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Abstract

We investigate price duration variance estimators that have long been neglected in

the literature. In particular, we consider simple-to-construct non-parametric duration

estimators, and parametric price duration estimators using autoregressive conditional

duration specifications. This paper shows i) how price duration estimators can be

used for the estimation and forecasting of the integrated variance of an underlying

semi-martingale price process and ii) how they are affected by discrete and irregular

spacing of observations, market microstructure noise and finite price jumps. Specif-

ically, we contribute to the literature by constructing the asymptotic theory for the

non-parametric estimator with and without the presence of bid/ask spread and time

discreteness. Further, we provide guidance about how our estimators can best be im-

plemented in practice by appropriately selecting a threshold parameter that defines

a price duration event, or by averaging over a range of non-parametric duration esti-

mators. We also provide simulation and forecasting evidence that price duration esti-

mators can extract relevant information from high-frequency data better and produce

more accurate forecasts than competing realized volatility and option-implied variance

estimators, when considered in isolation or as part of a forecasting combination setting.

Keywords: Price durations; Volatility estimation; High-frequency data; Market
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1 Introduction

Precise volatility estimates are indispensable for many applications in finance. Over the last

two decades realized variance (RV) estimators of quadratic variation following Andersen,

Bollerslev, Diebold & Ebens (2001) and Barndorff-Nielsen & Shephard (2002) have become

the standard tool for the construction of daily variance estimators by exploiting intra-day

high-frequency data. In the presence of market microstructure (MMS) noise, apart from

some alternative methods (such as for example, those based on Fourier-Malliavin theory, see

Malliavin & Mancino (2009) and Mancino & Sanfelici (2012)), we could probably say that

there are four major approaches for the estimation of quadratic variation (QV) developed

in the literature. First, the sub-sampling method of Zhang, Mykland & Aı̈t-Sahalia (2005)

and Aı̈t-Sahalia, Mykland & Zhang (2011) combines realized volatility estimators computed

on different return sampling frequencies and gives rise to the two-scale and multi-scale real-

ized variance estimators, related to this approach is the Least Squares based IV estimation

framework of Nolte & Voev (2012). Second, Barndorff-Nielsen, Hansen, Lunde & Shephard

(2008) develop the class of realized kernel estimators. Third, Podolskij & Vetter (2009),

Jacod, Li, Mykland, Podolskij & Vetter (2009) and Christensen, Oomen & Podolskij (2014)

introduce the pre-averaging based realized volatility estimators. Fourth, Xiu (2010) develops

the class of QML integrated variance estimators, which is later extended to the multivariate

case by Shephard & Xiu (2017). Bandi & Russell (2011) investigate finite sample properties

of the kernel estimators and their optimal implementation. Liu, Patton & Sheppard (2015)

compare the accuracy of these and further estimators across multiple asset classes.

The observation error is also an important issue in volatility estimation with high fre-

quency data. While the underlying price process is assumed to be continuous, prices are in

reality observed at discrete times. Furthermore, it is also sensible to think of the time points

as random stopping times, or at least unregularly observed and possibly also endogenous

to the underlying price process. See Aı̈t-Sahalia & Jacod (2014) for the general overview,

and Jacod (2008) and Vetter & Zwingmann (2017) for the detailed econometrics. Recently,

Bandi, Pirino & Renò (2017) and Bandi, Kolokolov, Pirino & Renò (2020) introduce the no-

tion of idleness and staleness in the price changes. These have very important implications in

volatility measurement under the semimartingale assumption as implied by the fundamental

theory of asset pricing.

This paper studies an alternative approach to volatility measurement and forecasting,

based on price duration. We consider both simple-to-construct non-parametric estimators

and parametric price duration estimators with autoregressive conditional duration (ACD)
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specifications. In contrast to the GARCH, realized variance and option-implied variance

estimators, the price duration approach has received very little attention in the literature so

far.

Indeed, two hands suffice to count the studies carried out on duration based methods,

with the first detailed paper being Cho & Frees (1988). Earlier research focusses on paramet-

ric approaches, for example Engle & Russell (1998) and Gerhard & Hautsch (2002), which

consider ACD specifications to govern the price duration dynamics. With a parametric as-

sumption for the dynamic price duration process, not only an integrated variance estimator

but also a local (intra-day, spot) variance estimator can be obtained, as pointed out by

Tse & Yang (2012). All three ACD studies start from a point process concept to construct

volatility estimators, but provide little guidance on the practical task of selecting a good

price change threshold when MMS noise effects are present, which is important for imple-

mentation. Pelletier & Wei (2019) recently propose an intraday spot volatility estimator by

specifying stochastic models for the price durations and volatility simultaneously. Li, Nolte

& Nolte (2021) study a point process-based approach via Markov-Switching Autoregressive

Conditional Intensity models. A notable but neglected working paper by Andersen, Dobrev

& Schaumburg (2008) proposes a non-parametric price duration variance estimator similar

to ours but without the averaging feature. They show that duration estimators are more

efficient than noise-robust realized volatility estimators for price diffusions.

Theoretical and empirical justifications for the duration based methods have been even

more scarce than the limited number of papers written. In this paper we aim to fill the

gap in the literature, and support the validity of their uses. Specifically, we establish the

asymptotic theory for the non-parametric duration based estimator when the underlying

process is an Itô semimiartingale. We also investigate how the asymptotics is influenced

by the presence of some microstructure noise, observation errors of discrete and irregular

forms and finite activity jumps. Further, we discuss practical ways to appropriately choose

the threshold parameter, which determines the size of the price change that defines the

event times. In addition, we show that the performance of price duration estimators can

be further improved by averaging over a range of price duration estimators with different

threshold values. Our simulation study shows that, in general, price duration estimators

produce lower Root Mean Squared Errors (RMSE) and QLIKE loss values than competing

realized volatility-type estimators. This is the case in setups with constant and stochastic

volatilities as well as those with noise and observation errors. Within a forecasting analysis we

provide evidence for Dow Jones Industrial Average (DJIA) index stocks that price duration

variance estimators, especially a parametric price duration estimator and an averaging non-
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parametric estimator, extract relevant information from (high-frequency) data better, and

produce more accurate variance forecasts, than competing realized volatility-type and option-

implied variance estimators, when considered either in isolation or as part of a forecasting

combination.

Speaking further of the non-parametric price duration approach, we remark that there are

some different strands of research papers that can be related to ours. Fukasawa (2010a,b),

Fukasawa & Rosenbaum (2012), Li, Zhang & Zheng (2013) and Li, Mykland, Renault, Zhan

& Zheng (2014) study the RV estimators with respect to various stochastic sampling times. In

some particular special cases (regular grid), the estimators overlap with the non-parametric

duration estimator we consider, when there is no bid/ask spread and time discreteness. It

is shown in their papers that realized volatility-type estimators on an appropriate stochastic

sampling grid are asymptotically more efficient than calendar time analogues using a compa-

rable number of observations. Recently Li, Nolte & Nolte (2019) provide asymptotic results

for the general class of renewal process estimators which includes price duration and also

range based estimators as examples.

The parametric price duration variance estimator most similar to ours was proposed by

Tse & Yang (2012) using a computationally intensive semi-parametric estimation method

for an ACD specification. They show through simulation that the semi-parametric esti-

mation method can improve upon maximum-likelihood-estimation (MLE) coupled with an

Exponential distribution assumption for the scaled duration, but that the estimates are not

sensitive to the choice of the computation method. We thus continue employing MLE which

is straightforward to implement. Apart from using a new ACD model that can better ac-

commodate the long-range dependence in price durations, we improve upon their parametric

price duration estimator by replacing the Exponential distribution with a Burr distribu-

tion which significantly improves the density forecast results. Tse & Yang (2012) select the

threshold values by targeting a desired average duration but acknowledge that an optimal

choice is important. We address this issue by relating threshold choices to the level of the

bid/ask spread, with the underlying assumption that the bid/ask spread can be related to

the market’s level of volatility, since it’s well-known that spread and volatility are positively

correlated. We plot using empirical data an upward-sloping then stabilizing plot for the price

duration variance estimates against a large range of threshold values, similar to a volatil-

ity signature plot. We show that with our threshold selection rule the resulting variance

estimates reach the stabilizing region, thus balancing bias against efficiency. A forecasting

study confirms our parametric estimator’s superiority in predicting future stock volatilities,

by comparing it with 10 established RV-type estimators and one option-implied volatility
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estimator.

The paper is organized in the following way. Section 2 lays out the theoretical foundations

for the duration based variance estimators, and derive the asymptotic properties thereof. In

particular, we establish the central limit theorems, and show how they are affected by the

presence of market microstructure noise, observation errors (time discreteness) and finite

activity jumps. Section 3 describes the high-frequency data used subsequently and provides

descriptive results that motivate the simulation study. Section 4 contains the simulation

study that assesses the effects of market microstructure noise components on our duration

based variance estimators, provides guidance on the choice of a preferred price change thresh-

old value, and compares the accuracy and efficiency of the duration based estimator with

competing estimators for both constant and stochastic volatility models. Section 5 contains

the empirical analysis of our estimators including a discussion on the construction of the

parametric duration based variance estimators and empirical evidence on the choice of a

preferred price change threshold value. Section 6 contains the forecasting study and Section

7 concludes.

2 Theoretical foundations

In Section 2.1 we provide the theoretical foundations for parametric and non-parametric

duration based variance estimators. Section 2.2 studies the asymptotic properties of our

non-parametric estimator in the presence of time discreteness, market microsturcture noise

such as the bid/ask spread and finite activity jumps.

2.1 Duration based integrated variance estimation

Suppose the efficient log-price process Xt is a continuous Itô semimartingale defined on some

filtered probability space (Ω,F , (Ft)t≥0, P ) represented by

dXt = µtdt+ σtdWt (1)

whereWt is a standard Brownian motion and µt and σt are (Ft)-adapted and locally-bounded.

These assumptions are sufficient for suppressing the drift term using standard methods via

Girsanov’s theorem, see Mykland & Zhang (2009). In this subsection we assume continuous

time observations on the price process; the issue of time discreteness is discussed later in

Section 2.2.
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Let n be the parameter that defines the observation frequency and derives the asymp-

totics. For each trading day and a selected threshold δ, a set of event times {τn,j}j∈Z+∪{0}

is defined in terms of absolute cumulative price changes exceeding δ. For asymptotic deriva-

tions, we suppose that the sequence of thresholds δ = δn → 0 as n → ∞. To elaborate, we

are considering a random sampling scheme of hitting times defined as τn,0 = 0 and

τn,j+1 := inf
{
t > τn,j;

∣∣∣Xt −Xτn,j

∣∣∣ ≥ δn
}

; j ∈ Z+ ∪ {0}. (2)

Note that the resulting times form a sequence of strictly increasing stopping times. The total

number of price duration events, that is the number of ‘hits’ up to time t, is defined by

Nn,t := max{j ≥ 0; τj,n ≤ t}. (3)

Note that in the case of deterministic regular time sampling (calendar time sampling) for

example: τn,j = j/n; j = 1, . . . , n over [0, 1], it follows that Nn,t ≡ n and the rate of

convergence δn = n−1/2. The object of interest is the quadratic variation [X,X]t which is

equal to the integrated variance a.s. (Jacod & Shiryaev (2003)):

[X,X]t =
t∫

0

σ2
s ds (4)

Note that, from hereafter, subscripts will sometimes be omitted where no confusion is likely,

in particular the dependence of the processes upon the parameter n.

2.1.1 Non-parametric estimation

Below we sketch the underlying idea of our non-parametric duration based estimator and

motivate its use. Let xn,j = τn,j − τn,j−1 denote the time duration between consecutive

events. For the conditional distribution of xn,j|Fτn,j−1 , we denote the density function by

f(xn,j|Fτn,j−1), the cumulative distribution function by F (xn,j|Fτn,j−1) and the intensity (or

hazard) function by λ(xn,j|Fτn,j−1) = f(xn,j|Fτn,j−1)/(1− F (xn,j|Fτn,j−1)).
Following Engle & Russell (1998) and Tse & Yang (2012), duration based variance esti-

mators rely on a relationship between the conditional intensity function and the conditional

instantaneous variance of a step process. The step process {X̃t, t ≥ 0} is defined by X̃t = Xt

when t ∈ {τn,j, j ≥ 0} and by X̃t = X̃τn,j−1 whenever τn,j−1 < t < τn,j. The conditional
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instantaneous variance of X̃t equals

σ2
X̃,t

= lim
∆→0

1
∆ var(X̃t+∆ − X̃t|Fn,j−1), τn,j−1 < t < τn,j. (5)

As ∆ approaches zero we may ignore the possibility of two or more events between times

t and t+ ∆, so that the only possible outcomes for X̃t+∆− X̃t can be assumed to be 0, δ and

−δ. The probability of a non-zero outcome is determined by λ(xn,j|Fτn,j−1) and consequently

σ2
X̃,t

= δ2λ(t− τn,j−1|Fτn,j−1), τn,j−1 < t < τn,j. (6)

The integral of σ2
X̃,t

over a fixed time interval provides an approximation to the integral

of σ2
X,t over the same time interval, and the approximation error disappears as δ → 0.

The general duration based estimator of the integrated variance, IV , is given by

ĨV =
τn,N∫
0

σ2
X̃,t
dt =

N∑
j=1

δ2
τn,j∫

τn,j−1

λ
(
t− τn,j−1|Fτn,j−1

)
dt

= −δ2
N∑
j=1

ln
(
1− F

(
xn,j|Fτn,j−1

))
. (7)

In fact, the above estimator is ignoring price variation over the interval between the last

price event of the day at time τn,N and the end of the day, τn,eod, which is expected to be

of minor importance when δ is relatively small. A natural bias corrected general duration

based variance estimator is therefore

ĨV + =
τn,eod∫
0

σ2
X̃,t
dt = −δ2

N∑
j=1

ln(1− F (xn,j|Fτn,j−1)) + δ2
τn,eod∫
τn,N

λ(t− τn,N |Fτn,N )dt. (8)

In practice, we do not know the true intensity function. We must therefore either estimate

the functions λ(.|.) or we can replace the summed integrals in (7) by their expectations.

Noting that these expectations are always one, we can define the following estimator which

will be one of the main objects of study in this paper:

Definition 1. The non-parametric duration based variance estimator (NPDV) over the in-

terval [0, t] is defined by

NPDVt = NPDVt(δ) := Nn,t · δ2
n, (9)

where Nn,t is as defined in (3).
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This equals the quadratic variation of the approximating step process over a single day,

which we may hope is a good estimate of the quadratic variation of the price process over

the same time interval.1 Below we show it is indeed the case. An equation like (9), for the

special case of constant volatility, can be found in the early investigations of duration based

methods by Cho & Frees (1988) and Marsh & Rosenfeld (1986). We note that in Andersen

et al. (2008), their approach is to estimate local volatility at each single time point, resulting

in a different form of the estimator. Also, they consider the case of constant volatility in the

first instance. A further discussion on the differences between our estimator and theirs is

provided in Section 2.2.1.

As aforementioned in the introduction and also briefly discussed in Fukasawa (2010a),

the NPDV estimator overlaps with the RV in some special cases. This happens when the

RV is stochastically sampled at times at which the price hits the regular (i.e. symmetric

and equidistant) grid of size δ. It is however no longer the case when there is a bias due

to time discretization and/or microstructure noise; Section 2.2 details how the asymptotics

are affected. As for detailed discussions for the RV with respect to stochastic sampling, the

interested reader is referred to in Fukasawa (2010b), Fukasawa & Rosenbaum (2012), Li,

Zhang & Zheng (2013), Li et al. (2014) and references therein.

For the limiting theory, we shall impose the following condition within this section for

the mesh of the sampling interval.

Assumption A. The mesh of the sampling points satisfy the following:

max
j
|τn,j+1 − τn,j| = op(1). (10)

Note that this assumption above makes the sequence of stopping times {τn,j} an adapted

subdivision of a Riemann sequence. We therefore obtain the Law of Large Numbers for (9)

in view of Jacod & Shiryaev (2003, Theorem 1.4.47), implying consistency of our estimator:

NPDVt
P−→ [X,X]t (11)

as n→∞ (so that δn → 0).

We now move on to the limiting distribution.

1The asymptotic downward bias introduced by ignoring end of day effects is equal to δ2/6 from Li et al.
(2019). A bias corrected version of (9) is therefore given by NPDV+ = (N + 1/6)δ2.
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Theorem 1. Suppose Assumption A holds. For all t we have the following convergence in

law to a mixed normal distribution for the estimator defined in (9):

δ−1
n

(
NPDVt − [X,X]t

) L−→MN

0, 2
3

t∫
0

σ2
s ds

. (12)

Proof. See Web-Appendix C.

Remark. The ‘symmetric nature’ of our sampling scheme (2) is worth noting, since

without it the bias may not asymptotically vanish, as pointed out by Fukasawa & Rosenbaum

(2012). We note that (12) is consistent with the limiting distribution of the realized variance

and renewal estimators in the special cases where all three estimators overlap, see Fukasawa

(2010b, Theorem 3.10), and Li, Nolte & Nolte (2019, Remark 4.3).

The NPDV has a lower limiting variance than that of the RV estimator sampled in

business time, or in conditionally independent time (e.g. Poisson type), or in equidistant

calendar time. See Hansen & Lunde (2006) and Aı̈t-Sahalia & Jacod (2014, Chapter 9).

2.1.2 Parametric estimation

We now introduce some parametric approaches; detailed derivations of their asymptotic

theories are omitted. A parametric implementation of (7) requires the selection of appropriate

hazard functions λ(.|.). As first suggested by Engle & Russell (1998), we assume the durations

xn,j = τn,j − τn,j−1 have conditional expectations ψj determined by Fτn,j−1 and that scaled

durations are independent variables. More precisely,

xn,j = ψn,jεn,j, with ψn,j = E[xn,j|Fτn,j−1 ], (13)

and the scaled durations εj are i.i.d., positive random variables which are stochastically

independent of the expected durations ψj.

Autoregressive specifications for ψj are standard choices, such as the autoregressive con-

ditional duration (ACD) model of Engle & Russell (1998), the logarithmic ACD model of

Bauwens & Giot (2000), the augmented ACD model of Fernandes & Grammig (2006) and

others reviewed by Pacurar (2008). These specifications do not accommodate the long-range

dependence present in our durations data. As a practical alternative to the fractionally inte-

grated ACD model of Jasiak (1999), we develop the heterogenous autoregressive conditional

duration (HACD) model in the spirit of the HAR model for volatility introduced by Corsi

(2009). Short, medium and long range effects are arbitrarily associated with 1, 5 and 20

9

Electronic copy available at: https://ssrn.com/abstract=2713322



durations, and our HACD specification is then

ψn,j = ω + αxn,j−1 + β1ψn,j−1 + β2(ψn,j−5 + . . .+ ψn,j−1) + β3(ψn,j−20 + . . .+ ψn,j−1). (14)

A flexible shape for the hazard function can be obtained by assuming the scaled durations

have a Burr distribution, as in Grammig & Maurer (2000) and Bauwens, Giot, Grammig &

Veredas (2004). Recently, in Pelletier & Wei (2019) a Gamma distribution is assumed for the

scaled durations. Note that the general Burr density and cumulative distribution functions,

as parameterized by Lancaster (1997) and Hautsch (2004), are given by

f(y|ξ, η, γ) = γ

ξ

(
y

ξ

)γ−1

[1 + η(y/ξ)γ]−(1+(1/η)), y > 0, (15)

and

F (y|ξ, η, γ) = 1− [1 + η(y/ξ)γ]−1/η, y > 0, (16)

with three positive parameters (ξ, η, γ). The Weibull special case is obtained when η → 0
and its special case of an exponential distribution is given by also requiring γ = 1. The mean

µ of the general Burr distribution is

µ = ξc(η, γ), with c(η, γ) = B
(
1 + γ−1, η−1 − γ−1

)
/η1+(1/γ), (17)

with B(·, ·) denoting the Beta function. For each scaled duration the mean is 1 so that ξ

is replaced by 1/c(η, γ). For each duration xn,j (having conditional mean ψj) we replace ξ

by ψj/c(η, γ). From (7) our parametric, duration based variance estimator, PDV over the

period [0, t], is therefore

PDVt = PDVt(δ) = δ2

η

Nt∑
j=1

log
(

1 + η

[
c(η, γ)xj

ψj

]γ)
. (18)

When we implement (18), we take account of the intraday pattern in the durations data.

The durations xj in (13) and (14) are replaced by the scaled quantities x∗j = xj/sj and each

expected duration ψj−u is replaced by the scaled quantity ψ∗j−u = ψj−u/sj−u, with sj−u the

estimated average time between events at the time-of-day corresponding to time td−τ ; each

term sj−u is obtained from a Nadaraya-Watson kernel regression, with Gaussian kernel and a

data-based automatic bandwidth as proposed by Silverman (1986), of price durations against

time-of-day using one month of durations data. Then ψj is replaced by sj/ψ
∗
j , so the scaled

duration xj/ψj in (18) is simply x∗j/ψ
∗
j . End of day bias correction is obtained by adding
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1/6 · δ2 as above. The associated log-likelihood function for the Burr case is given by

logL(θ) =
∑
j

log
(
γc(η, γ)γ

(
ε∗j
)γ−1

[1 + η(ε∗jc(η, γ))γ]−(1+(1/η))
)

(19)

where ε∗j = x∗j/ψ
∗
j , ψ

∗
j follows the specification in (14), c(η, γ) is given by (17), initial values

for ψ∗j are set to the the unconditional mean of x∗j at the beginning of each day, and θ =
(ω, α, β1, β2, β3, γ, η) is the corresponding parameter vector.

The theoretical framework above is for the logarithms of prices. It is much easier to set

the threshold to be a dollar quantity related to the magnitude of the bid/ask spread. We then

replace the log-price Xt in (2) by the price Pt = exp(Xt). As a small change δ in the price

is equivalent to a change δ/Pt in the log-price, we can define the following (asymptotically

equivalent) alternative definitions for our estimators:

NPDVt =
Nt∑
j=0

δ2
n

P 2
τn,j

(20)

and

PDVt = δ2
n

η
·
Nt∑
j=0

log
(

1 + η

[
c(η, γ)xj

ψj

]γ)
/P 2

τn,j
. (21)

These alternative definitions will be used in Sections 4 and beyond for computational prac-

ticality. Obviously, their asymptotic equivalence with the previous definitions can be easily

seen via Taylor series expansion for logarithms.

Speaking from a practical point of view, we see that the non-parametric estimator can

easily be constructed with a reasonable number of events N ≡ Nt over the interval [0, t],
which represents a day for example. On the other hand, the additional parametric form

assumption of the parametric estimator also guarantees a volatility estimator for small N

and yields for example a local (intraday) volatility estimator. The end of day bias correction

is now to add δ2/(6P 2
N) to these estimators.

2.2 Time discreteness and market microstructure noise

2.2.1 Time discretization

To investigate the effect of time discretization on our estimation theory, we first suppose

that the observations are first sampled according to a Poisson process, after which the hit-

ting time sampling we reviewed in the previous section is considered. Poisson sampling is
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a widely implemented random sampling scheme within the high frequency framework. It

is a continuous-time version of Bernoulli process modelling whose inter-arrival time is geo-

metric. For example, Campbell, Lo & MacKinlay (1997) state that their non-synchronous

trading model converges to the continuous time Poisson process (under suitable normalisa-

tion). However, due to its exogenous nature, Poisson sampling does not take the information

of the price process into account. This form of limitation has been discussed in the litera-

ture, for example in Aı̈t-Sahalia & Jacod (2014) and Li et al. (2014). The setup we consider

in this subsection can be viewed as “integrating” the exogenous and endogenous aspects in

the sampling procedure. This allows us to cover a wide range of plausible situations from a

practical point of view, but as a cost to pay the rate of convergence slows down.

Suppose the stopping times In = {τn,0, τn,1, . . . , } follow a Poisson process with intensity

∆. For the asymptotics, the sequence of positive numbers ∆ = ∆n is set to approach to zero,

since it represents the time to next “arrival”, which should decrease as the number of sample

increases. We then consider time points chosen according to the hitting time procedure we

defined above. That is, the sampling times under consideration are given by

τ ∗n,j+1 := inf
{
t ∈ In > τ ∗n,j;

∣∣∣Xt −Xτ∗n,j

∣∣∣ ≥ δn
}

; j ∈ Z+ ∪ {0}. (22)

Therefore, the total number of hitting times become N∗n,t := max{j ≥ 0; τ ∗j,n ≤ t}, and our

non-parametric estimator becomes

NPDVt = N∗n,t · δ2
n. (23)

Since we are essentially selecting those times which satisfy the “criteria” out of the sample

set In, the generalized thinning argument of Poisson processes applies. Therefore, it follows

that (conditionally on Fτn,j) we have

τ ∗n,j+1 − τ ∗n,j ∼ ∆2
nvτn,je, (24)

where e ∼ exp(1) and

vτn,j = P
(∣∣∣Xτn,j+1 −Xτn,j

∣∣∣ > δn
)
. (25)

The sequence of positive (Ft)-measurable processes (vn) can be understood as representing

the “likelihood” of the Poisson time points being selected.

Lemma 1. Suppose σt in (1) is bounded above by some positive constant σ∗ for all t. Then
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it follows that vτn,j = OP (∆3
n/δn), and the sampling points {τ ∗n,j}j (24) satisfy Assumption

A when ∆n = o(δ1/3
n ).

Proof. This is proved along with Theorem 2 in Web-Appendix C. Note that the boundedness

of σ is a often improsed in the literature as an innocuous assumption, see for example, Li et

al. (2014).

Furthermore, with standard renewal arguments, it is rather straightforward to see that

the following structural assumption below (Assumption B) holds for the sequence of stopping

times {τ ∗n,j}j. The implication is that τ ∗n,j is now F ′t−1 measurable while still being defined

on the original space Ω.

Assumption B. The hitting time τ ∗n,j+1 defined in (22) is an (F ′t)-stopping time where the

σ-field F ′ is bigger than or equal to F defined in (1), and the probability measure P is

defined on F ′.

The limiting distribution now follows. Note that (26) can be broadly seen as a generalized

version of the CLT of Andersen et al. (2008, page 17), where a directional local volatility

estimator is considered on a pre-defined fixed time grid.

Theorem 2. Suppose σt in (1) is bounded above by some positive constant σ∗ for all t, and

∆n = O(δ3/5
n ). Assume also that there exists a non-vanishing càdlàg process v, which is

the probability limit of the (Ft)-progressively measurable process vn defined in (25). Then

under Assumption B, for all t we have the following convergence in law to a mixed normal

distribution for the estimator (23):

∆−1
n

(
NPDVt − [X,X]t − Bn,t

) L−→MN

0, 2
t∫

0

σ4
svs ds

 , (26)

where Bn,t is the bias term due to time descretization, which is of order OP (∆5
n/δ

2
n).

Proof. See Web-Appendix C.
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2.2.2 Market microstructure noise

Next we consider the bid/ask spread, which is arguably one of the most important market

microstructure noise components for transaction price datasets. We discuss how it affects

the limiting theory of the non-parametric duration based volatility estimator.

Specifically, assume that at general times t we observe a contaminated noisy log price

Yt = logPt + 1
2Dt · ς

(
≡ Xt + ς

2Dt
)
, (27)

where ς denotes2 the size of the bid/ask spread and Pt is the unobserved true price. Further,

Dt is the binary variable that takes the value of 1 when Yt represents the log of an ask price

at time t, and −1 when Yt represents the log of a bid price at time t.

Microstructure noise as a whole is often modeled as some additive random error εt, see

Zhang et al. (2005), Hansen & Lunde (2006), Bandi & Russell (2008). Our assumption (27)

can be understood as a detailed specification thereof for addressing the bid/ask spread, i.e.

εt = (ς/2)Dt. In the context of stochastic sampling for the realized volatility, Fukasawa

(2010a) deals with the bid-ask spread component of a different specification.

We assume that ς is constant throughout the day and does not depend on n, which

is consistent with the standard practice of modelling E(εt) as fixed. As Zhang (2011) and

Aı̈t-Sahalia and Jacod (2014, 7.1.1) discuss, a shrinking noise asymptotics is sometimes,

albeit relatively uncommonly, considered e.g. to examine the bias-variance tradeoff in detail.

As such we also consider the case where ς depend on n and shrinks asymptotically, i.e.

ς = ςn(→ 0), see below.

We suppose that Yt takes prices on the ask side with probability pa and on the bid side

with probability pb(= 1−pa). For example, we may set them to be 0.5 so that both situations

would happen with equal probability. Note that we do not consider the time discretization

issue for expositional simplicity in this subsection.

We set the price events to occur at {τ ′n,j}
N ′n,t
j=1 , where N ′n,t denotes the total number of

hitting times over the interval [0, t]. In line with our previous definition, these hitting times

are now alternatively defined as follows:

∣∣∣Yτ ′n,j+1
− Yτ ′n,j

∣∣∣ =
∣∣∣∣(Xτ ′n,j+1

−Xτ ′n,j

)
+ 1

2ς
{
Dτ ′n,j+1

−Dτ ′n,j
}∣∣∣∣ ≥ δ. (28)

The setting suggests that an event is triggered by the combined magnitudes of the unobserved

efficient price change component (Xτ ′n,j+1
− Xτ ′n,j

) and the bid/ask spread component 1/2 ·
{Dτ ′n,j+1

− Dτ ′n,j}. The bid/ask spread component can therefore take three values: either

14

Electronic copy available at: https://ssrn.com/abstract=2713322



−1, 0, or 1, which together with an upward (downward) move of the log price component

constitutes the following three possible scenarios:

I. Bid-Bid or Ask-Ask

When both the first price and the last price of the price duration lie on the same side

of the limit order book, i.e. bid-bid or ask-ask, we note that the contribution from the

bid-ask spread becomes zero. This means the price component itself solely triggers a

price event in our construction, and the noise induced by the presence of bid-ask spread

cancels out automatically:

NPDVt ≡ N ′n,tδ
2
n = N ′n,t

[(
Yτ ′n,j+1

− Yτ ′n,j
)]2

(29)

= N ′n,t
[(
Xτ ′n,j+1

−Xτ ′n,j

)]2
.

So, we can see the robustness of our estimator to the noise in the modelling procedure.

Asymptotic theory follows straightforwardly.

II. Bid-Ask

In this case, the preceeding binary variable D· in (28) takes the value of −1 while the

other is 1. It turns out that the magnitude of the noise ς from the spread plays a key

role as we sketch now. We see that

NPDVt ≡ N ′n,tδ
2
n = N ′n,t

[(
Xτ ′n,j+1

−Xτ ′n,j

)
+ ς

]2
(30)

by construction. In the meantime, applying the triangle inequality on (28) we see that

∣∣∣Xτ ′n,j+1
−Xτ ′n,j

∣∣∣ ≥ δ − ς, (31)

with an implicit assumption that δ ≥ ς2. This suggests that the noise induced in this

situation is equivalent to requiring a “lower bar” (of δ − ς) for the unobserved price

process in triggering a price event.

Standard arguments relating to the limiting behavior of the conditional first mo-

ment of price change imply that the leading bias term comes from the term ς2 · N ′n,t
which is positive. This highlights the possible opposite roles that ς and δ play to the

2In practice δ will always be chosen to be larger than ς. We discuss the case δ < ς in the context of the
simulation study in Section 4.
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magnitude of bias. Specifically, the bias increases in ς, while it decreases in δ (as an

increase in δ reduces N).

As for the asymptotics where each term is set to depend upon n, we recall that

N ′n,t = Op(δ−2
n ), so we require at least ς = ςn = o(δn) in order to eliminate the bias,

see proof of Theorem 3 for details. Note that in Theorem 3 below, we impose a slightly

weaker condition of O(δn) so that the explicit form of the limiting bias can be specified.

Obviously, this can be smoothed away upon imposing a stronger condition ςn = o(δn),
for example.

III. Ask-Bid

This case is similar to the second situation. The preceeding binary variable D· in (28)

takes the value of +1 while the other is −1. So it follows that

NPDVt ≡ N ′n,tδ
2
n = N ′n,t

[(
Xτ ′n,j+1

−Xτ ′n,j

)
− ς

]2
, (32)

and similarly as before, ∣∣∣Xτ ′n,j+1
−Xτ ′n,j

∣∣∣ ≥ δ + ς. (33)

The leading bias term is still ς2 · N ′n,t (and the same arguments for the asymptotics

therefore applies). So we expect an upward bias in the estimation, although the down-

ward bias contribution from the cross term in (32) suggests that the magnitude of

the bias can be slightly lower than the “bid-ask” case in the finite sample. Roughly

speaking, this is in line with the “higher bar” we end up requiring in (33).

