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Abstract During the last decades, research in multi-objective optimisation (MO)
has seen considerable growth. However, this activity has been focused on lin-
ear, non-linear, and combinatorial optimisation with multiple objectives. Multi-
objective mixed integer (linear or non-linear) programming has received consid-
erably less attention. In this paper we propose an algorithm to compute a �nite
set of non-dominated points/e�cient solutions of a bi-objective mixed binary op-
timisation problems for which the sub-problems obtained when �xing the binary
variables are convex, and there is a �nite set of feasible binary variable vectors.

Our method uses bound sets and exploits the convexity property of the sub-
problems to �nd a set of e�cient solutions for the main problem. Our algorithm
creates and iteratively updates bounds for each vector in the set of feasible bi-
nary variable vectors, and uses these bounds to guarantee that a set of exact
non-dominated points is generated. For instances where the set of feasible binary
variable vectors is too large to generate such provably optimal solutions within
a reasonable time, our approach can be used as a matheuristic by heuristically
selecting a promising subset of binary variable vectors to explore.

This investigation is motivated by the problem of beam angle optimisation
arising in radiation therapy planning, which we solve heuristically to provide nu-
merical results.
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1 Introduction

The aim of multi-objective optimisation (MO) is to �nd e�cient solutions of an
optimisation problem in the presence of multiple con�icting objectives. A solu-
tion is e�cient if it cannot be improved in any criterion without degradation of
some other criteria (Ehrgott, 2005). Several strategies to �nd e�cient solutions
have been proposed in the literature. While both continuous and combinatorial
optimisation with multiple objectives have been widely studied (Ehrgott, 2005;
Ehrgott et al., 2016; Miettinen, 1999; Wiecek et al., 2016), multi-objective mixed
integer programming (MOMIP) problems have received considerably less atten-
tion. Teghem and Kunsch (1986) present a survey on interactive methods, which
aim to �nd most preferred solutions to MOMIP problems. Mavrotas and Diak-
oulaki (1998, 2005) propose a branch and bound algorithm for bi-objective mixed
binary linear programming problems. Vincent et al. (2013) present a branch and
bound algorithm that corrects and improves the results obtained by the one in
(Mavrotas and Diakoulaki, 1998, 2005). Belotti et al. (2013) also propose a branch
and bound algorithm for bi-objective mixed integer problems. They focus on fath-
oming rules that exclude sub-problems that are guaranteed not to contain e�cient
solutions and solve sub-problems using a parametric simplex algorithm. Stidsen
et al. (2014) present an algorithm for the special class of problems where one of
the two objectives has only integer variables. Boland et al. (2014, 2015) present an
exact method called the triangle splitting method for bi-objective mixed integer
programming problems. Their algorithm works in objective space and maintains
a diverse set of non-dominated points as an approximation of the non-dominated
set in case of early termination.

In Fattahi and Turkay (2018), a one direction search algorithm that is able
to solve biobjective mixed-binary linear problems exactly is introduced. Soylu
(2018) published an algorithm which, in each iteration, identi�es sub-problems that
contribute to the non-dominated set and excludes them from future consideration
using tabu constraints. The non-dominated set of the problem is computed by
applying an upper envelope �nding algorithm to the identi�ed sub-problems.

Some authors have modelled problems arising in logistics as MOMIPs (Özcey-
lan and Paksoy, 2014; Rezaei and Davoodi, 2011; Shirazi et al., 2014). In these
works, the MOMIPs are addressed using general heuristic methods. Cacchiani
and D'Ambrosio (2017) presented a branch-and-bound based heuristic to approx-
imately solve convex multi-objective mixed integer non-linear programming prob-
lems and de Santis et al. (2019) propose a branch-and-bound algorithm to solve a
convex MOMIP by using lower bounds generated in an adaptive way.

In this paper we consider a bi-objective version of a mixed integer non-linear
programming (MINLP) problem that has both binary and continuous decision
variables, and is convex in the continuous variables. We call this problem the
BOMINLP (bi-objective mixed integer non-linear programming) problem. Although
in this paper we only consider non-linear objective functions, we note that the
method we propose in this work can also be applied to BOMINLP problems with
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linear objective functions and constraints. The BOMINLP problem we consider in
this paper is of the form:

BOMINLP: min
x,y

(
f1 (x, y)
f2 (x, y)

)
s.t. gj(x, y) 5 bj for j = 1, . . . ,m (1a)

gxj (x) 5 bxj for j = 1, . . . ,mx (1b)

gyj (y) 5 byj for j = 1, . . . ,my (1c)

y ∈ {0, 1}p (1d)

x ∈ Rn, (1e)

where f(x, y) = (f1(x, y), f2(x, y))ᵀ is a vector-valued objective function with two
con�icting objectives, m is the number of inequality constraints on x and y, mx

is the number of inequality constraints on x, my is the number of inequality con-
straints on y, p is the number of binary decision variables and n is the number of
continuous decision variables.

We assume that functions f1 (x, y), f2 (x, y), gj(x, y) and gxj (x) are continu-
ously di�erentiable convex functions in x. We also impose regularity conditions
to ensure Lagrangian dual values can be found, as discussed in Section 3.1. Note
that although all our integer variables are binary valued, our approach extends
naturally to more general bounded integer variables.

BOMINLP (1) may have an in�nite number of non-dominated points due to the
continuous variables. To our knowledge, the only method to compute an explicit
description of the non-dominated set of continuous MOPs is a very recent one
presented in Jayasekara et al. (2019). In their approach, which they demonstrate
on problems with a small number of variables, the authors are able to solve convex
MOP problems where all the objectives are quadratic ones. (This is in contrast to
BOMILPs, where the continuous parts of the non-dominated set can be expressed
as line segments, which algorithms listed at the beginning of Section 1 exploit).
Therefore, we have to be content with �nding only a �nite subset of non-dominated
points. Furthermore, having binary variables means BOMINLP (1) is not convex,
and so scalarisation methods (see e.g. Wiecek et al. (2016)) are a natural strategy
for generating the solution. In this paper, we choose to use the well-known ε-
constraint method, which solves a number of single objective MINLPs to create
the non-dominated points.

Our work is motivated by the multi-objective beam angle optimisation (MO-
BAO) problem in intensity modulated radiation therapy (IMRT) planning, which
we describe in more detail in Section 5 and which we use as a case study for
the application of our algorithm. Unfortunately, as we show in Section 5, it is
not practical to apply the ε-constraint method to our IMRT BOMINLP problem
because the single objective MINLP sub-problems take too long to solve. Hence
we will instead pursue a decomposition strategy in which we create sub-problems,
each of which has y �xed to one of a �nite set of known solutions for y. We solve
the ε-constraint scalarisations of these sub-problems, and combine the solutions
to form a �nal non-dominated set. As we show in Section 5, our method is able
to exploit convexity and di�erentiability to signi�cantly reduce the number of
problem instances that need to be solved. Our method is conceived as generic as
this speed up does not depend on any other problem-speci�c features.
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We mentioned that our approach assumes that a �nite set of binary solutions
for y is known. If this set can be explored within the available computation time,
then the solutions found by our algorithm are e�cient. For our IMRT problem,
however, the number of binary solutions is too large for our algorithm to consider
them all in a reasonable time. However, as is often the case for practical problems,
we can exploit problem-speci�c knowledge to exclude `bad' values for y that are
unlikely to be part of an optimal solution. This approach of combining a heuristic
selection of promising y with a subsequent optimisation over this set gives us a new
matheuristic (Fischetti and Fischetti, 2016) approach for our problem. Although
this compromises the guarantee of optimality in the sense that our solutions are
no longer provably e�cient, it gives us a practical approach that, as we see in
Section 5, gives the same solution quality as existing approaches but in about one
tenth of the time.

In the next section, we formally introduce our decomposition and de�ne our
sub-problems. The concept of bound sets (as introduced by Ehrgott and Gandibleux
(2007)) is then presented in Section 3. Our proposed algorithm is presented in Sec-
tion 4. We use a small bi-objective example to illustrate how our method proceeds.
Then, in Section 5 the MO-BAO problem and its mathematical formulation are
outlined. We use the MO-BAO problem as an application of our method and show
computational results for a real case. Finally in Section 6, some conclusions and
�nal remarks are presented.

