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Bottleneck Detection in High-variety Make-to-Order Shops with 

Complex Routings: An Assessment by Simulation 

 

Abstract 

This study uses simulation to assess the performance of alternative methods for detecting 

momentary bottlenecks in high-variety contexts that produce on a to-order basis. The results 

suggest that using the utilization level of a station to detect bottlenecks leads to the best 

performance, but that this method suffers from high nervousness. Using the active period of a 

station appears to be a better overall choice for practice given its good performance and low 

nervousness. Meanwhile, methods that focus on the workload at a station are a viable 

alternative, but they may become dysfunctional in shops with directed routings and a limit on 

the queue. This negative effect is even stronger if the corrected workload measure is used, as 

recently suggested in the literature on short term capacity adjustments. Finally, using the inter-

departure time detection method leads to the worst performance since: (i) it counterintuitively 

detects non-bottlenecks instead of bottlenecks; and, (ii) it is based on historical data, leading to 

a response delay. 

 

Keywords: Theory of Constraints; Capacity Planning; Workload Control; Bottleneck 

Analysis; Job Shop. 
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1. Introduction 

This study uses discrete event simulation to assess different methods for detecting momentary 

bottlenecks in the context of high-variety make-to-order production. It seeks to identify the 

best-performing methods and contingency factors affecting their application in practice. The 

importance of bottlenecks has been recognized since the emergence of the Theory of 

Constraints, which received broad research attention (Ikeziri et al., 2019). As part of The Goal, 

Goldratt & Cox (1984) outlined a five-step process of continuous improvement: identify the 

bottleneck, exploit the bottleneck, subordinate everything else to this exploitation, elevate the 

bottleneck and, finally, go back to step 1 to determine if the bottleneck has changed. It is 

apparent that the first step, to identify the bottleneck, is of utmost importance (Pehrsson et al., 

2016; Kahraman et al., 2020). Consequently, a large literature proposing different bottleneck 

detection methods has emerged (Roser & Nakano, 2015; Yu & Matta, 2016). This literature 

however typically focusses on production lines, i.e. contexts where every job visits every 

station in the same sequence.  

In practice, many shops have much more complex routings. This includes make-to-order 

versatile manufacturing companies (Lizarralde-Aiastui et al., 2020) which, in contrast to repeat 

business customizers, often produce a high variety of products (e.g. Muda & Hendry, 2003; 

Hines et al., 2004; Stevenson et al., 2005) in a job shop-like configuration (Hendry & 

Kingsman, 1989; Hendry et al., 1998; Stevenson et al., 2005). While there are other types of 

shops that produce a high variety of products, it is arguably these high-variety shops that are in 

the most urgent need of bottleneck detection methods since they are particularly prone to 

shifting bottlenecks (e.g. Lawrence & Buss, 1994). While there have been studies on bottleneck 

detection in job shops (e.g., Zhai et al., 2011), prior studies have tended to focus on a 

deterministic scheduling context. In contrast, the high-variety make-to-order environment 

considered in this study is stochastic. This kind of environment has been considered, for 

example, in Roser et al. (2002a), but the authors only assessed the performance of a single 

bottleneck detection method and did not present a comparison of different methods. 

Roser et al. (2002a, 2002b) distinguished between four types of bottleneck: a momentary 

(or sole) bottleneck, shifting bottlenecks (i.e. the preceding and momentary bottleneck during 

the shifting phase), an average bottleneck, and non-bottlenecks. In repetitive environments, 

average, shifting, and momentary bottlenecks often overlap, and information on the average 

bottleneck can be used to make system improvements since the production cycle will repeat. 

In high-variety environments, any overlap is only temporary, and information on the average 

bottleneck cannot be used since the same production situation will not repeat.  
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A practical example is the case of the Robert Bosch GmbH presented in Roser et al. (2014), 

where it was found that information on the momentary bottleneck is the most important in 

dynamic and unstable shop floor environments. Meanwhile, Subramaniyan et al. (2016) 

highlighted the importance of momentary bottlenecks for production and maintenance 

engineers when allocating resources on a real-time basis for bottleneck machines in the context 

of two different automotive manufacturing companies. Yet, despite the practical importance of 

momentary bottlenecks, it remains mostly unknown how bottleneck detection methods perform 

in identifying momentary bottlenecks, with the focus of many bottleneck detection methods 

presented in the literature or used in industry being on average bottlenecks (Roser et al. 2017). 

There is consequently a need to explore the performance of different bottleneck detection 

methods in a high-variety make-to-order shop with complex routings to provide guidance to 

managers on which method to apply to identify momentary bottlenecks in this context.  

In response, this study uses discrete event simulation to addresses the following two 

Research Questions (RQs): 

 RQ1: What is the best-performing bottleneck detection method in high-variety make-to-

order job shops? 

 RQ2: Are there contingency factors that guide the applicability of the different methods in 

this context? 

 

The literature is first reviewed in Section 2 to identify the different bottleneck detection 

methods that need to be considered in our study, including contingency factors that may impact 

the applicability of existing bottleneck detection methods. The simulation model used to 

evaluate the performance of the considered methods is then outlined in Section 3. Section 4 

presents the results before they are discussed in the context of previous literature in Section 5, 

where the managerial implications are also outlined. Conclusions are provided in Section 6 

followed by the limitations and future research directions in Section 7.  

 

2. Literature Review 

Note that from here on the term “bottleneck detection method” refers to bottleneck detection 

methods that focus on momentary bottlenecks if it is not specified otherwise. The bottleneck 

definition adopted in this study is first outlined in Section 2.1. Section 2.2 then reviews the 

literature on bottleneck detection methods to identify the methods to be included in our study. 

Finally, Section 2.3 identifies potential contingency factors that need to be included in our study. 
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2.1 Bottleneck Definition 

The term “bottleneck” is widely used in research and practice. However, when prompted for a 

definition, few academics appear to agree on what it means (Lawrence & Buss, 1994). In this 

study we follow the definition given by Roser & Nakano (2015) since: (i) it focusses on system 

performance and is not linked to a specific measure that would predetermine the bottleneck 

detection method, as in Lawrence & Buss (1994); and, (ii) it is sufficiently general compared 

to more mathematical expressions as proposed in, for example, Li (2018). However, unlike 

Roser & Nakano (2015), we focus on a make-to-order shop, meaning that the throughput is 

only one objective – on-time delivery is also an important objective. Thus, in this study we 

adopt the following revised definition: 

 

“Bottlenecks are processes that influence both the throughput and the delivery time 

performance of the entire system. The larger the influence, the more significant the 

bottleneck.” 