Note that even in the second and third cases, we can see that the noise induced

by bid-ask spreads can be easily tracked down.

Remark. As aforementioned, for the limiting theory below we let ς depend upon n. This

is to control the asymptotic bias in relation to the threshold parameter δn. We note that in

the asymptotic distribution below, if ς = ςn is chosen to be of order o(δn) the asymptotic

bias in (34) vanishes in the limit, implying certain degree of robustness of our estimator to

bid/ask spread (of this particular specification).

Theorem 3. Suppose the NPDV estimator is defined according to the hitting time scheme

(28), and suppose ς = ςn = Cςδn for some positive constant Cς . Then, for all t we have the
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following convergence in law to a mixed normal distribution for the estimator (23):

δ−1
n

(
NPDVt − [X,X]t

) L−→MN

1
2C

2
ς ·
{

1− (pa − pb)2
}
,

2
3

t∫
0

σ2
s ds

 (34)

as n→∞.

Proof. See Web-Appendix C.

Lastly, let us further consider the possibility of having finite number of jumps, and con-

sider the case where a jump of size κ occurs over the interval [τ ′n,, τ ′n,j+1]; i.e.

∣∣∣Yτ ′n,j+1
− Yτ ′n,j

∣∣∣ =
∣∣∣∣(Xτ ′n,j+1

−Xτ ′n,j

)
+ 1

2ς
{
Dτ ′n,j+1

−Dτ ′n,j
}

+ κ

∣∣∣∣ (35)

As we expect |κ| � δ, a price jump would most likely trigger an immediate price event.

Yet its impact on the integrated variance estimator is substantially mitigated as only one

duration event is caused and thus κ is effectively truncated. In addition, as the occurrences

of large jumps are rare, we expect them to have very limited influence on the duration based

variance estimator. However, when we have a finite number of many small jumps of size

similar to δ, they are likely to affect the estimator. In the asymptotics, it is straightforward

to see that they would appear in the form of the squared sum of κ′s.

In the simulation study in Section 4, we further evaluate the performance of our duration

based variance estimators under different market microstructure noise scenarios. To obtain

some representative input parameters for this study we first report a descriptive analysis of

our high-frequency data.

3 Data properties

In the empirical analysis we use 20 of the 30 stocks of the Dow Jones Industrial Average

(DJIA) index. The tick-by-tick trades and quotes data spanning 11 years (2769 trading

days) from January 2002 to December 2012 are obtained from the New York Stock Exchange

(NYSE) TAQ database and are time-stamped to a second. All 20 stocks have their primary

listing at NYSE.3

3From the list of 30 DJIA stocks as of December 2012, BAC, CSCO, CVX, HPQ, PFE, TRV, UNH, and
VZ are excluded because of incomplete data samples. INTC and MSFT are excluded because their primary
listing is at NASDAQ.

On 1 August, 2006, NASDAQ started to operate as an independent registered national securities exchange
for NASDAQ listed securities, separate from the National Association of Securities Dealer (NASD) which has
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The raw data is cleaned using the methods of Barndorff-Nielsen, Hansen, Lunde & Shep-

hard (2009). Data entries, trades and quotes, that meet one or more of the following con-

ditions are deleted: 1) entries outside of the normal 9:30am to 4pm daily trading session;

2) entries with either bid, ask or transaction price equal to zero; 3) transaction prices that

are above the ask price plus the bid/ask spread or below the bid price minus the bid/ask

spread; 4) entries with negative bid/ask spread; 5) entries with spread larger than 50 times

the median spread of the day; 6) entries for which the mid-quote deviates by more than

10 mean-absolute-deviations from a rolling centered median (excluding the observation un-

der consideration) of 50 observations (25 observations before and 25 after). When multiple

transaction, bid or ask prices have the same time stamp, the median price is used. We match

trades with corresponding bid and ask quotes using a refined Lee and Ready algorithm as

outlined in Nolte (2008), which yields the bid/ask spreads.

The list of stocks and their descriptive statistics for the whole sample period are presented

in Table 1. Table 1 shows means and medians for bid/ask spreads and inter-trade times, as

well as means for the prices and volatilities, sorted in ascending order of their mean spread

level in the first column. The mean values of daily average bid/ask spreads range from 1.3

to 3.7 cents, and from 4.15 to 9.08 seconds for average inter-trade times. The corresponding

medians range from 1 to 3 cents, and 3.83 to 7.98 seconds, respectively, implying right-

skewed distributions for both variables. Table 1 also presents means and medians for a

simple measure of a jump frequency. A jump is recorded when the absolute value of a price

change exceeds five times the average bid/ask spread for a given day. The mean is 0.3 to 1.89

while the median is 0 to 1 jump per day. We also observe that the average level of volatility

across the whole sample period lies between 16% and 32%, while the average price level

ranges from $26 to $99. We observe that the average bid/ask spread is roughly increasing

with the average price level. In our empirical analysis we select four reference stocks on

the basis of their bid/ask spread levels: Home Depot (HD), McDonald’s (MCD), American

Express (AXP), and International Business Machines (IBM).

To obtain an idea of the time variation of the key variables, we plot (log) bid/ask spread,

(log) inter-trade time, and (log) annualized volatility calculated using (20) for AXP from

2002 to 2012 in Figure 1. We observe that periods of higher volatility coincide with periods

of wider bid/ask spreads and more frequent trades. We observe very much the same pattern

a different set of trading and reporting rules. This break is also reflected in the TAQ data, which started to
record trades and quotes with exchange code “Q“ instead of “T”. Before 1 August, 2006, the average numbers
of jumps (recorded when the absolute value of a price change is larger than 5 times the day’s average spread)
per day for INTC and MSFT are 8.08 and 10.37, and after that date the averages are 0.97 and 1.29 jumps
per day. Given this structural break for both stocks, we decided to exclude them from the data sample.
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Table 1: Descriptive statistics for 20 DJIA stocks

Stock bid/ask spread inter-trade times number of jumps price volatility

mean median mean median mean median mean mean
T 0.013 0.01 7.74 7.98 0.56 0.00 26.49 0.23
GE 0.014 0.01 5.66 4.91 0.30 0.00 28.93 0.26
DIS 0.015 0.01 6.60 6.52 0.84 0.00 29.16 0.25
HD 0.016 0.01 6.15 5.91 0.77 0.00 35.49 0.25
AA 0.016 0.01 9.08 7.60 0.62 0.00 26.54 0.32
KO 0.017 0.01 6.74 6.56 0.96 0.00 49.53 0.16
JPM 0.017 0.01 4.97 5.02 0.97 0.00 38.68 0.32
MRK 0.017 0.01 6.68 6.23 1.26 0.00 38.18 0.21
MCD 0.018 0.02 7.19 6.94 1.01 0.00 50.58 0.20
WMT 0.018 0.01 5.84 5.17 1.04 0.00 52.88 0.18
XOM 0.019 0.02 4.15 3.83 1.27 0.00 67.30 0.21
JNJ 0.019 0.01 6.12 5.87 1.23 0.00 62.04 0.16
DD 0.019 0.02 7.66 7.19 1.01 0.00 43.93 0.23
AXP 0.019 0.02 6.84 6.85 1.22 0.00 48.01 0.29
PG 0.020 0.02 6.24 6.07 1.35 1.00 63.57 0.16
BA 0.025 0.02 7.57 7.09 1.65 1.00 64.33 0.23
UTX 0.027 0.02 7.96 7.47 1.89 1.00 70.65 0.20
CAT 0.028 0.03 7.27 6.42 1.18 1.00 71.24 0.25
MMM 0.030 0.02 7.83 7.36 1.65 1.00 82.36 0.18
IBM 0.037 0.03 5.95 5.44 1.51 1.00 99.10 0.19

Notes: Descriptive statistics for the daily average bid/ask spread (in dollars), the daily
average time between consecutive transactions (in seconds), the number of large price jumps
per day, the transaction price, and the annualized volatility. A “large jump” is recorded when
the absolute value of a price change exceeds 5 times the average bid/ask spread of the day.
“Volatility” is calculated using (20) and then converted to an annualized standard deviation.

for all other NYSE stocks in our sample.

Figure 1: Bid/ask spread, inter-trade times and volatility for American Express (AXP)

Notes: Time series of logs of inter-trade time, volatility, and bid/ask spread from 2002 to
2012. Bid/ask spread is the average spread in dollars per day and inter-trade time is the
average duration per day (in seconds). The annualized volatility is calculated using (20).
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In Section 4, we carry out a comprehensive simulation study to analyze the properties

of the duration based variance estimators. We will consider as a benchmark a scenario with

25% annualized volatility and 6 seconds average inter-trade time, which corresponds approx-

imately to the average levels in Table 1. Likewise, to assess the effect of bid/ask spreads, we

will consider scenarios with varying spreads from 1 to 4 cents.

4 Simulation results

We first assess the effects of market microstructure (MMS) as well as price jumps on the non-

parametric duration estimator assuming constant volatility. Then we compare the bias and

accuracy of duration and RV-type estimators for a variety of well-known stochastic volatility

processes.

4.1 Constant volatility case

We separate the MMS noise into time-discretization (∆), bid/ask spread (ς), and price-

discretization components. We investigate the separate and combined effects of the noise

components as well as jumps on the non-parametric duration based volatility estimator,

NPDV (hereafter NP for convenience), in a Monte Carlo study with 10000 replications.

The performance of NP depends on the selection of the threshold value δ. Following the

discussion of the two main sources of noise, bid/ask spread and time-discretization, we discuss

the tradeoff between efficiency and bias in the context of choosing a preferred threshold value

δ∗.

4.1.1 Time-discretization

We first look at the effect of time discretization we studied in Section 2.2.1. For practical

implementation, let us consider a discrete-time setting in which we estimate the integrated

variance over one trading day. We first discretize the diffusion process on a half-second

interval so that there are 46800 efficient returns from a normal distribution in a 6.5-hour

daily trading session. Upon this foundation process, we sample trade points according to

random Bernoulli distributions with probabilities 1/2, 1/6, and 1/12, resulting in three

further time-discretized processes with average inter-trade times equal to 1, 3, and 6 seconds

respectively. Note that this is in line with the previously-discussed time discretization via

Poisson sampling in the continuous case.
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For any time-discretized process we now let ∆ denote its expected inter-trade time.

Specifically, we employ the following simulation setup to obtain the discretized versions

of the log-price Xt in (1) and its corresponding price Pt:

X0 = ln(P0), (36)

Xs = Xs−1 + σX
√

1/46800Zs, for s = 1, . . . , 46800, (37)

Bs ∼ Bernoulli(1/(2 ·∆)), (38)

NB
s =

s∑
j=1

Bj, (39)

Xti = Xinf{s|NB
s =i}, (40)

Pti = exp(Xti), (41)

where ti for i = 1, . . . , I denotes the time stamps of the discretized log-price process with

expected inter-trade time equal to ∆, I the number of observations on a given day, Zs a

standard normally distributed random variable, σX the constant value of the daily volatility

and P0 the initial price. We denote by I := {t1, t2, . . . , tI}.
The estimator NP can now be defined as in (22) with respect to I:

NPt = N∗t δ
2, (42)

where N∗ is the number of duration event (within I) chosen according to the hitting time

scheme (so that N∗s ≤ NB
s for all s). In Figure 2, the average values of NP divided by

the true integrated variance
∫ 1

0 σ
2
sds ≡ σ2

X are plotted against the threshold value δ, for ∆
ranging within 0.5, 1, 3, and 6 seconds. The annualized volatility of efficient log-prices is

25% throughout Section 4.1, using 252 trading days per year, although the magnitude of

volatility is irrelevant for Figure 2.

Time-discretization decreases the number of duration events observed, due to the ab-

sence of prices that might have defined price events. As ∆ decreases, the number of trades

N∗ increases and NP approaches its “true value” (which occurs when prices are observed

continuously), see (25). Thus, given δ, a smaller ∆ leads to more accurate estimates of the

integrated variance represented by the unit line in Figure 2. On the other hand, increasing δ

for a given ∆ reduces the bias introduced by time-discretization, see (24). Note the tradeoff

between δ and N∗, and the asymptotic convergence of δ to the average of the difference in

selected log prices.
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Figure 2: The time-discretization bias

Notes: NP variance estimates divided by σ2
X . Average inter-trade times ∆ are 6, 3, 1, and

0.5 seconds from the bottom to the top. σX = 0.25 per year. Thresholds δ are from 0 to 15
ticks. P0 = 50, tick size = 0.01.

4.1.2 Bid/ask spread and time-discretization

As discussed in Section 2.2.2, when time is not discretized, the introduction of a bid/ask

spread and corresponding bid and ask transaction prices bias the duration variance estimates

upwards. Also, as we remarked before, the bias increases with the size of the spread ς, and

decreases with the threshold value δ (assuming δ > ς).

Throughout the remainder of Section 4 we consider ∆ equal to 6 seconds, with bid and

ask transaction prices generated by

Yt = logPt + 1
2Dt · ς. (43)

The transaction price takes either the bid or the ask side with probability 0.5 (i.e. pA =
1/2 = pB) and the variables D·’s are i.i.d. over the time index. Note here the subtle difference

between ς, a proxy for the bid/ask spread component of noise, and the real bid/ask spread

which is measured in ticks. ς represents a difference between observed and efficient log-prices,

and thus is essentially a return measure. But in our simulation setting, the relation between

ς and spread is quite straightforward. Given an initial price P0 = 50, and no drift, a rough

relationship follows: ς ≈ spread/50, where spread = 0.01, 0.02, etc.4 All graphs are plotted

with the bid/ask spread measured in cents, matching the threshold values (expressed in ticks

as well).

Figure 3 shows ratios of the average NP variance estimates over the true integrated

variance. A deviation from the unit line indicates a bias. The hump-shaped curves occur

4ς is sometimes used inter-changably with “spread” to explain ideas in the text.
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as a result of the bid/ask spread component bias when the spread is relatively large. When

δ < ς, one bid/ask bounce is enough to trigger a price event and N is inflated in comparison

to the case when ς → 0 (dotted line). N does not decrease much as δ increases as long

as δ < ς, causing the NP estimate, Nδ2, to increase rapidly. When δ further increases, to

δ > ς, the influence of bid/ask bounces is mitigated by the price changes from the efficient

price component as a price event is now increasingly caused by the cumulative efficient price

changes rather than by the bid/ask spread component. The bid/ask spread has the largest

influence at or near the point where δ = ς.

Figure 3: Combined effects of spread and time-discretization biases

Notes: NP variance estimates divided by σ2
X , with the range of thresholds from 0 to 15

ticks. Bid/ask spreads from bottom to the top are 0 to 4 ticks. σX = 0.25 per year. ∆ is 6
seconds. P0 = 50, tick size=0.01.

As δ increases past ς, theNP estimates start to stabilize, since both the time-discretization

and the bid/ask spread biases are reduced by larger threshold values of δ. We observe two

scenarios: 1) for smaller bid/ask spread levels (here 1 and 2 ticks) the negative bias con-

tribution of the time-discretization is partially off-set by the positive contribution of the

bid/spread components and the curves in Figure 3 for these cases tend to the unit line from

below; 2) for larger bid/ask spread levels (here 3 and 4 ticks) the negative bias contribution of

the time-discretization is, as discussed above, clearly dominated by the positive contribution

of the bid/ask spread component and the curves in Figure 3 for these cases tend after the

initial hump to approach the unit line from above.

4.1.3 Bias versus efficiency: the preferred threshold value

We must choose a threshold level δ for the implementation of our estimators. Figure 3 shows

that the bias of the NP estimator decreases for a large enough threshold value, regardless

of the bid/ask spread level. But, increasing the threshold level will inevitably result in a
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decreasing number of price events over the course of a day, rendering the NP estimates more

dispersed and hence less efficient. Figure 4 shows this effect, as the standard deviation of

the NP variance estimates is seen to increase over the range of δ from 0 to 15 ticks.

Figure 4: Standard deviations of the NP variance estimator

Notes: Standard deviations of the NP variance estimates over the range of thresholds from
0 to 15 ticks. Bid/ask spreads from bottom to the top are 0 to 4 ticks. σX = 0.25 per year.
∆ is 6 seconds. P0 = 50, tick size=0.01.

To illustrate this trade-off we present in Figure 5 root mean squared error (RMSE)

statistics for the NP estimator over the range of δ from 5 to 15 ticks, for 2-tick and 3-tick

bid/ask spread levels. These are realistic bid/ask spread levels as shown in Table 1. For

the 2-tick bid/ask spread case, the minimum RMSE lies at δ∗ = 7 ticks, while for the 3-

tick spread case, the minimum is given for δ∗ = 8 ticks. As these minimum RMSE values

increase with the size of the bid/ask spread, we suggest for practical implementations to

choose a preferred threshold δ∗ equal to 2.5 to 3.5 times the bid/ask spread. A threshold

in the range of 3 to 6 times the log-spread is recommended in Andersen et al. (2008) for a

different duration based estimator. Further guidance about the choice of δ∗ for real data on

the basis of bias-type curves, similar to those in Figure 3, is presented in Section 5.2.

4.1.4 Price-discretization

Transaction prices are recorded as multiples of a minimum tick size, usually one cent. To

account for this additional price-discretization component of market microstructure noise in

our simulation study we now consider a setup in which, in addition to the above, bid and ask

prices and consequently transaction prices are recorded discretely as multiples of 0.01 (one

tick). First we obtain mid-quote prices Mti by rounding the efficient price Pti to the nearest

half-cent price (50.005, 50.015, etc.) when ς/0.01 is an odd number and to the nearest cent

when ς/0.01 is an even number. The resulting transaction prices are then given by replacing
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Figure 5: Plot of RMSE as a function of the threshold value

Notes: RMSE of the NP variance estimates over the range of threshold from 5 to 15 ticks.
Bid/ask spreads are 2 and 3 ticks. σX = 0.25 per year. ∆ is 6 seconds. P0 = 50, tick
size=0.01.

(43) by

Mti =

 [100Pti ]/100 if 100ς is even,

1/200 + [100Pti − 0.5]/100 if 100ς is odd,
(44)

Yti = Mti + 0.51tiς, (45)

where [x] is the integer nearest to x. Figure 6 shows that price-discretization further increases

the NP estimates compared to Figure 3. The general effects of bid/ask spreads and time-

discretization are, however, unchanged and the estimates still tend to the unit line as δ

increases beyond ς.

Figure 6: Including price-discretization noise

Notes: NP variance estimates divided by σ2
X . Prices are multiples of one tick. Bid/ask

spreads from bottom to the top are 0 to 4 ticks. ∆ is 6 seconds. Thresholds are from 0 to
15 ticks. σX = 0.25 per year. P0 = 50, tick size=0.01.
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4.1.5 Jumps

To investigate how jumps affect our duration based variance estimators, we adapt the sim-

ulation setup of Section 4.1.2. The jumps are normally distributed with mean zero and

expected jump variation equal to 20% of the quadratic variation. Jumps are simulated to

arrive according to a Poisson process. We consider two scenarios: 1) one large jump on

average and 2) 100 small jumps on average during a day.

Figure 7: 100 small jumps a day

Notes: NP variance estimates divided by σ2
X . The discretization interval is 6 seconds on

average. There are on average 100 small jumps a day, with a total variance of 20% of
the integrated variance. Bid/ask spreads from bottom to the top are 0 to 4 ticks. The
discretization interval is 6 seconds on average. Thresholds are from 0 to 15 ticks. σ = 0.25
per year. P0 = 50, tick size=0.01.

As discussed in Section 2.2, due to a truncation of price changes at δ, rare large jumps

are expected to have little influence on the duration based variance estimates and indeed in

scenario 1) there is no visible impact5 as N is large and an increase of one potential additional

price event, triggered by an expected single large jump, results only in a tiny upward bias of

the NP estimator in the order of 1/N . In scenario 2) the standard deviation of the jump size

is 3.5 ticks. Here, on the contrary, we do observe in Figure 7 that small jumps increase the

integrated variance estimates by around 16.3% in comparison to the no jump case. In this

case estimates are inflated considerably as small jumps are mixed with the diffusion price

changes and effectively increase the number of price events by a non-trivial amount.

In reality we expect there to be less than one large jump per day, to which the duration

based estimator is robust, and at most only a small number of detectable smaller jumps per

day. Studies focussing on the detection of large jumps find on average less than one jump

per week (e.g. Andersen, Bollerslev & Dobrev (2007)). Lee & Hannig (2010) investigate

5We omit the graph for brevity.
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the occurrence of big and small jumps and find approximately 0.3 big jumps and 0.6 small

jumps per day for individual stocks. Nonetheless, if the number of jumps is known (or can

be estimated) a bias correction for jumps can readily be obtained.

4.2 Stochastic volatility processes

We also consider three stochastic processes that are commonly used to incorporate stochas-

tic volatility (SV) into high-frequency simulations, for example as in Huang & Tauchen

(2005) and Barndorff-Nielsen et al. (2008). These processes are special cases of a general

jump-diffusion process introduced in Chernov, Gallant, Ghysels & Tauchen (2003). All the

simulated processes have expected annualized quadratic variation equal to 0.0625.

The first is a one-factor SV model, without jumps (SV1F):

dXt = σtdWt, (46)

σt = exp(β0 + β1τt), (47)

dτt = ατtdt+ dBt. (48)

The SV parameters are selected to give a standard deviation of log-volatility equal to 0.4

and a half-life for log-volatility equal to 63 trading days (3 months). With t measured in

trading days, we obtain β0 = −4.311, β1 = 0.05934, and α = −0.011. Like Huang & Tauchen

(2005), we set corr(dWt, dBt) = −0.3. Each day, the initial value of τt is drawn from its

unconditional distribution, which is N(0,−0.5/α).
The second model is SV1FJ, which is SV1F augmented by a Poisson jump process. We

select an intensity of one jump per day and suppose the jumps are Gaussian with mean zero

and with expected jump variation equal to 20% of the quadratic variation.

The third model is the two-factor SV model of Chernov et al. (2003), referred to as SV2F:

dXt = σtdWt, (49)

σt = s-exp(β0 + β1τ1t + β2τ2t), (50)

dτ1t = α1τ1tdt+ dB1t, (51)

dτ2t = α2τ2tdt+ (1 + φτ2t)dB2t, (52)

The spline-exponential function in (50) is the usual exponential function with an appropriate

polynomial function splined in at a very high value of its argument. The knot point for the

spline implies a 150% annualized volatility, which is very unlikely to occur. We select some
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parameters by firstly supposing the two log-volatility components in (51) and (52) have

approximately equal variance and respective half-lives equal to 126 and 0.5 days and others

by following Huang & Tauchen (2005) and Barndorff-Nielsen et al. (2008). Our choices for

the SV parameters are β0 = −4.442, β1 = 0.04, β2 = 0.635, α1 = −0.005501, α2 = −1.3863,

and φ = 0.25, and the correlations between the increments of the Wiener processes are

corr(dWt, dB1t) = corr(dWt, dB2t) = −0.3 and corr(dB1t, dB2t) = 0.

The persistent first factor is initialized each day by drawing from its unconditional dis-

tribution while the strongly mean-reverting second factor is simply started at zero. It is

well-known (e.g. Nolte (2008)) that the bid/ask spread tends to increase as volatility in-

creases. We report results when the bid/ask spread is the following deterministic function of

the annualized volatility σA:

ς = (1 + b8σAc)/100. (53)

The bid/ask spread is then one tick when the annualized volatility is less than 12.5%, two ticks

for annualized volatilities between 12.5% and 25%, and three ticks for annualized volatilities

between 25% and 37.5%. This formula is motivated by the empirical evidence in Table 1 and

ensures that the minimum bid/ask spread is equal to one tick, i.e. one cent.

To implement the non-parametric duration estimator NP , we calculate the average

bid/ask spread during each day and then set the threshold δ for a selected simulated day

equal to a multiple of the average value of ς for that day.

We simulate 100000 days and incorporate time-discretization, price-discretization and

bid/ask spreads as described in Section 4.1 and by (36) to (41), (43) and (45); we retain an

average time between trades equal to six seconds.

We now consider two loss functions when evaluating the accuracy of a set of estimates of

the integrated variance. These are RMSE, as before, and QLIKE from Patton (2011) given

by averaging across days the values of

L(e, ê) = e/ê− log(e/ê)− 1, (54)

where e is the true value of the integrated variance and ê is its estimate.

Figures 8 and 9 show the values of RMSE and QLIKE for the estimator NP , for the

processes SV1F and SV2F, over a range of thresholds from 1 to 10 times the average bid/ask

spread. We can see that RMSE and QLIKE are minimized when the threshold is around 3

times the spread, for both processes. Also, the loss function values are near their correspond-

ing minimum levels for the threshold range from 2 to 4 times the spread. This observation
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motivates the introduction of an average version of the NP estimator, called ANP , which

is simply the average of a range of NP estimators, given by

ANP = 1
#D

∑
δ∈D

NPDV (δ),

where D denotes the set of δ multipliers and #D the number of elements in D. We anticipate

that ANP is more accurate than NP . We compare three non-parametric duration estimators

(NP , ANP1 and ANP2) with five established RV-type estimators plus the standard 5-minute

realized variance. For NP the threshold multiplier is 3, while ANP1 is the average across

21 multipliers ranging from 2 to 4 with increment equal to 0.1; ANP2 is the average across

multipliers from 2 to 8 again with increment 0.1.

The five RV estimators are designed to be robust against microstructure noise, time

discreteness and/or price jumps, and are all calculated from the complete record of trade

prices with parameter values selected as recommended by the authors.. PAV1 and PAV2 are

values of RV calculated from pre-averaged prices, using the equations in Christensen et al.

(2014) which give very similar results to the formulae of Jacod et al. (2009). The size of the

pre-averaging window is θ
√
n when there are n trades during a day. Our PAV2 follows the

cited papers by adopting the recommendation θ = 1. As we find narrower windows provide

more accurate estimates6, we define PAV1 by choosing θ = 0.25.

The estimators RK and RKNP are realized kernel values of RV, based upon the meth-

ods of Barndorff-Nielsen et al. (2008), computed using tick-by-tick returns. The Parzen

kernel is used and two bandwidths are compared. For RK we use the optimal bandwidth

of Barndorff-Nielsen et al. (2008), which requires estimates of the noise variance and the

integrated quarticity. The noise variance is estimated using a sub-sampled tick-by-tick RV

estimator on a dense grid of on average 5 observations, which corresponds to 30 seconds

on average in calendar time, and the integrated quarticity is obtained correspondingly on

a sparse equidistant grid of 50 observations, which corresponds to 5 minutes on average in

calendar time. In contrast, RKNP equates each day’s bandwidth with the day’s number of

duration events as counted by NP . The final RV-type estimator is the two-scale RV of Zhang

et al. (2005), denoted TSRV , with the fast scale using a 5 observations grid corresponding

to 30 seconds on average in calender time and the sparse scale using a 50 observations grid

corresponding to 5 minutes, which are the recommended sampling frequencies.

We evaluate two more volatility estimators, selected because they are robust to large

price jumps. The first is the 5-minute realized bipower variation subsampled at 30-second

6Such simulation results are available from the authors upon request.
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grids, denoted SBV , from Barndorff-Nielsen & Shephard (2006), and the second is the noise

robust pre-averaged bipower variation, PABV , from Christensen et al. (2014), computed

using tick-by-tick returns. Like the pre-averaged RV estimators, we compute PABV1 with

θ = 0.25 and PABV2 with θ = 1.

Finally, we add the simple 5-minute variance, RV5, and its subsampled version, SRV5, as

they are popular candidates for a volatility forecasting study (see Liu et al. (2015)) which

will be our major empirical application.

Figure 8: RMSE for the estimator NP when volatility is stochastic

Notes: RMSE of the NP variance estimates over thresholds that are multiples of the day’s
average bid/ask spread. SV1F and SV2F respectively refer to the one and two-factor
stochastic volatility models defined by equations (46) to (52). The bid/ask spread is related
to annualized volatility by ς = (1 + b8σXc)/100. ∆ is 6 seconds. P0 = 50, tick size=0.01.

Figure 9: QLIKE for the estimator NP when volatility is stochastic

Notes: QLIKE is the average of the loss values defined by (54). SV1F and SV2F respectively
refer to the one and two-factor stochastic volatility models defined by equations (46) to
(52). The bid/ask spread is related to annualized volatility by ς = (1 + b8σXc)/100. ∆ is 6
seconds. P0 = 50, tick size=0.01.

Table 2 summarizes the results from simulating 100000 days, initially for a constant
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annualized volatility of 25% and then for the three stochastic volatility models, referred to

as SV1F, SV1FJ and SV2F. First we note that NP minimizes both RMSE and QLIKE

when volatility is constant. Next we focus on comparing estimators of integrated variance

using four numbers, namely RMSE and QLIKE evaluated for SV1F and SV2F. We see that

ANP1 always outperforms ANP2 and that ANP2 always outperforms NP . Likewise, PAV1

is superior to PAV2 and RK is superior to RKNP . TSRV performs better comparably

when there are jumps but is otherwise less successful. Then we note that ANP1 and PAV1

are each superior to RK, with ANP1 minimizing RMSE while PAV1 minimizes QLIKE. We

conclude that the best duration estimator compares well with the best RV-type estimator.

The results for SV1FJ show the impact of occasional large jumps, occurring once a day

on average and representing 20% of the quadratic variation. As expected, the duration

estimators remain almost unbiased for the integrated variance but PAV1, PAV2, RK and

RKNP are upward biased by about 0.0125 which represents the expected value of the jump

variation. Both PABV1 and PABV2 are robust to both large jumps and MMS noise, thus

they perform better than all other RV-type estimators. Similar to the no jump scenarios,

ANP1 is minimizing RMSE while PABV1 minimizes QLIKE.

5 Empirical analysis

We first discuss the estimation framework for the parametric duration estimator and then

the choice of the threshold value for the NP estimator from an empirical point of view.

5.1 Parametric duration based variance estimator

The parametric duration based variance estimator, PDV , is implemented by choosing the

Burr distribution specification described in Section 2.1. Parameter estimates are obtained

by maximizing the log-likelihood function in (19) on a monthly basis. We also consider

less flexible Weibull and Exponential distribution specifications for εd in (13), which can be

obtained as special (limiting) cases from the Burr distribution. Tse & Yang (2012) use an

Exponential specification for their parametric estimator. Parameter estimates are obtained

for a range of threshold values δ yielding different price durations.

We perform likelihood ratio (LR), Ljung-Box (LB), and density forecast (DF) tests to

assess the goodness-of-fit of the models. The LR test compares the overall model fit between

two nested models on the basis of their likelihood values. The LB test has the null hypothesis

of i.i.d. distributed εd. The DF test of Diebold, Gunther & Tay (1998) tests the null
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Table 2: Simulation Results

NP ANP1 ANP2 PAV1 PAV2 RK RKNP TSRV SBV PABV1 PABV2 RV5 SRV5

Constant Volatility
Bias .0000 -.0044 -.0033 -.0001 -.0001 -.0002 .0000 -.0075 .0007 -.0016 -.0005 .0008 .0008
StD .0040 .0031 .0046 .0045 .0060 .0060 .0145 .0081 .0089 .0046 .0091 .0102 .0081
RMSE .0040 .0054 .0057 .0045 .0060 .0060 .0145 .0111 .0089 .0049 .0091 .0103 .0082
QLIKE .0021 .0044 .0049 .0026 .0047 .0048 .0288 .0228 .0098 .0034 .0112 .0135 .0083

SV1F
Bias .0020 .0001 -.0001 -.0002 -.0000 -.0002 .0000 -.0076 .0007 -.0017 -.0005 .0009 .0008
StD .0087 .0059 .0079 .0061 .0083 .0083 .0171 .0132 .0120 .0065 .0124 .0140 .0110
RMSE .0089 .0059 .0079 .0061 .0083 .0083 .0171 .0152 .0120 .0067 .0124 .0140 .0110
QLIKE .0135 .0037 .0056 .0026 .0048 .0051 .0187 .0232 .0100 .0035 .0114 .0136 .0085

SV1FJ
Bias .0071 .0020 .0020 .0124 .0125 .0123 .0125 .0037 .0058 .0011 .0043 .0134 .0134
StD .0087 .0057 .0080 .0330 .0339 .0335 .0381 .0310 .0174 .0085 .0172 .0377 .0363
RMSE .0112 .0060 .0082 .0353 .0361 .0357 .0401 .0312 .0183 .0085 .0178 .0400 .0387
QLIKE .0230 .0055 .0069 .0325 .0342 .0342 .0449 .0337 .0158 .0044 .0153 .0417 .0377

SV2F
Bias .0004 .0004 .0002 -.0002 -.0000 -.0002 .0001 -.0071 .0005 -.0016 -.0005 .0009 .0008
StD .0091 .0061 .0081 .0078 .0107 .0105 .0210 .0168 .0182 .0094 .0190 .0199 .0162
RMSE .0091 .0061 .0081 .0078 .0107 .0105 .0210 .0182 .0183 .0095 .0190 .0200 .0163
QLIKE .0138 .0042 .0056 .0031 .0056 .0060 .0187 .0253 .0114 .0040 .0130 .0157 .0096

Notes: Bias and standard deviation (StD) are calculated from the estimation errors, which
are the estimate of the annualized variance minus the true annualized variance. RMSE is the
associated root mean squared error, and QLIKE is calculated as in (54). For the constant
volatility model the bid/ask spread is equal to 2 ticks. For the stochastic volatility models
the bid/ask spread is linearly related to annualized volatility through ς = (1 + b8σXc)/100.
∆ is 6 seconds on average. P0 = 50, tick size=0.01.
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hypothesis that the assumed distribution for εd is actually the true distribution and relies on

a probability integral transformation of εd, namely the c.d.f. F (εd), which under the null is

i.i.d. U(0, 1) distributed. Provided that the HACD specification in (14) accommodates long-

range dependence of the price durations data appropriately, and the assumed distribution

for εd reflects the true distribution of the scaled duration, neither the LB nor the DF test

should reject its null hypothesis.

