B 1
NS = B;, (39)
j=1
Xt = Xinfgs|nB=i}» (40)
f)ti = eXp(Xti)7 (41)
where t; for © = 1,..., I denotes the time stamps of the discretized log-price process with

expected inter-trade time equal to A, I the number of observations on a given day, Z, a
standard normally distributed random variable, ox the constant value of the daily volatility
and Py the initial price. We denote by | := {t1,t5,...,1;}.

The estimator NP can now be defined as in (22) with respect to I:

NP, = N2, (42)

where N'™s the number of duration event (within I) chosen according to the hitting time
scheme (so that N N2 for all s). In Figure 2, the average values of NP divided by
the true integrated variance ?agds = 0% are plotted against the threshold value §, for A
ranging within 0.5, 1, 3, and 6 seconds. The annualized volatility of efficient log-prices is
25% throughout Section 4.1, using 252 trading days per year, although the magnitude of
volatility is irrelevant for Figure 2.

Time-discretization decreases the number of duration events observed, due to the ab-
sence of prices that might have defined price events. As A decreases, the number of trades
NHncreases and NP approaches its “true value” (which occurs when prices are observed
continuously), see (25). Thus, given J, a smaller A leads to more accurate estimates of the
integrated variance represented by the unit line in Figure 2. On the other hand, increasing §
for a given A reduces the bias introduced by time-discretization, see (24). Note the tradeoff
between ¢ and N'and the asymptotic convergence of § to the average of the difference in

selected log prices.
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Figure 2: The time-discretization bias
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Notes: N P variance estimates divided by o%. Average inter-trade times A are 6, 3, 1, and
0.5 seconds from the bottom to the top. ox = 0.25 per year. Thresholds ¢ are from 0 to 15
ticks. Py = 50, tick size = 0.01.

4.1.2 Bid/ask spread and time-discretization

As discussed in Section 2.2.2; when time is not discretized, the introduction of a bid/ask
spread and corresponding bid and ask transaction prices bias the duration variance estimates
upwards. Also, as we remarked before, the bias increases with the size of the spread ¢, and
decreases with the threshold value ¢ (assuming 6 > ).

Throughout the remainder of Section 4 we consider A equal to 6 seconds, with bid and

ask transaction prices generated by
1

The transaction price takes either the bid or the ask side with probability 0.5 (i.e. ps =
1/2 = pp) and the variables D.’s are i.i.d. over the time index. Note here the subtle difference
between ¢, a proxy for the bid/ask spread component of noise, and the real bid/ask spread
which is measured in ticks. ¢ represents a difference between observed and efficient log-prices,
and thus is essentially a return measure. But in our simulation setting, the relation between
¢ and spread is quite straightforward. Given an initial price Py = 50, and no drift, a rough
relationship follows: ¢ = spread/50, where spread = 0.01,0.02, etc.* All graphs are plotted
with the bid/ask spread measured in cents, matching the threshold values (expressed in ticks
as well).

Figure 3 shows ratios of the average NP variance estimates over the true integrated

variance. A deviation from the unit line indicates a bias. The hump-shaped curves occur

4¢ is sometimes used inter-changably with “spread” to explain ideas in the text.
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as a result of the bid/ask spread component bias when the spread is relatively large. When
d < ¢, one bid/ask bounce is enough to trigger a price event and N is inflated in comparison
to the case when ¢ — 0 (dotted line). N does not decrease much as § increases as long
as § < ¢, causing the NP estimate, N2, to increase rapidly. When § further increases, to
d > ¢, the influence of bid/ask bounces is mitigated by the price changes from the efficient
price component as a price event is now increasingly caused by the cumulative efficient price
changes rather than by the bid/ask spread component. The bid/ask spread has the largest

influence at or near the point where § =g.

Figure 3: Combined effects of spread and time-discretization biases
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Notes: NP variance estimates divided by o%, with the range of thresholds from 0 to 15
ticks. Bid/ask spreads from bottom to the top are 0 to 4 ticks. ox = 0.25 per year. A is 6
seconds. Py = 50, tick size=0.01.

As ¢ increases past ¢, the N P estimates start to stabilize, since both the time-discretization
and the bid/ask spread biases are reduced by larger threshold values of §. We observe two
scenarios: 1) for smaller bid/ask spread levels (here 1 and 2 ticks) the negative bias con-
tribution of the time-discretization is partially off-set by the positive contribution of the
bid/spread components and the curves in Figure 3 for these cases tend to the unit line from
below; 2) for larger bid/ask spread levels (here 3 and 4 ticks) the negative bias contribution of
the time-discretization is, as discussed above, clearly dominated by the positive contribution
of the bid/ask spread component and the curves in Figure 3 for these cases tend after the

initial hump to approach the unit line from above.

4.1.3 Bias versus efficiency: the preferred threshold value

We must choose a threshold level § for the implementation of our estimators. Figure 3 shows
that the bias of the NP estimator decreases for a large enough threshold value, regardless

of the bid/ask spread level. But, increasing the threshold level will inevitably result in a

23



decreasing number of price events over the course of a day, rendering the NP estimates more
dispersed and hence less efficient. Figure 4 shows this effect, as the standard deviation of

the NP variance estimates is seen to increase over the range of ¢ from 0 to 15 ticks.

Figure 4: Standard deviations of the NP variance estimator
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Notes: Standard deviations of the N P variance estimates over the range of thresholds from
0 to 15 ticks. Bid/ask spreads from bottom to the top are 0 to 4 ticks. ox = 0.25 per year.
A is 6 seconds. Py = 50, tick size=0.01.

To illustrate this trade-off we present in Figure 5 root mean squared error (RMSE)
statistics for the NP estimator over the range of ¢ from 5 to 15 ticks, for 2-tick and 3-tick
bid/ask spread levels. These are realistic bid/ask spread levels as shown in Table 1. For
the 2-tick bid/ask spread case, the minimum RMSE lies at 6= 7 ticks, while for the 3-
tick spread case, the minimum is given for "= 8 ticks. As these minimum RMSE values
increase with the size of the bid/ask spread, we suggest for practical implementations to
choose a preferred threshold §=tqual to 2.5 to 3.5 times the bid/ask spread. A threshold
in the range of 3 to 6 times the log-spread is recommended in Andersen et al. (2008) for a
different duration based estimator. Further guidance about the choice of §™for real data on

the basis of bias-type curves, similar to those in Figure 3, is presented in Section 5.2.

4.1.4 Price-discretization

Transaction prices are recorded as multiples of a minimum tick size, usually one cent. To
account for this additional price-discretization component of market microstructure noise in
our simulation study we now consider a setup in which, in addition to the above, bid and ask
prices and consequently transaction prices are recorded discretely as multiples of 0.01 (one
tick). First we obtain mid-quote prices M;, by rounding the efficient price P, to the nearest
half-cent price (50.005, 50.015, etc.) when ¢/0.01 is an odd number and to the nearest cent

when ¢/0.01 is an even number. The resulting transaction prices are then given by replacing
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Figure 5: Plot of RMSE as a function of the threshold value
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Notes: RMSE of the N P variance estimates over the range of threshold from 5 to 15 ticks.
Bid/ask spreads are 2 and 3 ticks. oy = 0.25 per year. A is 6 seconds. Py = 50, tick
size=0.01.

(43) by
L1
v = E [w00p,]/100 if 100c is even, "
' E£)200 + [100P, — 0.5]/100 if 100 is odd,
Y, = M;+05 ,q, (45)

where [z] is the integer nearest to x. Figure 6 shows that price-discretization further increases
the NP estimates compared to Figure 3. The general effects of bid/ask spreads and time-
discretization are, however, unchanged and the estimates still tend to the unit line as ¢

increases beyond .

Figure 6: Including price-discretization noise
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Notes: NP variance estimates divided by o%. Prices are multiples of one tick. Bid/ask

spreads from bottom to the top are 0 to 4 ticks. A is 6 seconds. Thresholds are from 0 to
15 ticks. ox = 0.25 per year. Py = 50, tick size=0.01.
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4.1.5 Jumps

To investigate how jumps affect our duration based variance estimators, we adapt the sim-
ulation setup of Section 4.1.2. The jumps are normally distributed with mean zero and
expected jump variation equal to 20% of the quadratic variation. Jumps are simulated to
arrive according to a Poisson process. We consider two scenarios: 1) one large jump on

average and 2) 100 small jumps on average during a day.