2 Decomposition and Sub-Problem De�nition

In this section, we formally introduce our decomposition and present the sub-
problems we will be solving.

In model (1) and elsewhere we use the following notation for comparing vectors.
Given w1, w2 ∈ R2, we write w1 5 w2 if w1

k 5 w2
k for all k = 1, 2; w1 ≤ w2 if

w1 5 w2 but w1 6= w2; and w1 < w2 if w1
k < w2

k for all k = 1, 2. We say that
w1 ∈ R2 dominates w2 ∈ R2 (or, equivalently, w2 is dominated by w1) if w1 ≤ w2.

De�nition 1 We say a vector y ∈ {0, 1}p is feasible if there exists some x ∈ Rn for

which (x, y) is feasible for BOMINLP (1). We let Y =
{
y1, y2, . . . , y|Y|

}
⊆ {0, 1}p

be the set of all such feasible y. For each y ∈ Y we let X (y) ⊆ Rn denote
the set of x such that (x, y) satis�es (1a) and (1e). We also let X̄ ⊆ Rn de-
note the set of x that satisfy (1b) and (1e). Moreover, we denote by (X ,Y) =⋃

y∈Y
{

(x, y) : x ∈ X̄ ∩ X (y)
}
, the set of all feasible solutions of (1).

Formally, solving BOMINLP (1) requires �nding the set of non-dominated
points and a set of e�cient solutions, the image of which is the non-dominated
set. A solution (x∗, y∗) ∈ (X ,Y) is called an e�cient solution if there is no (x, y) ∈
(X ,Y) where f(x, y) dominates f(x∗, y∗). In this case f(x∗, y∗) is called a non-
dominated point.
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Our decomposition strategy is motivated by the observation that BOMINLP
(1) can be re-written as

BOMINLP: min
y

(
min
x

(
f1(x, y)
f2(x, y)

))
(2)

s.t. x ∈ X̄ , x ∈ X (y),

y ∈ Y.

This formulation contains a sub-problem SP(y) in x for every feasible y ∈ Y given
by

SP(y) : min
x

(
f1 (x, y)
f2 (x, y)

)
(3)

s.t. x ∈ X̄ , x ∈ X (y).

Let X y
E be the set of e�cient solutions of sub-problem SP(y). In the following

we assume that X y
E is non-empty.

Proposition 1 1. If (x, y) is an e�cient solution of (2) then x ∈ X y
E ⊆ X̄∩X (y).

2. ({f(x, y) : (x, y) ∈ (X ,Y)})N = ({f(x, y) : y ∈ Y, x ∈ X y
E})N , where (S)N de-

notes the non-dominated (sub)set of a set S.

Proof 1. This follows from the de�nition of all sets involved.
2. Both inclusions are easy to see by contradiction.

Proposition 1 states that if (x, y) is an e�cient solution of BOMINLP (1), then
x is also an e�cient solution of sub-problem SP(y). Thus, we can solve BOMINLP
by �nding all e�cient solutions to SP(y) (3) for each y ∈ Y, and then performing a
dominance analysis over these sub-problem solutions to create a �nal set of e�cient
solutions.

We observe that SP(y) (3) is a bi-objective convex optimisation problem, and
so it is computationally practical to compute e�cient solutions to SP(y); see,
e.g., the survey of (Wiecek et al., 2016). We also note that because, for any given
y, functions f1(x, y) and f2(x, y) in (3) are di�erentiable with respect to x, we
can obtain Lagrangian (i.e. dual variable) values; we will use these to bound sub-
problem solutions (see Section 3).

Example 1 Let us consider an instance of BOMINLP (1) as follows.

min
x,y

(
f1 (x, y)
f2 (x, y)

)
=

(
x

y1

x + y2
(

0.2 + e
1/x
))

s.t. x 5 2.5

−x 5 −0.4

y1 + y2 = 1

y ∈ {0, 1}2

x ∈ R.

In this example, Y = {y1, y2} with y1 = (1, 0) and y2 = (0, 1). Figure 1(a)
shows the non-dominated points of sub-problems SP(y1) and SP(y2) where A =
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(a) Sets of non-dominated points of sub-
problems SP(y1) and SP(y2).
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(b) Resulting set of non-dominated points of
the BOMINLP (1).

Fig. 1: An illustration of the type of problem we address in this paper.

(1.4151, 0.7071) and B = (0.5150, 1.9172) are non-dominated points of both sub-
problems. For x ∈ [0.4, 0.5150] and x ∈ [1.4151, 2.5], non-dominated points of sub-
problem SP(y1) are also non-dominated points of the BOMINLP problem, whereas
for x ∈ [0.5150, 1.4151], non-dominated points of SP(y2) are also non-dominated
points of the BOMINLP problem. Figure 1(b) shows the set of non-dominated
points of the BOMINLP problem. As we can see, although sub-problems SP(y1)
and SP(y2) are convex, the BOMINLP problem may not be. A convex multi-
objective optimisation problem, such as the subprobems here, has a R2

=-convex

non-dominated set, where set S is R2
=-convex if S + R2

= is convex. It follows that

convexity of SP(y) does in general not imply convexity of (1).

By the assumption that sub-problem SP(y) is convex for each y ∈ Y, it follows
that the set of non-dominated points of SP(y) is R2

=-convex Ehrgott (2005). Hence
a natural decomposition approach to solving (1) is to determine the set of non-
dominated points of the union (over elements of Y) of the non-dominated sets
of SP(y). Furthermore, we do not expect all y ∈ Y to contribute to the non-
dominated set of (1). Hence, by de�nition, solving (1) has three aspects.

(i) Finding those elements of Y for which the non-dominated points of sub-
problem SP(y) contribute to the non-dominated set of the BOMINLP problem.

(ii) Finding the non-dominated set of sub-problem SP(y) for each y identi�ed in
(i).

(iii) Finding the non-dominated set of BOMINLP from sets of non-dominated
points of SP(y).

Unfortunately, it is di�cult to predict for which y the condition in (i) applies
without solving sub-problem SP(y) for all y ∈ Y. If the computation times are
not limited, then we can explore all elements of Y to identify the non-dominated
points needed for steps (ii) and (iii). However, this may not be practical if Y
is very large or the computation times are limited. In Cabrera G. et al. (2018)
and Cabrera-Guerrero et al. (2018), we have proposed heuristics that create a set
Ŷ ⊂ Y of �promising� feasible binary vectors. In this paper we therefore address
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(ii) and (iii) for the case where Y is replaced by Ŷ. We need to stress at this point
that if Ŷ 6= Y, then the set of points our method �nds for the BOMINLP problem
is not necessarily equal to the set of non-dominated points of (1) the method would
�nd if the entire set Y were considered. Thus, we describe the points obtained by
our method when using a subset of Y as approximately non-dominated points. The
selection of a set of promising vectors Ŷ ⊆ Y is out of the scope of this paper. For
the sake of simplicity, hereafter we assume that Ŷ = Y and we shall refer to it
simply as Y.

As discussed above, the well-known ε-constraint method is a suitable approach
for step (ii) above, i.e. for �nding a non-dominated set for SP(y). This approach
requires forming the ε-constraint scalarisation SP(ε, y) of SP(y). This SP(ε, y)
sub-problem is a single-objective convex optimisation problem of the form:

SP(ε, y) : min
x

f1(x, y)

s.t. x ∈ X̄ , x ∈ X (y), (4a)

f2(x, y) 5 ε. (4b)

We need to solve SP(ε, y) for all ε ∈ E , where E is a set of ε values that determines
which non-dominated points the user wishes to �nd for BOMINLP.

A naïve approach to implementing steps (ii) and (iii) above would involve
solving each of the |Y| sub-problems |E| times, i.e. solving |Y|×|E| instances of (4).
As mentioned earlier, we will demonstrate in Section 5 that our method is able
to exploit convexity and di�erentiability of f1(x, y) and f2(x, y) to signi�cantly
reduce the number of instances of (4) that are solved.