 

2.2 Review of Bottleneck Detection Methods 

This section introduces the bottleneck detection methods to be included in our study. We will 

focus on a shop with high variety routings. This consequently excludes bottleneck detection 

methods that require consistency in upstream and downstream stations, such as the arrow 

method (e.g. Kuo et al., 1996), the inactive period method (Li et al., 2007), the turning point 

method (Li et al., 2009, Li, 2018) and the bottleneck walk method (Roser et al., 2014). The 

existing bottleneck detection methods suitable for the production context considered in our 

study will be subdivided into methods that focus on the queue state and methods that focus on 

the station state. The former will be discussed in Section 2.2.1 and the latter in Section 2.2.2. 

 

2.2.1 Bottleneck Detection Methods using the Queue State 

A first set of bottleneck detection methods suitable for high-variety make-to-order contexts are 

methods that focus on the queue in front of a station. One of the biggest advantages of these 

methods is that inventory is directly observable and typically easily measurable. For example, 

the maximum workload method detects the bottleneck by measuring the workload Ws of each 

station s, with the bottleneck being the station with the maximum workload, that is 

𝑚𝑎𝑥 (𝑊1, 𝑊2, … , 𝑊𝑛), with n stations (Law & Kelton, 1991). This is equivalent to the queue 

length method, where the only difference is that it uses a different workload measure: the 

number of jobs. It detects the bottlenecks by measuring the queue lengths Qs, with the 

bottleneck being the station with the largest queue length, that is 𝑚𝑎𝑥 (𝑄1, 𝑄2, … , 𝑄𝑛) 
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(Lawrence & Buss, 1994). According to Little’s Law (Little, 1966), the above is also similar to 

the waiting time method, which considers the station with the largest waiting time in front of a 

station to be the bottleneck (Roser et al., 2001).  

The above bottleneck detection methods focus on the direct load at a station. This neglects 

the workload that is yet to arrive at a station. Oosterman et al. (2000) introduced different 

measures of the workload that include both the direct and upstream load. For example, the 

corrected aggregate workload, which gives the earliest possible indication that congestion is 

foreseen at a certain station (Land et al. 2015). To calculate the corrected aggregate load, a job 

contributes to the load of a station upon its entry to the shop and is excluded as soon as the 

operation at this station is complete. The corrected aggregate load contribution of a job to the 

ith workstation in its routing is thereby determined by 
𝑝𝑖𝑗

𝑖
, where pij is the processing time of 

job j at station i. The corrected workload was argued to give the best representation of the future 

expected direct load of a station based on the mix of routings actually present on the shop floor 

(Oosterman et al., 2000). 

 

2.2.2 Bottleneck Detection Methods using the Station State 

A second set of bottleneck detection methods suitable for high-variety make-to-order contexts 

focus on the actual capacity resource, i.e. the station. For example, the utilization method (from 

Hopp & Spearman, 2000) detects the bottlenecks by measuring the utilization Us, with the 

bottleneck being the station with the largest utilization, that is 𝑚𝑎𝑥 (𝑈1,  𝑈2, … , 𝑈𝑛) . The 

utilization method neglects differences in station state over time, only looking at the long term 

utilization (this is the active period divided by the sum of the active and inactive period). In 

contrast, the active period method only considers the duration that a station is working without 

interruption (Roser et al., 2002a). The station with the longest active period is considered to be 

the bottleneck (Roser & Nakano, 2015), as this station is the least likely to be interrupted by 

other stations and thus dictates the overall system output (Roser et al., 2001). 

Meanwhile, the inter-departure time variance method identifies the station with the smallest 

work-in-process inter-departure time variance as the bottleneck (Betterton & Silver, 2012). The 

station’s coefficient of variation for departures 𝐶𝑑 is hereby a function of its own variation 

𝐶𝑒, its utilization u, and the variation of arrivals from the upstream stations 𝐶𝑎, this is 𝐶𝑑
2 =

𝑢2𝐶𝑒
2 + (1 − 𝑢2)𝐶𝑎

2. The inter-departure time variance is based on the supposed link between 

the active time and starvation/blockage. Since the bottleneck is argued to have a higher active 

time than other stations, it will cause upstream stations to be blocked and downstream stations 
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to be starved. The increased blocking and starving at non-bottleneck stations will cause their 

inter-departure time variance to be larger, and the lower blocking and starving at the bottleneck 

will cause its inter-departure variance to be smaller (Betterton & Silver, 2012). 
 

2.3 Contingency Factors Influencing Applicability 

The existing literature suggests one important contingency factor: the buffer limit. The buffer 

limit results in two guidelines for the application of the above bottleneck detection methods. 

First, existing methods that use the queue state (Section 2.2.1) may become inaccurate in 

systems with finite queues. Second, existing methods that use the station state (Section 2.2.2) 

may become inaccurate in systems with infinite queues (since there is no blocking information 

to signal that the downstream queue is full). However, these findings are in the context of shops 

with constant, directed routings, i.e. production lines. In general, most of the studies comparing 

different bottleneck detection methods, such as Roser & Nakano (2015) and Yu & Matta (2016), 

focused on shops with directed routings.  

This predominant focus on directed routings in the literature leads to a second important 

contingency factor: the routing characteristics. For example, existing methods that use 

information on upstream and downstream stations cannot be applied if there is no dominant 

flow since, in this case, upstream and downstream points simply do not exist. In general, it 

remains largely unknown how the bottleneck detection methods identified from the literature 

perform in shops with more complex routings, such as high-variety make-to-order shops, and 

whether the above guidelines still apply. This is considered a major shortcoming given that 

shifting bottlenecks are more likely in high-variety contexts and, consequently, the detection 

of momentary bottlenecks is of utmost importance. 