Figure 7: 100 small jumps a day
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Notes: NP variance estimates divided by o%. The discretization interval is 6 seconds on

average. There are on average 100 small jumps a day, with a total variance of 20% of
the integrated variance. Bid/ask spreads from bottom to the top are 0 to 4 ticks. The
discretization interval is 6 seconds on average. Thresholds are from 0 to 15 ticks. o = 0.25
per year. Py = 50, tick size=0.01.

As discussed in Section 2.2, due to a truncation of price changes at 4, rare large jumps
are expected to have little influence on the duration based variance estimates and indeed in
scenario 1) there is no visible impact® as N is large and an increase of one potential additional
price event, triggered by an expected single large jump, results only in a tiny upward bias of
the N P estimator in the order of 1/N. In scenario 2) the standard deviation of the jump size
is 3.5 ticks. Here, on the contrary, we do observe in Figure 7 that small jumps increase the
integrated variance estimates by around 16.3% in comparison to the no jump case. In this
case estimates are inflated considerably as small jumps are mixed with the diffusion price
changes and effectively increase the number of price events by a non-trivial amount.

In reality we expect there to be less than one large jump per day, to which the duration
based estimator is robust, and at most only a small number of detectable smaller jumps per
day. Studies focussing on the detection of large jumps find on average less than one jump

per week (e.g. Andersen, Bollerslev & Dobrev (2007)). Lee & Hannig (2010) investigate

SWe omit the graph for brevity.
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the occurrence of big and small jumps and find approximately 0.3 big jumps and 0.6 small
jumps per day for individual stocks. Nonetheless, if the number of jumps is known (or can

be estimated) a bias correction for jumps can readily be obtained.

4.2 Stochastic volatility processes

We also consider three stochastic processes that are commonly used to incorporate stochas-
tic volatility (SV) into high-frequency simulations, for example as in Huang & Tauchen
(2005) and Barndorff-Nielsen et al. (2008). These processes are special cases of a general
jump-diffusion process introduced in Chernov, Gallant, Ghysels & Tauchen (2003). All the
simulated processes have expected annualized quadratic variation equal to 0.0625.

The first is a one-factor SV model, without jumps (SV1F):

dXt = O'tth, (46>
o = exp(fo+ fim), (47)
d'Tt = O[Ttdt + dBt (48)

The SV parameters are selected to give a standard deviation of log-volatility equal to 0.4
and a half-life for log-volatility equal to 63 trading days (3 months). With ¢ measured in
trading days, we obtain Sy = —4.311, f; = 0.05934, and @ = —0.011. Like Huang & Tauchen
(2005), we set corr(dWy,dB;) = —0.3. Each day, the initial value of 7 is drawn from its
unconditional distribution, which is N(0,—0.5/c).

The second model is SV1FJ, which is SV1F augmented by a Poisson jump process. We
select an intensity of one jump per day and suppose the jumps are Gaussian with mean zero
and with expected jump variation equal to 20% of the quadratic variation.

The third model is the two-factor SV model of Chernov et al. (2003), referred to as SV2F:

dX; = o dWy, (49)

op = s-exXp(fo + Siru + BoTar), (50)
dry = agmudt + dByy, (51)
dry = aprydt + (1 + ¢7p)d By, (52)

The spline-exponential function in (50) is the usual exponential function with an appropriate
polynomial function splined in at a very high value of its argument. The knot point for the

spline implies a 150% annualized volatility, which is very unlikely to occur. We select some
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parameters by firstly supposing the two log-volatility components in (51) and (52) have
approximately equal variance and respective half-lives equal to 126 and 0.5 days and others
by following Huang & Tauchen (2005) and Barndorff-Nielsen et al. (2008). Our choices for
the SV parameters are Sy = —4.442, 5, = 0.04, 3, = 0.635, a; = —0.005501, cp, = —1.3863,
and ¢ = 0.25, and the correlations between the increments of the Wiener processes are
corr(dWy, dBy) = corr(dW;, dBy;) = —0.3 and corr(dByy, dBy) = 0.

The persistent first factor is initialized each day by drawing from its unconditional dis-
tribution while the strongly mean-reverting second factor is simply started at zero. It is
well-known (e.g. Nolte (2008)) that the bid/ask spread tends to increase as volatility in-
creases. We report results when the bid/ask spread is the following deterministic function of

the annualized volatility o 4:

¢ = (1+ Bk, DJ100. (53)

The bid /ask spread is then one tick when the annualized volatility is less than 12.5%, two ticks
for annualized volatilities between 12.5% and 25%, and three ticks for annualized volatilities
between 25% and 37.5%. This formula is motivated by the empirical evidence in Table 1 and
ensures that the minimum bid/ask spread is equal to one tick, i.e. one cent.

To implement the non-parametric duration estimator NP, we calculate the average
bid/ask spread during each day and then set the threshold ¢ for a selected simulated day
equal to a multiple of the average value of ¢ for that day.

We simulate 100000 days and incorporate time-discretization, price-discretization and
bid/ask spreads as described in Section 4.1 and by (36) to (41), (43) and (45); we retain an
average time between trades equal to six seconds.

We now consider two loss functions when evaluating the accuracy of a set of estimates of
the integrated variance. These are RMSE, as before, and QLIKE from Patton (2011) given

by averaging across days the values of

L(e,e) = e/e —log(e/e) — 1, (54)

where e is the true value of the integrated variance and € is its estimate.

Figures 8 and 9 show the values of RMSE and QLIKE for the estimator NP, for the
processes SV1F and SV2F, over a range of thresholds from 1 to 10 times the average bid/ask
spread. We can see that RMSE and QLIKE are minimized when the threshold is around 3
times the spread, for both processes. Also, the loss function values are near their correspond-

ing minimum levels for the threshold range from 2 to 4 times the spread. This observation
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motivates the introduction of an average version of the NP estimator, called AN P, which

is simply the average of a range of N P estimators, given by

1 L1
ANP = #D 6EDJNPDV(5),
where D denotes the set of ) multipliers and #D the number of elements in D. We anticipate
that AN P is more accurate than N P. We compare three non-parametric duration estimators
(NP, AN P, and AN P,) with five established RV-type estimators plus the standard 5-minute
realized variance. For NP the threshold multiplier is 3, while AN P; is the average across
21 multipliers ranging from 2 to 4 with increment equal to 0.1; AN P; is the average across
multipliers from 2 to 8 again with increment 0.1.

The five RV estimators are designed to be robust against microstructure noise, time
discreteness and/or price jumps, and are all calculated from the complete record of trade
prices with parameter values selected as recommended by the authors.. PAV; and PAV, are
values of RV calculated from pre-averaged prices, using the equations in Christensen et al.
(2014) which give very similar results to the formulae of Jacod et al. (2009). The size of the
pre-averaging window is 8 n when there are n trades during a day. Our PAV, follows the
cited papers by adopting the recommendation # = 1. As we find narrower windows provide
more accurate estimates®, we define PAV; by choosing 6 = 0.25.

The estimators RK and RK N P are realized kernel values of RV, based upon the meth-
ods of Barndorff-Nielsen et al. (2008), computed using tick-by-tick returns. The Parzen
kernel is used and two bandwidths are compared. For RK we use the optimal bandwidth
of Barndorff-Nielsen et al. (2008), which requires estimates of the noise variance and the
integrated quarticity. The noise variance is estimated using a sub-sampled tick-by-tick RV
estimator on a dense grid of on average 5 observations, which corresponds to 30 seconds
on average in calendar time, and the integrated quarticity is obtained correspondingly on
a sparse equidistant grid of 50 observations, which corresponds to 5 minutes on average in
calendar time. In contrast, RK N P equates each day’s bandwidth with the day’s number of
duration events as counted by N P. The final RV-type estimator is the two-scale RV of Zhang
et al. (2005), denoted T'SRV, with the fast scale using a 5 observations grid corresponding
to 30 seconds on average in calender time and the sparse scale using a 50 observations grid
corresponding to 5 minutes, which are the recommended sampling frequencies.

