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In this thesis we apply results from multivariate probability, random matrix theory

(RMT) and free probability theory (FPT) to analyse the theoretical performance limits

of future-generation wireless communication systems which implement multiple-antenna

technologies. Motivated by the capacity targets for fifth generation wireless communi-

cations, our work focuses on quantifying the performance of these systems in terms of

several relevant metrics, including ergodic rate and capacity, secrecy rate and capacity,

asymptotic capacity, outage probability, secrecy outage probability and diversity order.

Initially, we investigate the secrecy performance of a wirelessly powered, wiretap channel

which incorporates a relatively small number of transmit antennas in a multiple-input

single-output scenario. We consider two different transmission protocols which utilise

physical layer security. Using traditional multivariate probability techniques we compute

closed-form expressions for the outage probability and secrecy outage probability of the

system under both protocols, based on the statistical properties of the channel. We

use these expressions to compute approximations of the connection outage probability,

secrecy outage probability and diversity orders in the high signal-to-noise ratio (SNR)

regime which enables us to find candidates for the optimal time-switching ratio and

power allocation coefficients. We show that it is possible to achieve a positive secrecy

throughput, even in the case where the destination is further away from the source than

the eavesdropper, for both protocols and compare their relative merits.

We then progress to considering small-scale multiple-input multiple-output (MIMO)

channels, which can be modelled as random matrices. We consider a relay system that

enables communication between a remote source and destination in the presence of an

eavesdropper and describe a decode-and-forward (DF) protocol which uses physical layer

security techniques. A new result on the joint probability density function of the largest

eigenvalues of the channel matrix is derived using results from RMT. The result enables

us to compute the legitimate outage probability and diversity order of the proposed

protocol and to quantify the effect of increasing the number of relays and antennas of

the system.

Next, we consider much larger-scale massive MIMO arrays, for which analysis using

finite results becomes impractical. First we investigate the ergodic capacity of a mas-

sive MIMO, non-orthogonal multiple access system with unlimited numbers of anten-

nas. Employing asymptotic results from RMT, we provide closed-form solutions for

the asymptotic capacities of this scenario. This enables us to derive the optimal power

allocation coefficients for the system. We demonstrate that our approach has low com-

putational complexity and provides results much closer to optimality when compared

with existing, suboptimal methods, particularly for the case where nodes are equipped

with very large antenna arrays.
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Finally, we analyse the ergodic capacity of a single-hop, massive MIMO, multi-relay

system having more complex properties, by applying results in FPT. Our method allows

for an arbitrary number of relays, arbitrarily large antenna arrays and also asymmetric

characteristics between channels, which is a situation that cannot typically be analysed

using traditional RMT methods. We compute the asymptotic capacity across the system

for the case when the relays employ a DF protocol and no direct link exists between the

endpoints. We are able to calculate the overall capacity, to a high degree of accuracy,

for systems incorporating channels greater than 128 × 128 in dimension for which ex-

isting methods fail due to excessive computational demands. Finally, the comparative

computational complexities of the methods are analysed and we see the advantages of

applying the FPT method.
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M message before encoding for transmission random variable

M̂ received message after decoding random variable

M no. simulated channel matrix realizations positive integer

ni, ni noise components
random

scalar/vector

N , Ni

no. antennas (general)

OR

channel matrix / transmit vector /

receive vector dimension (general)

positive integer

N set of natural numbers set

pi transmit power Watts

P out, P
sec
out

outage probability,

secrecy outage probability
Watts

Qaa auto-covariance matrix of vector a complex matrix
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Ri, Ri rate (for i a single alphabetical letter) set

Rj jth relay node (for integer j) set

Sn set of permutations of length n set



Symbols xvi

T , T1, T2 time blocks seconds

T no. bisections in optimisation integer

xe energy signal random variable

xi vector of transmitted symbols xi random vector

x(θ)
realisation of random vector representing

transmitted symbols
complex vector

X random variable (general) random variable

yi, yi scalar/vector of received symbols yj
complex scalar/

vector

y(θ)
realisation of random vector representing re-

ceived symbols
complex vector

∆e error of estimation scalar

ζi ratio of no. transmit to no. receive antennas scalar

η energy conversion efficiency ∈ (0, 1)

λi eigenvalue dB

Λi matrix with eigenvalues on diagonal real matrix

µi, µi mean of random scalar/vector
complex

scalar/vector

νp
fraction of transmit power allocated to

performing MRT
∈ (0, 1)

νT time-switching ratio ∈ (0, 1)
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Notation Meaning Units/Type

(·)† conjugate transpose of matrix/vector, (·)
mathematical

operation

(·)T transpose of matrix/vector, (·)
mathematical

operation

(
n
k

)
binomial coefficient ‘n choose k’

mathematical

operation

d·e ceiling function
mathematical

operation

[(·)]i,j
entry in the ith row and jth column of

matrix, (·)

depends on type

of matrix

[(f(x))]k2k1

difference between function f evaluated at

x = k1 and x = k2

mathematical

operation

±(·) sign of permutation
mathematical

operation

|(·)| determinant of matrix, (·)
mathematical

operation

|(·)|abs absolute value of complex number, (·)
mathematical

operation
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‖(·)‖F Frobenius norm
mathematical

operation

(A, φ) free probability space space

(A, ϕ,B) operator-valued free probability space space

CN (µx,Qxx)
a random variable x ∼ CN (µx,Qxx) if it is

CGCS with mean µx and variance Qxx

distribution type

e Euler’s number e = limn→∞

((
1 + 1

n

)n)
real number

Exp (λ)

we write X ∼ Exp (λ) to mean that the ran-

dom variable X follows an exponential with

rate parameter λ

distribution type

E [(·)] Expectation of (·)
mathematical

operation

E
pX(x)

[(·)] Expectation of (·) with respect to distribu-

tion of random variable X, N

mathematical

operation

E
H

[(·)]
Expectation of (·) with respect to distribu-

tion of random matrix, H

mathematical

operation

fX(x) AED of matrix X
mathematical

operation

H(X) entropy of random variable X bits/nats

H(Y |X)
conditional entropy of Y , given knowledge of

X
bits/nats

H(y)max

maximum entropy of random variable y over

all possible realisations
bits/nats
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i
unit of imaginary part of a complex number

defined as i =
√
−1

complex number

I(S)
information obtained with observation of

event S
bits/nats

I(X;Y )
mutual information of random variables X

and Y
bits/nats

Im(·)
the imaginary part of a complex number, vec-

tor or matrix, (·)
real number

IN N ×N identity matrix for N ∈ N N×N real matrix

inf
x∈S
{f(x)}

greatest lower-bound on the range of the

function f over all possible values of x in the

set S

real number, units

depend on f

Kv(x)
v-th order modified Bessel function of the sec-

ond kind

mathematical

operation

log2(·)
logarithm of the real number, (·), taken to

base 2
real number

loge(·)
logarithm of the real number, (·), taken to

the natural base
real number

max
x

f(x)
maximum value taken by function f over all

possible values of x in its domain

real number, units

depend on f

Pr(·) probability of the event (·) ∈ [0, 1]

pX(x) pdf of the random variable, X pdf

pX(x)
multivariate pdf of the random variable, X,

with vector realizations
multivariate pdf



Notation xxi

pX,Y (x, y) joint pdf of X and Y pdf

pY |X(y|x) conditional pdf of Y given X pdf

Re(·)
the real part of a complex number, vector or

matrix, (·)
real number

Tr(·) the trace of the real/complex matrix, (·)
real/complex

number

π
ratio of a circle’s circumference, C, to its di-

ameter, d, π = C
d

real number

∏n
i

{
f ([·]i)

} product of f ([·]i) evaluated over all integer

values of i between 1 and n ∈ N
real number

n∑
i=1

{
f ([·]i)

} sum of f ([·]i) evaluated over all integer values

of i between 1 and n ∈ N

depends on

codomain of f

∑
i,j

{
f ([·]i,j)

}
sum of f ([·]i,j) evaluated over all possible

combinations of indexes i and j

depends on

codomain of f

n∼k∑
i

{
f ([·]i)

} sum of f ([·]i) evaluated over indexes

n ≤ i ≤ k

depends on

codomain of f

χ2
k

we write X ∼ χ2
n to mean that the random

variable X follows a chi-squared distribution

with n degrees of freedom

distribution



Chapter 1

Introduction

This thesis focuses on the new technologies and their accompanying challenges, which are

arising with the introduction of fifth generation (5G) wireless communications. Central

to the discussion will be the analysis of wireless channels with multiple antennas, both

as part of small and large-scale antenna arrays, and in the broader scope of more general

massive multiple-input multiple-output (MIMO) scenarios. Our work aims to analyse

the theoretical performance limits of these channels, with a specific focus on the rate

and capacity of different arrangements and applications. The channels considered are

modelled as random vectors and matrices, and thus this research largely focuses on

results in random matrix theory (RMT) and the extension of this topic into asymptotic

analysis provided by free probability theory (FPT), which allow us to better deal with

the very large matrices involved in massive MIMO applications.

In this chapter we begin by providing some background motivation for the study of

wireless technologies including the official targets for 5G. We focus particularly on spec-

trum availability and capacity and give an overview of the ways in which we have made

progress in these areas in the past, such as the use of multiple antennas, MIMO tech-

nology and different multiple access schemes. We go on to give a brief analysis of the

emerging techniques that have been proposed for achievement of the goals for 5G and

beyond, with a focus on areas related to or benefited by the use of large scale antenna

arrays and/or massive MIMO technology including millimeter wave (mmWave), small

cells, co-operative relays, wireless energy transfer and non-orthogonal multiple access.

Finally we consider some of the difficulties that have arisen alongside these new tech-

nologies which will be addressed in the following chapters.

1
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1.1 Background

The past thirty years has seen a phenomenal growth in the field of wireless communi-

cations, motivated by the increasing demand for mobile data availability in all areas of

life. Traditionally, mobile networks were developed with specific service requirements in

mind, for instance, first generation (1G) communication was developed for analog voice

calls only, while second generation (2G) technology enabled digital calls and basic mes-

saging. As time went on, the desire for mobile internet access and multimedia support

led to the need for increased data rates which was the main concern in the development

of third and fourth generation technologies (3G and 4G), along with minimising the asso-

ciated costs and overheads [2]. Therefore, research into improving the scapacity, that is,

the maximum amount of data that can be communicated over a wireless channel within

a specific time period and frequency range, has been a priority. In recent years, however,

there has been an explosion not only in the demand for greater data rates but in the

quantity and variety of devices we wish to see connected to mobile networks. In partic-

ular, 5G will facilitate communication in smart homes and smart cities, between devices

including but not limited to mobile phones and tablets, gaming consoles, sensors, house-

hold appliances, vehicles, medical equipment and drones. The types of connections will

vary from human-to-human (H2H) to device-to-device (D2D) and machine-to-machine

(M2M) and all the possible combinations therein [3]. Widely referred to as the ‘Internet

of Things’ (IoT), this abundance of new applications has resulted in an increase in the

diversity and range of wireless communication link characteristics and other features be-

sides higher data rates have become increasingly important. Consequently, a paradigm

shift is required when it comes to addressing what the aims for the fifth generation (5G)

of mobile networks should be, and it is necessary to introduce new methods in order to

analyse performance efficiently [4].

1.1.1 Evolution to 5G and beyond

The targets for 5G mobile networks, referred to as International Mobile Telecommu-

nications 2020 (IMT-2020), were announced by the radiocommunication sector of the

International Telecommunication Union (ITU-R) in early 2012 and included:

• Peak data rates of 20 Gbps

• User experienced data rates of 100 Mbps

• Area capacity of 10 Mbps/m2

• Connection density of 106 devices/km2
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Figure 1.1: Enhancement of key capabilities from IMT-Advanced to IMT-2020 [1]

• Average latency of a single millisecond

• Mobility of up to 500 km/h.

Additionally, 5G technology needs to be backward compatible with Long Term Evolution

(LTE) and LTE-Advanced (LTE-A) technology and forward compatible with future

technologies [1, 4, 5].

As in previous generations, data rate and capacity are at the top of the list and these

requirements have been met using a number of methods in previous mobile generations.

The two fundamental limiting factors for being able to send a large amount of data wire-

lessly are spectrum availability and capacity, that is, how broad a range of frequencies

can be utilised for wireless transmission, and how much data can be sent per unit of

frequency, per time [6]. Early mobile networks operated in two main frequency bands,

at around 900MHz and 1800MHz, this was extended to include the higher 2.1GHz band

in the late stages of 3G and both higher, lower and intermediate bands at around 600

MHz, 700 MHz, 1.7/2.1 GHz, 2.3 GHz, and 2.5 GHz are being used in 4G mobile com-

munications [2]. With the increased number of mobile devices and consumer demand,

mobile networks are taking higher priority while outdated or less profitable technologies

are having to give up some of their frequency bands. A very recent example of this

is demonstrated in the speech given in February 2020 by the chairman of the Federal

Communications Commission (FCC) announcing plans to free up mid range spectrum

currently in use by satellite companies in favor of 5G applications [7].
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On the other hand, since a channel’s capacity is directly proportional to its signal-to-

noise ratio (SNR) and we cannot generally decrease the strength of noise, the most

straightforward method for increasing capacity is to increase transmission power [6].

However, like spectrum, power is a limited resource, in this case due to cost. More-

over, increases in transmission power lead to increased interference between multiple

parties utilising the same frequencies, which in turn reduces the capacity. Therefore,

other, smarter methods are desirable, which can increase capacity without increasing

transmission power.

1.1.1.1 Multiple-input multiple-output

One method is to use multi-antenna arrays. Using a collection of antennas that work

together as a single antenna, in order to transmit or receive radio waves, is a tech-

nique used to enhance radio communications. Significant performance gains are enabled

by four main features of the technology: array gain, the reduction and avoidance of

interference, spatial diversity gain, and spatial multiplexing gain [8].

Array gain refers to the advantage arising from a multi-antenna node’s ability to alter

transmitted or received power according to the angle at which a wireless signal leaves

from or arrives at the array by using spatial coding/precoding at the receiver/transmitter

respectively. Interference can be managed by designing an array with the purpose of

controlling whether signals superpose constructively or destructively in specific directions

through altering the spacing of the individual elements. This enables them to maximise

the energy in desired directions (beamforming) and cancel out interference, increasing

the overall gain of the desired signal in a way which a single antenna element cannot.

Spatial diversity relates to the fact that having more independent realisations of a faded

signal allows for more accurate estimations of the original. A wireless signal transmitted

between NT transmit and NR receive antennas can travel via NTNR paths, so the

receiver has NTNR copies, each uniquely deteriorated assuming that individual paths are

uncorrelated. By combining these signals we can reconstruct the original more accurately

than would be possible using the single copy transferred between a single transmit and

receive pair. Thus greater diversity leads to better signal recovery and greater gains

and NTNR is referred to as the (spatial) diversity order of the channel. On the other

hand, the spatial multiplexing gain for the same NT × NR configuration is equal to

min(NT, NR), and occurs when multiple data streams rather than a single stream, are

transmitted simultaneously. These streams can be separated using coding techniques,

again giving rise to an increased overall rate. Although these four benefits cannot all be

reaped simultaneously (spatial diversity and multiplexing gain in particular), generally

speaking, the more individual antenna elements used, the greater the gain [8].
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Using multiple antennas is not a new concept. As early as 1996, Foschini at Bell Labo-

ratories hypothesised that for an N ×N wireless channel “despite the N received waves

interfering randomly, capacity grows linearly with N and is enormous” [9]. Soon after

this, results by Raleigh and Cioffi corroborated these finding and demonstrated that

even larger capacities can be achieved if the transmitter has channel state information

(CSI) [10]. Consequently, the use of multiple antennas was a topic of great interest in

early research into 3G technology. The Alamouti coding scheme was introduced, which

allowed for two antennas to be used at base stations, and methods of extending this

scheme to account for more antennas were being researched and were demonstrated to

enhance range and capacity through the late 90s and early 00s [11, 12].

The term MIMO, which stands for multiple-input multiple-output, has been used since

the early 70s to describe a channel with more than one signal input and output. Nowa-

days, the term is almost exclusively used to refer to wireless communications in which

the multiple input and output signals arise from multiple antennas at the source and

destination respectively. An NT ×NR configuration refers to a device which can trans-

mit and receive using NT and NR antennas respectively, and an NT ×NR channel has

NT input and NR output signals. Traditionally, the multiple antennas at each end of

a link were colocated in arrays at the transmitter and the receiver in point-to-point

or single-user MIMO (SU-MIMO) using techniques ranging from transmit diversity to

spatial multiplexing and beam-forming. However the concept of MIMO has extended

to include multiple users (MU-MIMO) in cases where the individual antenna inputs are

located at different devices and locations, and such multi-antenna links will benefit from

the same array gains, interference reduction, spatial diversity gain, and spatial multi-

plexing gain as described above. In fact, the increased spacing between antennas when

located at separate users lowers the likelihood of spatial correlation thus increasing these

gains [8].

MIMO has been used to great effect over the past fifteen years. In the IEEE 802.11n

standard for wifi, 4 × 4 MIMO was used as early as 2009, while 2 × 2 arrays rolled

out in mobile communications with the introduction of wideband code-division multiple

access (W-CDMA) and high-speed packet access (HSPA) in the later stages of 3G [13].

These techniques continued with the introduction of 4G standards, such as the worldwide

interoperability for microwave access (WiMAX) and LTE standards, both of which utilise

arrays of 2, 4 and 8 antennas [14]. MIMO is one of the reasons that user-experienced

data rates increased from around 1.5Mbps in early 3G to 90Mbps in late 4G [15].
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1.1.1.2 Multiple access

Continuing on the theme of multiple users, a strategy used to increase the number of

users that can be served simultaneously is to manage the allocation of a wireless resource

using different multiple access techniques. In first generation networks, an entire channel

was allocated to a single user-pair for the duration of their communication. Between

first and second generation networks, however, digital methods of splitting a channel

into different frequency bands, using frequency division multiple access (FDMA), and

later time slots, using time division multiple access (TDMA), increased in popularity.

Both methods divide up the channel into orthogonal ‘slots’, which means that the users

of each slot do not interfere with one another. If there are N slots then N times as many

users can be facilitated compared to previous methods. However, this is still suboptimal

as only a strict maximum of N users can be served simultaneously, so when fewer than

N users are connected there are unused slots and the full channel capacity is not utilised

[16]. In contrast, certain code-division multiple access (CDMA) techniques allow for

an unlimited number of users to access the channel simultaneously, at the expense of

some interference between users, which increases in severity with their number. In

particular, in pseudo-noise CDMA (PN-CDMA) communication links, de-spreading the

coded signal at the receiver improves the signal-to-interference ratio (SIR) by a factor

of 10 log2(K), where K denotes the spreading factor [17]. Since the later stages of 3G

the WCDMA and LTE standards have expanded and combined basic multiple access

techniques to include orthogonal frequency division multiple access (OFDMA) and are

even considering the use of non-orthogonal multiple access to enable further multi-user

benefits [16, 18].

In order to reach the even greater demands of 5G still more advanced technologies are

required. In the following we will outline some of the methods considered to facilitate

these improvements that we will focus on in our analysis in the later chapters of this

thesis.

1.1.2 5G Enabling Technologies

1.1.2.1 Massive antenna arrays and massive MIMO

Given the benefits to capacity observed when using two or four antenna arrays in 3G and

4G communications [13], it seems natural that today’s wireless systems are considering

much larger arrays. In 2018, the FCC approved a line of products including 64-antenna

arrays, such as the Ericsson AIR 6468. Similar products, like the Huawei AAU and

Nokia Airscale, have also been launched, with Huawei stating that “95% of their current
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commercial shipments has either 32 or 64 antennas” at the 2019 Mobile World Congress

[19]. It is speculated that antenna arrays with dimensions of order 103 or even 104 could

be used in the future. In the past, a barrier to having many antennas in a single array has

been that the minimum spacing required is at the order of magnitude of the wavelength

of the carrier frequencies. The 4G LTE standard used by most mobile devices at present

functions in frequency bands between around 450 and 3000 MHz, which means that the

minimum wavelength is about 10cm. Therefore, the maximum number of antennas that

fit on a given device is limited [2]. The use of ultra-high frequency (UHF) and terahertz

frequency (THF) bands, however, means we are seeing wavelengths of a single millimeter

or less (hence mmWave), which makes the use of massive antenna arrays much more

feasible.

With the developments in multiple access techniques it is possible to have huge numbers

of users communicating simultaneously across a single channel. Therefore, the scope of

massive MIMO is broader than just using massive antenna arrays, and includes massive

MU-MIMO in which the large number of antennas is due to a large number of individual

users, each having either a single-antenna or multi-antenna device [13].

1.1.2.2 Small cells

Because there is a spectrum scarcity within the traditional range of radio frequencies,

it is speculated that there must be a shift from current macrocell networks towards

small cell deployment in order to be able to reuse spectrum more efficiently. Such

densification would also have the benefit of reducing the length of the most problematic

portion of end-to-end mobile links, the wireless portion, which would increase capacity

and reliability while reducing latency. The shorter transmission distances would also

improve the battery life of user devices [5].

1.1.2.3 mmWave and terahertz frequencies

Another means of combating spectrum scarcity is through the use of hereto untapped

resource of UHF and THF bands of the electromagnetic spectrum, which cover frequen-

cies between 30 and 300 GHz and between 0.3 and 3 THz respectively. While the use

of these ranges has potential to dramatically increase the capacity of next generation

communications, it is only viable for short range wireless links, which is another reason

that small-cell technology is desirable [5].
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1.1.2.4 Cooperation and relays

A relay is a node used to interconnect a source and destination node. Multiple relays

can be used, either as multiple ‘hops’ forming a chain or in parallel. The advantage

lies not only in their ability to extend coverage by facilitating connections which would

otherwise be unavailable, but in the improvement in data rate they can provide in areas

with poor quality signal. It is also noteworthy to mention that the use of multiple relays

is a form of MIMO technology as it creates additional spatial diversity [20, 21]

Mobile relays are being researched as a means of improving link stability in dynamic

environments such as high-speed rail services, where mobility means that a large number

of connections need to be handed over regularly [22]. Relays may also be used temporar-

ily to test the capacity demand of specific additional nodes proposed in the evolution

towards network densification. Using a relay would reduce the installation cost of build-

ing dedicated links and it could then be upgraded when justified. Finally, relays can be

used as a temporary measure in emergency situations, for example to replace damaged

hardware, or to provide short term access at special events [23].

Using relays with cooperative capability is an especially useful wireless technology. For

example, when considering the security of a wireless network, it is possible for relays to

use their combined knowledge in order to introduce artificial noise and ‘jam’ potential

eavesdroppers, or to perform performance enhancing precoding measures, such as inter-

ference alignment. Both of these strategies are described in more detail in the following

sections. In [24, 25], the authors demonstrate that it is possible to achieve a positive se-

crecy rate by introducing cooperative relays in cases where the secrecy capacity would be

zero otherwise, while in [26], secure transmission is achieved for two-way relay networks

by introducing a hybrid cooperative beamforming and jamming scheme.

1.1.2.5 Power harvesting

Reducing energy consumption is a major priority in the world today and the increasing

modern demand for high mobile data rates means that techniques for harvesting energy

from environmental sources have attracted a lot of attention. Energy can be scavenged

from the ambient environment in the form of wind and solar power, and is particularly

useful as a means of prolonging the lifetime of energy-constrained wireless networks and

devices [27]. While this sounds like an ideal solution, there are problems with relying

on natural resources for energy when it comes to certain applications. In particular

the availability of solar, wind or other natural energy depends heavily on location and

weather conditions, which means the generation of stable energy output is a challenge.
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As a result, this type of energy harvesting may be unsuitable for powering communication

networks with strict quality of service demands [28].

1.1.2.6 Wireless energy transfer

Wireless energy transfer (WET) exploits the radio frequency (RF) signals as a means

for energy transportation. With the increasing reliance of modern society on RF in all

areas of life, RF signals are widely available, which means that WET has the poten-

tial to provide continuous and stable energy supplies for mobile devices. In particular,

harvested energy could be used instead of regular replacement and recharging of batter-

ies in small devices such as medically implanted devices or small sensors embedded in

buildings, which are difficult to access and thus expensive or even infeasible to recharge

using traditional methods [29]. The use of WET is another technique whose performance

can be improved through the use of multi-antenna arrays. In particular, the capacity

of WET is enhanced by using MIMO technology and smart antennas to exploit spatial

diversity [30–32]. The use of relays is also beneficial to WET and increasing the number

of co-operative relays has been shown to increase throughput [33].

1.1.2.7 Interference alignment

The use of precoding techniques applies to multiple antenna and MIMO transmissions

and is the method by which array gains, as defined above, are achieved. The idea

is to weight the data stream across transmit antennas in order to take advantage of

spatial diversity. When multiple transmit and receive user pairs share a single channel,

interference occurs between them in what is referred to as the ‘interference channel’.

Traditional strategies for users have been ‘greedy’, with the aim of maximising their

own rates, however this method is suboptimal and limits the sum rate of the users to

the order which would be achieved by a single transmit-receive pair. More recently, the

research groups of Jafar and Khandani have demonstrated that it is actually possible for

this sum-rate to scale linearly with the number of users by utilising a linear precoding

strategy called ‘interference alignment’ [34, 35]. Interference alignment can be considered

a type of physical layer security (PLS). For multi-antenna wireless channels, it occurs

when users take advantage of the spatial dimension to co-ordinate their transmissions

using linear precoding in such a way that the interfering signals align in time and space.

As a result, the interfering signals take up fewer dimensions at each receiver, which

makes it easier to separate and eliminate the interference from the intended signal. If K

transmit/receive pairs are communicating simultaneously over an interference channel,
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this strategy can result in a sum-rate at an order of K
2 , which is equivalent to the rate

achievable by K
2 independent communication links [34, 36].

Interference alignment precoding has been applied to K-user interference channels [37]

and the MIMO X channels [35] and has been also used as a means of improving se-

crecy in [38, 39]. In [38] the authors analyze the performance of the technique for a

frequency/time selective K-user Gaussian interference channel subject to certain secrecy

requirements, while in [39] it is adapted for use in conjunction with multi-antenna relays

to improve the security of communication across MIMO channels.

1.1.2.8 Non-orthogonal multiple access

Non-orthogonal multiple access (NOMA) has received considerable attention in both in-

dustry and academia as an efficient multiple access scheme to meet this demand. As with

traditional multiple access technologies, the purpose of NOMA is to encourage spectrum

sharing and multiple user accommodation to enable high capacity and increased connec-

tivity. However, unlike traditional methods, it aims to do so within a single orthogonal

resource block, for example, one band of an FDMA channel, one time slot of a TDMA

channel or a unique spatial direction. Due to early results demonstrating its potential

positive impact on capacity, NOMA already features in the 3GPP-LTE-A standard and

has been proposed for inclusion in the 5G New Radio (NR) [40].

The majority of research and proposals relate to power-domain NOMA, which is the

scheme that we will consider in this work, although recently code-domain NOMA is also

being considered [41]. In the power-domain scheme it is possible to separate signals,

despite them occupying the same resource block, through the use of superposition coding

(SC) at the transmitter and successive interference cancellation (SIC) at the receiver.

To be more specific, a base station simultaneously communicates with multiple NOMA

users in its cell in the same resource block, and their signals are multiplexed by allocating

a different transmission power for each user’s signal. A unique feature of NOMA is that

it favors users with poorer channel conditions, who are allocated a greater portion of

the transmission power than users with better connections, in what is considered a

fairer allocation strategy. Because the received power level of the weaker user’s intended

signal is higher, it is able to decode the message by treating the interference from other

users’ signals as noise. Therefore, the users with more inferior connections are allocated a

higher position in the queue while the remaining users use SIC, that is, the stronger users

first decode all the weaker users’ messages and then decode their own by subtracting the

other users’ information from the overall signal [30]. We note that there is an inherent

security issue in the use of SIC, since the information of weaker users is extracted by
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stronger users and could potentially be decoded by an eavesdropper. Several methods

of mitigating this issue have been proposed recently such as the use of MAC (Media

Access Control) addresses and International Mobile Equipment Identity (IMEI), which

is described in [42], and the advantages and challenges of several PLS techniques are

being discussed in relation to NOMA in [43].

The main benefit of NOMA over traditional orthogonal multiple access schemes (OMA)

is that it can provide greater capacity. This is achieved both by serving multiple users in

a single resource block, and by mitigating the impact of interference through the use of

SIC. Moreover, the fairness of NOMA means it provides higher throughput to cell-edge

users with weaker channel connections, and thus enhances the cell-edge user experience.

NOMA also provides massive connectivity, since it allows for a large number of user

to be served simultaneously, and lower average latency, because users are not allocated

specific time slots [44].

1.2 Challenges

Although the technologies introduced in the previous section will go some way to en-

abling us to meet the demands of 5G and beyond, there are innate problems that arise

in each area. In this section we describe some of the issues being faced which we will go

on to address in the later chapters of this thesis.

1.2.1 Channel modelling

The diversity in the nature of communication channels arising from the new technolo-

gies and ideals in 5G is enormous. Small cells mean a reduction in the propagation

distance, while the introduction of mmWave technology changes the nature of the chan-

nel medium itself, as even water vapour and large molecules are able to affect the course

of transmissions over electromagnetic radiation with such short wavelengths. This means

that traditional channel models may be inappropriate for the types of channels we are

seeing in 5G and will need to be adapted to take account of factors such as antenna

correlation, line-of-sight (LOS) properties, variable and non-flat fading and asymmetry

between individual antenna to antenna links. These factors must be incorporated into

channel models in order to compute accurate predictions about the theoretical perfor-

mance limitations of modern systems and to decide upon which designs to take up in

practice.
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1.2.2 Performance analysis

As mentioned, the ability to analyse the performance of a proposed system model for 5G

communications relies on the ability to accurately model the relevant channels. Even

assuming we are able to do so, however, the methods for analysing the resulting mod-

els are more complicated for certain 5G technologies. For example, a MIMO channel

is modelled as a matrix, with each entry corresponding to the channel gain between a

unique pair of transmit and receive antennas. In the case of massive MIMO the ma-

trices involved become extremely large, potentially having dimensions of order 103 or

greater, and traditional computations for analysing performance become arduous and

impractical, particularly when results are needed in real-time. In addition, the heteroge-

neous nature of the IoT means that 5G systems are likely to involve multiple individual

channels which may be modelled using different methods. As a result it can be diffi-

cult combining analytical results for individual channels in order to analyse the system

as a whole. To be able to do so again requires the introduction of new or augmented

analytical methods.

1.2.3 Fairness

Fairness is an issue surrounding resource allocation. We have already touched on the

subject in our introduction to power-domain NOMA, which is often regarded as fairer

than traditional multiple access techniques because it involves allocating a greater por-

tion of the power resource to the user in greatest need (ie. the user communicating

over the most degraded channel). However, in practice there are often other parameters

to consider in resource allocation, such as minimum service requirements of individual

users and the detriment to the overall channel capacity of prioritising weaker users.

1.2.4 Secrecy

Wireless RF signals are an open medium, and can be readily intercepted at multiple

nodes. These nodes constitute potential eavesdroppers when considering the security of

wireless transmissions, and thus the potential leaking of information is a threat that has

been considered in every wireless application.

The problem is particularly significant in the area of wireless energy transfer and wireless

powered communication networks (WPCNs) because they have access to only a limited

power supply [29], which means that traditional methods for improving security, such

as cryptography, are infeasible. In such cases physical layer security, which exploits the

physical characteristics of a channel as a means of providing secure transmission, may
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be a better option [45]. A PLS approach that has gained popularity in recent years

is the use of artificial jamming. Introduced in [46], the technique involves injecting so-

called artificial-noise into a wireless communication system in order to disrupt the signal

received by potential eavesdroppers, thereby preventing security breaches.

When the channel conditions between the source and an eavesdropper are superior to

those between the source and destination, the use of multiple antennas has been demon-

strated to improve secrecy rates [47–50]. Moreover, the use of co-operative relays in

artificial jamming offers another method of improving security using physical layer tech-

niques [46]. Security is enhanced for multiple-input single-output (MISO) networks using

this method in [51, 52] while a similar technique is considered for downlink MIMO sys-

tems in [53] and [54] which make use of matched filter and linear precoding respectively.

1.2.5 Thesis structure and organisation

C5

MIMO Secrecy 

DF Relay

C6

Massive MIMO 

NOMA

C4

MISO Secrecy

Power Beacon

C7

Massive MIMO 

DF Relay

C1

Introduction 

and

motivation

C2

Performance 

metrics, RMT

C3

Extension via 

FPT

C8

Summary, 

future 

directions

Background Research Conclusions

Figure 1.2: Thesis structure flowchart

Fig. 1.2 exhibits the flowchart of the thesis structure.

Chapter 2 introduces the main benchmarks for analysing the performance of wireless

channels that we will be considering in our work. In particular it gives detail relating
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to the way in which we compute the capacity of a wireless channel and how this has

changed with the introduction of multi-antenna systems and MIMO technology. The use

of random matrix theory and in particular the distribution of the eigenvalues of channel

matrices will be described as a low-complexity alternative for computing capacity.

Chapter 3 demonstrates how free probability theory can be used to extend the capability

of random matrix theory for performing capacity analysis by enabling the derivation

of the asymptotic eigenvalue distribution for more generalised random matrices. An

overview of the results in this area and their application to related problems is provided.

Some results in this chapter have been presented in the following conference publication:

[C1]: L. Hadley, Z. Ding and Z. Qin, “Capacity Analysis of Asymmetric Multi-Antenna

Relay Systems using Free Probability Theory”, in Proc. IEEE 89th Vehicular Technol-

ogy Conference (VTC Spring, Kuala Lumpur, Malaysia, April 2019.

Chapter 4 analyses the performance of a multi-antenna wirelessly powered communi-

cation system in which a legitimate source attempts to communicate securely with a

legitimate receiver in the presence of an eavesdropper. Two protocols implementing

physical layer security techniques are investigated. The first combines maximum ratio

transmission with zero-forcing jamming for the case where no channel state information

is available for the eavesdropper’s channel, while the second considers the case where

partial channel state information is available for this channel and uses an approach com-

bining zero-forcing transmission and zero-forcing jamming. The secrecy outage proba-

bilities, secrecy capacity and diversity order for the protocols are analysed.

The results in this chapter have been presented in the following journal publication:

[J1]: Z. Chen, L. Hadley, Z. Ding and X. Dai, “Improving Secrecy Performance of

a Wirelessly Powered Network” IEEE Transactions on Communications (TCOM), vol.

65, no. 11, pp. 4996-5008, July 2017.

Chapter 5 considers the secrecy performance of a multiple-input multiple-output L+ 1

hop relay system in which a legitimate source attempts to communicate securely with

a legitimate receiver via L legitimate relay nodes in the presence of an eavesdropper. A

protocol utilising interference alignment techniques is proposed for the case where the

relays work in decode-and-forward mode. The secrecy outage probability, achievable

secrecy rate and diversity orders are characterised and analysed.

The results in this chapter have been presented in the following journal publication:

[J2]: Z. Chen, L. Hadley, Z. Ding, and X. Dai, ”Cooperative Secrecy Transmission

in Multi-Hop Relay Networks with Interference Alignment”, IET Communications, vol.

13, no. 10, pp. 1379-1389, March 2019.
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Chapter 6 investigates the power allocation for a two-user NOMA system featuring mas-

sive MIMO antenna arrays. The asymptotic capacity is used as part of a low complexity

method for computing optimal power allocation coefficients. The efficacy of the method

is demonstrated through comparison with results using exhaustive search and is demon-

strated to outperform alternative suboptimal approaches which have been proposed.

Complexity analysis verifies the comparative low computational power required by the

asymptotic method.

The results in this chapter have been presented in the following journal publications:

[J3]: L. Hadley and I. Chatzigeorgiou, “Low Complexity Optimization of the Asymp-

totic Spectral Efficiency in Massive MIMO NOMA” IEEE Wireless Communications

Letters, Early Access, August 2020.

Chapter 7 considers a multi-relay system in which nodes are equipped with massive

antenna arrays. The relaying nodes are arranged in parallel as part of a two-hop com-

munication link and asymmetry exists between the channels in the second hop. Free

probability techniques are employed in order to compute the asymptotic capacity of the

second hop, which would otherwise require arduous computations using large random

matrices. The capacity of the overall system is derived for varying number of relays and

antenna array sizes and the computational complexity of the method is analysed.

The results in this chapter have been presented in the following paper, to be submitted

to ‘Information and Inference: A Journal of the IMA’ by Oxford University Press, in

February 2021:

[J−] L. Hadley, Z. Ding and I. Chatzigeorgiou, “The use of Free Probability in the

Capacity Analysis of Asymmetric Massive MIMO Relay Systems”.

Chapter 8 summarizes the thesis and provides the general conclusions drawn from each

chapter. Some possible research areas are presented as an extension to the research

presented in the thesis.



Chapter 2

Performance Analysis

This thesis is concerned with the theoretical performance analysis of the type of multiple-

input multiple-output (MIMO) systems described in the previous chapter as main areas

in fifth generation (5G) wireless communications research. The primary measurements

we will consider are the maximum achievable rate of communication, or capacity, and

the outage probability of such systems. In this chapter we will introduce the mathemat-

ics underlying the communication schemes and methods of analysis considered in our

research and provide a basis for the asymptotic results and free probability techniques

in the following chapter. This chapter has been organised as follows:

First we will give a detailed explanation of what is meant by the capacity for the case

of a single-input single-output (SISO) channel. We will see how these values relate

to the statistical properties of the channel’s input, output, gains and any corrupting

noise. Next, we will extend the definition to account for MIMO channels and provide

mathematical justification of this extension. We will show how to adapt this definition

for a time-varying as opposed to a stationary channel. In particular, we will discuss how

the availability of information regarding the channel state and statistical behaviour,

at both transmitter and receiver, impacts its capacity, and demonstrate some of the

ways in which this information can be used. It will become clear that for large channel

matrices the traditional approach towards capacity computation has high computation

complexity, therefore we will go on to introduce a low complexity alternative that relies

on the asymptotic properties of certain classes of random matrices and suffers no loss in

accuracy in comparison to traditional approaches for moderately sized antenna arrays

(four or more antennas at transmitter and receiver). We will provide information on the

asymptotic eigenvalue distributions of the classes of random matrices that feature in our

research, in particular we will introduce the Marčenko-Pastur law which applies to a class

of random matrices that form the canonical model for MIMO channel analysis. Finally

16
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we will discuss some of the challenges that arise when we try and apply the asymptotic

approach to the diverse channels that arise as part of the proposed 5G system models

discussed in the previous chapter. Investigation into various solutions for these problems

in a number of different scenarios will be the focus of the subsequent chapters.