All tests are performed, for each of the 132 months from January 2002 to December

2012, over a selected range of δ threshold values (between 2 to up to 20 ticks) for four

reference stocks: HD, MCD, AXP and IBM. In the interest of brevity, all tests results are

relegated to Web-Appendix A. The conclusion from the LR tests is unequivocal: conditional

Burr distributions fit the price durations data best. As an illustration, Table 3 presents

the parameter values for the Burr-HACD model for AXP in 2008, with δ equal to 12 ticks,

together with LB and DF test results. As expected, we observe that, although there is some

variation over the months, generally price durations are very persistent with an average β1

equal to 0.64 and an average α equal to 0.22. The parameters η and γ have values that

are significantly different from 0 and 1, respectively, which shows that the Burr specification

provides a better fit than the Weibull or Exponential specifications. The LB test’s p-values

at lag 50 for the generalized model residuals indicate that the null hypothesis can only be

rejected in 2 out of 12 cases at a 5% significance level and shows that generally the HACD

specification provides a satisfactory fit. The density forecasting test’s p-values reveal that

the null hypothesis can be rejected in 5 out of 12 cases at the 5% level and indicates that

there is scope to further improve, especially through the choice of a more flexible density

function for εd, upon the Burr-HACD specification. The selection of more flexible densities,

such as a stochastic model for durations as in Pelletier & Wei (2019), than the Burr density

will probably come at the cost of losing some computational tractability and we refrain

from considering them in this paper. Taken together, the fit provided by the Burr-HACD

specification is good, and confirmed in Section 6 which focuses on out-of-sample forecasting

comparisons.

5.2 The preferred threshold value

As discussed in Section 4.1.3, the selection of δ∗ needs to take into account the tradeoff

between improving efficiency and reducing bias: a larger δ reduces bias while a smaller

δ improves efficiency. In the simulation study we know the true values of the integrated

variance, and their RMSE statistics for appropriate simulation setups suggest that a threshold
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value δ∗ should preferably be chosen to lie within the range of 2.5 to 3.5 times the bid/ask

spread. In this section we provide a number of selective empirical results that support the

conclusions of the simulation study and provide further guidance on how to select a preferred

threshold δ∗. But it is important to note that the threshold selection rule promoted in this

study should be regarded as an empirically appropriate data-driven preference rather than

a theoretically optimized value. The results presented in this section focus on the reference

stock AXP.7

We start by considering NP variance estimates in October 2008, when volatility peaked

during the financial crisis. This month is governed by high uncertainty and the average

bid/ask spread level of 4.6 ticks in this month is amongst the highest in our sample period.

Figure 10 plots the NP variance estimates for the first 20 trading days of October 2008 for

stock AXP, over the range of threshold values from 2 ticks to 15 ticks. SBV and PAV1 are

added to the plot as benchmarks, with the former being robust to price jumps and the latter

robust to MMS noise. We observe that, even during this high bid/ask spread level regime,

duration based variance estimates first increase with the chosen threshold value and then

stabilize, which is a stabilizing pattern that is similar to the one shown in Figure 3 for the

simulation setting. We also observe that SBV estimates are very close to NP estimates,

given the threshold values chosen within the stabilizing region, while PAV1 generates higher

integrated variance estimates over this volatile time period, because it is not robust to large

price jumps.

Figure 10: Daily NP , SBV , and PAV1 estimates for AXP: October 2008

Notes: Daily NP estimates for the first 20 trading days of October 2008 for stock AXP,
over the range of threshold values from 2 to 15 ticks (ordered generally from bottom to top),
together with SBV and PAV1 estimates over the same period.

The results of the simulation study suggest that estimates are less biased once stabilization

7Results for the other stocks are available from the authors upon request.
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has been achieved and pinpointing the lower bound of this stabilizing region would provide a

good trade-off between bias and efficiency and a good choice for the preferred threshold value

δ∗. To obtain a better picture of this stabilizing behavior, and its relationship to the level of

the bid/ask spread in reality, we consider the full data sample for AXP. We divide the 132

months into 6 groups based on their average spread levels and obtain for each group daily

NP variance estimates (annualized) for δ between 2 and 15 ticks and show their averages

across days in Figure 11. The six groups are in ascending average spread level order. The

first two are the bottom third and the middle third of the spread distribution. Groups 3

to 6 represent the upper third, subdivided into 4 ascending groups (1/12 each of the data).

Table 4 shows the distribution of the 6 groups across the 132 months in the data sample.

It should be noted that many of the high bid/ask spread level months, besides those during

the financial crisis of 2007/8, are in the early years of the data sample when trading was less

liquid, and consequently many of the low bid/ask spread level months are concentrated at

the end of the data sample.

Figure 11: Duration based variance signature plot, six levels of spread, AXP

Notes: The average spreads of groups 1 to 6 for AXP are 1.4, 1.6, 1.8, 2.1, 2.9, and 4.1 ticks.
One tick equals one cent. Diamonds indicate three times the respective average spread.

Figure 11 shows the stabilizing behavior of the duration based variance estimates very

clearly and, upon visual inspection, we observe that the threshold value at the point where

the estimates start to stabilize, δ∗, is roughly three times the average bid/ask spread which is

in line with the guidance obtained from the simulation study. We will use the “three-times-

bid/ask-spread” rule henceforth as guidance to select δ∗ for the computation of the PDV

and NP estimators in the subsequent forecasting study. Let us add a note at this point

that this threshold selection rule is more important to PDV than to ANP , since the latter

uses a wide range of threshold values that do not necessarily center at 3-times-spread. It

is possible to further improve PDV by adding an averaging procedure, but since the “local
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Table 4: Bid/ask spread level groups, AXP

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Jan. 5 6 2 2 2 1 5 3 1 1 1
Feb. 6 5 2 2 2 1 4 2 1 1 1
Mar. 5 2 2 1 1 2 4 1 1 1 1
Apr. 5 3 2 2 2 1 3 2 1 1 2
May 5 3 2 2 2 2 4 3 2 1 2
Jun. 6 4 1 1 2 2 4 1 1 1 2
Jul. 6 4 2 1 2 4 5 2 2 2 2
Aug. 6 3 1 1 2 5 5 2 1 3 2
Sep. 6 3 1 1 2 4 6 1 1 3 1
Oct. 6 3 2 2 1 4 6 1 1 3 2
Nov. 6 2 2 2 1 5 5 2 1 2 1
Dec. 6 2 2 1 1 4 4 1 1 1 1

variance” within each price event has been adjusted by the intensity function for its longer

or shorter price duration (compared with the expected duration), the improvement on PDV

from averaging may be limited. Andersen et al. (2008) recommend a threshold range of 3

to 6 times the log-spread for their non-parametric duration based variance estimator. Since

their thresholds are set in log-scales, the resulting estimates can be different.

Table 22 in Web-Appendix A presents goodness-of-fit results (LB and DF tests) of the

Burr-HACD model for all 20 stocks, with the price durations obtained by setting the thresh-

old value to be δ∗. It confirms that, when the threshold value is set to be three times the

average bid/ask-spread, the Burr-HACD fits the price durations data well.

It should be noted that in the absence of high-frequency bid/ask spread data a price

duration volatility estimator can still be obtained by, for example, selecting a threshold so

that on average price durations have a length, say, 5 minutes, as is done in Tse & Yang

(2012). An ad hoc choice of δ, equal to 10 ticks say, is also always possible and can be

adjusted with some general notion about the liquidity of the assets under consideration.

It should also be noted that this threshold selection rule is based on the average spread of

the day, thus ignoring the time-variation of spreads within the day. A possible improvement

on NP can be made by taking into account local movements in spreads which translate into

time-varying thresholds, based on the same“3-times-spread”rule. However, it brings an issue

of choosing the size of the local window that defines the moving-average local spreads. We

would like to leave this for future research.
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6 Volatility forecasting

Our objective in this section is to forecast the integrated variance, so we choose a jump-

robust variance estimator, namely the subsampled 5-minute realized bipower, SBV , as the

target.8 We include a total of 15 volatility estimators in the forecasting comparisons, 13 of

which come from Section 4.2 (the other 2 are PDV and ATM). All estimators are obtained

on a daily basis and their tuning parameters are obtained using only historical data to rule

out any forward looking bias. In Table 5 we present the means and standard deviations of the

15 volatility estimators including the forecast object SBV for the 4 representative stocks,

and relegate statistics for all 20 stocks to Web-Appendix B. Note that we have included

the forecast target itself into the race as a benchmark. All estimators are annualized and

converted from variance estimates into volatility (i.e. standard deviation) estimates. We

consider four duration variance estimators: PDV , NP , ANP1 and ANP2. PDV is obtained

using a threshold equal to 3 times the average spread of the last month and maximum like-

lihood parameters estimates are obtained on a monthly basis. NP , ANP1 and ANP2 follow

the specifications detailed in Section 4.2 with thresholds based on the average spread of the

corresponding day. PAV1, PAV2, PABV1, PABV2, RK, RKNP , TSRV , SBV , RV5, and

SRV5 are also obtained following the setups detailed in Section 4.2. In addition, we include

ATM which is an at-the-money option implied volatility estimator obtained from daily Op-

tionMetrics data. From Table 5 we can see that the duration volatility estimates are on

average slightly smaller than RV-type estimates and also exhibit lower standard deviations.

First- and fifth-order autocorrelations of the above estimators across 20 stocks are presented

in Table 24 in Web-Appendix B as well, which shows the four price duration estimators have

higher autocorrelations than the RV-type estimators.

6.1 Individual forecasts

We use a HAR-type forecasting specification,

SBVn:n+h−1 = c+ b1Zn−1:n−1 + b2Zn−5:n−1 + b3Zn−22:n−1 + εn:n+h−1 (55)

to obtain h-step ahead forecasts. Here Zn represents the day-n volatility estimate from one

of the 15 estimators discussed above. Both Zn−h:n−1 and SBVn:n+h−1 aggregate h terms

and are in their logarithmic forms: Zn−h:n−1 = 0.5 log(∑n−1
s=n−h Z

2
s ), similarly for SBVn:n+h−1,

8Results with standard 5-minute realized volatility (RV) and its subsampled version as targets, recom-
mended by Andersen, Bollerslev & Meddahi (2011), are similar and available from the authors upon request.
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Table 5: Volatility estimator means and standard deviations

HD MCD AXP IBM avg.

Mean
1 PDV .238 .189 .248 .174 .210
2 ANP1 .216 .173 .230 .167 .193
3 ANP2 .225 .180 .241 .172 .200
4 NP .217 .174 .231 .167 .193
5 PAV1 .246 .197 .270 .191 .222
6 PAV2 .244 .196 .263 .185 .218
7 PABV1 .238 .189 .261 .185 .214
8 PABV2 .239 .190 .257 .182 .213
9 RK .261 .237 .321 .232 .239
10 RKNP .245 .198 .265 .185 .219
11 TSRV .230 .219 .278 .209 .212
12 SBV .230 .184 .248 .175 .205
13 RV5 .238 .192 .257 .180 .213
14 SRV5 .241 .194 .259 .182 .216
15 ATM .244 .194 .272 .202 .223

Standard Deviation
1 PDV .123 .090 .182 .092 .113
2 ANP1 .121 .092 .178 .096 .112
3 ANP2 .127 .096 .187 .100 .117
4 NP .122 .093 .180 .097 .113
5 PAV1 .139 .107 .206 .112 .131
6 PAV2 .140 .111 .206 .110 .132
7 PABV1 .136 .101 .202 .108 .128
8 PABV2 .139 .107 .204 .109 .130
9 RK .139 .176 .189 .125 .144
10 RKNP .138 .110 .206 .108 .131
11 TSRV .129 .166 .176 .118 .134
12 SBV .132 .104 .193 .105 .125
13 RV5 .135 .108 .201 .108 .129
14 SRV5 .137 .108 .201 .107 .130
15 ATM .104 .073 .175 .088 .100

Notes: Mean and standard deviation statistics for 15 daily volatility estimators for 4 rep-
resentative stocks using data from January 2002 to December 2012. The “avg.” values are
averages of all 20 stocks. The means and standard deviations are for annualized volatilities.
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h=1,5, or 22, with SBVn the day-n sub-sampled bipower variation estimate.

For one day (h = 1) ahead forecasts the in-sample estimation period for the HAR model

ranges from 1 February 2002 to 29 January 2010 (2013 trading days) and the first out-of-

sample forecast is obtained for 1 February 2010. For one week (h = 5) and one month

(h = 22) horizons forecasts are constructed similarly and a total of 735, 731 and 714 out-of-

sample predictions are obtained for h = 1, 5 and 22, respectively, with the final predictions

made in December 2012. All forecasts are constructed using a rolling window of explanatory

variables with a fixed length of 2013 trading days. Setting εn:n+h−1 = 0 defines the forecast

of SBVn:n+h−1 made at time n−1, denoted ŜBVn:n+h−1. The forecast error obtained at time

n+ h− 1 is then SBVn:n+h−1 − ŜBVn:n+h−1.

We evaluate 15 individual forecasts, defined by the selected 15 estimators, for the 20

stocks over 3 horizons. Table 6 lists the average values across stocks of RMSE (root-mean-

squared-errors) and QLIKE following Patton (2011) as in (54). The RMSE and QLIKE

values by stock are provided in Web-Appendix B as Tables 25 and 27. The average values of

RMSE and QLIKE are similar across the 15 sets of forecasts. Nevertheless, the parametric

duration estimator, PDV , has the lowest average values in most cases.
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Table 6: Average RMSE and QLIKE values for individual forecasts

RMSE QLIKE RMSE QLIKE RMSE QLIKE

one day ahead one week ahead one month ahead

1 PDV .0028 .0300 .0111 .0230 .0501 .0285

2 ANP1 .0029 .0308 .0117 .0244 .0515 .0295

3 ANP2 .0029 .0303 .0116 .0241 .0516 .0293

4 NP .0029 .0314 .0118 .0249 .0519 .0298

5 PAV1 .0029 .0307 .0122 .0249 .0537 .0301

6 PAV2 .0029 .0306 .0122 .0244 .0534 .0294

7 PABV1 .0029 .0309 .0122 .0250 .0539 .0300

8 PABV2 .0029 .0306 .0122 .0244 .0536 .0294

9 RK .0038 .0466 .0157 .0383 .0668 .0402

10 RKNP .0029 .0310 .0121 .0245 .0527 .0293

11 TSRV .0038 .0474 .0159 .0387 .0669 .0399

12 SBV .0029 .0304 .0121 .0242 .0531 .0292

13 RV5 .0029 .0309 .0121 .0246 .0530 .0295

14 SRV5 .0029 .0307 .0123 .0244 .0537 .0294

15 ATM .0031 .0334 .0123 .0252 .0552 .0296

Notes: Average RMSE and QLIKE values across 20 stocks using trade data for stated forecasting

horizons for 15 individual volatility estimators. Forecasts are obtained from (55).

We also evaluate the accuracy of the forecasts using the Model Confidence Set (MCS)

method of Hansen, Lunde & Nason (2011). Table 7 shows the counts, across stocks, of how

often each forecasting method is included in the MCS. These counts are provided for all six

combinations of loss functions and forecast horizons for a 20% significance level.9 The MCS

p-values are shown in Web-Appendix B in Tables 26 and 28, respectively for RMSE and

QLIKE. In these tables, under each stock on the left we report the MCS p-value and on the

right we list the estimator number, ranked by the p-value; the estimator numbers are as in

Table 23. We see that very often estimator 1 (PDV ) has the highest confidence, which is

consistent with it having the least average values of RMSE and QLIKE. The MCS results

summarized by Table 7 show that PDV provides the best forecasts, for any choices of loss

9Hansen et al. (2011) use the 10% and 25% levels for their examples.
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function, forecast horizon and significance level. Adding the counts across the combinations

of loss function and horizon gives a total of 104 at the 20% significance level for PDV . At

the same level, the second-best methods are SBV and ATM striking a tie at 37, followed by

SRV5 with a total of 30, RV5 with a total of 28, and ANP2 with a total of 26. Both ANP1

and ANP2 clearly outscore NP , confirming that averaging across thresholds improves the

non-parametric duration estimator. Though SBV performs best in the RV group, we need

to keep in mind that it being the forecast target might be an advantage. Apart from SBV ,

the two simple 5-minute RV estimators outperform all other RV estimators in this group,

confirming the conclusion of Liu et al. (2015) that 5-minute RV is difficult to beat when it

comes to forecasting future stock volatilities.

Table 7: MCS summary results for 15 individual forecasts using trade data

RMSE QLIKE RMSE QLIKE RMSE QLIKE Total

one day ahead one week ahead one month ahead

1 PDV 15 20 19 16 17 17 104

2 ANP1 4 3 4 1 2 4 18

3 ANP2 7 3 4 7 2 3 26

4 NP 0 1 2 0 0 2 5

5 PAV1 5 0 2 5 0 3 15

6 PAV2 4 1 3 6 6 2 22

7 PABV1 3 1 2 4 1 4 15

8 PABV2 3 1 4 6 4 5 23

9 RK 0 3 5 0 2 3 13

10 RKNP 2 3 6 2 5 6 24

11 TSRV 0 1 7 0 1 6 15

12 SBV 8 4 4 8 5 8 37

13 RV5 3 4 5 5 5 6 28

14 SRV5 5 2 5 6 5 7 30

15 ATM 6 7 6 4 7 7 37

Notes: Across 20 stocks, each number represents the number of times a given estimator is

included in the model confidence set with 20% significance level
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6.2 Combination forecasts

The same HAR-type forecasting specification, namely (55), is evaluated again with the quan-

tity Zn now denoting the average of all volatility estimators included in some set of estimators.

We want to find out firstly whether combining information from multiple volatility estimates

improves upon the individual forecasts. Therefore we include PDV , SBV and ATM as

benchmarks in this combination setting. Secondly, we investigate which group of estimators

provides the best forecasts and whether combining different groups improves the accuracy of

our forecasts.

Fourteen combinations are studied. Three of these are the individual forecasts: PDV ,

SBV and ATM . Combining any two benchmarks gives 3 distinct combinations: PDV +
SBV , PDV + ATM , and SBV + ATM . Duration4 is the average of all four duration

estimators (PDV , ANP1, ANP2 and NP ), and RV 10 is the average of all ten RV-type

estimators (PAV1, PAV2, PABV1, PABV2, RK, RKNP , TSRV , SBV , RV5 and SRV5).

Mixing price duration, RV, and option-implied volatility estimators gives Duration4+SBV ,

Duration4 +ATM , RV 10 +PDV , RV 10 +ATM , and Duration4 +RV 10. Finally, taking

all 15 estimators in, we have All, i.e. it is Duration4 +RV 10 + ATM .
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Table 8: Average RMSE and QLIKE values for combination forecasts

RMSE QLIKE RMSE QLIKE RMSE QLIKE

one day ahead one week ahead one month ahead

1 PDV .0028 .0300 .0111 .0230 .0501 .0300

2 SBV .0029 .0304 .0121 .0242 .0531 .0308

3 ATM .0031 .0334 .0123 .0252 .0552 .0311

4 PDV + SBV .0028 .0294 .0114 .0231 .0508 .0300

5 PDV + ATM .0026 .0275 .0106 .0206 .0501 .0286

6 SBV + ATM .0027 .0281 .0112 .0219 .0515 .0294

7 Duration4 .0028 .0303 .0115 .0239 .0511 .0308

8 SBV +Duration4 .0028 .0300 .0115 .0237 .0511 .0306

9 ATM +Duration4 .0027 .0288 .0111 .0225 .0505 .0300

10 RV 10 .0028 .0302 .0120 .0241 .0535 .0311

11 PDV +RV 10 .0028 .0299 .0118 .0238 .0529 .0308

12 ATM +RV 10 .0028 .0295 .0118 .0235 .0529 .0307

13 Duration4 +RV 10 .0028 .0297 .0117 .0236 .0522 .0306

14 All .0028 .0292 .0116 .0232 .0519 .0304

Notes: Average RMSE and QLIKE values across 20 stocks using trade data for stated forecasting

horizons for 14 combination volatility estimators. Forecasts are obtained from (55).

Table 8 shows the average values across stocks of RMSE and QLIKE for the 14 combi-

nations. The RMSE and QLIKE values by stock are included in Web-Appendix B as Tables

29 and 31, and their corresponding MCS p-values are in Tables 30 and 32. We now find

that PDV + ATM has the least average values in Table 8 for both RMSE and QLIKE loss

functions at all three horizons.

Table 9 summarizes the MCS results when the candidate set of forecasts is defined by

the fourteen combinations. When we rank the combinations by counting membership of the

MCS across loss functions and horizons at the 20% significance level, as before, the best

combination is PDV +ATM with a count of 106, followed by PDV at 46, SBV +ATM at

35 and ATM+Duration4 at 28. It is noteworthy that PDV by itself outperforms all but one

of the combination forecasts. In contrast, simply combining either all duration estimators or

all RV estimators scores poorly, with respective counts equal to 5 and 10. For our study, the

most successful combinations of more than one forecast are averages across different data

sources, namely duration measures from high-frequency stock prices and implied volatilities

from daily option prices.
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Table 9: MCS summary results for 14 combination forecasts using trade data

RMSE QLIKE RMSE QLIKE RMSE QLIKE Total

one day ahead one week ahead one month ahead

1 PDV 2 9 17 1 5 12 46

2 SBV 0 0 3 0 0 4 7

3 ATM 0 1 3 0 1 9 14

4 PDV + SBV 0 2 8 1 3 11 25

5 PDV + ATM 19 18 15 18 19 17 106

6 SBV + ATM 6 2 6 7 4 10 35

7 Duration4 0 0 2 0 0 3 5

8 SBV +Duration4 0 0 3 0 0 4 7

9 ATM +Duration4 6 3 6 4 2 7 28

10 RV 10 0 0 3 0 0 7 10

11 PDV +RV 10 0 0 5 0 0 7 12

12 ATM +RV 10 1 1 5 1 2 8 18

13 Duration4 +RV 10 0 0 3 0 0 6 9

14 All 3 2 5 3 3 7 23

Notes: The combinations are defined in Section 6.2. Across 20 stocks, each number represents the number

of times a given estimator is included in the confidence set with 20% significance level.

7 Conclusions

Duration based variance estimators are calculated by using the times of price change events;

an event occurs when the magnitude of the price change since the previous event first equals

or exceeds some threshold value. These estimators have been neglected in previous research,

despite them being very simple to use and Andersen et al. (2008) documenting their nice

performance compared to realized variance estimators. Market microstructure noise prevents

comprehensive theoretical comparisons for realistic data generating processes and, further-

more, requires careful consideration to be given to the selection of the threshold value. In

this paper, we establish limiting theories for our non-parametric duration based estimator,

with and without the presence of microstructure noise, supporting the validity of its use.

Specifically, we elaborate on how different types of noise specifically may affect the results.

We use Monte Carlo methods for a selection of volatility processes and also tick price data

for U.S. stocks to recommend that an appropriate choice of the threshold is three times a
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measure of the average bid/ask spread. We introduce average non-parametric duration esti-

mators, which average across thresholds from two to four or more bid/ask spreads, to further

reduce bias and improve efficiency. We evaluate both parametric and non-parametric dura-

tion based estimators and find the parametric specification forecasts more accurately than

RV-type estimators calculated from tick prices, for our sample period; the non-parametric

duration estimators have the same accuracy as the best RV-type estimators. Applying the

model confidence set methodology of Hansen et al. (2011) shows that the parametric du-

ration estimator significantly outperforms all RV-type estimators and at-the-money implied

volatility, for one-day, one-week and one-month forecast horizons, for both the RMSE and

the QLIKE loss functions.

Calculation of the non-parametric duration estimator from a complete record of trans-

action prices is very easy. Bid and ask prices can be used to select our preferred threshold

value, alternatively an appropriate multiple of the tick size can be chosen. The paramet-

ric estimator is more accurate but does require the estimation of a parametric model for

price events, which requires specifying intensity functions for durations whose conditional

expectations are functions of previous durations. We recommend considering duration based

estimators of integrated variance whenever transaction prices are available because of their

potential to provide more accurate estimates and forecasts.

Future research might also evaluate additional duration estimators, following Andersen

et al. (2008). Semiparametric RV-type estimators, as motivated for example by Becker,

Clements & Hurn (2011) and Žikeš & Baruńık (2016), may have the potential to achieve

some of the efficiency gained by the parametric duration estimator so they too may deserve

further attention. Finally, it is possible to extend the duration methodology to estimate the

integrated covariance between the returns from two assets and we are investigating multi-

variate methods in ongoing research.
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Web-Appendix A: Comparison of density functions

For the choice of a suitable density function for the scaled price durations we first consider

LR tests for the four reference stocks: HD, MCD, AXP and IBM. The results in Tables

10, 13, 16 and 19 show that the Burr density is preferred over the Weibull and Exponential

densities most of the time over a wide range of price change threshold values δ.

Corresponding LB test results for LB statistics with lags 30 and 50 are presented in Tables

11, 14, 17 and 20. For the majority of the months the null hypothesis of i.i.d. distributed

generalized residuals cannot be rejected at the 1% and 5% significance levels, which indicates

that the price duration dynamics are well captured by the HACD specification.

The associated density forecast (DF) test results in Tables 12, 15, 18 and 21 show that

the Burr density clearly outperforms the other two distributional assumptions, by giving

the highest percentages of months in which the null is not rejected at either the 1% or 5%

significance level. From the three densities considered the Burr density provides the best fit

for the scaled price durations.

Overall, the test results for the four reference stocks indicate that the HACD-Burr com-

bination fits the price duration data best.

Finally, we present in Table 22 the LB and DF tests results for all 19 stocks, when the

price change threshold δ is selected using the “3-times-spread” rule. We observe that the

HACD-Burr model fits the price durations data well.

Table 10: LR test results, HD

δ(ticks) 2 3 4 5 6 7 8 9 10

Wei. vs. Burr 505.77 260.88 155.93 100.55 67.86 45.56 35.09 24.14 21.30
Exp. vs. Burr 574.24 307.80 189.89 127.16 87.73 63.65 51.02 38.30 34.75
Exp. vs. Wei. 68.47 46.92 33.96 26.32 19.72 18.34 16.15 13.91 13.85
Wei. vs. Burr 1.00 1.00 1.00 1.00 1.00 0.95 0.93 0.74 0.68
Exp. vs. Burr 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.89 0.84
Exp. vs. Wei. 0.78 0.75 0.69 0.69 0.67 0.69 0.63 0.61 0.61

Notes: The first three rows are the LR test statistics (averaged over 132 months), and the
last three rows are LR test results presented as proportions of the months in which the null
is rejected at the 1% significance level. The assumed density under the null is stated first in
the 1st column.
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Table 11: LB test results for 30 and 50 lags, HD

δ(ticks) 2 3 4 5 6 7 8 9 10

30 lags 1% significance level
Exp. 0.98 0.95 0.97 0.98 0.97 0.98 0.94 0.92 0.89
Weibull 0.97 0.94 0.95 0.98 0.95 0.98 0.93 0.92 0.92
Burr 0.87 0.86 0.90 0.92 0.95 0.95 0.94 0.86 0.89

30 lags 5% significance level
Exp. 0.86 0.89 0.91 0.90 0.93 0.93 0.89 0.87 0.85
Weibull 0.82 0.85 0.88 0.86 0.89 0.92 0.87 0.87 0.86
Burr 0.66 0.70 0.78 0.76 0.80 0.83 0.81 0.77 0.80

50 lags 1% significance level
Exp. 0.94 0.96 0.96 0.96 0.98 0.99 0.96 0.92 0.89
Weibull 0.93 0.95 0.96 0.96 0.96 0.98 0.95 0.93 0.92
Burr 0.87 0.91 0.93 0.90 0.96 0.99 0.96 0.87 0.90

50 lags 5% significance level
Exp. 0.82 0.86 0.91 0.89 0.92 0.95 0.90 0.86 0.86
Weibull 0.79 0.83 0.90 0.86 0.90 0.95 0.88 0.86 0.88
Burr 0.67 0.73 0.81 0.80 0.88 0.89 0.83 0.80 0.86

Notes: The upper part of the table are LB test results for 30 lags, and the lower part are
the results for 50 lags. Significance levels of 1% and 5% are considered. Each figure is the
proportion of months in which the null is not rejected.

Table 12: DF test results, HD

δ(ticks) 2 3 4 5 6 7 8 9 10

1% significance level
Exp. 0.00 0.00 0.01 0.03 0.11 0.34 0.31 0.52 0.53
Weibull 0.00 0.02 0.02 0.08 0.21 0.36 0.49 0.60 0.67
Burr 0.21 0.57 0.69 0.80 0.86 0.95 0.92 0.88 0.89

5% significance level
Exp. 0.00 0.00 0.00 0.01 0.03 0.20 0.23 0.32 0.44
Weibull 0.00 0.00 0.01 0.04 0.11 0.25 0.30 0.45 0.53
Burr 0.14 0.43 0.56 0.67 0.76 0.85 0.80 0.81 0.83

Notes: DF test results for significance levels of 1% and 5% are presented. Each figure is the
proportion of months in which the null that the assumed density is the true density is not
rejected.
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Table 13: LR test results, MCD

δ(ticks) 2 3 4 5 6 7 8 9 10

Wei. vs. Burr 460.17 268.57 181.59 129.51 91.43 68.76 52.41 40.05 32.77
Exp. vs. Burr 577.22 328.81 219.52 156.81 113.24 86.20 62.74 53.14 46.29
Exp. vs. Wei. 117.05 60.24 37.93 27.09 21.33 17.38 10.87 12.03 12.24
Wei. vs. Burr 1.00 1.00 0.99 0.98 0.95 0.88 0.84 0.78 0.73
Exp. vs. Burr 1.00 1.00 0.99 0.99 0.97 0.93 0.84 0.88 0.84
Exp. vs. Wei. 0.87 0.64 0.57 0.55 0.50 0.52 0.45 0.46 0.45

Notes: The first three rows are the LR test statistics (averaged over 132 months), and the
last three rows are LR test results presented as proportions of the months in which the null
is rejected at the 1% significance level. The assumed density under the null is stated first in
the 1st column.

Table 14: LB test results for 30 and 50 lags, MCD

δ(ticks) 2 3 4 5 6 7 8 9 10

30 lags 1% significance level
Exp. 0.93 0.96 0.98 0.95 0.98 0.99 0.93 0.93 0.89
Weibull 0.92 0.96 0.96 0.95 0.98 0.98 0.93 0.94 0.92
Burr 0.90 0.87 0.89 0.86 0.94 0.96 0.91 0.90 0.86

30 lags 5% significance level
Exp. 0.83 0.86 0.88 0.86 0.87 0.96 0.88 0.90 0.83
Weibull 0.82 0.83 0.86 0.83 0.86 0.95 0.84 0.89 0.85
Burr 0.73 0.67 0.74 0.76 0.82 0.89 0.77 0.80 0.77

50 lags 1% significance level
Exp. 0.90 0.92 0.97 0.95 0.98 0.99 0.90 0.92 0.88
Weibull 0.90 0.92 0.97 0.95 0.98 0.98 0.89 0.93 0.90
Burr 0.89 0.89 0.92 0.92 0.96 0.98 0.89 0.89 0.86

50 lags 5% significance level
Exp. 0.85 0.87 0.88 0.89 0.96 0.98 0.86 0.86 0.86
Weibull 0.84 0.86 0.87 0.88 0.92 0.97 0.85 0.86 0.88
Burr 0.76 0.73 0.77 0.80 0.86 0.91 0.79 0.81 0.80

Notes: The upper part of the table are LB test results for 30 lags, and the lower part are
the results for 50 lags. Significance levels of 1% and 5% are considered. Each figure is the
proportion of months in which the null is not rejected.
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Table 15: DF test results, MCD

δ(ticks) 2 3 4 5 6 7 8 9 10

1% significance level
Exp. 0.00 0.04 0.11 0.15 0.27 0.39 0.51 0.51 0.48
Weibull 0.01 0.07 0.18 0.21 0.34 0.43 0.57 0.63 0.61
Burr 0.24 0.55 0.75 0.80 0.83 0.92 0.88 0.85 0.84

5% significance level
Exp. 0.00 0.00 0.07 0.08 0.13 0.27 0.43 0.38 0.36
Weibull 0.01 0.03 0.10 0.13 0.23 0.32 0.40 0.47 0.48
Burr 0.14 0.45 0.61 0.70 0.72 0.83 0.83 0.80 0.76

Notes: DF test results for significance levels of 1% and 5% are presented. Each figure is the
proportion of months in which the null that the assumed density is the true density is not
rejected.