We evaluate two more volatility estimators, selected because they are robust to large

price jumps. The first is the 5-minute realized bipower variation subsampled at 30-second

6Such simulation results are available from the authors upon request.
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grids, denoted SBV, from Barndorff-Nielsen & Shephard (2006), and the second is the noise
robust pre-averaged bipower variation, PABV, from Christensen et al. (2014), computed
using tick-by-tick returns. Like the pre-averaged RV estimators, we compute PABV; with
6 = 0.25 and PABV, with 6§ = 1.

Finally, we add the simple 5-minute variance, RVs, and its subsampled version, SRVs, as

they are popular candidates for a volatility forecasting study (see Liu et al. (2015)) which

will be our major empirical application.

Figure 8: RMSE for the estimator NP when volatility is stochastic
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Figure 9: QLIKE for the estimator NP when volatility is stochastic
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Notes: QLIKE is the average of the loss values defined by (54). SV1F and SV2F respectively
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(52). The bid/ask spread is related to annualized volatility by ¢ = (1 + [Bbx [J100. A is 6
seconds. Py = 50, tick size=0.01.

Table 2 summarizes the results from simulating 100000 days, initially for a constant
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annualized volatility of 25% and then for the three stochastic volatility models, referred to
as SV1F, SV1FJ and SV2F. First we note that NP minimizes both RMSE and QLIKE
when volatility is constant. Next we focus on comparing estimators of integrated variance
using four numbers, namely RMSE and QLIKE evaluated for SV1F and SV2F. We see that
AN P, always outperforms AN P, and that AN P, always outperforms N P. Likewise, PAV;
is superior to PAV, and RK is superior to RKNP. TSRV performs better comparably
when there are jumps but is otherwise less successful. Then we note that AN P, and PAV)
are each superior to RK, with AN P; minimizing RMSE while PAV; minimizes QLIKE. We
conclude that the best duration estimator compares well with the best RV-type estimator.
The results for SV1FJ show the impact of occasional large jumps, occurring once a day
on average and representing 20% of the quadratic variation. As expected, the duration
estimators remain almost unbiased for the integrated variance but PAV;, PAV,, RK and
RK NP are upward biased by about 0.0125 which represents the expected value of the jump
variation. Both PABV; and PABYV, are robust to both large jumps and MMS noise, thus
they perform better than all other RV-type estimators. Similar to the no jump scenarios,

AN P; is minimizing RMSE while PABV; minimizes QLIKE.

5 Empirical analysis

We first discuss the estimation framework for the parametric duration estimator and then

the choice of the threshold value for the NP estimator from an empirical point of view.

5.1 Parametric duration based variance estimator

The parametric duration based variance estimator, PDV, is implemented by choosing the
Burr distribution specification described in Section 2.1. Parameter estimates are obtained
by maximizing the log-likelihood function in (19) on a monthly basis. We also consider
less flexible Weibull and Exponential distribution specifications for 4 in (13), which can be
obtained as special (limiting) cases from the Burr distribution. Tse & Yang (2012) use an
Exponential specification for their parametric estimator. Parameter estimates are obtained
for a range of threshold values ¢ yielding different price durations.

We perform likelihood ratio (LR), Ljung-Box (LB), and density forecast (DF) tests to
assess the goodness-of-fit of the models. The LR test compares the overall model fit between
two nested models on the basis of their likelihood values. The LB test has the null hypothesis
of ii.d. distributed £4. The DF test of Diebold, Gunther & Tay (1998) tests the null
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Table 2: Simulation Results

NP ANP, ANP, PAV; PAV, RK RKNP TSRV SBV PABV; PABYV, RVs SRVs
Constant Volatility
Bias .0000 -.0044 -.0033 -.0001 -.0001 -.0002 .0000 -.0075 .0007 -.0016 -.0005 .0008 .0008
StD .0040 .0031 .0046 .0045 .0060 .0060 .0145 .0081 .0089 .0046 .0091 .0102 .0081
RMSE .0040 .0054 .0057 .0045 .0060 .0060 .0145 0111 .0089 .0049 0091 .0103 .0082
QLIKE .0021 0044  .0049 .0026 .0047 .0048 .0288 0228 .0098 .0034 0112 .0135 .0083
SV1F
Bias .0020 .0001 -.0001 -.0002 -.0000 -.0002 .0000 -.0076 .0007 -.0017 -.0005 .0009 .0008
StD .0087 .0059 .0079 .0061 .0083 .0083 0171 0132 .0120 .0065 0124 .0140 .0110
RMSE .0089 .0059 .0079 .0061 .0083 .0083 0171 0152 .0120 .0067 0124 .0140 .0110
QLIKE .0135 .0037 .0056 .0026 .0048 .0051 0187 0232 .0100 .0035 0114 .0136 .0085
SV1FJ
Bias .0071  .0020 .0020 .0124 .0125 .0123 .0125 .0037 .0058 .0011 .0043 .0134 .0134
StD .0087 .0057 .0080 .0330 .0339 .0335 0381 0310 .0174 .0085 0172 .0377 .0363
RMSE .0112 .0060 .0082 .0353 .0361 .0357 .0401 0312 .0183 .0085 0178 .0400 .0387
QLIKE .0230 .0055 .0069 .0325 .0342 .0342 .0449 0337 .0158 .0044 0153 .0417 .0377
SV2F
Bias .0004 .0004 .0002 -.0002 -.0000 -.0002 .0001 -.0071 .0005 -.0016 -.0005 .0009 .0008
StD .0091 .0061 .0081 .0078 .0107 .0105 .0210 0168 .0182 .0094 0190 .0199 .0162
RMSE .0091 .0061 0081 .0078 .0107 .0105 .0210 0182 .0183 .0095 0190 .0200 .0163
QLIKE .0138 .0042 .0056 .0031 .0056 .0060 0187 0253 .0114 .0040 0130 .0157 .0096
Notes: Bias and standard deviation (StD) are calculated from the estimation errors, which

are the estimate of the annualized variance minus the true annualized variance. RMSE is the
associated root mean squared error, and QLIKE is calculated as in (54). For the constant
volatility model the bid/ask spread is equal to 2 ticks. For the stochastic volatility models
the bid/ask spread is linearly related to annualized volatility through ¢ = (1 + Bty 1100.
A is 6 seconds on average. Py = 50, tick size=0.01.
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hypothesis that the assumed distribution for ¢, is actually the true distribution and relies on
a probability integral transformation of 4, namely the c.d.f. F(g4), which under the null is
i.i.d. U(0,1) distributed. Provided that the HACD specification in (14) accommodates long-
range dependence of the price durations data appropriately, and the assumed distribution
for ¢4 reflects the true distribution of the scaled duration, neither the LB nor the DF test
should reject its null hypothesis.

All tests are performed, for each of the 132 months from January 2002 to December
2012, over a selected range of ¢ threshold values (between 2 to up to 20 ticks) for four
reference stocks: HD, MCD, AXP and IBM. In the interest of brevity, all tests results are
relegated to Web-Appendix A. The conclusion from the LR tests is unequivocal: conditional
Burr distributions fit the price durations data best. As an illustration, Table 3 presents
the parameter values for the Burr-HACD model for AXP in 2008, with ¢ equal to 12 ticks,
together with LB and DF test results. As expected, we observe that, although there is some
variation over the months, generally price durations are very persistent with an average (;
equal to 0.64 and an average « equal to 0.22. The parameters n and v have values that
are significantly different from 0 and 1, respectively, which shows that the Burr specification
provides a better fit than the Weibull or Exponential specifications. The LB test’s p-values
at lag 50 for the generalized model residuals indicate that the null hypothesis can only be
rejected in 2 out of 12 cases at a 5% significance level and shows that generally the HACD
specification provides a satisfactory fit. The density forecasting test’s p-values reveal that
the null hypothesis can be rejected in 5 out of 12 cases at the 5% level and indicates that
there is scope to further improve, especially through the choice of a more flexible density
function for 4, upon the Burr-HACD specification. The selection of more flexible densities,
such as a stochastic model for durations as in Pelletier & Wei (2019), than the Burr density
will probably come at the cost of losing some computational tractability and we refrain
from considering them in this paper. Taken together, the fit provided by the Burr-HACD
specification is good, and confirmed in Section 6 which focuses on out-of-sample forecasting

comparisons.