 

3. Simulation Model 

The modelled shop and job characteristics are first outlined in Section 3.1. The different 

methods considered to identify the momentary bottleneck are then described in Section 3.2 

before Section 3.3 outlines how we respond to the identified bottleneck. Section 3.4 then 

outlines how shop floor control is exercised. Finally, the experimental design and the 

performance measures used are summarized in Section 3.5.  

 

3.1 Job and Shop Characteristics 

In order to implement our first contingency factor – routing characteristics – two shop types 

are considered. A Pure Job Shop (PJS; Melnyk & Ragatz, 1989), which is characterized by 
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random and undirected routings, and a General Flow Shop (GFS; Oosterman et al. 2000), 

which is characterized by random direct routings. Both shops have been implemented in the 

Python© programming language using the SimPy© simulation module. Further, both shops 

contain seven stations, where each station is a single, constant capacity resource. The routing 

length of jobs varies uniformly from one to seven operations. All stations have an equal 

probability of being visited and a particular station is required at most once in the routing of a 

job. This routing vector for the PJS is then sorted for the GFS, so there are typical upstream 

and downstream stations.  

In order to implement our second contingency factor, the queue space in front of each station 

is limited for the GFS. Three different limits are applied: 15 jobs, 20 jobs, and infinite (i.e. no 

limit). For the PJS, no limit is applied to avoid the mutual blocking of stations which may occur 

for undirected routings (Lödding et al., 2003). So, in total, four different shop types are used: 

GFS 15 jobs limit, GFS 20 jobs limit, GFS no limit, and PJS no limit. As is typical for make-

to-order shops, there is no finished goods inventory and jobs are delivered to the customer as 

soon as they have been completed.  

Operation processing times follow a truncated 2-Erlang distribution with a mean of 1 time 

unit after truncation. The inter-arrival time of jobs to the shop follows an exponential 

distribution with a mean of 0.572 time units, which deliberately results in a utilization level of 

100% at the bottleneck without adjustment. The high momentary utilization is possible given 

the bottleneck shifts that are described below. 

We arbitrarily create an imbalance across stations. As in previous literature (e.g. Thürer et 

al., 2017) Non-bottlenecks are created by reducing the corresponding processing times. We 

experimented with three different levels of bottleneck strength: low=10%; moderate=15%; and 

strong=20% processing time decrease. A bottleneck can be due to the station condition, i.e. the 

station working slower than normal, or due to changes in job properties, i.e. the workload of 

incoming jobs increases. In the first case, processing times are only adjusted once the job 

arrives at the station. In the second case, processing times are adjusted as soon as the job arrives 

at the system. There is one bottleneck station. In order to evaluate how fast and accurate a 

bottleneck detection method identifies a bottleneck, we shift the bottleneck during a simulation 

run. Two settings were considered: a shift every 50 jobs and a shift every 100 jobs. All stations 

have the same probability of being the next bottleneck. 

Finally. due dates are set exogenously by adding a uniformly distributed random allowance 

factor to the job entry time. This factor was set arbitrarily between 26 and 36 time units. 
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3.2 Bottleneck Detection Methods 

From the three bottleneck detection methods that use the queue state – maximum workload 

method (e.g., Law & Kelton, 1991), queue length method (e.g. Lawrence & Buss, 1994), and 

waiting time method (e.g. Roser et al., 2001) – we only consider the maximum workload 

method. Using the queue length instead of the workload leads to two problems. First, several 

stations may have the same queue length (but different workloads). And second, a station with 

many jobs in the queue does not necessarily constrain the system if these jobs are relatively 

small and there are fewer but much larger jobs at another station (Roser et al., 2003). Five 

different bottleneck detection methods – four from the literature and one newly developed in 

this study – will consequently be considered as follows: 

 Maximum Workload: where the station with the maximum workload in the queue is the 

bottleneck. 

 Utilization: where the station with the highest utilization is the bottleneck. 

 Active Period: where the station with the longest uninterrupted active period is the 

momentary bottleneck. 

 Inter-Departure Time: where the station with the lowest inter-departure time variance is the 

momentary bottleneck. 

 Corrected Workload: where the station with the maximum corrected workload is the 

bottleneck. 

 

Finally, the utilization method and the inter-departure time method require a time frame over 

which the utilization rates and inter-departure times are calculated. In this study, we considered 

the last 30 and the last 50 time units. 

 

3.3 Response to Bottleneck: Capacity Adjustments 

There is no possibility of accurately predicting what is the ‘real’ bottleneck since this itself 

would require a bottleneck detection method, which then per definition would be the best 

performing. In order to avoid this confirmation bias (Pohl, 2004), we measure the actual impact 

on system performance. This will be achieved by adjusting capacity at the station identified as 

the bottleneck by the five different bottleneck detection methods described above. There will 

be a 5% reduction in the processing time (after a possible adjustment to create the bottleneck). 

 

3.4 Shop Floor Control – Priority Dispatching 

As in previous studies on bottleneck detection, it is assumed that all jobs are accepted, materials 



10 

 

are available, and all necessary information regarding shop floor routings, processing times, 

etc. is known. Jobs are released immediately to the shop floor on arrival. Jobs in the queues are 

prioritized according to operation due dates, which are calculated by backward scheduling from 

the due date. In this study, the allowance for the operation throughput times is given by the 

cumulative moving average, i.e. the average of all operation throughput times realized until the 

current simulation time. 

 

3.5 Experimental Design and Performance Measures 

The experimental factors are summarized in Table 1. A full factorial design was used with 336 

scenarios (4x3x2x2x7x1), where each scenario was replicated 100 times. Results were 

collected over 10,000 time units following a warm-up period of 3,000 time units. These 

parameters allowed us to obtain stable results while keeping the simulation run time to a 

reasonable level. 

 

Table 1: Summary of Experimental Factors 

 

Experimental Factor Level 

Shop Type (4 level) GFS (General Flow Shop) 15 jobs limit, GFS 20 jobs limit, 

GFS no limit and PJS (Pure Job Shop) no limit. 