Table 16: LR test results, AXP

δ(ticks) 2 3 4 5 6 7 8 9 10 11 12

Wei. vs. Burr 678.13 382.69 253.40 172.94 128.72 98.31 74.79 59.54 44.10 35.64 28.78
Exp. vs. Burr 759.60 435.54 292.96 206.03 155.16 121.43 94.94 75.91 59.25 52.71 42.91
Exp. vs. Wei. 81.47 52.85 39.56 29.77 26.70 22.26 19.39 18.16 15.46 15.49 14.66
Wei. vs. Burr 1.00 1.00 1.00 1.00 0.99 0.99 0.96 0.95 0.89 0.77 0.65
Exp. vs. Burr 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.95 0.95 0.89 0.84
Exp. vs. Wei. 0.64 0.71 0.72 0.72 0.66 0.63 0.63 0.64 0.65 0.60 0.63

Notes: The first three rows are the LR test statistics (averaged over 132 months), and the
last three rows are LR test results presented as proportions of the months in which the null
is rejected at the 1% significance level. The assumed density under the null is stated first in
the 1st column.
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Table 17: LB test results for 30 and 50 lags, AXP

δ(ticks) 2 3 4 5 6 7 8 9 10 11 12

30 lags 1% significance level
Exp. 0.93 0.93 0.95 0.98 0.98 0.97 0.96 0.97 0.95 0.87 0.92
Weibull 0.91 0.93 0.95 0.97 0.95 0.96 0.96 0.96 0.95 0.88 0.92
Burr 0.86 0.86 0.82 0.92 0.90 0.92 0.89 0.89 0.92 0.89 0.90

30 lags 5% significance level
Exp. 0.79 0.89 0.86 0.90 0.92 0.91 0.83 0.91 0.92 0.83 0.90
Weibull 0.73 0.88 0.85 0.88 0.89 0.90 0.83 0.92 0.91 0.82 0.90
Burr 0.60 0.69 0.67 0.75 0.73 0.82 0.77 0.81 0.83 0.77 0.82

50 lags 1% significance level
Exp. 0.89 0.95 0.98 0.97 0.98 0.96 0.94 0.98 0.95 0.87 0.91
Weibull 0.89 0.95 0.97 0.95 0.96 0.97 0.95 0.98 0.95 0.89 0.92
Burr 0.85 0.92 0.88 0.89 0.92 0.94 0.93 0.96 0.92 0.90 0.90

50 lags 5% significance level
Exp. 0.74 0.89 0.86 0.90 0.92 0.95 0.89 0.96 0.92 0.83 0.89
Weibull 0.73 0.88 0.83 0.88 0.89 0.95 0.89 0.94 0.91 0.85 0.89
Burr 0.65 0.75 0.77 0.79 0.80 0.88 0.85 0.83 0.86 0.80 0.85

Notes: The upper part of the table are LB test results for 30 lags, and the lower part are
the results for 50 lags. Significance levels of 1% and 5% are considered. Each figure is the
proportion of months in which the null is not rejected.

Table 18: DF test results, AXP

δ(ticks) 2 3 4 5 6 7 8 9 10 11 12

1% significance level
Exp. 0.00 0.00 0.00 0.02 0.08 0.13 0.27 0.35 0.45 0.46 0.52
Weibull 0.00 0.00 0.00 0.04 0.12 0.16 0.34 0.45 0.54 0.55 0.64
Burr 0.14 0.45 0.57 0.70 0.74 0.82 0.83 0.86 0.86 0.85 0.86

5% significance level
Exp. 0.00 0.00 0.00 0.01 0.02 0.06 0.16 0.20 0.30 0.30 0.40
Weibull 0.00 0.00 0.00 0.02 0.05 0.08 0.22 0.27 0.36 0.48 0.51
Burr 0.11 0.35 0.42 0.51 0.66 0.64 0.74 0.76 0.78 0.74 0.80

Notes: DF test results for significance levels of 1% and 5% are presented. Each figure is the
proportion of months in which the null that the assumed density is the true density is not
rejected.
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Table 22: Diagnostic test results for 22 DJIA stocks

LB30(1%) LB30(5%) LB50(1%) LB50(5%) DF(1%) DF(5%)

HD 0.93 0.84 0.95 0.83 0.80 0.68
MCD 0.91 0.75 0.94 0.80 0.82 0.73
AXP 0.88 0.69 0.91 0.77 0.73 0.55
IBM 0.94 0.80 0.95 0.83 0.73 0.57
AA 0.90 0.75 0.92 0.80 0.80 0.70
BA 0.87 0.73 0.92 0.82 0.87 0.79
CAT 0.95 0.84 0.95 0.86 0.67 0.51
DD 0.91 0.82 0.96 0.86 0.82 0.67
DIS 0.92 0.78 0.98 0.84 0.92 0.78
GE 0.96 0.80 0.93 0.85 0.82 0.62
JNJ 0.91 0.72 0.91 0.77 0.80 0.68
JPM 0.89 0.70 0.89 0.77 0.58 0.42
KO 0.90 0.73 0.94 0.81 0.83 0.73
MMM 0.96 0.83 0.97 0.89 0.79 0.69
MRK 0.90 0.77 0.92 0.86 0.77 0.61
PG 0.92 0.73 0.94 0.80 0.77 0.63
T 0.92 0.81 0.93 0.84 0.81 0.70
UTX 0.92 0.81 0.96 0.88 0.86 0.69
WMT 0.95 0.78 0.92 0.80 0.79 0.61
XOM 0.91 0.77 0.94 0.83 0.44 0.28
INTC 0.81 0.64 0.85 0.70 0.73 0.67
MSFT 0.85 0.67 0.90 0.77 0.73 0.58
Avg. 0.91 0.76 0.93 0.81 0.77 0.63

Notes: LB and DF test results from the MLE of the HACD-Burr model in equations (13),
(14) and (15). The price durations are obtained with δ∗ given by the “3-times-spread” rule.
Each figure in the table is the proportion of months in which the null is not rejected at the
stated significance level.
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Web-Appendix B: Forecasting results

61

Electronic copy available at: https://ssrn.com/abstract=2713322



T
ab

le
23

:
V

ol
at

il
it

y
es

ti
m

at
or

m
ea

n
s

an
d

st
an

d
ar

d
d
ev

ia
ti

on
s

A
A

A
X

P
B

A
C

A
T

D
D

D
IS

G
E

H
D

IB
M

J
N

J
J
P

M
K

O
M

C
D

M
M

M
M

R
K

P
G

T
U

T
X

W
M

T
X

O
M

av
g.

M
ea

n
1

P
D
V

.3
13

.2
48

.2
19

.2
31

.2
18

.2
40

.2
41

.2
38

.1
74

.1
49

.2
77

.1
61

.1
89

.1
68

.2
04

.1
50

.2
21

.1
90

.1
74

.1
95

.2
10

2
A
N
P

1
.2

81
.2

30
.2

06
.2

18
.2

01
.2

16
.2

14
.2

16
.1

67
.1

36
.2

54
.1

46
.1

73
.1

59
.1

86
.1

38
.1

98
.1

78
.1

59
.1

79
.1

93
3

A
N
P

2
.2

92
.2

41
.2

15
.2

31
.2

09
.2

20
.2

19
.2

25
.1

72
.1

41
.2

65
.1

51
.1

80
.1

67
.1

95
.1

43
.2

05
.1

87
.1

66
.1

85
.2

00
4

N
P

.2
79

.2
31

.2
07

.2
19

.2
02

.2
18

.2
13

.2
17

.1
67

.1
37

.2
56

.1
47

.1
74

.1
60

.1
87

.1
39

.1
98

.1
79

.1
60

.1
80

.1
93

5
P
A
V

1
.3

18
.2

70
.2

40
.2

59
.2

32
.2

40
.2

36
.2

46
.1

91
.1

57
.2

94
.1

68
.1

97
.1

90
.2

18
.1

59
.2

19
.2

08
.1

84
.2

07
.2

22
6

P
A
V

2
.3

18
.2

63
.2

35
.2

58
.2

27
.2

32
.2

34
.2

44
.1

85
.1

53
.2

89
.1

62
.1

96
.1

85
.2

16
.1

55
.2

20
.2

02
.1

82
.2

00
.2

18
7

P
A
B
V

1
.3

04
.2

61
.2

32
.2

53
.2

25
.2

31
.2

27
.2

38
.1

85
.1

51
.2

85
.1

61
.1

89
.1

84
.2

08
.1

53
.2

09
.2

01
.1

77
.2

01
.2

14
8

P
A
B
V

2
.3

12
.2

57
.2

30
.2

54
.2

23
.2

28
.2

30
.2

39
.1

82
.1

48
.2

84
.1

59
.1

90
.1

80
.2

10
.1

52
.2

14
.1

98
.1

77
.1

97
.2

13
9

R
K

.3
21

.3
21

.2
70

.2
68

.2
40

.2
39

.2
62

.2
61

.2
32

.2
31

.2
39

.2
37

.2
37

.2
37

.2
48

.2
48

.1
91

.1
89

.1
58

.1
56

.2
39

10
R
K
N
P

.3
22

.2
65

.2
36

.2
60

.2
28

.2
37

.2
36

.2
45

.1
85

.1
54

.2
89

.1
63

.1
98

.1
84

.2
18

.1
55

.2
23

.2
03

.1
83

.1
99

.2
19

11
T
S
R
V

.2
92

.2
78

.2
44

.2
34

.2
15

.2
03

.2
39

.2
30

.2
09

.1
99

.2
14

.2
02

.2
19

.2
12

.2
27

.2
18

.1
72

.1
64

.1
41

.1
33

.2
12

12
S
B
V

.3
00

.2
48

.2
22

.2
45

.2
16

.2
19

.2
20

.2
30

.1
75

.1
42

.2
71

.1
52

.1
84

.1
75

.2
01

.1
45

.2
06

.1
91

.1
70

.1
90

.2
05

13
R
V

5
.3

12
.2

57
.2

29
.2

52
.2

24
.2

27
.2

28
.2

38
.1

80
.1

49
.2

81
.1

58
.1

92
.1

81
.2

10
.1

51
.2

17
.1

98
.1

77
.1

95
.2

13
14

S
R
V

5
.3

17
.2

59
.2

33
.2

56
.2

26
.2

31
.2

31
.2

41
.1

82
.1

51
.2

84
.1

60
.1

94
.1

84
.2

13
.1

53
.2

19
.2

01
.1

79
.1

97
.2

16
15

A
T
M

.4
02

.2
72

.2
40

.2
67

.2
15

.2
43

.2
37

.2
44

.2
02

.1
53

.2
93

.1
59

.1
94

.1
89

.2
12

.1
50

.2
07

.2
09

.1
81

.1
93

.2
23

S
ta

n
d
ar

d
D

ev
ia

ti
on

1
P
D
V

.1
76

.1
82

.1
08

.1
20

.1
07

.1
22

.1
61

.1
23

.0
92

.0
74

.1
88

.0
72

.0
90

.0
83

.0
95

.0
67

.1
15

.0
92

.0
81

.1
02

.1
13

2
A
N
P

1
.1

65
.1

78
.1

09
.1

21
.1

07
.1

19
.1

50
.1

21
.0

96
.0

75
.1

86
.0

73
.0

92
.0

85
.0

97
.0

69
.1

13
.0

94
.0

82
.1

04
.1

12
3

A
N
P

2
.1

73
.1

87
.1

11
.1

26
.1

12
.1

23
.1

57
.1

27
.1

00
.0

80
.1

98
.0

78
.0

96
.0

89
.1

04
.0

73
.1

21
.0

99
.0

87
.1

07
.1

17
4

N
P

.1
66

.1
80

.1
10

.1
22

.1
08

.1
21

.1
51

.1
22

.0
97

.0
76

.1
88

.0
74

.0
93

.0
85

.0
98

.0
69

.1
15

.0
95

.0
83

.1
04

.1
13

5
P
A
V

1
.1

89
.2

06
.1

22
.1

39
.1

23
.1

34
.1

75
.1

39
.1

12
.0

90
.2

26
.0

88
.1

07
.1

05
.1

25
.0

85
.1

32
.1

09
.0

96
.1

20
.1

31
6

P
A
V

2
.1

88
.2

06
.1

20
.1

38
.1

25
.1

36
.1

76
.1

40
.1

10
.0

95
.2

26
.0

91
.1

11
.1

05
.1

26
.0

85
.1

38
.1

12
.0

99
.1

17
.1

32
7

P
A
B
V

1
.1

87
.2

02
.1

19
.1

39
.1

21
.1

30
.1

73
.1

36
.1

08
.0

86
.2

21
.0

85
.1

01
.1

01
.1

17
.0

81
.1

25
.1

07
.0

93
.1

18
.1

28
8

P
A
B
V

2
.1

89
.2

04
.1

20
.1

38
.1

25
.1

33
.1

74
.1

39
.1

09
.0

92
.2

23
.0

89
.1

07
.1

02
.1

22
.0

83
.1

34
.1

12
.0

97
.1

16
.1

30
9

R
K

.1
89

.1
89

.2
07

.2
08

.1
22

.1
22

.1
39

.1
39

.1
25

.1
25

.1
35

.1
35

.1
76

.1
76

.1
41

.1
42

.1
13

.1
12

.0
93

.0
94

.1
44

10
R
K
N
P

.1
88

.2
06

.1
21

.1
39

.1
25

.1
37

.1
74

.1
38

.1
08

.0
95

.2
22

.0
89

.1
10

.0
98

.1
25

.0
84

.1
37

.1
11

.0
99

.1
15

.1
31

11
T
S
R
V

.1
78

.1
76

.1
94

.1
89

.1
13

.1
11

.1
30

.1
29

.1
18

.1
15

.1
26

.1
23

.1
66

.1
64

.1
32

.1
28

.1
05

.1
02

.0
88

.0
86

.1
34

12
S
B
V

.1
80

.1
93

.1
17

.1
34

.1
20

.1
27

.1
64

.1
32

.1
05

.0
88

.2
13

.0
85

.1
04

.1
00

.1
15

.0
79

.1
30

.1
06

.0
93

.1
14

.1
25

13
R
V

5
.1

85
.2

01
.1

18
.1

36
.1

22
.1

32
.1

67
.1

35
.1

08
.0

92
.2

21
.0

87
.1

08
.1

01
.1

26
.0

82
.1

36
.1

06
.0

97
.1

19
.1

29
14

S
R
V

5
.1

85
.2

01
.1

20
.1

37
.1

23
.1

34
.1

70
.1

37
.1

07
.0

93
.2

22
.0

88
.1

08
.1

03
.1

25
.0

86
.1

35
.1

09
.0

97
.1

17
.1

30
15

A
T
M

.1
92

.1
75

.0
89

.1
01

.0
89

.1
00

.1
40

.1
04

.0
88

.0
64

.1
72

.0
65

.0
73

.0
70

.0
80

.0
59

.1
02

.0
86

.0
69

.0
75

.1
00

N
ot

es
:

M
ea

n
an

d
st

an
d
ar

d
d
ev

ia
ti

on
st

at
is

ti
cs

fo
r

15
d
ai

ly
vo

la
ti

li
ty

es
ti

m
at

or
s

fo
r

20
st

o
ck

s
u
si

n
g

d
at

a
fr

om
J
an

u
ar

y
20

02
to

D
ec

em
b

er
20

12
.

T
h
e

m
ea

n
s

an
d

st
an

d
ar

d
d
ev

ia
ti

on
s

ar
e

fo
r

an
n
u
al

iz
ed

vo
la

ti
li
ti

es
.

62

Electronic copy available at: https://ssrn.com/abstract=2713322



T
ab

le
24

:
V

ol
at

il
it

y
es

ti
m

at
or

au
to

co
rr

el
at

io
n
s

A
A

A
X

P
B

A
C

A
T

D
D

D
IS

G
E

H
D

IB
M

J
N

J
J
P

M
K

O
M

C
D

M
M

M
M

R
K

P
G

T
U

T
X

W
M

T
X

O
M

av
g.

F
ir

st
or

d
er

1
P
D
V

.8
50

.8
88

.8
34

.8
25

.7
86

.8
28

.8
45

.8
31

.8
45

.8
12

.8
78

.7
75

.8
01

.7
48

.7
73

.7
68

.8
40

.7
89

.7
77

.7
22

.8
11

2
A
N
P

1
.7

91
.8

17
.7

63
.7

58
.7

05
.7

55
.7

76
.7

28
.7

60
.7

11
.8

24
.7

12
.6

60
.6

87
.6

72
.6

39
.7

51
.7

06
.7

10
.6

36
.7

28
3

A
N
P

2
.7

88
.7

90
.7

78
.7

72
.6

93
.7

21
.7

54
.7

01
.7

41
.6

73
.8

10
.6

65
.5

86
.6

75
.6

41
.6

04
.7

26
.7

03
.6

74
.5

98
.7

05
4

N
P

.7
93

.8
15

.7
63

.7
41

.6
93

.7
44

.7
75

.7
24

.7
68

.7
06

.8
23

.7
11

.6
32

.6
94

.6
80

.6
39

.7
56

.7
08

.7
28

.6
45

.7
27

5
P
A
V

1
.7

72
.7

74
.7

54
.7

43
.6

95
.6

46
.7

34
.6

49
.7

04
.6

22
.7

60
.6

13
.5

00
.2

66
.4

70
.4

34
.6

72
.6

57
.6

33
.5

57
.6

33
6

P
A
V

2
.7

59
.6

84
.7

69
.7

83
.6

66
.5

64
.6

93
.6

08
.7

20
.5

11
.7

26
.5

83
.4

28
.3

33
.4

48
.4

53
.6

13
.6

26
.4

93
.5

27
.5

99
7

P
A
B
V

1
.7

74
.7

94
.7

46
.7

40
.6

80
.6

50
.7

26
.6

50
.7

20
.6

13
.7

56
.5

96
.4

86
.3

77
.5

11
.5

01
.6

84
.6

61
.5

85
.5

45
.6

40
8

P
A
B
V

2
.7

80
.6

77
.7

76
.7

77
.6

55
.5

84
.6

89
.5

50
.7

34
.4

72
.7

21
.5

60
.4

15
.4

82
.4

44
.4

17
.6

16
.6

16
.5

17
.5

20
.6

00
9

R
K

.7
64

.7
60

.7
61

.7
46

.7
51

.7
52

.7
49

.7
60

.6
85

.6
78

.6
34

.6
24

.7
33

.7
29

.6
41

.6
30

.7
08

.7
14

.6
23

.6
01

.7
02

10
R
K
N
P

.7
11

.6
40

.7
60

.7
47

.6
61

.6
33

.6
81

.6
17

.7
09

.5
83

.7
13

.6
71

.4
40

.6
37

.5
22

.5
64

.6
50

.6
14

.5
17

.6
28

.6
35

11
T
S
R
V

.7
60

.7
29

.6
95

.6
36

.7
48

.7
21

.7
77

.7
38

.6
61

.6
11

.5
67

.4
84

.7
03

.6
69

.6
04

.5
56

.7
05

.6
73

.5
11

.4
33

.6
49

12
S
B
V

.7
83

.6
83

.7
76

.7
85

.7
32

.7
60

.7
08

.6
96

.7
26

.6
27

.7
41

.6
09

.4
38

.3
07

.5
78

.5
04

.6
56

.6
47

.6
36

.5
24

.6
46

13
R
V

5
.7

38
.6

12
.7

64
.7

82
.7

37
.7

00
.7

13
.6

87
.6

66
.6

61
.7

21
.6

90
.5

14
.4

51
.3

43
.6

28
.6

64
.7

09
.6

74
.4

39
.6

45
14

S
R
V

5
.7

42
.6

66
.7

68
.7

63
.6

87
.6

09
.6

81
.5

88
.6

97
.5

53
.7

27
.6

13
.4

35
.2

79
.4

70
.3

33
.6

28
.6

12
.5

35
.4

60
.5

92
15

A
T
M

.9
41

.9
36

.9
26

.9
47

.9
33

.9
43

.9
36

.9
55

.9
48

.8
91

.9
25

.9
43

.9
39

.9
36

.9
08

.9
32

.9
04

.9
43

.9
42

.8
55

.9
29

F
if

th
or

d
er

1
P
D
V

.7
23

.8
23

.7
25

.7
30

.7
04

.7
41

.7
15

.7
47

.7
63

.7
07

.6
94

.6
66

.7
17

.6
70

.6
59

.6
67

.7
34

.6
88

.6
79

.6
94

.7
12

2
A
N
P

1
.6

51
.7

49
.6

52
.6

50
.6

13
.6

49
.6

48
.6

36
.6

96
.5

97
.5

85
.5

97
.5

64
.6

04
.5

44
.5

45
.6

40
.5

94
.5

95
.6

02
.6

21
3

A
N
P

2
.6

35
.7

11
.6

60
.6

64
.5

96
.6

02
.6

20
.6

09
.6

82
.5

45
.5

34
.5

51
.5

08
.5

90
.5

07
.5

03
.6

01
.5

85
.5

47
.5

61
.5

91
4

N
P

.6
40

.7
50

.6
57

.6
34

.6
05

.6
40

.6
51

.6
19

.6
97

.5
87

.5
82

.5
86

.5
45

.6
01

.5
50

.5
49

.6
43

.6
04

.6
01

.6
08

.6
17

5
P
A
V

1
.6

23
.6

95
.6

42
.6

40
.5

88
.5

30
.6

04
.5

58
.6

51
.4

96
.4

95
.5

04
.4

30
.2

11
.3

55
.3

58
.5

48
.5

55
.5

20
.5

23
.5

26
6

P
A
V

2
.5

90
.5

91
.6

37
.6

64
.5

42
.4

51
.5

45
.5

30
.6

49
.3

93
.4

25
.4

64
.3

56
.2

68
.3

12
.3

60
.4

92
.5

20
.3

84
.4

69
.4

82
7

P
A
B
V

1
.6

25
.7

19
.6

33
.6

35
.5

84
.5

27
.5

97
.5

54
.6

64
.4

96
.5

01
.4

95
.4

25
.3

03
.3

95
.4

11
.5

75
.5

49
.4

80
.5

18
.5

34
8

P
A
B
V

2
.5

95
.5

90
.6

41
.6

51
.5

24
.4

67
.5

39
.4

85
.6

53
.3

72
.4

25
.4

56
.3

51
.4

04
.3

21
.3

36
.4

95
.5

07
.4

02
.4

65
.4

84
9

R
K

.6
08

.6
01

.6
69

.6
48

.6
33

.6
29

.6
46

.6
53

.5
73

.5
62

.5
16

.5
01

.5
99

.5
90

.5
57

.5
50

.6
54

.6
56

.4
92

.4
68

.5
90

10
R
K
N
P

.5
53

.5
46

.6
34

.6
28

.5
42

.5
14

.5
27

.5
33

.6
45

.4
62

.4
24

.5
15

.3
60

.5
53

.3
62

.4
45

.4
86

.5
11

.3
89

.5
40

.5
08

11
T
S
R
V

.5
85

.5
49

.6
00

.5
44

.6
17

.5
83

.6
60

.6
28

.5
35

.5
04

.4
49

.3
93

.5
59

.5
18

.5
27

.4
83

.6
41

.6
08

.3
92

.3
34

.5
35

12
S
B
V

.6
16

.5
95

.6
49

.6
59

.6
10

.6
51

.5
44

.6
03

.6
52

.5
05

.4
41

.4
97

.3
67

.2
45

.4
15

.4
24

.5
01

.5
54

.5
00

.4
76

.5
25

13
R
V

5
.5

45
.5

43
.6

19
.6

66
.5

88
.5

91
.5

37
.6

03
.6

22
.5

27
.4

17
.5

70
.4

05
.3

88
.2

32
.4

77
.4

91
.5

96
.5

12
.3

55
.5

14
14

S
R
V

5
.5

66
.5

84
.6

27
.6

38
.5

54
.4

92
.5

25
.5

09
.6

29
.4

40
.4

30
.4

88
.3

45
.2

18
.3

19
.2

56
.4

76
.5

11
.3

95
.3

91
.4

70
15

A
T
M

.8
36

.8
52

.8
38

.8
60

.8
33

.8
72

.8
20

.8
71

.8
14

.7
58

.8
01

.8
46

.8
45

.8
12

.8
22

.8
41

.8
09

.8
16

.8
43

.7
49

.8
27

N
ot

es
:

F
ir

st
-o

rd
er

an
d

fi
ft

h
-o

rd
er

au
to

co
rr

el
at

io
n

st
at

is
ti

cs
fo

r
15

d
ai

ly
vo

la
ti

li
ty

es
ti

m
at

or
s

fo
r

20
st

o
ck

s
u
si

n
g

d
at

a
fr

om
J
an

u
ar

y
20

02
to

D
ec

em
b

er
20

12
.