5.2 The preferred threshold value

As discussed in Section 4.1.3, the selection of d“heeds to take into account the tradeoff
between improving efficiency and reducing bias: a larger 6 reduces bias while a smaller
0 improves efficiency. In the simulation study we know the true values of the integrated

variance, and their RMSE statistics for appropriate simulation setups suggest that a threshold
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value =%hould preferably be chosen to lie within the range of 2.5 to 3.5 times the bid/ask
spread. In this section we provide a number of selective empirical results that support the
conclusions of the simulation study and provide further guidance on how to select a preferred
threshold §%' But it is important to note that the threshold selection rule promoted in this
study should be regarded as an empirically appropriate data-driven preference rather than
a theoretically optimized value. The results presented in this section focus on the reference
stock AXP.’

We start by considering N P variance estimates in October 2008, when volatility peaked
during the financial crisis. This month is governed by high uncertainty and the average
bid/ask spread level of 4.6 ticks in this month is amongst the highest in our sample period.
Figure 10 plots the N P variance estimates for the first 20 trading days of October 2008 for
stock AXP, over the range of threshold values from 2 ticks to 15 ticks. SBV and PAV; are
added to the plot as benchmarks, with the former being robust to price jumps and the latter
robust to MMS noise. We observe that, even during this high bid/ask spread level regime,
duration based variance estimates first increase with the chosen threshold value and then
stabilize, which is a stabilizing pattern that is similar to the one shown in Figure 3 for the
simulation setting. We also observe that SBV estimates are very close to NP estimates,
given the threshold values chosen within the stabilizing region, while PAV) generates higher
integrated variance estimates over this volatile time period, because it is not robust to large

price jumps.

Figure 10: Daily NP, SBV, and PAV; estimates for AXP: October 2008

Bl spread=2 ticks
M spread=3 ticks
Il spread=4 ticks
M spread=>5 ticks
B spread=6 ticks

annualized volatility

threshold number of ticks

Notes: Daily NP estimates for the first 20 trading days of October 2008 for stock AXP,
over the range of threshold values from 2 to 15 ticks (ordered generally from bottom to top),
together with SBV and PAV; estimates over the same period.

The results of the simulation study suggest that estimates are less biased once stabilization

"Results for the other stocks are available from the authors upon request.
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has been achieved and pinpointing the lower bound of this stabilizing region would provide a
good trade-off between bias and efficiency and a good choice for the preferred threshold value
d™'To obtain a better picture of this stabilizing behavior, and its relationship to the level of
the bid/ask spread in reality, we consider the full data sample for AXP. We divide the 132
months into 6 groups based on their average spread levels and obtain for each group daily
NP variance estimates (annualized) for 6 between 2 and 15 ticks and show their averages
across days in Figure 11. The six groups are in ascending average spread level order. The
first two are the bottom third and the middle third of the spread distribution. Groups 3
to 6 represent the upper third, subdivided into 4 ascending groups (1/12 each of the data).
Table 4 shows the distribution of the 6 groups across the 132 months in the data sample.
It should be noted that many of the high bid/ask spread level months, besides those during
the financial crisis of 2007/8, are in the early years of the data sample when trading was less
liquid, and consequently many of the low bid/ask spread level months are concentrated at

the end of the data sample.

Figure 11: Duration based variance signature plot, six levels of spread, AXP
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Notes: The average spreads of groups 1 to 6 for AXP are 1.4, 1.6, 1.8, 2.1, 2.9, and 4.1 ticks.
One tick equals one cent. Diamonds indicate three times the respective average spread.

Figure 11 shows the stabilizing behavior of the duration based variance estimates very
clearly and, upon visual inspection, we observe that the threshold value at the point where
the estimates start to stabilize, 65'is roughly three times the average bid/ask spread which is
in line with the guidance obtained from the simulation study. We will use the “three-times-
bid /ask-spread” rule henceforth as guidance to select § for the computation of the PDV
and NP estimators in the subsequent forecasting study. Let us add a note at this point
that this threshold selection rule is more important to PDV than to AN P, since the latter
uses a wide range of threshold values that do not necessarily center at 3-times-spread. It

is possible to further improve PDV by adding an averaging procedure, but since the “local
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Table 4: Bid/ask spread level groups, AXP
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Jan. 5 6 2 2 2 1 5 3 1 1 1
Feb. 6 5 2 2 2 1 4 2 1 1 1
Mar. 5 2 2 1 1 2 4 1 1 1 1
Apr. 5 3 2 2 2 1 3 2 1 1 2
May 5 3 2 2 2 2 4 3 2 1 2
Jun. 6 4 1 1 2 2 4 1 1 1 2
Ju. 6 4 2 1 2 4 5 2 2 2 2
Aug. 6 3 1 1 2 5 5 2 1 3 2
Sep. 6 3 1 1 2 4 6 1 1 3 1
Oct. 6 3 2 2 1 4 6 1 1 3 2
Nov. 6 2 2 2 1 5 5 2 1 2 1
Dec. 6 2 2 1 1 4 4 1 1 1 1

variance” within each price event has been adjusted by the intensity function for its longer
or shorter price duration (compared with the expected duration), the improvement on PDV
from averaging may be limited. Andersen et al. (2008) recommend a threshold range of 3
to 6 times the log-spread for their non-parametric duration based variance estimator. Since
their thresholds are set in log-scales, the resulting estimates can be different.

Table 22 in Web-Appendix A presents goodness-of-fit results (LB and DF tests) of the
Burr-HACD model for all 20 stocks, with the price durations obtained by setting the thresh-
old value to be 6 It confirms that, when the threshold value is set to be three times the
average bid/ask-spread, the Burr-HACD fits the price durations data well.

It should be noted that in the absence of high-frequency bid/ask spread data a price
duration volatility estimator can still be obtained by, for example, selecting a threshold so
that on average price durations have a length, say, 5 minutes, as is done in Tse & Yang
(2012). An ad hoc choice of 9, equal to 10 ticks say, is also always possible and can be
adjusted with some general notion about the liquidity of the assets under consideration.

It should also be noted that this threshold selection rule is based on the average spread of
the day, thus ignoring the time-variation of spreads within the day. A possible improvement
on NP can be made by taking into account local movements in spreads which translate into
time-varying thresholds, based on the same “3-times-spread” rule. However, it brings an issue
of choosing the size of the local window that defines the moving-average local spreads. We

would like to leave this for future research.
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6 Volatility forecasting

Our objective in this section is to forecast the integrated variance, so we choose a jump-
robust variance estimator, namely the subsampled 5-minute realized bipower, SBV, as the
target.® We include a total of 15 volatility estimators in the forecasting comparisons, 13 of
which come from Section 4.2 (the other 2 are PDV and ATM). All estimators are obtained
on a daily basis and their tuning parameters are obtained using only historical data to rule
out any forward looking bias. In Table 5 we present the means and standard deviations of the
15 volatility estimators including the forecast object SBV for the 4 representative stocks,
and relegate statistics for all 20 stocks to Web-Appendix B. Note that we have included
the forecast target itself into the race as a benchmark. All estimators are annualized and
converted from variance estimates into volatility (i.e. standard deviation) estimates. We
consider four duration variance estimators: PDV, NP, AN P, and ANP,. PDV is obtained
using a threshold equal to 3 times the average spread of the last month and maximum like-
lihood parameters estimates are obtained on a monthly basis. NP, ANP; and AN P, follow
the specifications detailed in Section 4.2 with thresholds based on the average spread of the
corresponding day. PAVy, PAV,, PABV), PABV,, RK, RKNP, TSRV, SBV, RVs, and
SRVs are also obtained following the setups detailed in Section 4.2. In addition, we include
ATM which is an at-the-money option implied volatility estimator obtained from daily Op-
tionMetrics data. From Table 5 we can see that the duration volatility estimates are on
average slightly smaller than RV-type estimates and also exhibit lower standard deviations.
First- and fifth-order autocorrelations of the above estimators across 20 stocks are presented
in Table 24 in Web-Appendix B as well, which shows the four price duration estimators have

higher autocorrelations than the RV-type estimators.

