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Abstract—The Water Distribution Networks (WDNs) optimi-
sation problem focuses on finding the combination of pipes from
a collection of discrete sizes available to construct a network of
pipes with minimum monetary cost. It is one of the most signifi-
cant problems faced by WDN engineers. This problem belongs to
the class of difficult combinatorial optimisation problems, whose
optimal solution is hard to find, due to its large search space.
Hyper-heuristics are high-level search algorithms that explore
the space of heuristics rather than the space of solutions in
a given optimisation problem. In this work, different selection
hyper-heuristics were proposed and empirically analysed in the
WDN optimisation problem, with the goal of minimising the
network’s cost. New York Tunnels network benchmark was
used to test the performance of these hyper-heuristics including
the Reinforcement Learning (RL) hyper-heuristic method, that
succeeded in achieving improved results.
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I. INTRODUCTION

Throughout the last decades, researches tackling the pipe
optimisation in WDNs have grown, as they play major role
in the improvement of quality of life. Optimisation of the
water distribution network design or rehabilitation is a classic
fundamental problem. It is considered a discrete NP-hard
difficult combinatorial optimisation problem [1], where the
goal is to choose a combination of pipes from a collection
of discrete sizes available to construct a minimal cost network
taking into consideration the problem’s constraints [2].

A number of metaheuristic methods have been successfully
applied to the WDN design/rehabilitation problem in the last
decades [3]. Relatively, new optimisation methods known as
hyper-heuristics were recently applied to solve this prob-
lem. Hyper-heuristic methods are general purpose, automated
methodologies and unlike metaheuristics, they explore the
heuristics search space rather than the solutions search space
directly [4]. Hyper-heuristics can be categorised into two
groups generation or selection hyper-heuristics. Generation

hyper-heuristics build a set of heuristics, while selection hyper-
heuristics select from a collection of pre-defined Low Level
Heuristics (LLHs) to apply during the search process [5].

In this study, the New York Tunnels (NYT) benchmark was
used to examine the application of reinforcement learning and
other well-known selection hyper-heuristics to solve the WDN
rehabilitation problem.

II. BACKGROUND

A. WDN Problem

WDNs are complex systems that aim to deliver fresh water
to demand points with adequate pressure using least monetary
costs. The optimisation of these networks depends on multiple
parameters. For example, water age, water supply shortage,
and velocity adherence [1]. This research focuses only on
pipe sizing as decision variables to reduce the network’s cost.
Solving the pipe optimisation problem requires finding the
combinations of pipe sizes that give the minimum possible cost
for a given test network. However, many combinations of these
pipes lead to a network failure. For example, it might cause a
failure in meeting the hydraulic requirements. This has been
addressed by introducing a ‘feasibility’ cost that is much more
heavily penalised than the network’s cost [1], [6]. Therefore,
a solution is evaluated (Eq 1) in terms of the feasibility (Eq 2)
and the network’s cost (Eq 3).

obj = C + α ∗ FheadDeficit (1)

where α is used to adjust the weight of the head deficit with
respect to the network’s cost in the objective function.

The head deficit is the feaibility function:

FheadDeficit =

m∑
n=1

((ht − hn) > 0) (2)

where n is one of the m demand nodes in the network, h is
the hydraulic head at node n, and ht is the target head for
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Fig. 1: A selection hyper-heuristic framework

each node, which is a uniform (not always necessary) value
for all network nodes.

C =

k∑
i=1

(1.1d1.24i × li) (3)

where k is the total number of pipes in the network, d is
the available diameter of pipe i, and l is its length in feet or
meters.

B. Selection Hyper-heuristics

Various number of optimisation methods were used to
solve the WDN problem, including single-based metaheuristic
methods [7], population-based genetic algorithms [8], and
selection hyper-heuristics [9], [1], [10].

Selection hyper-heuristics have shown significant improve-
ment in solving the problem by reducing financial and environ-
mental costs. Selection hyper-heuristics have two main stages:
heuristic selection and move acceptance. An initial solution is
passed through these stages for a number of iterations. At
each iteration, a heuristic is selected from a set of low level
heuristics and applied to the candidate solution to generate
a new solution. The generated solution is then accepted or
rejected based on the move acceptance method as illustrated
in Figure 1.