2.1 Capacity

In wireless communication we refer to the free-space through which a signal must pass

to travel from a source to a destination as the wireless channel. The capacity of such

a channel is the maximum amount of data that can be communicated between the

source and destination in a given amount of time and frequency range and the standard

units of measurement are therefore bits per second per Hertz (bps/Hz). A channel’s

capacity arises as a direct consequence of the probabilistic behaviour underlying the

communication process, and is defined in terms of the mutual information between the

input and output of the channel.

To understand the definition of capacity it is necessary to have some knowledge of infor-

mation theory and in particular how information is quantified. Consider a continuous

random variable X that takes values from the support X . Define the probability of the

event that X takes a value contained in a subset S ⊂ X of possible outcomes as Pr(S).

The amount of information (in bits) conveyed by the statement that the event S has

occurred is inversely proportional to the likelihood of its occurrence, and given by [55]:

I(S) = log2
1

Pr(S)
.

For example, more information is conveyed by stating ‘it snowed on Easter Sunday’

than stating ‘it did not snow on Easter Sunday’ because the former was less likely to

have happened. We refer to ‘surprisal’ of an event as a measure of how surprising it

is to observe. Thus the occurrence of an event with greater surprisal conveys more

information. From this definition is is straightforward to show that the amount of

information conveyed by two statements confirming independent events, is equal to the

sum of the information conveyed by the individual statements.

We define the differential entropy of X as its average surprisal, thus it is found by

computing the expectation of the information conveyed over the entire support [55]:

H(X) =

∫
x∈X

pX(x) log2
1

pX(x)
dx = −

∫
x∈X

pX(x) log2 pX(x) dx, (2.1)
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where pX(x) is the pdf of X. Since base 2 is taken for the logarithm, this entropy is

measured in bits, however, we note that if the natural logarithm (to the base e) is taken

instead, the information computed with be measured in nats rather than bits. It is

straightforward to convert one unit to the other and we will work in nats to simplify

some of our subsequent calculations.

On the other hand, the mutual information between a second discrete random variable,

Y , and X is a function of two distinct random variables, which measures the reduction

in the uncertainty of one variable, given knowledge of the other. It is defined as the

amount by which the entropy of Y is reduced when X is known [13]:

I(Y ;X) = H(Y )−H(Y |X)

= −
∫
y∈Y

pY (y) log2 pY (y) dy −
(
−
∫

x∈X

pX(x)H (Y |X = x) dx

)

= −
∫
y∈Y

( ∫
x∈Y

pX,Y (x, y) dx

)
log2 pY (y) dy

+

∫
x∈X

pX(x)

( ∫
y∈Y

pX,Y (x, y)

pX(x)
log2

pX,Y (x, y)

pX(x)
dy

)
dx

=

∫∫
x∈X
y∈Y

−pX,Y (x, y) log2 pY (y) + pX(x)
pX,Y (x, y)

pX(x)
log2

pX,Y (x, y)

pX(x)
dx dy

=

∫∫
x∈X
y∈Y

−pX,Y (x, y) log2 pY (y) + pX,Y (x, y) log2
pX,Y (x, y)

pX(x)
dx dy

=

∫∫
x∈X
y∈Y

pX,Y (x, y)

(
− log2 pY (y) + log2

pX,Y (x, y)

pX(x)

)
dx dy

=

∫∫
x∈X
y∈Y

pX,Y (x, y) log2
pX,Y (x, y)

pY (y)pX(x)
dx dy,

where H(Y |X) is the entropy of Y when X is known, H(Y |X = x) is the entropy of Y

when X is equal to a specific value of x ∈ X , Y is the support of Y , pY (y) is the pdf of

Y and pX,Y (x, y) is the joint pdf of X and Y .

2.1.1 Fixed channel

2.1.1.1 Single-input single-output

When communicating a message, M , across a channel, the message is first encoded then

input to the channel as a sequence of symbols, x. We model the sequence as a random
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Figure 2.1: Basic communication system model

variable X. The output of the channel is the received message y, which is modelled as

the random variable Y and depends on the input sequence. Finally, this Y is decoded to

an approximation, M̂ , of the intended original message. The overall process is outlined

in Figure 2.1. In a perfect world, x could be completely determined from y, that is, the

uncertainty, H(Y |X), would be zero and M̂ would be a perfect replica of M . In reality,

a communication channel is noisy and the input symbols are not possible to recreate

perfectly from the output. This means that different input sequences may give rise to

the same output sequence and so that there is no way to distinguish which sequence

was actually sent. The maximum amount of data we can send (the capacity) is realised

when the uncertainty is reduced as much as possible, or equivalently, when the mutual

information between Y and X is maximised. This occurs when a subset of the possible

input sequences, which are ‘far enough apart’ that the mapping to the output is injective

(one-to-one), is used as the input alphabet. It follows that an inherent property of the

channel is that it can be modelled as the conditional probability density function (pdf)

pY |X(y|x) (which is equivalent to
pX,Y (x,y)
pX(x) ) and thus the joint pdf pX,Y (x, y) is completely

determined by pX(x) so that the channel capacity is determined via [55]:

C = max
pX(x)

I(Y ;X). (2.2)

2.1.1.2 Multiple-input multiple-output

Consider a wireless MIMO system in which the symbol that reaches each receive antenna

has been distorted by an additive noise component. We want to find the capacity of such

a system using (2.2). To start with, we consider what the realisations of the variables

X and Y look like for a MIMO channel with NT transmit and NR receive antennas. For

the general channel we define variables:
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x = (x1, · · · , xNT
)T

where xi is the random variable with complex val-

ued realisations, xi(θ), which represent the symbol

sent by the ith transmit antenna at time θ.

y = (y1, · · · , yNR
)T

where yj is the random variable with complex val-

ued realisations, yi(θ), which represent the symbol

received by the jth receive antenna at time θ.

H̄ =


h̄1,1 · · · h̄1,NT

...
. . .

...

h̄NR,1 · · · h̄NR,NT


where h̄j,i ∈ C is the fixed-value complex num-

ber representing the channel gain between the ith

transmit and jth receive antenna.

n = (n1, · · · , nNR
)T

where nj is the random variable with complex val-

ued realisations, nj(θ), which represent the additive

noise component of the signal at the jth receive an-

tenna at time θ.

We also define for the random vector a = (a1, · · · , aN ) where N ∈ {NT, NR}:

µa = (µa1 , · · · , µaN )T ∈ CN×1
as the mean of the vector a, where µak

is the mean of entry ak.

Qaa = E
[
(a− µa) (a− µa)†

]
∈ CN×N as the covariance of the vector a.

We can then model our channel in matrix form as

y = αH̄x + n, (2.3)

where α is a scalar which is used to account for normalisations and various other factors

that affect the signal-to-noise ratio (SNR) which we will discuss this further in Section

2.2.1. We replace X and Y in (2.2) with x and y respectively in order to determine the

capacity of a MIMO channel [13]:

C = max
pX(x)

(H(y)−H(y|x)) = max
pX(x)

(H(y)−H(n)) , (2.4)

where the maximisation is now carried out over the multivariate distribution, pX(x),

of x and the equality holds due to the fact that y = αH̄x + n where αH̄x is fixed so

that the overall uncertainty of y is completely determined by that of n and we have

H(y|x) = H(αH̄x + n|x) = H(n).
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To solve this capacity equation we will split it into two parts and evaluate H(y) and

H(n) separately, starting with H(n). This entropy depends on the distribution of n,

which we must make some assumption about in order to obtain meaningful results.

Of particular interest is the case for which the noise in the system is independent and

identically distributed (IID) Gaussian across different receive antennas, and has IID real

and imaginary components and zero mean. It is realistic to assume that the noise can

be modelled this way for many communication systems, including radio and satellite

links, because the noise in such channels arises as a combination of many small random

factors, and by the central limit theorem, the overall effect will be approximately normal.

Moreover, when averaged over a long enough time period, the mean of these fluctuations

is likely to be be zero [55]. In this case, n can be modelled as complex Gaussian circularly

symmetric according to the following definition:

Definition 2.1.1 ([56]). Let Re(·) and Im(·) denote the real and imaginary parts of

(·) respectively and i be the imaginary unit i =
√
−1. Consider a complex Gaussian

vector modelled as the random variable, X , which takes values x ∈ CN×1. Let the

expectation be defined as E [X ] = µx and the variance given by the non-negative definite

Hermitian matrix Qxx = E
[
(X − µx) (X − µx)†

]
. Since X is Gaussian, both its real

and imaginary components are Gaussian with the same mean and variance, that is,

X = Re(X ) + i Im(X ) for real Gaussian random vectors Re(X ), Im(X ) ∈ RN×1 and

the vector:

X̃ =

(
Re(X )

Im(X )

)
,

is also Gaussian. We call X complex Gaussian circularly symmetric (CGCS) and write

X ∼ CN (µx,Qxx) if the variance of X̃ satisfies

var(X̃ ) = E
[(

X̃ − E
[
X̃
])(

X̃ − E
[
X̃
])†]

=
1

2

(
Re(Qxx) −Im(Qxx)

Im(Qxx) Re(Qxx)

)
.

The multivariate distribution of the CSCG random variable N ∼ CN (µn,Qnn), whose

realisations take vector values n ∈ CNR×1, is given by [13, 56]:

pN (n) =
1

|πQnn|
e−(n−µn)

†Qnn
−1(n−µn). (2.5)
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Therefore, we can find the entropy H(n) using (2.1) as follows [13]:

H(n) = E
pN (n)

[
− loge pN (n)

]
= E

pN (n)

[
loge |πQnn|+ (n− µn)†Qnn

−1 (n− µn) loge e

]
= loge |πQnn|+ E

pN (n)

[
(n− µn)†Qnn

−1 (n− µn)

]
= loge |πQnn|+ E

pN (n)

[∑
i,j

{
(ni − µi)

[
Qnn

−1]
ij

(nj − µj)
}]

= loge |πQnn|+
∑
i,j

{
E

pN (n)

[
(nj − µj) (ni − µi)

] [
Qnn

−1]
ij

}

= loge |πQnn|+
∑
i,j

{
[Qnn]ji

[
Qnn

−1]
ij

}
= loge |πQnn|+

∑
i

{[
QnnQnn

−1]
ii

}
= loge |πQnn|+ Tr (INR

)

= loge |πQnn|+NR

= NR loge eπ + loge |Qnn| , (2.6)

where the entropy here is given in nats and we have used the matrix properties and

definitions, given A ∈ CN×N and b = (b1, ..., bN )† ∈ CN×1:

• The determinant of an N ×N identity matrix is one |IN | = 1.

• The trace or sum of the elements on the main diagonal of a A is denoted Tr(A).

• The determinant of a matrix A multiplied by a scalar α satisfies |αA| = αN |A|.

• The notation [A]ij refers to the complex number in the ith row and jth column

of A.

• The matrix expression b†Ab can be written as the sum of scalar expressions∑
i,j

{
xi [A]ij xj

}
.

• Scalar multiplication is commutative so that
∑
i,j

{
bi [A]ij bj

}
=
∑
i,j

{
bjbi [A]ij

}
.

When n is modelled as CSCG and the noise terms are independent, the specific case

where µn = 0 gives rise to Qnn = σ2nINR
, where σ2n is the noise variance per receive

antenna, we have n ∼ CN (0, σ2nINR
) and the entropy (in nats) becomes:

H(n) = NR loge eπ + loge
∣∣σ2nINR

∣∣ . (2.7)
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Since we have no control over the power and variance of the noise vector we cannot

decrease the entropy H(n), therefore, since entropy is always positive or zero, the prob-

lem of maximising H(y) − H(n) and finding the capacity using (2.4) is equivalent to

maximising H(y) by controlling the input x. With this in mind, we state the following

result:

Theorem 2.1 (Telatar [56]). Let z ∈ CN×1 be a complex random vector such that

E [z] = 0 and E
[
zz†
]

= Qzz ∈ CN×N . Then we have

H(z) ≤ N loge eπ + loge |Qzz| ,

with equality if and only if z is a circularly symmetric complex Gaussian vector, z ∼
CN (0,Qzz).

The theorem implies that the distribution of y that maximises H(y) is the multivariate

Gaussian distribution with the mean specified as being 0, ie. when y ∼ (0,Qyy). Recall

that the channel matrix H̄ is fixed and that from (2.3) we have y = H̄x + n, so when

we maximise y to determine the channel capacity, x is a linear combination of y and n.

Since we are considering the case where n ∼ CN (0, σ2nINR
), it follows that x must also

have a multivariate distribution with zero mean, so that x ∼ CN (0,Qxx).

It follows that the maximum entropy of y is given by

H(y)max = NR loge eπ + loge |Qyy|

= NR loge eπ + loge

∣∣∣E [(y − µy) (y − µy)†
]∣∣∣

= NR loge eπ + loge

∣∣∣E [yy†
]∣∣∣

= NR loge eπ + loge

∣∣∣E [(αH̄x + n
) (
αH̄x + n

)†]∣∣∣
= NR loge eπ + loge

∣∣∣E [(αH̄x + n
) (
αx†H̄† + n†

)]∣∣∣
= NR loge eπ + loge

∣∣∣E [ ¯α2Hxx†H̄† + αH̄xn† + αnx†H̄† + nn†
]∣∣∣

= NR loge eπ + loge

∣∣∣α2H̄QxxH̄† + σ2nINR

∣∣∣ . (2.8)
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Finally, we can combine (2.7) and (2.8) with (2.4) to obtain:

C = max
pX(x)

{H(y)−H(n)}

= H(y)max −H(n)

= loge

∣∣∣α2H̄QxxH̄† + σ2nINR

∣∣∣− loge
∣∣σ2nINR

∣∣
= loge

∣∣α2H̄QxxH̄† + σ2nINR

∣∣
|σ2nINR

|

= loge

∣∣∣∣INR
+
α2

σ2n
H̄QxxH̄†

∣∣∣∣ , (2.9)

in nats, or the equivalent:

C = log2

∣∣∣∣INR
+
α2

σ2n
H̄QxxH̄†

∣∣∣∣ , (2.10)

in bits. In subsequent chapters the units for capacity will be expressed in bits per

second per Hertz (bps/Hz), which are the standard units, since we often multiply these

equations by the bandwidth (in Hz) to obtain the observed speed (in bps) of a connection

with a specified bandwidth. Note that bits and bps/Hz are equivalent since the units of

Hertz and seconds cancel.

We note that the capacity given in equations (2.9) and (2.10) is unlimited unless we

implement some restrictions. In practise the restriction is usually a transmit power

constraint, as it is expensive to generate power. From the definition of Qxx and that

fact that E [x] = 0, we have that Tr(Qxx) =
∑NT

i=1 xix
†
i where the amplitude of entry xi

corresponds to the power allocated to the ith transmit antenna. Since we do not have

unlimited transmit power but a maximum amount pmax, it follows that the trace of Q

must be bounded as Tr(Qxx) < pmax, and so while the theoretical capacity is given by

(2.10), the actual achievable capacity (in bps/Hz) is found by maximising (2.10) subject

to this constraint:

C = max
Tr(Qxx)≤pmax

{
log2

∣∣∣∣INR
+
α2

σ2n
H̄QxxH̄†

∣∣∣∣} , (2.11)

where the maximisation is over the distribution of Qxx and also depends on the channel

state information and computing capability available at the transmitter and receiver,

which will be discussed in Section 2.2.3.
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2.2 Time varying channel

In this section we will move on from the definition of capacity for a fixed channel and

introduce a wider range of metrics appropriate for more realistic time varying channel

models. The capacity considered in Section 2.1.1 is only valid for the fixed channel

matrix H̄, which takes constant complex valued entries for the considered time period.

In reality, the statistical properties of a wireless channel may vary over time. In this

case we have to average over all the different possible channel states of the channel

matrix, which is modelled as the random matrix variable, H. In the same way as for the

random input and output vectors x and y above, we denote a single channel realisation

as H(θ) ∈ CNR×NT . We can then model our channel in matrix form as

y = αHx + n, (2.12)

and for specific realisations of x, y, H and n we have

y(θ) = αH(θ)x(θ) + n(θ). (2.13)

Before considering the impact of these effects further, we take a moment to describe the

following normalisations.

2.2.1 Normalisation

In the capacity equations so far we have assumed that the channel matrix, H̄, and the

realisations, H(θ) and n(θ), of the varying channel matrix and noise vector respectively,

represent the actual observed and unaltered channel gains and noise variances respec-

tively, as in case i of Table 2.1. However, it is sometimes useful to adapt the model

and write the channel, noise and signal variables as scalars multiplied by a normalised

version. For example, a Rayleigh fading MIMO channel is often modelled as a zero

mean Gaussian random matrix H ∼ CN (0, ‖H‖2F I) with variance ‖H‖2F , where ‖H‖F
denotes the Frobenius norm of H. Rather than modelling the channel as H it can be

useful to put H = ‖H‖2FH′ where H′ ∼ CN (0, ‖H′‖2F I) is normalised to have specific

(eg. unit) variance, ‖H′‖2F I. In such a case, we might assume that ‖H‖2F = 1
dm where

d is the distance spanned by the channel and m is the path loss exponent, which allows

us to compare channels of differing distances but the same fading distribution. Such

assumptions can be made similarly for x and n and so the purpose of α is to incorporate

all the necessary scalars in the normalised model. This is a valid simplification under

the condition that for a general channel modelled as in (2.12), where the variables have
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Case
Normalised?

SNR (ρ) E
[
|hj,i|2abs

]
E
[
‖H‖2F

]
E
[
|ni|2

]
E
[
|xi|2

]
H n x

i 7 7 7
α2σ2

x E[‖H‖2F ]
σ2
n

E
[
|hj,i|2abs

]
E
[
‖H‖2F

]
σ2n σ2x

ii 3 7 3 α2NTNR
σ2
n

1 NTNR σ2n 1

iii 3 3 7 α2 σ2xNTNR 1 NTNR 1 σ2x

iv 3 3 3 α2NT
1
NR

NT 1 1

v 7 7 3
α2 E[‖H‖2F ]

σ2
n

E
[
|hj,i|2abs

]
E
[
‖H‖2F

]
σ2n 1

vi 3 7 3 α2NT
σ2
n

1
NR

NT σ2n 1

Table 2.1: Normalisations

arbitrary normalisations, if it holds that the total instantaneous and average SNRs at

the receiver are equal, respectively, to

ρ(θ) =
α2σ2x ‖H(θ)‖2F

σ2n
and ρ =

α2σ2x E
[
‖H‖2F

]
σ2n

. (2.14)

Notice that in this definition of receive SNR the numerator contains all the factors

that contribute towards the power of the desired signal: the input power, σ2x and the

power corresponding to the channel gains ‖H‖2F . On the other hand the denominator

contains the variable contributing to the power of the noise, that is the average noise

power σ2n. The factor α then accounts for any normalisations, as well as any additional

considerations (such as time or power allocation) which affect the SNR. For ρ defined as

in (2.14), it follows that we may rewrite the capacity expression in (2.11) for the more

generalised channel model in (2.12) as

C = max
Tr(Qxx)≤pmax

{
log2

∣∣∣INR
+ ρHQxxH†

∣∣∣} . (2.15)

From this point on we will consider this channel model and the metrics defined in

the following section will be derived from (2.15). Table 2.1 summarises some of the

normalisations we will use in this work.
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2.2.2 Metrics

There are different ways of measuring the rate and capacity according to how quickly

variations in the channel matrix occur and whether or not the transmitter and/or receiver

are able to track them. Depending on whether or not the time for which the channel

matrix remains fixed (its coherence time) is longer that the duration of a codeword (the

time it takes to transmit the minimum length signal which is independently decodable),

we use one of a number of different metrics.

2.2.2.1 Ergodic rate

We begin by defining the ergodic rate for the channel modelled in (2.12). When the

channel varies rapidly, so that it take many states within the duration of a codeword

an appropriate rate metric is the ergodic rate. Recall the informal definition of capacity

as the maximum rate across a channel. The rate is the amount of data transmitted per

second, per Hertz for a given transmission and reception scheme, for a given channel

realisation θ, and, in particular, for a given (fixed) value of Qxx. As such, while we

must have Tr(Qxx) < pmax we do not need to maximise over the distribution of Qxx.

To account for the channel variation over time, this rate is then averaged over all the

different possible states, H(θ), of the random channel matrix, H. This gives the ergodic

rate, which derived from (2.11) and (2.12) as [57]:

RS = E
H

[
log2

∣∣∣INR
+ ρHQxxH†

∣∣∣] . (2.16)

In particular, we notice that taking the average over all possible realisations of H is

reasonable for computing the rate within the duration of the codeword for a rapidly

varying channel because the channel is likely to take on many distinct realisations within

this time interval.

2.2.2.2 Ergodic capacity

We also consider the ergodic capacity. As for the ergodic rate, we have to account for all

the possible channel states, H(θ), taken by the channel matrix for this metric. Therefore,

the ergodic capacity is given by [8]:

Cerg = E
H

[
C (H)

]
, (2.17)

where C (H) refers to (2.15) written as a function of H. For the same reasons considered

for the average rate, this metric is appropriate for rapidly varying channels.
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2.2.2.3 Outage capacity

On the other hand, when the instantaneous channel realisation does not change over

the duration of a codeword, then it is slow fading. In particular, if we define a ‘block’

as the time interval for a fixed number of codewords and the channel is approximately

stationary for the duration of a block, we call the channel ‘block fading’. In this case

the ergodic capacity is no longer representative of the channel, because the single fixed

realisation, H(θ), of the channel matrix for a given block may be significantly different

to the average of all possible states [6]. A better metric to use for capacity computation

in this scenario, is the outage capacity, Cout. An outage occurs in a system when the

decoding error probability cannot be made arbitrarily small, regardless of what coding is

used at the transmitter. The probability of such an event occurring for a desired outage

capacity, Cout, is called the outage probability and is given by [8, 58]:

P out = Pr (RS(H) < Cout) , (2.18)

where RS(H) refers to the rate from (2.16) given as a function of H, and the probability

is with respect to the distribution of H over the possible realisations of H(θ). To invert

this relationship in order to find the outage capacity, which is defined as the maximum

average rate at which data can be communicated across a channel for a specific (typically

very low) outage probability, can be arduous and generally lacks a closed-form solution

as it depends on the distribution of the channel matrix. It is worth noting that bounds

could be approximated using Laplace’s method (see Chapter 4), however, if a service

provider wishes to make strict guarantees an exact relationship may be desirable.

2.2.2.4 Secrecy capacity

In the case of a wiretap system, where a confidential message is communicated between

a source, S, and desired destination, D, in the presence of a potential eavesdropper, E,

the metric we will consider is the secrecy capacity. We refer to the channel between S

and D and the channel between S and E as the legitimate and eavesdropper channels

respectively. Let us denote by RS the minimum rate at which S can transmit the

signal in order for it to be successfully decoded at D. The probability of the channel

capacity falling below this rate is therefore the connection outage probability, where we

use ‘connection’ to distinguish this from the secrecy outage probability associated with

the eavesdropper’s channel. On the one hand, we want the capacity of the legitimate

channel to be as high as possible for the best data rate, however, we also need to consider

the presence of the eavesdropper. If the capacity of the eavesdropper’s channel exceeds

a certain value, RE, then the security of the channel is compromised as E will be able
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to decode the message. The probability that the capacity of the eavesdropper’s channel

exceeds this value is the secrecy outage probability and the difference, RC = RS − RE

is called the ‘confidential message rate’. For a given connection outage probability K
and secrecy outage probability E the maximal secrecy throughput, or secrecy capacity,

is defined as [59]

Cs , (1−K)RC,

which is suitable for evaluating the secrecy performance of systems with stringent delay

constraints [60].

2.2.2.5 Secrecy rate and secrecy outage probability

We also consider the secrecy rate, which is distinct from the secrecy capacity. Consid-

ering the same wiretap system as in the previous section, we define the actual observed

rates across the legitimate channel and eavesdropper channels as RS and RE respec-

tively (notice the distinction from RS and RE, which were defined in Section 2.2.2.4).

The secrecy rate, Rsec, is then defined as the difference between these rates, when this

difference is positive [45] :

Rsec = max {0,RS −RE} . (2.19)

For a targeted secrecy rate of RT can define the secrecy outage probability analogously

to (2.18), as [61]:

P sec
out = Pr (Rsec < RT) . (2.20)

2.2.2.6 Diversity order

Additionally, we will consider the diversity order of the system, which we touched on

in Section 1.1.1.1, where we explained that one of the main benefits of using multiple

antennas is that it creates additional paths (spatial diversity) for the signal to travel from

source to destination. The maximum diversity order is the maximum number of such

paths, that is, the product of the number of antennas at the source and destination,

NrNt. Whether or not this maximum is reached depends on the transmit SNR, ρS.

The diversity order, d, for the systems considered in our work, is shown in [62] to be

equivalent to :

d , − lim
ρS→∞

loge[Pe(ρS)]

loge(ρS)
, (2.21)
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where Pe denotes the maximum likelihood (ML) probability of detection error as a

function of ρS, which can be tightly bounded above by the outage probability at high

SNRs [62]. Greater diversity order results in a lower probability of error and thus better

overall system performance [8].

2.2.3 Channel state information

Regardless of the metric we use, how much knowledge we have about the way in which

the signal is altered when it traverses the channel is a crucial factor when it comes to

determining the maximum achievable communication rate. We will refer to the different

degrees of knowledge at the transmitter and receiver using the following definitions from

[63]:

CSI Channel state information,

CSIT The transmitter has full knowledge of the instantaneous channel

matrix H(θ),

CSIR The receiver has full knowledge of the instantaneous channel matrix

H(θ).

Having access to accurate CSI provides significant advantage when compared to com-

municating without knowledge of the channel. This is because to obtain the maximum

possible capacity for a channel, we must transmit using the appropriate input power

distribution Qxx which maximises (2.15) or use a decoding scheme at the receiver that

can provide the same benefits. In reality, the transmitter and receiver may not be able

to obtain enough information about the channel to perform the necessary coding to

achieve the maximum capacity for the channel. It follows that the definition of capacity

varies according to the availability of this knowledge in addition to the factors we have

considered previously [63].

Let us consider the most simple and ideal situation in which we have a fixed, time-

invariant channel matrix which is known to both the transmitter and receiver, as this

is useful as a basis for understanding more complex cases. In order to achieve the

exact capacity for this scenario, it is necessary to solve the maximisation problem for

all possible input covariance matrices Qxx. In this case, it can be shown using the

singular value decomposition of the channel matrix H(θ), that it is possible to precode

the input signal and ‘post-code’ the output signal to convert the channel into Nmax =

max{NT, NR} parallel data streams. In other words, the different signals transmitted

from the individual transmit antennas are completely separable at the receiver and the

only decoding problem for the receiver is to remove the noise component for each stream.

It can then be shown that the maximum data rate is achievable by utilising the CSIT
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so that more power is allocated to the streams with the most favourable channel gains.

In particular, applying the so called ‘water-filling’ algorithm to choose power allocation

coefficients, so that Qxx is a diagonal matrix with the ith power coefficient proportional

to the entry (eigenvalue) [Qxx]ii, can achieve full capacity [6, 56].

For the case of fading channels, we have already seen that it is necessary to take a

different approach. Generally, in order to have CSIT, we must have CSIR, as channel

estimation is usually carried out by the receiver. More specifically, access to CSIT

requires that:

1. The receiver is able to track the channel as fast as it is varying,

2. The receiver is able to communicate the CSI to the transmitter.

The first condition depends on the feasibility of implementing a channel estimation

scheme at the receiver, its sensitivity and computing power. Channel estimation is usu-

ally carried out by implementing a pilot signal which is known to the receiver, however

alternative approaches including blind and ‘semi-blind’ estimation have also been inves-

tigated [64–66]. The second condition requires that the first condition is satisfied and

also depends on the quality of the channel from the receiver to the transmitter and the

time it takes to relay the CSI. If only the first condition holds, we have CSIR but not

CSIT, whereas if both conditions hold we have CSIT and CSIR.

Computing the CSI occurs at the receiver, which has access to the signal after it is

affected by the channel. The most common means of obtaining this information is

training based, which involves transmitting a pilot signal, which is already known to

the receiver, as part of the communication. Methods such as maximum likelihood, least

squares and minimum mean square estimation are used to compute the CSI. Because the

computation occurs at the receiver, we are more likely to have CSIR than CSIT, since

obtaining CSIT relies on the receiver being able to communicate the CSI back to the

transmitter. If the channel is varying quickly, for example, in the case where users are

highly mobile, then the CSI may no longer be an accurate representation of the current

channel by the time it reaches the transmitter, and assuming CSIT may be unrealistic.

If a channel is slow fading then the assumption of CSIT may be reasonable because it

is feasible that the receiver will have the ability to track the channel and enough time

to communicate the CSI to the transmitter before the channel varies significantly.

2.2.3.1 Transmit and receive CSI

We start by considering the former fading channel scenario, where the receiver is able

to track the channel and communicate the CSI to the transmitter each time it changes.
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In this case the optimal power allocation can be computed per channel realisation using

the water-filling method, and the ergodic channel capacity can be achieved and is given

by:

Cerg = E
H(θ)

[
log2

∣∣∣INR
+ ρH(θ)Qxx(θ)H(θ)†

∣∣∣ ], (2.22)

where Qxx(θ) is the diagonal matrix found using the water-filling algorithm for channel

realisation H(θ), so that [Qxx(θ)]ii is the power allocated to the ith transmit antenna

[63]. The difference between (2.22) and (2.17) is that we do not need to take the

maximum over all possible Qxx since it is known to be given by Qxx(θ) for H(θ).

2.2.3.2 Maximum ratio transmission

Another way of utilising CSIT is to employ maximum ratio transmission precoding, the

aim of which is to maximise the receive SNR (and therefore improve the capacity) by

allocating power at the transmitter in the directions of the eigenvectors of the channel

matrix [67]. To see how this works, consider again the channel modelled in (2.12) with

power allocation matrix Qxx whose trace is equal to the total available power pmax. The

formula for the SNR in this case can be written as

ρ =
power of desired signal

power of noise component
=

E
[
|HQxx|2

]
E
[
|n|2

] .

We have E
[
|n|2

]
= σ2n, which is a constant, therefore we need only to determine the

matrix Qxx which maximises E
[
|HQxx|2

]
. The solution is simply the normalised com-

plex conjugate of Qxx = pmax
H†

|H| . To see this, let [H]i∗ and [Qxx]∗i denote the ith row

of H and the ith column of Qxx respectively. Then we have

max
Qxx

{
E
[
|HQxx|2

]}
= max

Qxx

E

∣∣∣∣∣
NT∑
i=1

{[H]i∗[Qxx]∗i}

∣∣∣∣∣
2


= max
Qxx

{
NT∑
i=1

(
E
[∣∣∣[H]i∗ · [Qxx]†∗i

∣∣∣2])}

= max
Qxx

{
NT∑
i=1

(
E
[
|[H]i∗|2

∣∣∣[Qxx]†∗i

∣∣∣2 cos(ωi)

])}
,

where · denotes the standard dot product for the vector space consisting of elements

v ∈ C1×NT and ωi is the angle between vectors [H]i∗ and [Qxx]†∗i. The maximum is

realised when cos(ωi) = 1 that is, when ωi = 0 for each i ∈ {1, · · · , NT}, which is
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equivalent to saying that the vectors [H]i∗ and [Qxx]†∗i point in the same direction, so

indeed we have Qxx = pmax
H†

|H| . Maximum ratio transmission is preferable to the water

filling method in situations where computing power at the transmitter is limited, since

it only requires taking the conjugate transpose of the known channel matrix [67].

2.2.3.3 Zero-forcing jamming

Another popular technique is zero-forcing (ZF) jamming, which has received considerable

attention recently in the area of secrecy transmission and makes use of CSIT. The idea is

to minimise the SNR in all but the desired communication direction [54, 68]. Recall that

we defined jamming in Section 1.2.4 as a means of improving the security of a wireless

channel. The method involves injecting artificial noise into the system by adding a

‘jamming’ component, xJ, to the transmitted signal. To illustrate this consider the

channel between a source, S, equipped with NS antennas and a legitimate destination,

D, equipped with ND antennas in the presence of an eavesdropper, E, equipped with NE

antennas, as in Figure 2.2. Instead of transmitting the intended message x, the source

transmits

xZF = x + WxJ

where xJ ∈ CND×1 is a vector with randomly generated ‘noise’ as it’s entries, and

W ∈ CNS×NS is the non-zero, precoding matrix which is chosen using the CSIT. Let the

legitimate channel between S and D be modelled by the matrix HSD ∈ CND×NS and the

illegitimate channel between S and E be modelled by the matrix HSE ∈ CNE×NS . The

source chooses W so that HSDW = 0 which means the received signals at D and E are,

respectively:

yD = HSDx + HSDH−1SDxJ + n1

= HSDx + n1

yE = HSEx + HSEH−1SDxJ + n2,

where n1 ad n2 denote the AWGN of the respective channels. We see that at D the use

of W has removed the jamming signal at D while allowing it to confound E by adding

additional ‘noise’ to its received signal. This method can be used alongside MRT in

order that D is able to recover x [68, 69].

2.2.3.4 Zero-forcing transmission

On the other hand, if we have access not only to the CSIT for the legitimate channel

of the system in Fig. 2.2 but to the partial CSI for the eavesdropper’s channel, then
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Figure 2.2: Example wiretap system model for zero-forcing

we can also use zero forcing as part of the transmission precoding for the intended

message. It may be possible to access such partial CSI, for example when E is a legitimate

destination for other messages from S, and is thus interested in revealing its CSI, or when

reasonable assumptions are made on the minimum distance of E from S [70]. It can then

communicate this information to the legitimate receiver. In this case we can make use of

the CSI by premultiplying the desired signal by a non-zero precoding matrix W which

is chosen to satisfy HSEW = 0, so that the received signals are

yD = HSDWx + n1

yE = n2,

respectively, and since the receiver also knows the CSI it can compute W and therefore

cancel it out to retrieve the message. This method can also be combined with zero-

forcing jamming as we will demonstrate in Chapter 4.

2.2.3.5 Receive CSI only

If, on the other hand, the receiver is able to track the channel exactly but is unable to

communicate the full CSI to the transmitter, then we have CSIR but the transmitter has

no way of obtaining CSIT. The best option in this case is for the transmitter to allocate

equal power to each antenna so that Qxx = pmax

NT
INT

. This is equivalent to transmitting

equal power in all directions, which is intuitive given that there is no information to
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suggest the superiority of any single direction. In this case, therefore, we can combine

(2.15) with (2.17) and simplify to obtain:

Cerg = E
H

[
log2

∣∣∣INR
+ ρHH†

∣∣∣ ]. (2.23)

Note that in the case where CSIT was available, the capacity of the channel would be

greater, because we could achieve a greater rate using, for example, water-filling.

2.2.3.6 Partial CSI

Occasionally the transmitter may be able to obtain some CSI without knowing the

channel matrix exactly. Such knowledge is referred to a partial CSI. This can occur when

the feedback obtained at the transmitter suffers from imperfections such as feedback

delay, feedback error and channel estimation error, or more commonly, when the feedback

link is strictly bandwidth constrained, so that the communicating all of the NtNr channel

coefficients becomes impossible [16]. In this case, we model the channel as

H = H̃ + ∆e , (2.24)

where H̃ is an estimate of the channel and ∆e denotes the error of the estimation,

where ∆e ∼ CN
(
0, σ2e INt

)
. In particular, when analysing the performance of a channel

modelled this way at the transmitter, we must take the error in to account.

2.2.3.7 Other cases

Finding the optimal input variance for other channel models for which the channel is

either non-zero mean or non-white is also possible in cases where statistical information

regarding the mean and covariance respectively is communicated back to the trans-

mitter. Such knowledge is referred to a statistical CSI. Deriving the ergodic capacity

achieving algorithms for such cases is more complicated, however several solutions have

been derived, some of which are described in [63].

2.3 Asymptotic capacity

The standard formulae introduced so far for computing capacity are effective for smaller

scale MIMO arrays. However, when massive MIMO is involved and the dimensions of the

channel matrix increase, multiplying matrices together and computing the determinant

become highly complex operations and this method becomes impractical.
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2.3.1 Random matrix theory

A more efficient approach can be found using the results from the study of random matrix

theory (RMT). The discipline came into existence in the late 1920s, when Wishart

initiated investigations into the properties of fixed dimension random matrices with

Gaussian entries [71]. The specific RMT results that we are interested in concern the

asymptotic eigenvalue distribution (AED) of a random matrix. As we will see shortly,

this distribution can be used to greatly reduce the complexity of capacity calculations in

cases where the matrix dimensions are large. The first results in this area were recorder

in the 1950s by Wigner, whose work was motivated by the study of atomic energy levels

in nuclear physics [72].

2.3.2 Asymptotic eigenvalue distribution

Eigenvalue distributions are central to the study of RMT and asymptotic results exist

for several classes of random matrices [73, 74]. Consider a random matrix X with

realisations in CNR×NR . We define the AED of this matrix as the limiting distribution,

fX(x) (when it exists) of the pdf of the eigenvalues of X where the limit is taken as NT

and NR tend to infinity but their ratio ζ = NT
NR

is fixed. There are a number of classes

of random matrices for which the limit does exist.