Bottleneck Strength (3 level) low=10%; moderate=15%; and strong=20% 

Cause of Bottleneck (2 level) station and arriving workload 

Timing of Bottleneck Shift (2 level) Every 50 or every 100 jobs 

Bottleneck Detection Methods (7 level) Maximum Workload, Utilization (time frame 30 and 50 time 

units), Active Period, Inter-Departure Time (time frame 30 

and 50 time units) and Corrected Workload 

Capacity Adjustment Factor (1 level) 5% 

 

Bottlenecks were defined in this study as processes that influence the throughput and the 

delivery performance of the entire system. To assess throughput performance, we measure the 

mean lead time – i.e. the mean of the completion date minus the arrival date across jobs. Please 

note that the fixed arrival rates in the simulation determine the total throughput that can be 

realized. Therefore, the throughput improvement capabilities of a bottleneck detection method 

will manifest in shorter lead times, rather than increased throughput. Delivery performance will 

be measured by: the percentage tardy – the percentage of jobs completed after the due date; 

and, the mean tardiness – that is, 𝑇𝑗 = 𝑚𝑎𝑥( 0, 𝐿𝑗), with 𝐿𝑗 being the lateness of job j (i.e. the 

actual delivery date minus the due date of job j). 
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4. Results 

To obtain a first indication of the relative impact of the experimental factors, statistical analysis 

has been conducted by applying an Analysis of Variance (ANOVA). ANOVA is here based on 

a block design, which is typically used to account for known sources of variation in an 

experiment. In our ANOVA, we treat the shop type as the blocking factor. This allows the main 

effects of this factor and the main and interaction effects of our four factors related to 

bottlenecks and bottleneck detection – bottleneck strength, count between bottleneck shifts, 

location of bottleneck occurrence (upon arrival or at the station), and bottleneck detection 

method – to be captured. We do not present detailed results due to space limitations. All main 

effects were found to be statistically significant, as were about half of the two-way interactions. 

There were no significant three-way or four-way interactions.  

The Scheffé multiple comparison procedure, which is arguably the most conservative of the 

commonly available post-hoc tests (Spurrier, 1999), was applied to obtain a first indication of 

the direction and size of the performance differences across bottleneck detection methods. 

Table 2 gives the 95% confidence interval. If this interval includes zero, performance 

differences are not considered to be statistically significant. We can observe significant 

performance differences for most pairs for at least one performance measure. Detailed 

performance results to further explore these differences will be presented next. 
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Table 2: Results for the Scheffé Multiple Comparison Procedure 

 

Bottleneck Detection 

Method (x) 

 

Method (y) 

Lead Time Percentage Tardy Mean Tardiness 

lower1) upper lower upper lower upper 

Utilization 30 Max Workload -2.31 -0.59 -0.03 -0.01 -1.96 -0.32 

Utilization 50 Max Workload -2.00 -0.27 -0.02 -0.01 -1.86 -0.23 

Active Period Max Workload -1.00 0.72 0.00* 0.02 -1.16* 0.48 

Inter-Departure 30 Max Workload 3.00 4.72 0.05 0.07 1.86 3.50 

Inter-Departure 50 Max Workload 3.04 4.76 0.06 0.07 1.89 3.52 

Corrected Workload Max Workload 1.14 2.86 0.00* 0.01 1.11 2.75 

Utilization 50 Utilization 30 -0.55* 1.17 0.00* 0.01 -0.72* 0.92 

Active Period Utilization 30 0.44 2.17 0.02 0.03 -0.02* 1.62 

Inter-Departure 30 Utilization 30 4.44 6.17 0.07 0.08 3.00 4.64 

Inter-Departure 50 Utilization 30 4.49 6.21 0.07 0.09 3.03 4.66 

Corrected Workload Utilization 30 2.59 4.31 0.02 0.03 2.25 3.89 

Active Period Utilization 50 0.13 1.86 0.02 0.03 -0.11* 1.52 

Inter-Departure 30 Utilization 50 4.13 5.86 0.07 0.08 2.91 4.54 

Inter-Departure 50 Utilization 50 4.17 5.90 0.07 0.08 2.93 4.56 

Corrected Workload Utilization 50 2.27 4.00 0.01 0.03 2.16 3.79 

Inter-Departure 30 Active Period 3.14 4.86 0.04 0.06 2.20 3.84 

Inter-Departure 50 Active Period 3.18 4.90 0.05 0.06 2.23 3.86 

Corrected Workload Active Period 1.28 3.00 -0.01* 0.00 1.45 3.09 

Inter-Departure 50 Inter-Departure 30 -0.82* 0.90 0.00* 0.01 -0.79* 0.84 

Corrected Workload Inter-Departure 30 -2.72 -1.00 -0.06 -0.05 -1.57* 0.07 

Corrected Workload Inter-Departure 50 -2.76 -1.04 -0.06 -0.05 -1.59* 0.04 

1) 95% confidence interval; * not significant at α=0.05 

 

4.1 Bottleneck Detection Method in PJS and GFS without Queue Limit (Blocking) 

Results for the PJS and GFS without a queue limit are presented in Table 3. Table 3 gives the 

lead time, percentage tardy, and mean tardiness together with the number of changes in the 

detected bottleneck per 100 time units. The latter measure is used to assess the nervousness of 

the bottleneck detection methods.  
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Table 3: Results for “Strong” Bottleneck Strength in the Pure Job Shop and General Flow 

Shop without a Limit on the Queue 

 

Bottleneck Bottleneck 

Detection 

Pure Job Shop (PJS) General Flow Shop (GFS) 

When? Where? LT1) PT2) MT3) Change4) LT1) PT2) MT3) Change4) 

Every 50 arrival 

 