6.1 Individual forecasts

We use a HAR-type forecasting specification,
SBVin+n—1 = ¢+ b1 Zp—1:n—1 + baZp—s5:n—1 + 032, —22:n—1 + €pin+n—1 (55)

to obtain h-step ahead forecasts. Here Z,, represents the day-n volatility estimate from one
of the 15 estimators discussed above. Both Z,—j.,—1 and SBV,.,,+n,—1 aggregate h terms
and are in their logarithmic forms: Z,—;.,—1 = 0.5log( — 7?), similarly for SBV,p+n—1,

s=n—h

8Results with standard 5-minute realized volatility (RV) and its subsampled version as targets, recom-
mended by Andersen, Bollerslev & Meddahi (2011), are similar and available from the authors upon request.

38



Table 5: Volatility estimator means and standard deviations

HD MCD AXP IBM avg.

Mean
PDV 238 A89 248 174 210
AN P, 216 173 230 167 .193
AN P 225 180 241 172 .200
NP 217 A74 0 231 167 193
PAV, .246 197 0 270 191 222
PAV, .244 196 263 185 218
PABV; 238 189 261 185 214
PABV, 239 190 257 182 213
9 RK .261 237 0 .321 232 .239
10 RKNP 245 198 265 185 219
11 TSRV 230 219 278 209 212
12 SBV .230 A84 248 175 .205
13 RVs 238 192 2567 180 .213
14 SRVs 241 194 259 182 216
15 ATM .244 194 272 202 223

O O Ui Wi+

Standard Deviation

1 PDV 123 .090 182 .092 113
2 ANP 121 092 178 096 .112
3 ANP, A27 096 187  .100 .117
4 NP 122 .093 180 .097 113
5 PAV; 139 0 107 206 112 131
6 PAV, 140 111 206 110 .132
7 PABV; 136 101 202 .108 .128
8 PABV, 139 107 204 .109 .130
9 RK 139 176 189 125 144

10 RKNP 138 110 .206 .108 .131
11 TSRV 129 166 .176 .118 .134
12 SBV 132 104 193 105 125
13 RVs 135 108 201 .108  .129
14 SRVs A37 108 201 .107 130
15 ATM 104 073 175 .088 .100

Notes: Mean and standard deviation statistics for 15 daily volatility estimators for 4 rep-
resentative stocks using data from January 2002 to December 2012. The “avg.” values are
averages of all 20 stocks. The means and standard deviations are for annualized volatilities.

39



h=1,5, or 22, with SBYV,, the day-n sub-sampled bipower variation estimate.

For one day (h = 1) ahead forecasts the in-sample estimation period for the HAR model
ranges from 1 February 2002 to 29 January 2010 (2013 trading days) and the first out-of-
sample forecast is obtained for 1 February 2010. For one week (h = 5) and one month
(h = 22) horizons forecasts are constructed similarly and a total of 735, 731 and 714 out-of-
sample predictions are obtained for h = 1,5 and 22, respectively, with the final predictions
made in December 2012. All forecasts are constructed using a rolling window of explanatory
variables with a fixed length of 2013 trading days. Setting €,.,+r—1 = 0 defines the forecast
of SBV,.,+n—1 made at time n— 1, denoted S BV, ..+n—1. The forecast error obtained at time
n+h—1is then SBVypan-1— SBVypen—1.

We evaluate 15 individual forecasts, defined by the selected 15 estimators, for the 20
stocks over 3 horizons. Table 6 lists the average values across stocks of RMSE (root-mean-
squared-errors) and QLIKE following Patton (2011) as in (54). The RMSE and QLIKE
values by stock are provided in Web-Appendix B as Tables 25 and 27. The average values of
RMSE and QLIKE are similar across the 15 sets of forecasts. Nevertheless, the parametric

duration estimator, PDV, has the lowest average values in most cases.
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Table 6: Average RMSE and QLIKE values for individual forecasts

RMSE QLIKE | RMSE QLIKE | RMSE QLIKE

one day ahead | one week ahead | one month ahead
1 PDV 0028  .0300 0111 0230 0501 .0285
2 ANP; | .0029  .0308 0117 .0244 0515 .0295
3 ANP, | .0029  .0303 .0116 0241 0516 .0293
4 NP 0029  .0314 0118 0249 0519 .0298
5 PAWV 0029  .0307 0122 0249 0537 .0301
6 PAV, 0029  .0306 0122 0244 0534 .0294
7 PABVy | .0029  .0309 0122 0250 0539 .0300
8 PABV, | .0029  .0306 0122 0244 0536 0294
9 RK 0038 .0466 0157  .0383 0668 .0402
10 RKNP | .0029  .0310 0121 0245 0527 .0293
11 TSRV | .0038  .0474 .0159 0387 .0669 .0399
12 SBV 0029  .0304 0121 0242 0531 .0292
13 RVs 0029  .0309 0121 0246 0530 .0295
14  SRVs 0029  .0307 .0123 0244 0537 .0294
15 ATM | .0031 .0334 0123 0252 0552 .0296

Notes: Average RMSE and QLIKE values across 20 stocks using trade data for stated forecasting

horizons for 15 individual volatility estimators. Forecasts are obtained from (55).

We also evaluate the accuracy of the forecasts using the Model Confidence Set (MCS)
method of Hansen, Lunde & Nason (2011). Table 7 shows the counts, across stocks, of how
often each forecasting method is included in the MCS. These counts are provided for all six
combinations of loss functions and forecast horizons for a 20% significance level.® The MCS
p-values are shown in Web-Appendix B in Tables 26 and 28, respectively for RMSE and
QLIKE. In these tables, under each stock on the left we report the MCS p-value and on the
right we list the estimator number, ranked by the p-value; the estimator numbers are as in
Table 23. We see that very often estimator 1 (PDV') has the highest confidence, which is
consistent with it having the least average values of RMSE and QLIKE. The MCS results
summarized by Table 7 show that PDV provides the best forecasts, for any choices of loss

9Hansen et al. (2011) use the 10% and 25% levels for their examples.
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function, forecast horizon and significance level. Adding the counts across the combinations
of loss function and horizon gives a total of 104 at the 20% significance level for PDV. At
the same level, the second-best methods are SBV and AT M striking a tie at 37, followed by
SRVs with a total of 30, RVs with a total of 28, and AN P, with a total of 26. Both AN P,
and AN P, clearly outscore NP, confirming that averaging across thresholds improves the
non-parametric duration estimator. Though SBV performs best in the RV group, we need
to keep in mind that it being the forecast target might be an advantage. Apart from SBV/,
the two simple 5-minute RV estimators outperform all other RV estimators in this group,
confirming the conclusion of Liu et al. (2015) that 5-minute RV is difficult to beat when it

comes to forecasting future stock volatilities.

Table 7: MCS summary results for 15 individual forecasts using trade data

RMSE QLIKE | RMSE QLIKE | RMSE QLIKE | Total
one day ahead | one week ahead | one month ahead

1 PDV 15 20 19 16 17 17 104
2 ANP 4 3 4 1 2 4 18
3 ANP, 7 3 4 7 2 3 26
4 NP 0 1 2 0 0 2 5
5 PAWV D 0 2 5 0 3 15
6 PAV, 4 1 3 6 6 2 22
7 PABW 3 1 2 4 1 4 15
8 PABV, 3 1 4 6 4 5 23
9 RK 0 3 5 0 2 3 13
10 RKNP 2 3 6 2 5 6 24
11 TSRV 0 1 7 0 1 6 15
12 SBV 8 4 4 8 5 8 37
13 RVs 3 4 5 5 5 6 28
14 SRVs 5 2 5 6 5 7 30
15 ATM 6 7 6 4 7 7 37

Notes: Across 20 stocks, each number represents the number of times a given estimator is

included in the model confidence set with 20% significance level
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6.2 Combination forecasts

The same HAR-type forecasting specification, namely (55), is evaluated again with the quan-
tity Z, now denoting the average of all volatility estimators included in some set of estimators.
We want to find out firstly whether combining information from multiple volatility estimates
improves upon the individual forecasts. Therefore we include PDV, SBV and ATM as
benchmarks in this combination setting. Secondly, we investigate which group of estimators
provides the best forecasts and whether combining different groups improves the accuracy of
our forecasts.