For each sub-problem SP(y), it is useful to de�ne an associated range of valid ε
values, given by ε ∈ [εmin

y , εmax
y ], where εmin

y is the smallest ε for which SP(εmin
y , y)

is feasible, i.e. εmin
y = min{f2(x, y) : x ∈ X̄ , x ∈ X (y)}. We determine εmax

y

by �nding the largest f2-value of any non-dominated point using the standard
approach of calculating a lexicographically minimal solution x(1,2), as detailed in
Section 4. The ε-constraint method allows us to �nd any e�cient solution to SP(y)
by solving sub-problem SP(ε, y) for some εmin

y ≤ ε ≤ εmax
y . It is easy to see that

putting ε < εmin
y cannot generate any e�cient solutions, and so we never solve

SP(ε, y) for such ε values. Lemma 1 considers the case that constraint (4b) is not
binding.

Lemma 1 Let x∗ be an optimal solution of SP(ε, y) such that f2(x∗, y) < ε. Then
SP(ε, y) has no e�cient solution x̂ such that f2(x̂, y) > f2(x∗, y).

Proof Assume that x′ is an e�cient solution to SP(ε, y) such that f2(x′, y) >
f2(x∗, y). Then f1(x′, y) < f1(x∗, y). By optimality of x∗ for SP(ε, y) it follows
that f2(x′, y) > ε. By continuity of f2 and by application of the Intermediate Value
Theorem, there exists some λ ∈ (0, 1) such that for x̂ = λx′+(1−λ)x∗ it holds that
f2(x̂, y) = ε, i.e. x̂ is feasible for SP(ε, y). Due to convexity f1(x̂, y) = f1(λx′ +
(1− λ)x∗, y) ≤ λf1(x′, y) + (1− λ)f1(x∗, y) < f1(x∗, y). This is a contradiction to
x∗ being an optimal solution of SP(ε, y).

Lemma 1 con�rms that we only need to consider ε ≤ εmax
y . With ε ∈ [εmin

y , εmax
y ],

constraint (4b) is binding and we obtain only e�cient solutions; see Proposition
2.
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Proposition 2 For any �xed y, if εmin
y ≤ ε ≤ εmax

y then any optimal solution x∗

of SP(ε, y) is an e�cient solution of SP(y) and satis�es f2(x∗, y) = ε.

Proof Due to our choice of εmin
y , εmax

y we know that e�cient solutions x̄ and x̂
exist with f2(x̄, y) = εmin

y and f2(x̂, y) = εmax
y . For any ε with εmin

y < ε < εmax
y

Lemma 1 implies that there exists an optimal solution x∗ of SP(ε, y) such that
f2(x∗, y) = ε.

Assume that x∗ is weakly e�cient, but not e�cient. Then there exists x′ that
dominates x∗ with f1(x′, y) = f1(x∗, y) and f2(x′, y) < f2(x∗, y) = ε. We con-
sider a feasible solution x̃ = λx′ + (1 − λ)x̂ with λ ∈ (0, 1). Due to convexity,
and noting that f1(x̂, y) < f1(x′, y), parameter λ ∈ (0, 1) can be chosen so that
f1(x̃, y) < f1(x∗, y) and f2(x̃, y) < f2(x∗, y). It follows that x′ strictly dominates
x∗, a contradiction to the weak e�ciency of x∗.

We show, in Section 4, how the values εmin
y and εmax

y can be found by solving
lexicographic optimisation problems. If either (or both) of these values is in�nitely
large, then we assume that the value is replaced by a new �nite value that de�nes
a range of interest to the user.

We assume that elements in E are indexed such that E = {ε1, . . . , εL} where
ε1 < ε2 < · · · < εL−1 < εL. Later, in Section 4, we explain how to compute the ε
values in set E . To keep notation simple, we will only compute one set E which we
use for all y ∈ Y, and so SP(ε, y), ε ∈ E , y ∈ Y de�nes the full set of sub-problems
considered by our algorithm. However, we note that because of the way the values
are computed in the algorithm, the algorithm will only ever solve SP(ε, y) for ε
values satisfying εmin

y ≤ ε ≤ εmax
y . Solving SP(ε, y) for all ε ∈ E means we compute

(at most) L non-dominated points of sub-problem SP(y). Hereafter, we will refer
to this subset of non-dominated points of sub-problem SP(y) obtained by means of
the ε-constraint method simply as the set of non-dominated points of sub-problem
SP(y).

3 Bounds from Convexity

In this section, we demonstrate how the convexity of sub-problem SP(y) can be
used to give lower and upper bounds for SP(ε, y) that we can use to e�ciently
search for non-dominated points of (1). The work in this section draws upon
the ideas of lower bound sets and upper bound sets introduced in Ehrgott and
Gandibleux (2007).

3.1 Sub-problem Lower Bounds

We wish to form lower bound sets on the non-dominated points of a sub-problem
SP(y) de�ned by some particular y ∈ Y. Assume we have solved SP(ε, y) for
L′ ε values ε ∈ {ε̂1, ε̂2, ..., ε̂L

′
}, where ε̂1 < ε̂2 < · · · < ε̂L

′
and ε̂1 = εmin

y and

ε̂L
′

= εmax
y . Let the optimal solution of SP(ε̂i, y) be x∗ε̂i . Because εmin

y ≤ ε̂i ≤ εmax
y

for all i, constraint (4b) is active at the optimal solution, and so f2 (x∗ε̂i , y) = ε̂i.
Then, our current set of non-dominated points of SP(y) can be denoted by

Sy
N =

{(
f1
(
x∗ε̂1 , y

)
, ε̂1
)
,
(
f1
(
x∗ε̂2 , y

)
, ε̂2
)
, . . . ,

(
f1
(
x∗ε̂L′ , y

)
, ε̂L

′)}
. (5)
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We assume that each sub-problem SP(ε̂i, y) satis�es some appropriate regu-
larity conditions, and so we can determine λε̂i , the value of the Lagrangian dual
variable on the constraint (4b) at each optimal solution. We present an example
of regularity conditions in Section 5 for our radiation therapy planning problem.
The Lagrangian dual value λε̂i gives the rate of change in the optimal objective
value of SP(ε̂i, y) (i.e. the f1(x, y) value of some non-dominated point) as we
increase ε̂i (i.e. increase f2(x, y)). This means that the Lagrangian duals are inter-
preted as trade-o�s between the two objectives of sub-problem SP(y). This issue
has been discussed in Haimes and Chankong (1979) and Chankong and Haimes
(1983, Chapter 4.9). They give su�cient conditions for SP(y) under which this
interpretation is correct.

Thus, because the non-dominated set is R2
=-convex, we can follow an approach

similar to that of Benders (1962), and use Sy
N to calculate a lower bound set L(Sy

N )
on the non-dominated points of SP(y) as follows:

L(Sy
N ) =

 L′⋂
i=1

{
(f ′1, f

′
2) ∈ R2 : f ′1 = f1

(
x∗ε̂i , y

)
+ λε̂i

(
f ′2 − ε̂i

)}
N

, (6)

where (f ′1, f
′
2) ∈ R2 is a point in objective space.

We are interested in a lower bound on the objective function value of SP(ε, y)
(i.e. on f1(x, y)) for a new ε value, εmin

y ≤ ε ≤ εmax
y , (i.e. for a new f2(x, y) value)

for which SP(ε, y) is as-yet unsolved. This bound, denoted by flower(ε,Sy
N ), is given

by flower(ε,Sy
N ) = f ′1 where (f ′1, f

′
2) ∈ L(Sy

N ) is the unique element of L(Sy
N ) for

which f ′2 = ε. To compute this e�ciently, we �nd i such that ε̂i ≤ ε < ε̂i+1, if it
exists. We then have

flower(ε,Sy
N ) = max

{
f1
(
x∗ε̂i , y

)
+ λε̂i

(
ε− ε̂i

)
, f1

(
x∗ε̂i+1 , y

)
+ λε̂i+1

(
ε− ε̂i+1

)}
.

(7)
If ε < ε̂1 or ε̂L

′
< ε then solving SP(ε, y) cannot generate any non-dominated

points for SP(y), which we indicate by putting flower(ε,Sy
N ) = +∞.

Figure 2 shows, for some sub-problem SP(y), a set of non-dominated points
Sy
N and (in dashed lines) the resulting lower bound set L(Sy

N ), i.e., the value of
flower(ε,Sy

N ) for any ε value (i.e. for any value of f2). Each dashed line is the
tangent line to a non-dominated point

(
f1(x∗ε̂i , y), ε̂i

)
∈ Sy

N with a slope equal to
λε̂i . This �gure also shows upper bounds, which we discuss next.