There is a wide variety of heuristic selection methods
described in [11]. Random Permutation (RP) produces a per-
mutation of the LLHs and applies them in the provided order
sequentially. On the other hand, Random Descent (RD) first
selects a random LLH and applies it until it fails to produce
further improvement, then another LLH is randomly selected
and so on. Random Permutation Descent (RPD) combines the
two methods RP and RD. Greedy (GR) applies all LLHs to a
candidate solution, and then chooses the LLH that produces
the largest improvement. Reinforcement Learning (RL) is
based on the idea of “rewarding and punishing” LLH. Initially,
it assigns all LLHs the same score, then at each iteration of
the search process, the LLH that results in an improvement
to the solution is rewarded (its score is increased), whereas
the LLH that results in non-improving or worsening solution

is punished (its score is decreased), and at each stage of the
problem the LLH with the highest score is chosen [12].

Move acceptance methods can be classified into a deter-
ministic or non-deterministic approaches, as well as stochastic
or non-stochastic. Accept All Moves is an example of a
non-stochastic deterministic approach. Some stochastic non-
deterministic acceptance approaches accept worsening solu-
tions such as Simulated Annealing (SA) move acceptance
method. SA [13] is inspired by the procedure of annealing
in physics where heating with high temperature is applied
allowing aggregation of particles as it is cooled. Thus, two
parameters need to be tuned based on the problem’s domain,
the temperature T that regulates the probability of accepting
solutions with higher costs, and β is a geometric cooling
schedule with Ti+1 = Tiβ where, i is the current iteration.
In SA, a newly generated solution at each step is accepted if
it improves the quality of the previous solution. Worsening
solutions are accepted with a certain probability P where,
P = e

−∆
T , and ∆ is the quality change [14]. These worsening

solutions are accepted so as to elude from local optima.
Late Acceptance (LA) approach only accepts non-worsening
solution with respect to a solution visited L steps previously
[15].

III. METHODOLOGY

The test network used in this research is the New York
Tunnels (NYT) problem instance. It consists of 21 pipes and
16 diameters, with a minimum head required to all nodes of
255 ft. except for the nodes 16, 17, and 1 which are 260, 272.8,
and 300 ft. respectively. The optimal solution for this network
under standard conditions with zero head deficit is $38.64m
[1]. Figure 2 shows the layout of the problem instance.

Epanet2 hydraulic simulator [16] has been employed to
provide the information needed to generate the hydraulic
values so as to decide to what extent the tested network meets
the hydraulic constraints.

A. Low Level Heuristics

Nine LLHs have been implemented as follows:
• LLH1: Change single pipe diameter in a random manner.
• LLH2: Change two pipe diameters in a random manner.
• LLH3: Select two pipes randomly and swap them.
• LLH4: Increase or decrease all pipes by one pipe size.
• LLH5: Select a pipe randomly and increase or decrease

its size by one.
• LLH6: Change between one to five pipe diameters in a

random manner.
• LLH7: Pick two random pipes, increase one and decrease

the other.
• LLH8: Pick four random pipes, increase two by one, and

decrease the remaining two by one.
• LLH9: Change all pipes randomly.

B. Selection Hyper-heuristics for WDN

In this study, four selection hyper-heuristics have been
implemented as follows: RP-LA, RPD-LA, GR-SA, and RL.



Fig. 2: New York Tunnels problem layout. Node 1 is the
reservoir/source of water

At each step, the heuristic selection method selects and applies
a LLH from the set of LLHs described above to generate a
new solution. The move acceptance method decides whether
to accept or reject the newly generated solution. In RL
method, initially all LLHs are assigned the same scores, then
at each iteration of the search process the LLH that results
in an improvement to the solution, is rewarded (its score is
increased), whereas the LLH that results in non-improving or
worsening solution, is punished (its score is decreased), and
at each stage of the problem the LLH with the best score
is selected. In this work, and as suggested in [12], the LLHs
with worsening solutions are given less penalty cost compared
to the reward, in order to give the LLH a second chance. A
counter referred to as β is used to manage the acceptance
of worsening solutions, it is increased more when infeasible
solutions are generated, and α represents the tolerance number
for successive non-improvements. In the case β > α and
the new solution is not much worse than the preceding one,
then the new solution will be accepted and all LLH’s scores
are reassigned to the initial values. Algorithm 1 provides the
pseudocode of RL algorithm, where α is set to 100, Reward
is set to 0.3, and penaltyw is set to 0.0625.