2.3.2.1 Wigner Matrices

One class of random matrices is the Wigner Hermitian matrices, Xn, which are defined

as having random entries {χij}1≤i,j,≤n satisfying {χij} = {χji} where the upper triangle

entries i > j are independent complex random variables. In the case where all entries

are real we have a symmetric random matrix, and in particular a special subset of these

is the Gaussian Orthogonal Ensemble (GOE), in which the upper and lower triangle

entries are real and have distribution N (0, 1) while the diagonal entries are distributed

as N (0, 2). For the more general complex case, the matrices are Hermitian and thus the

diagonal entries are real. In this case, the equivalent special case occurs when the upper

triangular elements are distributed as CN (0, 1) while the diagonal elements are real and

distributed as N (0, 1) and is called the Gaussian Unitary Ensemble (GUE). The GOE

and GUE are so called because their distributions are invariant over orthogonal and

unitary conjugation respectively. A fundamental result in the study of random matrices

is the semicircular law, which is the non-commutative equivalent to the central limit

theorem in traditional (commutative) probability. This law states that if we consider

any infinite Wigner matrix, and define Xn as the n×n sub-matrix made up of its upper
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leftmost n×n entries, then the AED converges ‘almost surely’ to the Wigner semicircular

distribution [75].

2.3.2.2 Wishart matrices

A central Wishart matrix X = HH† is a Hermitian matrix derived by multiplying an

NR ×NT random matrix H by its own conjugate transpose, where H has columns that

are real/complex, zero-mean, independent Gaussian random vectors (in a non-central

Wishart matrix the mean may be non-zero). Of particular note is the central Wishart

matrix obtained in the case where all entries of H are i.i.d Gaussian random variables

with normalised variance. As we saw in Section 2.2.3, this H models the long term av-

erage over several rich-scattering propagation environments and is the canonical MIMO

channel model. For example it models the point-to-point Rayleigh fading channel whose

individual paths are independently and identically distributed (i.i.d). The correspond-

ing Wishart matrix, X, in this case is then Hermitian (since (HH†)† = HH†) although

not a Wigner matrix because the entries are not independent (in fact X is a covari-

ance matrix). This is a specific instance of a Wishart matrix, for which the eigenvalue

distribution is known:

Theorem 2.2 (Marčenko-Pastur [74]). For a Wishart matrix H with realisations in

CNR×NT and variance 1
NR

, the eigenvalue distribution of X = HH† converges almost

surely, as NT, NR → ∞ with NT
NR
→ ζ, to the Marčenko-Pastur law. That is, the AED

of X is given by:

fX(x) = (1− ζ)+ δ(x) +

√
(x− a)+ (b− x)+

2πx
,

where (z)+ = max(0, z), a = (1 −
√
ζ)2, b = (1 +

√
ζ)2 and δ(x) = 1 if x = 0 and

δ(x) = 0 otherwise.

2.3.3 Asymptotic capacity

In the late 90s, the groundbreaking works of Telatar [56] and Foschini [9, 76] demon-

strated how to use the AED to compute the asymptotic capacity of MIMO channels

with channels modelled as the random matrices H in Theorem 2.2. Consider a channel

modelled as (2.12) with no normalisation, as in case i of Table 2.1. In this case the

receive SNR is given by ρ as defined in (2.14). Let X = HH† and for the sake of sim-

plicity assume that the input variance, Qxx, takes a scalar value, as in (2.23), which is

incorporated into the variable α as part of ρ. When it exists, as in the above examples,
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the AED of X can be used to derive the asymptotic capacity across large-scale, massive

MIMO channels due to the following [74]:

CAsyH = lim
NT,NR→∞

(log2 |INR
+ ρX|) (2.25)

= lim
NT,NR→∞

(
NR∑
i=1

log2 (1 + ρλX(i))

)
(2.26)

= NR

∫ ∞
0

log2 (1 + ρx) fX(x) dx, (2.27)

where λX(i) is the ith eigenvalue of X. We call the capacity found in this manner the

asymptotic capacity, to emphasise the fact that it is found by taking asymptotic limits,

rather than by applying (2.23).

There are certain cases in which the integral in (2.27) can be expressed in a closed form

[77]. For example, we are able to do this for the case where the AED is given by (2.2)

as demonstrated in [74, p. 10-11]. In Section 6.4 of Chapter 6 we will adapt this result

in order to compute the capacity of a NOMA system.

The convergence rate of the eigenvalue distribution of a random matrix to its asymptotic

limit has been demonstrated to be of the order of the reciprocal of the number of

entries in the random matrix [74], and the results of our work will demonstrate this fact.

Therefore, we find that for a massive MIMO channel matrix with dimensions greater than

64×64, the asymptotic capacity is close enough to the ergodic capacity to be considered

deterministic. This result demonstrates the importance of the channel matrix, and in

particular its eigenvalue distribution, in calculating the asymptotic capacity of a MIMO

channel.

As mentioned, the simplest example of a MIMO channel can be also modelled as a

Wishart random matrix for which the AED can be found using RMT and is given by

the Marčenko-Pastur Theorem [13], and thus the capacity of such a channel can be found

by applying (2.27). In 2004, [74] and [78] demonstrated some ways of generalising the

result, but the work was premature with respect to small-scale MIMO, whose capacity is

more easily computed using the celebrated ‘log-det’ result [8]. However, with the recent

development of massive MIMO (introduced in Section 1.1.2 and further investigated in

Chapters 6 and 7), the analysis of very large random matrices is relevant once more, and

the use of asymptotic results has resurfaced. The last several years have seen further

methods, such as free probability theory, used to compute the asymptotic eigenvalue

distributions (AEDs) of a wider class of MIMO channel matrices [79–81], which we will

consider in more depth in Chapter 3.
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2.3.4 Channel hardening

Equation (2.27) relies on a crucial property pertaining to random matrices, which is

the underlying reason for the applicability of asymptotic random matrix behaviour to

MIMO capacity analysis. This property is known as channel hardening, a term which

was introduced in [82]. Essentially, channel hardening refers to the tendency of a fading

channel to act like a non-fading, deterministic channel, in which the randomness still

exists but its impact on the communication is negligible.

To be more precise, for a fading channel matrix H(θ) ∈ CNR×NT let hi(θ) ∈ C1×NT for

i ∈ {1 : NR} be the ith row of H(θ) which corresponds to the channel gains of the signal

arriving at the ith received antenna. If the ratio ‖h̃(θ)‖
E[‖h(θ)‖] between the instantaneous

channel gain of a single realisation h̃(θ) and its average gains converges in probability

to 1 as NT →∞ for all i, then we have channel hardening. In the particular case of the

Wishart matrix corresponding to our i.i.d Rayleigh fading channel, the variance of the

ratio reduces with the number of receive antennas as 1
N2

R
[83]. It follows that channel

hardening is a result of increasing channel dimensions [84].

Since the eigenvalues of a random matrix tend surprisingly quickly to their asymptotic

limit, channel hardening occurs quickly with an increase in transmit antennas, even for

smaller MIMO arrays [74]. In fact, as we will see in subsequent chapters, the capacity

derived using the asymptotic formula can be applied accurately for channel matrices

with dimensions as low as 4× 4.

2.4 Limitations

With the development of each new generation of mobile networks, the variety of prop-

agation scenarios becomes increasingly diverse. In particular, 5G wireless applications

can occur in environments ranging from dense urban to rural and include indoor of-

fice buildings, shopping centres, highways and arenas. There are different link types

including point-to-point, peer-to-peer and cellular access, as well as different topological

arrangements such as outdoor-to-outdoor (O2O), outdoor-to-indoor (O2I), and indoor-

to-indoor (I2I) [3]. Different modelling strategies are required for different scenarios,

which leads to considerable variation and asymmetry between not only the channels

with a system, but to the best ways of analysing them.

We have already seen that the method used to compute the capacity of a wireless channel

depends on how it varies over time and how much knowledge the transmitter and receiver

have about its state. Since we will be considering mainly MIMO and large scale MIMO
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channels, a main focus of this work is to find ways of applying the comparatively low

complexity asymptotic capacity approach to systems for which the simple models in

the previous section are not straightforward to apply. Of particular interest is how to

derive AEDs for more diverse channels in order to apply (2.27). For example, in cases

where asymmetry exists between channel fading properties within a system, cases where

multiple distinct channels have to be incorporated into a single capacity computation or

cases where correlation exists between antennas.

2.5 Summary

In this chapter, we focused on thoroughly defining what is meant by the capacity of

a channel and demonstrated how to derive the quantity for wireless channels which

are impaired by the presence of Gaussian noise. Next, we showed how to extend the

definition for the MIMO channel. We then discussed the different ways of approaching

performance analysis when we take into account how much knowledge about the channel

is available at the transmitter and receiver, and potential variations in the channels

statistical properties over time. In particular, we introduced the additional metrics of

ergodic and outage capacity which apply for time varying MIMO channels, as well as

metrics for measuring the secrecy of the communication. We saw that the traditional

approach to capacity computation becomes arduous for large channel matrices and went

on to introduce a lower complexity alternative that relies on the asymptotic properties

of certain classes of random matrices. We have provided some asymptotic results which

we will rely on in our research, including the Marčenko-Pastur law for Wishart matrices.

Finally some of the challenges involved in applying the asymptotic approach to more

complex system models have been discussed which we will investigate further in the

following chapter.



Chapter 3

Free Probability Theory and

Random Matrices

In the previous chapter, we started to see how techniques from random matrix theory

(RMT) could be useful in extending capacity analysis to the case of very large channel

matrices. In particular, equation (2.27) gives an explicit formula for finding the capacity

of a multiple-input multiple-output (MIMO) channel for a given signal-to-noise ratio

(SNR), which relies on the asymptotic eigenvalue distribution (AED) of the channel

matrix rather than involving operations such as matrix multiplication and determinant

computation whose complexity depends on the matrix dimensions. The main conclusion

we draw from this is that knowing the AEDs of the matrices in the capacity expression,

is highly desirable for the efficient evaluation of MIMO system capacities and related

metrics.

In this chapter we introduce the problem of finding the AEDs of matrices which are not

as straightforward as the Wishart matrices considered in Section 2.3.2. This is motivated

by the fact that the diverse nature of the IoT means that many different random matrix

channel models are required for different situations, which take complications such as

channel asymmetry and correlation into account. The asymptotic analysis of random

matrices required for finding the AEDs of these non-straightforward models can be

facilitated by using results from the area of free probability theory (FPT).

We will begin by giving a more thorough mathematical definition of the eigenvalue

distribution of a matrix and describe in terms of limits what is meant by the AED. In

our work we are particularly interested in channel models which give rise to capacity

calculations involving polynomials in multiple random matrix variables. With this in

mind, we introduce a number of mathematical transforms which will allow us to find

the AED of such matrix polynomials. We then go on to introduce the area of FPT

41
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which provides a framework which enables us to apply the transformations to compute

polynomial AEDs. The so called ‘R’ and ‘S’ transforms are shown to be able to provide

the desired results for straightforward cases, however, they cannot generally be applied

for less trivial polynomials. This leads us to introduce the concept of operator-valued

FPT along with the key results in this subject that will provide a method for computing

the AEDs of more general polynomials. In these cases, we will see that it is possible to

linearise a general polynomial problem to that it becomes an operator-valued additive

convolution problem. Rather than relying on the R-transform at this stage (which rarely

provides an explicit solution, and when it does, results in many possibilities) it is then

possible to use the ‘subordination formulation’ of the convolution to solve our problem

[85]. We will conclude by describing some existing research in wireless communications

which has made use of the results in this chapter to illustrate the applicability of the

theory.

3.1 Introduction

Initiated by Dan Voiculescu in the late 1980s, who was interested in problems involving

operator algebras, free probability theory (FPT) constitutes an alternative approach to

RMT for solving random matrix problems [86]. While RMT regards a channel matrix

as an ensemble of random variables, FPT regards it as a single random operator. This

viewpoint can reduce complexity, since manipulating a single random object is less

complicated than accounting for many. Before introducing this discipline in more detail

it is useful to provide some further background from RMT, particularly regarding the

eigenvalue distributions of random matrices, which we will rely upon.

3.1.1 Asymptotic eigenvalue distribution (AED)

As we have mentioned, our interest in FPT arises from the need to solve a particular type

of problem. As we will see in the coming chapters, it is sometimes necessary to consider

polynomial combinations of two or more different random matrices when analysing the

performance of wireless channels. The problem we will consider, is how to compute the

AED of such combinations when they arise in the capacity formula. In order to solve

this problem we will rely on a number of different results.

To begin, we give the formal definition of the eigenvalue distribution, fXN (x), of a finite,

random matrix XN ∈ CN×N , which is obtained by taking the top leftmost N×N entries
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of an infinite random matrix, X [87]:

fXN (x) = E

[
1

N

N∑
i=1

δ(x− λi)

]
, (3.1)

where the expectation is taken over the distribution of XN , λ1, λ2, ..., λN are the eigen-

values of XN , and δ is the Dirac delta function. More specifically, we define δ(x) as the

limit of a nascent function:

δ(x) = lim
ε7→0+

1

π

ε

x2 + ε2
, (3.2)

which is zero for all x ∈ R except x = 0, where it has a point of infinite mass which

integrates to 1. The following relationship is referred to as the ‘sifting’ property of the

delta function, and is valid for any function f that is continuous at the point x0: [88]:∫
f(x)δ(x− x0)dx = f(x0). (3.3)

For cases where we allow N to tend to infinity, we may then define the asymptotic

eigenvalue distribution, fX(x), as

fX(x) = lim
N 7→∞

(fXN (x)) , (3.4)

when this limit converges.

3.1.2 Transformations

Consider a collection of random matrices Xi, each of which has a known AED. The

simplest polynomial combinations of two such random matrices which come to mind are

X1 + X2 and X1X2. However, finding the AED of such polynomials is not a matter

of simply adding or multiplying the AEDs for each random matrix together. In fact,

we must first introduce a number of transforms which may be applied to the AEDs in

order to change the domain and temporarily convert them into more compliant forms.

In certain instances, we will see that it is then possible to combine the distributions as

desired, before ultimately converting them back to the required domain.

3.1.2.1 Cauchy transform

Going back to considering a finite random matrix, X, we define GXN (z) for any z

in the complement to the set of eigenvalues of X in the complex plane (that is, for



Chapter 3. Free Probability Theory and Random Matrices 44

z ∈ C \ {λi : i ∈ {1, ..., N}}) as:

GXN (z) =
1

N
Tr (zIN −X)−1

=
1

N
Tr (zIN −ΛX)−1

=
1

N

N∑
i=1

1

z − λi
, (3.5)

where (·)−1 here is the matrix inverse, ΛX is the diagonal matrix with the iith entry,

[Λ]ii, equal to the ith eigenvalue, λi, of X. For the case where N 7→ ∞ we have [87]:

GfX(z) = lim
N 7→∞

(E [GXN (z)]) (3.6)

= lim
N 7→∞

(
E

[
1

N

N∑
i=1

{
1

z − λi

}])

= lim
N 7→∞

(
E

[
1

N

N∑
i=1

{∫
δ(x− λi)
z − x

dx

}])

= lim
N 7→∞

∫ E
[

1
N

∑N
i=1 {δ(x− λi)}

]
z − x

dx


= lim

N 7→∞

(∫
fXN (x)

z − x
dx

)
=

∫
1

z − x
dfX(x), (3.7)

where the expectation is taken over the distribution of X, and fXN (x) and fX(x) are

defined as in (3.1) and (3.4) respectively. Note that we have used the fact that integrals

and expectations commute and the sifting property of the Dirac delta function given in

(3.3). The form on the RHS of (3.6) is called the (normalised) ‘resolvent’ of X (also

known as Green’s function), whereas the form in (3.7) is recognisable as the Cauchy

transform. Formally, the Cauchy transform of a real-valued, bounded and measurable

function, f : R 7→ R is defined for elements, z, in the complex complement of the support

of f as [89]:

Gf (z) =

∫ ∞
−∞

1

z − x
df(x). (3.8)

This transform is of fundamental importance when it comes to the analytical treatment

of large random matrices. In (3.7) we assume that f = fX is the AED of some random

matrix X as defined in (3.4), from here on we will perform a minor abuse of notation

and denote the Cauchy transform, GfX(z), of fX by GX(z).



Chapter 3. Free Probability Theory and Random Matrices 45

3.1.2.2 Cauchy inversion

A salient feature of the Cauchy transform (which, as we have shown, is equivalent to

the normalised resolvent in the case of our random matrix variables) is the fact that it

can be inverted to obtain the AED fX. To explain how this is possible (given that the

Cauchy transform involves an integral, which makes it non-trivial to invert) we use the

reasoning of the Sokhotski-Plemelj formula [87]. We start by taking an interval of the

real line between a and b (with a < 0 < b) that contains the support of fX and consider

the integral over this interval of GX(z) evaluated at z = y − iε. Taking the limit as

ε 7→ 0+ of this integral, we get:

lim
ε 7→0+

(GX(y − iε)) = lim
ε7→0+

(∫ b

a

fX(x)

y − iε− x
dx

)
= lim

ε7→0+

(∫ b

a

fX(x)

(y − x)2 + ε2
(y − x− iε) dx

)
= lim

ε7→0+

(∫ b

a

(y − x) fX(x)

(y − x)2 + ε2
dx− i

∫ b

a

εfX(x)

(y − x)2 + ε2
dx

)
. (3.9)

Let us denote the imaginary part of this quantity as =(GX(y − iε)), and use our earlier

definition of the Dirac delta function from (3.2) and the sifting property from (3.3) to

obtain [87]:

lim
ε7→0+

(=(GX(y − iε))) = −π lim
ε7→0+

(∫ b

a

1

π

εfX(x)

(y − x)2 + ε2
dx

)
= −π

∫ b

a
fX(x)δ (y − x) dx

= −πfX(y). (3.10)

This means that we can retrieve the AED by taking the limit of the imaginary part of

its Cauchy transform as follows [74, 85, 87, 89]:

fX(y) = − 1

π
lim
ε7→0+

= (GX(y − iε)) . (3.11)

We call this relationship the Cauchy inversion. Once we understand the Cauchy trans-

form and its inversion property, it is possible to define the R and S transforms and

eventually to make use of their relationship in deriving the AEDs of X1 + X2 or X1X2

from the individual AEDs of the random matrices X1 and X2.

It is important to note that in certain cases, for example, when we are considering the

Cauchy transform of the Marčenko-Pastur law given in Theorem 2.2 of the previous

chapter, we require an extended version of the inversion theorem. This is in order to
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deal with measures having countably many atoms. We do not derive this version here

but refer the reader to [85, Chapter 3, Theorem 6].

3.1.2.3 R-transform

The R-transform is defined for a function f : R 7→ R implicitly in terms of its Cauchy

transform Gf (z) as [74, 85]:

Gf

(
Rf (z) +

1

z

)
= z. (3.12)

This can be rearranged to give

Rf (z) = G−1f (z)− 1

z
, (3.13)

where G−1f (z) is the inverse of the Cauchy transform with respect to the composition of

functions, that is

Gf (G−1f (z)) = z, (3.14)

which is shown to be well defined in [85, Theorem 25]. As with the Cauchy transform

we will use RX(z) when we are considering the case where f = fX is the AED of the

random matrix X.

Crucially, if we know the R-transform of fX we can derive the AED, fX by using the

Cauchy transform and the inversion, that is, we find GX(z) by rearranging (3.13) and

(3.14) and then use (3.11) to obtain fX.

3.1.2.4 χ and Ψ-transforms

We define the χ and Ψ-transforms only briefly because of the link they provide between

the Cauchy and S transforms (to be introduced next). For a function f : R 7→ R we

define the moment generating function as the power series [90]:

Ψf (z) =
∞∑
i=k

zk
∫
tkdf(t) =

∫
zt

1− zt
df(t), (3.15)

where the integral is taken over the support of f . It is shown in [91, 92] that Ψf can be

derived from the Cauchy transform via:

Ψf (z) =
1

z
Gf

(
1

z

)
− 1, (3.16)

and moreover that, using the Banach-space inverse function theorem [90], we may define

χ as the inverse of Ψf with respect to composition of functions so that χf (Ψf (z)) = z.
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3.1.2.5 S-transform

Finally, we have the S-transform, Sf (z) of a function f : R 7→ R, which is given in terms

of χf (z) as [89]:

Sf (z) =
z + 1

z
χf (z). (3.17)

This provides an intermediate step which allows us to obtain the Cauchy transform of

the density function fX from its S-transform, SX(z), as in [93]. In particular, it follows

from (3.16) and (3.17) that the S-transform is implicitly defined in terms of the Cauchy

transform as:

GX

(
z + 1

zSX(z)

)
= zSX(z), (3.18)

where again we have used SX(z) to denote the case where f = fX is the AED of the

random matrix X.

To be able to apply these transforms to solve the polynomial AED problems specified at

the beginning of the section we have to introduce a concept for freeness, which, as we will

see, is analogous to the idea of independence between traditional random variables. This

concept requires some basic understanding of the ideas behind free probability and the

idea of non-commuting random variables which we aim to provide in the next section.

3.1.3 Non-commutative probability space

Free probability is a relatively new area of mathematics which aims to discover proba-

bilistic results for non-commutative random variables, to which classical probability the-

ory cannot be applied. It is analogous to a conventional probability in a number of ways.

A conventional probability space consists of a sample space Ω, a sigma-algebra F on Ω,

consisting of all the subsets of Ω that constitute possible events (including the empty

set, Ω itself and closed under complements) and a probability measure p : F 7→ [0, 1]

which assigns a value between 0 and 1 (a probability) to each of these events. We call a

function X which maps Ω to a measurable space, D, a random variable if the probability

of X taking a value in a subset D ⊆ D is given by [94]

p(X ∈ D) = p(ω ∈ Ω
∣∣X(ω) ∈ D).

In traditional probability, D is commutative, that is, for two realisations x1, x2 ∈ D of

X we have x1x2 = x2x1, for example, in many cases, D is the space of real numbers. In

this case we can define the cumulative distribution function (cdf), FX(x) of X to be the

probability that X takes a real value less than or equal to x. The probability density
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function (pdf), fX(x), is then given implicitly by [94]:

FX(x) = p(X < x) =

∫ x

−∞
fX(t)dt,

and the kth moment is defined as: ∫ ∞
−∞

tkfX(t)dt,

where the first moment is the expectation of the random variableX, E [X] =
∫∞
−∞ tfX(t)dt.

While free probability shares some parallels with traditional probability, it is constructed

specifically to deal with random variables, such as random matrices, which take values

in a non-commutative space. Formally, we define:

Definition 3.1.1 ([89]). Let A be a unital non-commutative algebra over C with unit

1A and φ : A 7→ C be a linear functional satisfying φ(1A) = 1. We refer to the pair

(A, φ) as a non-commutative probability space. The elements a ∈ A are called

random variables and in the case where φ(ab) = φ(ba) for a, b ∈ A we refer to φ as a

trace.

Just like random variables in traditional probability, a non-commutative random variable

a ∈ A has a distribution function fa(x). For a non-commutative random variable, this

function maps the algebra of complex polynomials C [X], in a single variable, to the

complex plane. More specifically, for a polynomial p ∈ C [X] [89]:

fa : C [X] 7→ C, fa(p) = φ (p(a)) .

The nth moment of such a non-commutative distribution is defined as φ(an), and so the

functional, φ, is analogous to the expectation in a traditional probability space. More-

over, the distribution of a is completely characterised by the moments φ (a) , φ
(
a2
)
, ...

and in many cases can be associated with a real probability measure fa so that [89]:

φ (an) =

∫
R
xn dfa(x).

This will be true in the case of the complex hermitian random matrices we go on to

consider, where the associated real probability measure is given by the AED, because

the eigenvalues of a complex matrix take on real values.
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3.1.3.1 Asymptotic freedom

In classical probability a central notion is that of the dependence or independence of one

random variable from another. A pair of random variables is considered independent if

observing the realization of one variable does not affect the probability distribution of

the other. In particular, if X and Y are a pair of real independent random variables

with pdfs given by fX(x) and fY (y) respectively then their joint cdf FXY (x, y) which

gives the probability that both X < x and Y < y is given by the product FXY (x, y) =

FX(x)FY (y) of the individual cdfs.

The notion of independence does not give such clean cut results in free probability.

Instead we consider something called asymptotic freedom.

Definition 3.1.2 (Freeness [89]). Let {A1,A2, ...,AL} be a family of unital subalgebras

of A in the non-commutative probability space (A, φ) where 2 ≤ L ∈ N. If for all k-uples

(a1, ..., ak) we have

φ (a1a2 · · · ak) = 0,

whenever

aj ∈ Am(j) and φ(aj) = 0 ∀ 1 ≤ j ≤ k,

where m(j) 6= m(j + 1) (so that consecutive indices are required to differ, but no re-

striction exists on non-consecutive indices) and m(j) ∈ {1, 2, ..., L}, we call the family

{A1,A2, ...AL} free. Moreover, the random variables elements a1, ..., an ∈ A are free in

A with respect to φ when the family of unital subalgebras, Ai = 〈1, ai〉, generated by the

unit and ai, for each i ∈ {1, ..., n}, is free.

3.1.4 Random matrices

We are seeking a way to extend the results on asymptotic spectra given by RMT. The

way to do this is to view the limiting distributions of random matrices, when their

dimensions tend to infinity, as elements of a non-commutative probability space when

paired with a certain functional.

We start by considering infinite sequences,
[
X(N)

]
for N ∈ N, of hermitian random

matrices X(N) where (N) here is not an exponent but denotes the position of the matrix

in the sequence and its dimensions. In other words, the matrices increase in dimension

so that the Nth matrix in the sequence is N ×N dimensional. For example, we could

consider a sequence of Wishart matrices (as described in Section 2.3.2.2) for which

X(N) = HH† where H is an N × KN matrix having i.i.d Gaussian entries for some

KN ∈ N satisfying limN 7→∞

{
N
KN

}
= β ∈ R. We then define a mapping φ from the
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space of such sequences to the real numbers by [74]:

φ
([

X(N)
])

= lim
N 7→∞

1

N
E
[
Tr
(
X(N)

)]
. (3.19)

In particular, we note that for the random N ×N dimensional Hermitian matrix X(N),

we can associate φ with the real probability measure given by its AED, in the way

described at the end of Section 3.1.3 as follows [87]:

φ
([

X(N)
]n)

=

∫
R
xn dfX(x), (3.20)

where fX(x) = limN 7→∞ {fXN (x)} as detailed in Section 3.1.1. This provides the neces-

sary link between FPT and the AED (also known as the spectrum) of a random matrix.

In particular, in the context of Definition 3.1.1, the elements a in the algebra A are the

compact self-adjoint operators X which can be thought of as infinite Hermitian random

matrices when defined as the limit of X(N) as n→∞. The relationship between spectra

and Cauchy transforms is further discussed in [95].

Extending our definition of asymptotic freedom to consider pairs of random matrices we

now get:

Definition 3.1.3 (Asymptotic freeness of random matrices [74]). A family of L distinct

N ×N random matrices X
(N)
1 , ...,X

(N)
L for L ∈ N are asymptotically free if both of the

following conditions hold:

1. The limit φ
([

X
(N)
i

])
= φ

([
X(N)

])
, as defined in (3.19), exists for all i ∈ {1, ..., L}.

2. For all ` ∈ N and all sets of polynomials {p1, ..., p`} ∈ C [A] (the set of complex

polynomials in a single variable from A) we have:

φ

(
p1

([
XN
m(1)

])
· p2

([
X

(N)
m(2)

])
· · · p`

([
X

(N)
m(`)

]))
= 0,

whenever

φ

(
pj

([
X

(N)
m(j)

]))
= 0 ∀ j ∈ {1, ..., `},

where the m(j) ∈ {1, 2, ..., L} satisfy m(j) 6= m(j + 1).

With this construction it is possible to view random matrix variables as freely inde-

pendent random variables in the non-commutative probability space (A, φ). From here

on, when we use (A, φ) we will be referring to this specific non-commutative probabil-

ity space and asymptotic limits of the random matrix variables in this space will be

represented in boldface uppercase with the index [·](N) omitted. For a more thorough

description and verification that this space is well defined we refer the reader to [89,
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Chapter 4]. A summary of some ensembles of random matrices which have been proven

to satisfy the definition of freedom are given in [74] while more recent results in the area

can be found in [89]. In particular, verification that this property holds with respect

to the functional in (3.19) for the Wishart matrices described at the beginning of this

subsection is given in [85, Section 4.2].

When viewed from this perspective, it is possible to derive interesting results regarding

the possible ways to combine random matrices. The following section introduces two

fundamental examples which involve the R- and S-transforms defined previously in terms

of the Cauchy transform.

3.1.5 Addition and multiplication

Voiculescu managed to use his theory to find the AEDs of simple polynomial combina-

tions of Gaussian random matrices [96, 97].

3.1.5.1 Additive convolution

The R-transform was demonstrated by Voiculescu to provide a solution to the problem

of finding the AEDs of the simple polynomial p+ = X1 + X2 in [96], where he derives

the following:

Theorem 3.1 ([96]). For a pair of asymptotically free random matrix variables X1 and

X2 with R-transforms RX1(z) and RX2(z) respectively, which satisfy (3.13) we have

Rp+ = RX1+X2(z) = RX1(z) +RX2(z)

Using the same methods as described in Section 3.1.2.3, it is then possible to derive the

Cauchy transform of p+, Gp+(z) by applying (3.13) and (3.14) and then to use (3.11) to

obtain the AED of the sum of two random matrices, fp+ = fX1+X2 .

In addition to this result, we mention an observation from [85] which provides an initial

example of the subordination relation we will use to solve the more general polynomial

problem.

First we define a subordination function as per [98, Theorem 1]. That is, we take the

conformal representation of |z| < R:

w = f̄(z) =
∞∑
i=0

ānz
n,
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to be regular in |z| < R, for some R ∈ R, on a domain W of a Riemann surface with

w = ā0 corresponding to z = 0 for some particular sheet. We then suppose that the

function

f(z) =

∞∑
i=0

anz
n,

is also regular in |z| < R with a0 = ā0, so that z describes an arbitrary contour in

|z| < R, for which a0 is the beginning and end point (which occurs at z = 0). Then, in

particular, w = f(z) describes a contour in W which begins and ends at a0 and we say

that the function f is subordinate to f̄ in |z| < R. In particular:

Theorem 3.2 ([98]). If f is subordinate to f̄ for |z| < 1, then

f(z) = f̄ (w(z)) ,

where w(z) is regular and |w(z)| ≤ |z| for z < |1|.

Note that the subordination results we will refer to in the following are defined on the

upper half plane, rather than the unit circle. However, these domains are conformally

equivalent via z 7→ z−i
z+i .

Returning to the aforementioned observation, we note that equation (3.13) can be rear-

ranged to give

GX

(
RX(z) +

1

z

)
= z.

Then, for two asymptotically free random matrix variables X1 and X2 we have:

z = GX1+X2

(
RX1+X2(z) +

1

z

)
= GX1+X2

(
RX1(z) +RX2(z) +

1

z

)
,

by Theorem 3.1. If we let w = RX1+X2(z) + 1
z we may proceed with

GX1+X2(w) = z = GX1

(
RX1(z) +

1

z

)
= GX1 (w −RX2 (GX1+X2(w))) .

This gives rise to the subordination functions wX1 and wX2 defined as [85]:

wX1(z) = z −RX2 (GX1+X2(z)) and wX2(z) = z −RX1 (GX1+X2(z)) ,

which satisfy the subordination relations

GX1+X2(z) = GX1 [wX1(z)] = GX2 [wX2(z)] . (3.21)
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3.1.5.2 Multiplicative convolution

This transformation was demonstrated by Voiculescu to provide a solution to the prob-

lem of finding the AEDs of the basic polynomial p× = X1X2 in [97], where he derives

the following:

Theorem 3.3 ([96]). For a pair of asymptotically free random matrix variables X1 and

X2 with S-transforms SX1(z) and SX2(z) respectively, which satisfy (3.18) we have

Sp×(z) = SX1X2(z) = SX(z)SY(z).

Combined with equations (3.17) and (3.16), this result allows us to obtain the Cauchy

transform of the AED of p×, and again, we can apply the Cauchy inversion to obtain

fp× = fX1X2 .

3.2 Polynomials

As we have seen, Voiculescu found a way to apply FPT in order to find the AED

of the simple polynomials, p+ and p×, given only the AEDs of X1 and X2, through

the use of the R- and S-transform respectively. But suppose we have a more complex

polynomial in a finite number L of random matrix variables Xi = HiH
†
i for i ∈ {1, ..., L}.

Assuming that the AEDs, fXi(x), of these matrices are known, the natural question to

ask, is whether we can derive the AED of the polynomial from the known AEDs of the

individual random variables. Although intuitively it may seem that repeated application

of the additive and multiplicative convolution results should allow for the computation

of the AED for these generalized matrix polynomials, this is not actually the case. It

is impossible to solve this problem using traditional methods, except in certain specific

cases, for example, when all the random matrices Xi for i ∈ {1, ..., L} share the same

statistical properties.

In our work, we will consider matrices that require knowledge of the AED of such

generalised polynomials. In order to compute the asymptotic capacity using (2.27) we

will use a method derived by Belinschi, Mai and Speicher in [90], which uses an extension

to the non-commutative probability spaces we have considered so far called operator-

valued FPT and allows us to compute the AED for any polynomial in self-adjoint random

variables.
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3.2.1 Operator-Valued FPT

Definition 3.2.1 (Operator-valued Probability Space). A triplet, (A, ϕ,B) where A is a

unital algebra, B is a unital subalgebra of A and ϕ : A→ B is a linear unital functional

satisfying

• ϕ(B̂) = B̂ ∀B̂ ∈ B

• ϕ
(
B̂1ÂB̂2

)
= B̂1 ϕ

(
Â
)

B̂2 ∀Â ∈ A, ∀B̂1, B̂2 ∈ B

is known as an operator-valued non-commutative probability space. The elements Â ∈ A

are referred to as operator-valued random variables. For each Â ∈ A, we define its

distribution as the set of all operator-valued moments, ϕ(ÂB̂1ÂB̂2 · · · ÂB̂n−1Â) ∈ B,

with n ∈ N and B̂1, ..., B̂n ∈ B.

The operator-valued free probability space, (A, ϕ,B), in which we will be working is

derived [85, Chapter 9, Proposition 13] from the non-commutative probability space

(A, φ) by setting

A = AN×N , B = CN×N ⊂ AN×N , ϕ = IN ⊗ φ : AN×N → CN×N , (3.22)

where AN×N and CN×N are the sets of N × N matrices with entries in A and C
respectively and the functional ϕ maps the matrix Â ∈ A with entries

[
Â
]
jk
∈ A for

1 ≤ j, k ≤ N to the matrix whose j, kth entry is given by φ

([
Â
]
jk

)
∈ C.

Working in this environment will allow us to ‘linearise’ the problem of computing the

AED of polynomials in Hermitian matrix variables using the method of [90] so that we

can side-step the issue of manipulating large matrix arrays with individually distributed

entries in our capacity calculations. Details about how to apply this theory to a specific

massive MIMO system model will be given in Chapter 7.

3.2.1.1 Linearization

In order to proceed, it is first necessary to apply Anderson’s self-adjoint version of the

‘linearisation trick’ [99], which can be used to convert a polynomial problem in random

matrix variables to a linear additive convolution problem. Suppose we have a polynomial

p involving several distinct Hermitian (and hence self-adjoint) random matrix variables

Xi for i ∈ {1, ..., L}.
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Definition 3.2.2 (Linearization). For the operator-valued probability space (A, ϕ,B),

define the N ×N matrix, p̂, as

p̂ =

(
0 u

v Q

)
∈ A,

for N ∈ N where:

1. u ∈ A1×N−1, v ∈ AN−1×1 and Q ∈ AN−1×N−1,

2. each entry, [p̂]jk, of p̂ is of the linear form, γ
(jk)
1 X1 + · · ·+ γ

(jk)
L XL, where

3. γ
(jk)
1 , . . . , γ

(jk)
L ∈ C and the Xi are elements of the non-commutative probability

space (A, ϕ) for i ∈ {1, ..., L}.

We call p̂ a linearisation of the polynomial, p, in the random variables Xi, if

p = −uQ−1v. (3.23)

The crucial point is that we can now write p̂ as the operator-valued linear combination

p̂ = Z0 +
L∑
i=1

Zi ⊗Xi, (3.24)

where the matrices Zi ∈ CN×N are elements of B for i ∈ {0, 1, 2, ..., L}.

To illustrate this definition we give the following example.

Example 3.2.1. Consider the polynomial

pex = X1X3 + X3X1 + X1X2X1

in the non-commutative random variables X1,X2,X3 ∈ (A, ϕ). In the notation of

Definition 3.2.2 we have L = 3 and if we take

u =
(
X3 X1

)
∈ A1×2, v =

(
X3

X1

)
∈ A2×1, and Q =

(
X2 −1

−1 0

)
∈ A2×2,
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then we have Q×

(
0 −1

−1 −X2

)
= I2 so that Q−1 =

(
0 −1

−1 −X2

)
∈ A2×2 and so

−uQ−1v = −
(
X3 X1

)( 0 −1

−1 −X2

)(
X3

X1

)

= −
(
X1 (X3 + X1X2)

)(X3

X1

)
= X1X3 + X3X1 + X1X2X1.

Therefore, according to Definition 3.2.2 a linearisation p̂ex ∈ A3×3 of pex is given by

p̂ex =


0 X3 X1

X3 X2 −1

X1 −1 0

 ∈ A

which can be written as

p̂ex =


0 0 0

0 0 −1

0 −1 0

+


0 0 1

0 0 0

1 0 0

⊗X1 +


0 0 0

0 1 0

0 0 0

⊗X2 +


0 1 0

1 0 0

0 0 0

⊗X3.

In particular, using the the notation given in (3.24) we have

Z0 =


0 0 0

0 0 −1

0 −1 0

 , Z1 =


0 0 1

0 0 0

1 0 0

 , Z2 =


0 0 0

0 1 0

0 0 0

 and Z3 =


0 1 0

1 0 0

0 0 0

 .