3.2 Sub-problem Upper Bounds

We can compute upper bounds for a sub-problem SP(y) as follows. Assume, as
before, that we have Sy

N as given by (5). By convexity, an upper bound set U(Sy
N )

for the non-dominated points of SP(y) is given by the non-dominated frontier of
the convex hull of Sy

N :
U(Sy

N ) = (conv(Sy
N ))N . (8)

As with the lower bound, we can e�ciently compute elements in U(Sy
N ) for

some new ε, εmin
y < ε < εmax

y , by �nding i such that ε̂i ≤ ε < ε̂i+1 and then
calculating

fupper(ε,Sy
N ) = (1− α)f1

(
x∗ε̂i , y

)
+ αf1

(
x∗ε̂i+1 , y

)
(9)
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f1

f 2

L(SyN )

U(SyN )

SyN

Fig. 2: Lower and upper bound sets L(Sy
N ) and U(Sy

N ) for a set of non-dominated
points Sy

N of SP(y).

where α = (ε−ε̂i)/(ε̂i+1−ε̂i). If ε < ε̂1 or ε̂L
′
< ε then we put fupper(ε,Sy

N ) = +∞.
Figure 2 shows in solid lines the upper bound set U(Sy

N ). Due to the convexity of
SP(y), non-dominated points of SP(y) are located in (L(Sy

N )+R2
=)\(U(Sy

N )+R2
>),

the shaded area in Figure 2.

3.3 Joint Bounds

In general, given some Sy1

N ,Sy2

N , . . . ,Sy|Y|

N , we can form joint lower and upper
bound sets that give us information on the non-dominated points of BOMINLP
(1) as follows. A lower bound set for (1) is given by

L(Sy1

N ,Sy2

N , . . . ,Sy|Y|

N ) =

⋃
y∈Y

(
L(Sy

N ) + R2
=

)
N

. (10)

Similarly, an upper bound set for (1) is given by

U(Sy1

N ,Sy2

N , . . . ,Sy|Y|

N ) =

⋃
y∈Y

(
U(Sy

N ) + R2
=

)
N

. (11)

The non-dominated points of (1) must lie in the region between the lower and
upper bound sets. An example of such a region is given by the shaded area in
Figure 4d.

Our algorithm uses these bounds as follows. Given some particular ε, we cal-
culate the following joint upper bound:

fupper(ε,Sy1

N ,Sy2

N , . . . ,Sy|Y|

N ) = min
y∈Y

fupper(ε,Sy
N ). (12)
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Then, we know that solving SP(ε, y) for any (ε, y) pair with flower(ε,Sy
N ) >

fupper(ε,Sy1

N ,Sy2

N , . . . ,Sy|Y|

N ) is not required as the point (f1(x∗ε , y), ε) we will com-

pute will have f1(x∗ε , y) > fupper(ε,Sy1

N ,Sy2

N , . . . ,Sy|Y|

N ), and thus the point cannot
improve the current set of non-dominated points of (1).

4 Proposed Method

A naïve method to address the BOMINLP problem is to use the ε-constraint
method to compute a set of non-dominated points of sub-problem SP(y) for each
y ∈ Y, and to then perform a dominance analysis over the union of these sets to
obtain a set of pairwise non-dominated points of (1). We will use the following
example to illustrate the performance of this naïve method and contrast it with
our more e�cient approach.

Example 2 Let Y = {y1, y2, y3}. Let E = {ε1, . . . , εL}, with L = 21. We wish to
�nd 21 non-dominated points of (1), one for each ε ∈ E. In fact, functions f1(x, y)
and f2(x, y) are taken from the numerical example in Section 5, but their precise
form is not important at this stage. If we apply the naïve method to this problem
then L = 21 non-dominated points for each y ∈ Y must be computed. That is, we
solve optimisation problem SP1(ε, y) L×|Y| = 63 times. Figure 3(a) shows the set
of non-dominated points of SP(y) for each y ∈ Y. Figure 3(b) shows the resulting
set of non-dominated points after performing the dominance analysis over the sets
shown in Figure 3(a). As we can see, most of the points computed by the naïve
method turn out to be dominated by at least one other point. For instance, all the
non-dominated points found for SP(y3) are dominated and, therefore, none of them
contributes to the �nal set of non-dominated points of (1) in Figure 3(b). Thus,
if either obtaining a single non-dominated point of SP(y) requires a considerable
amount of time or the number of non-dominated points to be computed is large,
the naïve method can be impractical.

We propose a method, outlined in Algorithm 1, that signi�cantly reduces the
number of non-dominated points computed for each sub-problem. Our algorithm
�nds all the non-dominated points of (1) that would have been found by the naïve
method but it uses bounding information to reduce the number of sub-problems
that need to be solved. The proposed method generates the bounds by exploiting
the convexity of sub-problem SP(y).

In order to determine the range [εmin
y , εmax

y ] of ε values to be used when eval-
uating SP(ε, y) we �rst �nd lexicographically non-dominated points of SP(y) for
all y ∈ Y (lines 2-5 in Algorithm 1).

As demonstrated in Ehrgott (2005), a lexicographically optimal solution in
X̄ ∩ X (y) is also an e�cient solution of SP(y). We denote our lexicographic opti-
misation problems SP(k,l)(y), where (k, l) ∈ {(1, 2), (2, 1)} indicates that objective
k is most important, followed by objective l, as follows:

SP(k,l)(y) : min
x

fl(x, y)

s.t. fk(x, y) = f∗k (y),

x ∈ X̄ , x ∈ X (y).
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(a) Sets of non-dominated points computed
by the naïve method for SP(y), for all y ∈
Y = {y1, y2, y3}.
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(b) Set of non-dominated points of (1) with
sub-problems SP(y1), SP(y2) and SP(y3).
Only y1, y2 lead to non-dominated points of
(1).

Fig. 3: The naïve method applied to Example 2. The �nal set of non-dominated
points of (1) found by the naïve method given E is obtained by �nding a set of L
non-dominated points of SP(y) for all y ∈ Y. A dominance analysis is performed
over the union of these sets of points.

Here f∗k (y) is obtained as the optimal objective value of an optimisation problem
that minimises the most important objective k, i.e. f∗k (y) = minx{fk(x, y) : x ∈
X̄ , x ∈ X (y)}.

We solve SP(1,2)(y) and SP(2,1)(y) for each y ∈ Y to obtain lexicographi-
cally optimal solutions x(1,2)(y) and x(2,1)(y) for SP (1,2)(y) and SP (2,1)(y), re-
spectively. These de�ne the lower and upper limits εmin

y = f2(x(2,1)(y), y) and
εmax
y = f2(x(1,2)(y), y) on ε for each sub-problem SP(ε, y). This information is
recorded by using these solutions to initialise the set of non-dominated points Sy

N ,
giving Sy

N = {f(x(1,2)(y), y), f(x(2,1)(y), y))}, for all y ∈ Y (line 4 in Algorithm
1). We also use these points to determine the �rst and last elements in E , ε1 and
εL, as follows (lines 6 and 7 in Algorithm 1, respectively):

ε1 = min
y∈Y

f2(x(2,1)(y), y), (13)

εL = max
y∈Y

f2(x(1,2)(y), y), with f(x(1,2)(y), y) non-dominated within
⋃
y∈Y
Sy
N .

(14)

If we want to focus on non-dominated points within a speci�c part of the
objective space, we can limit ε values to be within a range

[
εmin, εmax

]
, where both

εmin and εmax should be given by the decision maker and [εmin, εmax] ⊆ [ε1, εL]. It
is important to note that Equation (14) is restricted to lexicographic points that
are not dominated by other lexicographic points. This ensures that εL will not be
set to unnecessarily large values.

Once ε1 and εL have been computed, values of εi ∈ E , with i = 2, · · · , (L− 1),
are determined such that ε1 < ε2 < · · · < εL−1 < εL (line 8 in Algorithm 1). These
values are arbitrary values that will be determined depending on the problem that
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is being solved. In this paper we choose them to be uniformly distributed over the
range

[
ε1, εL

]
.