Fourteen combinations are studied. Three of these are the individual forecasts: PDV,
SBV and ATM. Combining any two benchmarks gives 3 distinct combinations: PDV +
SBV, PDV + ATM, and SBV + ATM. Duration4 is the average of all four duration
estimators (PDV, ANP;, ANP, and NP), and RV10 is the average of all ten RV-type
estimators (PAVy, PAV,, PABV), PABV,, RK, RKNP, TSRV, SBV, RVs and SRVj).
Mixing price duration, RV, and option-implied volatility estimators gives Durationd+ SBV |
Durationd + ATM, RV10+ PDV, RV10+ AT M, and Duration4d + RV'10. Finally, taking
all 15 estimators in, we have All, i.e. it is Durationd + RV10+ AT M.
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Table 8: Average RMSE and QLIKE values for combination forecasts

RMSE QLIKE | RMSE QLIKE | RMSE QLIKE

one day ahead | one week ahead | one month ahead

1 PDV .0028 .0300 0111 .0230 .0501 .0300
2 SBV .0029 .0304 0121 .0242 0531 .0308
3 AT M .0031 .0334 .0123 .0252 .0552 0311
4 PDV + SBV .0028 .0294 0114 .0231 .0508 .0300
5 PDV + ATM .0026 0275 .0106 .0206 .0501 .0286
6 SBV + ATM .0027 0281 0112 .0219 .0515 .0294
7 Durationd .0028 .0303 0115 .0239 0511 .0308
8 SBV + Durationd | .0028 .0300 0115 0237 0511 .0306
9 ATM + Durationd | .0027 .0288 0111 .0225 .0505 .0300
10 RV10 .0028 .0302 .0120 0241 .0535 0311
11 PDV + RV10 .0028 .0299 0118 .0238 .0529 .0308

12 ATM + RV10 .0028 .0295 0118 .0235 .0529 .0307
13 Durationd + RV10 | .0028 .0297 0117 .0236 .0522 .0306
14 All .0028 .0292 0116 .0232 .0519 .0304

Notes: Average RMSE and QLIKE values across 20 stocks using trade data for stated forecasting

horizons for 14 combination volatility estimators. Forecasts are obtained from (55).

Table 8 shows the average values across stocks of RMSE and QLIKE for the 14 combi-
nations. The RMSE and QLIKE values by stock are included in Web-Appendix B as Tables
29 and 31, and their corresponding MCS p-values are in Tables 30 and 32. We now find
that PDV + AT M has the least average values in Table 8 for both RMSE and QLIKE loss
functions at all three horizons.

Table 9 summarizes the MCS results when the candidate set of forecasts is defined by
the fourteen combinations. When we rank the combinations by counting membership of the
MCS across loss functions and horizons at the 20% significance level, as before, the best
combination is PDV + AT M with a count of 106, followed by PDV at 46, SBV + AT M at
35 and AT M + Duration4 at 28. It is noteworthy that P DV by itself outperforms all but one
of the combination forecasts. In contrast, simply combining either all duration estimators or
all RV estimators scores poorly, with respective counts equal to 5 and 10. For our study, the
most successful combinations of more than one forecast are averages across different data
sources, namely duration measures from high-frequency stock prices and implied volatilities

from daily option prices.
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Table 9: MCS summary results for 14 combination forecasts using trade data

RMSE QLIKE | RMSE QLIKE | RMSE QLIKE | Total
one day ahead | one week ahead | one month ahead
1 PDV 2 9 17 1 5) 12 46
2 SBV 0 0 3 0 0 4 7
3 ATM 0 1 3 0 1 9 14
4 PDV + SBV 0 2 8 1 3 11 25
5 PDV + ATM 19 18 15 18 19 17 106
6 SBV + ATM 6 2 6 7 4 10 35
7 Durationd 0 0 2 0 0 3 5
8 SBV + Durationd 0 0 3 0 0 4 7
9 ATM + Duration4 6 3 6 4 2 7 28
10 RV10 0 0 3 0 0 7 10
11 PDV + RV10 0 0 5 0 0 7 12
12 ATM + RV10 1 1 5 1 2 8 18
13 Durationd + RV 10 0 0 3 0 0 6 9
14 All 3 2 5 3 3 7 23

Notes: The combinations are defined in Section 6.2. Across 20 stocks, each number represents the number

of times a given estimator is included in the confidence set with 20% significance level.

7 Conclusions

Duration based variance estimators are calculated by using the times of price change events;
an event occurs when the magnitude of the price change since the previous event first equals
or exceeds some threshold value. These estimators have been neglected in previous research,
despite them being very simple to use and Andersen et al. (2008) documenting their nice
performance compared to realized variance estimators. Market microstructure noise prevents
comprehensive theoretical comparisons for realistic data generating processes and, further-
more, requires careful consideration to be given to the selection of the threshold value. In
this paper, we establish limiting theories for our non-parametric duration based estimator,
with and without the presence of microstructure noise, supporting the validity of its use.
Specifically, we elaborate on how different types of noise specifically may affect the results.
We use Monte Carlo methods for a selection of volatility processes and also tick price data

for U.S. stocks to recommend that an appropriate choice of the threshold is three times a

45



measure of the average bid/ask spread. We introduce average non-parametric duration esti-
mators, which average across thresholds from two to four or more bid/ask spreads, to further
reduce bias and improve efficiency. We evaluate both parametric and non-parametric dura-
tion based estimators and find the parametric specification forecasts more accurately than
RV-type estimators calculated from tick prices, for our sample period; the non-parametric
duration estimators have the same accuracy as the best RV-type estimators. Applying the
model confidence set methodology of Hansen et al. (2011) shows that the parametric du-
ration estimator significantly outperforms all RV-type estimators and at-the-money implied
volatility, for one-day, one-week and one-month forecast horizons, for both the RMSE and
the QLIKE loss functions.

Calculation of the non-parametric duration estimator from a complete record of trans-
action prices is very easy. Bid and ask prices can be used to select our preferred threshold
value, alternatively an appropriate multiple of the tick size can be chosen. The paramet-
ric estimator is more accurate but does require the estimation of a parametric model for
price events, which requires specifying intensity functions for durations whose conditional
expectations are functions of previous durations. We recommend considering duration based
estimators of integrated variance whenever transaction prices are available because of their
potential to provide more accurate estimates and forecasts.

Future research might also evaluate additional duration estimators, following Andersen
et al. (2008). Semiparametric RV-type estimators, as motivated for example by Becker,
Clements & Hurn (2011) and Zikes & Barunik (2016), may have the potential to achieve
some of the efficiency gained by the parametric duration estimator so they too may deserve
further attention. Finally, it is possible to extend the duration methodology to estimate the
integrated covariance between the returns from two assets and we are investigating multi-

variate methods in ongoing research.
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Web-Appendix A: Comparison of density functions

For the choice of a suitable density function for the scaled price durations we first consider
LR tests for the four reference stocks: HD, MCD, AXP and IBM. The results in Tables
10, 13, 16 and 19 show that the Burr density is preferred over the Weibull and Exponential
densities most of the time over a wide range of price change threshold values 9.

Corresponding LB test results for LB statistics with lags 30 and 50 are presented in Tables
11, 14, 17 and 20. For the majority of the months the null hypothesis of i.i.d. distributed
generalized residuals cannot be rejected at the 1% and 5% significance levels, which indicates
that the price duration dynamics are well captured by the HACD specification.

The associated density forecast (DF) test results in Tables 12, 15, 18 and 21 show that
the Burr density clearly outperforms the other two distributional assumptions, by giving
the highest percentages of months in which the null is not rejected at either the 1% or 5%
significance level. From the three densities considered the Burr density provides the best fit
for the scaled price durations.

Overall, the test results for the four reference stocks indicate that the HACD-Burr com-
bination fits the price duration data best.

Finally, we present in Table 22 the LB and DF tests results for all 19 stocks, when the
price change threshold ¢ is selected using the “3-times-spread” rule. We observe that the
HACD-Burr model fits the price durations data well.