A linearisation p̂ contains all the information included in the polynomial p but expressed

as a linear sum. The cost of this simplification is that the coefficients in the linearisation

are now operator-valued, but this is a problem we can address using operator-valued

FPT. We will write X̂i to denote the operator-valued random variables given by this

linearisation, where

X̂i = Zi ⊗Xi ∈ A, for i ∈ {1, 2, ..., L}. (3.25)

3.2.1.2 Subordination theorem

Ultimately, we want to use the operator-valued distribution of p̂ to find the AED of the

polynomial, p. To do so, we make use of the Cauchy transform, however the version, GX,

we have considered for random matrix variables X in a traditional non-commutative
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probability space must be extended for application to operator-valued spaces. The

required extension ĜX̂ : A 7→ B for elements X̂ ∈ (A, ϕ,B) is derived from (A, φ) in a

similar way to the elements in Definition 3.2.1, and is given by

ĜX̂(Ẑ) := E
[
ϕ

(
1

Ẑ− X̂

)]
(3.26)

for any Ẑ ∈ A, where (Ẑ− X̂) is invertible in A.

This brings us to a result in [90], which relies on the subordination technique we intro-

duced in (3.21) of Section 3.1.5.1. The result tells us that, given a pair of operator-valued

free random variables, X̂p and X̂q it is possible to calculate the operator-valued Cauchy

transform of their sum, ĜX̂p+X̂q
(Ẑ), from the Cauchy transforms ĜX̂p

(Ẑ) and ĜX̂q
(Ẑ)

using operator-valued free convolution:

Theorem 3.4 ( [100, Theorem 1], [90]). Let X̂p and X̂q be a pair of self-adjoint operator-

valued random variables free over (A, ϕ,B). Then there exists a Fréchet analytic map

ω : H+(B) 7→ H+(B) such that

ĜX̂p+X̂q
(Ẑ) = ĜX̂p

(
ω(Ẑ)

)
for all Ẑ ∈ H+(B).

Moreover, if Ẑ ∈ H+(B), then ω(Ẑ) is the unique fixed point of the map

fẐ : H+(B) 7→ H+(B) fẐ(ω) = hX̂q

(
hX̂p

(ω) + Ẑ
)

+ Ẑ,

so that

ω(Ẑ) = lim
n→∞

f◦n
Ẑ

(ω) for any ω ∈ H+(B)

where f◦n
Ẑ

denotes the nth iteration of fẐ and

hX̂k
(Ẑ) :=

1

ĜX̂k
(Ẑ)
− Ẑ for k ∈ {p, q}.

For its comparative simplicity, the theorem is given in the form of [100], but we refer

the reader to [90, Theorem 2.2] for the full version and a rigorous mathematical proof.

If the variables Xi are asymptotically free according to Definition 3.1.3, it follows from

the basic properties of freeness [85, Corollary 14, p. 244] that the X̂i are operator-valued

asymptotically free. Therefore, we may apply Theorem 3.4, first to find ĜX̂1+X̂2
(Ẑ) from

ĜX̂1
(Ẑ), then to find ĜX̂1+X̂2+X̂3

(Ẑ) from ĜX̂1+X̂2
(Ẑ) and ĜX̂3

(Ẑ), and so on, until we

incorporate every X̂i in the Cauchy transform Ĝλ(Ẑ), where λ =
∑L

i=1 X̂i and L is

the number of random variables in the linearisation, p̂, of the required polynomial, p.
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Finally, we may compute the operator-valued Cauchy transform of p̂ via

Gp̂(Ẑ) = ĜZ0+λ(Ẑ),

by applying Theorem 3.4, to X̂p = Z0 and X̂q = λ, and using the relationship given in

(3.24).

We must then derive the Cauchy transform Gp(X) from the operator-valued Cauchy

transform Ĝp̂(X̂). In order to do so consider our linearisation p̂ and recall that, provided

the diagonal entries are non-zero, triangular matrices are invertible. Now, if we let X̂

be the 3× 3 matrix with X as the top-left entry and zeroes elsewhere we have

X̂− p̂ =

(
X −u

−v −Q

)
=

(
1 −uQ−1

0 I2

)(
X− p 0

0 −Q

)(
I2 0

−Q−1v 1

)
, (3.27)

where we note that p = −uQ−1v as in Definition 3.2.2.

Of the three matrices on the LHS of (3.27), the first and third are triangular and

invertible, from which it follows that X−p is invertible if and only if X̂− p̂ is invertible.

It is then straightforward to find the inverses of those three matrices and show that the

(1, 1)th-entry of (X̂−p̂)−1 is (x−p)−1 [85]. Therefore, we may find the Cauchy transform

Gp(X) of p by taking the (1, 1)th-entry of the operator-valued Cauchy transform:

Ĝp̂(X̂) = φ

((
X̂− p̂

)−1)

=

ϕ((X− p)−1
)

ϕ(∗)

ϕ(∗) ϕ(∗)

 , (3.28)

where the (non-operator-valued) Cauchy transform is, by definition ϕ
(

(X− p)−1
)

and

the entries ϕ(∗) are not relevant for our purposes [90]. To summarise, we have

Gp(X) =
[
Ĝp̂(X)

]
1,1

and so it remains only to use the Cauchy inversion formula from (3.11) to find the AED

fp(X)[79]:

fp(X) = − 1

π
lim
ε→0+

= (Gp (X + iε)) . (3.29)

3.2.2 Application to communications problems

Many examples of research where RMT and FPT have been applied to capacity com-

putation problems in MIMO exist. In addition to the work of Telatar introduced in the



Chapter 3. Free Probability Theory and Random Matrices 59

previous chapter [56], the paper [101] by Tse and Hanly, which considers the perfor-

mance analysis of multiuser receivers, is widely cited as one of the first contributions of

random matrix theory to telecommunications. The capacity analysis of random CDMA

systems with large channel matrices was carried out by Tse, Shamai and Verdù in [102]

and [103]. Another early example is given by [104], in which Shlyakhtenko shows how

to extend existing results to find the AED of the band Gaussian matrices used to model

independent but non-identically distributed Gaussian channels. In [93] the authors use

FPT to compute the asymptotic capacity of spatially correlated MIMO channels which

have either exponential transmitter or receiver side correlation matrices. Capacity re-

sults were extended to cases in which CSI is know a priori to the user terminal in works

by Debbah, Müller and Guillaud in [105] and [106].

Several further applications of FPT results to MIMO channel analysis are given in [74]

and [78]. In [107] the authors improve the accuracy of capacity calculations by using

FPT to include rows of the channel matrix corresponding to the weaker links, which

would otherwise have been discarded.

During the late 2000s and early 2010s the interest of telecommunications researchers in

FPT waned because simpler methods, sufficient for the examination of standard MIMO

models, were available. Nevertheless, the area continued to develop among information

theorists, and, in particular, operator-valued FPT was introduced [85]. With the increas-

ing focus on massive MIMO, FPT, with its asymptotic bias and low complexity, is being

used as a pertinent tool for analysis once more. The authors of [79] used operator-valued

FPT to address the specific problem of finding the AED and computing the asymptotic

spectral efficiency of massive MIMO channels with transmit and receive correlation. In

2017, the authors of [108] considered the Rayleigh product model for a channel with

insufficient scattering, and FPT was used to find the asymptotic variance of the mutual

information. Later that year, the authors of [80] used operator-valued FPT to derive

the AEDs of compound matrices, which can be used to model point-to-point MIMO

channels which are neither Gaussian, independent or identically distributed.

Applications of RMT and FPT also exist in areas of wireless communications besides

capacity analysis. For example, research into neural networks, algorithms in multi-user

detection, direction of arrival estimation for sensor arrays and space-time coding all

involves large random matrices and can be aided by asymptotic results [74].
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3.3 Summary

In this chapter we have introduced the area of FPT by combining material from application-

based literature, such as [74] and the more detailed [89], with the early work of Voiculescu

[92, 96, 97, 109] and later results by Nica and Speicher [86, 110]. For more recent results

that are particularly relevant to our work, we referred to the 2017 book on operator-

valued non-commutative probability by Mingo and Speicher [85] along with the papers

on the specific results of interest [90, 95, 100, 108]. We also made use of the excellent

tutorial-style introduction to RMT given in [87] to develop our understanding of the

basic RMT tenets relied upon by the FPT results, which are not as straightforwardly

demonstrated in the FPT literature.

We started by giving a formal mathematical definition of the AED, then spent some

time deriving the Cauchy transform and its inversion theorem. This section combined

results from [74] and [89] with explanations from [87]. We then gave a less rigorous

description of a number of further transforms from [74] and [89], which prove useful in

computing the AEDs for certain basic polynomials in random matrices.

Meanwhile, we explained why polynomial problems, in general, cannot be solved using

classical probability and give an overview of non-commutative probability and the idea

of ‘freeness’ and how it relates to its classical counterpart. Most importantly, we gave the

specific definition of the property of ‘freeness’ as it applies to random matrix variables, by

combining ideas from [89] and [85], and explained how matrices with this property can be

viewed as variables in a non-commutative probability space. We then demonstrated how

Voiculescu’s addition and multiplication results [96, 97] use the transforms and relations

introduced previously to compute the AED of two basic polynomials, in order to give a

taste of the nature of the more generalized type of problem we sought to address.

Finally, we described the difficulty in applying these transforms to find the AEDs of

more complex polynomials and introduced operator-valued free probability as a means

of overcoming this issue. The relationship between operator-valued and traditional non-

commutative probability was described, as well as how to apply the Cauchy transform to

the relevant operator-valued random variables. We demonstrated how, using the results

from [100], [90] and [85], it is possible to use the operator-valued context to linearize our

polynomial problem and ultimately derive the required AED.

In the following chapters we will make use of the results of Chapters 2 and 3 in a variety

of communications problems. Initially we will consider problems relating to the results of

Chapter 2, which focus on the secrecy capacity of smaller scale wireless communication

systems that rely on non-asymptotic capacity results. We then go on to consider a

MIMO-NOMA system and investigate the use of the asymptotic results to reduce the
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complexity of an optimisation algorithm. Finally, in Chapter 8, we consider a more

complex MIMO system for which the more advanced theory described in this chapter is

necessary to analyse the capacity.



Chapter 4

Wirelessly Powered Secrecy

Transmission Using Multiple

Antennas

Previous chapters focused on the metrics used to analyse the performance of multi-

antenna wireless channels. In Section 2.2.3 we described the impact that channel state

information (CSI) has on these measures and introduced some transmission schemes

that exploit this knowledge. When secrecy is a priority, we saw that some appropriate

metrics to consider are the secrecy outage probability and secrecy capacity.

The work in this chapter was carried out collaboratively with Zhuo Chen (University

of Science and Technology, China), and published in [59], with Zhuo and I as first and

second authors respectively. We consider the secrecy performance of multiple-input

single-output (MISO) wiretap channels under different CSI assumptions. To add con-

temporary relevance we assume that the source is energy constrained and harvests energy

from a dedicated power beacon, as described in Section 1.1.2.6. Zhuo was responsible

for formulating the wireless communication problem, coming up with potential solutions

and providing simulation results. My contribution was to assist with proving the math-

ematical results. In particular, I derived parts of the proofs for the results on outage

probability and the optimal time-switching and power allocation coefficients, which will

be described in more detail here. The contributions of this chapter are as follows:

• Two transmission protocols are proposed, depending on the availability of CSI for

the eavesdropper’s channel, which utilise physical layer security techniques.

• Closed-form expressions and approximations of the connection outage probability

and secrecy outage probability are derived for each protocol.

62
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• The secrecy capacity and diversity orders achieved by the protocols are computed.

• Optimal time-switching and power allocation coefficients are derived to maximise

secrecy capacity in the high signal-to-noise ratio (SNR) regime.

The chapter is organised as follows. Section 4.1 briefly reintroduces the work in Chap-

ter 1, while Section 4.2 describes the considered system model and explains the trans-

mission protocols under investigation. Section 4.2.3 focuses on analysing the relevant

metrics: outage probability, secrecy outage probability, diversity order and secrecy ca-

pacity, while in Section 4.2.4, we discuss the best way to allocate resources in the high

SNR regime, which is considered to include SNRs above 20dB. Finally, we provide sim-

ulation results in Section 4.3 to verify the accuracy of our theoretical work and then

summarise our conclusions in the final section.

4.1 Introduction

In Section 1.1.2.6 we introduced an environmentally friendly solution to the problem of

energy-constrained wireless networks in the form of wireless energy transfer (WET), a

technology that uses the innate properties of radio frequency (RF) signals for synthetic

energy transfer. In modern society, RF signals are so widespread that WET can of-

ten provide a more stable supply of energy than the alternatives. RF communication

networks using this technology are referred to as wirelessly powered communication net-

works (WPCNs) and are a significant topic of current research. For example, [33] consid-

ers using an energy-constrained relay to improve the data rate of an energy-constrained

source in a cooperative WPCN. In [111] two schemes addressing the wireless energy and

data transfer tradeoff are proposed, while [112], explains how to optimise time allocation

for a network where a hybrid energy and information access point communicates with a

group of wireless energy harvesting users. In [113], optimal resource allocation is inves-

tigated for wirelessly powered cognitive networks, while [114] investigates optimal power

allocation for secure OFDMA systems with wireless information and power transfer.

In [45, 115] the authors demonstrate that a positive secrecy rate is attainable when a

source, destination and eavesdropper each use a single antenna, however, these results

are limited to the case where the eavesdropper’s link is inferior and the secrecy rate is

not maximised. In our work we incorporate the benefits of spatial diversity facilitated

by using multi-antenna arrays, which enhance not only the capacity, as discussed in

Section 1.1.1.1, but also the performance of WET, since both are proportional to the

rate at which energy can be transferred [29, 32]. Multi-antenna beamforming is used for

increased security in [116] for MISO systems with one or more eavesdroppers, while in
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[117] it is used to maximise the secrecy capacity of power constrained MIMO networks

that rely on energy harvesting. The secrecy capacity of MIMO wiretap channels is

investigated in [47–50] for scenarios with both individual and multiple eavesdroppers.

The secrecy of WPCNs is a significant issue due to the open nature of the wireless

medium. As discussed in Section 1.2.4, modifying the physical layer security (PLS) of a

system is one way of providing secure transmission [45]. In [29], the authors demonstrate

the superiority of PLS over conventional cryptographic approaches at alleviating the

problem of having limited power in WPCNs. In Section 1.2.4 we introduced artificial

jamming as a PLS technique which involves confounding eavesdroppers by injecting

artificial noise into a system [46]. Recently this method has been adapted for uplink and

downlink multi-antenna transmission [51, 52] and even for massive MIMO systems [53].

The work mentioned so far focuses on hybrid network architectures, in which the source

is responsible not only for transmitting information but also for providing energy to

power the communication. Such architectures are infeasible for larger devices, however,

as demonstrated in [118] and [119]. An alternative is to incorporate a dedicated power

beacon into the WPCN. The robustness of this method is demonstrated in [28] and

[120], however, no research into the use of multi-antenna artificial jamming for improving

secrecy performance exists. Our work seeks to address this deficiency.

4.2 System model

The system under consideration is illustrated in Fig. 4.1. It consists of one power beacon,

(PB), dedicated to wirelessly powering a legitimate source node, S, that intends to

communicate with a legitimate destination node, D, in the presence of an eavesdropper,

E. We assume that S is equipped with NS transmit antennas, while D and E are each

equipped with just a single antenna. The channels between nodes are assumed to be

independent and Rayleigh fading and we suppose that each channel remains fixed for a

time-block lasting T seconds, where realisations are independent between time blocks.

We use the time-sharing algorithm proposed in [121] and split each block into a pair

of phases, the first being allocated to power transfer between the PB and S, while the

second is used for communication. The first and second phases have duration νTT and

(1− νT )T respectively, where νT ∈ (0, 1) denotes the time switching ratio.

In the first phase, S receives an energy signal from the PB which can be modelled as

ys =

√
p0
dmPS

hPSxe + nS,
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Figure 4.1: System model

where xe is the transmitted signal (modelled as having unit power) and p0 is the trans-

mission power of the PB. The scalar, dPS, is the distance from the PB to S, m is the path

loss exponent and nS ∼ CN (0, σ2nINS
), is the NS×1 noise vector, which is modelled as in

Section 2.1.1.2. The NS× 1 vector, hPS, denotes the normalised channel connecting the

PB and S. Since we assume Rayleigh fading, hPS is modelled as having independent and

identically distributed (i.i.d.) complex Gaussian entries hPS ∼ CN (0, INS ), similarly

to the matrix version described in Section 2.2.3.5. This is normalisation case ii from

Table 2.1 of Section 2.2.1. Let η ∈ (0, 1) be the energy conversion efficiency, then at the

end of the first phase, the energy, e, harvested by S can be expressed as

e =
ηνTTp0 ‖hPS‖2F

dmPS
.

Following the same convention as [121], we suppose that a supercapacitor is used to

store the energy harvested during the first phase and that S is able to utilise the entire

energy store for transmission in the second phase. Therefore, the transmit power at S is

p1 =
e

(1− νT )T
=
ηνT p0 ‖hPS‖2F
(1− νT ) dmPS

. (4.1)

For the transmission phase we introduce two different protocols depending on the CSI.

4.2.1 Without CSIT for the eavesdropper’s channel

When S has CSIT for the legitimate channel we can use maximum ratio transmission

(MRT) to improve the capacity. We choose MRT due to its simple implementation (de-

scribed in Section 2.2.3.2), which is an important consideration for a power constrained

source. Since S has no CSIT for the eavesdropper’s channel, we use zero-forcing (ZF)

jamming to increase the noise power at E (see 2.2.3.3) and improve the security of this
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link. The legitimate channel can be modelled as the 1 ×NS vector hSD ∼ CN (0, INS
).

Using its CSIT, S chooses to transmit using the antennas corresponding to the KS largest

entries, g1 ≥ g2 ≥ · · · gKS
, of hSD. The effective channel is then modelled by the vector

gSD = (g1, g2 · · · , gKS
) ∼ CN (0, IKS

), which represents the best KS paths between S and

D, where 2 ≤ KS ≤ NS. Combining MRT and ZF jamming we transmit the signal

xtot =
√
νpp1

g†SD
‖gSD‖F

xS +
√

(1− νp)p1wJxJ,

where νp ∈ (0, 1) is the fraction of p1 allocated to performing MRT on the intended

signal, xS (whose power is assumed uniform) and xJ contains artificial noise for ZF

jamming. S designs wJ ∈ CKS×1 using the CSIT to satisfy ‖wJ‖F = 1 and gSDwJ = 0

(see Section 2.2.3.3), forcing the power of the jamming signal to be zero at D so that:

yD =

√
νpp1
dmSD

gSDg†SD
‖gSD‖F

xS +
√

(1− νp)p1gSDwJxJ + nD =

√
νpp1
dmSD

‖gSD‖F xS + nD, (4.2)

where we use the fact that gSDg†SD = ‖gSD‖2F , dSD denotes the distance from S to D and

nD ∼ CN (0, σ2n), which is a scalar since the receiver has only a single antenna, represents

the additive white Gaussian noise. Meanwhile, E intercepts and receives the signal

yE =

√
νpp1
dmSE

hSE
g†SD
‖gSD‖F

xS +

√
(1− νp)p1

d mSE
hSEwJxJ + nE,

where dSE is the distance from S to E, the 1 ×KS random vector, hSE ∼ CN (0, IKS
),

models the channel between S and E, and nE ∼ CN (0, σ2n) models the noise over the

channel. Using (2.14) and (4.1), it follows that the receive SNR at D is given by

ρD =
νpηνT p0 ‖hPS‖2F ‖gSD‖2F

(1− νT ) dmPSd
m
SDσ

2
n

, (4.3)

while at E the jamming signal adds to the noise power, so the receive SNR is

ρE =

νpηνT p0 ‖hPS‖2F

∣∣∣∣hSE
g†SD
‖gSD‖F

∣∣∣∣2
arg

(1− νp) ηνT p0 ‖hPS‖2F |hSEwJ|2arg + (1− νT ) dmPSd
m
SEσ

2
n

. (4.4)

4.2.2 With partial CSIT for the eavesdropper’s channel

The source may be able to access partial CSIT for the channel between itself and E, for

example when E is a legitimate destination for other messages from S, and is thus inter-

ested in revealing its CSI, or when reasonable assumptions are made on the minimum

distance of E from S [70]. In this case, rather than performing MRT and ZF jamming,
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we employ a ZF transmitting protocol in order to make use of this information and keep

the SNR at E minimal. As before, S will utilise only KS antennas, where 2 ≤ KS ≤ NS

but the antennas are chosen randomly since we are not using MRT. We use the vectors

g′SE and g′SD to model the independent channels between S and E and S and D, where

again, we assume g′SE,g
′
SD ∼ CN (0, IKS

). Since we only have partial CSIT at for the

E’s channel we refer to (2.24) and model the channel as

g′SE = g̃′SE + ∆e,

where g̃′SE is an estimate of E’s channel and ∆e ∈ CKS×1 denotes the error of the

estimation, where ∆e ∼ CN
(
0, σ2eIKS

)
. The signal transmitted by S is then given by

x′tot =
√
νpp1wSxS +

√
(1− νp)p1 wBxJ,

where the ZF transmission vector, wS ∈ CKS×1, is designed to satisfy ‖wS‖F = 1 and

g̃′SEwS = 0 (see Section 2.2.3.4). The ZF jamming, vector wB satisfies ‖wB‖F = 1 and

gSDwB = 0 as before. The signals received by D and E respectively are given by

y′D =

√
νpp1
dmSD

g′SDwSxS + nD,

and

y′E =

√
νpp1
dmSE

∆ewSxS +

√
(1− νp)p1

dmSE
gSEwBxJ + nE,

while their respective receive SNRs are

ρ′D =
νpηνT p0 ‖hPS‖2F |g′SDwS|2arg

(1− νT ) dmPSd
m
SDσ

2
n

, (4.5)

and

ρ′E =
νpηνT p0 ‖hPS‖2F |∆ewS|2arg

(1− νp) ηνT p0 ‖hPS‖2F
∣∣g′SEwB

∣∣2
arg

+ (1− νT ) dmPSd
m
SEσ

2
n

. (4.6)

In our analysis we will investigate the connection and secrecy outage probabilities along

with secrecy capacity defined in Section 2.2.2.4. Recall that RS is the minimum rate

at which S can transmit the signal for it to be successfully decoded at D, while the

probability that RS is not met is the connection outage probability. While we want the

capacity of the legitimate channel to be as high as possible, if the eavesdropper’s channel

exceeds a certain rate, RE, the secrecy of the communication will be compromised. The

probability of this happening is the ‘secrecy outage probability’ and we call the difference,
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RC = RS − RE, the ‘confidential message rate’. Recall that the secrecy capacity for a

given connection outage probability, K, and secrecy outage probability, E , is given by

Cs , (1−K)RC. (4.7)

4.2.3 Analysis

4.2.3.1 Without CSIT for the eavesdropper’s channel

When S has no CSIT for E’s channel, the connection outage probability is given by

PMRT
co = Pr ((1− νT ) log2(1 + ρD) < RS) , (4.8)

where we have used (2.18) from Section 2.2.2.3 and adapted the parameters for the case

of the channel model in (4.2) to obtain this result. We wish to find this probability in a

closed form for any chosen RS. By substituting in ρD from (4.3) we can rewrite (4.8) as

PMRT
co = Pr

(
(1− νT ) log2

(
1 +

νpηνT p0 ‖hPS‖2F ‖gSD‖2F
(1− νT ) dmPSd

m
SDσ

2
n

)
< RS

)
= Pr

(
‖hPS‖2F ‖gSD‖2F < γ′

)
,

where

γ′ =

(
2

(
RS

1−νT

)
− 1

)
(1− νT ) dmPSd

m
SDσ

2
n

νpηνT p0
. (4.9)

Now, according to [122], ‖hPS‖2F ∼ χ2
2NS

follows a chi-squared distribution:

f‖hPS‖2F
(x) =

xNS−1e−x

(NS − 1)!
. (4.10)

Therefore,

PMRT
co = E

‖gSD‖2F

[∫ `x

0

xNS−1e−x

(NS − 1)!
dx

]
,

where `x = γ′

‖gSD‖2F
. We can solve this using the following identity [123, Eq. 3.351.1]:

∫ `x

0
xNS−1e−xdx = (NS − 1)!− e−`x

NS−1∑
k=0

`x
k(NS − 1)!

k!
, (4.11)
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which allows us to write

PMRT
co = E

‖gSD‖2F

[
1− e−`x

NS−1∑
k=0

`x
k

k!

]
= 1− E

‖gSD‖2F

e− γ′

‖gSD‖2F
NS−1∑
k=0

1

k!

(
γ′

‖gSD‖2F

)k .
To proceed we require the pdf of ‖gSD‖2F . This is proven in [124] to be given by

f‖gSD‖2F
(x) =

(
NS

KS

)[
xKS−1e−x

(KS − 1)!

+ e−x
NS−KS∑
l=1

(−1)KS+l−1
(
NS −KS

l

)(
KS

l

)KS−1

×

e− lx
KS −

KS−2∑
j=0

1

j!

(
−lx
KS

)j],
which, when combined with the definition of expectation, allows us to derive

PMRT
co = 1−

∫ ∞
0

f‖gSD‖2F
(x)

e− γ′

‖gSD‖2F
NS−1∑
k=0

1

k!

(
γ′

‖gSD‖2F

)k dx

= 1−
(
NS

KS

)∫ ∞
0

NS−1∑
k=0

γ′k

k!(KS − 1)!
e
−
(
γ′
x
+x
)
xKS−1−k

+

NS−KS∑
l=1

(−1)KS+l−1
(
NS −KS

l

)(
KS

l

)KS−1

×

(
NS−1∑
k=0

γ′k

k!
e
−( l+KS

KS
x+ γ′

x
)
x−k −

KS−2∑
j=0

1

j!

(
−l
KS

)j NS−1∑
k=0

γ′k

k!
e−(x+

γ′
x
)xj−k

)
dx.

Finally, we make use of [123, Eq. 3.471.9], which tells us that for any u,w ∈ R+ and

v ∈ C, we have ∫ ∞
0

xv−1e−
u
x
+wxdx = 2

(
u

w

) v
2

Kv

(
2
√
uw
)
. (4.12)

where Kv(x) denotes the v-th order, second kind, modified Bessel function [123]. Through

repeated use of this result for the relevant values of u, v and w, we can derive the result:
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Proposition 4.1. The connection outage probability, PMRT
co , of the legitimate channel

is given by

PMRT
co = 1−

(
NS

KS

)[NS−1∑
k=0

2γ′
KS+k

2

k!(KS − 1)!
K(KS−k)(2

√
γ′)

+

NS−KS∑
l=1

(−1)(KS+l−1)
(
NS −KS

l

)(
KS

l

)(KS−1)

×

(
NS−1∑
k=0

2γ′
k+1
2

(
KS
l+KS

) 1−k
2

k!
K(1−k)

(
2

√
l +KS

KS
γ′

)

−
KS−2∑
j=0

(
−l
KS

)j
j!

NS−1∑
k=0

2γ′
j+k+1

2

k!
K(j−k+1)(2

√
γ′)

)]
.

It is worthwhile to note that, as mentioned in Section 2.2.2.3, we could also have ap-

proximated the integral on the LHS of (4.11) by considering the tail of the integral:∫ `x

0

xNS−1

(NS − 1)!
e−x dx = 1−

∫ ∞
`x

xNS−1

(NS − 1)!
e−x dx

and deriving the tail via integration by parts or Laplace’s method, according to whether

`x > NS or `x < NS [125]. Alternatively, the modified Bessel function of the second

kind, Kν in the RHS of (4.12) could also be estimated by Laplace’s method as follows.

Suppose that Xjk for j, k = 1, ...,m are independent N (0, 1) random variables. Then

g2 =
∑m

j,k=1X
2
jk has a χ2(m2) distribution with pdf

x
m2

2
−1

Γ
(
m2

2

) exp(−x) (x > 0);

hence with k = m2 − 1 and the convex function

ψ(z) = −k log z −√γz +

√
γ

z
(z = 0),
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Laplace’s approximation gives

E exp (− γ

g2
) =

∫ ∞
0

exp (−γ/x)
x
m2

2
−1

Γ(m
2

2 )
exp(−x) dx

= γ
m2

2

∫ ∞
0

zm
2−1 exp (−√γ

(
z +

1

z
)

)
dz

= γ
m2

2

∫ ∞
0

exp (−ψ(z)) dz

∼ γ
m2

2

√
2π

ψ′′(z+)
exp (ψ(z+)) ,

where z+ > 0 is the stationary point of ψ and

ψ′(z) = −k/z +
√
γ −

√
γ

z2
ψ′′(z) =

k

z2
+

2
√
γ

z3
> 0 (z > 0).

To make ψ′(z+) = 0, we take

z+ =
k +

√
k2 + 4γ

2
√
γ

and get the approximate formula

E exp

(
−γ
g2

)
=

√
2πγ(k+1)/2zk+√
k/z2+ + 2

√
γ/z3+

exp

(
√
γ

(
z+ +

1

z+

))
.

These results could be useful for computing an approximation for CS , and would be an

interesting direction to consider in future work. However, unlike the result above, this

is not a closed form solution and may be insufficient for providers with strict quality of

service requirements.

Still considering the case where the CSIT for the channel between S and E is unknown

we turn to consider the secrecy outage probability, which can be expressed as

PMRT
so = Pr ((1− νT ) log2(1 + ρE) > RE) . (4.13)
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Proceeding in the same way as before, we substitute (4.4) into (4.13) to give

PMRT
so = Pr

(
(1− νT ) log2

(
1 +

νpηνT p0c1c2
(1− νp)ηνT p0c1c3 + (1− νT )dmPSd

m
SEσ

2
n

)
> RE

)
= Pr

(
νpηνT p0c1c2

(1− νp)ηνT p0c1c3 + (1− νT )dmPSd
m
SEσ

2
n

> 2

(
RE

1−νT

)
− 1

)
= Pr

(
νpηνT p0c2
(1− νT )

>
dmPSd

m
SEσ

2
nc4

c1
+

(1− νp)ηνT p0c3c4
1− νT

)
= Pr

(
c1 >

(1− νT ) dmPSd
m
SEσ

2
nc4

ηνT p0(νpc2 − (1− νp)c3c4)
⋂

c2 >
(1− νp)c3c4

νp

)
,

where we have set c1 = ‖hPS‖2F , c2 =

∣∣∣∣hSE
g†SD
‖gSD‖

∣∣∣∣2, c3 = |hSEwJ|2 and c4 = 2

(
RE

1−νT

)
− 1.

Both
g†SD
‖gSD‖ and wJ are independent orthonormal vectors, therefore c2 and c3 are inde-

pendent and exponentially distributed with c2, c3 ∼ Exp(1). Combining these with the

pdf of c1, which we gave in (4.10), we have:

PMRT
so =

∫ ∞
0

∫ ∞
c6c3

e−c2e−c3

(NS − 1)!

∫ ∞
c5

c2−c6c3

cNS−1
1 e−c1dc1 dc2dc3, (4.14)

where we let c5 =
(1−νT )dmPSd

m
SEc4σ

2
n

ηνT p0νp
and c6 =

(1−νp)c4
νp

. To solve the innermost integral,

we make use of the identity given in [123, Eq. 3.351.2], which tells us that

∫ ∞
c5

c2−c6c3

cNS−1
1 e−c1dc1 = e

− c5
c2−c6c3 (NS − 1)!

NS−1∑
k=0

(
c5

c2−c6c3

)k
k!

.

Alternatively we could use integration by parts. Substituting this back into (4.14) and

letting t = c2 − c6c3, we obtain

PMRT
so =

∫ ∞
0

∫ ∞
c6c3

e−c2e−c3
NS−1∑
k=0

ck5e
− c5
c2−c6c3

k!(c2 − c6c3)k
dc2 dc3

=

∫ ∞
0

∫ ∞
0

NS−1∑
k=0

ck5e
− c5

t

k!tk
e−(t+c6c3)e−c3 dt dc3

=

∫ ∞
0

e−(c6+1)c3

∫ ∞
0

NS−1∑
k=0

ck5
k!
t−ke−( c5t +t) dt dc3.

From here we can make use of (4.12) again to give

PMRT
so =

NS−1∑
k=0

2c
(k+1)/2
5

k!
K(1−k)(2

√
c5)

∫ ∞
0

e−(c6+1)c3 dc3,

which is a straightforward integration. Therefore we have the following result:
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Proposition 4.2. The secrecy outage probability, PMRT
so , is given by

PMRT
so =

1

(1 + c6)

NS−1∑
k=0

2c
k+1
2

5

k!
K(1−k) (2

√
c5) .

We would also like to analyse the secrecy capacity for each of our protocols. As a

consequence of the fact that PMRT
co and PMRT

so are monotonic increasing and monotonic

decreasing functions of RE respectively, the constraints can be simplified to PMRT
co = K

and PMRT
so = E . Despite this simplification, however, the complexity of Propositions 4.1

and 4.2 is too great to allow for a closed-form solution for computing Cs. Instead, for our

results we make use of a bisection search method to obtain the maximum and minimum

values of RS and RE respectively, which allows us to compute Cs using (4.7).

Next, we consider how the secrecy performance is affected in the high SNR regime. Let

us define the transmit SNR at S, using (4.1), as ρS = p1
σ2
n

. We will also consider how

the secrecy performance is affected in the high SNR regime, that is, when ρS →∞. To

start, note that in the high SNR regime we have γ′ → 0 and c5 → 0. This means we

can simplify the expressions for PMRT
co and PMRT

so given by Propositions 4.1 and 4.2,

respectively by ignoring the terms in larger powers of γ′ and c5. If we expand the Bessel

functions in the equations using Eq. (8.446) [123] this leaves us with the following result.

Corollary 4.2.1.

PMRT
co ≈Mγ′NS logeγ

′ and PMRT
so ≈ 1

1 + c6

in the high SNR regime, where ρS →∞ and

M =

(
NS

KS

)[NS−1∑
k=0

(−1)(KS−k)

k!(KS − 1)!(NS −KS)!(NS − k)!
(4.15)

+

NS−KS∑
l=1

(−1)(KS+l)

(
NS −KS

l

)(
KS

l

)(KS−1)

×
(NS−1∑

k=0

(−1)k
(
KS+l
KS

)NS−1

k!(NS − k)!(NS − 1)!
−
KS−2∑
j=0

(
−l
KS

)j
j!

NS−1∑
k=0

(−1)(j−k)

k!(NS − j − 1)!(NS − k)!

)]
.

We also consider the diversity order, which we defined in Section 2.2.2.6 as [62]:

d , − lim
ρS→∞

loge[Pe(ρS)]

loge(ρS)
,

where Pe is the maximum likelihood probability of detection error, which can be tightly

bounded by the outage probability at high SNR [62]. In order to proceed, therefore, we
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consider the outage probability associated with the secrecy rate which is given by

PMRT
out , Pr ((1− νT ) (log2 (1 + ρD)− log2 (1 + ρE)) < RC) .

For the high SNR regime it is straightforward to see that ρD →∞ while ρE tends to a

constant value. It follows that log2 (1 + ρD) − log2 (1 + ρE) → log2 (1 + ρD), since the

logarithmic term including ρD is dominant, which means we have

PMRT
out ≈ Pr ((1− νT ) log2 (1 + ρD) < RC) .

But this can be solved via Corollary 4.2.1 if we replace RS with RC and use the fact

that, from (4.1) and (4.9), we have γ′ = c7
ρS

with

c7 =

(
2

(
RS

1−νT

)
− 1

)
dmSD

‖hPS‖2F
.

This allows us to write

dMRT , − lim
ρS→∞

loge(P
MRT
out (ρS))

loge(ρS)

= lim
ρS→∞

− loge

(
M
(
c7
ρS

)NS

loge

(
c7
ρS

))
loge(ρS)

= lim
ρS→∞

−
[
loge(M) + loge(c7)

NS − loge (loge(c7))
]

+ loge (loge(ρS)) +NS loge (ρS)

loge(ρS)

= 0 + lim
ρS→∞

loge (loge(ρS))

loge(ρS)
+NS.

and, since ρS →∞ faster than loge(ρS), we have the following result:

Corollary 4.2.2. The diversity order of the system when E has no CSI can be expressed

as

dMRT = lim
ρS→∞

loge (loge(ρS))

loge(ρS)
+NS

= NS. (4.16)

In particular, this means that our proposed protocol achieves full diversity gain for the

case where E has no CSI.
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4.2.3.2 With partial CSIT for the eavesdropper’s channel

As in the previous section, for the case when we have partial CSIT for E we will begin

by seeking a closed form solution for the connection outage probability. Using equations

(4.9) and (4.5) we can write

PZFco = Pr
(
(1− νT ) log2(1 + ρ′D) < RS

)
PZFco = Pr

(
(1− νT ) log2

(
1 +

νpηνT p0c1 |g′SDwS|arg
(1− νT )dmPSd

m
SDσ

2
n

)
< RS

)
= Pr

(
c1
∣∣g′SDwS

∣∣
arg

< γ′
)
,

where |g′SDwS|arg ∼ Exp(1). Therefore, we can apply the same method as for Proposi-

tion 4.1 and derive the following result:

Proposition 4.3. The outage probability, PZFco , is given by

PZFco = 1−
NS−1∑
k=0

2γ′(k+1)/2

k!
K(1−k)

(
2
√
γ′
)
.

As for the case where E had no CSI, we also want to find the secrecy outage probability

when that CSI is available. Referring to (4.6), this can be written as

PZFso = Pr
(
(1− νT ) log2(1 + ρ′E) > RE

)
.

= Pr

(1− νT ) log2

1 +
νpηνT p0c1 |∆ewS|2arg

(1− νp)ηνT p0c1
∣∣g′SEwB

∣∣2
arg

+ (1− νT )dmPSd
m
SEσ

2
n

 > RE

 ,

where |g′SEwB|2arg ∼ Exp(1) and |∆ewS|2arg ∼ Exp(σ2e). Repeating the process used to

derive Proposition 4.2, we can obtain:

Proposition 4.4. The secrecy outage probability for the ZF protocol when the eaves-

dropper has CSI is given by

PZFso =
1

1 + c6
σ2
e

NS−1∑
k=0

2
(
c5
σ2
e

) k+1
2

k!
K(1−k)

(
2

√
c5
σ2e

)
.