63

Electronic copy available at: https://ssrn.com/abstract=2713322



T
ab

le
25

:
R

M
S
E

va
lu

es
,

15
in

d
iv

id
u
al

vo
la

ti
li
ty

es
ti

m
at

or
s,

th
re

e
h
or

iz
on

s,
tr

ad
e

d
at

a

A
A

A
X

P
B

A
C

A
T

D
D

D
IS

G
E

H
D

IB
M

J
N

J
J
P

M
K

O
M

C
D

M
M

M
M

R
K

P
G

T
U

T
X

W
M

T
X

O
M

on
e

d
ay

ah
ea

d
1

P
D
V

.0
04

8
.0

03
1

.0
02

8
.0

03
9

.0
03

0
.0

02
9

.0
04

9
.0

02
1

.0
02

1
.0

01
3

.0
04

1
.0

01
3

.0
01

2
.0

06
7

.0
02

3
.0

02
1

.0
01

4
.0

02
8

.0
01

0
.0

02
6

2
A
N
P

1
.0

04
9

.0
03

2
.0

02
9

.0
04

1
.0

03
1

.0
02

9
.0

05
1

.0
02

1
.0

02
1

.0
01

3
.0

04
2

.0
01

3
.0

01
2

.0
06

8
.0

02
3

.0
02

1
.0

01
4

.0
02

8
.0

01
1

.0
02

7
3

A
N
P

2
.0

04
9

.0
03

1
.0

02
9

.0
04

1
.0

03
1

.0
02

8
.0

05
1

.0
02

1
.0

02
1

.0
01

3
.0

04
1

.0
01

2
.0

01
2

.0
06

8
.0

02
3

.0
02

1
.0

01
4

.0
02

7
.0

01
1

.0
02

7
4

N
P

.0
05

0
.0

03
3

.0
02

9
.0

04
1

.0
03

2
.0

02
9

.0
05

3
.0

02
1

.0
02

1
.0

01
3

.0
04

3
.0

01
3

.0
01

2
.0

06
9

.0
02

3
.0

02
1

.0
01

5
.0

02
8

.0
01

1
.0

02
8

5
P
A
V

1
.0

05
1

.0
03

1
.0

02
9

.0
04

2
.0

03
0

.0
02

7
.0

05
1

.0
02

1
.0

02
1

.0
01

3
.0

04
1

.0
01

2
.0

01
2

.0
07

5
.0

02
4

.0
02

2
.0

01
5

.0
02

8
.0

01
1

.0
02

7
6

P
A
V

2
.0

05
0

.0
03

1
.0

03
0

.0
04

2
.0

03
0

.0
02

7
.0

05
2

.0
02

1
.0

02
1

.0
01

4
.0

04
1

.0
01

2
.0

01
2

.0
07

4
.0

02
4

.0
02

2
.0

01
5

.0
02

8
.0

01
1

.0
02

8
7

P
A
B
V

1
.0

05
1

.0
03

1
.0

02
9

.0
04

2
.0

03
1

.0
02

7
.0

05
1

.0
02

2
.0

02
1

.0
01

3
.0

04
1

.0
01

2
.0

01
2

.0
07

3
.0

02
4

.0
02

2
.0

01
5

.0
02

8
.0

01
1

.0
02

7
8

P
A
B
V

2
.0

04
9

.0
03

1
.0

03
0

.0
04

1
.0

03
0

.0
02

7
.0

05
2

.0
02

1
.0

02
1

.0
01

4
.0

04
1

.0
01

2
.0

01
2

.0
07

1
.0

02
5

.0
02

1
.0

01
5

.0
02

8
.0

01
1

.0
02

8
9

R
K

.0
05

0
.0

04
5

.0
03

6
.0

05
9

.0
03

5
.0

02
9

.0
06

5
.0

03
5

.0
02

5
.0

01
7

.0
06

9
.0

01
7

.0
03

8
.0

07
3

.0
03

2
.0

02
4

.0
02

4
.0

02
9

.0
01

5
.0

03
4

10
R
K
N
P

.0
05

0
.0

03
1

.0
03

0
.0

04
2

.0
03

0
.0

02
7

.0
05

2
.0

02
2

.0
02

1
.0

01
4

.0
04

2
.0

01
2

.0
01

2
.0

06
9

.0
02

4
.0

02
2

.0
01

5
.0

02
8

.0
01

1
.0

02
9

11
T
S
R
V

.0
05

0
.0

04
3

.0
03

6
.0

06
0

.0
03

5
.0

03
1

.0
06

4
.0

03
6

.0
02

6
.0

01
8

.0
07

0
.0

01
8

.0
03

9
.0

07
3

.0
03

2
.0

02
4

.0
02

5
.0

03
1

.0
01

6
.0

03
6

12
S
B
V

.0
04

9
.0

03
1

.0
02

9
.0

04
1

.0
03

0
.0

02
6

.0
05

2
.0

02
1

.0
02

1
.0

01
3

.0
04

1
.0

01
2

.0
01

2
.0

07
4

.0
02

4
.0

02
2

.0
01

5
.0

02
7

.0
01

1
.0

02
8

13
R
V

5
.0

05
1

.0
03

2
.0

03
0

.0
04

2
.0

03
0

.0
02

7
.0

05
2

.0
02

2
.0

02
1

.0
01

4
.0

04
2

.0
01

2
.0

01
2

.0
07

2
.0

02
4

.0
02

2
.0

01
5

.0
02

8
.0

01
1

.0
02

9
14

S
R
V

5
.0

05
0

.0
03

1
.0

02
9

.0
04

1
.0

03
0

.0
02

7
.0

05
2

.0
02

2
.0

02
1

.0
01

4
.0

04
1

.0
01

2
.0

01
2

.0
07

5
.0

02
4

.0
02

5
.0

01
5

.0
02

8
.0

01
1

.0
02

9
15

A
T
M

.0
06

0
.0

03
1

.0
02

8
.0

04
2

.0
03

2
.0

02
4

.0
05

4
.0

02
1

.0
02

6
.0

01
6

.0
04

9
.0

01
4

.0
01

3
.0

06
8

.0
02

4
.0

02
3

.0
01

7
.0

02
8

.0
01

3
.0

02
7

on
e

w
ee

k
ah

ea
d

1
P
D
V

.0
18

8
.0

12
1

.0
10

5
.0

14
8

.0
11

7
.0

10
9

.0
20

1
.0

07
5

.0
09

0
.0

05
1

.0
15

2
.0

05
1

.0
04

1
.0

28
5

.0
08

9
.0

08
3

.0
05

1
.0

11
3

.0
03

7
.0

11
0

2
A
N
P

1
.0

19
5

.0
13

0
.0

11
0

.0
15

7
.0

12
7

.0
11

3
.0

21
4

.0
07

9
.0

09
4

.0
05

5
.0

16
3

.0
05

3
.0

04
3

.0
29

0
.0

09
4

.0
08

6
.0

05
5

.0
11

9
.0

04
1

.0
11

5
3

A
N
P

2
.0

19
4

.0
13

0
.0

11
0

.0
15

9
.0

12
4

.0
10

9
.0

21
3

.0
08

0
.0

09
3

.0
05

5
.0

16
4

.0
05

2
.0

04
3

.0
29

0
.0

09
5

.0
08

6
.0

05
6

.0
11

7
.0

04
1

.0
11

7
4

N
P

.0
19

6
.0

13
2

.0
11

0
.0

15
8

.0
12

9
.0

11
3

.0
22

2
.0

07
9

.0
09

5
.0

05
6

.0
16

5
.0

05
3

.0
04

3
.0

29
1

.0
09

5
.0

08
6

.0
05

7
.0

12
1

.0
04

1
.0

11
8

5
P
A
V

1
.0

19
6

.0
13

2
.0

11
2

.0
16

3
.0

12
8

.0
11

1
.0

21
8

.0
08

3
.0

09
5

.0
05

6
.0

16
4

.0
05

2
.0

04
5

.0
33

7
.0

10
1

.0
09

7
.0

06
1

.0
12

0
.0

04
5

.0
12

2
6

P
A
V

2
.0

19
1

.0
13

4
.0

11
3

.0
16

1
.0

12
5

.0
11

7
.0

22
7

.0
08

2
.0

09
5

.0
06

0
.0

17
0

.0
05

2
.0

04
4

.0
33

0
.0

10
2

.0
08

9
.0

05
9

.0
11

8
.0

04
2

.0
12

7
7

P
A
B
V

1
.0

19
4

.0
13

3
.0

11
2

.0
16

4
.0

12
8

.0
11

0
.0

21
8

.0
08

5
.0

09
6

.0
05

6
.0

16
5

.0
05

3
.0

04
7

.0
32

2
.0

10
5

.0
09

5
.0

06
2

.0
12

0
.0

04
6

.0
12

2
8

P
A
B
V

2
.0

19
1

.0
13

5
.0

11
3

.0
15

9
.0

12
5

.0
11

5
.0

22
8

.0
08

4
.0

09
8

.0
06

1
.0

17
2

.0
05

3
.0

04
6

.0
31

0
.0

10
7

.0
08

8
.0

06
3

.0
12

0
.0

04
3

.0
12

7
9

R
K

.0
19

4
.0

19
1

.0
13

2
.0

22
4

.0
13

0
.0

10
5

.0
28

4
.0

15
2

.0
11

0
.0

07
2

.0
29

0
.0

07
3

.0
19

1
.0

30
1

.0
13

8
.0

09
6

.0
12

0
.0

11
9

.0
06

7
.0

14
2

10
R
K
N
P

.0
19

3
.0

13
6

.0
11

3
.0

16
6

.0
12

2
.0

11
5

.0
22

8
.0

08
4

.0
09

5
.0

06
0

.0
17

7
.0

05
3

.0
04

4
.0

29
5

.0
09

8
.0

08
5

.0
05

9
.0

11
8

.0
04

3
.0

12
6

11
T
S
R
V

.0
19

1
.0

18
1

.0
12

9
.0

22
2

.0
13

0
.0

12
0

.0
27

9
.0

16
0

.0
11

1
.0

07
4

.0
29

9
.0

08
2

.0
19

2
.0

30
3

.0
13

7
.0

09
7

.0
12

3
.0

12
6

.0
07

2
.0

14
7

12
S
B
V

.0
19

2
.0

13
3

.0
11

2
.0

16
1

.0
12

1
.0

10
8

.0
22

7
.0

08
3

.0
09

5
.0

05
8

.0
17

3
.0

05
1

.0
04

4
.0

33
4

.0
09

8
.0

09
5

.0
05

7
.0

11
6

.0
04

2
.0

12
5

13
R
V

5
.0

19
7

.0
13

5
.0

11
1

.0
16

6
.0

11
7

.0
11

4
.0

22
1

.0
08

1
.0

09
3

.0
06

0
.0

17
5

.0
05

3
.0

04
4

.0
31

6
.0

09
7

.0
09

2
.0

05
9

.0
11

4
.0

04
2

.0
12

7
14

S
R
V

5
.0

19
3

.0
13

2
.0

11
2

.0
16

3
.0

12
3

.0
11

5
.0

22
7

.0
08

2
.0

09
7

.0
05

9
.0

17
3

.0
05

2
.0

04
4

.0
33

8
.0

09
9

.0
10

9
.0

05
8

.0
12

0
.0

04
2

.0
13

0
15

A
T
M

.0
22

8
.0

14
1

.0
10

4
.0

16
7

.0
13

4
.0

09
3

.0
22

5
.0

06
8

.0
11

0
.0

06
3

.0
19

7
.0

05
4

.0
04

6
.0

29
1

.0
09

2
.0

08
8

.0
06

3
.0

11
6

.0
04

3
.0

13
4

on
e

m
on

th
ah

ea
d

1
P
D
V

.0
84

1
.0

54
7

.0
48

6
.0

71
3

.0
52

0
.0

47
2

.0
86

1
.0

35
6

.0
42

8
.0

25
9

.0
69

6
.0

23
1

.0
17

2
.1

14
4

.0
43

4
.0

35
8

.0
25

4
.0

52
1

.0
18

0
.0

55
7

2
A
N
P

1
.0

83
1

.0
56

6
.0

49
3

.0
74

1
.0

55
2

.0
48

9
.0

89
3

.0
37

1
.0

43
7

.0
26

7
.0

72
0

.0
23

4
.0

18
0

.1
15

7
.0

44
8

.0
36

9
.0

26
5

.0
53

5
.0

18
9

.0
56

2
3

A
N
P

2
.0

83
7

.0
57

1
.0

49
0

.0
74

2
.0

54
7

.0
47

8
.0

88
6

.0
38

0
.0

43
4

.0
26

8
.0

72
2

.0
23

4
.0

18
7

.1
16

0
.0

45
2

.0
37

5
.0

26
9

.0
52

8
.0

19
4

.0
57

4
4

N
P

.0
82

4
.0

57
0

.0
49

9
.0

74
4

.0
54

3
.0

49
4

.0
92

8
.0

37
6

.0
43

8
.0

26
7

.0
72

5
.0

22
9

.0
18

0
.1

15
8

.0
45

5
.0

36
9

.0
27

1
.0

54
0

.0
19

3
.0

56
9

5
P
A
V

1
.0

82
0

.0
58

7
.0

50
4

.0
75

0
.0

57
6

.0
49

7
.0

90
4

.0
39

2
.0

44
5

.0
27

2
.0

71
3

.0
23

7
.0

20
1

.1
31

0
.0

48
0

.0
41

2
.0

30
8

.0
54

1
.0

20
8

.0
59

3
6

P
A
V

2
.0

81
3

.0
59

9
.0

49
1

.0
72

4
.0

54
9

.0
53

8
.0

93
7

.0
38

7
.0

44
5

.0
28

5
.0

73
9

.0
23

3
.0

20
0

.1
26

7
.0

47
1

.0
38

7
.0

29
4

.0
52

4
.0

20
1

.0
60

3
7

P
A
B
V

1
.0

80
6

.0
58

4
.0

50
6

.0
75

3
.0

57
9

.0
49

3
.0

91
2

.0
41

4
.0

44
9

.0
27

3
.0

72
0

.0
23

8
.0

21
6

.1
26

3
.0

49
9

.0
40

7
.0

31
5

.0
53

7
.0

21
8

.0
59

7
8

P
A
B
V

2
.0

80
8

.0
60

3
.0

49
5

.0
70

8
.0

54
8

.0
53

0
.0

94
3

.0
40

3
.0

45
4

.0
29

3
.0

75
0

.0
23

9
.0

21
1

.1
20

2
.0

49
2

.0
38

5
.0

31
6

.0
52

9
.0

20
7

.0
60

6
9

R
K

.0
81

3
.0

90
1

.0
50

3
.0

86
8

.0
54

6
.0

43
9

.1
25

3
.0

66
6

.0
44

2
.0

29
9

.1
22

3
.0

34
5

.0
85

8
.1

09
0

.0
65

3
.0

38
4

.0
62

6
.0

52
6

.0
32

0
.0

60
1

10
R
K
N
P

.0
81

7
.0

58
9

.0
48

8
.0

73
9

.0
52

6
.0

53
1

.0
94

7
.0

38
6

.0
43

5
.0

28
2

.0
77

5
.0

23
0

.0
20

4
.1

16
4

.0
43

9
.0

36
9

.0
28

5
.0

52
4

.0
19

7
.0

61
1

11
T
S
R
V

.0
78

8
.0

84
9

.0
48

4
.0

83
3

.0
52

8
.0

48
4

.1
21

7
.0

69
4

.0
43

8
.0

30
0

.1
28

6
.0

38
3

.0
85

7
.1

08
0

.0
65

1
.0

39
4

.0
63

3
.0

53
1

.0
34

0
.0

61
6

12
S
B
V

.0
81

5
.0

59
0

.0
49

2
.0

72
6

.0
53

5
.0

50
2

.0
94

3
.0

39
0

.0
43

9
.0

27
3

.0
74

0
.0

23
0

.0
20

2
.1

27
1

.0
46

1
.0

41
2

.0
27

9
.0

52
1

.0
19

8
.0

60
3

13
R
V

5
.0

83
8

.0
60

9
.0

48
9

.0
75

7
.0

52
1

.0
52

1
.0

91
4

.0
37

7
.0

43
5

.0
28

1
.0

75
3

.0
23

1
.0

20
4

.1
23

2
.0

45
4

.0
39

7
.0

27
5

.0
50

7
.0

19
5

.0
61

9
14

S
R
V

5
.0

82
6

.0
58

7
.0

48
9

.0
73

1
.0

53
9

.0
53

0
.0

93
3

.0
38

2
.0

44
8

.0
27

8
.0

74
9

.0
22

9
.0

19
9

.1
28

8
.0

45
5

.0
45

8
.0

27
5

.0
53

2
.0

19
7

.0
61

5
15

A
T
M

.0
91

6
.0

69
3

.0
50

7
.0

79
9

.0
60

3
.0

47
3

.0
94

5
.0

40
8

.0
45

9
.0

29
9

.0
93

1
.0

25
3

.0
20

1
.1

15
4

.0
41

8
.0

34
7

.0
26

3
.0

54
2

.0
21

9
.0

61
7

64

Electronic copy available at: https://ssrn.com/abstract=2713322



T
ab

le
26

:
M

C
S

p
-v

al
u
es

,
R

M
S
E

lo
ss

fu
n
ct

io
n
,

15
in

d
iv

id
u
al

fo
re

ca
st

s,
th

re
e

h
or

iz
on

s,
tr

ad
e

d
at

a

A
A

A
X

P
B

A
C

A
T

D
D

D
IS

G
E

H
D

IB
M

J
N

J
J
P

M
K

O
M

C
D

M
M

M
M

R
K

P
G

T
U

T
X

W
M

T
X

O
M

on
e

d
ay

ah
ea

d
.0

0
15

.0
0

11
.0

2
11

.0
0

9
.0

0
9

.0
0

11
.0

2
11

.0
0

11
.0

0
11

.0
0

11
.0

0
11

.0
0

11
.0

0
9

.0
0

5
.0

0
9

.0
0

11
.0

0
11

.0
0

11
.0

0
11

.0
0

11
.0

1
5

.0
0

9
.0

2
9

.0
0

11
.0

0
11

.0
0

1
.0

2
9

.0
0

9
.0

0
15

.0
0

9
.0

0
9

.0
0

9
.0

0
11

.0
0

14
.0

0
11

.0
0

9
.0

0
9

.0
1

10
.0

0
9

.0
0

9
.0

1
7

.0
0

13
.0

2
6

.0
0

5
.0

0
4

.0
0

9
.0

2
4

.0
1

10
.0

0
9

.0
0

15
.0

0
15

.0
0

15
.0

0
15

.0
0

11
.0

1
6

.0
2

15
.0

0
15

.0
1

4
.0

0
15

.0
0

13
.0

2
13

.0
4

4
.0

5
8

.0
0

7
.0

0
2

.0
1

2
.0

3
15

.0
3

14
.0

2
4

.0
0

13
.0

0
4

.0
0

1
.0

0
7

.0
0

13
.0

1
8

.0
2

12
.0

0
8

.0
4

9
.0

0
14

.0
0

10
.0

2
9

.0
4

2
.0

6
10

.0
2

13
.0

2
15

.0
1

4
.0

3
14

.0
3

7
.0

4
10

.0
0

12
.0

0
2

.0
1

4
.0

0
1

.0
0

6
.0

1
10

.0
2

14
.0

1
13

.0
4

8
.0

0
7

.0
0

14
.0

9
11

.0
4

3
.0

6
5

.0
2

10
.0

2
3

.0
1

6
.0

3
6

.0
3

4
.0

4
1

.0
0

6
.0

2
12

.0
1

10
.0

0
4

.0
0

7
.0

1
15

.0
2

13
.0

1
4

.0
4

6
.0

0
13

.0
0

8
.1

6
4

.0
4

7
.0

6
12

.0
2

6
.0

2
5

.0
1

3
.0

3
10

.1
4

13
.0

4
14

.0
0

14
.0

2
13

.0
2

13
.0

0
8

.0
0

9
.0

1
13

.0
2

6
.1

3
6

.0
5

14
.0

0
6

.0
0

6
.2

2
6

.0
4

8
.0

6
14

.0
2

14
.0

2
7

.0
1

13
.0

3
12

.1
4

5
.0

4
2

.0
0

8
.0

2
10

.0
2

2
.3

4
13

.0
0

8
.0

1
14

.0
2

10
.1

3
12

.0
6

5
.0

0
10

.0
0

4
.3

4
10

.0
4

10
.0

6
7

.0
2

15
.0

6
6

.0
2

8
.0

3
3

.2
1

8
.0

9
13

.0
0

10
.5

6
8

.0
6

6
.3

4
2

.0
0

12
.0

1
5

.0
2

5
.1

3
10

.0
6

1
.0

0
5

.0
2

7
.4

7
8

.1
0

6
.0

6
13

.0
2

8
.0

6
8

.0
2

14
.0

3
13

.2
1

12
.0

9
6

.0
0

4
.5

6
3

.0
6

3
.5

7
3

.0
0

10
.0

1
7

.0
2

8
.1

3
14

.0
6

2
.0

0
12

.0
2

12
.4

7
14

.3
6

5
.0

6
4

.0
2

4
.1

3
10

.0
6

5
.0

6
2

.2
1

6
.0

9
8

.0
1

2
.7

0
6

.0
6

7
.6

1
5

.0
0

4
.0

1
4

.0
2

7
.1

3
7

.2
9

15
.0

0
8

.0
2

5
.5

8
2

.6
4

1
.0

9
2

.0
2

3
.1

3
14

.1
1

10
.0

6
8

.2
1

15
.3

9
5

.1
3

5
.7

1
14

.0
6

8
.8

4
10

.0
0

2
.0

6
3

.0
2

2
.1

3
5

.2
9

7
.0

1
4

.0
2

15
.6

6
12

.8
7

15
.1

7
3

.0
2

12
.3

7
1

.1
1

7
.0

6
5

.2
1

2
.6

1
7

.1
3

3
.7

1
5

.4
2

5
.8

4
14

.0
1

3
.0

6
12

.0
2

4
.1

3
2

.5
6

13
.8

5
2

.0
2

2
.6

6
3

.8
8

12
.4

5
1

.0
2

2
.6

0
12

.1
3

12
.0

6
7

.2
2

3
.6

8
12

.1
3

7
.7

1
7

.4
2

14
.8

4
6

.3
5

15
.0

8
2

.0
2

3
.1

3
3

.5
6

3
.8

5
3

.0
2

3
1

1
1

14
1

15
1

1
1

13
1

15
1

1
1

1
1

3
1

1
1

1
1

12
1

12
1

1
1

1
1

1
1

1
1

12
1

1
1

1

on
e

w
ee

k
ah

ea
d

.0
3

15
.0

0
9

.0
1

9
.0

0
9

.0
0

5
.0

2
6

.0
0

9
.0

0
11

.0
0

11
.0

0
11

.0
0

9
.0

0
9

.0
0

9
.0

2
5

.0
0

9
.0

2
11

.0
0

11
.0

0
5

.0
0

11
.0

0
11

.1
3

5
.0

0
11

.0
1

11
.0

0
11

.0
0

7
.0

2
10

.0
0

11
.0

0
9

.0
0

15
.0

0
9

.0
0

11
.0

0
11

.0
0

11
.0

2
7

.0
0

11
.0

2
7

.0
0

9
.0

0
4

.0
0

9
.0

0
15

.1
5

4
.0

0
8

.0
1

8
.0

0
5

.0
1

4
.0

2
14

.0
0

10
.0

0
8

.0
0

9
.0

0
10

.0
0

13
.0

2
10

.0
0

7
.0

2
14

.0
0

7
.0

2
9

.0
0

5
.0

0
7

.0
0

5
.0

0
9

.3
5

2
.0

0
10

.0
1

6
.0

0
13

.0
1

9
.0

2
8

.0
0

14
.0

0
7

.0
0

7
.0

0
6

.0
0

15
.0

2
2

.0
0

8
.0

2
6

.0
0

8
.0

2
12

.0
0

7
.0

0
11

.0
0

7
.0

0
8

.3
5

13
.0

2
13

.0
2

12
.0

0
7

.0
1

15
.0

2
11

.0
0

8
.0

0
10

.0
1

14
.0

0
12

.0
0

8
.0

2
8

.0
0

15
.0

2
12

.0
0

6
.0

2
13

.0
0

8
.0

3
2

.0
0

8
.0

0
13

.3
5

3
.0

2
6

.0
2

5
.0

0
10

.0
1

11
.0

2
4

.0
0

13
.0

0
5

.0
1

8
.0

0
14

.0
0

14
.0

2
4

.0
0

5
.0

2
13

.0
0

10
.0

3
5

.0
0

13
.1

4
8

.0
0

6
.0

0
6

.3
5

7
.0

2
12

.0
2

14
.0

0
14

.0
1

2
.0

2
7

.0
0

15
.0

2
6

.0
1

5
.0

0
15

.0
0

6
.0

2
15

.0
0

13
.0

2
8

.0
0

12
.0

3
14

.0
0

15
.1

4
14

.0
0

14
.0

0
12

.3
5

14
.0

2
15

.0
2

7
.0

0
6

.0
1

14
.0

2
13

.0
0

12
.0

2
12

.0
1

6
.0

0
13

.0
0

12
.0

2
13

.0
0

14
.0

2
11

.0
0

5
.0

3
6

.0
0

6
.1

4
6

.0
0

10
.0

0
14

.3
5

9
.0

2
5

.0
5

13
.0

0
12

.0
1

8
.0

2
5

.0
0

4
.0

3
14

.0
1

10
.0

0
8

.0
0

10
.0

2
5

.0
0

10
.0

2
9

.0
0

14
.0

7
8

.0
0

10
.1

4
3

.0
0

13
.0

0
10

.3
5

10
.0

2
7

.0
5

10
.0

0
15

.0
1

6
.0

2
2

.0
0

5
.0

3
3

.0
4

4
.0

0
7

.0
0

5
.0

2
6

.0
0

12
.0

2
10

.0
0

4
.3

0
15

.0
0

12
.3

2
9

.0
0

15
.0

0
5

.3
5

12
.0

2
4

.0
5

3
.0

0
3

.0
1

3
.5

2
1

.0
0

6
.1

3
4

.1
2

2
.0

0
5

.0
0

4
.0

2
7

.0
0

3
.0

5
4

.0
0

3
.3

0
4

.0
0

4
.3

2
10

.0
0

3
.0

0
7

.7
3

8
.0

2
2

.0
5

2
.0

0
2

.0
1

12
.5

2
12

.0
0

2
.2

7
13

.1
2

12
.0

5
2

.0
0

7
.1

1
3

.0
0

4
.0

5
3

.0
1

13
.3

0
2

.0
0

14
.3

5
12

.0
0

4
.0

0
4

.7
3

6
.0

2
3

.0
5

4
.0

0
4

.1
4

10
.5

2
3

.0
0

7
.2

7
2

.1
2

3
.0

5
3

.0
1

2
.5

3
14

.0
0

6
.1

8
2

.0
1

2
.3

0
3

.0
0

3
.8

0
15

.0
0

2
.0

0
3

.7
3

11
.0

2
14

.7
7

1
.0

2
8

.9
1

13
.5

2
9

.0
0

3
.3

3
1

.1
3

13
.0

5
4

.0
2

3
.8

3
12

.0
0

2
.5

3
15

.5
7

15
.5

6
10

.0
0

2
.8

0
13

.0
1

12
.0

1
2

1
1

1
1

1
15

1
1

1
1

1
15

1
1

1
15

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

on
e

m
on

th
ah

ea
d

.1
1

3
.0

1
9

.0
3

7
.0

0
9

.0
0

5
.0

1
10

.0
2

9
.0

0
11

.3
5

7
.0

0
15

.0
0

9
.0

0
9

.0
0

9
.0

0
7

.0
0

11
.0

1
7

.0
0

11
.0

3
5

.0
0

11
.0

0
13

.1
1

15
.0

1
11

.0
3

5
.0

0
15

.0
0

7
.0

1
6

.0
2

11
.0

0
9

.3
9

5
.0

0
8

.0
1

11
.0

0
11

.0
0

11
.0

0
5

.0
0

9
.0

1
5

.0
0

9
.0

4
7

.0
0

9
.0

0
14

.1
1

13
.0

1
15

.1
1

15
.0

0
13

.0
0

15
.0

1
8

.0
2

10
.0

0
8

.3
9

8
.0

0
11

.0
1

15
.0

1
5

.0
0

12
.0

0
6

.0
3

7
.0

1
14

.0
0

7
.0

4
4

.0
0

7
.0

0
10

.1
1

14
.0

1
8

.1
1

4
.0

1
11

.0
0

2
.0

1
12

.0
2

8
.0

0
7

.3
9

15
.0

0
6

.0
1

8
.0

1
8

.0
0

8
.0

0
14

.0
4

8
.0

1
13

.0
0

5
.0

4
2

.0
0

8
.0

0
8

.1
1

2
.0

1
13

.1
1

8
.0

1
5

.0
0

6
.0

1
14

.0
2

12
.0

0
5

.3
9

6
.0

2
9

.0
3

14
.0

1
15

.0
0

13
.0

0
12

.0
4

5
.0

1
12

.0
0

8
.6

3
15

.0
0

5
.0

0
7

.1
1

5
.0

1
6

.1
1

9
.0

3
3

.0
0

3
.0

1
5

.0
2

6
.0

0
12

.3
9

14
.0

2
10

.0
3

10
.0

1
7

.0
0

10
.0

0
13

.0
4

12
.0

1
8

.0
1

6
.6

3
3

.0
0

6
.0

0
15

.1
1

1
.0

3
12

.6
9

6
.0

3
7

.0
0

8
.0

1
13

.0
2

14
.0

0
15

.3
9

12
.0

2
13

.0
3

6
.0

1
3

.0
0

7
.0

0
8

.0
4

4
.0

1
6

.0
1

10
.6

6
14

.0
0

15
.0

0
6

.1
1

4
.0

3
14

.6
9

12
.0

3
2

.0
0

9
.0

1
7

.0
2

15
.0

0
3

.3
9

9
.0

2
5

.0
3

13
.0

1
2

.0
0

14
.0

0
10

.0
9

6
.0

1
11

.0
1

12
.6

6
8

.0
0

12
.0

0
12

.1
1

12
.0

7
5

.7
8

2
.0

3
10

.0
3

14
.0

1
4

.0
2

4
.0

0
6

.3
9

4
.0

2
7

.0
3

12
.0

1
6

.0
0

6
.0

2
3

.1
0

3
.0

1
3

.0
1

14
.6

8
11

.0
0

3
.0

0
5

.1
3

6
.0

7
10

.8
5

3
.0

3
4

.0
3

4
.0

1
2

.0
2

13
.0

0
10

.5
2

2
.0

2
14

.0
3

4
.4

0
13

.0
0

5
.0

5
15

.1
7

13
.0

1
9

.0
1

13
.6

8
6

.0
0

14
.0

0
11

.1
3

10
.1

9
3

.8
6

14
.0

6
12

.0
3

12
.2

2
11

.0
2

7
.0

0
14

.7
2

13
.0

2
3

.0
6

3
.7

3
1

.0
0

15
.0

5
4

.2
9

2
.0

1
10

.0
1

3
.6

8
10

.0
0

13
.0

0
9

.3
7

9
.1

9
7

.8
6

13
.0

7
14

.8
1

11
.5

6
3

.0
3

5
.0

0
4

.7
2

10
.0

5
12

.1
5

7
.7

3
10

.0
0

3
.0

8
2

.2
9

14
.0

1
4

.0
1

4
.6

8
9

.0
0

4
.0

0
3

.3
7

8
.1

9
2

.8
8

10
.1

1
6

.8
1

10
.6

0
1

.0
7

2
.0

3
13

.7
2

11
.0

5
4

.1
5

2
.7

3
12

.0
4

2
.5

4
1

.6
7

10
.0

1
2

.0
1

2
.6

8
12

.0
0

10
.0

0
4

.3
7

7
.1

9
4

.8
8

1
.6

8
1

.8
2

13
.6

0
15

.0
7

3
.0

3
2

.7
2

3
.0

5
2

.2
0

5
.8

2
4

.0
6

4
.5

4
9

.6
7

1
.5

7
1

.4
9

15
.6

8
1

.0
0

2
.3

1
2

1
11

1
1

1
11

1
8

1
1

1
9

1
1

1
1

1
1

1
1

1
1

1
14

1
1

1
11

1
15

1
15

1
1

1
13

1
1

1
1

N
ot

es
:

M
C

S
p
-v

al
u
es

fo
r

th
e

R
M

S
E

lo
ss

fu
n
ct

io
n
.

In
ea

ch
st

o
ck

su
b
-p

an
el

w
e

re
p

o
rt

th
e

co
rr

es
p

on
d
in

g
p
-v

al
u
es

on
th

e
le

ft
an

d
on

th
e

ri
gh

t
w

e
li
st

th
e

es
ti

m
at

or
n
u
m

b
er

s
ra

n
ke

d
in

th
e

as
ce

n
d

in
g

or
d
er

s
of

th
e

p
-v

al
u
es

.
E

st
im

a
to

rs
1

to
1
5

a
re

:

P
D

V
,
A
N
P

1,
A
N
P

2,
N

P
,
P
A
V

1,
P
A
V

2,
P
A
B
V

1,
P
A
B
V

2,
R

K
,

R
K

N
P

,
T

S
R

V
,

S
B

V
,
R
V

5,
S
R
V

5
an

d
A

T
M

.