Table 10: LR test results, HD

5(ticks) 2 3 4 5 6 7 8 9 10

Wei. vs. Burr  505.77 260.88 155.93 100.55 67.86 45.56 35.09 24.14 21.30
Exp. vs. Burr 574.24 307.80 189.89 127.16 &87.73 63.65 51.02 38.30 34.75
Exp. vs. Wei. 6847 46.92 3396 26.32 19.72 1834 16.15 1391 13.85
Wei. vs. Burr  1.00 1.00 1.00 1.00 1.00 095 093 074 0.68
Exp. vs. Burr  1.00 1.00 1.00 1.00 1.00 099 096 089 0.84
Exp. vs. Wei.  0.78 0.75 0.69 0.69 0.67 069 063 061 0.61

Notes: The first three rows are the LR test statistics (averaged over 132 months), and the
last three rows are LR test results presented as proportions of the months in which the null
is rejected at the 1% significance level. The assumed density under the null is stated first in
the 1st column.
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Table 11: LB test results for 30 and 50 lags, HD

S(ticks) 2 3 4 5 6 7 8 9

10

30 lags 1% significance level
Exp. 098 095 097 098 0.97 0.98 0.94 0.92
Weibull 0.97 0.94 0.95 098 0.95 0.98 0.93 0.92
Burr 0.87 0.86 0.90 092 095 095 094 0.86
30 lags 5% significance level
Exp. 0.86 0.89 091 090 093 093 0.89 0.87
Weibull 0.82 0.85 0.88 0.86 0.89 0.92 0.87 0.87
Burr 0.66 0.70 0.78 0.76 0.80 0.83 0.81 0.77
50 lags 1% significance level
Exp. 094 096 096 096 0.98 0.99 0.96 0.92
Weibull 0.93 0.95 0.96 0.96 096 098 0.95 0.93
Burr 0.87 091 0.93 090 0.96 099 0.96 0.87
50 lags 5% significance level
Exp. 0.82 0.86 0.91 0.89 0.92 0.95 0.90 0.86
Weibull 0.79 0.83 0.90 0.86 0.90 0.95 0.88 0.86
Burr 0.67 0.73 0.81 0.80 0.88 0.89 0.83 0.80

0.89
0.92
0.89

0.85
0.86
0.80

0.89
0.92
0.90

0.86
0.88
0.86

Notes: The upper part of the table are LB test results for 30 lags, and the lower part are
the results for 50 lags. Significance levels of 1% and 5% are considered
proportion of months in which the null is not rejected.

Table 12: DF test results, HD

. Each figure is the

S(ticks) 2 3 4 5 6 7 8 9

10

1% significance level
Exp. 0.00 0.00 0.01 0.03 0.11 0.34 0.31 0.52
Weibull 0.00 0.02 0.02 0.08 0.21 0.36 0.49 0.60
Burr 0.21 0.57 0.69 0.80 0.86 0.95 0.92 0.88
5% significance level
Exp. 0.00 0.00 0.00 0.01 0.03 0.20 0.23 0.32
Weibull 0.00 0.00 0.01 0.04 0.11 0.25 0.30 0.45
Burr 0.14 043 0.56 0.67 0.76 0.85 0.80 0.81

0.53
0.67
0.89

0.44
0.53
0.83

Notes: DF test results for significance levels of 1% and 5% are presented. Each figure is the
proportion of months in which the null that the assumed density is the true density is not

rejected.
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Table 13: LR test results, MCD

d(ticks) 2 3 4 5 6 7 8 9 10

Wei. vs. Burr  460.17 268.57 181.59 129.51 91.43 68.76 52.41 40.05 32.77
Exp. vs. Burr 577.22 328.81 219.52 156.81 113.24 86.20 62.74 53.14 46.29
Exp. vs. Wei. 117.05 60.24 3793 27.09 21.33 17.38 10.87 12.03 12.24
Wei. vs. Burr  1.00 1.00 0.99 0.98 0.95 088 0.84 0.78 0.73
Exp. vs. Burr 1.00 1.00 0.99 0.99 0.97 093 084 088 0.84
Exp. vs. Wei. 0.87 0.64 0.57 0.55 0.50 052 045 046 045

Notes: The first three rows are the LR test statistics (averaged over 132 months), and the

last three rows are LR test results presented as proportions of the months in which the null
is rejected at the 1% significance level. The assumed density under the null is stated first in
the 1st column.

Table 14: LB test results for 30 and 50 lags, MCD

Sticks) 2 3 4 5 6 7 8 9 10
30 lags 1% significance level

Exp. 093 096 098 095 098 0.99 0.93 0.93 0.89

Weibull 0.92 096 0.96 095 0.98 098 0.93 094 0.92

Burr 0.90 0.87 0.89 0.8 0.94 0.96 0.91 090 0.86
30 lags 5% significance level

Exp. 0.83 0.86 0.88 0.86 0.87 0.96 0.88 0.90 0.83

Weibull 0.82 0.83 0.86 0.83 0.86 0.95 0.84 0.89 0.85

Burr 0.73 0.67 0.74 0.76 0.82 0.89 0.77 0.80 0.77
50 lags 1% significance level

Exp. 0.90 092 097 0.95 098 099 090 0.92 0.88

Weibull 0.90 0.92 0.97 0.95 098 098 0.89 0.93 0.90

Burr 0.89 0.89 092 092 096 098 0.89 0.89 0.86
50 lags 5% significance level

Exp. 0.85 0.87 088 0.89 096 098 0.86 0.86 0.86

Weibull 0.84 0.86 0.87 0.88 0.92 0.97 085 0.86 0.88

Burr 0.76 0.73 0.77 080 0.86 091 0.79 0.81 0.80

Notes: The upper part of the table are LB test results for 30 lags, and the lower part are
the results for 50 lags. Significance levels of 1% and 5% are considered. Fach figure is the
proportion of months in which the null is not rejected.
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Table 15: DF test results, MCD

S(ticks) 2 3 4 5 6 7 8 9 10

1% significance level
Exp. 0.00 0.04 0.11 0.15 0.27 0.39 0.51 0.51 0.48
Weibull 0.01 0.07 0.18 0.21 0.34 043 0.57 0.63 0.61
Burr 0.24 055 0.75 080 0.83 092 0.88 0.85 0.84
5% significance level
Exp. 0.00 0.00 0.07 0.08 0.13 0.27 0.43 0.38 0.36
Weibull 0.01 0.03 0.10 0.13 0.23 0.32 0.40 047 0.48
Burr 0.14 045 061 0.70 0.72 0.83 0.83 0.80 0.76

Notes: DF test results for significance levels of 1% and 5% are presented. Each figure is the
proportion of months in which the null that the assumed density is the true density is not
rejected.

Table 16: LR test results, AXP

§(ticks) 2 3 4 5 6 7 8 9 10 11 12

Wei. vs. Burr 678.13 382.69 253.40 172.94 128.72 98.31 74.79 59.54 44.10 35.64 28.78
Exp. vs. Burr 759.60 435.54 292.96 206.03 155.16 121.43 94.94 7591 59.25 52.71 42091
Exp. vs. Wei.  81.47 5285 39.56 29.77 26.70 2226 19.39 18.16 15.46 15.49 14.66
Wei. vs. Burr 1.00 1.00 1.00 1.00 0.99 099 096 095 089 077 0.65
Exp. vs. Burr 1.00 1.00 1.00 1.00 0.99 099 098 095 095 089 084
Exp. vs. Wei. 0.64 0.71 0.72 0.72 0.66 063 0.63 064 065 0.60 0.63

Notes: The first three rows are the LR test statistics (averaged over 132 months), and the
last three rows are LR test results presented as proportions of the months in which the null
is rejected at the 1% significance level. The assumed density under the null is stated first in
the 1st column.
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Table 17: LB test results for 30 and 50 lags, AXP