As before, we also consider the high SNR regime where ρS → ∞, which means that,

once again, we can ignore the high order items in γ′ and c5, since they tend to zero.
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Using Propositions 4.3 and 4.4, we can approximate the outage probabilities as

PZFco = 1−
NS−1∑
k=0

2γ′(k+1)/2

k!
K(1−k)

(
2
√
γ′
)

and

PZFso =
1

(1 + c6/σ2e)

NS−1∑
k=0

2
(
c5
σ2
e

)(k+1)/2

k!
K(1−k)

(
2

√
c5
σ2e

)
,

respectively. Again we can expand the Bessel function using [123, Eq. 8.446], to derive:

Corollary 4.4.1. In the high SNR regime, the connection and secrecy outage proba-

bilities are given, respectively, by

PZFco ≈
γ′

NS − 1
, and PZFso ≈

1

1 + c6/σ2e
.

Finally, we consider the diversity order. The system outage probability is given by

PZFout , Pr
(
(1− νT )

(
log2

(
1 + ρ′D

)
− log2

(
1 + ρ′E

))
< RC

)
, (4.17)

which again simplifies to PZFout , Pr ((1− νT ) log2 (1 + ρ′D) < RC). Then we can obtain

dZF , − lim
ρS→∞

loge(P
ZF
out (ρS))

loge(ρS)

= lim
ρS→∞

− loge

(
c7

ρS(NS−1)

)
loge(ρS)

= lim
ρS→∞

[loge(NS − 1)− loge(c7)] + loge (ρS)

loge(ρS)

= lim
ρS→∞

(
loge(NS − 1)− loge(c7)

loge (ρS)

)
+ 1

by making use of Corollary 4.4.1, which leads to the result:

Corollary 4.4.2. For the case where E has CSI, the diversity order of the system is

given by

dZF = 1.

4.2.4 Optimising νT and νp in high SNR regimes

4.2.4.1 Without CSIT for the eavesdropper’s channel

In this section we seek to maximise the secrecy capacity from (4.7) for the case where the

CSIT for E’s channel is unknown, which we denote by CMRT
s . If we let Mγ′NS logeγ

′ = K,
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then, in the high SNR regime, it follows from Corollary 4.2.1 that

CMRT
s ≈ (1−K)(RMRT

S −RMRT
E ),

where and PMRT
out = K and PMRT

so = E are the outage constraints and we have

RMRT
S = (1− νT ) log2

(
1 +

νpηνT p0γ
′

(1−νT )σ2
nd

m
PSd

m
SD

)
and RMRT

E = (1− νT ) log2

(
2 +

νp−E
E(1−νp)

)
.

Therefore, the optimal coefficients for time and power allocations, (ν∗T , ν
∗
p), can be ap-

proximated by solving the optimisation problem:

OP1 : max
(νT ,νp)

(1−K)(1− νT )

(
log2

(
1 +

νpηνT p0γ
′

(1− νT )σ2nd
m
PSd

m
SD

)
− log2

(
2 +

νp − E
E(1− νp)

))
s.t. 0 ≤ νT , νp ≤ 1,

which can be reformed as

OP2 : max
(νT ,νp)

RMRT
C

s.t. 0 ≤ νT , νp ≤ 1,

where the objective function can be rewritten as

RMRT
C = (1− νT )

(
log2

(
1 +

νpηνT p0γ
′

(1− νT )σ2nd
m
PSd

m
SD

)
− log2

(
2 +

νp − E
E(1− νp)

))
,

because (1−K) does not depend on (νT , νp). We proceed by differentiating RMRT
C with

respect to νT and νp, with the aim of showing that it is a concave function in the high

SNR regime, and obtain:

∂RMRT
C

∂νT
=

ηνpp0γ′

σ2
nd

m
PSd

m
SD(

1 +
νpηνT p0γ′

(1−νT )σ2
nd

m
PSd

m
SD

)
(1− νT )loge2

− log2

(
1 +

νpηνT p0γ
′

(1− νT )σ2nd
m
PSd

m
SD

)
+ log2

(
2 +

νp − E
E(1− νp)

)
,

∂RMRT
C

∂νp
=

(1− νT )
(

ηνT p0γ
′

(1−νT )σ2
nd

m
PSd

m
SD

)
(

1 +
νpηνT p0γ′

(1−νT )σ2
nd

m
PSd

m
SD

)
loge2

− (1− νT )(1− E)

loge2[2E(1− νp)2 + (1− νp)(νp − E)]
,

∂2RMRT
C

∂2νT
=

ηνpp0γ
′

σ2nd
m
PSd

m
SDloge2

 − ηνpp0γ′

σ2
nd

m
PSd

m
SD(

1 +
νpηνT p0γ′

(1−νT )σ2
nd

m
PSd

m
SD

)2
(1− νT )3

 . (4.18)
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From this we can see that
∂2RMRT

C
∂2νT

≤ 0. Moreover, differentiating again gives

∂2RMRT
C

∂2νp
=
−(1− νT )

(
ηνT p0γ

′

(1−νT )σ2
nd

m
PSd

m
SD

)2
(

1 +
νpηνT p0γ′

(1−νT )σ2
nd

m
PSd

m
SD

)2
loge2

+
(1− νT )(1− E)[1− 2νp + E(4νp − 3)]

loge2[2E(1− νp)2 + (1− νp)(νp − E)]2
.

Now, referring back to (4.1), when ρS = p1
σ2
n
→∞ we have

1 +
νpηνT p0γ

′

(1− νT )σ2nd
m
PSd

m
SD

→ νpηνT p0γ
′

(1− νT )σ2nd
m
PSd

m
SD

, (4.19)

which means

∂2RMRT
C

∂2νp
≈ −(1− νT )

ν2p loge2
+

(1− νT )(1− E)(1− 2νp + 4νpE − 3E)

loge2(1− νp)2(νp + E − 2νpE)2
(4.20)

=
−(1− νT )

loge2
(A−B),

with

A =
1

ν2p
and B =

(1− E)(1− 2νp + 4νpE − 3E)

(1− νp)2(νp + E − 2νpE)2
.

With the aim of proving that RMRT
C is concave, which requires A−B > 0, we write

B =
C

(1− νp)2D
,

where

C = (1− E)(1− 2νp + 4νpE − 3E) = (3− 4νp)E2 + (6νp − 4)E − 2νp + 1, (4.21)

D = (νp + E − 2νpE)2 = E2 + ν2p + 2νpE − 4νpE2 − 4ν2pE + 4E2ν2p .

Now if we rewrite 4.21 in the form C = (1− E)[(1− 2νp) + E(4νp − 3)] we can consider

three cases which depend on νp:

1. 1
2 < νp <

3
4 . In this case 1− 2νp < 0 and E(4νp− 3) < 0, so C < 0 and A−B > 0.

2. νp >
3
4 . In this case (2νp − 1)/E − (4νp − 3) > (2νp − 1)− (4νp − 3) = 2− 2νp > 0

and C = −(1− E)E [(2νp − 1)/E − (4νp − 3)] < 0, therefore A−B > 0.

3. νp <
1
2 . In this case C < 0 or C > 0.

In the final case, when C < 0 we have B < 0 and so A−B > 0. However, when C > 0

we have (1− 2νp) + E(4νp − 3) > 0, and so E < 2νp−1
4νp−3 . Then we have

∂C

∂E
= −[(1− 2νp) + E(4νp − 3)] + (1− E)(4νp − 3) < 0,
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and

∂D

∂E
= 2(1− 2νp)(νp + E − 2νpE) > 0,

which means the maximum C and minimum D, and thus the maximum B, occur when

E = 0. It follows that, when νp <
1
2 and E = 0, we have

A−B =
1

ν2p
− 1− 2νp

(1− νp)2ν2p
=

ν2p
ν2p(1− νp)2

> 0,

which shows that A−B > 0 in this case too, and so
∂2RMRT

C
∂2νp

≤ 0 as required.

Now by making use of (4.19) and the partial derivatives in (4.18), we can obtain

∂RMRT
C

∂νp
≈ (1− νT )

loge2

(
1

νp
− (1− E)

(1− νp)(E + νp − 2Eνp)

)
(4.22)

and
∂2RMRT

C

∂2νT
≈ −1

ν2T (1− νT )loge2
, (4.23)

respectively, whence

∂2RMRT
C

∂νp∂νT
≈ 1

loge2

(
−1

νp
+

(1− E)

(1− νp)(E + νp − 2Eνp)

)
. (4.24)

We can now combine the approximations in (4.20), (4.23) and (4.24) to give

∂2RMRT
C

∂2νT

∂2RMRT
C

∂2νp
−
(
∂2RMRT

C

∂νp∂νT

)2

=

(
1

loge2

)2
[(

1

ν2T ν
2
p

− (1− E)(1− 2νp + 4νpE − 3E)

ν2T (1− νp)2(νp + E − 2νpE)2

)
−
(
−1

νp
+

(1− E)

(1− νp)(E + νp − 2Eνp)

)2
]

>

(
1

loge2

)2 [( 1

ν2p
− (1− E)(1− 2νp + 4νpE − 3E)

(1− νp)2(νp + E − 2νpE)2

)
−
(
−1

νp
+

(1− E)

(1− νp)(E + νp − 2Eνp)

)2
]

=

(
1

loge2

)2 (1− E)

(1− νp)(E + νp − 2Eνp)

(
−(1− 2νp + 4νpE − 3E)

(1− νp)(E + νp − 2Eνp)
− (1− E)

(1− νp)(E + νp − 2Eνp)
+

2

νp

)
=

(
1

loge2

)2 (1− E)

(1− νp)2(E + νp − 2Eνp)2
O,

where

O = −(1− 2νp + 4νpE − 3E)− (1− E) + 2
νp

(1− νp)(E + νp − 2Eνp) =
2E(1−νp)

νp
> 0.

It follows that
∂2RMRT

C
∂2νT

∂2RMRT
C

∂2νp
−
(
∂2RMRT

C
∂νp∂νT

)2
> 0, which proves that the optimisation

problem is concave, and moreover, that the optimal solution, (ν∗T , ν
∗
p), in the high SNR
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regime, is given by solving
∂RMRT

C
∂νT

= 0 and
∂RMRT

C
∂νp

= 0. Finally, by referring to (4.18)

and (4.22), we can solve these equations and derive the following result:

Proposition 4.5. In the high SNR regime for the case where E’s CSIT is unknown, the

optimal time and power allocating coefficients ν∗T and ν∗p , subject to the requirements

that PMRT
out ≤ K and PMRT

so ≤ E , are approximately

ν∗p ≈

{
1
2 if E = 1

2
E−
√
E−E2

2E−1 otherwise

and

ν∗T ≈
1

1 + W(eV loge2)
, (4.25)

where W(x) denotes Lambert’s function, the inverse of f(x) = xex, and

V = log2

(
νpηPγ

′

σ2nd
m
PSd

m
SD

)
− 1

loge2
− log2

(
2 +

νp − E
E(1− νp)

)
.

4.2.4.2 With partial CSIT for the eavesdropper’s channel

In order to analyse the system in the same way when we have partial CSIT for E, we

consider the maximal secrecy capacity for this case, which is denoted by CZFs . If we let

γ′ = (NS − 1)K and E ′ = E/
(
σ2e + (1− σ2e)E

)
, then by combining Corollary 4.4.1 and

with the requirements that PZFco = K and PZFso = E , we can approximate CZFs as

CZFs ≈ (1−K)(RZFS −RZFE ),

in the high SNR regime, where

RZFS = (1− νT ) log2

(
1 +

νpηνT p0γ
′

(1− νT )σ2nd
m
PSd

m
SD

)
,

and

RZFE = (1− νT ) log2

(
2 +

νp − E ′

E ′ (1− νp)

)
.

We can then apply Proposition 4.5, to see that approximations of the optimal time and

power allocating coefficients (ν ′T , ν
′
p) are given by

ν ′p ≈

{
1
2 if E ′ = 1

2
E ′−
√
E ′−E ′2

2E ′−1 otherwise
and ν ′T ≈

1

1 + W(eV
′loge2)

(4.26)
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Figure 4.2: Connection outage probability

respectively, where

V ′ = log2

(
νpηp0γ

′

σ2nd
m
PSd

m
SD

)
− 1

loge2
− log2

(
2 +

νp − E ′

E ′(1− νp)

)
.

4.3 Results and discussion

This section includes simulation results, for which we have fixed the path loss exponent

as m = 2.5, the distance from PB to S as dPS = 10m, the distance from S to E as

dSE = 10m, the noise power as σ2n = −80dBm and the energy conversion efficiency as

η = 0.3, unless otherwise specified.

Fig. 4.2, compares the connection outage probability for the transmission protocols for

the case where dSD = 10m, NS = 3, KS = 2, νT = 0.8, νp = 0.5 and RS = 3 bps/Hz.

It is clear that the theoretical results are a perfect match with the simulations for both

protocols. The approximate results match the simulation results better as the SNR

increases, which is what we would expect as these results rely on the assumption of high

SNR. The connection outage probability of the ZF-MRT protocol for the case without

partial CSIT for E is lower than that of the ZF protocol used when this CSIT is available.

This agrees with our analysis in Section 4.2.3, where the first protocol is shown to have

a greater diversity order.

Fig. 4.3 demonstrates the outcome of varying the power allocation coefficient νp when we

set NS = 3, KS = 2, νT = 0.5, RE = 1 bps/Hz, Again, the theoretical and approximate

results agree, with a high degree of accuracy. In terms of secrecy the protocol with E’s

CSIT performs better than that without, which can be explained by the fact that we are
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able to use ZF transmission to reduce the signal power at E. We also notice that when we

decrease the proportion of S’s power allocated to the jamming part of the protocol the

secrecy outage probability decreases rapidly, which confirms the benefits of employing

ZF jamming.

In Fig. 4.4, we analyse the efficacy of using the algorithm given in Proposition 4.5

to compute approximates of the optimal values of νT and νp for both protocols. We

compare the secrecy capacity that can be achieved when employing this algorithm with

an exhaustive search approach for the case where dSD = 10m, KS = 0.0001, E = 0.01

and K = 2. It is clear that the algorithm performs almost as well as the exhaustive

search and much better than using fixed values for νT and νp.
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Figure 4.5: Secrecy capacity of the two protocols
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Fig. 4.5, analyses the secrecy capacity of both protocols for the case where dSD = 10m,

K = 0.01, E = 0.01 and KS = 2, and the values of νT and νp are computed using

(4.25) and (4.26), respectively. In terms of secrecy capacity, the protocol without CSIT

for E performs best for the given parameters while increasing the number of transmit

antennas, NS is beneficial to both protocols. On the other hand, in the case when E as

CSI the secrecy capacity decreases as the variance of the estimation error, σ2e , decreases

as we would expect.

Finally, in Fig. 4.6 we consider the effect of altering the distance from S to D on the

secrecy capacity for the case where p0 = 30dBm, K = 0.01, E = 0.01 and KS = 4. Again

we can see that the protocol without E’s CSIT performs better when the value of σ2e
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for the protocol with E’s CSIT is greater than 0.01. Crucially, this shows that both

protocols are able to achieve the fundamental requirement of positive secrecy capacity

even when dSD > dSE. As we would expect, increasing the number of antennas NS can

ameliorate the reduction in secrecy capacity which naturally occurs when the separation

between S and D increases. Finally, we note that the significance of σ2e is reduced when

dSD is large.

4.4 Summary

In this chapter we have focused on analysing the performance of a multi-antenna, MISO

system in the presence of an eavesdropper, E, with the use of the physical layer security

measures we introduced in Section 2.2.3.1. We constructed two protocols depending on

the availability of CSIT for the channel between the source, S, and E, the first of which

combined maximum ratio transmission (MRT) with zero-forcing (ZF) jamming while

the second made use of zero-forcing transmission. Our analysis focused on the metrics

of outage probability and secrecy capacity described in Sections 2.2.2.4 for which we

derived closed-form expressions. In addition, we considered the high SNR regime, for

which we were able to derive approximations of the connection outage probability and

secrecy outage probability as well as the diversity orders for both protocols. Finally,

we proposed an algorithm for finding the optimal time-switching ratio νT and power

allocation coefficient νp in the high SNR regime. The theoretical results have been

validated by numerical simulations, which demonstrate their accuracy, and in particular

the optimality of the algorithm for computing νT and νp. Whether or not we have

partial CSIT for E we have been able to achieve a positive secrecy capacity using our

protocols, even in the case where the destination is further away from the source than the

eavesdropper, which demonstrates the efficacy of both protocols. Knowing the partial

CSIT for E’s channel can provide benefits in terms of outage probability, which is lower

for this protocol, however this is at the expense of capacity, which is greater for the

scheme without any CSI for E due to the superior diversity order achieved when using

maximum ratio combining.



Chapter 5

Cooperative Secrecy in Multi-hop

Relay Networks

This chapter continues the theme of secrecy and physical layer security, but the consid-

ered model incorporates the multiple-input multiple-output (MIMO) and relay technolo-

gies we introduced in Sections 1.1.1.1 and 1.1.2.4 respectively. We continue to make use

of artificial jamming but combine this with the method of interference alignment (IA)

introduced in Section 1.1.2.7. As always, our goal is to analyse system performance,

and in this chapter we focus particularly on the secrecy rate, outage probability and

diversity order. The previous chapter considered the case where multiple antennas were

used at the source node only, whereas this chapter investigates the use of multi-antenna

transmit and receive nodes, which have been shown to provide further improvement to

achievable secrecy rates [47–50]. We will consider a decode-and-forward (DF) relaying

protocol and derive a new result on the joint probability density function (pdf) of the

kth largest eigenvalues of the complex Wishart matrices introduced in Section 2.3.2.2.

As with the previous chapter, this work was carried out in collaboration with Zhuo

Chen of China’s University of Science and Technology, who was the lead researcher on

the project. My contribution has been to formalise the mathematical results involving

random matrices, which enable the solution of the proposed communication problems,

and to tailor the precoding matrices involved in the IA transmission strategy to our

specific model. The full paper, [126], also proposes an AF protocol using the same IA

techniques, but this section has been omitted from this chapter, where we are interested

in the main result which uses random matrix theory (RMT).

The contributions of this chapter are as follows:

• A protocol for secrecy in a multi-hop MIMO communication system is proposed.

85
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• A new result is derived on the joint probability density function (pdf) of the largest

eigenvalues of a complex Wishart matrices HH†.

• Using this result, the achievable secrecy rate, legitimate outage probability and

diversity order of the protocol is characterised.

The remainder of the chapter is organised as follows. In Section 5.2 we describe the

system model under consideration, and propose a DF protocol which makes use of IA. We

use a new result on the joint probability density function (pdf) of the largest eigenvalues

of the complex Wishart matrices HH† to analyse the performance of the DF protocol

in Section 5.3. Finally we present simulation results in Section 5.4, which confirm the

accuracy of the theorised secrecy rate performance of the proposed scheme.

5.1 Introduction

As explained in Section 1.1.2.4, it can be beneficial to use relays in wireless communica-

tion systems instead of direct transmission strategies. Relays can facilitate communica-

tion which would otherwise be impossible as well as providing additional spatial diversity.

This diversity can be increased further by using multiple antennas at individual relay

nodes [20, 21]. Relays can also cooperate with one another, performing jamming and

IA strategies in order to improve wireless security [39, 127, 128]. While algorithms for

computing optimal power allocation have been proposed in [129] for multi-hop relay

systems, there is little work on the secrecy performance of this type of system.

We introduced IA in Section 1.1.2.7 as a means of improving sum rate and net capacity

of a channel by aligning interfering signals which makes them easier to separate from the

desired signal [35, 37]. The work of this chapter was motivated by a desire to combine

and analyse the application of this technology to secrecy communication scenarios as in

[38] with the extension to the type of MIMO relay systems considered in [39] and the

aim of addressing the deficit of research into multi-hop systems.

5.2 System model

For this work we consider the wireless (L+1)-hop relaying network depicted in Fig. 5.1,

in which a source node, S, communicates with a destination node, D, via L trusted relays

in the presence of an eavesdropper, E. For our analysis, we will assume that S, Rn, and D

are located in a straight line, while E is positioned away from the line, as illustrated, but

note that our theoretical results are equally valid for other arrangements. We assume
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Figure 5.1: Simulation model.

that E has NE antennas while the remaining nodes each have N antennas. We will

index the source node, the relay nodes and the destination node by 0, {1, ..., L} and

L+ 1, respectively and write
Hi,j√
dmi,j

to denote the matrix modelling the channel between

nodes i and j, where 0 ≤ i, j ≤ L+ 1. As before, we assume the channels are Rayleigh

fading and thus can be modelled as distance-scaled Gaussian matrices described in the

introductory paragraph of Section 2.3.2. Specifically, the s, t th entry [hi,j ]s,t of Hi,j

satisfies [hi,j ]s,t ∼ CN (0, 1), di,j is the distance separating the ith and jth nodes and

m is the path loss exponent. We define
Hi,E

di,E
analogously for the channels to E and

assume that E has access to CSI for all channels in the system, while the remaining

nodes only have CSI for the legitimate channels. Scenarios in which E has access to

global CSI are uncommon, as explained in the previous chapter, however we justify the

assumption here since this is the ‘worst case scenario’ and therefore the most stringent

possible assumption for testing our protocols. Communication across the system occurs

over (L+ 1) time slots and we assume that the relays work in half-duplex mode, so that

time is divided between transmitting and receiving. In each time slot, a signal x ∈ Cx×1

containing x desired message components is precoded using IA and then transferred

from the source to the destination via the L relays.

5.2.1 A DF protocol using interference alignment

For the DF protocol, the (i− 1)th node transmits Pi−1x̃i−1, in the ith (1 ≤ i ≤ L+ 1)

time slot, where Pi−1 ∈ CN×N is a precoding matrix to be defined. The first x

entries of the signal, x̃i−1, contain the desired message, x, while the remainder con-

tains (N − x) artificial noise signals, zi−1. Meanwhile, the nodes Rk : k ∈ Si, where



Chapter 5. Cooperative Secrecy in Multi-hop Relay Networks 88

Si = {0, 1, ..., i− 2}
⋃
{i+ 1, i+ 2, ..., L}, each transmit a further (N − x) noise signals

Q̃k,iwk,i, where Q̃k,i ∈ CN×(N−x) is another precoding matrix (to be defined) and the

vector wk,i ∈ C(N−x)×1 contains artificial noise. The ith node receives a combination of

the desired message, x, from the (i − 1)th node, and interference, zi−1 and wk,i, from

the (i− 1)th and kth nodes (k ∈ Si), respectively. It aligns the interference components

by multiplying the received signal, yi, by a decoding matrix Wi ∈ Cx×N . The signal

received by the ith node in this time slot after decoding is given by

Wiyi =
1√
dmi−1,i

WiHi−1,iPi−1

(
x

zi−1

)
+ Wini +

∑
k∈Si

1√
dmk,i

WiHk,iQ̃k,iwk,i, (5.1)

where ni ∼ CN (0, IN ) is the normalised noise across the channel.

The precoding and decoding matrices are designed to satisfy certain conditions to enable

IA. To understand this, consider the singular value decomposition of the channel matrix,

Hi−1,i = Ui−1,iΛi−1,iV
†
i−1,i, and let Ũi−1,i ∈ CN×x and Λ̃i−1,i ∈ Cx×x be submatrices

of Ui−1,i and Λi−1,i corresponding to and containing the x largest singular values of

Hi−1,i respectively. Also, let Λ̃′i−1,i ∈ Cx×(N−x) be a submatrix of Λi−1,i corresponding

to the (N − x) smallest singular values of Hi−1,i. Then we set

Wi = Ũ†i−1,i, Pi−1 =
1√
N

Vi−1,i and Q̃k,i =
1√
ζk,i

Qk,i, (5.2)

where we choose Qk,i to satisfy Hk,iQk,i = Ui−1,iΛ̃
′
i−1,i and set ζk,i = Tr

(
Qk.iQ

†
k,i

)
to

ensure normalised power. For these choices, the following properties hold:

(a) WiHi−1,iPi−1[:, x+1 : N ] = 0, (b) Tr
(
Pi−1P

†
i−1

)
= 1, (c) Tr

(
Q̃k,iQ̃

†
k,i

)
= 1,

where Matlab notation is used to represent submatrices and conditions (b) and (c) also

ensure that the power is normalised. We can now rewrite (5.1) as

Wiyi =
1√
dmi−1,i

1√
N

Λi−1,i

(
x

zi−1 + ci

)
+ Ũ†i−1,ini,

where

ci =
∑
k∈Si

√
Ndmi−1,i
dmk,iζk,i

wk,i. (5.3)

Notice that the interference components are in the bottom entries of the received vector,

orthogonal to the desired signal. This means that the receiver can cancel this part out
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and the effective received signal is given by

Wiyi =
1√
dmi−1,i

1√
N

Λ̃i−1,ix + Ũ†i−1,ini, (5.4)

where the desired message utilises the largest singular values of Hi−1,i for optimal SNR.

Using (2.26) from Section 2.3.3, the ergodic rate at node i is then given by

Ri,r =
1

L+ 1

x∑
j=1

log2

(
1 +

pxλ
2
Hi−1,i,j

Ndmi−1,i

)
, (5.5)

where λ2Hi−1,i,j
denotes the jth eigenvalue of Hi−1,i,H

†
i−1,i, and px is the total transmit

power allocated to the desired signal. In this case px is equivalent to the transmit SNR

since we have normalised the noise variance, which corresponds to case iii of Table 2.1.

5.2.2 Detection at the eavesdropper

On the other hand, the signal received at E in the ith time slot is given by

yE,i =
1√

Ndmi−1,E

Hi−1,EṼi−1,ix + ñi, (5.6)

for

ñi =
1√

Ndmi−1,E

Hi−1,EṼ′i−1,izi−1 +
∑
k∈Si

1√
dmk,E

Hk,E
1√
ζk,i

Qk,iwk,i + nE,i, (5.7)

where nE,i ∼ CN (0, INE ) is the noise across the channel from the ith node to E, while

Ṽi−1,i ∈ CN×x and Ṽ′i−1,i ∈ CN×(N−x) are the submatrices of Vi−1,i corresponding to

the x largest eigenvalues and (N − x) smallest eigenvalues of Hi−1,i respectively.

We can write the signal received by E in the various time slots in matrix form as



yE,1
...

yE,i
...

yE,L+1


=



1√
Ndm0,E

H0,EṼ0,1

...
1√

Ndmi−1,E

Hi−1,EṼi−1,i

...
1√

NdmL,E
HL,EṼL,L+1


x +



ñ1

...

ñi
...

ñL+1


= Ax + ñE . (5.8)

where the definitions of A ∈ CNE(L+1)×x and ñE ∈ CNE(L+1)×1 are implied.
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The eavesdropper receives iNE observations after i time slots consisting of x desired

signal components, i(N −x) artificial noise components from the transmitting node and

iL(N −x) artificial noise components from the cooperative jamming nodes. This means

we have a total of x− i(L+ 1)(N − x) unknown variables at E, and so E is only able to

separate the desired signal from the noise components if it can solve the linear equation

in these variables. To ensure that this cannot happen, the number of unknown variables

must be larger than the number of the observations, that is, we must have

iNE < x− i(L+ 1)(N − x)⇒ x <
i [N (L+ 1)−NE ]

i(L+ 1)− 1
⇒ x <

(L+ 1)[(L+ 1)N −NE ]

L2 + 2L

where the final implication equality holds because i[N(L+1)−NE ]
i(L+1)−1 is a monotone decreas-

ing function of i. This illustrates the function of cooperative jamming, without which

the number of unknown variables would be much lower. Moreover, since x cannot be

negative, we can write the constraint on the number of antennas at E in terms of the

number of antennas at the legitimate nodes and the number of relays as NE < (L+1)N .

Now, with the help of (5.8) we can write the ergodic rate at E as

RE ≈
1

L+ 1
log2 det

(
I(L+1)NE + AA†D−1

)
, (5.9)

where we define the block diagonal matrix D = diag (D1,D2, · · · ,DL+1) with blocks:

Di = E
[
ñiñ

†
i

]
=

Hi−1,EṼ′i−1,iṼ
′ †
i−1,iH

†
i−1,E

Ndmi−1,E
+
∑
k∈Si

{
Hk,EQk,iQ

†
k,iH

†
k,E

dmk,Eζk,i
+

INE
px

}
.

Note that at E, the interference signals are mixed with the intended signal and do

not occupy an orthogonal subspace to the desired signal. Therefore they cannot be

separated, even with full CSI, provided we meet the constraints on x given above [38].

5.3 Performance analysis

In this section we analyse the performance of the DF protocol by investigating the metrics

of secrecy rate, outage probability and diversity order. Using (2.19) from Section 2.2.2.5,

the achievable secrecy rate at the ith node is given by

Ri = max {0,Ri,r −RE} . (5.10)
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The secrecy outage probability for the targeted secrecy rate RT is then found by ex-

tending (2.20) from Section 2.2.2.5 to account to multiple nodes, which gives

P sec
out = Pr(min{R1,R2, · · · ,RL+1} < RT).

Let us consider the high SNR regime, where px → ∞. In this regime, the term
INE
px

disappears from (5.9), which means the matrix, D, and the ergodic rate, RE , become

more or less independent of px. Consequently, RE is negligible when compared with

the rate, Ri,r, at the ith node given in (5.5). Additionally, in each of the (L + 1)

time slots, (L+ 1) legitimate nodes each contribute (N −x) artificial noise components,

giving a total of (L + 1)2(N − x) undesired signal components at E, which drown out

the desired message. It follows that the rate RE also decreases with an increase in L.

Combining these facts, we conclude that it is reasonable to ignore RE in the high SNR

regime. This is verified by comparing plots of Ri,r and RE (see Fig. 5.2 in Section

5.4). According to (5.10), therefore, we can approximate the achievable secrecy rate of

the ith node in the high SNR regime as Ri = Ri,r, which is given in (5.5). Moreover,

the problem of computing the secrecy outage probability then reduces to computing the

outage probability of the overall legitimate communication between S and D, that is,

P sec
out = Pout. Since the individual channels in the system are independent, this is given

by:

Pout = 1−
L+1∏
i=1

(1−Pout,i), (5.11)

where Pout,i is the outage probability for the legitimate channel across the ith hop:

Pout,i = Pr(Ri,r < RT) = Pr

 1

L+ 1

x∑
j=1

log2

(
1 +

pxλ
2
Hi−1,i,j

Ndmi−1,i

)
< RT

 .

Therefore, to compute Pout, we need Pout,i for each 1 ≤ i ≤ L + 1, which requires

knowledge of the pdfs of Ri,r. These pdfs depend on the largest eigenvalues of the

Gaussian matrices Hi−1,iH
†
i−1,i ∈ CN×N , and we now demonstrate how to derive them.

To start, we make use of [74, Theorem 2.17], which states that the joint pdf of the

ordered, strictly positive eigenvalues, λ1 ≥ λ2 ≥ · · · ≥ λNt , of the Wishart matrix HH†

is given by

f ord
HH†(λ1, λ2, · · · , λNt) = e−

∑Nt
i=1 λi

Nt∏
i=1

λNr−Nti

(Nt − i)!(Nr − i)!

Nt∏
i<j

(λi − λj)2. (5.12)

where Nt and Nr are the minimum and maximum dimensions of H respectively. It

follows that the joint pdf of the largest eigenvalues λ1, λ2, · · · , λx is given by integrating
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over the Nt − x smallest eigenvalues:

g ord
HH†(λ1, λ2, · · · , λx) =

∫
D
f ord
HH†(λ1, λ2, · · · , λNt) dλx+1 · · · dλNt ,

where D = {0 < λNt < λNt−1 < · · · < λx+1 < λx}. Expanding this, while abbreviating

dλx+1 · · · dλNt as dλ, gives:

g ord
HH† = e−

∑x
i=1 λi

Nt∏
i=1

1

(Nt − i)!(Nr − i)!

x∏
i=1

λNr−Nti

x∏
i<j

(λi − λj)2

×
∫
D
e−
∑Nt
j=x+1 λj

Nt∏
j=x+1

λNr−Ntj

Nt∏
j=x+1

x∏
i=1

(λi − λj)2
(x+1)∼Nt∏

i<j

(λi − λj)2dλ

= G

∫
D

Nt∏
j=x+1

e−λjλNr−Ntj

x∏
i=1

(λi − λj)2
(x+1)∼Nt∏

i<j

(λi − λj)2, dλ (5.13)

where
∏(x+1)∼Nt
i<j denotes the product over all i < j such that x+ 1 ≤ i, j ≤ Nt and

G = e−
∑x
i=1 λi

Nt∏
i=1

1

(Nt − i)!(Nr − i)!

x∏
i=1

λNr−Nti

x∏
i<j

(λi − λj)2.

At this stage, a handy trick allows us to write the term
∏(x+1)∼Nt
i<j (λi−λj)2 from (5.13)

as the square of the determinant of the matrix A ∈ Cn×n (where n = Nt − x):

(x+1)∼t∏
i<j

(λi − λj)2 = |A|2 =

∣∣∣∣∣∣∣∣∣∣∣

λNt−x−1x+1 λNt−x−2x+1 . . . 1

λNt−x−1x+2 . . . . . . 1
...

. . .
...

...

λNt−x−1Nt
. . . . . . 1

∣∣∣∣∣∣∣∣∣∣∣

2

, (5.14)

which we can express as the matrix product |A|2 =
∣∣ATA

∣∣. Now the determinant of a

matrix can be written in terms of permutations of the elements [130] as follows:

∣∣ATA
∣∣ =

∑
π∈Sn

±(π)[ATA]1,π(1)[A
TA]2,π(2) · · · [ATA]n,π(n)

=
∑
π∈Sn

±(π)

n∑
j=1

[A]j,1[A]j,π(1)

n∑
j=1

[A]j,2[A]j,π(2) · · ·
n∑
j=1

[A]j,n[A]j,π(n)

=
∑
σ∈Sn

∑
π∈Sn

±(π)[A]σ(1),1[A]σ(1),π(1)[A]σ(2),2[A]σ(2),π(2) · · · [A]σ(n),n[A]σ(n),π(n),

=
∑
σ∈Sn

∑
π∈Sn

±(π)λ
2(Nt−x)−1−π(1)
σ(1)+x λ

2(Nt−x)−2−π(2)
σ(2)+x · · ·λNt−x−π(Nt−x)σ(Nt−x)+x , (5.15)

where π = (π(1), π(2) · · ·π(n)), σ = (σ(1), σ(2) · · ·σ(n)) ∈ Sn are permutations of length
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n, ±(∗) is 1 or −1 according to the parity of the permutation, and the penultimate

equality holds because the determinant is zero whenever σ(i) = σ(j) for i 6= j.

If we define P (λ) = e−λλNr−Nt
∏x
i=1(λi− λ)2 and substitute (5.15) into (5.13), we have

g ord
HH† = G

∫
D

 Nt∏
j=x+1

P (λj)

 |A|2dλ
= G

∑
π∈SNt−x

±(π)
∑

σ∈SNt−x

∫
D

Nt−x∏
j=1

λ
2(Nt−x)−j−π(j)
σ(j)+x P (λσ(j)+x)dλ

= G
∑

π∈SNt−x

±(π)

Nt−x∏
j=1

(∫ λx

0
P (y)y2(Nt−x)−j−π(j)dy

)
(5.16)

= Gdet S, (5.17)

which we will explain step by step. Firstly, for (5.16) we have used a result from [131]

which states that if we have a set of pdfs, fi(x), i = 1, 2, · · ·n, defined over the real line,

and D = {x1 < x2 < · · · < xn < x} then

∑
τ∈Sn

∫
D
fi1(x1) · · · fin(xn)dx1 · · · dxn =

n∏
i=1

(∫ x

−∞
fi(λ)dλ

)
.

Then, for (5.17) the i, jth entry of the matrix S ∈ C(Nt−x)×(Nt−x) is given by

[S]i,j =

∫ λx

0
P (λ)λ2(Nt−x)−i−jdλ

=

∫ λx

0
e−λλNt−2x−i−j+Nr

x∏
k=1

(λk − λ)2 dλ

=

∫ λx

0
e−λλNt−2x−i−j+Nr

2x∑
k=0

(−1)kλk
∑
pi∈P

2x−k∏
n=1

λd pn
2
edλ. (5.18)

=

2x∑
k=0

(−1)k

 ∑
pi∈P

2x−k∏
n=1

λd pn
2
e

∫ λx

0
e−λλNr+Nt−2x−i−j+kdλ (5.19)

=
2x∑
k=0

(−1)k
∑
pi∈P

2x−k∏
n=1

λd pn
2
e

[
e−λ

(
ck∑
k=0

−k!

(
ck
k

)
λck−k

)]λ=λx
λ=0

, (5.20)

where pi ∈ P in (5.18) refers to the set of subsets of {1, 2, · · · , 2x} with cardinality 2x−k,

d∗e denotes the ceiling function, the evaluation of the integral in (5.19) can be found,

for example, in [123, Eq 2.32], [f(λ)]λ=λxλ=0 in (5.20) denotes the difference, f(λx)− f(0),

and we have set ck = Nr +Nt − 2x− i− j + k.

Combining (5.17) with (5.20), we are able to derive the following result:
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Proposition 5.1. The joint pdf of the unordered x largest eigenvalues, λk,1, λk,2, · · · , λk,x,

of Hi−1,iH
†
i−1,i, for each 1 ≤ i ≤ L+ 1 is given by

f unord
HH† (λk,1, λk,2, · · · , λk,x) =

1

x!
g ord
HH†(λ1, λ2, · · · , λx),

where λ1, λ2, · · · , λx is the ordered permutation of λk,1, λk,2, · · · , λk,x.

In the following, we make use of Proposition 5.1 to find the pdfs for each Ri,r, however

we note that subsequent to publication, we were made aware of alternative approaches

to this result, and refer the reader to [132] for further discussion.