We are now ready to perform the main iterative steps in Algorithm 1. The
iterations proceed by identifying some ε ∈ E (line 10 in Algorithm 1) and some y ∈
Y for which flower(ε,Sy

N ) < fupper(ε,Sy1

N ,Sy2

N , . . . ,Sy|Y|

N ) (line 12 in Algorithm 1).
We call the sub-problem SP(ε, y) a candidate sub-problem in the sense that it may
produce a new non-dominated point in our �nal solution, and thus it needs to be

solved. (Sub-problems SP(ε, y) with flower(ε,Sy
N ) ≥ fupper(ε,Sy1

N ,Sy2

N , . . . ,Sy|Y|

N )
are bounded sub-problems and do not need solving as they cannot contribute to our
�nal solution.) There will often be many candidate problems that could be solved
next; we discuss shortly a strategy for choosing a good ε. If there are multiple
candidate problems SP(ε, y) for this ε, then we choose SP(y) with the best lower
bound by putting y = arg miny∈Y flower(ε,Sy

N ). We then solve SP(ε, y) to �nd a
new non-dominated point (line 13 in Algorithm 1), which is added to Sy

N (line 14
in Algorithm 1). After this step, we have strictly increased flower(ε,Sy

N ) or strictly

decreased fupper(ε,Sy1

N ,Sy2

N , . . . ,Sy|Y|

N ) (or both). These iterations continue until

flower(ε,Sy
N ) ≥ fupper(ε,Sy1

N ,Sy2

N , . . . ,Sy|Y|

N ) for all ε ∈ E , y ∈ Y. At this point, we
merge the sets Sy

N to give SN :=
(⋃

y∈Y S
y
N

)
N
(line 17 in Algorithm 1) as the set

of non-dominated points of (1) obtained by our method.
As noted above, each iteration decreases the gap between the best lower bound

and the upper bound for some ε ∈ E . These bounds must become equal after
solving no more than |Y| instances of SP(ε, y) for each ε. Thus, our algorithm
must eventually terminate after no more than L|Y| iterations. Our experience is
that the bounding process results in far fewer iterations being required in practice.

4.1 Selection of Next ε � getBestε
(
Sy1

N ,Sy2

N , . . . ,Sy|Y|

N

)
We observed above that there is often a choice of ε ∈ E for which to solve SP(ε, y)
next. Therefore, we need to design a strategy to choose the next ε so that points
obtained by solving SP(ε, y) make changes in the lower and/or upper bounds
that lead to more sub-problems becoming bounded. Unfortunately, determining
the best strategy is di�cult as it is dependent on problem-speci�c features. Initial
experimental results show that, for instance, choosing an ε value close to previously
explored ε values is a very ine�cient strategy. We can see this in Figure 2: Let us
assume that ε values are for f2. Then, assume we chose an ε value that is very
close to an ε value used to compute one of the blue points. If we now solve SP(ε, y)
with the chosen ε the new generated point is likely to be very close to the blue
point. Thus, the new point will only produce a small change in the lower and/or
upper bounds. Clearly, small changes in the bounds are not very helpful as they
are unlikely to lead to many candidate sub-problems becoming bounded. Thus, on

line 10 Algorithm 1 includes a function getBestε(Sy1

N ,Sy2

N , . . . ,Sy|Y|

N ) that aims
to choose an ε value that leads to large changes in the bounds. In our experiments,
choosing the ε value as the midpoint between the current ε value, εcurrent, and a
smaller εs value, where εs has already been explored and all the ε values between
εs and εcurrent remain unexplored, has performed well. In case there is no εs that

meets these conditions, then the function getBestε(Sy1

N ,Sy2

N , . . . ,Sy|Y|

N ) looks for
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an explored εa value starting from εL, such that εa−1 remains unexplored. Once
an εa is found, it is set as the new εcurrent value. Then, the εs is selected as
described above and the midpoint ε value between εcurrent and εs is set as the
new ε value to be explored. If we cannot �nd an εa, then it means that all ε values
have been explored and, therefore, our algorithm stops. When choosing the new ε,
this function also ensures that there is at least one y for which εmin

y ≤ ε ≤ εmax
y ,

and so there is at least one candidate sub-problem SP(ε, y) to solve.
In the example we present next, it is useful to visualise our candidate (and

bounded) sub-problems by viewing their bounds in objective space. To this end,
we de�ne a set Γ which contains candidate points denoted by γε,y ∈ Γ , where
γε,y = (flower(ε,Sy

N ), ε). We construct one candidate point for each y ∈ Y, ε ∈ E
for which flower(ε,Sy

N ) < fupper(ε,Sy1

N ,Sy2

N , . . . ,Sy|Y|

N ). We let Γy = {γε,y
′
∈ Γ :

y′ = y}, be the set of candidate points associated with each y ∈ Y.

Algorithm 1: An algorithm to �nd a set of e�cient solutions of the
BOMINLP problem (1)
Input: Y (Set of feasible vectors y)
Input: L (Number of ε values to use in the ε-constraint method)
Output: SN (Set of non-dominated points of (1))

1 begin
2 foreach y ∈ Y do

3 {x(1,2)(y), x(2,1)(y)} ← computeLexicographicSols(y) ;
4 SyN ← {f(x

(1,2)(y), y), f(x(2,1)(y), y)} ;
5 end

6 ε1 = miny∈Y f2(x
(2,1)(y), y);

7 εL =

maxy∈Y f2(x
(1,2)(y), y), with f(x(1,2)(y), y) non-dominated within

⋃
y∈Y S

y
N ;

8 E ← computeE
(
ε1, εL, L

)
;

9 while ∃ ε ∈ E, y ∈ Y : flower(ε,SyN ) < fupper(ε,Sy
1

N ,Sy
2

N , . . . ,Sy
|Y|

N ) do

10 ε← getBestε(Sy
1

N ,Sy
2

N , . . . ,Sy
|Y|

N );
11 repeat
12 y ← argminy∈Y flower(ε,SyN );
13 (x∗, λ)← solve(SP(ε, y)) ;
14 SyN ← S

y
N ∪ f(x

∗, y) ;

15 until miny∈Y flower(ε,SyN ) ≥ fupper(ε,Sy
1

N ,Sy
2

N , . . . ,Sy
|Y|

N );
16 end

17 SN ←
(⋃

y∈Y S
y
N

)
N
;

18 end

Example 3 Consider again the BOMINLP instance given in Example 2. Fig-
ure 4(a) shows the lexicographically non-dominated points and the corresponding
upper bound sets U(Sy

N ) for each y ∈ Y. Because we have three sub-problems
SP(y1), SP(y2) and SP(y3), six lexicographically non-dominated points are com-
puted; these are shown as �lled markers. In this example, these have been con-
strained to a user-speci�ed area of interest, and thus the lexicographic solutions
share common f2 values. Figure 4(b) shows lower and upper bound sets for each
y ∈ Y. Figure 4(c) shows the area the non-dominated points of sub-problem SP(y1)
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(a) Lexicographically non-dominated points
of sub-problem SP(y) for all y ∈ Y.
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(b) Lower bound sets (dashed) of sub-
problem SP(y) for all y ∈ Y.

ε1

εL

f1

f 2

U(Sy
1

N )

U(Sy
2

N )

U(Sy
3

N )

L(Sy
1

N )

L(Sy
2

N )

L(Sy
3

N )

(c) Area delimited by lower and upper
bound sets of sub-problem SP(y1).
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(d) All non-dominated points of BOMINLP
problem must fall in the shaded area given
the lexicographically non-dominated points
computed for each y ∈ Y.

Fig. 4: The lexicographically non-dominated points of SP(y) in Example 2 are
computed as well as corresponding bound sets L(Sy

N ) and U(Sy
N ) (dashed and

solid lines respectively).

must fall in, which is limited by the lower and upper bound sets of SP(y1) in Equa-
tions (6) and (8), respectively. Figure 4(d) shows the area the non-dominated points
of BOMINLP problem in Example 2 must fall in, which is limited by the joint lower
and upper bound sets of BOMINLP in Equations (10) and (11), respectively.

After the lexicographically non-dominated points are computed, E is de�ned. In
Figure 5(a) one line parallel to the f1 axis is drawn for each of the 21 ε values
in E. Figure 5(b) shows the set of candidate sub-problems (represented by their
candidate points, shown as un�lled markers). We note that three sub-problems
SP(ε, y) de�ned by (ε, y) ∈ {(ε20, y2), (ε20, y3), (ε19, y3)} are bounded and thus are
not candidates that need solving.