65

Electronic copy available at: https://ssrn.com/abstract=2713322



T
ab

le
27

:
Q

L
IK

E
va

lu
es

,
15

in
d
iv

id
u
al

vo
la

ti
li
ty

es
ti

m
at

or
s,

th
re

e
h
or

iz
on

s,
tr

ad
e

d
at

a

A
A

A
X

P
B

A
C

A
T

D
D

D
IS

G
E

H
D

IB
M

J
N

J
J
P

M
K

O
M

C
D

M
M

M
M

R
K

P
G

T
U

T
X

W
M

T
X

O
M

on
e

d
ay

ah
ea

d
1

P
D
V

.0
27

5
.0

27
8

.0
28

8
.0

27
9

.0
29

3
.0

34
5

.0
31

7
.0

25
7

.0
32

6
.0

29
5

.0
30

6
.0

32
1

.0
32

3
.0

36
7

.0
26

9
.0

30
4

.0
26

7
.0

33
6

.0
27

3
.0

28
3

2
A
N
P

1
.0

27
8

.0
28

8
.0

29
7

.0
28

7
.0

30
8

.0
34

4
.0

33
7

.0
26

2
.0

32
5

.0
30

7
.0

31
6

.0
32

1
.0

31
8

.0
38

6
.0

27
9

.0
31

5
.0

27
6

.0
34

1
.0

27
8

.0
29

3
3

A
N
P

2
.0

28
0

.0
28

1
.0

29
8

.0
28

7
.0

29
8

.0
31

9
.0

33
7

.0
25

8
.0

31
6

.0
29

7
.0

30
9

.0
30

6
.0

31
5

.0
38

5
.0

28
1

.0
31

1
.0

27
6

.0
33

4
.0

27
8

.0
28

9
4

N
P

.0
28

4
.0

29
4

.0
29

7
.0

28
9

.0
31

5
.0

34
6

.0
35

9
.0

26
5

.0
33

1
.0

30
9

.0
31

9
.0

32
6

.0
32

0
.0

39
4

.0
28

5
.0

31
6

.0
29

1
.0

34
8

.0
28

3
.0

30
5

5
P
A
V

1
.0

28
6

.0
28

3
.0

30
2

.0
29

5
.0

29
5

.0
31

0
.0

32
9

.0
26

3
.0

32
1

.0
30

0
.0

30
4

.0
30

2
.0

31
7

.0
41

4
.0

28
4

.0
32

2
.0

28
4

.0
34

0
.0

28
9

.0
29

9
6

P
A
V

2
.0

28
2

.0
28

2
.0

30
9

.0
29

4
.0

29
0

.0
31

1
.0

33
6

.0
26

0
.0

31
3

.0
31

1
.0

30
6

.0
30

1
.0

31
3

.0
41

0
.0

28
6

.0
31

8
.0

28
3

.0
33

4
.0

28
6

.0
29

7
7

P
A
B
V

1
.0

28
9

.0
28

6
.0

30
1

.0
29

4
.0

29
8

.0
30

9
.0

33
1

.0
26

8
.0

31
9

.0
29

7
.0

30
4

.0
30

5
.0

32
6

.0
41

0
.0

28
9

.0
32

5
.0

28
4

.0
33

6
.0

29
5

.0
30

4
8

P
A
B
V

2
.0

27
9

.0
28

2
.0

30
8

.0
29

0
.0

29
0

.0
30

8
.0

33
4

.0
26

1
.0

31
2

.0
30

9
.0

30
7

.0
30

0
.0

31
7

.0
40

5
.0

29
0

.0
31

8
.0

28
8

.0
33

3
.0

28
9

.0
29

7
9

R
K

.0
28

5
.0

46
2

.0
38

8
.0

42
5

.0
36

0
.0

34
2

.0
60

1
.0

43
8

.0
41

7
.0

41
1

.0
76

1
.0

48
7

.0
91

7
.0

48
6

.0
44

6
.0

40
0

.0
49

2
.0

35
0

.0
41

2
.0

44
2

10
R
K
N
P

.0
28

2
.0

29
0

.0
31

5
.0

29
7

.0
29

5
.0

30
9

.0
33

4
.0

26
9

.0
32

3
.0

31
5

.0
31

5
.0

30
8

.0
31

6
.0

39
8

.0
29

2
.0

32
9

.0
28

6
.0

33
5

.0
28

7
.0

30
5

11
T
S
R
V

.0
28

4
.0

45
1

.0
38

5
.0

43
1

.0
36

3
.0

37
4

.0
59

3
.0

45
1

.0
42

8
.0

43
5

.0
75

6
.0

51
2

.0
91

2
.0

48
5

.0
44

0
.0

40
5

.0
49

1
.0

38
3

.0
42

9
.0

46
7

12
S
B
V

.0
27

7
.0

28
1

.0
30

4
.0

28
6

.0
28

9
.0

30
0

.0
33

6
.0

26
2

.0
30

9
.0

30
8

.0
31

1
.0

29
4

.0
31

1
.0

41
5

.0
28

2
.0

32
1

.0
28

1
.0

32
7

.0
28

4
.0

29
4

13
R
V

5
.0

28
8

.0
29

1
.0

30
7

.0
29

4
.0

28
9

.0
31

0
.0

33
7

.0
26

3
.0

31
6

.0
31

6
.0

31
3

.0
30

6
.0

31
4

.0
41

1
.0

28
9

.0
33

1
.0

28
9

.0
32

7
.0

28
7

.0
30

4
14

S
R
V

5
.0

28
0

.0
27

9
.0

30
4

.0
29

2
.0

29
1

.0
30

6
.0

33
8

.0
26

4
.0

31
4

.0
31

1
.0

30
9

.0
29

7
.0

31
3

.0
41

5
.0

28
5

.0
33

3
.0

28
5

.0
33

1
.0

28
6

.0
29

8
15

A
T
M

.0
33

7
.0

27
7

.0
28

6
.0

30
7

.0
33

4
.0

27
6

.0
37

1
.0

27
8

.0
41

7
.0

35
8

.0
36

0
.0

36
0

.0
33

7
.0

38
0

.0
30

5
.0

36
9

.0
33

5
.0

34
3

.0
33

3
.0

32
5

on
e

w
ee

k
ah

ea
d

1
P
D
V

.0
19

9
.0

19
4

.0
19

7
.0

19
2

.0
22

3
.0

25
7

.0
24

0
.0

17
3

.0
28

6
.0

23
5

.0
21

7
.0

24
8

.0
20

6
.0

37
9

.0
19

9
.0

27
6

.0
19

4
.0

27
3

.0
18

6
.0

23
4

2
A
N
P

1
.0

20
6

.0
21

1
.0

20
7

.0
20

4
.0

24
6

.0
26

8
.0

26
9

.0
18

4
.0

29
3

.0
25

4
.0

23
6

.0
25

6
.0

21
0

.0
39

2
.0

21
6

.0
29

1
.0

21
0

.0
28

6
.0

20
4

.0
24

4
3

A
N
P

2
.0

20
7

.0
20

8
.0

20
6

.0
20

6
.0

23
5

.0
24

8
.0

26
6

.0
18

6
.0

28
5

.0
24

6
.0

23
3

.0
24

7
.0

21
0

.0
39

3
.0

22
1

.0
28

6
.0

21
0

.0
27

6
.0

20
4

.0
24

5
4

N
P

.0
20

9
.0

21
4

.0
20

7
.0

20
4

.0
25

1
.0

26
9

.0
29

3
.0

18
5

.0
29

7
.0

25
6

.0
23

6
.0

25
4

.0
21

4
.0

39
5

.0
21

9
.0

29
2

.0
22

3
.0

29
3

.0
20

9
.0

25
5

5
P
A
V

1
.0

20
6

.0
21

1
.0

21
1

.0
21

3
.0

24
0

.0
24

8
.0

26
7

.0
19

3
.0

29
1

.0
25

1
.0

22
7

.0
24

2
.0

21
9

.0
43

3
.0

22
8

.0
30

3
.0

22
7

.0
28

5
.0

22
0

.0
25

8
6

P
A
V

2
.0

20
1

.0
21

4
.0

21
0

.0
21

0
.0

22
9

.0
25

3
.0

27
0

.0
18

7
.0

28
0

.0
26

1
.0

23
5

.0
23

9
.0

21
2

.0
42

6
.0

22
6

.0
28

4
.0

21
6

.0
26

4
.0

20
8

.0
25

7
7

P
A
B
V

1
.0

20
4

.0
21

2
.0

21
2

.0
21

3
.0

24
1

.0
24

6
.0

26
8

.0
20

1
.0

29
1

.0
24

9
.0

22
5

.0
24

4
.0

23
0

.0
42

7
.0

23
7

.0
30

7
.0

22
9

.0
28

1
.0

22
8

.0
26

2
8

P
A
B
V

2
.0

19
8

.0
21

6
.0

20
9

.0
20

4
.0

22
7

.0
24

8
.0

26
7

.0
19

1
.0

28
4

.0
26

1
.0

23
7

.0
24

2
.0

21
8

.0
41

3
.0

23
2

.0
28

4
.0

22
4

.0
26

3
.0

21
1

.0
25

7
9

R
K

.0
20

4
.0

36
6

.0
27

1
.0

31
0

.0
26

4
.0

22
7

.0
53

2
.0

35
5

.0
34

8
.0

34
6

.0
62

9
.0

39
5

.0
81

9
.0

45
4

.0
39

2
.0

36
0

.0
42

7
.0

27
4

.0
31

5
.0

37
3

10
R
K
N
P

.0
20

4
.0

21
8

.0
20

8
.0

21
6

.0
22

8
.0

24
9

.0
27

0
.0

19
1

.0
28

7
.0

26
0

.0
24

8
.0

24
6

.0
21

3
.0

40
2

.0
22

6
.0

28
3

.0
21

5
.0

25
7

.0
20

9
.0

26
3

11
T
S
R
V

.0
20

1
.0

35
0

.0
26

3
.0

30
9

.0
26

2
.0

25
7

.0
51

8
.0

36
9

.0
35

7
.0

36
3

.0
62

5
.0

42
0

.0
81

4
.0

45
0

.0
38

4
.0

36
4

.0
42

1
.0

29
9

.0
33

2
.0

38
8

12
S
B
V

.0
20

0
.0

21
4

.0
20

7
.0

20
8

.0
22

8
.0

23
8

.0
27

1
.0

18
9

.0
27

9
.0

25
6

.0
24

3
.0

23
5

.0
21

1
.0

42
6

.0
22

1
.0

29
2

.0
21

1
.0

26
0

.0
20

5
.0

25
5

13
R
V

5
.0

20
9

.0
22

1
.0

20
6

.0
21

7
.0

22
2

.0
25

3
.0

27
3

.0
18

5
.0

27
9

.0
26

0
.0

24
7

.0
24

1
.0

21
4

.0
42

1
.0

22
4

.0
30

3
.0

21
9

.0
25

5
.0

20
4

.0
26

5
14

S
R
V

5
.0

20
2

.0
21

0
.0

20
6

.0
21

1
.0

23
0

.0
24

8
.0

27
0

.0
18

8
.0

28
1

.0
25

6
.0

24
1

.0
23

5
.0

21
0

.0
42

2
.0

22
1

.0
30

1
.0

21
2

.0
26

2
.0

20
7

.0
25

9
15

A
T
M

.0
23

9
.0

20
2

.0
18

3
.0

21
8

.0
25

7
.0

18
7

.0
30

2
.0

16
3

.0
35

4
.0

28
5

.0
24

7
.0

26
1

.0
22

7
.0

38
2

.0
21

5
.0

31
0

.0
23

8
.0

25
8

.0
20

9
.0

29
8

on
e

m
on

th
ah

ea
d

1
P
D
V

.0
21

2
.0

21
2

.0
23

0
.0

23
7

.0
25

7
.0

29
2

.0
29

8
.0

20
2

.0
38

0
.0

33
0

.0
23

5
.0

27
5

.0
20

3
.0

54
4

.0
27

1
.0

37
8

.0
23

5
.0

33
5

.0
20

5
.0

36
6

2
A
N
P

1
.0

21
0

.0
22

5
.0

23
4

.0
24

6
.0

27
6

.0
30

3
.0

31
7

.0
21

4
.0

37
8

.0
34

4
.0

25
0

.0
27

6
.0

20
9

.0
55

8
.0

28
3

.0
39

7
.0

24
7

.0
34

4
.0

21
5

.0
37

3
3

A
N
P

2
.0

21
2

.0
22

4
.0

23
0

.0
24

5
.0

26
9

.0
28

7
.0

31
0

.0
21

8
.0

36
7

.0
34

2
.0

24
5

.0
26

9
.0

21
4

.0
55

9
.0

28
5

.0
40

0
.0

24
6

.0
33

5
.0

21
9

.0
38

0
4

N
P

.0
21

1
.0

22
6

.0
23

8
.0

24
7

.0
27

1
.0

30
8

.0
34

1
.0

21
7

.0
38

0
.0

34
1

.0
25

0
.0

26
8

.0
20

8
.0

55
8

.0
28

7
.0

39
5

.0
25

9
.0

35
0

.0
22

0
.0

37
8

5
P
A
V

1
.0

20
7

.0
22

8
.0

23
8

.0
24

9
.0

27
8

.0
28

7
.0

31
3

.0
21

9
.0

37
4

.0
34

3
.0

23
2

.0
26

8
.0

22
6

.0
61

1
.0

29
9

.0
41

0
.0

27
4

.0
34

1
.0

22
6

.0
38

9
6

P
A
V

2
.0

20
6

.0
23

2
.0

22
8

.0
24

1
.0

26
2

.0
30

2
.0

31
6

.0
21

8
.0

36
1

.0
34

9
.0

24
3

.0
25

6
.0

22
6

.0
57

8
.0

29
0

.0
39

8
.0

25
4

.0
31

5
.0

22
4

.0
39

2
7

P
A
B
V

1
.0

19
8

.0
22

4
.0

23
6

.0
24

6
.0

27
7

.0
28

1
.0

31
5

.0
22

9
.0

37
3

.0
34

0
.0

22
8

.0
26

6
.0

23
7

.0
59

3
.0

30
9

.0
40

8
.0

27
8

.0
33

1
.0

23
2

.0
38

9
8

P
A
B
V

2
.0

20
1

.0
22

9
.0

22
6

.0
23

1
.0

25
8

.0
29

4
.0

31
1

.0
22

3
.0

36
1

.0
35

0
.0

24
2

.0
25

9
.0

23
4

.0
55

9
.0

29
8

.0
40

0
.0

26
7

.0
31

2
.0

22
8

.0
38

9
9

R
K

.0
20

6
.0

40
8

.0
24

7
.0

28
0

.0
27

4
.0

23
6

.0
61

6
.0

33
4

.0
34

2
.0

35
9

.0
61

6
.0

42
4

.0
77

4
.0

50
9

.0
44

7
.0

40
9

.0
48

1
.0

32
8

.0
31

4
.0

43
2

10
R
K
N
P

.0
20

8
.0

22
6

.0
22

4
.0

24
4

.0
25

1
.0

30
1

.0
32

0
.0

21
6

.0
35

9
.0

34
4

.0
25

6
.0

25
5

.0
23

2
.0

55
8

.0
27

8
.0

39
4

.0
25

5
.0

30
8

.0
22

2
.0

41
1

11
T
S
R
V

.0
20

1
.0

38
7

.0
23

6
.0

26
8

.0
25

9
.0

24
7

.0
59

4
.0

34
5

.0
33

5
.0

35
7

.0
61

8
.0

44
2

.0
76

4
.0

49
3

.0
44

6
.0

42
1

.0
47

0
.0

32
8

.0
32

6
.0

44
1

12
S
B
V

.0
20

5
.0

22
2

.0
22

5
.0

23
9

.0
25

6
.0

28
8

.0
31

5
.0

21
7

.0
35

4
.0

33
7

.0
24

5
.0

25
1

.0
22

6
.0

57
3

.0
28

7
.0

41
5

.0
24

9
.0

31
7

.0
22

0
.0

39
3

13
R
V

5
.0

21
5

.0
23

8
.0

22
6

.0
25

3
.0

25
1

.0
29

8
.0

31
5

.0
21

0
.0

36
0

.0
34

3
.0

25
0

.0
25

4
.0

23
1

.0
57

8
.0

29
2

.0
41

3
.0

24
4

.0
30

5
.0

21
8

.0
41

0
14

S
R
V

5
.0

21
0

.0
22

3
.0

22
4

.0
24

3
.0

25
9

.0
29

8
.0

31
3

.0
21

5
.0

36
1

.0
34

0
.0

24
7

.0
25

0
.0

22
4

.0
58

1
.0

28
4

.0
42

3
.0

24
6

.0
31

4
.0

22
0

.0
40

1
15

A
T
M

.0
22

1
.0

24
8

.0
22

6
.0

24
6

.0
27

2
.0

25
4

.0
33

6
.0

22
7

.0
37

9
.0

39
3

.0
26

1
.0

28
8

.0
23

4
.0

52
9

.0
27

6
.0

36
0

.0
23

9
.0

30
3

.0
25

0
.0

38
6

66

Electronic copy available at: https://ssrn.com/abstract=2713322



T
ab

le
28

:
M

C
S

p
-v

al
u
es

,
Q

L
IK

E
lo

ss
fu

n
ct

io
n
,

15
in

d
iv

id
u
al

fo
re

ca
st

s,
th

re
e

h
or

iz
on

s,
tr

ad
e

d
at

a

A
A

A
X

P
B

A
C

A
T

D
D

D
IS

G
E

H
D

IB
M

J
N

J
J
P

M
K

O
M

C
D

M
M

M
M

R
K

P
G

T
U

T
X

W
M

T
X

O
M

on
e

d
ay

ah
ea

d
1

11
1

1
1

11
1

8
1

1
1

9
1

1
1

1
1

1
1

1
1

.0
0

15
.0

0
11

.0
0

11
.0

0
11

.0
0

11
.0

0
1

.0
0

11
.0

0
11

.0
0

11
.0

0
11

.0
0

11
.0

0
11

.0
0

9
.0

0
11

.0
0

9
.0

0
9

.0
0

11
.0

0
11

.0
0

11
.0

0
11

.0
0

7
.0

0
9

.0
0

9
.0

0
9

.0
0

9
.0

0
11

.0
0

9
.0

0
9

.0
0

9
.0

0
9

.0
0

9
.0

0
9

.0
0

11
.0

0
9

.0
0

11
.0

0
11

.0
0

15
.0

1
4

.0
0

9
.0

0
9

.0
0

13
.0

0
4

.0
0

6
.0

0
10

.0
0

4
.0

0
2

.0
0

4
.0

1
10

.0
0

15
.0

0
15

.0
0

15
.0

0
15

.0
4

15
.0

0
7

.0
0

10
.0

0
15

.0
0

9
.0

1
5

.0
0

15
.0

0
15

.0
0

5
.0

0
10

.0
0

10
.0

0
5

.0
0

15
.0

0
4

.0
0

15
.0

2
15

.0
0

4
.0

0
13

.0
0

2
.0

0
4

.0
4

7
.0

0
5

.0
0

8
.0

0
13

.0
0

8
.0

1
9

.0
0

7
.0

0
4

.0
0

9
.0

0
13

.0
0

13
.0

0
6

.0
0

2
.0

0
9

.0
0

14
.0

2
7

.0
0

2
.0

0
10

.0
0

4
.0

0
1

.0
4

1
.0

0
13

.0
0

15
.0

0
10

.0
1

13
.0

1
2

.0
0

14
.0

0
7

.0
6

4
.0

0
2

.0
0

8
.0

0
7

.0
4

5
.0

0
3

.0
0

3
.0

2
4

.0
0

10
.0

0
14

.0
2

12
.0

0
2

.0
4

4
.0

0
8

.0
0

13
.0

0
14

.0
2

4
.0

1
15

.0
0

6
.0

0
13

.1
5

11
.2

5
7

.0
0

14
.0

0
13

.0
4

7
.0

0
6

.0
0

2
.0

3
14

.2
2

1
.0

0
4

.0
2

10
.0

0
10

.0
4

2
.0

0
10

.0
0

7
.0

0
7

.0
2

6
.0

1
7

.0
0

8
.0

0
10

.1
5

10
.5

2
8

.0
0

12
.0

0
15

.3
1

3
.0

1
13

.0
0

6
.0

3
5

.2
2

5
.0

0
6

.1
8

13
.0

0
13

.0
4

8
.0

0
6

.0
0

6
.0

0
5

.0
2

10
.0

1
6

.0
0

5
.0

0
5

.1
5

6
.5

2
5

.0
0

5
.0

0
14

.4
2

10
.0

1
5

.0
0

12
.0

3
2

.2
2

3
.0

0
2

.1
8

14
.0

3
7

.6
0

5
.0

0
14

.0
0

4
.0

0
6

.0
2

14
.0

1
10

.0
1

10
.0

0
8

.2
9

14
.5

2
12

.0
0

7
.0

2
8

.7
1

14
.0

1
8

.0
0

8
.3

2
13

.3
6

7
.0

8
8

.1
8

3
.1

2
3

.6
0

10
.0

0
4

.0
0

14
.0

0
12

.0
2

7
.0

1
1

.0
1

13
.0

0
14

.7
5

8
.5

2
3

.0
0

3
.0

7
4

.8
5

1
.0

7
7

.0
0

13
.3

2
12

.3
6

14
.0

8
12

.5
0

8
.1

2
6

.7
5

3
.0

1
12

.0
0

5
.0

0
2

.0
2

12
.0

1
8

.0
1

4
.0

0
2

.7
7

2
.5

2
6

.0
0

2
.0

7
3

.8
5

6
.0

7
10

.0
1

10
.3

7
6

.3
6

13
.4

3
5

.5
0

6
.1

2
5

.7
7

13
.0

1
2

.0
1

3
.0

0
8

.0
3

5
.0

2
3

.0
3

12
.0

2
6

.7
7

3
.8

3
14

.0
0

4
.0

8
2

.8
5

8
.0

7
14

.0
6

7
.4

0
8

.3
6

6
.5

7
7

.7
0

1
.1

2
8

.7
7

14
.0

3
3

.0
2

12
.0

0
4

.0
3

2
.0

2
14

.1
3

2
.0

3
12

.7
7

12
.8

3
1

.7
4

1
.0

8
12

.8
5

12
.1

7
12

.0
6

5
.6

9
3

.3
6

8
.5

7
3

.7
0

7
.3

3
14

.7
7

6
.4

4
15

.0
2

2
.0

0
3

.0
3

3
.8

3
13

.1
3

3
.1

0
3

1
1

1
15

1
15

1
1

1
13

1
15

1
1

1
1

1
12

1
1

1
5

1
12

1
12

1
1

1
1

1
1

1
1

1
12

1
1

1
1

on
e

w
ee

k
ah

ea
d

.0
1

15
.0

0
11

.0
0

9
.0

0
9

.0
0

9
.0

0
4

.0
0

9
.0

0
11

.0
0

11
.0

0
11

.0
0

11
.0

0
11

.0
0

9
.0

0
7

.0
0

9
.0

0
9

.0
0

11
.0

0
4

.0
0

11
.0

0
9

.0
6

4
.0

0
9

.0
0

11
.0

0
11

.0
0

4
.0

0
2

.0
0

11
.0

0
9

.0
0

15
.0

0
9

.0
0

9
.0

0
9

.0
0

11
.0

0
5

.0
0

11
.0

0
11

.0
0

9
.0

0
5

.0
0

9
.0

0
11

.0
6

5
.0

0
13

.0
0

6
.0

0
5

.0
0

5
.0

0
6

.0
0

4
.0

0
7

.0
1

9
.0

0
6

.0
0

13
.0

1
4

.0
7

7
.0

0
11

.0
0

8
.0

0
13

.0
0

7
.0

0
2

.0
0

5
.0

0
15

.1
5

13
.0

0
10

.0
7

8
.0

0
10

.0
0

7
.0

0
1

.0
0

15
.0

0
8

.0
1

4
.0

0
15

.0
0

14
.0

1
2

.0
8

15
.0

0
9

.0
0

7
.0

0
7

.0
0

5
.0

0
11

.0
0

7
.0

0
6

.1
5

3
.0

0
8

.0
7

5
.0

0
13

.0
0

11
.0

0
13

.0
0

13
.0

0
5

.0
1

2
.0

0
10

.0
0

12
.0

1
15

.0
8

8
.0

0
13

.0
0

6
.0

0
5

.0
0

8
.0

0
7

.0
0

8
.0

0
13

.2
0

2
.0

0
6

.0
7

14
.0

0
7

.0
0

2
.0

0
8

.0
0

14
.0

6
10

.0
1

10
.0

0
14

.0
0

10
.0

1
10

.0
8

5
.0

0
8

.0
0

5
.0

2
14

.0
0

15
.0

5
3

.0
0

6
.0

0
8

.2
0

7
.0

0
4

.0
7

7
.0

0
6

.1
4

15
.0

0
11

.0
0

10
.0

6
6

.0
5

7
.0

0
13

.0
0

8
.0

1
3

.0
8

4
.0

0
6

.0
0

10
.1

0
15

.0
0

13
.1

0
1

.0
0

4
.0

0
14

.2
0

9
.0

0
12

.0
7

12
.0

0
14

.1
4

14
.0

2
7

.0
0

12
.0

6
12

.0
5

5
.0

0
12

.0
0

2
.0

1
7

.5
9

10
.0

0
12

.0
0

13
.1

0
4

.0
0

4
.3

9
9

.0
0

14
.0

0
5

.4
4

10
.0

0
5

.0
7

13
.0

0
12

.1
4

3
.0

2
5

.0
0

2
.1

0
4

.1
2

3
.0

0
8

.0
1

15
.0

3
1

.5
9

13
.0

0
14

.0
0

3
.1

0
2

.0
0

6
.3

9
8

.0
0

10
.0

0
7

.6
0

14
.0

0
2

.0
7

3
.0

0
15

.1
4

12
.0

7
10

.0
0

8
.1

0
3

.1
2

8
.0

0
4

.0
1

4
.0

3
5

.5
9

6
.0

0
10

.0
0

12
.1

2
12

.0
0

10
.3

9
6

.0
0

2
.0

0
12

.6
0

11
.0

1
7

.0
7

2
.0

0
3

.2
4

6
.0

7
14

.0
0

6
.1

0
14

.7
7

1
.0

0
5

.0
1

3
.0

3
8

.5
9

12
.0

0
4

.0
0

4
.4

8
3

.0
0

2
.5

5
14

.0
0

3
.0

0
4

.6
0

6
.0

1
14

.0
7

10
.0

0
2

.6
0

10
.1

6
3

.0
0

7
.1

9
2

.7
7

14
.0

2
2

.0
1

6
.1

4
13

.5
9

3
.0

0
2

.0
0

14
.6

2
6

.0
0

12
.5

5
12

.0
9

15
.0

0
10

.7
6

12
.0

1
3

.0
7

4
.0

0
4

.6
0

8
.1

6
12

.0
0

3
.2

8
13

.7
7

6
.0

2
7

.0
1

5
.1

4
6

.5
9

2
.0

0
3

.0
0

2
.6

7
8

.0
0

14
.5

5
15

.0
9

13
.0

0
2

.8
6

1
.5

5
15

.3
3

1
.0

1
8

.8
0

1
.1

6
9

.0
0

5
.5

1
1

.8
5

12
.0

6
3

.0
1

7
.8

3
14

.5
9

14
.8

2
15

.3
0

15
.6

7
10

.0
0

3
.5

5
10

.0
9

12
.0

0
3

1
8

1
1

1
15

1
1

1
13

1
15

1
1

1
15

1
13

1
1

1
1

1
12

1
1

1
1

1
1

1
1

1
1

1
13

1
1

1
1

on
e

m
on

th
ah

ea
d

.1
1

13
.0

1
9

.0
0

7
.0

1
9

.0
0

5
.0

1
6

.0
1

9
.0

1
11

.0
5

5
.0

0
15

.0
0

11
.0

0
9

.0
0

9
.0

0
7

.0
0

11
.0

3
14

.0
0

11
.0

3
5

.0
0

11
.0

0
13

.1
1

3
.0

1
11

.0
0

5
.0

1
13

.0
0

7
.0

1
10

.0
1

11
.0

1
9

.0
5

7
.0

0
8

.0
0

9
.0

0
11

.0
0

11
.0

0
5

.0
0

9
.0

3
5

.0
0

9
.0

3
7

.0
0

9
.0

0
10

.1
1

2
.0

2
13

.0
5

4
.0

2
5

.0
0

2
.0

1
8

.0
1

4
.0

1
8

.1
0

4
.0

0
6

.0
1

10
.0

0
5

.0
3

8
.0

0
14

.0
1

7
.0

6
13

.0
0

7
.0

3
4

.0
0

8
.0

1
11

.1
1

14
.0

2
6

.0
5

9
.0

2
11

.0
0

3
.0

1
5

.0
1

10
.0

1
7

.1
0

15
.0

3
9

.0
1

14
.0

2
15

.0
3

10
.0

0
6

.0
1

8
.0

6
12

.0
0

5
.2

9
2

.0
0

15
.0

1
14

.3
7

4
.0

2
15

.0
5

2
.0

2
4

.0
0

9
.0

1
13

.0
1

15
.0

1
15

.1
0

2
.0

3
11

.0
1

13
.0

2
3

.0
3

12
.0

0
13

.0
1

6
.0

6
7

.0
0

8
.5

9
3

.0
0

7
.0

1
9

.3
7

15
.0

2
8

.0
5

3
.0

2
7

.0
1

4
.0

1
12

.0
1

7
.0

1
3

.1
0

1
.0

3
5

.0
1

4
.0

2
2

.0
3

13
.0

0
12

.0
2

5
.0

6
11

.0
0

6
.6

9
1

.0
0

6
.0

1
6

.3
7

5
.0

2
5

.0
5

11
.0

4
3

.0
1

6
.0

1
14

.0
7

12
.0

1
6

.1
0

6
.0

3
10

.0
2

2
.0

2
7

.0
3

15
.0

0
10

.0
2

13
.0

6
8

.0
0

10
.6

9
9

.0
0

5
.0

1
12

.3
7

10
.0

2
4

.0
5

6
.0

4
10

.1
1

15
.0

1
4

.0
7

6
.0

1
5

.1
0

3
.0

3
3

.0
2

15
.0

6
1

.0
3

6
.0

0
3

.0
2

4
.0

6
6

.0
6

4
.6

9
11

.0
0

12
.0

1
5

.5
3

1
.0

2
10

.6
6

1
.0

4
2

.1
1

14
.0

1
7

.0
7

13
.0

1
12

.1
0

14
.0

3
2

.0
2

6
.0

6
4

.0
3

7
.0

1
8

.2
7

3
.0

6
3

.0
6

12
.6

9
12

.0
0

3
.0

1
8

.5
3

6
.0

2
3

.6
6

8
.0

4
14

.3
8

8
.0

1
2

.0
7

2
.0

1
4

.1
0

13
.0

3
13

.0
2

8
.0

6
8

.0
3

14
.0

1
2

.2
7

12
.0

8
9

.0
6

14
.6

9
6

.0
0

4
.0

1
7

.5
4

12
.0

2
12

.7
4

13
.0

4
6

.3
8

11
.3

2
3

.1
0

5
.0

1
10

.1
0

8
.0

3
4

.0
2

3
.0

6
6

.0
3

3
.0

1
4

.3
0

14
.0

8
10

.0
6

2
.6

9
14

.0
3

14
.0

1
15

.5
4

9
.0

2
2

.7
5

15
.0

4
15

.3
8

12
.3

6
1

.1
0

14
.0

1
2

.1
0

10
.6

1
7

.3
5

12
.3

7
13

.2
4

5
.1

4
15

.3
3

2
.0

8
4

.1
8

3
.6

9
8

.0
3

13
.0

1
3

.7
7

11
.3

9
14

.7
5

12
.0

4
12

.7
1

1
.3

6
15

.1
3

3
.2

3
14

.1
0

12
.6

1
14

.5
2

1
.3

7
10

.3
3

2
.1

4
1

.4
9

10
.0

8
2

.6
3

13
.6

9
10

.0
3

10
.0

1
4

.7
7

8
.4

1
7

.8
7

10
.4

7
1

.8
6

10
.3

6
11

.1
3

8
.2

3
13

.1
0

9
.6

1
12

.5
2

5
.6

3
12

.3
3

4
.1

4
9

.6
6

15
.5

5
1

.7
2

15
.8

4
13

.0
3

2
.3

2
2

1
7

1
1

1
14

1
8

1
13

1
9

1
1

1
1

1
11

1
1

1
7

1
14

1
1

1
11

1
1

1
15

1
1

1
15

1
1

1
1

N
ot

es
:

M
C

S
p
-v

al
u
es

fo
r

th
e

Q
L

IK
E

lo
ss

fu
n
ct

io
n
.

In
ea

ch
st

o
ck

su
b
-p

an
el

w
e

re
p

or
t

th
e

co
rr

es
p

o
n
d
in

g
p
-v

al
u
es

on
th

e
le

ft
an

d
o
n

th
e

ri
g
h
t

w
e

li
st

th
e

es
ti

m
a
to

r
n
u
m

b
er

s
ra

n
k
ed

in
th

e
as

ce
n
d
in

g
or

d
er

s
of

th
e

p
-v

a
lu

es
.

E
st

im
a
to

rs
1

to
1
5

ar
e:

P
D

V
,
A
N
P

1,
A
N
P

2,
N

P
,
P
A
V

1,
P
A
V

2,
P
A
B
V

1,
P
A
B
V

2,
R

K
,

R
K

N
P

,
T

S
R

V
,

S
B

V
,
R
V

5,
S
R
V

5
an

d
A

T
M

.