Let us define

R̃i,r = Ri,r(L+ 1) loge 2 =

x∑
j=1

loge

(
1 +

pxλk,j
Ndmi−1,i

)
= loge

x∏
j=1

[
1 +

(
px

Ndmi−1,i

)
λk,j

]
(5.21)

as having pdf fR̃i(x), which means that the pdf of Ri,r is given in terms of fR̃i(x) as

fRi = (L+ 1)loge2 fR̃i(Ri,r(L+ 1)loge2). The pdf of R̃i,r can be defined using the delta

function by extending the relationship described in (3.1) from Section 3.1.1, as [87, 133]:

fR̃i(R̃i,r) = Eλ

δ
R̃i,r − loge

x∏
j=1

{
1 +

(
px

Ndmi−1,i

)
λk,j

} .
Using the following properties of the delta function:

(i) δ(f(x)) =
∑
i

δ(x− xi)
|f ′(xi)|

and (ii) δ(xa − xb) =

∫
D
δ(xa − x)δ(x− xb )dx,

where xi is the ith root of f(x), f ′(xi) is the derivative of f evaluated at xi and xa, xb ∈ D
are arbitrary values of x, we can then follow the same process as [133] to obtain:

fR̃i(R̃i,r) = eR̃i,r
∫
...

∫
δ

eR̃i,r − x∏
j=1

{
1 +

(
px

Ndmi−1,i

)
λk,j

} f unord
HH† (λ) dλ, (5.22)

= eR̃i,r
∫
...

∫
δ
(
eR̃i,r − (1 + ωiλk,1)ψ1

)
δ (ψ1 − (1 + ωiλk,2)ψ2)×

...× δ (ψx−1 − (1 + ωiλk,x)) f unord
HH† (λ) dλ dψ. (5.23)

= eR̃i,r
∫
...

∫
1

ωiψ1
δ(λk,1 −

eR̃i,r − ψ1

ωiψ1
)

1

ωiψ2
δ(λk,2 −

ψ1 − ψ2

ωiψ2
)×

...× 1

ωi
δ(λk,x −

ψx−1 − 1

ωi
)f unord

HH† (λ) dλ dψ, (5.24)
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where ωi =
(

px
Ndmi−1,i

)
, dλ = (dλk,1, · · · , dλk,x) and dψ = (dψ1 · · · dψx−1), (5.22) uses

the definition of expectation and applies (i) for x = loge
∏x
j=1

{
1 +

(
px

Ndmi−1,i

)
λk,j

}
and

f(x) = ex − eR̃i , (5.23) makes repeated use of (ii) and (5.24) uses (i) again. If we now

also invoke the sifting property from (3.3) of Section 3.1.1, we can simplify this to:

fR̃i(R̃i,r) =
eR̃i,r

ωxi

∫
...

∫
f unord
HH†

(
eR̃i,r − ψ1

ωiψ1
,
ψ1 − ψ2

ωiψ2
, · · · , ψx−1 − 1

ωi

)
x−1∏
j=1

1

ψj
dψ

=
eR̃i,r

ωxi

eR̃i,r∫
1

ψ1∫
1

...

ψx−2∫
1

f unord
HH†

(
eR̃i,r − ψ1

λψ1
,
ψ1 − ψ2

λψ2
, · · · , ψx−1 − 1

λ

)
x−1∏
j=1

1

ψj
dψ,

where the integration limits can be restricted because f unord
HH†

(λ) = 0 whenever its argu-

ments are negative, which is only avoided when eR̃i,r > ψ1 > · · · > ψx−1 > 1. Recalling

that fRi = (L+ 1)loge2 fR̃i(Ri,r(L+ 1)loge2), we have the following result:

Corollary 5.1.1. For ωi = px
Ndmi−1,i

, the probability density function of Ri,r is given by

fRi =
(L+ 1)2(L+1)Ri,r loge2

ωxi

2(L+1)Ri,r∫
1

ψ1∫
1

· · ·
ψx−2∫
1

f unord
HH†

(
2(L+1)Ri,r − ψ1

ωiψ1
,
ψ1 − ψ2

ωiψ2
, · · · , ψx−1 − 1

ωi

)
x−1∏
j=1

1

ψj
dψ.

Combining Corollary 5.1.1 with (5.11), we can immediately derive the outage probability:

Corollary 5.1.2. The legitimate outage probability of our system for a targeted secrecy

rate of RT is given by:

Pout = 1−
L+1∏
i=1

(1−Pout,i),

where Pout,i =
∫RT

0 fRi(x)dx and fRi(.) is given by Corollary 5.1.1.

Finally we consider the diversity order of the system, which was defined in (2.21) of

Section 2.2.2.6 as:

d , − lim
px→∞

loge[Pe(px)]

loge(px)
, (5.25)

where Pe is the ML probability of detection error. As in [62], we will exploit the fact

that the ML probability is tightly bounded by the outage probability for the high SNR

regime.
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To begin, we let λ̂i denote the largest eigenvalue of Hi−1,iH
†
i−1,i and use the definition

of Ri,r from (5.5) to derive the following bounds:

B =
1

L+ 1
loge(1 +

pxλ̂i
Ndmi−1,i

) ≤ Ri,r ≤
x

L+ 1
loge(1 +

pxλ̂i
Ndmi−1,i

) = B̄, (5.26)

from which it follows that the outage probability Pout,i is also bounded as

Pr(B̄ < RT) = Pr

(
λ̂i <

2
L+1
x RT−1
ωi

)
≤ Pout,i ≤ Pr(B < RT) = Pr

(
λ̂i <

2(L+1)RT−1
ωi

)
.

In [39, Lemma 2] it was shown that limpx→∞
loge Pr

(
λ̂i≤ τ

px

)
loge px

= N2. Since ωi = px
Ndmi−1,i

,

letting τ = Ndmi−1,i

(
2
L+1
x
RT − 1

)
and τ = Ndmi−1,i

(
2L+1RT − 1

)
gives:

lim
px→∞

loge Pr
(
B̄ < RT

)
loge px

= lim
px→∞

loge Pr (B < RT)

loge px
= N2 =⇒ lim

px→∞

loge Pout,i

loge px
= N2.

From (5.11) we know that Pout,i ≤ Pout ≤
∑L+1

i=1 Pout,i. Therefore, using (5.25) we have

the following result:

Corollary 5.1.3. The diversity order dDF of the proposed DF protocol is given by

dDF = lim
px→∞

loge Pout

loge px

= N2.

We note that for a point-to-point N ×N MIMO channel, N2 is the maximum possible

diversity order, which demonstrates the efficacy of the proposed protocol.

5.4 Results and discussion

This section provides results to validate the theoretical conclusions of the previous sec-

tions and illustrates the secrecy rate performance of our proposed schemes. To obtain

these results we use the following measurements, referring back to Section 5.2 and Fig.

5.1. We fix the distances di−1,i as 5 for all 1 ≤ i ≤ L + 1, while the distance between

the nth and mth nodes, dn,m, is set as dn,m =
∑m−1

l=n dl,l+1. The perpendicular dis-

tance, dEy, from E to the line of legitimate nodes is set to be 5, while dEx is set as

10 which means the distances between the eavesdropper and the nth node are given by

dn,E =
√
d2Ey − (

∑n−1
l=0 dl,l+1 − dEx)2. We also fix the path loss exponent to m = 2.

In Fig. 5.2 we plot the ergodic, E [Ri,r], and secrecy, E [max {(Ri,r −RE) , 0}], rates

for the ith node, as well as the ergodic rate at the eavesdropper, E [RE ]. We assume a
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Figure 5.2: Transmit SNR, px, versus ergodic and secrecy rates at the ith node and E
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Figure 5.3: Transmit SNR, px, versus secrecy outage probability

fixed number of antennas N = NE = 5, x = 1 and consider the system with four hops

(L = 3) and seven hops (L = 6) separately. As stated in Section 5.3, E [RE ] becomes

constant for high SNR, while E [Ri,r] increases rapidly, even when we are using just a

single antenna. This justifies our conclusion that RE (5.9) can be ignored for the high

SNR regime. Also, as predicted, having more legitimate nodes reduces the rate, E [RE ],

due to the increased number of artificial noise signals contributed to the system. The

legitimate rate also decreases with L, which is explained by the factor 1
L+1 in (5.5).

We now investigate the secrecy outage probability using Corollary 5.1.2 for the targeted

secrecy rate RT = 1 bps/Hz and L + 1 = 4 hops. We can see from Fig. 5.3 that the

secrecy outage probability decreases as more antennas are used, which is as we would

expect given the benefits of diversity outlined in Section 1.1.1.1. In fact since we have
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Figure 5.4: Outage probability for different numbers of hops.

used a logarithmic scale, (5.25) implies that the slope of the secrecy outage probability

should be proportional to the diversity order. This slope in Fig. 5.3 is clearly steeper for

greater values of N which agrees with the diversity order of N2 found in Corollary 5.1.3.

On the other hand, Fig. 5.4 shows the relationship between the legitimate outage prob-

ability Pout and the number of hops, L+ 1. In this case we set RT = 2 bsp/Hz, x = 2

and N = NE = 4, (note that the slope of the curves in relation to N further validates

the diversity order). We notice that when L increases, the legitimate outage probability

increases, which is contrary to what we might expect. However, this is accounted for by

the increased distance (and hence fading) incurred by adding nodes with a fixed sepa-

ration of 5 between the source and destination. Therefore the results do not disagree

with our analysis, which is demonstrated by the fact that the simulation and theoretical

results align perfectly.

Finally, in Fig. 5.5 we look at the relationship between the legitimate outage probability

Pout as defined in (5.11) and the number of antennas N (note that (5.11) is independent

of NE). Here we have fixed RT = 1.2 bps/Hz, x = 1 and L = 3. Again it is clear that

the theoretical and simulation results agree with a high degree of accuracy and that the

slope of the curves increases with N , which validates the analysis in Section 5.3.

5.5 Summary

This chapter has been dedicated to analysing the performance of the secrecy commu-

nication for a wireless MIMO multi-hop relay network, with the aim of quantifying the

benefits of using multiple antenna and physical layer security techniques outlined in
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Figure 5.5: Legitimate outage probability for the DF protocol with different N.

Chapter 1. We have considered a scenario in which the relay nodes employ a decode-

and-forward (DF) protocol which exploits the diversity of the MIMO channel through

the use of interference alignment. In order to analyse the outage probability of the sys-

tem we provided a result on the joint pdf of the kth largest eigenvalues of the complex

Wishart matrices HH†, where H is the type of Gaussian matrix introduced in Section

2.3.1. This result enabled us to compute the legitimate outage probability of the pro-

posed protocol and measure the effect of increasing the number of relays and antennas

of the system. We also provided the diversity order of the proposed DF protocol, which

has been verified by our results.



Chapter 6

Low Complexity Power

Allocation Optimization in

Massive MIMO NOMA

The previous two chapters focused on the performance analysis of secure transmissions

in scenarios where eavesdroppers attempted to intercept the message. For the first sce-

nario we considered multiple-input single-output (MISO) channels, while in the second

we focused on multiple-input multiple-output (MIMO) channels. In each case our anal-

ysis was carried out for arrays of up to five antennas at each node. Because we were

considering the secrecy of the channel, the relevant metrics in these cases were outage

probability and outage capacity (and more specifically, secrecy outage capacity). We saw

the difficulty of computing the secrecy capacity for smaller MIMO systems and noticed

that the complexity was too great to be able to find closed form results for the secrecy

capacity; instead we had to resort to using a bisection algorithm in Chapter 4.

In this and the following chapter we wish to investigate the capacity of larger, mas-

sive MIMO channels and we no longer consider systems in which secrecy is a priority.

For such channels the relevant metric becomes the ergodic capacity, and we will see

that considering this metric for the increased number of antennas allows us to use the

asymptotic results from Chapters 2 and Chapter 3. This also means that we are able to

consider the very large-scale massive MIMO systems described in Chapter 1, for which

the complexity of capacity computation can be greatly reduced.

Motivated to consider contemporary scenarios, and inspired by the existing recent work

in [134], we chose to consider a MIMO-NOMA system, which is based on several of the

enabling technologies we described in Section 1.1.2. We aim to improve the efficiency of

100
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a power allocation algorithm proposed for this type of system in [134], using the theory

introduced in Section 2.3.3. The work in this chapter has been published in [135].

6.1 Introduction

As we saw in Sections 1.1 and 1.1.1 the demand for fast data links has increased rapidly

over the last two decades as the result of an increasing number of users and devices and

the promised capabilities of fifth generation (5G) and sixth generation (6G) technologies.

Moreover, there is a need for adaptable and scalable technologies to meet the diverse

requirements of the internet of things (IoT). Today’s networks must be able to support

increased multi-terabyte per second data traffic, while maintaining a high quality of

service in terms of security, reliability and delay [136].

In Sections 1.1.1.1 we described the use of MIMO technology in facilitating the increase

in spectral efficiency (SE) seen between third and fourth generation mobile networks [13],

while in Section 1.1.2.1 we went on to show how to exploit this spatial diversity effect

further through the use of even more antennas. This ‘massive MIMO’ (MM) technology

is often cited as one of the most promising ways of achieving fifth and sixth generation

goals and this claim is evinced by the large-scale production and shipment of massive

MIMO devices by Ericsson, Huawei and Nokia in 2019 [19, 136].

Some of the challenges faced with the introduction of new technologies include how to

model and analyse the performance of the types of channels involved, which we described

in Sections 1.2.1 and 1.2.2. We explained the importance of these issues in predicting

the efficacy of different design approaches before implementing them in practice. In

particular, the rate optimisation of any wireless network can be carried out without

experimental overheads if we are able to accurately estimate the theoretical capacity of

its channels using appropriate models. Again, the analytical tools required depend on

the nature of the system in question and the appropriate metric to investigate. While

we were able to address the outage probability of MIMO systems which used a relatively

small number of antennas at each node, using standard probability, we explained in

Section 2.3 that the complexity of such traditional techniques increases exponentially

with the size of the arrays. We introduced a result from the early works of Foschini

[9, 76] and Telatar [56] on the application of the limiting distributions of the eigenvalues

of a random matrix to compute the asymptotic capacity of Gaussian MIMO channels in

(2.27) of Section 2.3.3. The significance of this work has resurfaced in recent years with

the introduction of MM, due to the very large random matrices involved, and the use of

asymptotic eigenvalue distributions (AEDs) in the capacity analysis of a wider class of

MIMO channel matrices has become widespread [79–81].
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We also introduced another method for enhancing capacity in Section 1.1.2.8 which

involves sharing spectrum more effectively; non-orthogonal multiple access (NOMA) is

an emerging technology that shows promise in this area. Recall that traditional NOMA

uses the power domain to discriminate between signals. Unlike orthogonal multiple

access (OMA) methods, such as time and frequency division multiple access (TDMA

and FDMA), which split the respective resources (spectrum and time) into ‘orthogonal’

frequency bands and time slots, NOMA serves multiple users in a single resource block

(band or slot), thus enabling massive connectivity. This, along with the mitigating

effect of using successive interference cancellation (SIC) to remove unwanted signals and

improve the signal-to-interference-plus-noise ratio (SINR), results in increased capacity

[137]. Some of the benefits of NOMA that we mentioned are that it is considered fairer

than alternative multiple access schemes because it prioritizes the experience of cell-edge

users with weaker channel connections, and that it reduces average latency compared to

OMA since users do not have to wait for specific slots [44].

In Section 1.1.2.8 we mentioned that NOMA was featured in the 3GPP-LTE-A standard

due to early results demonstrating its potential. In addition to this, it was proposed

for inclusion in the 5G New Radio (NR) [40]. Ultimately, however, NOMA was not

included in 5G NR as a work-item, but was earmarked for use beyond 5G because the

capacity benefits were considered to be outweighed by the implementation complexity

[138, 139]. With this in mind, and knowing the advantages that could be achieved if

these issues were overcome, we are motivated to increase the capacity benefits in relation

to the complexity in order to make NOMA a viable option. Given the clear link between

MIMO and capacity, the use of massive antenna arrays in NOMA systems is an obvious

strategy for achieving this goal.

Several works exist by authors who have reached this same conclusion. For example, for

the multi-user NOMA case, in which the base station is equipped with multi-antenna

arrays while the user devices have a single antenna, [140] compares some user-pairing al-

gorithms and investigates a new method for maximizing throughput. Moreover, in [134]

the authors demonstrate the superior capacity of MIMO-NOMA over MIMO-OMA for

communication between a multi-antenna receiver and clusters of multi-antenna destina-

tions. This is extended to massive-MIMO NOMA (MM-NOMA) in [141], which shows

that a non-regenerative relay system where the base station is equipped with up to 500

antennas, outperforms a traditional MIMO-NOMA arrangement.

Motivated by the existing results, and with the aim of reducing the necessary comput-

ing power, we introduce a low-complexity amendment to an existing power allocation

algorithm for the case of a power-domain, two-user NOMA system in which MM arrays

are employed at all nodes. We assume, as explained in Section 1.1.2.8, that signals
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can be separated using superposition coding (SC) at the transmitter and SIC at the

receiver. However, with regard to the channel state information (CSI) conditions out-

lined in Section 2.2.3, we do not make the typical assumption that the transmitter has

access to full CSI. Instead, we assume that the transmitter is only able to access in-

formation regarding the type of distribution of the channel, which is a generalisation

that has been largely unaddressed in existing work. We aim to maximise the overall

ergodic capacity of this system subject to power and rate constraints. This non-convex

optimisation problem was addressed for the case of small-scale MIMO by implementing

a suboptimal algorithm and comparing it to the optimal bisection method in [142]. The

method and results given in this chapter extend that work to consider arbitrarily large

MM arrays using Telatar’s method of asymptotic capacity computation as introduced

in Section 2.3.3. We will demonstrate that it is possible to reduce the complexity of

the bisection method further than the suboptimal method the authors proposed in [142]

and without the consequent loss of optimality imposed by that algorithm. To the best

of our knowledge, this approach has not previously been considered for application to

this scenario. Note that it is straightforward to generalise the results for the system

considered to include an arbitrary number of users. However, we will demonstrate the

result for two users for ease of comparison with [142].

6.2 System model

The system model under consideration is outlined in Fig. 6.1, which depicts an open-

loop MIMO scenario in which a source, S, transmits data to two users, user 1 and

user 2, simultaneously. The source is equipped with NS transmit antennas while user

k (k ∈ {1, 2}) receives using Nk antennas. We denote the signal vectors intended for

each respective user by x1 and x2. The proportion of the available power allocated to

each transmit antenna is determined by the covariance matrix for each user’s signal,

Qxx1 ,Qxx2 ∈ CNS×NS . These matrices are part of the signal encoding process at the

source which we introduced in Section 2.1.1. As we have stated, we are assuming for

this system that the transmitter does not have access to full CSIT but only statistical

information about the channel. That means the source is aware of the mean and variance

over time of the entries of the matrices modelling the channels between itself and each of

the users, but not of their exact values. As a result, it is not possible to design the power

allocation matrices using the water-filling algorithm described in Section 2.2.3.1. Instead

we are closer to the scenario described in Section 2.2.3.5, where we explained that the

optimal transmission protocol for a point to point MIMO channel involves splitting the

transmit power for each user’s respective signal equally per antenna. This result was

generalized for the two-user NOMA case in [142, Lemma 2], which demonstrates that
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Figure 6.1: Broadcast MM-NOMA system model using SIC.

dividing the power allocated to each user equally across the source’s antennas results in

optimal performance. Therefore, for the remainder of this chapter we will consider the

case where the diagonal entries of each covariance matrix Qxxk are all equal, while the

remaining entries are all zero. When it comes to capacity equations, this means we can

replace each instance of the channel covariance matrix Qxxk with the constant scalar

pk =
Tr(Qxxk

)

NS
, as in (2.23) from Section 2.2.3.5, which represents the power allocated to

the desired signal of user i per antenna at the source. Therefore, NSpk
pmax

is the proportion

of the overall transmit power, pmax, allocated to user k.

In our system model, we take user 1 and user 2 to be the ‘weak user’ and ‘strong user’,

respectively, where the strong user is the one with the greatest average channel gains.

This is where having knowledge of the statistical CSI comes in. The source would be

able to make the distinction between weak and strong users due to the assumption that

it has information on the distribution of the channel, including the average gains of each

user. This situation would be likely to occur, for example, if S was a base station and

user 1 and user 2 were located at the cell-edge and near the centre of the cell respectively,

so that the signal for user 1 had to travel further and experienced greater deterioration

due to fading.

We make the same assumptions as in [142] and previous chapters, and consider the

channels between the source and user i to be modelled as flat Rayleigh fading channels.

As discussed in Chapter 2, Rayleigh fading is a realistic assumption for the case of built-

up urban environments, where many scattering objects and buildings are likely to be

present and there is unlikely to be a dominant LOS path between the transmitter and

receiver. As we have seen, such channels can be modelled respectively as the random

matrices Hk for k ∈ {1, 2} which take realisations, Hk(θ), with complex valued entries,

h
(k)
ji (θ) distributed as CN (0, σ2Hk

). The variance σ2Hk
corresponds to the channel gain,
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which depends on a number of variables according to the environment. A common

assumption is to set σ2Hk
= Nk

dmk
, where dk is the distance from S to user k and m is the

path-loss exponent, as in Chapter 5 and [143]. As in previous chapters, entry h
(k)
ji (θ)

represents the channel gain between the ith transmit antenna of S and the jth receive

antenna of user k at time θ. For the remainder of the chapter, we will suppress the use

of θ in our equations for the sake of brevity.

The received signals, y1 and y2, at user 1 and user 2 respectively, are expressed in [142]

as:

y1 =
√
p1 H1x1 +

√
p2 H1x2 + n1,

y2 =
√
p1 H2x1 +

√
p2 H2x2 + n2,

where xk is the NS × 1 random vector of the transmitted signal intended for user k,

and yk is the Nk × 1 random vector of the signal received by user k. We assume that

σ2H1
< σ2H2

because user 1 is the weak user. In this model, the Nk × 1 random vectors

nk ∼ CN (0, INk) model the additive white Gaussian noise across the corresponding

channels which has been normalised so that σ2n = 1. In our work we will alter the above

expressions by using the fact that for each k ∈ {1, 2}, we have Hk = σHk
Hζk where each

entry [Hζk ]j,i of the Nk × NS matrix, Hζk , is distributed as CN (0, 1
Nk

) and we define

ζ = NS
Nk

. This gives us the receive signals

y1 =
√
p1σ2H1

Hζ1x1 +
√
p2σ2H2

Hζ2x2 + n1, (6.1)

y2 =
√
p1σ2H2

Hζ1x1 +
√
p2σ2H2

Hζ2x2 + n2, (6.2)

which satisfy the normalisation property described in Case iv of Table 2.1 from Sec-

tion 2.2.1. Given that the noise vectors nk are normalised this allows us to see the

signal-to-noise ratios (SNR) of the desired and undesired signals received by each user

explicitly as the combination of the allocated powers and channel gains summarised in

Table 6.1, where we have used (2.14) from Section 2.2.1 and note that ‖Hζk‖
2
F = NS.

To reiterate the points made in Section 1.1.2.8, it is the usual convention in NOMA

transmission for both signals, x1 and x2 to occupy the same frequency and time slot,

while their signals are multiplexed by using different transmission powers, NSpk, for each

user’s signal. Since we are using power-domain NOMA, it is the difference between the

values of p1 and p2 which enable the relevant user to decode its own message. Because

the weaker user is allocated more power, it is able to decode the message by treating

the interference from the other user’s signal as noise.
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Table 6.1: SNR of signals received at users

x1 x2

user 1

p1σ
2
H1
NS

(desired)

p2σ
2
H1
NS

(undesired)

user 2

p1σ
2
H2
NS

(undesired)

p2σ
2
H2
NS

(desired)

We define C1 and C2 as the capacities of user 1 and user 2 respectively and set a minimum

rate constraint of C1 > R0, which guarantees a minimum quality of service for both the

weak and strong users. The weak user decodes its own signal, x1, while interpreting

the interference caused by x2 as noise, as we described in Section 1.1.2.8. Recall the

definition of ergodic capacity from (2.17) in Section 2.2.2.2 and remember that user 1,

which is not performing SIC, must treat the interference of user 2’s signal as noise.

C1 = EHζ1

[
log2

∣∣∣∣∣
(
IN1 + p2σ

2
H1

Xζ1

)
+ p1σ

2
H1

Xζ1

IN1 + p2σ2H1
Xζk

∣∣∣∣∣
]

= EHζ1

[
log2

∣∣∣IN1 +
(
IN1 + p2σ

2
H1

Xζ1

)−1
p1σ

2
H1

Xζ1

∣∣∣] . (6.3)

On the other hand, at user 2 there is no interference to consider because this user

performs SIC to remove user 1’s signal. Moreover, recall that the noise across the

channel has been normalised. It follows from Section 2.2.2.2 that the channel capacity

for communicating user 2’s desired signal is given by

C2 = EHζ2

[
log2

∣∣IN2 + p2σ
2
H2

Xζ2

∣∣] . (6.4)

We note that in order for the NOMA transmission to be viable we must have successful

SIC detection, that is, the strong user must be able to decode the weak user’s message

and subtract it from the overall signal in order to decode its own message. This is

guaranteed when the SINR of the weak user’s signal is smaller at the weak user than it

is at the strong user [31], so that the rate, R1, of user 1 satisfies:

R1 ≤ log2

∣∣∣IN2 +
(
IN2 + p2σ

2
H2

Xζ2

)−1
p1σ

2
H2

Xζ2

∣∣∣ . (6.5)
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But this is safe to assume in our model because by the definition of capacity as the

maximum rate across the channel and (6.3) we have:

R1 ≤ C1

= EHζ1

[
log2

∣∣IN1 + (p1 + p2)σ
2
H1

Xζ1

∣∣]
− EHζ1

[
log2

∣∣IN1 + p2σ
2
H1

Xζ1

∣∣]
≤ EHζ2

[
log2

∣∣IN2 + (p1 + p2)σ
2
H2

Xζ2

∣∣]
− EHζ2

[
log2

∣∣IN2 + p2σ
2
H2

Xζ2

∣∣]
= EHζ2

[
log2

∣∣∣IN2 +
(
IN2 + p2σ

2
H2

Xζ2

)−1
p1σ

2
H2

Xζ2

∣∣∣]
as required, where the inequality holds because σ2H1

< σ2H2
, ‖Hζk‖

2
F = NS for k ∈ {1, 2},

and the capacity of any realisation of the channel is going to be close to the value

of its expectation by the channel hardening property described for massive arrays in

Section 2.3.4.

6.3 Optimization problem

The optimisation problem of maximising the combined capacity of the two users, subject

to power and minimum rate constraints, can be formulated as:

max
p1,p2≥0

C1(p1, p2) + C2(p2),

s.t.
C1(p1, p2) ≥ R0

(p1 + p2)NS ≤ pmax,

(6.6)

where pmax denotes the total available power at the source, R0 is the minimum capacity

required for reasonable performance at the weak user and C1(p1, p2) and C2(p2) refer to

the capacities defined in (6.3) and (6.4) respectively, written in terms of the optimisation

variables p1 and p2.

In [142] the authors develop an optimal and suboptimal method of solving the problem.

Since the function C1 + C2 increases with p2, the optimal solution is on the boundary

of the feasible region. In particular, it occurs when p1 is as small as possible while

ensuring that C1 > R0. This p1 can be found using repeated bisection as shown in

Table 6.2, where ε is reduced for greater precision. The suboptimal method relies on an

approximation of C1 and is successful for MIMO systems with NS, Nk ≤ 4. However,

the optimality of the results using this method deteriorates as the numbers of antennas

at each end of the communication link increase.
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Table 6.2: Optimal bisection algorithm‡

Initialize p2,min = 0, p2,max = pmax
while p2,max - p2,min > ε do
Set p*2 = (p2,min + p2,max)/2,

p*1 = pmax - p*2.

Calculate C1(p
*
1,p

*
2).

If C1(p
*
1,p

*
2)< R0, set p2,max = p*2;

Else, set p2,min = p*2.

end while

Output: p1 = p*1, p2 = p*2.
‡ pmax in the algorithm is set equal to pmax/NS as per (6.6).

In our work, we demonstrate how to reduce the complexity of the optimal bisection

method by computing C1 using the asymptotic eigenvalue distribution of the channel

matrices, thus improving the accuracy of the optimisation for MM-NOMA systems.

6.4 Theory

In this section we will make use of the asymptotic results described in Section 2.3.1. In

particular we recall and reiterate Telatar’s capacity result from (2.27) of Section 2.3.3

and apply it to the relevant channel matrices from our current system model. We

have written our capacity equations in terms of the NS ×Nk random channel matrices,

Hζk , where the limit of the ratio NS
Nk

is ζk as both NS and Nk tend to infinity, and

Xζk = HζkH
†
ζk

. As we saw in Section 2.3.3, when the entries of Hζk conform to certain

distribution rules and α is a scalar, a ‘log-det’ expression, 1
Nk

log2 |INk + αXζk | can be

expressed in terms of the AED, fXζk
(x), of Xζk . Using this result, the capacity of a

channel modeled as Hζk can then be written in terms of the AED of Xζk as [74]:

CAsyαXζ)k
= Nk

 lim
NS,Nk→∞
NS
Nk
→ζk

1

Nk
log2 |INk + αXζk |



= Nk

 lim
NS,Nk→∞
NS
Nk
→ζk

1

Nk

Nk∑
i=1

log2

(
1 + αλXζk

(i)
)

= Nk

∫ ∞
0

log2 (1 + αx) fXζk
(x) dx, (6.7)

where λXζk
(i) is the ith eigenvalue of Xζk .
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The matrices Xζk are Wishart matrices, and because the matrices, Hζk , are modelled as

having entries distributed as CN
(

0, 1
Nk

)
, and we can make use of the Marçenko-Pasteur

result given in Theorem 2.2 in Section 2.3.2.2. We restate the theorem here in terms of

our matrices Xζk :

Theorem 1. The AED of Xζ = HζH
†
ζk

as NS, Nk → ∞ and NS
Nk
→ ζk, where Hζk is

a standard Gaussian random matrix with entries distributed as CN
(

0, 1
Nk

)
, is given by

the Marçenko-Pasteur distribution [74]:

fXζk
(x) =

√
(x− a)+ (b− x)+

2πx
+ (1− ζk)+ δ(x), (6.8)

where a =
(
1−
√
ζk
)2

, b =
(
1 +
√
ζk
)2

, (z)+ = max(0, z) and δ(x) is the Dirac-delta

function given in (3.2) from Section 3.1.1.

It follows that to find C1 and C2 in closed form, we can apply (6.7) to obtain:

C1 = log2 |IN1 + c1Xζ1 | − log2 |IN1 + c2Xζ1 |

= CAsyc1Xζ1
− CAsyc2Xζ1

=

∫ ∞
0

log2

(
1 + c1x

1 + c2x

)fXζ1 (x)
dx

= log2

eQ(c2,ζ1)
c2 (1 + c1 −Q (c1, ζ1))

ζ1(1 + c1ζ1 −Q (c1, ζ1))

e
Q(c1,ζ1)

c1 (1 + c2 −Q (c2, ζ1))
ζ1(1 + c2ζ1 −Q (c2, ζ1))

 (6.9)

C2 = CAsyc3Xζ2

=

∫ ∞
0

log2 (1 + c3x) fXζ2
(x)

= log2

(
(1 + c3 −Q (c3, ζ2))

ζ2 (1 + c3ζ2 −Q (c3, ζ2))

e
Q(c3,ζ2)

c3

)
, (6.10)

where c1 = (p1 + p2)σ
2
H1

, c2 = p2σ
2
H1

, c3 = p2σ
2
H2

, fXζk
(x) is given by (6.8) and, for

notational convenience, we have set:

Q (cρ, ζq) =
1

4

(√
cρ

(
1 +

√
ζq

)2
+ 1−

√
cρ

(
1−

√
ζq

)2
+ 1

)2

.
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This closed form result has been derived from the work of Verdù and Shamai in [103,

Equations 9, 95-100], which uses the fact that:

CAsyαXζk
= Nk

 lim
NS,Nk→∞
NS
Nk
→ζk

1

Nk

NS∑
t=1

log2
1[

INk + αX
(t)
ζk

]−1
tt



= Nk

 lim
NS,Nk→∞
NS
Nk
→ζk

1

Nk

NS∑
t=1

log2

(
1 + α−Q

(
α,

tζ

NS

))
= Nk

(
1

Nk

∫ 1

0
log2 (1 + α−Q (α, yζ))

)
dy

=
1

ζ

∫ ζ

0
log2 (1 + α−Q (α, z)) dz.

6.5 Results and discussion

In this section we compare: (i) the bisection algorithm described in [142], which relies

on the traditional method of capacity computation given in (6.3) and (6.4) and finds

the optimal power allocation, (ii) the suboptimal algorithm also derived in [142] which

omits the need for repeated bisections but still relies on computing the expectation over

multiple realisations of the determinant of a matrix, and (iii) the bisection method using

our asymptotic capacity equations (6.9) and (6.10) in place of the traditional method.

For the sake of simplicity, we fix NS = Nk = N in our results.

Fig. 6.2 plots the total available power pmax against the maximised sum of the ergodic

capacities of the two users obtained using (6.6), which we shall denote by Cmax. We

fixed σ2H1
=20 dB, σ2H2

=5 dB and R0=2 bps/Hz. Both the asymptotic and suboptimal

methods appear to achieve very close to optimal performance for smaller MIMO arrays of

4× 4 antennas, however, as we increase the number of antennas the suboptimal method

becomes less efficient. On the other hand, the asymptotic approach is able to match

the optimal result perfectly regardless of the array size. The suboptimal result is also

shown to be less accurate for systems with low power availability, while the asymptotic

approach is unaffected.

Fig. 6.3 plots the minimum rate requirement of the weak user against Cmax with σ2H1
=

20 dB, σ2H2
= 1 dB, pmax = 4W for various antenna array sizes. The range of values

of R0 is restricted by the assumption given in (6.5), however for larger MIMO arrays

this restriction is reduced. We see that the asymptotic approach is optimal for any

rate restraint whereas the suboptimal method deteriorates significantly when the rate
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Figure 6.3: Sum-capacity vs minimum rate of weak user

requirement of the weak user increases. The degree of the deterioration of the suboptimal

method also increases with N .

Fig. 6.4 plots the channel gain of the weak user against Cmax, for σ2H1
= 20 dB,

pmax = 4W, R0 = 2 bps/Hz and various antenna array sizes. Again, the performance of

the suboptimal method suffers for larger antenna arrays, most significantly in the case

where the channel gain of the weak user is very small compared to that of the strong

user, σ2H1
<< σ2H2

, which could happen when the strong user was very near to the

base station while the weak user was very remote, when there were significantly more

antennas at the strong user, or in a scenario combining these two factors. As before, the

asymptotic approach remains accurate in all cases.
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Figure 6.4: Sum-capacity vs channel gain of weak user

Next we consider the computational complexity, which depends on the number of an-

tennas (for which we will consider the case where NS 6= N), the number of iterations

used to compute the expectations involved in the optimal and suboptimal methods,M,

and the number of bisections, T , required for the optimal and asymptotic methods.

The optimal bisection method is the most complex. It involves looping through the

computation T times and computing C1 M times in each loop to find the expectation.

The complexity order of calculating C1 is O(N !) since the most complex operation is

taking the determinant of the N×N matrix
[
IN + (IN + (p2H1H

†
1)
−1)p1H1H

†
1

]
in (6.3)

(recall that Hk ∈ CN×NS). The overall complexity order of this method is O(MT N !),

where we note that increasing NS does increase the complexity, but the complexity order

is dominated by N .

In comparison the asymptotic approach also loops over the capacity computation T times

but computes the capacity using the closed form in (6.9), for which the complexity is

invariant with respect to NS, N , M and T , thus the overall complexity order of this

method is O(T ).

Finally, the complexity of the suboptimal approach does not require looping through

T bisections, however it still involves computing the expectation over M iterations of

a computation involving the determinant of an N × N matrix, thus it has complexity

order O(MN !).

We note that the complexity order of the determinant computation can be reduced

from O(N !) to as little as O(N2.81) using the methods in [144][Theorem 6.6]. However,

the implementation of these methods is beyond the scope of this work. We have used



Chapter 6. Low Complexity Optimization of NOMA Systems 113

Number of transmit and receive antennas, N
50 100 150 200 250

T
im

e
C
o
m
p
le
x
it
y
(s
)

10−5

10−4

10−3

10−2

10−1

100

Optimal PA

Suboptimal PA

Asymptotic PA

Figure 6.5: Time complexity of power allocation algorithms

the Matlab function det, which relies on the LU decomposition method for calculat-

ing the determinant and has complexity order O(N3), which gives complexity orders

O(MT N3), O(T ) and O(MN3) for the respective methods.

We compare the time complexity of the three approaches for increasingly large antenna

arrays in Fig. 6.5. Note that we fixed M=10 for the expectation calculations. Experi-

mentation demonstrated that accurate results for the considered range of N are observed

if the number of bisections is at least T = 13 for ε = 0.001 (ε is used in Table 6.2). With

M and T fixed, the complexity of the optimal and suboptimal methods depends only on

the number of antennas, as is corroborated by Fig. 6.5. In agreement with our calcula-

tions, the complexity of the asymptotic approach remains constant regardless of the size

of the antenna array. These time complexity results were computed using a MacBook

Pro with a 2.9 GHz Intel Core i5 processor.

6.6 Summary

The main contributions made in this chapter can be summarised as follows. We have

used the asymptotic analysis results introduced in Chapters 2 and 3 to extend the

results of [142] and have demonstrated how best to allocate power resources to achieve

optimal sum-capacity for an MM-NOMA system. With the help of these results we have

provided closed form solutions for the capacities of the relevant channels allowing for

different numbers of antennas at each user. We have demonstrated that combining this

approach with a bisection algorithm results in optimal power allocation for arbitrarily

large antenna arrays while the accuracy of the suboptimal method of [142] decreases
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significantly with size for arrays larger than 4 × 4. Furthermore, we provided evidence

of the deterioration of the suboptimal method when it is subjected to the following

scenarios:

• low total power availability

• a high minimum rate requirement at the weak user

• significant differences between the channel gains of the users.

The asymptotic method combined with the bisection algorithm, on the other hand,

agrees with the optimal method and is unaffected by these changes. Finally, we have

demonstrated that the complexity of the bisection algorithm is lower than that of the

optimal and suboptimal approaches when we incorporate the asymptotic solution, re-

gardless of the number of antennas we use at each node. We conclude that the proposed

power optimisation method is superior for MM-NOMA.