We now choose some candidate sub-problem SP(ε, y) to solve next. Based on
the procedure described above, we choose ε = ε11 as this is the element evenly
spaced between the two previously explored ε values, namely ε1 and ε21. Because

flower(ε
11,Sy1

N ) < flower(ε
11,Sy2

N ) < flower(ε
11,Sy3

N ), we solve the sub-problem
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(a) Lines parallel to the f1 axis show the 21
ε values in E used to solve the ε-constraint
problems SP(ε, y).
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(b) The candidate sub-problems, repre-
sented by their associated candidate points.
Three sub-problems are bounded (indicated
by �×�).

Fig. 5: The set E is computed, and a set of candidate sub-problems is determined
(shown by the sets of associated candidate points Γy). Three sub-problems are
bounded.

SP(ε11, y1). The resulting non-dominated point is shown in Figure 6(a). This non-

dominated point is added to Sy1

N . This gives new bound sets U(Sy1

N ) and L(Sy1

N )
(dashed lines in Figure 6(a)), new candidate points Γy1 (see Figure 6(b)) and, as a
result of bounding, a reduced set of candidate points for y2 and y3 (compare Figure

6(c) with Figure 5(b)). We observe that flower(ε
11,Sy

N ) ≥ fupper(ε11,Sy1

N ,Sy2

N , . . . ,Sy|Y|

N )
for all y ∈ Y, and so sub-problems SP(ε11, y2) and SP(ε11, y3) are now bounded
and do not need to be solved.

As indicated in Algorithm 1, we now choose the next ε to be explored. Since
ε11 is our current ε value, we need to �nd an explored εs value, with s < 11, such
that all ε ∈ {εs+1, . . . , ε10} remain unexplored. In this case, we found that εs = ε1.
Thus, the midpoint between ε11 and ε1 is ε6. The sub-problem with the smallest
lower bound is y2, and so SP(ε6, y2) is solved. The non-dominated point obtained

is added to Sy2

N resulting in updated bounds and updated candidate points for y2

(see Figure 7(a)).

Unlike in the previous iteration, solving SP(ε6, y2) did not result in the other
sub-problems (SP(ε6, y1) and SP(ε6, y3)) becoming bounded (see Figure 7(a)). We
next solve SP(ε6, y1) as it has the better lower bound. Solving this does not result
in SP(ε6, y3) becoming bounded, and so SP(ε6, y3) is solved next (see Figure 7(b)).

The algorithm continues in this fashion by choosing a new ε to explore (in this
case ε16), solving the sub-problems, and so on, until all SP(ε, y) sub-problems are
bounded.

Figure 8(a) shows the set of non-dominated points computed by Algorithm
1 for Example 3. While the naïve method needs to compute 63 points to �nd
a set of non-dominated points of (1), only 28 points were computed using our
method. Both algorithms end up with L = 21 non-dominated points in the �nal
set. Although we have not solved all possible sub-problems, the �nal set of non-
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(b) This results in a new set of candidate
points associated with y1.
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(c) The candidate point sets Γy2 and Γy3

have been reduced in size as a result of some
candidate sub-problems becoming bounded.

Fig. 6: A new non-dominated point is computed which results in new bound sets
and candidate points.

dominated points shown in Figure 8(b) is identical to the set obtained by the naïve
method as shown in Figure 3(b).

The next section shows an application of the procedure in Algorithm 1 on a
practical problem arising in radiation therapy for cancer treatment.

5 Intensity Modulated Radiation Therapy: Application and

Computational Results

Intensity modulated radiation therapy (IMRT) is a common technique in exter-
nal radiation therapy. Its goal is to damage tumour cells by delivering ionising
radiation from an external source to the tumour or planning target volume (PTV)
without compromising surrounding normal tissue and organs at risk (OARs). Un-
fortunately, because of the physics of radiation delivery, there is a trade-o� between
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First, we solve SP(ε6, y2) and update bound
sets and candidate points for SP(y2). Then
SP(ε6, y1) is solved as is the candidate with
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(b) Solving SP(ε6, y1) did not result
in SP(ε6, y3) being bounded, and so
SP(ε6, y3) has now also been solved. We
note that no candidate points remain for
sub-problem SP(y3) as these have now all
been bounded.

Fig. 7: Three non-dominated points are computed for ε6 (one for each y ∈ Y).

tumour control and protecting normal tissue and OARs. IMRT requires the gen-
eration of a �uence map which leads to a dose distribution that delivers radiation
to the tumour while sparing surrounding OARs.

Due to the complexity of designing a treatment plan, the IMRT planning
problem is usually divided into three sequential problems, namely, beam angle
optimisation (BAO), �uence map optimisation (FMO) and multi-leaf collimator
sequencing (Ehrgott et al., 2009). A solution of the BAO problem determines the
directions of radiation beam angles, i.e. a beam angle con�guration (BAC) that
is selected from a discrete set of available beam angles. Then, the optimal �uence
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(a) The set of 28 non-dominated points for
sub-problems generated when using Algo-
rithm 1.
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(b) Final set of non-dominated points ob-
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Fig. 8: Final set of generated points using the approach proposed in this study.
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of radiation for each beam angle needs to be computed (FMO problem) to give a
high quality dose distribution in the organs. The goal will be to �nd a �uence map
that maximises the dose delivered to the tumour and, at the same time, minimises
the dose deposited at each OAR.

In the context of Section 4 we are solving a multi-objective version of the
BAO problem (MO-BAO) aiming to identify an e�cient set of BACs, hence MO-
BAO corresponds to BOMINLP problem (2) with A ∈ Â representing a BAC and
Â = Y the set of all BACs. Each BAC A is evaluated by solving a multi-objective
FMO problem (MO-FMO) to identify e�cient �uence maps that achieve a required
dose to the PTV while minimising the radiation dose received by the OARs. In
the context of IMRT, problem (3) is MO-FMO(A) for BAC A, and its ε-constraint
scalarisation (4) is denoted MO-FMO(A, ε).

Section 5.1 outlines the details of an IMRT model for the interested reader.
Otherwise, the reader can skip over Section 5.1 and continue with our computa-
tional experiments in Section 5.3, from page 23, instead.

5.1 Intensity Modulated Radiation Therapy Details

The single objective BAO problem is usually stated as a mixed integer (or binary)
optimisation problem (Bangert et al., 2012; Ehrgott and Johnston, 2003; Preciado-
Walters et al., 2004, 2006), as the set of all possible angles K is discrete and only
a subset of them is considered in a BAC A . Similar formulations have been used
for its multi-objective counterpart (Breedveld et al., 2012; Schreibmann et al.,
2004). In general, the MO-BAO problem is non-convex with possibly many local
optima (Ehrgott and Johnston, 2003; Ehrgott et al., 2008; Lim and Cao, 2012;
Pugachev et al., 2001). Furthermore, when MO-BAO and MO-FMO are posed
together (i.e. when evaluating a BAC requires solving the MO-FMO problem),
the set of feasible solutions of the MO-FMO is highly enlarged (Bortfeld and
Schlegel, 1993; Pugachev and Xing, 2001). Thus, it is not possible to explore the
entire set of feasible solutions within a reasonable computation time. Hence, only
a subset of �promising� BACs is usually considered.