67

Electronic copy available at: https://ssrn.com/abstract=2713322



T
ab

le
29

:
R

M
S
E

va
lu

es
,

14
co

m
b
in

at
io

n
vo

la
ti

li
ty

es
ti

m
at

or
s,

th
re

e
h
or

iz
on

s,
tr

ad
e

d
at

a

A
A

A
X

P
B

A
C

A
T

D
D

D
IS

G
E

H
D

IB
M

J
N

J
J
P

M
K

O
M

C
D

M
M

M
M

R
K

P
G

T
U

T
X

W
M

T
X

O
M

on
e

d
ay

ah
ea

d
1

P
D
V

.0
04

8
.0

03
1

.0
02

8
.0

03
9

.0
03

0
.0

02
9

.0
04

9
.0

02
1

.0
02

1
.0

01
3

.0
04

1
.0

01
3

.0
01

2
.0

06
7

.0
02

3
.0

02
1

.0
01

4
.0

02
8

.0
01

0
.0

02
6

2
S
B
V

.0
04

9
.0

03
1

.0
02

9
.0

04
1

.0
03

0
.0

02
6

.0
05

2
.0

02
1

.0
02

1
.0

01
3

.0
04

1
.0

01
2

.0
01

2
.0

07
4

.0
02

4
.0

02
2

.0
01

5
.0

02
7

.0
01

1
.0

02
8

3
A
T
M

.0
06

0
.0

03
1

.0
02

8
.0

04
2

.0
03

2
.0

02
4

.0
05

4
.0

02
1

.0
02

6
.0

01
6

.0
04

9
.0

01
4

.0
01

3
.0

06
8

.0
02

4
.0

02
3

.0
01

7
.0

02
8

.0
01

3
.0

02
7

4
P
D
V

+
S
B
V

.0
04

7
.0

03
0

.0
02

8
.0

03
9

.0
02

9
.0

02
7

.0
05

0
.0

02
1

.0
02

0
.0

01
3

.0
04

0
.0

01
2

.0
01

2
.0

06
9

.0
02

3
.0

02
1

.0
01

4
.0

02
7

.0
01

0
.0

02
6

5
P
D
V

+
A
T
M

.0
04

6
.0

02
7

.0
02

5
.0

03
6

.0
02

7
.0

02
2

.0
04

7
.0

01
8

.0
02

1
.0

01
3

.0
03

8
.0

01
1

.0
01

1
.0

06
5

.0
02

1
.0

02
0

.0
01

4
.0

02
4

.0
01

0
.0

02
4

6
S
B
V

+
A
T
M

.0
04

6
.0

02
8

.0
02

6
.0

03
7

.0
02

7
.0

02
2

.0
04

8
.0

01
8

.0
02

0
.0

01
3

.0
03

9
.0

01
1

.0
01

1
.0

06
8

.0
02

2
.0

02
0

.0
01

4
.0

02
5

.0
01

0
.0

02
5

7
D
u
ra
ti
on

4
.0

04
8

.0
03

1
.0

02
8

.0
04

0
.0

03
1

.0
02

8
.0

05
1

.0
02

1
.0

02
1

.0
01

3
.0

04
1

.0
01

2
.0

01
2

.0
06

8
.0

02
3

.0
02

1
.0

01
4

.0
02

8
.0

01
0

.0
02

7
8

S
B
V

+
D
u
ra
ti
on

4
.0

04
8

.0
03

1
.0

02
8

.0
04

0
.0

03
0

.0
02

7
.0

05
1

.0
02

1
.0

02
1

.0
01

3
.0

04
1

.0
01

2
.0

01
2

.0
06

8
.0

02
3

.0
02

1
.0

01
4

.0
02

7
.0

01
0

.0
02

7
9

A
T
M

+
D
u
ra
ti
on

4
.0

04
6

.0
03

0
.0

02
7

.0
03

9
.0

02
9

.0
02

6
.0

04
9

.0
02

0
.0

02
0

.0
01

3
.0

03
9

.0
01

2
.0

01
2

.0
06

7
.0

02
2

.0
02

0
.0

01
4

.0
02

6
.0

01
0

.0
02

6
10

R
V

10
.0

04
9

.0
03

0
.0

02
8

.0
04

1
.0

02
9

.0
02

6
.0

05
1

.0
02

1
.0

02
1

.0
01

3
.0

04
1

.0
01

2
.0

01
3

.0
07

0
.0

02
3

.0
02

1
.0

01
5

.0
02

7
.0

01
1

.0
02

8
11

P
D
V

+
R
V

10
.0

04
9

.0
03

0
.0

02
8

.0
04

1
.0

02
9

.0
02

6
.0

05
0

.0
02

1
.0

02
0

.0
01

3
.0

04
1

.0
01

2
.0

01
3

.0
06

9
.0

02
3

.0
02

1
.0

01
4

.0
02

7
.0

01
0

.0
02

8
12

A
T
M

+
R
V

10
.0

04
8

.0
02

9
.0

02
8

.0
04

1
.0

02
9

.0
02

5
.0

05
0

.0
02

0
.0

02
0

.0
01

3
.0

04
0

.0
01

2
.0

01
3

.0
06

9
.0

02
3

.0
02

1
.0

01
4

.0
02

6
.0

01
0

.0
02

8
13

D
u
ra
ti
on

4
+
R
V

10
.0

04
8

.0
03

0
.0

02
8

.0
04

1
.0

02
9

.0
02

6
.0

05
0

.0
02

1
.0

02
0

.0
01

3
.0

04
0

.0
01

2
.0

01
2

.0
06

9
.0

02
3

.0
02

1
.0

01
4

.0
02

7
.0

01
0

.0
02

7
14

A
ll

.0
04

8
.0

02
9

.0
02

8
.0

04
0

.0
02

9
.0

02
5

.0
05

0
.0

02
0

.0
02

0
.0

01
3

.0
04

0
.0

01
1

.0
01

2
.0

06
8

.0
02

3
.0

02
1

.0
01

4
.0

02
6

.0
01

0
.0

02
7

on
e

w
ee

k
ah

ea
d

1
P
D
V

.0
18

8
.0

12
1

.0
10

5
.0

14
8

.0
11

7
.0

10
9

.0
20

1
.0

07
5

.0
09

0
.0

05
1

.0
15

2
.0

05
1

.0
04

1
.0

28
5

.0
08

9
.0

08
3

.0
05

1
.0

11
3

.0
03

7
.0

11
0

2
S
B
V

.0
19

2
.0

13
3

.0
11

2
.0

16
1

.0
12

1
.0

10
8

.0
22

7
.0

08
3

.0
09

5
.0

05
8

.0
17

3
.0

05
1

.0
04

4
.0

33
4

.0
09

8
.0

09
5

.0
05

7
.0

11
6

.0
04

2
.0

12
5

3
A
T
M

.0
22

8
.0

14
1

.0
10

4
.0

16
7

.0
13

4
.0

09
3

.0
22

5
.0

06
8

.0
11

0
.0

06
3

.0
19

7
.0

05
4

.0
04

6
.0

29
1

.0
09

2
.0

08
8

.0
06

3
.0

11
6

.0
04

3
.0

13
4

4
P
D
V

+
S
B
V

.0
18

6
.0

12
6

.0
10

7
.0

15
4

.0
11

7
.0

10
3

.0
21

1
.0

07
8

.0
09

0
.0

05
4

.0
16

2
.0

05
0

.0
04

1
.0

29
7

.0
09

3
.0

08
7

.0
05

3
.0

11
2

.0
03

9
.0

11
6

5
P
D
V

+
A
T
M

.0
18

6
.0

12
1

.0
09

5
.0

14
7

.0
11

0
.0

08
4

.0
19

8
.0

06
0

.0
09

0
.0

05
3

.0
15

4
.0

04
4

.0
04

0
.0

27
9

.0
08

2
.0

07
9

.0
05

2
.0

10
3

.0
03

3
.0

11
5

6
S
B
V

+
A
T
M

.0
18

5
.0

13
0

.0
10

3
.0

15
5

.0
11

5
.0

09
2

.0
20

8
.0

06
9

.0
09

0
.0

05
6

.0
16

7
.0

04
8

.0
04

1
.0

29
7

.0
08

8
.0

08
3

.0
05

4
.0

10
9

.0
03

7
.0

11
9

7
D
u
ra
ti
on

4
.0

19
0

.0
12

8
.0

10
8

.0
15

5
.0

12
3

.0
11

0
.0

21
1

.0
07

7
.0

09
2

.0
05

4
.0

16
0

.0
05

2
.0

04
2

.0
28

9
.0

09
3

.0
08

5
.0

05
4

.0
11

7
.0

04
0

.0
11

5
8

S
B
V

+
D
u
ra
ti
on

4
.0

18
9

.0
12

8
.0

10
8

.0
15

6
.0

12
2

.0
10

8
.0

21
3

.0
07

8
.0

09
2

.0
05

4
.0

16
2

.0
05

1
.0

04
2

.0
29

1
.0

09
4

.0
08

6
.0

05
5

.0
11

5
.0

04
0

.0
11

6
9

A
T
M

+
D
u
ra
ti
on

4
.0

18
5

.0
12

5
.0

10
4

.0
15

3
.0

11
7

.0
10

0
.0

20
6

.0
07

1
.0

09
1

.0
05

4
.0

15
4

.0
04

9
.0

04
1

.0
28

5
.0

08
9

.0
08

3
.0

05
4

.0
11

2
.0

03
8

.0
11

4
10

R
V

10
.0

19
0

.0
13

2
.0

10
7

.0
16

1
.0

12
0

.0
10

8
.0

22
4

.0
08

4
.0

09
5

.0
05

9
.0

17
4

.0
05

3
.0

05
4

.0
30

6
.0

09
9

.0
08

9
.0

06
2

.0
11

5
.0

04
3

.0
12

8
11

P
D
V

+
R
V

10
.0

18
9

.0
13

1
.0

10
7

.0
15

9
.0

11
9

.0
10

6
.0

22
1

.0
08

2
.0

09
3

.0
05

8
.0

17
2

.0
05

2
.0

05
1

.0
30

2
.0

09
8

.0
08

8
.0

06
0

.0
11

4
.0

04
2

.0
12

5
12

A
T
M

+
R
V

10
.0

18
7

.0
13

1
.0

10
6

.0
15

8
.0

11
8

.0
10

5
.0

22
0

.0
08

1
.0

09
3

.0
05

8
.0

17
1

.0
05

2
.0

05
1

.0
30

2
.0

09
7

.0
08

7
.0

06
0

.0
11

3
.0

04
2

.0
12

6
13

D
u
ra
ti
on

4
+
R
V

10
.0

18
9

.0
13

0
.0

10
6

.0
15

8
.0

12
0

.0
10

5
.0

21
9

.0
08

0
.0

09
2

.0
05

6
.0

16
9

.0
05

1
.0

04
7

.0
29

6
.0

09
7

.0
08

7
.0

05
8

.0
11

4
.0

04
1

.0
12

2
14

A
ll

.0
18

7
.0

12
9

.0
10

5
.0

15
6

.0
11

8
.0

10
3

.0
21

6
.0

07
9

.0
09

1
.0

05
6

.0
16

6
.0

05
1

.0
04

6
.0

29
4

.0
09

5
.0

08
6

.0
05

8
.0

11
3

.0
04

0
.0

12
1

on
e

m
on

th
ah

ea
d

1
P
D
V

.0
84

1
.0

54
7

.0
48

6
.0

71
3

.0
52

0
.0

47
2

.0
86

1
.0

35
6

.0
42

8
.0

25
9

.0
69

6
.0

23
1

.0
17

2
.1

14
4

.0
43

4
.0

35
8

.0
25

4
.0

52
1

.0
18

0
.0

55
7

2
S
B
V

.0
81

5
.0

59
0

.0
49

2
.0

72
6

.0
53

5
.0

50
2

.0
94

3
.0

39
0

.0
43

9
.0

27
3

.0
74

0
.0

23
0

.0
20

2
.1

27
1

.0
46

1
.0

41
2

.0
27

9
.0

52
1

.0
19

8
.0

60
3

3
A
T
M

.0
91

6
.0

69
3

.0
50

7
.0

79
9

.0
60

3
.0

47
3

.0
94

5
.0

40
8

.0
45

9
.0

29
9

.0
93

1
.0

25
3

.0
20

1
.1

15
4

.0
41

8
.0

34
7

.0
26

3
.0

54
2

.0
21

9
.0

61
7

4
P
D
V

+
S
B
V

.0
81

2
.0

56
1

.0
48

3
.0

71
8

.0
52

0
.0

46
9

.0
88

7
.0

37
0

.0
42

4
.0

26
4

.0
71

3
.0

22
5

.0
18

0
.1

16
9

.0
44

5
.0

37
8

.0
26

3
.0

51
1

.0
18

7
.0

57
5

5
P
D
V

+
A
T
M

.0
85

1
.0

58
6

.0
47

3
.0

72
2

.0
51

7
.0

42
1

.0
87

8
.0

35
5

.0
42

0
.0

27
2

.0
73

5
.0

21
9

.0
17

4
.1

13
0

.0
40

7
.0

33
7

.0
24

7
.0

50
8

.0
18

4
.0

57
7

6
S
B
V

+
A
T
M

.0
80

3
.0

61
6

.0
48

5
.0

73
2

.0
53

7
.0

46
9

.0
89

4
.0

38
7

.0
41

8
.0

27
5

.0
76

5
.0

23
2

.0
18

9
.1

16
2

.0
42

0
.0

35
6

.0
25

6
.0

51
6

.0
19

7
.0

58
7

7
D
u
ra
ti
on

4
.0

82
3

.0
56

2
.0

49
1

.0
73

3
.0

53
9

.0
48

1
.0

88
7

.0
36

9
.0

43
3

.0
26

5
.0

71
4

.0
23

1
.0

17
8

.1
15

4
.0

44
6

.0
36

7
.0

26
3

.0
53

0
.0

18
8

.0
56

5
8

S
B
V

+
D
u
ra
ti
on

4
.0

81
8

.0
56

4
.0

48
9

.0
73

1
.0

53
5

.0
47

7
.0

89
1

.0
37

2
.0

43
1

.0
26

5
.0

71
6

.0
22

9
.0

18
1

.1
15

8
.0

44
7

.0
37

2
.0

26
5

.0
52

5
.0

18
9

.0
57

0
9

A
T
M

+
D
u
ra
ti
on

4
.0

81
6

.0
56

9
.0

48
3

.0
72

9
.0

52
8

.0
46

0
.0

88
1

.0
36

7
.0

42
7

.0
26

8
.0

70
8

.0
22

6
.0

17
7

.1
14

6
.0

43
2

.0
35

7
.0

25
8

.0
52

1
.0

18
8

.0
56

7
10

R
V

10
.0

80
8

.0
61

5
.0

46
7

.0
71

3
.0

53
6

.0
49

6
.0

95
6

.0
40

8
.0

43
7

.0
28

1
.0

77
2

.0
24

7
.0

26
3

.1
17

5
.0

47
6

.0
38

6
.0

32
2

.0
52

0
.0

21
7

.0
60

6
11

P
D
V

+
R
V

10
.0

80
6

.0
60

6
.0

46
6

.0
71

1
.0

53
3

.0
48

6
.0

94
3

.0
40

0
.0

43
3

.0
27

7
.0

76
3

.0
24

3
.0

24
6

.1
16

5
.0

47
2

.0
38

2
.0

31
3

.0
51

7
.0

21
2

.0
59

9
12

A
T
M

+
R
V

10
.0

79
9

.0
61

6
.0

46
6

.0
71

0
.0

53
3

.0
48

9
.0

94
2

.0
40

6
.0

43
1

.0
27

9
.0

76
4

.0
24

5
.0

25
0

.1
16

4
.0

46
7

.0
37

9
.0

31
2

.0
51

6
.0

21
4

.0
60

2
13

D
u
ra
ti
on

4
+
R
V

10
.0

81
0

.0
59

5
.0

46
9

.0
71

4
.0

53
3

.0
47

8
.0

92
9

.0
39

0
.0

43
1

.0
27

3
.0

75
0

.0
23

8
.0

22
3

.1
15

5
.0

46
6

.0
37

8
.0

29
9

.0
51

9
.0

20
6

.0
59

0
14

A
ll

.0
80

4
.0

59
6

.0
46

8
.0

71
2

.0
53

1
.0

47
4

.0
92

2
.0

39
0

.0
42

8
.0

27
2

.0
74

4
.0

23
7

.0
21

8
.1

15
0

.0
46

0
.0

37
4

.0
29

4
.0

51
6

.0
20

5
.0

58
9

68

Electronic copy available at: https://ssrn.com/abstract=2713322



T
ab

le
30

:
M

C
S

p
-v

al
u
es

,
R

M
S
E

lo
ss

fu
n
ct

io
n
,

14
co

m
b
in

at
io

n
fo

re
ca

st
s,

th
re

e
h
or

iz
on

s,
tr

ad
e

d
at

a

A
A

A
X

P
B

A
C

A
T

D
D

D
IS

G
E

H
D

IB
M

J
N

J
J
P

M
K

O
M

C
D

M
M

M
M

R
K

P
G

T
U

T
X

W
M

T
X

O
M

on
e

d
ay

ah
ea

d
.0

0
3

.0
0

2
.0

0
2

.0
0

2
.0

0
7

.0
0

1
.0

0
3

.0
0

10
.0

0
3

.0
2

2
.0

0
3

.0
0

3
.0

0
10

.0
1

11
.0

0
3

.0
0

3
.0

0
3

.0
0

7
.0

0
3

.0
0

2
.0

0
10

.0
0

7
.0

0
8

.0
0

3
.0

0
3

.0
0

7
.0

0
13

.0
0

11
.0

0
1

.0
2

3
.0

0
2

.0
0

1
.0

0
3

.0
1

10
.0

0
2

.0
1

10
.0

0
10

.0
0

8
.0

0
2

.0
0

13
.0

0
2

.0
0

8
.0

0
7

.0
0

13
.0

1
13

.0
0

8
.0

0
2

.0
0

2
.0

0
7

.0
2

10
.0

0
13

.0
0

7
.0

0
11

.0
1

12
.0

0
10

.0
1

11
.0

0
2

.0
0

1
.0

0
10

.0
0

10
.0

0
11

.0
0

1
.0

0
4

.0
0

10
.0

1
2

.0
0

10
.0

0
11

.0
0

13
.0

0
2

.0
2

11
.0

0
10

.0
0

10
.0

0
1

.0
1

13
.0

0
7

.0
1

2
.0

0
11

.0
0

2
.0

0
1

.0
0

11
.0

0
7

.0
0

10
.0

0
10

.0
0

7
.0

1
8

.0
0

11
.0

0
7

.0
0

7
.0

0
8

.0
2

12
.0

0
11

.0
0

13
.0

0
12

.0
1

2
.0

0
8

.0
1

13
.0

0
8

.0
0

3
.0

0
11

.0
0

3
.0

0
13

.0
0

13
.0

0
13

.0
0

11
.0

1
11

.0
0

13
.0

0
10

.0
0

1
.0

0
10

.0
2

4
.0

2
7

.0
0

11
.0

0
2

.0
1

7
.0

0
11

.0
3

12
.0

0
6

.0
1

4
.0

0
4

.0
1

14
.0

0
1

.0
0

11
.0

0
11

.0
0

8
.0

1
10

.0
0

2
.0

1
8

.0
0

3
.0

0
5

.0
2

6
.0

2
8

.0
0

4
.0

0
7

.0
1

8
.0

0
4

.0
4

4
.0

0
7

.0
1

10
.0

1
13

.0
1

12
.0

6
12

.0
0

4
.0

0
1

.0
1

4
.0

2
4

.0
0

4
.0

1
14

.0
0

12
.0

0
11

.0
2

8
.0

2
4

.0
0

8
.0

0
13

.0
1

14
.0

0
13

.0
4

14
.0

0
12

.0
1

13
.0

1
8

.0
1

7
.0

6
8

.0
0

3
.0

0
12

.0
1

1
.0

2
14

.0
0

12
.0

1
12

.0
0

14
.0

0
4

.0
2

7
.0

5
14

.0
0

14
.0

0
8

.0
1

4
.0

1
12

.0
4

8
.0

0
4

.0
1

11
.0

2
12

.0
1

8
.0

7
14

.0
0

12
.0

0
3

.0
1

14
.0

2
1

.0
0

14
.0

1
4

.0
0

8
.0

0
9

.0
2

13
.0

5
1

.0
0

12
.0

0
4

.0
1

3
.0

1
14

.0
4

7
.0

0
13

.0
1

9
.0

2
7

.0
7

9
.0

7
4

.0
0

14
.0

0
14

.0
1

12
.0

2
12

.0
0

9
.0

1
9

.0
1

4
.0

0
13

.3
4

14
.0

6
12

.0
0

2
.0

2
9

.0
2

1
.0

1
1

.0
5

6
.7

8
14

.0
1

14
.0

6
6

.0
7

4
.8

5
6

.0
0

9
.0

0
9

.0
1

9
.0

2
9

.0
1

3
.0

2
1

.0
1

9
.2

0
6

.7
3

1
.4

5
9

.0
1

9
.0

5
14

.0
3

9
.0

2
9

.1
4

1
.7

8
9

.0
1

12
.1

4
14

.0
7

1
.8

5
5

.0
0

6
.0

0
6

.0
3

6
.1

5
6

.6
7

5
.0

2
6

.0
2

6
.2

0
12

.7
3

9
.4

5
6

.2
3

6
.2

4
5

.0
3

6
.0

2
6

.2
0

9
.7

8
5

.0
1

6
.5

1
9

.0
7

6
1

9
1

5
1

5
1

5
1

5
1

6
1

5
1

5
1

14
1

5
1

5
1

5
1

6
1

5
1

5
1

5
1

1
1

5
1

5
1

5

on
e

w
ee

k
ah

ea
d

.0
0

3
.0

0
10

.0
0

2
.0

1
2

.0
0

3
.0

0
2

.0
0

3
.0

0
10

.0
0

3
.0

0
2

.0
0

3
.0

0
10

.0
0

10
.0

2
10

.0
0

2
.0

0
10

.0
0

10
.0

0
7

.0
0

10
.0

0
3

.0
1

7
.0

0
11

.0
0

8
.0

1
3

.0
0

2
.0

0
1

.0
0

13
.0

0
12

.0
0

10
.0

0
10

.0
0

10
.0

0
11

.0
0

12
.0

2
11

.0
0

10
.0

0
11

.0
0

13
.0

0
8

.0
0

11
.0

4
2

.0
1

2
.0

0
2

.0
0

7
.0

1
10

.0
1

13
.0

0
7

.0
0

14
.0

0
11

.0
0

11
.0

0
3

.0
0

11
.0

0
12

.0
0

11
.0

2
2

.0
0

11
.0

0
2

.0
0

11
.0

0
2

.0
0

12
.0

4
12

.0
1

8
.0

0
12

.0
0

13
.0

1
13

.0
1

7
.0

0
10

.0
0

10
.0

0
13

.0
0

12
.0

0
13

.0
0

12
.0

0
7

.0
0

13
.0

2
13

.0
0

12
.0

0
12

.0
0

12
.0

0
13

.0
0

13
.0

4
14

.0
1

10
.0

0
13

.0
0

10
.0

1
11

.0
1

10
.0

0
13

.0
0

2
.0

0
14

.0
0

2
.0

0
14

.0
0

2
.0

0
13

.0
0

2
.0

2
12

.0
0

13
.0

0
13

.0
0

14
.0

0
10

.0
0

14
.0

4
10

.0
1

13
.0

0
14

.0
0

11
.0

1
8

.0
1

8
.0

0
8

.0
0

11
.0

0
2

.0
0

13
.0

1
12

.0
0

13
.0

0
3

.0
0

3
.0

2
6

.0
0

8
.0

0
4

.0
0

2
.0

0
1

.0
0

2
.0

4
13

.0
2

11
.0

0
3

.0
0

4
.0

1
12

.0
1

14
.0

0
11

.0
0

8
.0

0
8

.0
3

8
.0

1
11

.0
0

14
.0

0
2

.0
0

14
.0

2
14

.0
0

14
.0

0
14

.0
0

3
.0

0
11

.0
0

3
.0

4
11

.8
0

14
.0

0
8

.0
0

14
.0

1
7

.0
1

11
.0

0
12

.0
0

12
.0

0
7

.0
3

7
.0

1
6

.0
1

4
.0

0
8

.0
0

8
.0

2
8

.0
0

7
.0

0
3

.0
0

8
.0

0
14

.0
0

7
.0

4
6

.8
2

1
.0

0
7

.0
0

12
.0

1
14

.0
1

12
.0

0
4

.0
0

7
.0

0
4

.4
6

14
.0

1
8

.0
1

8
.0

0
14

.0
0

7
.0

2
4

.0
2

4
.0

2
8

.0
0

7
.0

0
3

.0
0

8
.0

4
8

.8
2

12
.0

3
6

.0
0

6
.0

1
9

.0
1

9
.0

0
14

.0
1

4
.0

0
1

.7
5

9
.0

1
4

.0
1

6
.0

0
1

.0
0

9
.0

2
7

.0
2

3
.0

2
7

.0
1

9
.0

0
9

.0
1

4
.0

4
9

.8
8

5
.0

5
4

.0
0

9
.0

1
6

.0
1

4
.0

0
9

.0
1

6
.0

0
9

.7
9

1
.0

9
7

.0
1

7
.0

0
4

.0
2

1
.0

5
3

.0
2

9
.1

1
1

.0
1

6
.0

0
12

.0
1

9
.0

4
4

.8
8

4
.0

5
9

.0
0

1
.0

1
4

.0
1

1
.0

0
6

.0
1

9
.0

0
6

.8
4

6
.1

2
9

.4
0

9
.0

0
9

.0
9

4
.0

5
9

.0
2

6
.1

1
6

.0
1

4
.0

0
4

.0
1

1
.0

4
5

.8
8

9
.7

5
1

.0
3

3
.6

9
1

.0
1

6
.2

2
3

.3
1

1
.0

6
3

.8
4

5
.1

6
5

.6
1

5
.0

0
6

.0
9

6
.1

3
1

.0
6

1
.2

0
9

.4
3

5
.0

0
6

.0
1

6
.0

4
7

1
6

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
4

1
1

1
1

1
5

1
5

1
5

1
5

1
5

1
1

1
5

1
5

1
1

on
e

m
on

th
ah

ea
d

.0
1

3
.0

1
10

.0
2

2
.0

1
3

.0
3

3
.0

0
2

.1
1

10
.0

0
12

.0
4

3
.0

2
3

.0
0

3
.0

0
12

.0
0

10
.0

0
2

.0
7

10
.0

1
12

.0
0

13
.0

9
7

.0
0

12
.0

4
2

.0
1

7
.0

1
12

.0
9

3
.0

1
9

.0
3

2
.0

0
10

.1
1

12
.0

0
10

.2
1

2
.0

2
12

.0
0

12
.0

0
10

.0
0

12
.0

0
10

.0
8

12
.0

1
10

.0
0

10
.1

7
3

.0
0

10
.0

4
12

.0
1

1
.0

1
3

.0
9

8
.0

1
7

.0
3

10
.0

0
12

.1
1

2
.0

0
11

.2
1

10
.0

2
10

.0
0

10
.0

0
11

.0
0

11
.0

0
6

.0
8

11
.0

1
2

.0
0

11
.1

7
8

.0
0

11
.0

4
3

.0
1

8
.0

1
11

.0
9

7
.0

1
8

.0
3

7
.0

0
11

.1
1

13
.0

0
14

.2
3

13
.0

2
14

.0
0

11
.0

3
14

.0
0

2
.0

0
12

.0
8

2
.0

1
11

.0
0

14
.1

7
10

.0
0

14
.0

4
10

.0
1

5
.0

1
13

.0
9

9
.5

5
6

.0
3

13
.0

0
13

.1
1

11
.0

0
13

.2
3

7
.0

3
6

.0
0

2
.0

3
13

.0
2

13
.0

0
11

.1
7

13
.0

1
14

.0
0

12
.1

7
9

.0
0

13
.0

4
14

.0
1

2
.0

1
6

.0
9

6
.5

5
2

.0
7

8
.0

0
7

.1
1

14
.0

0
6

.2
3

8
.0

3
11

.0
0

14
.1

4
3

.0
2

14
.0

0
4

.1
9

14
.0

1
13

.0
0

2
.1

7
13

.0
0

3
.0

4
11

.0
1

4
.0

1
2

.6
0

4
.7

0
5

.0
7

12
.0

0
8

.1
1

3
.0

0
2

.3
5

11
.0

3
13

.0
1

13
.1

4
7

.0
2

3
.0

0
8

.2
2

8
.0

1
4

.0
0

8
.2

8
1

.0
0

2
.0

4
6

.0
1

9
.0

2
14

.6
9

1
.7

0
13

.0
7

14
.0

0
14

.1
1

8
.0

0
3

.3
5

12
.0

3
5

.0
8

6
.1

4
1

.0
5

6
.0

9
13

.2
2

7
.0

1
8

.0
0

4
.2

8
2

.0
0

6
.0

4
13

.0
1

13
.1

5
5

.6
9

5
.7

0
4

.2
4

11
.0

0
6

.1
1

6
.0

0
8

.3
5

9
.0

3
2

.0
8

5
.1

4
2

.0
5

8
.0

9
7

.2
2

4
.0

1
7

.0
0

7
.2

8
14

.0
0

9
.0

4
4

.1
6

10
.1

5
8

.6
9

13
.7

0
10

.2
4

6
.0

4
4

.1
1

4
.0

0
9

.5
5

14
.0

3
8

.0
8

8
.1

4
6

.1
1

4
.4

9
14

.2
2

1
.0

1
6

.0
0

3
.2

8
11

.0
0

8
.0

4
5

.1
6

11
.1

5
9

.6
9

14
.8

3
14

.6
0

9
.0

5
1

.1
3

7
.0

0
7

.6
6

1
.0

5
9

.0
8

4
.4

4
8

.1
1

9
.4

9
3

.2
2

9
.1

3
9

.0
0

9
.6

5
12

.0
0

7
.0

4
8

.1
8

14
.1

5
4

.6
9

10
.8

3
1

.8
4

4
.0

5
3

.1
3

9
.0

2
4

.6
9

4
.0

5
7

.0
8

7
.5

3
9

.1
1

7
.4

9
9

.2
2

6
.2

1
1

.0
0

6
.6

5
6

.3
3

4
.0

4
9

.7
9

6
.1

5
7

.8
5

11
.8

3
11

.8
4

1
.0

5
9

.2
6

5
.8

9
1

.7
5

5
.1

3
4

.3
0

9
.5

3
4

.5
5

5
.4

9
1

.4
0

3
.4

0
3

.2
7

1
.7

3
4

.4
8

5
.0

4
7

1
12

1
1

1
12

1
12

1
5

1
5

1
1

1
5

1
6

1
1

1
1

1
5

1
1

1
5

1
5

1
5

1
5

1
5

1
1

1
1

N
ot

es
:

M
C

S
p
-v

al
u
es

fo
r

th
e

R
M

S
E

lo
ss

fu
n
ct

io
n
.

In
ea

ch
st

o
ck

su
b
-p

an
el

w
e

re
p

or
t

th
e

co
rr

es
p

on
d
in

g
p
-v

a
lu

es
o
n

th
e

le
ft

an
d

on
th

e
ri

gh
t

w
e

li
st

th
e

es
ti

m
at

o
r

co
m

b
in

at
io

n
n
u
m

b
er

s
ra

n
ke

d
in

th
e

a
sc

en
d
in

g
o
rd

er
s

o
f

th
e

p
-v

a
lu

es
.

C
om

b
in

at
io

n
s

1
to

14
ar

e:
P

D
V

;
S
B

V
;

A
T

M
;

P
D

V
+

S
B

V
;

P
D

V
+

A
T

M
;

S
B

V
+

A
T

M
;

fo
u
r

d
u
ra

ti
on

-b
as

ed
es

ti
m

at
o
rs

,
es

ti
m

at
o
rs

1
to

4
,

ca
ll
ed

D
u
ra

ti
on

4;
S
B

V
+

D
u
ra

ti
on

4;
A

T
M

+
D

u
ra

ti
on

4;
te

n
R

V
-t

y
p

e
es

ti
m

at
o
rs

,
es

ti
m

a
to

rs
5

to
1
4
,

ca
ll
ed

R
V

10
;

P
D

V
+

R
V

10
;

A
T

M
+

R
V

10
;

D
u
ra

ti
on

4+
R

V
10

;
A

ll
.