IV. EMPIRICAL RESULTS

The device used to conduct the experiments for this work is
an Intel Core i7-9750H, with a 16GB RAM. The four selection
hyper-heuristic methods described in Section III were run for
10 trails, with 100,000 evaluations for each. Table I presents
the results, providing the average, the standard deviation, the
minimum, and the maximum objective function values over
the ten trials. The table shows that all methods reached the
minimum cost of $38.64m, and reveals that the RL method
obtained the minimum average with significantly fewer num-

Algorithm 1: Pseudocode of Reinforcement Learning
1 Let LLH be the set of LLHs
2 Let LLHS be the scores of LLHs
3 Let j be the current iteration
4 Let β be the number of iterations without improvement
5 Let α be a tolerance number of non-improvements
6 Let reward be the factor for rewarding LLH
7 Let penaltyw be the factor for penalising LLH generating

worsening solutions
8 Let S, Snew, Sbest be the current, new and best solutions
9 Let C(S) be the objective function value of S;

10 Generate initial solution S;
11 Sbest ← S;
12 repeat
13 LLHi ← SelectBest(LLHS);
14 Snew ←ApplyLLH(LLHi, S)
15 if C(Snew) < C(S) then
16 Snew ← S;
17 LLHSi ← LLHSi + j ∗ reward;
18 β = 0;
19 if C(Snew) < C(Sbest) then
20 Sbest ← Snew;
21 end
22 end
23 else if C(Snew) <= C(Sbest) + 0.05 ∗ C(Sbest) then
24 LLHS ← [0.5] ∗K . K is set to the number of LLHs
25 β = 0;
26 end
27 else
28 LLHSi ← LLHSi − j ∗ penaltyw;
29 β ← β + 1;
30 end
31 until TerminationCriterionSatisfied();
32 return Sbest

TABLE I: Summary of experimental results. Best values are
highlighted in bold

Method Avg Std Min Max Itr

RP-LA 38974842.69 490019.799 38643533.22 40121269.35 29039.2

RPD-LA 39036747.43 571527.639 38643533.22 40020372.28 39924.5

GR-SA 42579057.84 5135995.78 38643533.22 55104316.05 56617.9

RL 38937030.07 279147.073 38643533.22 39246212.35 17371.1

ber of iterations in comparison with the other tested methods,
with an average of 17371.1 objective function evaluations.

Mann-Whitney-Wilcoxon statistical test was used with a
confidence level at 95 percent to compare pairwise variations
in performance between the hyper-heuristics statistically. The
notations are defined as follows: A versus B, where A is
the row and B is the column, < (>) indicates that A
(B) is better than B (A) and this performance variance is
statistically significant, while = indicates that there is no
statistical significance between A and B. Table II shows that
RL outperformed RPD-LA, and GR-SA algorithms, and this
performance is statistically significant. However, there is no
statistical significant between RL and RP-LA hyper-heuristics.

Figure 3 illustrates the average utilisation rate for all LLHs
over 10 runs for RP-LA and RL. It is noted that LLH1 and
LLH5 have succeeded in producing the best performance in
both RL and RP-LA hyper-heuristic methods.

Figure 4 depicts the changes in the objective function value
in RL versus the evaluations while solving the problem. It can



TABLE II: Pairwise performance comparison of RP-LA, RPD-
LA, GR-SA, and RL, based on the average over 10 trials

RP-LA RPD-LA GR-SA RL

RP-LA - = < =

RPD-LA = - < >

GR-SA > > - >

RL = < < -

RL RP-LA

LLH1

LLH2

LLH3

LLH4

LLH5

LLH6

LLH7

LLH8

LLH9

49%

10%

15%

25%

1%

17%

12%

9%
7% 26%

9%

10%
8%

2%

Fig. 3: Utilisation rate of each low level heuristics

be observed that RL continuously improves the quality of the
solution.
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Fig. 4: Improvement of cost in terms of objective function
value

V. CONCLUSION

In this work, four selection hyper-heuristics have been
applied to the WDN problem. These methods combine four
different heuristic selection methods and two move acceptance
methods. New York Tunnels benchmark was used to test the
performance of these methods, and their performances were

compared against each other to determine the best algorithm.
The analysis was made using Mann-Whitney-Wilcoxon sta-
tistical test, and it showed the success of RL method. The
results showed that in RL, LLH1 (randomly change only
one pipe diameter) was the most low level heuristic that
contributed to the best solutions produced. The generality level
and effectiveness that the selection hyper-heuristics achieve
will be further investigated on other WDN problem instances
of various sizes.
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