Cabrera G. et al. (2018) and Cabrera-Guerrero et al. (2018) propose a strategy
to approximately solve the MO-BAO problem that consists of two phases. In the
�rst phase a set of �promising� beam angle con�gurations is generated. In Cabr-
era G. et al. (2018) these promising BACs correspond to a set of locally optimal
BACs found by a steepest descent algorithm that resulted to be not only locally
optimal but also non-dominated. In Cabrera-Guerrero et al. (2018) the steepest
descent algorithm in Cabrera G. et al. (2018) is extended to a Pareto local search
strategy that �nds a set of locally non-dominated BACs. Other strategies can also
be used to �nd these promising BACs, though. Once the set of promising BACs
has been found,a large set of non-dominated points for each sub-problem is gener-
ated and a dominance analysis is performed over the entire set of generated points
to �nd the set of (approximately) non-dominated points of the main MO-BAO
problem (second phase). As we pointed out in Section 1, such a strategy is quite
ine�cient as it computes a large number of points that will eventually be shown
to be dominated. The method presented in this article can be used to improve the
procedure used in the second phase in Cabrera G. et al. (2018) by reducing the
number of non-dominated points that need to be generated.
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In the context of the method proposed in this paper, the MO-BAO prob-
lem is the BOMINLP problem (1). In the MO-BAO problem we seek a set of
e�cient BACs A ⊆ PN (K), where PN (K) is the set of all N -element subsets
of K and K is the set of all possible beam angles around the patient, with
K = {kπ/180 : k = 0, 1, 2, . . . , 359}. A ∈ PN (K) is a BAC and N > 0 the a
priori determined number of angles. We denote the i-th angle of A by Ai for
i = 1, . . . , N . Moreover, for a given �xed BAC A ∈ PN (K) we obtain the MO-
FMO problem for the given BAC as a sub-problem. The goal of the MO-FMO
problem is to �nd a set of e�cient �uence maps XA

E ⊆ X (A ) for the given BAC
A ∈ PN (K), where X (A ) is the set of feasible �uence maps for BAC A (being,
simply, those �uence maps which have zero �uence for all beamlets associated with
un-used angles). E�cient solutions x ∈ XA

E can be found using the ε-constraint
method mentioned before.

In this paper we consider the generalised equivalent uniform dose (gEUD) as
the basis of our objective functions. The gEUD can be de�ned as the biologically
equivalent dose that, if delivered uniformly, would lead to the same response as
the actual non-uniform dose distribution (Niemierko, 1997).

Before we introduce the mathematical expression of the gEUD and the objec-
tive functions we are going to use in this work, we need to present some general
notation in IMRT.

Let x ∈ Rn denote a vector of beamlet �uences, where n corresponds to the
total number of beamlets over all pre-determined beam angles and xi = 0 is the
�uence at beamlet i. All mathematical optimisation models in IMRT are based on
the radiation dose deposited into each voxel j of PTV and OARs by �uence map
x. This dose distribution d is calculated using the expression

drj (x) =
n∑

i=1

Ar
jixi for all j = 1, 2, ..., mr, (15)

where r ∈ R = {O1, . . . , OQ, T} is an element in the index set of regions (we use
the term region to denote either the tumour, any organ at risk, or normal tissue),
with the tumour indexed by r = T and the organs at risk and normal tissue
indexed by r = Oq with q = 1, . . . , Q. mr is the total number of voxels in region
r, j corresponds to a speci�c voxel in region r, dr ∈ Rmr

is a dose vector and its
elements drj give the total dose delivered to voxel j in region r by the �uence map
x ∈ X (A ). Here, the dose deposition matrix Ar ∈ Rmr×n is a given matrix where
Ar

ji = 0 de�nes the rate at which radiation dose along beamlet i is deposited into
voxel j in region r.

The mathematical expression for gEUD is

gEUDr(x) =

 1

mr

mr∑
j=1

(
drj (x)

)ar

1/ar

, (16)

where ar is a region-dependent parameter and drj (x) is as given in Equation (15).
For the tumour (r = T ), we put aT < 0, whereas for OARs (r = Oq) we choose
aOq > 1.

Using gEUD-based objective functions we have that the associated MO-FMO
problem is convex which allows us, on the one hand, to �nd e�cient solutions to
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the MO-FMO problem and, on the other hand, to apply the strategy proposed in
Section 4 to reduce the number of non-dominated points computed to obtain a set
of (approximately) non-dominated points of the MO-BAO problem.

The objective gEUDr(x) has several desirable properties for optimisation (Choi
and Deasy, 2002; Romeijn et al., 2004). If ar = 1, gEUDr(x) is a norm and thus
is a convex function. If, on the other hand, ar < 0, then gEUDr(x) is no longer a
norm, but is a concave function of x (Choi and Deasy, 2002). Moreover, gEUDr(x)
is positively homogeneous for all ar (Cabrera G. et al., 2014). As demonstrated
in Cabrera G. et al. (2014), a positively homogeneous multi-objective optimisa-
tion problem with p objective functions can be converted into a multi-objective
optimisation problem with p−1 objectives. This can be done by transforming one
of the objectives into a constraint. Hence the MO-FMO problem can be solved
with p − 1 objectives and a constraint specifying that the p-th objective takes
some speci�ed value. (To maintain convexity, we implement this as an inequality
constraint applied to the tumour's gEUD, and observe that this constraint will
always be satis�ed at equality in an optimal solution.) Having solved the problem
for one particular value of the p-th objective, all other e�cient solutions can be
obtained by scaling (Cabrera G. et al., 2014).

The MO-BAO we address in this paper is as follows:

MO-BAO: min
A

(
min
x

(
gEUDO1(x)

gEUDO2(x)

))
(17)

s.t. gEUDT (x) = t

x ∈ X (A )

A ∈ Â,

the solution of which is a set containing all e�cient BACs which use exactly N of
|K| available angles, where t is equal to the prescribed gEUD of the tumour and
Â = PN (K).

5.2 Comparison with ε-constraint scalarization for the full MO-BAO problem

Solving the MO-BAO problem in (17), that is, �nding all e�cient BACs which
use exactly N angles, is extremely di�cult. This is, on the one hand, because of
the large number of possible BACs that exist and, on the other hand, because of
the computation time needed to produce non-dominated points for each of those
BACs.

We demonstrate this by solving a single ε-constraint scalarisation of (17) with
a reduced number of available beam angles. In Table 1 we report the computation
time required to solve a single MINLP ε-constraint scalarisation instance for the
`CERR' problem instance (see Section 5.3) as the number of available beam angles
|K| increases, i.e. each row gives the computation time for a single scalarised
instance of (17) that selects the best N = 5 beam angles from |K| ∈ {12, 15, 18, 20}
available beam angles. To create this scalarisation, we set the value of ε for the
gEUD of the bladder constraint to 37 and minimised the gEUD to the rectum.
The prescribed tumour gEUD was set to t = 70 for this and all further numerical
tests. It is important to note that we use the same computer and solver to solve
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Table 1: Computation time needed to �nd a single e�cient 5-angle BAC and
treatment plan with a small number |K| of available beam angles by solving a
single scalarisation instance of MO-BAO (17).

Available Angle CPU
Angles Step size time (s)
|K| = 12 30◦ 5,069
|K| = 15 24◦ 19,715
|K| = 18 20◦ 56,450
|K| = 20 18◦ 105,131

these single ε-constraint scalarisations and the experiments presented in Section
5.3.

The last column of Table 1 shows that the computation time needed to solve a
single ε-constraint scalarisation of (17) increases quickly as the number of available
beam angles becomes larger. Clearly, the time needed for all |K| = 360 integer
beam angles would be enormous. Since the time listed in Table 1 is the time to
�nd a single non-dominated point, the time required to �nd a set of non-dominated
points would be many times the computation time reported in Table 1. It is clear
that this is not practical from a clinical point of view. In Section 5.3 we consider
instances with |K| = 72 available beam angles and 80 di�erent values of ε. Solving
this MO-BAO problem exactly using its ε-constraint scalarisation with currently
available mathematical programming solvers and computers is simply not possible,
and so e�cient alternative approaches such as ours are required.

The MO-BAO problem (17) is an instance of BOMINLP (2). The correspond-
ing sub-problem (3) under our decomposition approach is the MO-FMO problem:

MO-FMO(A ): min
x

(
z1(x)
z2(x)

)
=

(
gEUDO1(x)

gEUDO2(x)

)
(18)

s.t. gEUDT (x) = t

x ∈ X (A ) .

The solution to (18) is a set XA
E of e�cient �uence maps for BAC A . As

before, we �nd this set using the ε-constraint method, which requires solving single
objective constrained optimisation problems of the following form:

MO-FMO(ε,A ) : min
x

gEUDO1(x) (19)

s.t. gEUDT (x) = t

x ∈ X (A )

gEUDO2(x) 5 ε.

As we discussed above, we require Langrangian dual values to exist at optimal
solutions to this MO-FMO(ε,A ) sub-problem. For practical problem instances,
this sub-problem satis�es the well-known linear independence constraint quali�ca-
tion (LICQ) (see A), and so these Lagrangian values can be found using standard
optimisation solvers such as the Ipopt solver (Wächter and Biegler, 2006) we use
to run all our experiments.