69

Electronic copy available at: https://ssrn.com/abstract=2713322



T
ab

le
31

:
Q

L
IK

E
va

lu
es

,
14

co
m

b
in

at
io

n
vo

la
ti

li
ty

es
ti

m
at

or
s,

th
re

e
h
or

iz
on

s,
tr

ad
e

d
at

a

A
A

A
X

P
B

A
C

A
T

D
D

D
IS

G
E

H
D

IB
M

J
N

J
J
P

M
K

O
M

C
D

M
M

M
M

R
K

P
G

T
U

T
X

W
M

T
X

O
M

on
e

d
ay

ah
ea

d
1

P
D
V

.0
27

5
.0

27
8

.0
28

8
.0

27
9

.0
29

3
.0

34
5

.0
31

7
.0

25
7

.0
32

6
.0

29
5

.0
30

6
.0

32
1

.0
32

3
.0

36
7

.0
26

9
.0

30
4

.0
26

7
.0

33
6

.0
27

3
.0

28
3

2
S
B
V

.0
27

7
.0

28
1

.0
30

4
.0

28
6

.0
28

9
.0

30
0

.0
33

6
.0

26
2

.0
30

9
.0

30
8

.0
31

1
.0

29
4

.0
31

1
.0

41
5

.0
28

2
.0

32
1

.0
28

1
.0

32
7

.0
28

4
.0

29
4

3
A
T
M

.0
33

7
.0

27
7

.0
28

6
.0

30
7

.0
33

4
.0

27
6

.0
37

1
.0

27
8

.0
41

7
.0

35
8

.0
36

0
.0

36
0

.0
33

7
.0

38
0

.0
30

5
.0

36
9

.0
33

5
.0

34
3

.0
33

3
.0

32
5

4
P
D
V

+
S
B
V

.0
26

8
.0

27
4

.0
29

2
.0

27
9

.0
28

3
.0

30
5

.0
32

2
.0

25
4

.0
30

5
.0

29
5

.0
30

3
.0

29
4

.0
30

7
.0

38
4

.0
27

2
.0

30
5

.0
26

9
.0

32
2

.0
27

4
.0

28
3

5
P
D
V

+
A
T
M

.0
26

8
.0

24
6

.0
25

3
.0

25
7

.0
26

4
.0

25
2

.0
30

0
.0

22
8

.0
32

0
.0

29
4

.0
29

0
.0

26
5

.0
29

9
.0

33
5

.0
25

6
.0

28
8

.0
26

4
.0

28
7

.0
26

2
.0

27
1

6
S
B
V

+
A
T
M

.0
26

3
.0

25
2

.0
27

3
.0

26
3

.0
26

9
.0

25
4

.0
31

1
.0

23
4

.0
30

1
.0

29
5

.0
29

1
.0

27
7

.0
29

4
.0

36
6

.0
26

2
.0

29
7

.0
27

0
.0

29
9

.0
27

1
.0

27
6

7
D
u
ra
ti
on

4
.0

27
2

.0
28

3
.0

29
3

.0
28

4
.0

30
0

.0
33

4
.0

33
2

.0
25

7
.0

32
1

.0
29

9
.0

31
0

.0
31

4
.0

31
6

.0
38

1
.0

27
6

.0
30

8
.0

27
4

.0
33

7
.0

27
5

.0
29

0
8

S
B
V

+
D
u
ra
ti
on

4
.0

27
0

.0
27

9
.0

29
3

.0
28

2
.0

29
4

.0
32

0
.0

33
1

.0
25

6
.0

31
4

.0
29

7
.0

30
7

.0
30

5
.0

31
2

.0
38

3
.0

27
6

.0
30

7
.0

27
3

.0
33

1
.0

27
5

.0
28

8
9

A
T
M

+
D
u
ra
ti
on

4
.0

26
2

.0
26

7
.0

27
7

.0
27

2
.0

28
1

.0
29

5
.0

31
5

.0
24

1
.0

31
0

.0
29

4
.0

29
4

.0
28

8
.0

30
7

.0
36

4
.0

26
6

.0
29

5
.0

26
7

.0
31

4
.0

26
6

.0
28

2
10

R
V

10
.0

27
7

.0
27

7
.0

29
5

.0
29

0
.0

28
4

.0
29

6
.0

33
7

.0
25

9
.0

30
6

.0
29

8
.0

31
6

.0
30

2
.0

34
3

.0
38

7
.0

28
2

.0
30

9
.0

28
1

.0
31

9
.0

28
1

.0
29

8
11

P
D
V

+
R
V

10
.0

27
5

.0
27

5
.0

29
2

.0
28

7
.0

28
3

.0
29

5
.0

33
3

.0
25

6
.0

30
4

.0
29

5
.0

31
4

.0
29

8
.0

33
0

.0
38

3
.0

27
9

.0
30

7
.0

27
6

.0
31

8
.0

27
8

.0
29

5
12

A
T
M

+
R
V

10
.0

27
1

.0
27

1
.0

29
0

.0
28

4
.0

27
9

.0
28

6
.0

32
8

.0
25

3
.0

29
9

.0
29

4
.0

30
7

.0
29

7
.0

33
0

.0
38

0
.0

27
6

.0
30

4
.0

27
6

.0
31

2
.0

27
7

.0
29

4
13

D
u
ra
ti
on

4
+
R
V

10
.0

27
4

.0
27

5
.0

28
9

.0
28

5
.0

28
6

.0
29

8
.0

33
3

.0
25

3
.0

30
4

.0
29

3
.0

31
1

.0
29

6
.0

31
5

.0
38

0
.0

27
7

.0
30

5
.0

27
2

.0
32

1
.0

27
5

.0
29

3
14

A
ll

.0
27

0
.0

27
1

.0
28

5
.0

28
1

.0
28

1
.0

29
0

.0
32

6
.0

24
9

.0
30

0
.0

29
1

.0
30

5
.0

29
1

.0
30

9
.0

37
5

.0
27

3
.0

30
1

.0
27

0
.0

31
5

.0
27

2
.0

29
0

on
e

w
ee

k
ah

ea
d

1
P
D
V

.0
19

9
.0

19
4

.0
19

7
.0

19
2

.0
22

3
.0

25
7

.0
24

0
.0

17
3

.0
28

6
.0

23
5

.0
21

7
.0

24
8

.0
20

6
.0

37
9

.0
19

9
.0

27
6

.0
19

4
.0

27
3

.0
18

6
.0

23
4

2
S
B
V

.0
20

0
.0

21
4

.0
20

7
.0

20
8

.0
22

8
.0

23
8

.0
27

1
.0

18
9

.0
27

9
.0

25
6

.0
24

3
.0

23
5

.0
21

1
.0

42
6

.0
22

1
.0

29
2

.0
21

1
.0

26
0

.0
20

5
.0

25
5

3
A
T
M

.0
23

9
.0

20
2

.0
18

3
.0

21
8

.0
25

7
.0

18
7

.0
30

2
.0

16
3

.0
35

4
.0

28
5

.0
24

7
.0

26
1

.0
22

7
.0

38
2

.0
21

5
.0

31
0

.0
23

8
.0

25
8

.0
20

9
.0

29
8

4
P
D
V

+
S
B
V

.0
19

3
.0

20
1

.0
19

9
.0

19
8

.0
21

9
.0

23
4

.0
25

2
.0

17
8

.0
27

3
.0

24
1

.0
22

9
.0

23
2

.0
20

0
.0

39
8

.0
20

8
.0

27
7

.0
19

9
.0

25
9

.0
19

2
.0

24
0

5
P
D
V

+
A
T
M

.0
19

4
.0

17
7

.0
16

6
.0

17
6

.0
19

8
.0

17
2

.0
23

6
.0

13
3

.0
27

8
.0

23
1

.0
19

6
.0

19
1

.0
19

2
.0

35
0

.0
17

8
.0

25
1

.0
18

7
.0

22
3

.0
16

2
.0

23
7

6
S
B
V

+
A
T
M

.0
19

0
.0

19
4

.0
18

3
.0

19
0

.0
20

9
.0

18
7

.0
25

2
.0

15
3

.0
26

9
.0

24
1

.0
21

5
.0

21
5

.0
19

6
.0

38
2

.0
19

4
.0

25
8

.0
19

6
.0

23
4

.0
18

1
.0

24
5

7
D
u
ra
ti
on

4
.0

20
0

.0
20

6
.0

20
3

.0
20

1
.0

23
7

.0
25

8
.0

26
3

.0
18

0
.0

28
8

.0
24

5
.0

23
0

.0
24

9
.0

20
8

.0
38

9
.0

21
2

.0
28

4
.0

20
7

.0
28

0
.0

19
9

.0
24

3
8

S
B
V

+
D
u
ra
ti
on

4
.0

19
9

.0
20

5
.0

20
2

.0
20

1
.0

23
2

.0
24

8
.0

26
3

.0
18

0
.0

28
3

.0
24

5
.0

23
1

.0
24

2
.0

20
5

.0
39

3
.0

21
3

.0
28

2
.0

20
6

.0
27

3
.0

19
8

.0
24

3
9

A
T
M

+
D
u
ra
ti
on

4
.0

19
3

.0
19

5
.0

19
0

.0
19

1
.0

21
9

.0
22

2
.0

25
1

.0
16

2
.0

27
7

.0
24

0
.0

21
3

.0
22

5
.0

20
2

.0
37

4
.0

19
9

.0
26

7
.0

20
1

.0
25

8
.0

18
6

.0
23

9
10

R
V

10
.0

19
9

.0
21

0
.0

19
8

.0
20

6
.0

22
1

.0
23

0
.0

27
6

.0
19

0
.0

27
3

.0
24

8
.0

24
6

.0
24

3
.0

25
4

.0
39

2
.0

22
6

.0
28

0
.0

22
1

.0
25

5
.0

20
5

.0
25

4
11

P
D
V

+
R
V

10
.0

19
7

.0
20

7
.0

19
5

.0
20

4
.0

22
0

.0
22

8
.0

27
1

.0
18

6
.0

27
1

.0
24

4
.0

24
3

.0
23

8
.0

24
0

.0
38

9
.0

22
3

.0
27

8
.0

21
6

.0
25

4
.0

20
1

.0
25

1
12

A
T
M

+
R
V

10
.0

19
5

.0
20

5
.0

19
4

.0
20

2
.0

21
5

.0
22

0
.0

26
9

.0
18

3
.0

26
6

.0
24

4
.0

23
7

.0
23

7
.0

24
1

.0
38

6
.0

21
9

.0
27

4
.0

21
5

.0
24

8
.0

19
9

.0
25

1
13

D
u
ra
ti
on

4
+
R
V

10
.0

19
8

.0
20

6
.0

19
5

.0
20

2
.0

22
3

.0
23

0
.0

27
0

.0
18

2
.0

27
2

.0
24

3
.0

24
0

.0
23

6
.0

22
2

.0
38

7
.0

22
0

.0
27

8
.0

21
1

.0
25

9
.0

20
0

.0
24

8
14

A
ll

.0
19

5
.0

20
3

.0
19

2
.0

19
9

.0
21

8
.0

22
2

.0
26

5
.0

17
7

.0
26

8
.0

24
0

.0
23

3
.0

23
2

.0
21

6
.0

38
3

.0
21

5
.0

27
3

.0
20

8
.0

25
3

.0
19

6
.0

24
6

on
e

m
on

th
ah

ea
d

1
P
D
V

.0
22

1
.0

22
4

.0
24

3
.0

25
0

.0
27

2
.0

30
6

.0
31

5
.0

21
1

.0
40

2
.0

34
9

.0
24

8
.0

29
0

.0
21

4
.0

57
5

.0
28

6
.0

39
9

.0
24

7
.0

35
4

.0
21

6
.0

38
6

2
S
B
V

.0
21

6
.0

23
5

.0
23

8
.0

25
3

.0
27

1
.0

30
4

.0
33

4
.0

22
9

.0
37

4
.0

35
6

.0
25

9
.0

26
6

.0
23

9
.0

60
7

.0
30

3
.0

43
9

.0
26

3
.0

33
5

.0
23

2
.0

41
6

3
A
T
M

.0
23

2
.0

26
1

.0
23

7
.0

26
0

.0
28

5
.0

26
4

.0
35

5
.0

23
9

.0
39

8
.0

40
4

.0
27

5
.0

30
3

.0
24

4
.0

55
8

.0
28

5
.0

38
0

.0
25

2
.0

31
9

.0
26

0
.0

40
6

4
P
D
V

+
S
B
V

.0
21

4
.0

22
7

.0
23

7
.0

25
1

.0
26

7
.0

29
5

.0
32

1
.0

21
8

.0
38

1
.0

34
9

.0
25

2
.0

27
0

.0
21

9
.0

58
4

.0
29

2
.0

41
6

.0
25

3
.0

33
9

.0
22

2
.0

40
0

5
P
D
V

+
A
T
M

.0
21

9
.0

22
9

.0
22

5
.0

23
7

.0
25

3
.0

24
9

.0
31

6
.0

20
3

.0
37

9
.0

36
7

.0
23

8
.0

25
4

.0
20

9
.0

55
2

.0
26

8
.0

36
2

.0
23

5
.0

31
3

.0
22

2
.0

38
5

6
S
B
V

+
A
T
M

.0
20

8
.0

23
9

.0
22

9
.0

24
3

.0
26

2
.0

27
2

.0
32

3
.0

22
5

.0
36

2
.0

36
3

.0
24

6
.0

26
5

.0
22

4
.0

56
7

.0
27

9
.0

38
4

.0
24

3
.0

31
1

.0
23

6
.0

39
8

7
D
u
ra
ti
on

4
.0

21
9

.0
23

3
.0

24
6

.0
25

7
.0

28
3

.0
31

2
.0

33
2

.0
22

2
.0

39
6

.0
35

7
.0

25
8

.0
28

6
.0

21
9

.0
58

6
.0

29
6

.0
41

4
.0

25
9

.0
36

0
.0

22
5

.0
39

5
8

S
B
V

+
D
u
ra
ti
on

4
.0

21
7

.0
23

2
.0

24
3

.0
25

6
.0

27
8

.0
30

6
.0

33
1

.0
22

3
.0

39
0

.0
35

6
.0

25
7

.0
27

9
.0

22
1

.0
58

6
.0

29
7

.0
41

7
.0

25
9

.0
35

3
.0

22
6

.0
39

8
9

A
T
M

+
D
u
ra
ti
on

4
.0

21
4

.0
23

2
.0

23
8

.0
25

0
.0

27
1

.0
28

9
.0

32
5

.0
21

8
.0

38
7

.0
36

3
.0

24
8

.0
27

1
.0

21
6

.0
57

6
.0

28
7

.0
39

6
.0

25
2

.0
34

2
.0

22
6

.0
39

1
10

R
V

10
.0

21
5

.0
24

8
.0

22
6

.0
24

3
.0

27
0

.0
28

9
.0

35
3

.0
23

0
.0

36
6

.0
35

2
.0

27
6

.0
29

0
.0

28
6

.0
55

8
.0

31
7

.0
42

0
.0

29
1

.0
33

1
.0

23
9

.0
41

6
11

P
D
V

+
R
V

10
.0

21
4

.0
24

5
.0

22
5

.0
24

3
.0

26
9

.0
28

7
.0

34
8

.0
22

6
.0

36
7

.0
35

0
.0

27
3

.0
28

6
.0

27
0

.0
55

7
.0

31
3

.0
41

7
.0

28
5

.0
33

2
.0

23
6

.0
41

3
12

A
T
M

+
R
V

10
.0

21
1

.0
24

7
.0

22
5

.0
24

1
.0

26
7

.0
28

3
.0

34
7

.0
22

9
.0

36
3

.0
35

2
.0

26
9

.0
28

7
.0

27
4

.0
55

5
.0

31
0

.0
41

1
.0

28
4

.0
32

6
.0

23
8

.0
41

3
13

D
u
ra
ti
on

4
+
R
V

10
.0

21
5

.0
24

2
.0

22
8

.0
24

5
.0

27
2

.0
28

9
.0

34
5

.0
22

4
.0

37
2

.0
35

0
.0

27
0

.0
28

2
.0

25
1

.0
56

2
.0

31
0

.0
41

6
.0

27
7

.0
33

7
.0

23
3

.0
40

8
14

A
ll

.0
21

3
.0

24
1

.0
22

7
.0

24
3

.0
26

9
.0

28
5

.0
34

1
.0

22
3

.0
36

9
.0

35
1

.0
26

5
.0

28
0

.0
24

5
.0

56
0

.0
30

5
.0

41
0

.0
27

3
.0

33
3

.0
23

3
.0

40
6

70

Electronic copy available at: https://ssrn.com/abstract=2713322



T
ab

le
32

:
M

C
S

p
-v

al
u
es

,
Q

L
IK

E
lo

ss
fu

n
ct

io
n
,

14
co

m
b
in

at
io

n
fo

re
ca

st
s,

th
re

e
h
or

iz
on

s,
tr

ad
e

d
at

a

A
A

A
X

P
B

A
C

A
T

D
D

D
IS

G
E

H
D

IB
M

J
N

J
J
P

M
K

O
M

C
D

M
M

M
M

R
K

P
G

T
U

T
X

W
M

T
X

O
M

on
e

d
ay

ah
ea

d
.0

0
3

.0
0

7
.0

0
2

.0
0

3
.0

0
3

.0
0

1
.0

0
3

.0
0

10
.0

0
3

.0
0

3
.0

0
3

.0
0

3
.0

0
10

.0
0

10
.0

0
3

.0
0

3
.0

0
3

.0
0

7
.0

0
3

.0
0

3
.0

0
10

.0
0

1
.0

0
10

.0
0

13
.0

0
8

.0
0

7
.0

0
2

.0
0

3
.0

0
7

.0
0

2
.0

0
10

.0
0

1
.0

0
3

.0
0

11
.0

0
10

.0
0

2
.0

0
2

.0
0

1
.0

0
10

.0
0

10
.0

0
2

.0
0

2
.0

0
11

.0
0

2
.0

0
7

.0
0

13
.0

0
13

.0
0

11
.0

0
1

.0
0

8
.0

0
13

.0
0

7
.0

0
11

.0
0

12
.0

0
2

.0
0

10
.0

0
10

.0
0

8
.0

0
2

.0
0

11
.0

0
11

.0
0

8
.0

0
8

.0
0

10
.0

0
13

.0
0

8
.0

0
8

.0
0

7
.0

0
8

.0
0

7
.0

0
11

.0
0

10
.0

0
1

.0
0

13
.0

0
7

.0
0

11
.0

0
11

.0
0

4
.0

0
11

.0
0

7
.0

0
13

.0
0

10
.0

0
13

.0
0

11
.0

0
2

.0
0

4
.0

0
7

.0
0

13
.0

0
5

.0
0

10
.0

0
2

.0
0

13
.0

0
12

.0
0

7
.0

0
11

.0
0

13
.0

0
7

.0
0

3
.0

0
12

.0
0

2
.0

0
7

.0
0

13
.0

0
7

.0
0

7
.0

0
10

.0
0

11
.0

0
10

.0
0

8
.0

0
2

.0
0

4
.0

0
7

.0
0

11
.0

0
7

.0
0

2
.0

0
8

.0
0

8
.0

0
12

.0
0

2
.0

0
7

.0
0

13
.0

0
1

.0
0

11
.0

0
12

.0
0

14
.0

0
4

.0
0

2
.0

0
11

.0
0

2
.0

0
9

.0
0

11
.0

0
12

.0
0

8
.0

0
2

.0
0

8
.0

0
13

.0
0

7
.0

0
8

.0
0

13
.0

0
8

.0
0

.0
0

12
.0

0
4

.0
0

4
.0

0
1

.0
0

1
.0

0
10

.0
0

14
.0

0
12

.0
0

10
.0

0
6

.0
0

1
.0

0
12

.0
0

13
.0

0
14

.0
0

12
.0

4
12

.0
0

13
.0

0
11

.0
0

13
.0

0
.0

0
8

.0
0

12
.0

0
14

.0
0

8
.0

0
11

.0
0

14
.0

0
4

.0
0

1
.0

0
13

.0
0

1
.0

0
14

.0
0

14
.0

0
8

.0
0

4
.0

0
4

.0
6

4
.5

0
6

.0
0

10
.0

0
1

.0
1

14
.0

3
14

.0
0

14
.0

0
1

.0
0

12
.0

2
14

.0
0

12
.0

0
12

.0
0

14
.0

0
4

.0
0

5
.0

0
4

.0
0

4
.0

0
4

.0
0

3
.0

0
14

.0
7

14
.6

4
4

.0
0

14
.0

0
4

.0
4

1
.0

7
4

.0
0

3
.0

0
3

.0
0

4
.0

2
9

.0
0

9
.0

1
9

.0
0

4
.0

0
11

.0
0

12
.0

0
8

.0
0

2
.0

1
9

.0
5

1
.0

1
1

.0
7

1
.6

4
14

.0
0

9
.0

0
14

.0
5

9
.4

7
5

.0
0

9
.0

0
9

.0
0

9
.0

7
12

.0
5

3
.0

1
1

.0
0

9
.7

2
6

.0
0

9
.5

2
9

.0
0

9
.0

3
14

.0
5

9
.0

4
9

.0
7

6
.6

4
9

.0
0

12
.0

0
6

.0
9

4
.7

0
6

.0
0

6
.0

0
6

.0
3

6
.2

8
6

.6
6

6
.0

1
6

.0
0

6
.7

2
14

.0
0

13
.6

7
6

.0
2

6
.2

2
5

.0
5

6
.1

7
6

.1
3

9
.6

4
1

.0
0

6
.2

9
9

.1
4

6
1

9
1

5
1

5
1

5
1

5
1

5
1

5
1

5
1

12
1

14
1

5
1

5
1

6
1

5
1

5
1

5
1

5
1

5
1

5
1

5

on
e

w
ee

k
ah

ea
d

.0
0

3
.0

0
10

.0
0

2
.0

0
2

.0
0

3
.0

0
1

.0
0

3
.0

0
10

.0
0

3
.0

0
2

.0
0

10
.0

0
7

.0
0

10
.0

0
10

.0
0

10
.0

0
2

.0
0

3
.0

0
7

.0
0

10
.0

0
3

.0
0

7
.0

0
11

.0
0

7
.0

0
10

.0
0

2
.0

0
2

.0
0

2
.0

0
11

.0
0

8
.0

0
3

.0
0

11
.0

0
10

.0
0

12
.0

0
2

.0
0

11
.0

0
3

.0
0

10
.0

0
1

.0
0

11
.0

0
10

.0
0

8
.0

0
13

.0
0

8
.0

0
3

.0
0

8
.0

0
7

.0
0

13
.0

0
13

.0
0

7
.0

0
8

.0
0

13
.0

0
1

.0
0

11
.0

0
11

.0
0

12
.0

0
10

.0
0

13
.0

0
8

.0
0

7
.0

0
12

.0
0

13
.0

0
2

.0
0

13
.0

0
13

.0
0

13
.0

0
8

.0
0

10
.0

0
12

.0
0

2
.0

0
7

.0
0

2
.0

0
11

.0
0

3
.0

0
13

.0
0

2
.0

0
11

.0
0

2
.0

0
9

.0
0

13
.0

0
11

.0
0

10
.0

0
12

.0
0

10
.0

0
11

.0
0

7
.0

0
10

.0
0

11
.0

0
14

.0
0

1
.0

0
10

.0
0

12
.0

0
3

.0
0

13
.0

0
12

.0
0

13
.0

0
7

.0
0

11
.0

0
2

.0
0

8
.0

0
13

.0
0

2
.0

0
14

.0
0

4
.0

0
8

.0
0

10
.0

0
13

.0
0

14
.0

0
2

.0
0

9
.0

1
11

.0
0

14
.0

0
13

.0
0

2
.0

0
7

.0
0

14
.0

0
13

.0
0

12
.0

0
13

.0
0

12
.0

0
2

.0
0

11
.0

0
8

.0
0

11
.0

0
14

.0
3

11
.0

0
4

.0
0

8
.0

0
7

.0
0

5
.0

1
12

.0
0

3
.0

0
2

.0
1

7
.0

0
8

.0
0

8
.0

2
8

.0
0

7
.0

0
4

.0
0

2
.0

0
14

.4
8

1
.0

0
7

.0
0

14
.0

0
7

.0
4

4
.0

0
11

.0
0

7
.0

0
8

.0
0

13
.0

1
4

.0
0

8
.0

0
14

.0
1

14
.0

0
14

.0
0

7
.0

5
4

.0
0

8
.0

0
10

.0
0

14
.0

0
6

.4
8

14
.0

0
4

.0
0

12
.0

0
12

.0
4

14
.0

0
14

.0
0

12
.0

0
4

.0
0

10
.0

1
13

.0
0

4
.0

0
8

.0
1

8
.0

4
4

.0
0

4
.0

5
12

.0
2

14
.0

0
11

.0
0

3
.0

0
7

.5
6

12
.0

0
3

.0
0

1
.0

0
4

.0
4

1
.0

0
12

.0
0

4
.0

0
1

.0
0

4
.0

5
9

.0
0

7
.0

0
12

.0
4

1
.0

4
6

.0
0

3
.1

2
1

.0
2

9
.0

0
3

.0
0

9
.0

2
8

.7
2

5
.0

0
9

.0
0

9
.0

0
9

.0
4

12
.0

0
9

.0
0

9
.0

0
9

.0
0

11
.0

5
6

.0
0

1
.0

0
4

.0
4

9
.0

4
3

.0
0

9
.1

2
14

.0
2

4
.0

0
14

.0
0

4
.1

0
9

.7
2

9
.0

0
1

.0
0

6
.0

0
6

.0
4

9
.0

0
6

.0
0

6
.0

0
3

.6
0

6
.4

7
14

.0
0

6
.0

0
9

.3
9

4
.0

4
9

.0
0

1
.3

3
9

.0
2

6
.0

0
12

.0
0

1
.2

5
4

.7
2

4
.0

0
6

.0
4

3
.0

2
1

.0
4

6
.4

1
3

.4
8

1
.0

0
6

.6
0

14
.4

7
1

.0
1

9
.0

0
6

.4
4

6
.0

5
1

.0
0

6
.3

5
6

.2
3

1
.0

0
6

.0
0

6
.5

5
5

1
6

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
12

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
1

on
e

m
on

th
ah

ea
d

.0
0

7
.0

0
10

.0
3

2
.0

8
7

.0
2

7
.0

0
2

.0
3

10
.0

0
10

.0
2

7
.0

4
3

.0
0

10
.0

0
10

.0
0

10
.0

1
2

.0
5

10
.0

4
2

.0
0

13
.0

7
7

.0
1

12
.1

9
2

.0
0

1
.0

0
12

.1
5

7
.0

8
8

.1
1

8
.0

0
7

.0
3

13
.0

0
3

.0
2

8
.0

4
6

.0
0

11
.0

0
11

.0
0

12
.0

1
8

.0
5

12
.0

4
10

.0
0

14
.0

7
8

.0
1

10
.3

7
10

.0
0

3
.0

0
11

.1
5

8
.5

5
2

.3
7

3
.0

0
8

.0
3

11
.0

0
2

.0
2

3
.0

4
5

.0
0

12
.0

3
12

.0
1

11
.0

2
7

.1
0

11
.0

4
11

.0
0

10
.1

8
1

.0
3

3
.3

7
12

.0
0

8
.0

1
14

.3
1

9
.5

5
9

.3
7

13
.0

0
1

.0
3

12
.0

0
12

.1
2

1
.0

4
9

.0
0

13
.0

3
13

.0
3

2
.0

2
9

.1
4

13
.0

4
13

.0
0

11
.1

8
9

.0
3

11
.3

7
11

.0
0

5
.0

1
13

.4
7

1
.5

5
3

.4
6

2
.0

0
13

.0
3

14
.0

0
13

.1
2

9
.0

6
7

.0
0

14
.0

4
3

.0
3

3
.0

2
6

.1
6

14
.0

4
12

.0
0

12
.1

8
13

.0
3

14
.3

7
13

.0
0

13
.0

4
3

.4
7

4
.5

5
4

.4
6

14
.0

0
10

.0
3

3
.0

0
6

.1
2

4
.1

3
8

.0
1

3
.0

4
1

.0
5

13
.1

4
4

.1
7

2
.0

4
14

.0
0

2
.4

1
4

.0
3

13
.3

7
14

.1
1

2
.0

4
6

.5
8

3
.5

5
1

.4
6

9
.0

0
4

.0
3

2
.0

0
8

.1
2

13
.1

3
2

.0
1

2
.0

4
14

.3
3

14
.5

2
1

.2
1

7
.0

4
8

.0
0

8
.4

1
14

.0
3

2
.3

7
4

.1
1

4
.0

4
2

.5
8

6
.5

5
13

.4
6

10
.0

0
11

.0
4

8
.0

0
14

.1
9

2
.1

3
14

.0
1

8
.0

8
7

.3
3

8
.5

2
13

.2
3

8
.0

4
7

.0
3

7
.4

1
11

.0
3

9
.3

7
3

.1
1

10
.0

4
9

.5
8

13
.5

5
14

.5
1

11
.0

0
14

.0
5

7
.0

0
7

.1
9

5
.1

3
12

.0
1

7
.2

4
8

.3
3

6
.5

2
14

.2
3

4
.0

4
4

.0
4

4
.4

1
10

.0
3

6
.3

7
8

.1
1

9
.0

4
8

.5
8

14
.5

5
10

.5
1

1
.0

0
12

.0
9

9
.0

1
11

.1
9

14
.3

4
10

.1
4

4
.3

2
9

.4
2

7
.5

2
10

.2
3

1
.0

4
9

.0
6

9
.5

8
2

.0
3

8
.3

7
6

.1
1

14
.0

4
7

.5
8

10
.5

5
11

.5
1

12
.0

1
9

.0
9

6
.0

4
9

.1
9

11
.8

6
13

.1
4

9
.4

9
4

.4
2

4
.6

5
11

.2
3

9
.0

4
1

.0
6

3
.5

8
12

.0
3

7
.3

7
7

.1
1

11
.5

3
5

.8
1

11
.5

5
6

.5
1

4
.0

1
6

.0
9

4
.1

6
4

.1
9

10
.8

7
11

.1
4

1
.5

3
6

.4
2

9
.7

6
3

.2
3

3
.0

4
6

.0
6

1
.7

4
3

.4
5

4
.5

5
9

.6
2

12
.5

3
4

.9
0

5
.5

5
12

.5
1

6
.5

2
3

.8
1

5
.2

9
1

.8
1

12
.8

7
4

.1
4

6
.5

3
2

.4
2

1
.7

6
12

.2
3

6
.3

7
3

.0
6

6
.7

4
5

.4
7

5
.7

8
1

1
6

1
1

1
12

1
5

1
5

1
5

1
1

1
5

1
6

1
1

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
6

1
1

1
5

N
ot

es
:

M
C

S
p
-v

al
u
es

fo
r

th
e

Q
L

IK
E

lo
ss

fu
n
ct

io
n
.

In
ea

ch
st

o
ck

su
b
-p

a
n
el

w
e

re
p

or
t

th
e

co
rr

es
p

on
d
in

g
p
-v

al
u
es

on
th

e
le

ft
an

d
on

th
e

ri
gh

t
w

e
li
st

th
e

es
ti

m
at

or
co

m
b
in

at
io

n
n
u

m
b

er
s

ra
n
ke

d
in

th
e

as
ce

n
d

in
g

o
rd

er
s

o
f

th
e

p
-v

a
lu

es
.

C
om

b
in

at
io

n
s

1
to

14
ar

e:
P

D
V

;
S
B

V
;

A
T

M
;

P
D

V
+

S
B

V
;

P
D

V
+

A
T

M
;

S
B

V
+

A
T

M
;

fo
u
r

d
u
ra

ti
on

-b
as

ed
es

ti
m

at
o
rs

,
es

ti
m

at
o
rs

1
to

4
,

ca
ll
ed

D
u
ra

ti
on

4;
S
B

V
+

D
u
ra

ti
on

4;
A

T
M

+
D

u
ra

ti
on

4;
te

n
R

V
-t

y
p

e
es

ti
m

at
o
rs

,
es

ti
m

a
to

rs
5

to
1
4
,

ca
ll
ed

R
V

10
;

P
D

V
+

R
V

10
;

A
T

M
+

R
V

10
;

D
u
ra

ti
on

4+
R

V
10

;
A

ll
.

71

Electronic copy available at: https://ssrn.com/abstract=2713322



Web-Appendix C: Proofs of Main Results

Proof of Theorem 1. In the ‘continuous case’, our non-parametric estimator NPDVt can

be viewed as the realized volatility estimator with respect to a particular stochastic sampling

on regular grids, where the “barriers” are always equidistant and symmetric.

We shall derive the quadratic variation of the process Un defined as

Un := δ−1
n

(
NPDVt − [X,X]t

)
≡ δ−1

n

{
Nt∑
j=0

(
Xτn,j+1 −Xτn,j

)2
− [X,X]t

}
.

We first note that the limit of the sample third moment, the tricity :

δn
−1

Nn,t∑
j=0

(
Xτn,j+1 −Xτn,j

)3
, (56)

is crucial in the determination of the asymptotic bias in any stochastic sampling type frame-

work, see for example Li et al. (2014, Section 1). In view of the definition of our sampling

points (2) and straightforward applications of Doob’s optional sampling theorem, it follows

that the probability limit of (56) is zero.

Now, since by Itô’s lemma we have

d(Xt −Xτn,j∧t)4 = 4(Xt −Xτn,j∧t)3dXt + 6(Xt −Xτn,j∧t)2d [X,X]t ,

and using standard measure change arguments through Girsanov’s theorem

dUt = 2δ−1
n

[(
Xt −Xτn,j∧t

)
dXt

]
, (57)

it follows that, along with weak consistency of NPDV (11) we have

[U,U ]t = 4
δ2
n

Nn,t∑
j=0

τn,j+1∫
τn,j

(
Xs −Xτn,j

)2
d[X,X]s

= 2
3

1
δ2
n

Nn,t∑
j=0

(
Xτn,j+1 −Xτn,j

)4
− 8

3
1
δ2
n

Nn,t∑
j=0

τn,j+1∫
τn,j

(
Xs −Xτn,j

)3
dXs (58)

= 2
3Nn,tδ

2
n + op(1) P−→ 2

3[X,X]t ≡
2
3

t∫
0

σ2
s ds. a.s. (59)

The proof is now complete upon employing the stable limit theorem of Jacod & Shiryaev

(2003, Theorem 9.7.3) applied to the stochastic sequence {Un}.
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Proof of Lemma 1 and Theorem 2.

By Itô isometry and boundedness of σ we can see that

E
(
Xτn,j+1 −Xτn,j

)2
= E

 τj+1∫
τj

σs dWs


2

= E

 τj+1∫
τj

σ2
s ds

 ≤ (σ2
∗) · E(τj+1 − τj),

from which it follows by Markov’s inequality that

vτn,j = P
[∣∣∣Xτn,j+1 −Xτn,j

∣∣∣ > δn
]

= OP

(
∆n

δn

)
.

Therefore, we have τ ∗n,j+1 − τ ∗n,j = OP (∆3
n/δn) and also, since ∆n = o(δ1/3

n ) it is clear that

the thinned Poisson sample {τ ∗n} satisfies Assumption A. This proves Lemma 1.

We note that we can write

∆−1
n

(
N∗t δ

2
n − [X,X]t

)
= ∆−1

n

N∗t∑
j=0

(Xτ∗n,j+1
−Xτ∗n,j

)2 − [X,X]t − Bt


where Bt = Bn,t = [N∗t δ2

n −
∑
j(Xτ∗j+1

−Xτ∗j
)2]. Now, we see that

E
([
Xτ∗n,j+1

−Xτ∗n,j

]2 ∣∣∣F∗n,j)− δ2
n = σ2

τn,j
E
([
Wτ∗n,j+1

−Wτ∗n,j

]2 ∣∣∣F∗n,j)− δ2
n

= σ2
τn,j

(2− 1)!!(τ ∗n,j+1 − τ ∗n,j)− δ2
n

∼ 1 · σ2
τn,j

∆2
nvn − δ2

n (60)

where !! means double factorial. But since ∆n = O(δ3/5
n ) and v = O(∆3

n/δn), it straight-

fowardly follows that the last term (60) = O(∆5
n/δn − δ2

n) = O(δ2
n), implying that the bias

term Bn,t = OP (∆5
nδ
−1
n δ−1

n ).
Therefore, we see that the bias contribution from the time discretization asymptotically

tends to zero, since δ1
n/δ

3/5
n → 0.

Now it suffices to derive the limiting law of ∆−1
n (∑j(Xτ∗n,j+1

−Xτ∗n,j
)2− [X,X]t). Following

the same argument leading to (58) in Theorem 1 and applying Lemma 9.1. of Aı̈t-Sahalia &

Jacod (2014), we see that the desired CLT holds with asymptotic variance

2
3 · 3 ·

t∫
0

σ4
svs ds

as required.

73

Electronic copy available at: https://ssrn.com/abstract=2713322



Proof of Theorem 3. From (31) and the property of conditional expectation of the unob-

served price change, it is straightforward to see that the leading bias term comes from

N ′n,t ·
1
4ς

2
{
Dτ ′n,j+1

−Dτ ′n,j
}2
. (61)

Now, on noting that both binary variables D· take values of 1 with probability pa and −1
with probability pq(= 1 − pa), we readily see that the expected value of (61) is given by

2− 2(pa − pb)2.

Therefore, since ςn = Cςδn, the asymptotic bias of (37) then follows from Theorem 1,

completing the proof.
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