Max Workload 17.17 5.8% 0.26 60.57 17.49 8.0% 0.46 57.43 

Utilization 30 17.02 5.7% 0.26 122.88 17.32 7.7% 0.44 127.22 

Utilization 50 17.24 6.1% 0.28 83.07 17.58 8.2% 0.47 87.80 

Active Period 17.47 6.9% 0.34 4.88 17.91 9.5% 0.59 4.46 

Inter-Departure 30 18.45 9.7% 0.54 34.96 18.90 12.2% 0.84 33.41 

Inter-Departure 50 18.45 9.8% 0.54 27.18 18.92 12.3% 0.85 25.54 

Corrected Load 17.10 5.6% 0.25 47.91 17.44 7.9% 0.46 44.22 

station Max Workload 16.93 5.1% 0.21 62.48 17.19 7.1% 0.39 59.13 

Utilization 30 16.77 5.0% 0.21 121.45 17.02 6.8% 0.37 125.66 

Utilization 50 16.99 5.3% 0.23 81.29 17.27 7.3% 0.40 86.02 

Active Period 17.20 6.1% 0.28 5.05 17.56 8.4% 0.50 4.62 

Inter-Departure 30 18.08 8.5% 0.44 34.95 18.46 10.8% 0.70 33.48 

Inter-Departure 50 18.10 8.6% 0.45 27.02 18.49 10.9% 0.70 25.67 

Corrected Load 16.89 5.0% 0.21 49.65 17.15 7.1% 0.40 46.00 

Every 100 arrival Max Workload 17.73 7.5% 0.40 56.53 18.10 9.8% 0.63 52.91 

Utilization 30 17.59 7.4% 0.41 124.02 17.95 9.6% 0.62 128.78 

Utilization 50 17.81 7.9% 0.43 83.24 18.22 10.2% 0.66 89.10 

Active Period 18.11 8.9% 0.52 4.49 18.63 11.6% 0.81 3.99 

Inter-Departure 30 19.29 12.5% 0.83 34.72 19.89 15.5% 1.21 33.05 

Inter-Departure 50 19.30 12.6% 0.83 26.45 19.92 15.5% 1.21 24.97 

Corrected Load 17.68 7.3% 0.39 45.10 18.06 9.8% 0.63 41.54 

station Max Workload 17.51 6.7% 0.34 58.76 17.84 9.0% 0.54 54.81 

Utilization 30 17.33 6.5% 0.34 122.95 17.65 8.7% 0.52 127.49 

Utilization 50 17.56 7.0% 0.36 81.67 17.90 9.3% 0.56 87.62 

Active Period 17.83 8.0% 0.44 4.62 18.28 10.6% 0.69 4.12 

Inter-Departure 30 18.89 11.1% 0.69 34.95 19.40 13.9% 1.01 33.21 

Inter-Departure 50 18.91 11.2% 0.69 26.66 19.44 14.0% 1.02 24.98 

Corrected Load 17.49 6.7% 0.34 47.35 17.83 9.1% 0.55 43.60 

LT1) – Lead Time; PT2) – Percentage Tardy; MT3) – Mean Tardiness; Change4) – Changes in Detected Bottleneck 

per 100 time units 
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The results in Table 3 show that the Max Workload, Utilization, and Corrected Workload 

methods perform equivalent and the best across all of the bottleneck detection methods. 

However, the Active Period method excels in terms of nervousness. That is, it is by far the least 

nervous method. It is also the method with the least information requirements since it only 

needs to recall the last inactive period (i.e. one data point). The high nervousness of the 

Utilization method can be explained by the calculation of the utilization rate, which does not 

consider partly processed jobs at the beginning and the end of the period that is used for the 

calculation.  

Meanwhile, the Inter-Departure Time method consistently performs the worst. If all stations 

are active, i.e. there is at least one job to be processed all of the time then the inter-departure 

time variance reflects the variability of the processing time. Since bottlenecks are created by 

reducing the processing times at non bottleneck stations, the variability at the set bottleneck is 

necessarily higher. Since the Inter-Departure Time method identifies the station with the lowest 

inter-departure time as the bottleneck, it counter-intuitively identifies the non-bottleneck. Note 

that Betterton & Silver (2012) also used the same coefficient of variation, this is the standard 

deviation divided by the mean; where higher means (set bottleneck) imply higher standard 

deviations (identified as non-bottlenecks). Hence, the Inter-Departure Time method appears to 

be dependent on the occurrence of blocking and starvation. 

This dependence on the occurrence of blocking and starvation could also be argued to hold 

for the Utilization and Active Period methods. Having a small stable direct load over a time 

period will result in a 100% utilization and the maximum active period. Only disruptions 

provide discrimination across stations. However, disruptions do not necessarily result in longer 

operation throughput times. Yet it is the operation throughput times that determine the lead 

time and consequently delivery performance in our make-to-order context. It follows that the 

Utilization and Active Period methods perform well in our study because there is a direct link 

between a station that is active or utilized and the queue length.  

Finally, the above conclusions are robust to all three environmental factors, i.e. routing 

direction (PJS vs. GFS), the time between bottleneck shifts, and whether a bottleneck occurs at 

arrival (e.g. due to an increase in the incoming workload) or at the station (e.g. due to reduced 

speed). The impact of our last environmental factor – the queue limit – will be provided in 

Section 4.2. But first, a more in-depth analysis of the results will be provided. 
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4.1.1 Analysis of the Results 

To further explore the performance differences across bottleneck detection methods, we 

recorded when a station was detected as the bottleneck, when a station was set as the bottleneck 

(at arrival), and the direct load for an arbitrary station in the pure job shop. We used the PJS 

since here all stations show a similar pattern. Figure 1 gives the results for 5,000 time units 

(from 3,000 to 8,000) during an arbitrary simulation run. Note that we do not present results 

for all bottleneck detection methods to avoid redundancies. 

From Figure 1 we can observe that there are three distinct time periods: Period 1, around 

4,100 time units, is a period where the high direct load cannot be associated with the set 

bottleneck; Period 2, around 6,000 time units, is a period where there is a clear association 

between the set bottleneck and a high direct load; and, Period 3, around 6,500 to 7,000 time 

units, is a period in which being the set bottleneck results in a much lower direct load than 

Period 1. This highlights that there is no clear link between being the set bottleneck and the 

actual realized queue length in environments with high-variety routings and stochastic 

processing times. This discrepancy becomes even greater in the GFS, where upstream stations 

are more likely to constrain the system.  