In the next section, we use Algorithm 1 to solve our MO-BAO problem (17),
where we observe that the sub-problem (3) is given by our MO-FMO sub-problem
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(18), and the sub-problem (4) required for the ε-constraint method is given by
(19).

5.3 Computational Experiments

In this section we apply Algorithm 1 to the MO-BAO problem (17) for 5 prostate
cases obtained from Clinica Alemana de Santiago (Chile) for anonymous former pa-
tients (referred to as `TRT001' to `TRT005') and also for a prostate case extracted
from Deasy et al. (2003) (referred to as `CERR'). We perform all the experiments
presented in this paper on an Intel i7 processor with 32GB of memory running on
Ubuntu 18.

This case study considers three regions, namely, PTV, indexed by T , and the
rectum and the bladder as OARs Orectum and Obladder. The total number of voxels
is about 56,000 and the number of beamlets n over the �ve beams is around 320
depending on the considered BAC.

The single objective problemMO-FMO(A , ε) is solved exactly using the IPOPT
solver from COIN-OR (Wächter and Biegler, 2006). IPOPT implements a primal-
dual interior point method that uses �rst and second derivative information to
�nd locally optimal solutions. To �nd E , we �rst compute lexicographically opti-
mal solutions for all A ∈ Â. We bound the objective functions such that maximum
dose (gEUD) values for both the rectum and the bladder are not larger than 65.
The obtained range of objective values for Obladder is [ε1, εL] = [31.735, 65]. After
computing ε1, εL, we compute set E , which consists of 80 equally spaced ε values
within the range [ε1, ε80].

As mentioned in Section 5.1, the MO-BAO problem is too di�cult to solve
exactly within a reasonable computation ´time frame, and so we replace the set
of all BACs Â in (18), corresponding to Y in (17), by a set of 15 promising BACs
consisting of N = 5 beam angles each. These promising BACs were obtained using
the two-phase approach presented in Cabrera G. et al. (2018).

Table 2 shows a summary of the results obtained for each instance. The num-
ber of generated points (column `Num Points Generated') is signi�cantly smaller
than the 50× 80 = 1200 points the naïve approach (see Section 2) needs to obtain
the same set of non-dominated points for the problem. Column `Fraction of Naïve
Approach' shows, for each instance, the fraction of points we require when com-
pared with the naïve approach, which is on average only 12.42%, i.e., our approach
is about ten times faster than the naïve approach.

One measure of ine�ciency in our algorithm is the number of points that are
generated but then discarded because they are dominated. Assuming no points are
discarded, then the minimum number of points any approach needs to compute
to produce the same set of non-dominated points is 109 (2 lexicographic points
for each of the 15 BACs plus one point for each of the 80 ε values, less one point
because the ε = 65 value coincides with a lexicographic point). The column `Num
Points Discarded' shows the extra points that were generated beyond this mini-
mum and then discarded as a result of being dominated. We observe that we are
discarding, on average, about 26.6% of the points we generate. Finally, the com-
putation of each non-dominated point takes about 80 seconds on average. Thus, to
produce the entire �nite set of non-dominated points for |K| = 72 available beam
angles our approach will take no more than 3.5 hours, which is much shorter than
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Table 2: Results obtained for all 6 instances tested in this study.

Instance Num Points Fraction of Num Points Fraction
Generated Naïve Approach Discarded Discarded

CERR 146 12.2% 37 25.3%
TRT001 148 12.3% 39 26.4%
TRT002 134 11.2% 25 18.7%
TRT003 156 13.0% 47 30.1%
TRT004 148 12.3% 39 26.4%
TRT005 162 13.5% 53 32.7%
Average 149 12.4% 39 26.6%

the 29 hours the solver takes to obtain only one non-dominated point using the
ε-constraint scalarisation when considering |K| = 20 available beam angles (see
Table 1).

Figure 9 shows the results obtained for the CERR instance. The �nal set of
non-dominated points consists of the 80 points shown in Figure 10. Points in this
set belong to only 3 of the 15 BACs (A 1,A 2,A 3 in Figure 10).

6 Conclusions

In this study a method to e�ciently search for a �nite set of non-dominated points
of bi-objective mixed binary non-linear optimisation problems (BOMINLP), where
sub-problems obtained when �xing integer variables are convex, is proposed. We
take advantage of the convexity property of the sub-problem to iteratively discard
points that will result in dominated points of the bi-objective mixed binary opti-
misation problem. Using our method, the vast majority of the dominated points
from the sub-problem are discarded without any quality impairment on the �nal
set of non-dominated points of the main problem.

Our experiments show that our matheuristic can generate 80 approximately
non-dominated points for our test problem in 3.5 hours, while the traditional
epsilon-constraint method applied to the largest problem we could model (with
just 20 of the 72 angles considered by the matheuristic) took 29 hours to �nd just
one approximately non-dominated point. It is also 10 times faster than a naïve
enumeration implementation. Further improvements may be possible, for example

through better choices in our getBestε(Sy1

N ,Sy2

N , . . . ,Sy|Y|

N ) function.
We applied the proposed method to a problem arising in radiation therapy

optimisation, namely the multi-objective beam angle optimisation problem and
obtained very good results. To further strengthen the support for the quality of
our algorithm it will be worth trying our proposed approach on other BOMINLP
problems such as the bi-objective joint facility location and the network design
problem addressed in Carrano et al. (2007). Further, extending our algorithm to
MO problems with more than 2 objectives can also be explored.

To make further progress in algorithms for solving BOMINLP problems, it
will be important to develop methods that can identify start and end points of
sections of the non-dominated set of the BOMINLP generated by speci�c sub-
problems SP(y), i.e. by addressing point (i) on page 7. Such algorithms can then
bene�t from progress in exact methods in bi-objective convex optimisation or use
the algorithm proposed here as a sub-routine.
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(b) Figure 9(a) zoomed in.

Fig. 9: Set of non-dominated points of sub-problem (MO-FMO) computed by
Algorithm 1 for each A ∈ Â.
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Fig. 10: Final set of (approximately) non-dominated points of the main MO-BAO
problem obtained using the proposed method.

A Lagrangian Multiplier Existence

Assume we have some optimal solution x∗ to MO-FMO(ε,A ) for some ε,A . We wish to show
that optimal dual variables (i.e. Lagrangian multipliers) exist for MO-FMO(ε,A ) at x∗. To
show this, we show that solution x∗ satis�es the well known linear independence constraint
quali�cation (LICQ), i.e. that the gradients of the active inequality constraints are linearly
independent at the optimal solution x∗ to MO-FMO(ε,A ). Note that the constraints x ∈ X (A )
simply indicate that all �uence variables belonging to beam angles not in A are zero, and
therefore are not present in the problem; see Section 5. Therefore (19) e�ectively has only two
gEUD constraints.

If only one of the two constraints is active, then the result follows immediately. Therefore,
we focus on the case where both gEUD inequality constraints are satis�ed at equality.

Consider some organ r ∈ {T,O2}, and some beamlet k with intensity xk. The kth compo-
nent in ∇gEUDr(x) is given by

∂

∂xk
gEUDr(x) =

1

mr

mr∑
j=1

Ar
jk

(
n∑

i=1

Ar
jixi

)ar−1
 1

mr

mr∑
j=1

(
n∑
i

Ar
jixi

)ar 1
ar −1

(20)

If ∇gEUDT(x∗) and ∇gEUDO2(x∗) are not linearly independent, then there exists some
h > 0 for which ∂

∂xk
gEUDT (x∗) = h · ∂

∂xk
gEUDO2 (x∗) for all k = 1, 2, . . . , n. Our experiments

show that each optimal solution x∗ to MO-FMO(ε,A ) has many dozens of non-zero x∗i values,
giving many dozens of non-zero values in∇gEUDT(x∗) and∇gEUDO2(x∗). Furthermore, recall
that Ar

ji = 0 is a real-valued constant describing the rate at which radiation dose along beamlet
i is deposited into voxel j in region r, and thus each non-zero Ar

ji value is typically unique.

Given that we also have aT 6= aO2 , we conclude that for any practical problem, no such h
will exist, and so ∇gEUDT(x) and ∇gEUDO2(x) will be independent, showing that the desired
result will hold in practice.
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