Motivated by the low complexity of the results we discovered in this work, and with

the hope of applying our more advanced analysis from Chapter 3, we will now turn

to a system model where the channel matrices take a less straightforward form. As a

consequence, the following chapter makes use of some of the results we have seen in

this chapter, but combines them with the linearisation and subordination methods we

saw in Sections 3.2.1.1 and 3.2.1.2 of Chapter 3 respectively to analyse the capacity of

a two-hop, massive MIMO, multi-relay system.



Chapter 7

Capacity of Multi-Relay Systems

Using Free Probability

We have now considered a number of wireless communication systems for which mod-

elling the channels as random matrices has enabled us to design transmission protocols

and analyse performance using the methods and metrics outlined in Chapter 2. In

the previous chapter we looked into the asymptotic capacity of massive multiple-input

multiple-output (MIMO) channels for the first time. It was possible to analyse the

channels considered using the asymptotic results from Section 2.3, because the matrices

involved were modelled by simple Gaussian matrices. In this chapter, on the other hand,

we introduce a system model which cannot be analysed using these traditional methods

and instead requires the use of methods from free probability theory (FPT), which were

introduced in Chapter 3. The results of this chapter were given in part in [81] and pre-

sented at the IEEE Vehicular Technology Conference in April 2019. They were used to

analyse a two-user relay system, with a single source and destination node. This chapter

extends our research in the area and considers a more generalized version of the system.

Specifically, the contributions of this research to the area of massive MIMO performance

analysis are as follows:

• An FPT-based method for computing the asymptotic capacity across a two-hop,

half-duplex relay system is described.

• We consider the case where the relays work in decode-and-forward mode and apply

a maximum ratio transmission protocol in the second hop.

• The proposed FPT-based method can be applied to generalized systems in which:

– An arbitrary number of relays are in use.

115
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– Arbitrarily large antenna arrays are employed at different nodes, provided

that the relays each have the same number of antennas and there are fewer

transmit than receive antennas for any given channel.

– The receive antennas at the destination are located on an arbitrary number

of IoT devices.

– Asymmetric characteristics, such as distance, type of fading, independence

and correlation, exist between channels in the second hop.

• We verify the accuracy of the method by comparison with traditional methods.

• We investigate the effect on capacity and accuracy of changing: the distance pa-

rameters, the number of relays, the number of antennas and the ratio of transmit

to receive antennas.

• We compute the overall capacity of the relay system for massive MIMO channels

larger than 128 × 128 in dimension, which, to our knowledge, has not been done

previously.

• The computational complexity of the proposed method is analysed and compared

to that of the ‘brute force’ approach, which is based on numerical computation.

The remainder of the Chapter is structured as follows. In Section 7.1 we provide mo-

tivation for the work and a brief recap of the results from previous chapters that will

be used. In Section 7.2 we introduce the system model and describe the applications

it represents. Section 7.3 describes our proposed method for the efficient derivation of

the asymptotic capacity of our model. Our theoretical results are compared with re-

sults obtained via numerical computation in Section 7.4 and we compare the complexity

of the proposed method with that of using the traditional ‘brute force’ approach. In

Section 7.5, we summarise our findings.

7.1 Introduction

As in the previous chapter, the main motivation for this work is the increasing demand for

rapid data transfer in modern wireless communications described in [136]. In particular,

we seek to address the challenges incurred when analysing the performance of the new

wireless channels that arise as a consequence of utilising the massive MIMO (MM)

technology, described in Section 1.1.2.1, which can facilitate this demand [19]. We

described the primary issues faced in this area in Section 1.2 and went on to detail

the more specific issues in Section 2.4. In particular, we considered the impact on
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computational complexity of using the large numbers of antennas that constitute MM.

With an increase in this number, the dimensions of the matrix modelling the channel

increases in turn, which means that implementing the formulae given in Section 2.2.2 to

compute the various metrics for MM systems becomes infeasible. This difficulty provided

the incentive for introducing the asymptotic capacity in Section 2.3.3, with which we

were able to successfully analyse the MM-NOMA system of the previous chapter.

Unfortunately, computation of the asymptotic capacity is not so easy when we consider

the less straightforward channels necessitated by the versatility of the internet of things

(IoT), which incorporates a diverse range of channel characteristics. This is because

computing the asymptotic capacity relies on us knowing the asymptotic eigenvalue dis-

tribution (AED) of the channel matrix. Eigenvalue distributions have been central to the

study of random matrix theory (RMT) since the discipline was conceived, and asymp-

totic results exist for several classes of random matrices [73, 74] including the Wishart

matrices considered in Chapter 6. However, these classes are fairly restrictive and do not

allow for the correlation, variable fading or statistical asymmetry observable in matrices

representing real-life channels. The reason for introducing the area of free probability

in Chapter 3 was to address this problem and characterise the AED of a more general

class of random matrices. FPT allows us to view the random matrix variables as sin-

gle random operators, which are viewed as elements of a non-commutative probability

space. In Section 3.1.2, we demonstrated a number of transforms which enabled us to

combine and analyse non-commutative random variables in ways that would be impos-

sible when considering their matrix forms, including Voiculescu’s work on the sum and

product of Gaussian random matrices [96, 97]. Several applications of these results to

MIMO channel analysis are given in [74] and [78]. In [107] FPT is used to include rows

of a channel matrix corresponding to weaker links, which would otherwise have been

discarded, to improve the accuracy of capacity calculations.

As described in Section 3.2.2, the interest of telecommunications researchers in FPT

waned during the late 2000s because simpler methods were available for analysing MIMO

channels with standard dimensions (usually a maximum of 4 or 8 antennas per node).

Despite this, progress continued to be made by information theorists in the area, and

in particular ‘operator-valued’ FPT was conceived [85]. With the invent of MM, FPT

is resurfacing as an appropriate tool for analysing large channel matrices with minimal

complexity. In [79], the authors apply operator-valued FPT to find the AED of MM

channels with transmit and receive correlation and use it to calculate the asymptotic

spectral efficiency (ASE). Later, the Rayleigh product channel model for the case of

insufficient scattering was considered in [108], and the asymptotic variance of the mutual

information was computed using FPT.
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Figure 7.1: Asymmetric relay network.

Inspired by the existing work, along with our own work from previous chapters we

consider a system incorporating MM channels and multiple relay nodes, which requires

us to use the FPT results of Chapter 3, and in particular, Theorem 3.4 from [90, 100],

to determine the AED of the channel matrix and compute the capacity. Our analysis

addresses the gap in existing research for considering non-standard channel matrices and

is general enough to incorporate a wide range of scenarios.

7.2 System model and problem formulation

Consider the situation illustrated in Fig. 7.1 where a multi-antenna source, S, wishes

to wirelessly communicate a signal, s, to a single, multi-antenna destination node, D.

We assume there is no direct link due to a long separation distance. Instead, the signal

is forwarded by a number, L, of multi-antenna relays R1, · · · ,RL. Note that the relay

system considered here works in parallel, and has a single hop as opposed to the multi-

hop version considered in Chapter 5. Unless specified otherwise, we will use the subscript

i to refer to all {1, . . . , L} for the remainder of this chapter. We model the MIMO channel

from S to the ith relay as Gi while the channel from the ith relay to D is modelled as Hi,

where the random matrices Gi and Hi are described in more detail below. We assume
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that all channels are independent from each other but may have internal correlation

between antennas, as described in [79].

The communication is split into two time-slots, T1 and T2. During T1, the signal is

broadcast from the source to the relays via the channels between S and each Ri, which

cover distances gi respectively. For this hop we assume that Ri knows Gi, so that we

have perfect receive channel state information (CSIR) only, as in [79]. In T2, on the other

hand, we have a multiple-access scenario in which the signal travels from the relays to

the destination antennas via the multiple channels between Ri and D, covering distances

hi respectively. In this case we assume that relay Ri and D know Hi, so that we have

perfect transmit and receive CSI as in [59, 126, 141]. This means that the ith relay

is able to use the maximum ratio transmission (MRT) protocol, which maximises the

signal-to-noise ratio (SNR) by allocating power in the directions of the eigenvectors of Hi

using the normalized precoding matrix Qi =
H†i
‖Hi‖F

. We choose to use MRT precoding

due to the simplicity of implementation, which was described in Section 2.2.3.2. Note

that we do not make any assumptions or requirements regarding the synchronicity of

the relays. This is because our investigation concerns the capacity limits of the system,

which, as we saw in Chapter 2, depends only upon the power variance of the signal and

not its actual content. It would, however, be an interesting extension to consider the

effect on performance of including this type of constraint. The use of different protocols

in each hop is appropriate, for example, for cases in which the available resources and

priorities are different at the relay nodes than at the source. For example, in [121] two

protocols are proposed for the relays, which perform energy harvesting and are power

constrained, while a protocol is proposed in [145], which enables the relays to prioritise

secrecy. In both cases the source has a distinct transmission protocol from the relays.

In our case, as stated, we assume that the relays are power constrained.

Restriction to a specific scenario is not necessary for applying our method. For example,

a system in which information travels from a vehicle (S), to a base station (D) via L

roadside units, Ri can be modelled as the asymmetric relay network under consideration.

Alternatively, if the single, multi-antenna destination node, D, is replaced by a cluster

of single-antenna IoT devices our analysis will still apply as long as the intra-cluster

distance, that is, the distance between devices, is small relative to the distances hi. In

this instance, the IoT devices are not required to be connected with each other (as in

a centre-controlled system), provided that they are each able to communicate their CSI

to the relay. Such a system could represent information traveling from a base station

(S), to a group of small device users working in a small space such as an office (D) via

L co-operative relay stations, Ri.
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We allow S to transmit using NS antennas, D to receive using ND receive antennas and

each relay to transmit and receive using NR antennas, subject only to the restriction that

there be fewer or an equal number of input versus output antennas for each channel,

NS ≤ NR ≤ ND. Therefore, the matrices Gi ∈ CNR×NS model the gains between the

source and each relay Ri while Hi ∈ CND×NR model those between each relay Ri and

the destination. The gain between the qth transmit and pth receive antenna of each

transmit-receive pair is given by the (p, q)th entry of Gi and Hi respectively.

We assume that the total power available at the source, pS, is distributed equally between

antennas, since, as described in Section 2.2.3.5, this is optimal under the assumption

that we have no CSIT for this hop [13, 142]. Therefore, during T1 the signal s travels

from S to the L relays, and the ith relay, Ri, receives

yRi=βSi
√
pSGis + ni, (7.1)

where ni ∈ CNR×1 ∼ CN (0, σ2n) models the noise across the respective channel and βSi

denotes the signal’s attenuation due to path-loss between S and Ri. The transmitted

signal s ∈ CNS×1 is normalised so that E(s†s) = σ2s = 1 and the channel matrices

Gi ∈ CNR×NS are modelled as

s =


s1
...

sNS

 and Gi =


g
(i)
11 · · · g

(i)
1NR

...
. . .

...

g
(i)
NS1

· · · g
(i)
NSNR


respectively, where g

(i)
pq represents the gain between the qth transmit antenna of S and

the pth receive antenna of Ri.

Each relay works in half-duplex mode and employs a DF protocol, which is the same

assumption we made in Chapter 5 and is a typical model considered in contemporary

research such as [126] and [146]. Therefore, Ri decodes the received signal, then redis-

tributes the message among its antennas and transmits the new version of the signal

s̃ for the multiple-access part of the communication in T2. Again we will assume that

this signal power is normalised so that E(s̃†s̃) = σ2s̃ = 1. As previously stated, since

Hi is known to Ri, we assume that MRT precoding is performed at each relay, which

premultiplies s̃ by the normalised conjugate transpose Qi =
H†i
‖Hi‖F

. We also assume that

the ith relay transmits using its total available power pRi . The signal received by D is
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then given by:

yD = βR1

√
pR1 H1Q1s̃ + βR2

√
pR2 H2Q2s̃ + · · ·+ βRL

√
pRL HLQLs̃ + n

=

(
βR1

√
pR1

H1H
†
1

‖H1‖F
+ βR2

√
pR2

H2H
†
2

‖H2‖F
+ · · ·+ βRL

√
pRL

HLH†L
‖HL‖F

)
s̃ + n

=

L∑
i=1

(
βRi
√
pRi X(Hi

|Hi|

)
s̃ + n, (7.2)

where βRi is the attenuation between Ri and D, XHi = HiH
†
i and n ∈ CND×1 ∼ CN (0, σ2n)

is the combined noise across all the channels in T2. All noise in the system is modelled

as additive and Gaussian, as in [59, 79, 126], while attenuation is modelled according to

the relationships βSi = g−mi and βRi = h−mi between distance and path-loss, where m

denotes the path-loss exponent, as in [143] and previous chapters.

In our system model there are L routes that the data from S can travel to reach D,

depending on which relay it travels via. This gives rise to a set of distinct situations,

depending on the viability of the channels represented by Gi and Hi. We consider Ri to

be active, only if the channels that connect it to the source and the destination are both

viable. If either link cannot be established, Ri will not contribute to the communication

between S and D, so there are 2L possible combinations of active relays. We define W
as the set of indices of the active relays, so that i ∈ W if and only if Ri is active. The

received signal at D for these cases becomes:

y =
∑
i∈W

(
βRi
√
pRi XHi

‖Hi‖F

)
s̃ + n. (7.3)

For each of the 2L cases the overall system’s capacity will be limited by the bottleneck

effect to the lowest rate across any of the contributing channels. We define the individual

capacities across the channels modeled by Gi and Hi as CGi and CHi respectively. The

overall capacity across the combined channels from the active relays, Ri : i ∈ W, to

D in T2 will be denoted as CpLW
, which we shorten to CpL when all of the relays are

active. The total system capacity for general L and the specific instance where L = 2 is

summarized in each case in Table 7.1.

Knowing the capacity of the combined channels in the multiple access link in T2, will

enable us to quantify the benefits of using co-operative relays to the overall system ca-

pacity. The novelty of this work is that we allow for differences between the channel

characteristics within the multiple-access link. We refer to these differences as ‘asym-

metry’, which could arise due to varying attenuation, fading, independence, correlation,

or any other factor between the channels giving rise to channel matrices Hi with non-

identical distributions, for combinations of which it is non-straightforward to compute
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Table 7.1: Total capacity of the system for considered cases.

Case Occurs when Rate

General L
(a) All relays active min

(
mini∈{1,··· ,L} (CGi) ,CpL

)
(b) Relays Ri for i ∈ W only active min

(
mini∈W (CGi) ,CpLW

)
(c) No relays active 0

L = 2

(i) R1 and R2 active min (min (CG1 ,CG2) ,Cp2)
(ii) R1 only active min (CG1 ,CH1)
(iii) R2 only active min (CG2 ,CH2)
(iv) No relays active 0

the AED and hence the capacity. In particular, for the system with L = 2 relays, we

will compare the capacity in the optimal case (i) with those in cases (ii), (iii) and (iv)

given in Table 7.1.

Note that we refer to the ‘capacity’ across T2 because it is the maximum possible rate

given the restrictions on the power at the relays. In reality, the capacity across this time

slot could be improved by using the water-filling algorithm described in Section 2.2.3.1

as part of the precoding process, however we assume that, given the power restraint

of the relays, this is not possible, and that the maximum rate and hence ‘capacity’ is

achieved by using MRT.

7.3 Capacity analysis

7.3.1 First hop, T1

We first consider the MIMO channels described in (7.1) which have signal variance

σ2s = 1 and noise variance σ2n. Referring to table 2.1 this falls under case v, and if

we combine these normalisations with the results from Sections 2.1.1.2 and 2.2.2.2, the

ergodic capacity for the channel is given by.

CErgGi
= E

Gi

[
log2

∣∣∣∣∣INR
+
β2SipS

σ2n
GiG

†
i

∣∣∣∣∣
]

= E
Gi

[
log2

∣∣∣∣∣INR
+
β2SipS

σ2n
X†Gi

∣∣∣∣∣
]
, (7.4)

where we have defined XGi = G1G
†
1 ∈ CNr×Nr .

As we explained in Section 2.3.3, computing the ergodic capacity involves multiplying

together two matrices and taking the determinant, which are both operations that be-

come arduous when the number of antennas at each end of the channel increases, and the

dimensions of the channel matrix become correspondingly large. We will assume that
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NS and NR tend to infinity but their ratio ζG = NS
NR

is fixed and the limiting eigenvalue

distribution of XGi , as defined in 3.4 from Section 3.1.1, exists. In this case, we can use

the equation given in 2.27 of Section 2.3.3, to give the asymptotic capacity in terms of

the AED of XGi [74]:

CAsyGi
= NR

∫ ∞
0

log2

(
1 +

β2SipS

σ2n
x

)
fXGi

(x) dx, (7.5)

In Section 2.3.4 we saw that the convergence rate of the eigenvalue distribution of a

random matrix to its asymptotic limit has been demonstrated to be of the order of the

reciprocal of the number of entries in the random matrix [74], and the results of this

chapter will demonstrate this fact. Therefore, we find that for a MM channel matrix

with dimensions greater than 64 × 64, the asymptotic capacity is close enough to the

ergodic capacity to be considered deterministic.

7.3.2 Second hop, T2

To find the capacity of the multiple-access link in T2 is less trivial because we have to

account for the fact that we have multiple relays {Ri : i ∈ W} simultaneously trans-

mitting to the destination across |W| independent asymmetric channels. Moreover, our

calculations must take the precoding matrices Qi =
H†i
|Hi|F

into account. We denoted the

total capacity across these combined channels as CpLW
(where the subscript W is omit-

ted when all relays are active). Using the received signal at D given in (7.3), we see that

in order to find CpLW
using the traditional method for computing the ergodic capacity

we would need to replace βS1
√
pS G1 from (7.4) with

∑
i∈W

(
βRi
√
pRiHiHi

†) / ‖Hi‖F .

This gives rise to the computationally demanding calculation of the matrix polynomials,

pLW , where:

pLW =

(∑
i∈W

βRi
√
pRi XHi

‖Hi‖F

)(∑
i∈W

βRi
√
pRi XHi

‖Hi‖F

)†

=

∑
i∈W

β2RipRiX
2
Hi

‖Hi‖2F
+
∑
i,j∈W
i 6=j

β2Riβ
2
Rj

√
pRipRj XHiXHj

‖Hi‖F ‖Hj‖F

 . (7.6)

Let us define α′i =
βRi
√
pRi

‖Hi‖F
, then for case (i) in Table 7.1, for example, we would have

the polynomial:

p2 = α
′2
1 X2

H1
+ α′1α

′
2 (XH1XH2 + XH2XH1) + α

′2
2 X2

H2
. (7.7)
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It follows that to compute the capacity using the asymptotic limit as in (7.5), we would

need to replace ζG with ζH = NR
NS

and solve:

CAsyp = ND

∫ ∞
0

log2

(
1 +

1

σ2n
x

)
fpLW (x) dx, (7.8)

where the asymptotic capacity is given in terms of fpLW (x), the AED of the polynomial

pLW , rather than as a function of a matrix polynomial1.

7.3.3 AED

The simplest example of a MIMO channel that can be also modelled as a random matrix

with a known AED, is the point-to-point Rayleigh fading channel whose individual

paths are independently and identically distributed (i.i.d), which is the model we have

considered in Chapters 4-6. We have already seen that this type of channel can be

modelled as a zero-mean i.i.d Gaussian complex random matrix [13], for which the AED

can be found using RMT and is given in Theorem 2.2 by Marčenko and Pastur, which

was provided in Section 2.3.2.2 [74].

Several works exist in which AEDs are computed for matrices modelling less straight-

forward channels in order to apply (7.5) to compute their capacity. For example, in

[104] Shlyakhtenko shows how to extend existing results to find the AED of the band

Gaussian matrices used to model independent but non-identically distributed Gaussian

channels, while in [79] the authors use FPT to compute the AED of massive MIMO

channel matrices with transmit and receive correlation. In [80] the authors take things a

step further and use FPT to derive the AEDs of compound matrices, which can be used

to model point-to-point MIMO channels which are not Gaussian, independent or identi-

cally distributed. Our work builds upon these results by incorporating individual AEDs

to find the capacity of our two-hop system, in which asymmetric channels incorporating

many different AEDs must be combined and by giving a step-by-step explanation of how

to apply the theory for this practical scenario.

7.3.4 Worked example

The procedure described in our worked example can be applied for the case where GiG
†
i

and HiH
†
i have any arbitrary AEDs, using equations (7.5) and (7.11) in conjunction

with the method we will now illustrate for computing the AED of pLW . For example,

1In this case the path-loss coefficients βi and transmit powers of the relays, pRi , are included in the
polynomial pLW and thus incorporated into the AED, which means we do not include them elsewhere
in the equation.
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we could consider the case where the asymmetry is due to the fact that some of the

channels are correlated while others are not by using the AED for correlated MIMO

channels found in [79]. For the sake of tractability, however, we assume the simplest

case in our worked example and suppose that the individual paths between S and Ri

and between Ri and D are i.i.d and subject to Rayleigh fading, and that the asymmetry

between the channels in T2 is in terms of the attenuation due to distance, that is, hi 6= hj

when i 6= j.

For our worked example, therefore, we replace the general channel matrices Gi and Hi

with G̃i and H̃i which are i.i.d Gaussian complex random matrices with normalised

variances 1
NR

and 1
ND

respectively. This means that the AEDs, fX̃Gi
(x) and fX̃Hi

(x), of

X̃Gi = G̃iG̃i
†

and X̃Hi = H̃iH̃i
†

respectively can be found by applying Theorem 2.2.

To account for the normalisation of the variance we must multiply through by a factor

of NR (for the channels in T1) and ND (for the channels in T2), as illustrated in case

vi of Table 2.1.

7.3.4.1 First hop, T1

It follows that, for our worked example, the asymptotic capacities CG̃i
for the individual

channels between S and Ri in T1, are given by:

CAsy
G̃i

= NR

∫ ∞
0

log2
(
1 +NRβ

2
SiρSx

)
fX̃Gi

(x) dx. (7.9)

where ρS = pS
σ2
n

is the transmit SNR at the source.

7.3.4.2 Second hop, T2

For T2, on the other hand, we note that substituting in the normalised channel matrix

to (7.6) and using the fact that
∥∥∥H̃i

∥∥∥
F

=
√
ND, due to the normalised variance gives

NDp̃LW = ND

(∑
i∈W

βRi
√
pRi X̃Hi

)(∑
i∈W

βRi
√
pRi X̃Hi

)†

= ND

∑
i∈W

β2RipRiX̃
2
Hi +

∑
i,j∈W
i 6=j

β2Riβ
2
Rj

√
pRipRj X̃HiX̃Hj


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so that the polynomial for our worked example takes the form

p̃LW =
∑
i∈W

α2
i X̃

2
Hi +

∑
i,j∈W
i 6=j

αiαj X̃HiX̃Hj , (7.10)

where we have substituted αi = βRi
√
pRi . It follows that the asymptotic capacity in

this example is given by:

CAsy
p̃

= ND

∫ ∞
0

log2

(
1 +

ND

σ2n
x

)
fp̃LW

(x) dx, (7.11)

and that the total transmit SNR across T2, is given by

ρR =

∑
i∈W {pRi}
σ2n

. (7.12)

If we can obtain fp̃LW
(x) for any set W then we will be able to derive the asymptotic

capacity across T2 for any of the cases listed in Table 7.1, without the need to perform

complex matrix calculations. In particular, the individual capacities CHi across the

channel between relay Ri and D can be computed from the AED fp̃LW
(x) whereW = {i}

and p̃LW = α2
i X̃

2
Hi

.

An important observation is that each polynomial p̃LW depends only on the matrices

X̃Hi = H̃iH̃
†
i and the scalar coefficients αi for i ∈ W. Recall that, we are assuming

that the AEDs, fX̃Hi
(x), of these matrices are known, and in our particular example,

that they are given by Theorem 6.8. The natural question to ask, therefore, is whether

we can derive fp̃LW
(x) from the known distributions fX̃Hi

(x), in order to compute the

asymptotic capacity using (7.11).

In fact, we saw in Section 3.1.2 that it is impossible to solve this problem using RMT,

except in certain specific cases, for example, when all the channels between the relays and

the destination are identical. This is because, given only the eigenvalue distributions

for the individual channel matrices, RMT is generally unable to derive the AED for

arbitrary polynomial combinations of these matrices [74], and we need the AED of the

polynomial p̃LW to compute the capacity across T2. However, in Chapter 3 we saw

some of the ways in which FPT is able to address problems of this nature where other

methods fail. In particular, we introduced operator valued FPT and the subordination

theorem [85] in Section 3.2.1 as a way of overcoming this problem using a method

derived by Belinschi, Mai and Speicher in [90], which utilises the ‘linearisation trick’

[99], to determine fp̃LW
(x). Armed with this distribution, we can use (7.11) to compute

the SNR-capacity relationship and analyse the overall performance of our system in a

computationally efficient way.



Chapter 7. Capacity Analysis Using Free Probability 127

7.3.5 FPT: Requirements

Our problem involves the ND ×ND random matrices X̃Hi occurring in time-slot T2 of

our model, which have convergent limiting behaviour. We must view these variables

more generally, as freely independent random variables of a non-commutative probabil-

ity space, (A, φ) where A is a unital algebra and ϕ a unital linear functional, using the

conventions introduced by Voiculescu [86] and described in Section 3.1.3. More specif-

ically, we refer to the class of random matrices with limiting eigenvalue distribution as

‘algebraic’ random matrices. The ‘algebraicity’ of a random matrix is then said to act

as a ‘certificate’ of the computability of its AED. In this sense, the random matrices

can be viewed as realizations of the freely independent random variables given by their

AEDs [147]. To employ our method requires that the X̃Hi be ‘asymptotically free’ as

per the definition given in Section 3.1.3.1. Full verification that this property holds with

respect to the functional φ(X̃Hi) defined in (3.19) for the Gaussian random matrices in

our worked example is given in [85, Section 4.2], while [74] demonstrates how to show

it holds for more general random matrices.

The AED for the random matrix polynomial is equivalent to the distribution of the same

polynomial in the prescribed free random variables. However, in order to find this AED

and solve our problem, we must use the concept of ‘operator-valued free probability’ [148]

introduced in Definition 3.2.1 of Section 3.2.1. We saw in that section how to derive

the operator-valued free probability space, (A, ϕ,B), in which we will be working [85,

Chapter 9, Proposition 13] from the non-commutative probability space (A, φ), using

the conventions given in (3.22). Working in this environment allows us to ‘linearise’

our problem so that we may side-step the issue of manipulating polynomials in random

matrices with individually distributed entries. The final requirement for implementing

this method is that the matrices X̃Hi be self-adjoint. Recalling the definition of X̃Hi

given in Section 7.2, we have X̃†Hi = (H̃iH̃i
†
)† = H̃iH̃i

†
= X̃Hi , so this requirement is

also met.

7.3.6 FPT: Linearisation

In order to proceed, it is first necessary to apply Anderson’s self-adjoint version of

the ‘linearization trick’ [99], which changes our polynomial problem in random matrix

variables to a linear additive convolution problem. Recall Definition 3.2.2 from Sec-

tion 3.2.1.1. Using (7.6) we have:

p̃LW =
∑
i∈W

α2
i X̃

2
Hi +

∑
i,j∈W
i 6=j

αiαjX̃HiX̃Hj ,
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where it is important to note that we are no longer viewing the X̃Hi as matrices, but as

free variables. It is easily proven that taking

u =
1√
2

( ∑
i∈W

αiX̃Hi

∑
i∈W

αiX̃Hi

)
,

v =
1√
2

( ∑
i∈W

αiX̃Hi

∑
i∈W

αiX̃Hi

)T
and

Q =

(
0 −1

−1 0

)
,

gives us the linearisation:

p̂LW =


0

∑
i∈W αiX̃Hi√

2

∑
i∈W αiX̃Hi√

2∑
i∈W αiX̃Hi√

2
0 −1∑

i∈W αiX̃Hi√
2

−1 0


∈ A, (7.13)

which satisfies Definition 3.2.2.

The crucial point is that for any L ∈ Z and any subset W of active relays we can now

write p̂LW as the operator-valued linear combination

p̂LW = Z0 +
∑
i∈W

Zi ⊗ X̃Hi , (7.14)

where the matrices Zm ∈ B are given by

Z0 =


0 0 0

0 0 −1

0 −1 0

 and Zi =
1√
2


0 αi αi

αi 0 0

αi 0 0

 for i ∈ W. (7.15)

The linearisation p̂LW contains the same information as the polynomial p̃LW but given

linearly in terms of the random variables so that we no longer need to compute any

random variable products. As explained in Section 3.2.1.1, the cost of this simplification

is that the coefficients in the linearisation are now matrix operators rather than scalars,

but this is a problem we can address using operator-valued FPT. We will write X̂Hi to

denote the operator-valued random variables given by this linearisation, where

X̂Hi = Zi ⊗ X̃Hi ∈ A, for i ∈ W. (7.16)
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7.3.7 FPT: Subordination theorem

Our aim is to use the operator-valued distribution of p̂LW to find the AED, fp̃LW
(x), of

the polynomial, p̃LW . In order to do so, we make use of the operator-valued Cauchy

transform from Definition 3.26 and Theorem 3.4, which tells us that, given a pair of

operator-valued free random variables, X̂p and X̂q it is possible to calculate the operator-

valued Cauchy transform of their sum, ĜX̂p+X̂q
(Ẑ), from the Cauchy transforms ĜX̂p

(Ẑ)

and ĜX̂q
(Ẑ) using operator-valued free convolution. We note that the method can be

applied to any self-adjoint polynomial (not just this one) and hence potentially used to

solve a wide range of problems in which the limiting eigenvalue distribution of such a

polynomial in random matrices is required.

Having verified in Section 7.3.5 that the variables X̃Hi are asymptotically free, it follows

from the basic properties of freeness [85, Corollary 14, p. 244] that the operator-valued

variables X̂Hi are also asymptotically free with respect to the operator-valued probability

space. Therefore, we may apply the same steps outlined in Section 3.2.1.2, and use

Theorem 3.4 to find Ĝx̂1+x̂2(x̂) from Ĝx̂1(x̂), followed by Ĝx̂1+x̂2+x̂3(x̂) from Ĝx̂1+x̂2(x̂)

and Ĝx̂3(x̂) and so on, until we incorporate every X̂Hi in the Cauchy transform Ĝλ(x̂),

where λ =
∑

i∈W X̂Hi . Finally, we may compute the operator-valued Cauchy transform

of p̂LW via

Gp̂LW
(x̂) = ĜZ0⊗I3+λ(x̂),

by applying Theorem 3.4, to x̂p = Z0 and x̂q = λ, and using the relationship given in

(7.14).

We then have to compute the Cauchy transform Gp̃LW
(x) from the operator-valued

Cauchy transform Ĝp̂LW
(x̂), which was proven in (3.28) from Section 3.2.1.2 to be given

by the (1, 1)th-entry of the operator-valued Cauchy transform. This computation relies

on taking Schur complements as demonstrated in [90, Propositions 3.2, 3.4, Theorem

4.1]. Finally, we can use the Cauchy inversion formula derived in (3.11) of Section 3.1.2.2,

to find the AED fp̃LW
(x).

The following is a summary of the steps taken to derive fp̃LW
(x), that is, the asymptotic

eigenvalue distribution of the polynomial p̃LW , given only the statistical behaviour of

the variables X̃i for i ∈ W:

1. Compute the AEDs fX̃Hi
(x) using Theorem 2.2.

2. Linearise the polynomial p̃LW to obtain its operator-valued extension p̂LW , as shown

in (7.13).
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3. Write p̂LW as the sum of operator-valued variables p̂LW = Z0 +
∑

i∈W X̂Hi , using

(7.16).

4. Compute the Cauchy transforms ĜX̂Hi
(x̂) using (3.26).

5. Find Ĝλ(x̂) for λ =
∑

i∈W X̂Hi by repeated application of Theorem 3.4.

6. Compute Ĝp̂LW
(x̂) by applying Theorem 3.4 to x̂p = Z0 and x̂q =

∑
i∈W X̂Hi .

7. Find Gp̃LW
(x) as the (1, 1)th entry of the matrix obtained for Ĝp̂LW

(x̂).

8. Compute fp̃LW
(x) using (3.29).

7.4 Results and discussion

As in previous chapters, we fix the path-loss exponent to m = 2 (the value corresponding

to free-space channels in the far-field [149]) throughout our analysis, but note that

our method readily extends to include systems in which this value varies for different

channels. Since our main result applies to the second hop of our relay system, our

initial analysis considers time-slot T2. To begin with, we assume that all relays Ri for

1 ≤ i ≤ L are active.

7.4.1 AED

First, we demonstrate the accuracy with which the analytic techniques introduced in

Section 7.3 compute the AED, fpLW (x), for our worked example. We start by randomly

generating M = 1000 realizations of Hi for 1 ≤ i ≤ L, and then perform standard

numerical matrix operations, as in (7.6), to calculate pLW . Fig. 7.2 compares a histogram

of the eigenvalues of pLW calculated this way, overlaid by the graph of fp5(x) computed

using operator-valued FPT for the case where L = 5, NR = ND = 64, ζD = 1, α1 = 0.2,

α2 = 0.4, α3 = 0.6, α4 = 0.8 and α5 = 1.0. It is clear that the shape of the histogram

matches the distribution predicted using FPT extremely well for this case.

Since our system model allows us to consider many combinations of parameters, pro-

vided that NR ≤ ND, we also find the eigenvalue distributions for some different com-

binations of ζD and αi using the FPT approach. Fig. 7.3 shows the AED for a sys-

tem with L = 2 active relays, for the possible combinations of ζD ∈ {1, 0.5} and

(α1, α2) ∈ {(1, 1), (0.5, 0.5), (0.2, 0.3)}, demonstrating both the impact of decreasing

each αi and of varying the degree of asymmetry between the coefficients αi. Although

not shown in the figure, these distributions also matched the histograms computed using

the standard numerical approach, with similar accuracy to Fig. 7.2. We used a linear
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Figure 7.2: Histogram of eigenvalues of pLW vs. FPT computation of fpLW
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Figure 7.3: Varying ζD, α1 and α2

scale on the y axis in Fig. 7.2, which was appropriate in order to demonstrate the ac-

curacy of the predicted distribution. In Fig. 7.3 however, the varying behavior of the

eigenvalues for different parameters necessitates the use of a log-scale on the y axis in

order to fully capture the range of the distribution. In particular, as ζD decreases, the

modal value taken by the eigenvalues becomes more pronounced while the range becomes

narrower. This shows that when we have many more receive than transmit antennas,

the eigenvalues of the channel matrix tend to be found closer to zero and their range

decreases. The same effect is observed for smaller attenuations αi, and is present for any

number of relays L. This means that the points at which we calculate the AED must

be chosen more carefully in order to approximate the integration in (7.11) for values of



Chapter 7. Capacity Analysis Using Free Probability 132

ρR (dB)
0 10 20 30 40 50

C
ap

ac
it
y
(b
p
s/
H
z)

0

200

400

600

800

1000

1200

1400

NR =1

NR =4

NR =8

NR =16

NR =32

NR =64

NR =128

Figure 7.4: Comparison of numerical computation results with FPT results for α1 = 0.3,
α2 = 0.2, NR = ND ≤ 128

ρR (dB)
0 10 20 30 40 50

C
ap

ac
it
y
(b
p
s/
H
z)

×104

0

0.5

1

1.5

2

2.5

NR =128

NR =256

NR =512

NR =1024

NR =2048

Figure 7.5: FPT predictions for α1 = 0.3, α2 = 0.2, NR = ND ≥ 128

ζD and αi smaller than 0.5.

7.4.2 Capacity

Still focusing on the multiple access link in T2, we next consider the capacity, CpL ,

across the combined channel. For this section of our analysis we set NR = ND so that

ζD = 1 (the effect of varying ζD will be investigated in Section 7.4.3). We use fpL(x) to

compute the asymptotic capacity using (7.11), and compare it to the capacity predicted

by applying (7.4) to our simulated channel matrix realisations. We obtain Fig. 7.4,
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Figure 7.6: Mean maximum difference between FPT and standard numerical computation
results.

which represents a two-relay system in which the distances h1 and h2 are asymmetrical

and equal approximately 2.24 and 1.83 respectively, while we fix the transmission powers

pRi = 1 dB for i ∈ {1, 2}. Referring to (7.10), this situation corresponds to α1 = 0.2 and

α2 = 0.3. The capacity is computed for varying transmit SNR levels, ρR, for channel

matrices ranging from 1× 1 to 128× 128 in dimension. The lines in the graph represent

the asymptotic capacity found using the FPT approach, whereas the dots represent the

capacity computed using standard numerical computation. Again, the results match

with an extremely high degree of accuracy.

We would expect the FPT results to agree better with the numerical computation for

larger channel matrices, since the eigenvalue distribution of a random matrix converges

to the AED as the dimensions tend to infinity. However, Fig. 7.6 seems to suggest that

the average difference between the theory-based prediction and the standard numerical

computation (we will refer to this difference as the error) for a given number of realiza-

tions,M, is the same regardless of how large the matrix dimensions become. This error

is approximately 7 bps for M = 1, but reduces to less than 1 bps when we take the

average over M > 150 channel realizations in our standard numerical computations.

On the other hand, Fig. 7.7 shows the ratio of the average maximum error to the total

mean capacity. Like Fig. 7.6, this graph demonstrates a rapid increase in the agreement

between the two approaches with the number of realizations, however, it also shows that

the percentage error decreases as the matrix dimensions grow. Therefore, the FPT result

is indeed more accurate for larger channel matrices when viewed from this perspective

and it suffices to use fewer realizations to compute the capacity accurately.
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Even for smaller-scale MIMO channels, the agreement between the FPT results and the

numerical computation is strong when we increase the number of realizations. In fact,

when we simulate M = 1000 realizations (a greater number than is shown in Fig. 7.7)

the percentage error decreases to 1.57% for NR = ND = 1 and 0.23% for NR = ND = 4.

This shows that, given knowledge of the AEDs for the individual channels in the system,

the asymptotic result can be applied to accurately obtain the ergodic capacity for even

non-massive MIMO channels. For larger channel matrices, the percentage error for 1000

realizations is practically negligible at less than 0.09% for NR = ND ≥ 64. Therefore,

provided our assumptions on the statistical behavior of the channel are accurate, it is

reasonable to treat the capacity derived using the FPT approach as deterministic for

dimensions of 64× 64 or greater.