The Max Workload, Utilization, and Active Period methods react appropriately to all three 

periods of high direct load (by identifying the station as a bottleneck). In general, all three 

methods show a similar pattern in terms of bottleneck detection. However, the Inter Departure 

Time method appears to neglect the high direct load in Period 1 and Period 2. This is because 

it does not consider the queue length and, as argued above, detects non-bottlenecks instead of 

bottlenecks in the considered production context. Meanwhile, the Active Period method creates 

the most stable periods where the station is detected as a bottleneck, as was expected from the 

results in Table 3. This results in the lowest direct load during the three high load periods; 

however, from Table 3, it was apparent that it does not result in the best performance. Imagine 

another station that has a higher direct load but where the high load period only starts after the 

current station. This station will not be identified as the bottleneck by the Active Period method. 

It will be identified as the bottleneck by the Utilization method for some periods of time given 

the discreteness in the calculation of the utilization. It will also be identified as a bottleneck by 

the Max Workload method, which directly focusses on the direct load. 
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Figure 1: Performance Results Over Time for: Station Detected as the Bottleneck, Station Set 

as the Bottleneck, and Direct Load 
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4.2 Bottleneck Detection Method in the GFS with a Queue Limit (Blocking) 

Table 4 provides the results for the general flow shop with a queue limit, i.e. scenarios where 

blocking may occur. Blocking is hereby defined as the situation where a job, having completed 

all of its processing requirements at a station, must remain at the station (and thus blocks station 

capacity) until space in the queue at the next station in its routing becomes available (Roser et 

al., 2014). 

While there is a general deterioration in performance if there is a queue limit, performance 

differences across bottleneck detection methods appear to be unaffected by the existence of a 

queue limit at moderate bottleneck strength. The same holds for strong bottlenecks. However 

there is a change if bottleneck strength is low, as can be seen from Table 5, which gives the 

results for low bottleneck strength and a bottleneck shift every 50 jobs. In Table 5, we observe 

a strong deterioration for Max Workload and Corrected Workload. This will be explored next. 

 

  



18 

 

Table 4: Results for “Strong” Bottleneck Strength in the General Flow Shop with the Limit on 

the Queue Set to 20 and 15 Jobs 

 

Bottleneck Bottleneck 

Detection 

GFS Limit 20 jobs GFS Limit 15 jobs 

When? Where? LT1) PT2) MT3) Change4) LT1) PT2) MT3) Change4) 

Every 50 arrival 

 

Max Workload 17.80 8.9% 0.61 57.69 18.73 11.6% 1.01 58.92 

Utilization 30 17.59 8.5% 0.54 126.48 18.30 10.4% 0.81 124.62 

Utilization 50 17.88 9.2% 0.59 86.35 18.64 11.3% 0.87 83.18 

Active Period 18.22 10.4% 0.72 4.45 19.05 12.6% 1.05 4.41 

Inter-Departure 30 19.57 14.1% 1.16 33.62 21.07 18.1% 1.89 33.81 

Inter-Departure 50 19.58 14.2% 1.16 25.65 21.11 18.2% 1.90 25.95 

Corrected Load 17.76 8.9% 0.61 44.20 18.88 11.9% 1.16 43.32 

station Max Workload 17.43 7.9% 0.50 59.51 18.28 10.5% 0.84 60.47 

Utilization 30 17.22 7.4% 0.44 124.94 17.84 9.2% 0.65 123.22 

Utilization 50 17.50 8.0% 0.49 84.74 18.26 10.2% 0.76 81.92 

Active Period 17.82 9.2% 0.58 4.62 18.53 11.2% 0.85 4.59 

Inter-Departure 30 19.00 12.4% 0.94 33.67 20.34 15.9% 1.56 33.72 

Inter-Departure 50 19.03 12.5% 0.94 25.81 20.37 16.1% 1.57 25.92 

Corrected Load 17.42 7.9% 0.52 45.99 18.39 10.9% 0.94 45.12 

Every 100 arrival Max Workload 18.65 11.4% 0.89 53.47 20.10 15.4% 1.59 54.75 

Utilization 30 18.44 11.1% 0.82 127.83 19.46 13.8% 1.24 125.78 

Utilization 50 18.72 11.7% 0.86 87.28 19.90 14.9% 1.37 83.93 

Active Period 19.19 13.3% 1.05 3.99 20.39 16.4% 1.59 3.93 

Inter-Departure 30 21.17 18.9% 1.87 38.65 23.40 24.3% 3.10 33.32 

Inter-Departure 50 21.18 19.0% 1.86 25.07 23.50 24.5% 3.17 25.36 

Corrected Load 18.61 11.4% 0.90 41.35 20.43 16.0% 1.88 39.63 

station Max Workload 18.31 10.4% 0.77 55.35 19.64 14.2% 1.38 56.75 

Utilization 30 18.01 9.9% 0.66 126.52 18.94 12.3% 1.02 124.71 

Utilization 50 18.32 10.6% 0.72 85.79 19.36 13.3% 1.16 82.57 

Active Period 18.69 11.8% 0.85 4.10 19.81 14.6% 1.36 4.05 

Inter-Departure 30 20.32 16.5% 1.44 33.42 22.45 21.8% 2.60 33.28 

Inter-Departure 50 20.36 16.6% 1.47 25.23 22.48 21.8% 2.60 25.42 

Corrected Load 18.31 10.5% 0.78 43.54 19.88 14.6% 1.58 41.98 

LT1) – Lead Time; PT2) – Percentage Tardy; MT3) – Mean Tardiness; Change4) – Changes in Detected Bottleneck 

per 100 time units 
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Table 5: Results for Low Bottleneck Strength in General Flow Shops with the Limit on the 

Queue Set to 15 and a Bottleneck Shift every 50 Jobs 

 

 Arrival Station 

LT1) PT2) MT3) Change4) LT1) PT2) MT3) Change4) 

Max Workload 42.14 52.6% 17.11 48.57 40.33 50.7% 15.53 49.07 

Utilization 30 31.74 40.8% 8.17 164.68 31.53 40.0% 8.07 163.98 

Utilization 50 32.86 42.7% 8.99 125.91 32.02 41.1% 8.35 124.59 

Active Period 37.54 49.2% 12.82 2.24 36.63 47.9% 12.09 2.28 

Inter-Departure 30 62.41 64.7% 35.79 32.98 60.07 62.9% 33.69 33.15 

Inter-Departure 50 62.19 65.0% 35.54 24.96 58.26 63.3% 31.81 24.83 

Corrected Load 64.56 60.6% 38.56 18.36 58.48 58.8% 32.74 19.52 

LT1) – Lead Time; PT2) – Percentage Tardy; MT3) – Mean Tardiness; Change4) – Changes in Detected Bottleneck 

per 100 time units 

 

4.2.1 Analysis of Results 

To better understand the aforementioned performance deterioration at low bottleneck strength, 

we recorded the blocking time, the number of occurrences of blocking, and the number of jobs 

currently queuing at the station that is blocked. The results for Station 1, Station 2, and Station 

3 are provided in Table 6. We also recorded the percentage of time a station was identified as a 

bottleneck by a given method. These results are given in Table 7.  