S(ticks) 2 3 4 5 6 7 & 9 10 11 12

30 lags 1% significance level
Exp. 093 093 095 098 098 097 096 0.97 0.95 0.87 0.92
Weibull 091 0.93 0.95 0.97 095 096 096 096 0.95 0.88 0.92
Burr 0.86 0.86 0.82 092 090 092 0.89 0.89 0.92 0.89 0.90
30 lags 5% significance level
Exp. 0.79 0.89 0.86 090 0.92 091 0.83 091 0.92 0.83 0.90
Weibull 0.73 0.88 0.85 0.88 0.89 090 0.83 0.92 0.91 0.82 0.90
Burr 0.60 0.69 0.67 0.75 0.73 082 0.77 081 0.83 0.77 0.82
50 lags 1% significance level
Exp. 0.89 095 098 097 098 096 094 098 0.95 0.87 0.91
Weibull 0.89 0.95 0.97 095 0.96 097 0.95 098 0.95 0.89 0.92
Burr 0.85 092 088 0.89 092 094 093 096 0.92 0.90 0.90
50 lags 5% significance level
Exp. 0.74 089 0.86 090 0.92 095 0.89 096 0.92 0.83 0.89
Weibull 0.73 0.88 0.83 0.88 0.89 0.95 0.89 094 091 0.85 0.89
Burr 0.65 0.75 0.77 0.79 0.80 0.88 0.85 0.83 0.86 0.80 0.85

Notes: The upper part of the table are LB test results for 30 lags, and the lower part are
the results for 50 lags. Significance levels of 1% and 5% are considered. Each figure is the
proportion of months in which the null is not rejected.

Table 18: DF test results, AXP

d(ticks) 2 3 4 5 6 7 8 9 10 11 12

1% significance level
Exp. 0.00 0.00 0.00 0.02 0.08 0.13 0.27 0.35 0.45 046 0.52
Weibull 0.00 0.00 0.00 0.04 0.12 0.16 0.34 045 0.54 0.55 0.64
Burr 0.14 045 0.57 0.70 0.74 0.82 0.83 0.86 0.86 0.85 0.86
5% significance level
Exp. 0.00 0.00 0.00 0.01 0.02 0.06 0.16 0.20 0.30 0.30 0.40
Weibull 0.00 0.00 0.00 0.02 0.05 0.08 0.22 0.27 0.36 0.48 0.51
Burr 0.11 0.35 0.42 0.51 066 064 0.74 0.76 0.78 0.74 0.80

Notes: DF test results for significance levels of 1% and 5% are presented. Each figure is the
proportion of months in which the null that the assumed density is the true density is not
rejected.
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Table 22: Diagnostic test results for 22 DJIA stocks

LB30(1%) LB30(5%) LB50(1%) LB50(5%) DF(1%) DF(5%)

HD 0.93 0.84 0.95 0.83 0.80 0.68
MCD 0.91 0.75 0.94 0.80 0.82 0.73
AXP 0.88 0.69 0.91 0.77 0.73 0.55
IBM 0.94 0.80 0.95 0.83 0.73 0.57
AA 0.90 0.75 0.92 0.80 0.80 0.70
BA 0.87 0.73 0.92 0.82 0.87 0.79
CAT 0.95 0.84 0.95 0.86 0.67 0.51
DD 0.91 0.82 0.96 0.86 0.82 0.67
DIS 0.92 0.78 0.98 0.84 0.92 0.78
GE 0.96 0.80 0.93 0.85 0.82 0.62
JNJ 0.91 0.72 0.91 0.77 0.80 0.68
JPM 0.89 0.70 0.89 0.77 0.58 0.42
KO 0.90 0.73 0.94 0.81 0.83 0.73
MMM 0.96 0.83 0.97 0.89 0.79 0.69
MRK 0.90 0.77 0.92 0.86 0.77 0.61
PG 0.92 0.73 0.94 0.80 0.77 0.63
T 0.92 0.81 0.93 0.84 0.81 0.70
UTx 0.92 0.81 0.96 0.88 0.86 0.69
WMT 0.95 0.78 0.92 0.80 0.79 0.61
XOM 0.91 0.77 0.94 0.83 0.44 0.28
INTC 0.81 0.64 0.85 0.70 0.73 0.67
MSFT 0.85 0.67 0.90 0.77 0.73 0.58
Avg. 0.91 0.76 0.93 0.81 0.77 0.63

Notes: LB and DF test results from the MLE of the HACD-Burr model in equations (13),
(14) and (15). The price durations are obtained with §“given by the “3-times-spread” rule.
Each figure in the table is the proportion of months in which the null is not rejected at the
stated significance level.
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Web-Appendix B: Forecasting results
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Web-Appendix C: Proofs of Main Results

Proof of Theorem 1. In the ‘continuous case’, our non-parametric estimator NPDV; can
be viewed as the realized volatility estimator with respect to a particular stochastic sampling
on regular grids, where the “barriers” are always equidistant and symmetric.

We shall derive the quadratic variation of the process U,, defined as

o b Py —

6t X -X —[X, X], .

n Tn,j+1 Tn,j

J=0

1
U,:= 6.1 NPDV,—[X, X],

We first note that the limit of the sample third moment, the tricity:

B aas=! " L]

On Ty (56)

=0 Th,j+1
is crucial in the determination of the asymptotic bias in any stochastic sampling type frame-
work, see for example Li et al. (2014, Section 1). In view of the definition of our sampling
points (2) and straightforward applications of Doob’s optional sampling theorem, it follows
that the probability limit of (56) is zero.

Now, since by It6’s lemma we have
d(Xt - X’rn,j |ﬁ|4 = 4(Xt - XTn,j |ﬁ|3dXt + 6(Xt - XTn,j Dﬁlzd [Xv X]t )

and using standard measure change arguments through Girsanov’s theorem

Eem —
AU, =260 X, — X, . mmdX, , (57)

n,j

it follows that, along with weak consistency of NPDV (11) we have
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= 3 n,t5721+0p(1) - g[Xa X, = 3 05 ds. a.s. (59)

0

The proof is now complete upon employing the stable limit theorem of Jacod & Shiryaev

(2003, Theorem 9.7.3) applied to the stochastic sequence {U,}. ]
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Proof of Lemma 1 and Theorem 2.
By It6 isometry and boundedness of o we can see that
I:I o1 I:I 1

_EEIUSdW BEEO‘ dslgl(al—_}, E(tj+1 — 75),

7j Ti

1
E X

n,j+1 Tn J

from which it follows by Markov’s inequality that

1 1
A,
UTnJ_PE@TnJ_‘_l X'T'njg>5 = P a
Therefore, we have 7,2, — 7,5 = Op(A3/6,) and also, since A, = o(6%/3) it is clear that

the thinned Poisson sample {Tnl_—}| satisfies Assumption A. This proves Lemma 1.

We note that we can write

— —
1
AN - [X.X) = A CIX,, — X)) — X, X — B
j=0 '

where B; = B,,; = [V, 92 — J( £Tj%. — XTJ_E)F], Now, we see that

E X7, XTerl % g 52 072'n,jE I/I/:rrl1:j]+1 - WTE %”I,:]I - 5721

- 71(2_1)I(n]+1 Tnl,_—Ji)_(swzl
(Mo? Alv, =0, (60)

where !! means double factorial. But since A, = O(63/%) and v = O(A2/6,), it straight-
fowardly follows that the last term (60) = O(A3 /6, — 62) = O(62), implying that the bias
term B, , = Op(A35,16.1).

Therefore, we see that the bias contribution from the time discretization asymptotically
tends to zero, since % /035 - 0.

Now it suffices to derive the limiting law of A ( I%} o - X, :l)2 —[X, XJ;). Following

the same argument leading to (58) in Theorem 1 and applying Lemma 9.1. of Ait-Sahalia &
Jacod (2014), we see that the desired CLT holds with asymptotic variance

1
-3 o, ds

Wl N

as required. O
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Proof of Theorem 3. From (31) and the property of conditional expectation of the unob-

served price change, it is straightforward to see that the leading bias term comes from

1, (o]
N, ->¢* Do —Dyo . (61)

n,j+1 n,
4 i

Now, on noting that both binary variables D. take values of 1 with probability p, and —1
with probability p,(= 1 — p,), we readily see that the expected value of (61) is given by
2= 2(pa — po)*-

Therefore, since ¢, = C.d,, the asymptotic bias of (37) then follows from Theorem 1,

completing the proof. O

74