Unfortunately our ability to find the capacity by standard numerical computation is

limited by the capability of our hardware. Because the determinant calculations involve

both very large and very small numbers, increasing NR and ND magnifies the round-

off error. Standard computer hardware cannot store numbers to a sufficient degree of

accuracy to prevent detrimental impact, which makes it impossible to compute a value

for the determinant, and hence the capacity, for NR = ND > 128. This is demonstrated

by the lack of points representing the standard numerical results in Fig. 7.4 for NR =

ND = 128 when ρR is above 33 dB. As the channel’s dimensions increase, this problem

worsens and we are unable to compute the capacity numerically even at lower SNRs.

Therefore the only way to compute the capacity for the multiple-access link for channel

matrices larger than 128× 128 is by employing FPT.
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Table 7.2: Values of ζD considered in Fig 7.8.

ζD NR ND

1.0000 12 12

0.4444 18 8

0.2500 24 6

0.1111 36 4

0.0625 48 3

The proposed FPT method allows us to compute the capacity for arbitrarily large chan-

nel matrices as demonstrated in Fig. 7.5. While we cannot compare these results with

standard numerical computations for massive MIMO channels with dimensions larger

than 128× 128, the clear downward trend in the percentage error for smaller-scale sys-

tems in Fig. 7.7 suggests that the FPT results are reliable. Our method is therefore

able to predict the capacity for the sort of large-scale massive-IoT systems envisioned

for the future, without the need for excessive computing power and time demanded by

standard numerical computations.

7.4.3 Varying ζD

Having already touched on the impact on the AED of changing the relative numbers of

transmit and receive antennas in Fig. 7.3, we now investigate the effect this change has

on the FPT results.

With a view to making a fair comparison of the different ratios ζD, we control the number

of distinct pairings of transmit and receive antennas and ensure that NR ×ND remains

constant. Fixing NR ×ND = 144, gives rise to the values of ζD in Table 7.2.

Similarly to Fig. 7.4, Fig. 7.8 shows that the capacity increases with ρR, but in this

case we use the parameters given in Table 7.2. The correlation between the points

computed using standard numerical methods and the FPT result is excellent for ζD ≥
0.2. Moreover, the greatest capacity is observed at ζD = 1, which is in agreement with

existing results for point to point channels [13]. However, there does appear to be some

degradation in the agreement between the two approaches when a large discrepancy

exists between the number of transmit and receive antennas. This can be observed in

the apparent over-estimation of the FPT approach for ζD = 0.11 and ζD = 0.06 when

ρR is greater than 30 dB. We believe that the reason for this discrepancy is to do with

the AED. As observed in Section 7.4.1, the peaks of the graphs of the AEDs in Fig. 7.3

become disproportionately large near to zero when ζD is very small. This wide variation

means that approximating the integral in (7.11), which is done by dividing the area

under the distribution curve into narrow rectangles, is less accurate in these cases. We
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of transmit to receive antennas

discovered that the agreement between the two approaches can be improved by breaking

the area up in a way that is adapted to deal with this ‘peaky’ behavior, for example, we

achieved improved accuracy by using rectangles with widths that varied on a log scale

when compared to the uniform widths using in our original program.

7.4.4 Computational complexity

Not only does FPT allow us to compute an accurate estimate for the capacity across the

combined massive MIMO channels in T2 with unrestricted dimensions, it allows us to do

so efficiently. To demonstrate the increase in efficiency achieved through using FPT, we

analyze the complexity of using standard numerical computation and compare it with

that of the proposed FPT method. A description of the standard approach was given in

Section 7.4.1. It can be seen that the overall complexity of this approach depends on four

variables: the number of relays, L, the number of transmit antennas, NR, the number of

receive antennas, ND and the number of randomly generated channel realizations, M.

First we consider the effect of increasing NR and ND. For each realization in the standard

numerical calculation, the most complex operations involved are matrix multiplication

and taking determinants. Firstly, we must multiply each individual channel Hi by its

complex conjugate to derive the matrices Xi. In this case we are multiplying an NR×ND

matrix by an ND × NR matrix for which the standard approach has complexity order

O(NRN
2
D). Moreover, we perform this operation L times, so the order of complexity

involved in the standard approach for this part of the calculation is O(LNRN
2
D). The
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overall channel matrix
(∑L

i=1 αiXi

)
must then be multiplied by its own conjugate trans-

pose to find pL. Here we are multiplying together twoND×ND matrices and the standard

method has complexity order O(N3
D). Finally, we must compute

∣∣∣IND
+ ND

σ2
n
pL

∣∣∣, the de-

terminant of an ND ×ND matrix, and the standard approach for this computation has

complexity order O(ND!) [150].

Assuming the standard approaches are used, the fastest growing term in the complex-

ity equation has order O(ND!). However, in [144][Theorem 6.6] the authors demon-

strate an algorithm for computing the determinant with the lower order of complexity

O(N2.81
D ), while in [151] the ‘Coppersmith-Winograd’ algorithm for multiplying pairs

of ND × ND square matrices is introduced, which has complexity order O(N2.375477
D ),

and theoretically, the complexity order of our simulation could be reduced to order

max{O(N2.81
D ),O(LNRN

2
D)}. The implementation of these methods is beyond the scope

of the work in this chapter, however, and we have used the Matlab function det, which

relies on the LU decomposition method for calculating the determinant and has com-

plexity order O(N3
D). The standard approach has been used for matrix multiplication.

All of the above computations are carried out M times, once for each set of channel

matrix realizations, in order to calculate the average capacity. Indeed, it is the increased

agreement between the two approaches for a larger number of realizations M confirms

the accuracy of the FPT approach. Therefore, with respect to the numbers of antennas

NR and ND, the number of relays L and the number of iterations M, our numerical

approach to the capacity computation has overall complexity order O(MN3
D) if ND ≥

LNR, and O(LMNRN
2
D) otherwise.

We saw in Figs. 7.6 and 7.7 that the accuracy of the numerical computation approach

improves as we increaseM. The required accuracy will vary according to the application.

For the case where the accuracy requirement is given in terms of a fixed value (above

which the error between the numerical and the theoretical results is not allowed to rise)

we refer to Fig. 7.6. If we fix ζD (here we have shown the accuracy for the case where

ζD = 1) the size of the error is similar for all values of NR and ND, and therefore

independent of the number of antennas. In this case we could require, for example, that

the error be less than 1 bps. Reading from Fig. 7.6 we can see that to guarantee meeting

this requirement when ζD = 1 would require the use of M≈ 150 realizations.

On the other hand, if the maximum allowable error is given as a percentage of the total

capacity, we can see from Fig. 7.7, that the required number of channel realizations in

the numerical computation decreases with NR and ND, where again this holds true for

any ζD. Therefore, a smaller number of simulated realizations is necessary to meet this

accuracy requirement for larger MIMO channels. This is because the predicted capacity

increases with the addition of more antennas while the mean error remains low. If, for
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Figure 7.9: Time taken by FPT approach vs. standard numerical computation

example, we set the maximum allowable percentage error as 1% and the ratio ζD = 1 we

would require the number of simulated realizations to be of the order O(104) for a link

where NR = ND = 1, whereas, when NR = ND = 64 we only need M ≈ 15 to achieve

the same relative accuracy.

Unlike the method for computing the capacity numerically, the FPT algorithm is inde-

pendent of the size of the channel matrix and is analytic, so it does not require that

averages be taken over repeated channel realizations. Therefore, its computational re-

quirements are invariant with respect to NR and ND and also with respect to M. The

only parameter that affects the complexity of the FPT method is L, the number of

relays, since we must apply Theorem 3.4 (step 5 in the summary at the end of Sec-

tion 7.3.7) L times. Therefore, for a given number of relays, the linearization approach

takes a fixed length of time, whereas the duration of the standard numerical approach

grows at a rate at least O(MNRN
2
D) times faster, where the values of NR, ND and M

depend on the dimensions of the channel matrices under consideration and the required

accuracy respectively. This comparative rate of growth is demonstrated in Fig. 7.9,

where we have computed the time taken by each approach for various values of L as we

increase NR = ND with M = 25 fixed. Note that although it is impossible to compute

an accurate result for channel matrices larger than 128× 128 using standard numerical

computations, the program still carries out the operations, and so the time taken is not

affected, which allows us to examine the complexity for arbitrarily large configurations.

These time complexity results were computed using a MacBook Pro with a 2.9 GHz

Intel Core i5 processor. As expected, the figure shows that the time taken for the FPT

algorithm to run is approximately constant for fixed L across all values of NR = ND,
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and takes approximately 15 seconds when L = 3 for example. However, as our analysis

predicted, the time taken for the numerical computation grows at a much faster rate.

In particular, when we compare the standard approach with L = 3 relays andM = 100

realizations with the FPT approach, we see that running the numerical computations is

faster for channel matrices smaller than 100×100 but as the dimensions increase further

it becomes much slower and is overtaken by the FPT approach.

7.4.5 Total capacity of end-to-end system

Returning to the system model given in Fig. 7.1, we note that we have investigated the

multiple access link in T2, but have not considered what happens in the system overall.

When we include T1, recall that there are |W | routes that the data from the source can

travel to reach the destination, via each of the active Ri. Depending on the viability

of channels Gi and Hi this gives rise to the distinct situations listed in Table 7.1. As

an example we will analyze the most basic situation, where L = 2 and both relays are

active. In this situation we have four cases (i-iv), as described in Table 7.1. Since we

have assumed, and have justified the assumption, that the FPT approach computes

the capacity for channel matrices larger than 64× 64 with high enough accuracy to be

considered deterministic, the overall rate is limited by the bottleneck effect to the lowest

rate computed by this method across any of the contributing channels. We compute

the rates CGi and CHi using Theorem 2.2, and the rate Cp2 using equations (7.11) and

(3.29). Finally, we use the individual channel capacities for T1 and T2 to analyze the

overall system model given in Fig. 7.1 using the rate equations from Table 7.1.

A comparison of the asymptotic capacity for the different cases is given in Fig. 7.10.

We have considered the asymmetric case where the distance h2 = 1.83 between R2 and

D is less than the distance h1 = 2.24, between R1 and D but the transmit power at

the relays is fixed as pRi = 1 for i ∈ {1, 2}. Our particular choice of h1 and h2 gives

rise to α1 = 0.3 6= α2 = 0.2 as in Figs. 7.4 and 7.5. We assume the distances in the

first hop are fixed as gi = 1 < h1, h2, so that the overall capacity of T1 is greater than

that of either channel in T2. This means that the overall capacity is not limited by the

bottleneck effect to CGi and enables us to investigate the benefits of using both relays in

T2. As anticipated, the best rate is achieved in case (i) when all channels are viable and

the FPT result applies. This is what we would expect because the ability for the signal

to travel via both relays introduces an extra spatial dimension when compared to cases

(ii) and (iii). Moreover, we observe that case (iii) outperforms case (ii), which can be

explained by the fact that channel H2 spans a shorter distance and hence suffers less from

attenuation than channel H1. These findings are easily extended for the cases where

L > 2 for which the same behavior is observed, with a set W containing active relays
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Figure 7.10: Asymptotic capacity for NR = ND = 64 in cases (i-iv) of Table 7.1.

of shorter average distance from the destination outperforming an equally sized set W ′

with longer average distance. We have verified that, provided that the channel matrix

dimensions are greater than 64×64 this total capacity differs by less than 0.2% from that

computed using standard numerical computation, for dimensions which are computable

using the latter approach. We are thus able to accurately and efficiently quantify the

benefit of using massive MIMO as part of a co-operative wireless communication system

with an unlimited number of antennas, through the use of FPT.

7.5 Conclusions

In this chapter we demonstrated how to use operator-valued free probability theory to

find the asymptotic capacity of a massive multiple-input multiple-output (MIMO), co-

operative relay system comprising multiple channels, with specific focus on the multiple-

access hop. We provided a step by step explanation of how to apply the operator-valued

free probability methodology from Chapter 3 to reach the result. Our method enables

the quantification of the achievable capacity of the system when arbitrarily large massive

MIMO channels are involved. We have seen that for systems with channel dimensions

greater than 128 × 128, it is impossible to derive this quantification using standard

numerical computation methods. Nevertheless, the theoretical results have been shown

to agree with a high degree of accuracy with the numerical computations for smaller-

scale systems. This agreement has been shown to increase as the channel dimensions

increase, suggesting that the theoretical results can reliably predict the capacity for the

sort of large-scale massive MIMO scenarios envisioned as part of the internet-of-things.
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We have shown that the free probability method has comparatively high computational

efficiency. In particular, for N × N dimensional channel matrices the efficiency of the

method remains the same for a given number L of relays regardless of how large we make

N . In comparison, to compute the capacity using numerical computation involves taking

averages of M distinct realizations of the channel model, which means the complexity

increases with order O(MN3) for a given value of L.

We also investigated the effect of altering the ratio NR
ND

of transmit to receive antennas,

using both the simulation and theoretical approaches. The results for the different

approaches matched well for channels with dimensions NR×ND for which the difference

between NR and ND was not too extreme, although some degradation was observed

at higher transmit signal-to-noise ratios when NR
ND

< 0.2. Our conclusions agree with

the literature and our assertions in Chapter 1 that the use of multiple co-operative

relays can provide significant capacity benefits. Moreover, they extend existing work by

enabling the precise quantification of these benefits for a two-hop system general enough

to incorporate asymmetric channel characteristics.



Chapter 8

Conclusions and Future Research

Directions

This thesis has considered the theoretical performance limits of systems implementing

some of the technologies proposed for fifth generation (5G) wireless communications.

Our main theme has been the analysis of wireless channels for which multiple antennas

are involved in signal transmission and reception. We started by looking at relatively

small arrays in a multiple-input single-output (MISO) scenario using traditional multi-

variate probability techniques. We then progressed to consider multiple-input multiple-

output (MIMO) channels with similar dimensions, which were modelled as small random

matrices. We used results from random matrix theory (RMT) on the joint eigenvalue

distributions of finite matrices to study these channels. Finally, we considered much

larger-scale massive MIMO arrays, for which analysis using finite results becomes im-

practical. For systems using this technology, we used asymptotic results from random

matrix theory (RMT) and the extension of this topic into free probability theory (FPT)

to characterise performance.

8.1 Summary and conclusions of thesis

In Chapter 1 we provided motivation for the study of wireless technologies including the

official targets for 5G, where improved data rate and capacity is a main priority. We gave

an overview of previous advancements towards similar targets with a particular focus on

the use of multiple antennas, MIMO technology and multiple-access schemes. We went

on to consider the most promising emerging techniques for delivering on the more am-

bitious goals of 5G and beyond, with a focus on large scale antenna arrays, co-operative

relays and non-orthogonal multiple access. Finally we considered the main challenges

142
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that arise with the implementation of these technologies, including modelling difficulties,

increased complexity and security concerns, which provided motivating problems for the

work addressed in the following chapters.

Motivated by the capacity goals of 5G introduced in the previous chapter, and the

study of this metric for multi-antenna systems, in Chapter 2 we discussed the definition

of capacity using basic information theoretic principles and explained how to extend it

for MIMO channel. This measurement formed a basis for the majority of the analysis in

subsequent chapters. We also considered the importance of security and the potential

for high mobility scenarios outlined in Chapter 1 and introduced the metrics of ergodic

and secrecy rate and capacity and outage probability for performance analysis in these

scenarios, all of which extended upon the basic capacity definition.

In addition to time variation, we considered the impact of having channel state informa-

tion (CSI) at either or both the transmitter and receiver on the various metrics. We saw

that performance improvements can be made by exploiting this information via physical

layer techniques such as zero-forcing and maximum ratio transmission.

For channels modelled as large matrices we saw that the traditional analysis techniques

become arduous, and so we introduced a lower complexity alternative for computing

a channel’s capacity using asymptotic properties. From this approach, we concluded

that knowing the asymptotic eigenvalue distribution (AED) of the relevant matrices is

highly desirable for the efficient evaluation of MIMO system capacities. However, we also

explained the challenges involved in applying the asymptotic approach to more complex

system models.

In Chapter 3, therefore, we gave a more formal definition of the AED and considered

the problem of computing it for random matrices which are not as straightforward as

the Wishart matrices considered in Section 2.3.2. This was motivated by the fact that

the diverse nature of the internet-of-things means that many different random matrix

channel models are required for different situations, which take complications such as

channel asymmetry and correlation into account. The asymptotic analysis of random

matrices required for finding the AEDs of these non-straightforward models can be

facilitated by using results from the area of FPT. We gave a brief introduction to the

basic ideas behind FPT, explaining the property of ‘freeness’ and the fact that we can

view a random matrix as free variable in a non-commutative probability space rather

than as an array of individual random entries. We explained why, in general, it is

not possible to find the AED for combinations of different random matrices such as

polynomials, from their individual AEDs and how free probability, and the extension to

operator-valued free probability provides a means of overcoming this issue.
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Chapters 4-7 focussed on applying the metrics and results introduced in Chapters 2-3

to analyse the performance and address some of the issues outlined for next-generation

wireless channels described in Chapter 1. Initially, in Chapters 4 and 5 we considered

problems relating to the secrecy capacity of a wireless communication channel. We

focussed on analysing the performance of a multi-antenna system in the presence of an

eavesdropper, E, with the use of the physical layer security measures we introduced in

Section 2.2.3.1.

In Chapter 4 we considered the secrecy performance of MISO channels under different

CSI assumptions for the scenario described in Section 1.1.2.6, in which the source is

energy constrained and harvests energy from a dedicated power beacon. Depending on

the availability of CSI for the channel between the source and eavesdropper, we consid-

ered two different transmission protocols, each making use of the physical layer security

techniques described in Chapter 2. We were able to derive new closed-form expressions

for the metrics of outage probability and secrecy throughput for this system as well

as approximations of the connection outage probability, secrecy outage probability and

diversity orders in the high signal to noise ratio (SNR) regime. Finally, using these ap-

proximations we were able to compute candidates for the optimal time-switching ratio

and power allocation coefficients, νT and νp, in the high SNR regime. The theoretical

results matched our numerical simulations, demonstrating their accuracy, and in partic-

ular the optimality of the algorithm for computing νT and νp. Whether or not we have

partial CSIT for the eavesdropper’s channel, we were able to achieve a positive secrecy

throughput using our protocols, even in the case where the destination is further away

from the source than the eavesdropper, which demonstrates the efficacy of both proto-

cols. Knowing the partial CSI and using it to perform zero-forcing transmission provided

benefits in terms of outage probability, which is lower for this protocol. However this is

at the expense of secrecy throughput, which is greater for the scheme without any CSI.

This is because the former scheme used maximum ratio transmission which results in

superior diversity order.

Chapter 5 continued the theme of secrecy communication and physical layer security

but considered a different model, which incorporated both multi-antenna transmit and

receive nodes, along with the relay technologies we introduced in Section 1.1.2.4. We

considered a decode-and-forward (DF) relaying protocol and derived a new result on the

joint probability density function (pdf) of the kth largest eigenvalues of the finite Wishart

matrices introduced in Section 2.3.2.2 using results in RMT. This result enabled us to

compute the legitimate outage probability and diversity order of the proposed protocol

and to quantify the effect of increasing the number of relays and antennas of the system.
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The previous two chapters focused on the performance analysis of wiretap channels with

small scale antenna arrays (up to five antennas), for which the relevant metrics were

outage probability and outage capacity (and more specifically, secrecy outage capacity).

We were unable to compute a closed form solution for the secrecy capacity of the smaller

MIMO systems in either chapter and, in fact, in Chapter 4 we resorted to using a

bisection algorithm.

In Chapter 6 we focussed instead on the ergodic capacity of a massive MIMO-NOMA

system with unlimited numbers of antennas, based on several of the enabling technologies

we described in Section 1.1.2. With the help of the asymptotic results from Chapters

2 and Chapter 3 we provided closed form solutions for the asymptotic capacities for

this scenario, which enabled us to derive the optimal power allocation coefficients for

the system. We demonstrated that combining this approach with a bisection algorithm

results in optimal power allocation for arbitrarily large antenna arrays, overcoming the

reduction in accuracy suffered by existing suboptimal methods for arrays larger than

4 × 4. Additionally, the asymptotic method was immune to the effects of having low

total power availability, a high minimum rate requirement at the weak user or significant

differences between the channel gains of the users, which negatively impact existing

methods. Finally, we demonstrated that the complexity of the bisection algorithm is

lower than existing approaches when we incorporate the asymptotic solution, regardless

of the number of antennas we use at each node.

Motivated by the low complexity of these results, and with the hope of applying our

more advanced analysis from Chapter 3, we finally turned to a system model where

the channel matrices are less straightforward. Chapter 7 made use of the linearisation

and subordination methods we introduced in Sections 3.2.1.1 and 3.2.1.2 of Chapter

3, in order to analyse the ergodic capacity of a single-hop, massive MIMO, multi-relay

system. We considered a generalised system model with an arbitrary number of relays,

arbitrarily large antenna arrays, and asymmetric characteristics, which can not typi-

cally be analysed using traditional methods. We described how to apply an FPT-based

method to compute the asymptotic capacity across the system for the case when the

relays employ a decode-and-forward (DF) protocol and no direct link exists between the

endpoints .

Our results demonstrated the accuracy of the method, which was shown to be immune

to the effects of altering distance parameters, the number of relays, the number of anten-

nas and the ratio of transmit to receive antennas, by comparison with simulations using

traditional methods. We were able to calculate the overall capacity of the relay system
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for massive MIMO channels larger than 128×128 in dimension, for which existing meth-

ods failed due to excessive computational demands and the comparative computational

complexities of the methods were analysed.

To summarise, in our work we have been able to provide new results on the performance

analysis of a wide range of wireless communications systems in which state of the art

technologies are employed. We have been able to quantify the benefits, in particular, of

using multiple antennas and have been able to provide low complexity alternatives to

the computationally expensive methods involved in analysing large-scale MIMO channels

without cost to the accuracy of the results.

8.2 Future directions

A number of future directions are proposed for extension to the research presented in

this thesis in the following:

• In Chapters 4 and 5 we investigated systems with relatively small scale antenna

arrays and were unable to derive closed from solutions for the secrecy capacity.

Therefore, it would be an interesting extension to investigate the case where larger

antenna arrays are employed, and to determine whether applying the asymptotic

techniques used in later chapters might provide a solution in this instance.

• In Chapter 7 we used a result by Speicher et al. which allowed us to compute

the asymptotic eigenvalue distribution for self-adjoint polynomials in order to find

the capacity of a MIMO system incorporating multiple channels. An extension to

the result we have considered exists in [95], in which the restriction to considering

only self-adjoint polynomials is lifted. A number of different system models exist

which give rise to non-self adjoint polynomials in the capacity expression and it

would be interesting to apply the extended result to analyse these scenarios.

• We have focussed on Rayleigh fading channels which can be modelled as matrices

from the Gaussian unitary ensemble (GUE) in our work. While this is a standard

assumption, it would be interesting to incorporate a more varied range of channel

models in future work, such as the correlated channels considered in [79]. By

doing so our analysis results would apply to a wider range of channels, such as

those involved millimetre-wave communications.

• Recently, interest has increased in the area of intelligent reflecting surfaces (IRS)

as a new technology towards sixth generation wireless communications. An IRS

in made up of an array of elements which are able to independently alter the
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incident signal phase to provide the same benefits of beamforming observed in

smart antenna arrays [152]. IRS channels are modelled as matrices in the same

way as massive MIMO channels, and thus constitute a new application for which

the RMT and FPT results in our work could provide new insight. Work has

been carried out in this area in [153], and we have been invited by the authors to

collaborate in continued research.



Bibliography

[1] I. T. U. R. S. (ITU-R), “IMT vision–framework and overall objectives of the future

development of IMT for 2020 and beyond,” Recommendation ITU, pp. 1–19, 2015.

[2] E. Dahlman, S. Parkvall, and J. Skold, 4G, LTE-advanced Pro and the Road to

5G. Academic Press, 2016.

[3] J. Medbo, P. Kyosti, K. Kusume, L. Raschkowski, K. Haneda, T. Jamsa,

V. Nurmela, A. Roivainen, and J. Meinila, “Radio propagation modeling for 5G

mobile and wireless communications,” IEEE Commun. Mag., vol. 54, no. 6, pp.

144–151, Jun. 2016.

[4] S. Y. Lien, S. L. Shieh, Y. Huang, B. Su, Y. L. Hsu, and H. Y. Wei, “5G new radio:

Waveform, frame structure, multiple access, and initial access,” IEEE Commun.

Mag., vol. 55, no. 6, pp. 64–71, Jun. 2017.

[5] J. C. Guey, P. K. Liao, Y. S. Chen, A. Hsu, C. H. Hwang, and G. Lin, “On 5G

radio access architecture and technology [industry perspectives],” IEEE Wireless

Commun. Mag., vol. 22, no. 5, pp. 2–5, Oct. 2015.

[6] A. Goldsmith, Wireless communications. Cambridge University Press, 2005.

[7] A. Pai. Chairman Pai’s speech announcing the C-band proposal. Remarks

by FCC Chairman Ajit Pai at the Information Technology and Innovation

Foundation, Washington, D.C. Feb 6th 2020. [Online]. Available: http:

//www.federalreserve.gov/boarddocs/speeches/1996/19961205.htm

[8] E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj, and H. V.

Poor, MIMO wireless communications. Cambridge University Press, 2007.

[9] G. J. Foschini, “Layered space-time architecture for wireless communication in a

fading environment when using multi-element antennas,” Bell labs Tech. J., vol. 1,

no. 2, pp. 41–59, 1996.

[10] G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless communica-

tion,” IEEE Trans. Commun., vol. 46, no. 3, pp. 357–366, Mar. 1998.

148

http://www.federalreserve.gov/boarddocs/speeches/1996/19961205.htm
http://www.federalreserve.gov/boarddocs/speeches/1996/19961205.htm


Chapter 8. Conclusions 149

[11] S. M. Alamouti, “A simple transmit diversity technique for wireless communica-

tions,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.

[12] R. T. Derryberry, S. D. Gray, D. M. Ionescu, G. Mandyam, and B. Raghothaman,

“Transmit diversity in 3G CDMA systems,” IEEE Wireless Commun. Mag.,

vol. 40, no. 4, pp. 68–75, Aug. 2002.

[13] J. R. Hampton, Introduction to MIMO communications. Cambridge University

Press, 2013.

[14] Q. Li, G. Li, W. Lee, M. Lee, D. Mazzarese, B. Clerckx, and Z. Li, “MIMO tech-

niques in WiMAX and LTE: a feature overview,” IEEE Commun. Mag., vol. 48,

no. 5, pp. 86–92, May 2010.

[15] A. F. Molisch, Wireless communications. Wiley, 2012.

[16] K. Du and M. N. S. Swamy, Wireless communication systems: from RF subsystems

to 4G enabling technologies. Cambridge University Press, 2010.

[17] H. Sari, F. Vanhaverbeke, and M. Moeneclaey, “Extending the capacity of multiple

access channels,” IEEE Commun. Mag., vol. 38, no. 1, pp. 74–82, Jan. 2000.

[18] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi,

“Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proc.

IEEE 77th Veh. Tech. Conf. (VTC Spring), Dresden, Germany, Jun. 2013.

[19] E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L. Marzetta, “Mas-

sive MIMO is a reality - what is next?: Five promising research directions for

antenna arrays,” Dig. Sig. Process., vol. 94, pp. 3–20, nov 2019.

[20] L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, “Improving wireless physical

layer security via cooperating relays,” IEEE Trans. Signal Process., vol. 58, no. 3,

pp. 1875–1888, Mar. 2010.

[21] J. Li, A. P. Petropulu, and S. Weber, “On cooperative relaying schemes for wireless

physical layer security,” IEEE Trans. Signal Process., vol. 59, no. 10, pp. 4985–

4997, Jun. 2011.

[22] M. S. Pan, T. Z. Lin, and W. T. Chen, “An enhanced handover scheme for mobile

relays in LTE-A high-speed rail networks,” IEEE Trans. Veh. Commun., vol. 64,

no. 2, pp. 743–756, May 2014.

[23] “Techniques for increasing the capacity of wireless broadband networks: UK,

2012-2030,” Mar. 2012. [Online]. Available: http://static.ofcom.org.uk/static/

uhf/real-wireless-report.pdf

http://static.ofcom.org.uk/static/uhf/real-wireless-report.pdf
http://static.ofcom.org.uk/static/uhf/real-wireless-report.pdf


Chapter 8. Conclusions 150

[24] L. Lai and H. E. Gamal, “The relay–eavesdropper channel: cooperation for se-

crecy,” IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 4005–4019, Aug. 2008.

[25] P. Zhang, J. Yuan, J. Chen, J. Wang, and J. Yang, “Analyzing amplify-

and-forward and decode-and-forward cooperative strategies in Wyner’s channel

model,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2009, pp.

5–8.

[26] H.-M. Wang, M. Luo, Q. Yin, and X.-G. Xia, “Hybrid cooperative beamforming

and jamming for physical-layer security of two-way relay networks,” IEEE Trans.

Inf. Forensics Security, vol. 8, no. 12, pp. 2007–2020, Oct. 2013.

[27] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless infor-

mation and power transfer,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp.

1989–2001, Mar. 2013.

[28] X. Jiang, C. Zhong, X. Chen, T. Q. Duong, T. A. Tsiftsis, and Z. Zhang, “Se-

crecy performance of wirelessly powered wiretap channels,” IEEE Trans. Com-

mun., vol. 64, no. 9, pp. 3858–3871, Jul. 2016.

[29] S. Bi, C. K. Ho, and R. Zhang, “Wireless powered communication: Opportunities

and challenges,” IEEE Commun. Mag., vol. 53, no. 4, pp. 117–125, Apr. 2015.

[30] Z. Ding, C. Zhong, D. W. K. Ng, M. Peng, H. A. Suraweera, R. Schober, and

H. V. Poor, “Application of smart antenna technologies in simultaneous wireless

information and power transfer,” IEEE Commun. Mag., vol. 53, no. 4, pp. 86–93,

Apr. 2015.

[31] Z. Ding, F. Adachi, and H. V. Poor, “The application of MIMO to non-orthogonal

multiple access,” IEEE Trans. Wireless Commun., vol. 15, no. 1, pp. 537–552,

Sep. 2015.

[32] X. Chen, Z. Zhang, H. Chen, and H. Zhang, “Enhancing wireless information and

power transfer by exploiting multi-antenna techniques,” IEEE Commun. Mag.,

vol. 53, no. 4, pp. 133–141, Apr. 2015.

[33] H. Chen, Y. Li, J. L. Rebelatto, B. F. Uchoa-Filho, and B. Vucetic, “Harvest-then-

cooperate: Wireless-powered cooperative communications,” IEEE Trans. Signal

Process., vol. 63, no. 7, pp. 1700–1711, Jan. 2015.

[34] S. A. Jafar, Interference Alignment: A New Look at Signal Dimensions in a Com-

munication Network. Now Publishers Inc, 2011.



Chapter 8. Conclusions 151

[35] M. A. Maddah-Ali, A. S. Motahari, and A. K. Khandani, “Communication over

MIMO X channels: Interference alignment, decomposition, and performance anal-

ysis,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3457–3470, Jul. 2008.

[36] A. O. El, S. W. Peters, and R. W. Heath, “The practical challenges of interference

alignment,” IEEE Wireless Commun. Mag., vol. 20, no. 1, pp. 35–42, Mar. 2013.

[37] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of freedom

of the k-user interference channel,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp.

3425–3441, 2008.

[38] O. O. Koyluoglu, H. E. Gamal, L. Lai, and H. V. Poor, “Interference alignment

for secrecy,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3323–3332, May 2011.

[39] Z. Ding, M. Peng, and H.-H. Chen, “A general relaying transmission protocol

for MIMO secrecy communications,” IEEE Trans. Commun., vol. 60, no. 11, pp.

3461–3471, Aug. 2012.

[40] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, and H. V. Poor,

“Application of non-orthogonal multiple access in lte and 5g networks,” IEEE

Commun. Mag., vol. 55, no. 2, pp. 185–191, Feb. 2017.

[41] M. Vaezi, Z. Ding, and H. Poor, Multiple access techniques for 5G wireless networks

and beyond. Springer, 2019.

[42] G. B. Satrya and S. Y. Shin, “Enhancing security of SIC algorithm on non-

orthogonal multiple access (NOMA) based systems,” Phys. Commun., vol. 33,

pp. 16–25, Apr. 2019.

[43] R. Melki, H. N. Noura, and A. Chehab, “Physical layer security for NOMA: lim-

itations, issues, and recommendations,” Annals of Telecommun., pp. 1–23, Nov.

2020.

[44] S. M. Islam, M. Zeng, and O. A. Dobre, “NOMA in 5G systems: Exciting possi-

bilities for enhancing spectral efficiency,” IEEE 5G Tech. Focus, vol. 1, no. 2, pp.

1–6, Jun. 2017.

[45] M. Bloch, J. Barros, M. R. Rodrigues, and S. W. McLaughlin, “Wireless

information-theoretic security,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2515–

2534, May 2008.

[46] S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans.

Wireless Commun., vol. 7, no. 6, pp. 2180–2189, Jun. 2008.



Chapter 8. Conclusions 152

[47] F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,”

IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4961–4972, Aug. 2011.

[48] T. Liu and S. Shamai, “A note on the secrecy capacity of the multiple-antenna

wiretap channel,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2547–2553, May

2009.

[49] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas I: The

MISOME wiretap channel,” IEEE Trans. Inf. Theory, vol. 56, no. 7, Jul. 2010.

[50] ——, “Secure transmission with multiple antennas - part II: The MIMOME wire-

tap channel,” IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5515–5532, Oct. 2010.

[51] P. Lin, S. Lai, S. Lin, and H. Su, “On secrecy rate of the generalized artificial-noise

assisted secure beamforming for wiretap channels,” IEEE J. Sel. Areas Commun.,

vol. 31, no. 9, pp. 1728–1740, Aug. 2013.

[52] X. Zhang, X. Zhou, and M. R. McKay, “On the design of artificial-noise-aided

secure multi-antenna transmission in slow fading channels,” IEEE Trans. Veh.

Technol., vol. 62, no. 5, pp. 2170–2181, Jan. 2013.

[53] J. Zhu, R. Schober, and V. K. Bhargava, “Secure transmission in multicell massive

MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 9, pp. 4766–4781,

Jul. 2014.

[54] J. J. Zhu, R. Schober, and V. K. Bhargava, “Linear precoding of data and artificial

noise in secure massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 15,

no. 3, pp. 2245–2261, Nov. 2015.

[55] T. M. Cover and J. A. Thomas, Elements Info. Theory. John Wiley & Sons,

2012.

[56] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecom-

mun., vol. 10, no. 6, pp. 585–595, Nov. 1999.

[57] G. Caire, “On the ergodic rate lower bounds with applications to massive MIMO,”

IEEE Trans. Wireless Commun., vol. 17, no. 5, pp. 3258–3268, Feb. 2018.

[58] D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge

university press, 2005.

[59] Z. Chen, L. Hadley, Z. Ding, and X. Dai, “Improving secrecy performance of a

wirelessly powered network,” IEEE Trans. Commun., vol. 65, no. 11, pp. 4996–

5008, Jul. 2017.



Chapter 8. Conclusions 153

[60] C. Wang and H.-M. Wang, “Opportunistic jamming for enhancing security:

stochastic geometry modeling and analysis,” IEEE Trans. Veh. Technol., vol. 65,

no. 12, pp. 10 213–10 217, Mar. 2016.

[61] L. Wang, K. J. Kim, T. Q. Duong, M. Elkashlan, and H. V. Poor, “Security

enhancement of cooperative single carrier systems,” IEEE Trans. Inf. Forensics

Security, vol. 10, no. 1, pp. 90–103, Sep. 2015.

[62] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: a fundamental tradeoff

in multiple-antenna channels,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073–

1096, May 2003.

[63] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of

MIMO channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 684–702, Jun.

2003.

[64] B. Muquet, M. D. Courville, and P. Duhamel, “Subspace-based blind and semi-

blind channel estimation for OFDM systems,” IEEE Trans. Signal Process.,

vol. 50, no. 7, pp. 1699–1712, Aug. 2002.

[65] C. Shin, R. W. Heath, and E. J. Powers, “Blind channel estimation for MIMO-

OFDM systems,” IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 670–685, Mar.

2007.

[66] S. Dahiya and A. K. Singh, “Channel estimation and channel tracking for cor-

related block-fading channels in massive MIMO systems,” Digital Commun. and

Networks, vol. 4, no. 2, pp. 138–147, Apr. 2018.

[67] T. K. Y. Lo, “Maximum ratio transmission,” IEEE Trans. Commun., vol. 47,

no. 10, pp. 1458–1461, Jun. 1999.

[68] J. Myung, H. Heo, and J. Park, “Joint beamforming and jamming for physical

layer security,” ETRI Journal, vol. 37, no. 5, pp. 898–905, Oct. 2015.

[69] Z. Mao, F. Hu, H. Liu, and Z. Ling, “Throughput analysis of MRT-ZF wireless

body area network with multi-antenna AP,” in 2019 IEEE/CIC Int. Conf. Com-

mun. China (ICCC), Aug. 2019, pp. 770–774.

[70] S. Tomasin and A. Dall’Arche, “Resource allocation for secret key agreement over

parallel channels with full and partial eavesdropper CSI,” IEEE Trans. Inf. Foren-

sics Security, vol. 10, no. 11, pp. 2314–2324, Jul. 2015.

[71] J. Wishart, “The generalised product moment distribution in samples from a nor-

mal multivariate population,” Biometrika, pp. 32–52, Jul. 1928.



Chapter 8. Conclusions 154

[72] E. P. Wigner, Statistical properties of real symmetric matrices with many dimen-

sions. Princeton University, 1957.

[73] V. A. Marc̆enko and L. A. Pastur, “Distribution of eigenvalues for some sets of

random matrices,” Math. USSR-Sbornik, vol. 1, no. 4, pp. 457–483, 1967.
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