 

Table 6: Blocking Analysis for General Flow Shop, Queue Limit 15, Low Bottleneck Strength, 

Bottleneck Shift Every 50 Jobs, and Bottleneck Occurrence at Arrival – Release Blocking at 

Station 1, Station 2, and Station 3 

 

 
Release Station 1 Station 2 Station 3 

Dur.1) Count2) Dur. Count Load3) Dur. Count Load Dur. Count Load 

Max Workload 0.9 6817 1.1 635 14.1 1.0 433 9.6 1.0 303 8.6 

Utilization 30 0.9 5077 1.1 444 12.8 1.0 318 8.6 1.0 231 7.8 

Utilization 50 0.9 5340 1.1 461 13.0 1.0 324 8.7 1.0 242 7.9 

Active Period 0.9 6536 1.1 528 13.6 1.0 361 8.9 1.0 262 8.1 

Inter-Departure 30 0.9 9685 1.2 747 14.7 1.1 512 9.6 1.1 365 8.6 

Inter-Departure 50 0.9 9787 1.2 756 14.7 1.1 514 9.6 1.1 367 8.5 

Corrected Workload 0.9 8460 1.1 885 14.7 1.1 524 10.3 1.1 359 8.8 

Dur.1) - average blockage duration; Count2) - average occurrences per 10.000 time units; Load3) - average number 

of jobs queuing at blocked station when blocking occurred 
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Table 7: Analysis of Bottleneck Detection for General Flow Shop, Queue Limit 15, Low 

Bottleneck Strength, Bottleneck Shift Every 50 Jobs, and Bottleneck Occurrence at Arrival – 

Percentage of Time Identified as the Bottleneck 

 
 

Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 

Max Workload 36.5% 13.7% 11.5% 10.3% 9.3% 7.8% 10.9% 

Utilization 30 14.1% 13.9% 14.3% 14.5% 14.7% 14.2% 14.4% 

Utilization 50 14.2% 13.9% 14.3% 14.7% 14.8% 14.1% 14.2% 

Active Period 15.4% 13.8% 14.3% 14.7% 14.5% 13.7% 13.6% 

Inter-Departure 30 17.0% 14.4% 13.7% 13.3% 13.4% 13.4% 14.7% 

Inter-Departure 50 17.6% 14.4% 13.7% 13.1% 13.1% 13.1% 14.9% 

Corrected Workload 66.7% 8.7% 6.6% 5.4% 4.5% 3.7% 4.4% 

 

Two observations can be made from the blocking analysis in Table 6. First, most of the 

blocking is so-called ‘release blocking’, i.e. a job cannot enter the shop floor before the queue 

limit at the first station in its routing has been reached. Second, the Max Workload and the 

Corrected Workload methods have the highest occurrences of blocking. Meanwhile, Table 7 

highlights an overemphasis on Station 1, which is much more often identified as the bottleneck 

than other stations by the Max Workload and Corrected Workload methods.  

Station 1 is a gateway station in the GFS. This function as a gateway station is strengthened 

if a queue limit is applied. In this case, Station 1 acts as an order release function for most jobs, 

controlling when a job can enter the shop floor and consequently when it can arrive at a 

downstream station. As a result, queues are longer at Station 1, which leads to the overemphasis 

observed in Table 7. Since capacity adjustments are focused on Station 1, downstream stations 

have a higher relative average utilization rate. This in turn leads to higher congestion in the 

system and to more blocking (specifically at Station 1). However, the blocking does not trigger 

a shift in the detected bottleneck for Max Workload and Corrected Workload, rather the contrary. 

Thus, system congestion remains and performance deteriorates. Note that this effect only 

occurs if the average utilization of the system is already high, as is the case for low bottleneck 

strength. In contrast, both the Active Period and Utilization methods react to blocking and the 

associated disruption to the active period. Finally, the effect for the Corrected Load method is 

higher since it is calculated upon arrival at the shop and thus before release blocking occurs. 

Hence, the workload correction introduces an additional emphasis on the first station in the 

routing of a job compared to using the direct workload queuing at a station, as is the case for 

the Max Workload method.  

Finally, the Inter-Departure Time method also becomes dysfunctional in a shop with 
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blocking. However, in this case the main issue is the time delay that is necessarily introduced 

to calculate the inter-departure time. Imagine a scenario where Station 1 is identified as the 

bottleneck leading to an increased output until Station 1 is blocked since the queue at Station 

2 is full. Station 2 should now become the bottleneck, but the inter-departure time is necessarily 

based on past data. As a result, Station 1 remains the identified bottleneck until the blocking is 

reflected in the dataset used for calculating the inter-departure time variance, and thus capacity 

is adjusted at Station 1, although it is blocked. This in turn leads to more blocking, as can be 

observed from Table 6. 

 

5. Discussion 

The previous section presented the results from our simulation experiments. This section 

discusses the main contributions of our work to research and practice. 

 

5.1 Research Implications 

This study started by asking: What is the best-performing bottleneck detection method in high-

variety make-to-order job shops? Using discrete event simulation it was found that the 

Utilization method is arguably the best performing method in our study, but it is very nervous. 

From a practical perspective, the Active Period method appears to be a better choice given its 

good performance and very low nervousness. Methods focusing on the workload are viable 

best-of-both-world alternatives; however, they may become dysfunctional in shops with 

directed routings and a queue limit that leads to blocking given their overemphasis on the 

gateway station, which naturally has the largest average queue. This negative effect is even 

stronger for the Corrected Workload method, which was based on recent literature on short-

term capacity adjustments (Land et al., 2015). Finally, the Inter-Departure Time method 

consistently leads to the worst performance. If there is a fairly stable load in front of a station, 

and consequently processing time and inter-departure time distributions overlap, the inter-

departure time method identifies non-bottlenecks instead of bottlenecks if the coefficient of 

variation is the same for bottlenecks and non-bottlenecks. In this case, higher means (i.e. a set 

bottleneck) imply higher standard deviations (identified as non-bottlenecks). Meanwhile, if 

there is blocking then the Inter-Departure Time method may identify a blocked station as a 

bottleneck station given the time delay that is necessarily introduced because the inter-

departure time needs to be calculated based on historical data. 

The active period method is commonly argued to be the best performing bottleneck detection 

method. It is consequently the most applied in the context of data-driven implementations; for 
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example, by: Zhai et al. (2011), who used the active periods in the optimal schedule, 

Subramaniyan et al. (2018), who used auto-regressive integrated moving average (ARIMA) 

models based on active periods, and Subramaniyan et al. (2020), who used hierarchical 

clustering based on active periods. The question remains: why does the utilization method 

perform better than the active period method in our study? Imagine a situation where Station 1 

precedes Station 2, i.e. all jobs move from Station 1 to Station 2, the queues are infinite, and 

there is a continuous arrival rate. If the processing time of jobs at Station 2 is larger than at 

Station 1 then Station 2 should be the bottleneck. It should be the bottleneck since the queue at 

Station 2 increases much faster, and since adding capacity at Station 1 even increases the rate 

at which the queue at Station 2 increases. Yet Station 1 will be identified as the bottleneck since 

Station 1 precedes Station 2 and thus has an earlier start time for the active period. In theory, 

the utilization method suffers from the same weakness, but since we do not include the partial 

processing time of a job currently being processed at a station in the calculations, our utilization 

method shifts between Station 1 and Station 2. Note that this effect does not occur if the queue 

size is limited, since Station 1 will become blocked and thus Station 2 will have the longest 

active period. Meanwhile, another main advantage of the active period method over the 

utilization method is the identification of the strength of bottlenecks, and thus secondary 

bottlenecks (Roser et al., 2003; Roser & Nakano, 2015). 

 

5.2 Managerial Implications 

The above phenomenon leads directly to our second research question: Are there contingency 

factors that guide the applicability of the different methods in this context? The first 

contingency factor considered was the buffer limit. If we revisit the two general guidelines that 

emerged out of the literature review, then we confirm our first guideline that existing methods 

that use the queue state (Section 2.2.1) may become inaccurate in systems with finite queues. 

However, the reason behind this is not restricted discrimination across queues, but rather the 

overemphasis on the gateway station, which may lead to dysfunctional behavior in highly 

congested shops. There is typically no issue with discrimination given that the queue limit is 

just an upper bound. Meanwhile, our results do not confirm our second guideline that existing 

methods that use the station state (Section 2.2.2) may become inaccurate in systems with 

infinite queues (since there is no blocking information to signal that the downstream queue is 

full). The main reason for this is that there is a direct link between the active period and queue 

length in our study. Therefore, if this link exists, then bottleneck detection methods that focus 

on the station state can be considered a better choice than methods that focus on the queue state.  
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The second contingency factor considered was the routing direction. We found that the 

relative performance ranking of the different bottleneck detection methods was not affected by 

this factor. Moreover, results align with previous literature in the context of pure flow shops, 

i.e. constant directed routings (e.g. Roser & Nakano, 2015). Thus, the main impact of routing 

characteristics is that a random routing excludes bottleneck detection methods that require 

consistency in upstream and downstream stations, such as the arrow method (e.g. Kuo et al., 

1996), the inactive period method (Li et al., 2007), the turning point method (Li et al., 2009, 

Li, 2018) and the bottleneck walk method (Roser et al., 2014).  

 

6. Conclusions 

Bottleneck detection is a first step in bottleneck management, leading to a large literature 

proposing different bottleneck detection methods. This literature however typically focusses 

on production lines, i.e. contexts where every job visits every station in the same sequence. 

This neglects shops with more complex routings. In response, this study has assessed the 

performance of five different bottleneck detection methods in a high-variety make-to-order 

shop considering two important contingency factors identified from the literature: the buffer 

limit and the routing characteristics. Results indicate that the active period or the utilization 

method is a better choice than a bottleneck detection method that focuses on the queue state. 

This relative ranking of bottleneck detection methods is also not affected by routing 

characteristics, which provides important guidelines for management on which bottleneck 

detection method to apply in which production context. For example, bottleneck detection 

methods that focus on the queue state should not be applied in shops with a finite buffer size, 

while the main constraint in terms of routing is that random routings exclude bottleneck 

detection methods that require consistency in terms of the upstream and downstream station in 

the routings. 

 

7. Limitations and Future Research 

A main limitation of our study is that we neglected the actual exploitation of the bottleneck 

(Step 2 and Step3) and directly jumped to its elevation (Step 4). Future research could explore 

the link between bottleneck detection and, for example, the Drum-Buffer-Rope approach (e.g., 

Darlington et al., 2015) or Constant Load (Bagni et al., 2020) that focusses on bottleneck 

exploitation. Meanwhile, we also did not consider limits on the finished goods inventory, while 

demand was the bottleneck for a significant amount of time. Specifically, the latter calls for 

more research, potentially linking bottleneck detection to the job entry or customer enquiry 
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stage where the job acceptance decisions are made and consequently demand is realized. Our 

focus has been on the actual operational impact of bottleneck detection methods on the shop 

floor. Finally, future research could also seek to develop new bottleneck detection methods. We 

saw that bottleneck detection methods can be subdivided according to the measure used, and a 

bottleneck is necessarily defined in terms of the chosen measure. Thus, a first step is to define 

the objective of the system and how this is measured. For example, in our make-to-order system 

the main objective is delivery performance (primary measure) rather than throughput 

(secondary measure), whereas throughput is the primary measure in most of the previous 

literature on bottleneck detection. Developing new bottleneck detection methods for so-called 

lateness bottlenecks (Fang et al., 2020) is a promising avenue for future research.  
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