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Abstract:   23 

1. Acoustic indices are increasingly employed in the analysis of soundscapes to ascertain 24 

biodiversity value. However, conflicting results and lack of consensus on best practices for 25 

their usage has hindered their application in conservation and land-use management 26 

contexts. Here we propose that the sensitivity of acoustic indices to ecological change and 27 

fidelity of acoustic indices to ecological communities are negatively impacted by signal 28 

masking. Signal masking can occur when acoustic responses of taxa sensitive to the effect of 29 

interest are masked by less sensitive acoustic groups, or target taxa sonification is masked by 30 

non-target noise. We argue that by calculating acoustic indices at ecologically appropriate 31 

time and frequency bins, masking effects can be reduced and the efficacy of indices 32 

increased. 33 

2. We test this on a large acoustic dataset collected in Eastern Amazonia spanning a 34 

disturbance gradient of undisturbed, logged, burned, logged-and-burned, and secondary 35 

forests. We calculated values for two acoustic indices: the Acoustic Complexity Index and the 36 

Bioacoustic Index, across the entire frequency spectrum (0-22.1 kHz), and four narrower 37 

subsets of the frequency spectrum; at dawn, day, dusk and night.  38 

3. We show that signal masking has a large impact on the sensitivity of acoustic indices to 39 

forest disturbance classes. Calculating acoustic indices at a range of narrower time-40 

frequency bins substantially increases the classification accuracy of forest classes by random 41 

forest models. Furthermore, signal masking led to  misleading correlations, including 42 

spurious inverse correlations, between biodiversity indicator metrics and acoustic index 43 

values compared to correlations derived from manual sampling of the audio data. 44 

4. Consequently, we recommend that acoustic indices are calculated either at a range of time 45 

and frequency bins, or at a single narrow bin, predetermined by a priori ecological 46 

understanding of the soundscape. 47 

 48 



1 – Índices acústicos são cada vez mais utilizados em análises de paisagens sonoras para entender 49 

padrões de biodiversidade. Entretanto, sua aplicação em biologia da conservação e em contextos de 50 

manejo do uso do solo têm sido atrasada devido a resultados conflitantes e a uma falta de consenso 51 

sobre as melhores práticas a serem empregadas. Aqui nós propomos que a sensibilidade de índices 52 

acústicos em capturar mudanças ecológicas, assim como a fidelidade com que índices acústicos 53 

capturam comunidades ecológicas, são severamente impactados por mascaramento do sinal. O 54 

mascaramento do sinal pode ocorrer quando respostas acústicas sensíveis aos efeitos que estão 55 

sendo monitorados são mascaradas por outros grupos menos sensíveis ou quando a vocalização do 56 

taxa alvo dos estudos é mascarado por barulho de outros taxa. Nós argumentamos que ao calcular 57 

índices acústicos em intervalos apropriados de tempo e frequência, efeitos mascaradores podem ser 58 

reduzidos e a eficácia dos índices acústicos aumentada.  59 

 60 

2 – Nós testamos isso em um vasto grupo de dados acústicos coletados na Amazônia oriental, 61 

abrangendo um gradiente de distúrbios antrópicos, incluindo florestas primárias não perturbadas e 62 

aquelas afetadas por extração madeireira, incêndios florestais, extração madeireira e incêndios, 63 

assim como florestas secundárias. Nós calculamos os valores de dois índices acústicos, o Índice de 64 

Complexidade Acústica e o Índice Bioacústico. Para isso, empregamos todo o espectro de 65 

frequências (0-22.1kHz) e quatro subgrupos menores do espectro de frequências: o amanhecer, o 66 

dia, o anoitecer e a noite. 67 

 68 

3 – Nós mostramos que o mascaramento do sinal tem um grande impacto na sensibilidade dos 69 

índices acústicos a distúrbios florestais. Calculando índices acústicos em um intervalo menor de 70 

tempo-frequência aumentou substancialmente a acurácia da classificação das classes florestais por 71 

modelos do tipo Random Forest. Além disso, o mascaramento do sinal levou a correlações errôneas, 72 

incluindo correlações negativas espúrias entre métricas de biodiversidade e valores de índices 73 



acústicos, quando comparados com correlações geradas a partir de amostragem manual dos dados 74 

de áudio. 75 

 76 

4 – Consequentemente, nós recomendamos que índices acústicos sejam calculados em intervalos de 77 

tempo e frequência menores, pré-determinados por conhecimento ecológico a priori da paisagem 78 

sonora. 79 

 80 
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 84 

Introduction 85 

Acoustic monitoring is rapidly becoming a key tool to measure biodiversity, with strident calls for 86 

broader uptake (Burivalova et al., 2019; Deichmann et al., 2018; Wagner Ribeiro Jr et al., 2017). 87 

Despite increasing ease of data collection, there remain significant obstacles to the analysis of 88 

acoustic data, with species-level classification limited by the expertise and effort required to train 89 

machine-learning models, and the limited availability of both open source software and large audio 90 

libraries (Gibb et al., 2019; Priyadarshani et al., 2018). Consequentially, the use of acoustic indices 91 

has grown in popularity, often used as proxies for more traditional biodiversity metrics like species 92 

richness and composition, and presented as alternative effective tools for rapid biodiversity 93 

assessments (Sueur et al., 2008). There are a wide range of acoustic indices, but most involve 94 

calculating and comparing acoustic power within temporal and frequency bins (Farina, 2014; Sueur, 95 

Farina, Gasc, Pieretti, & Pavoine, 2014; Buxton et al., 2018; Gibb et al., 2019). These are, in turn, 96 

used to assess soundscape qualities such as evenness, entropy and complexity. Acoustic indices infer 97 



community level information from entire soundscapes, in contrast to species-level classification 98 

approaches that require time-consuming complex model-training techniques necessitating large 99 

training libraries, indices are relatively simple and readily available on a range of open-source 100 

platforms. 101 

 102 

Despite their increasing popularity, acoustic indices are not always effective at answering key 103 

questions related to conservation or natural resource management. The first issue relates to their 104 

sensitivity to changes in environmental conditions. Acoustic indices have been shown to effectively 105 

distinguish between disparate land uses (Bradfer‐Lawrence et al., 2019; Carruthers-Jones et al., 106 

2019; Depraetere et al., 2012). However, they are less successful in distinguishing differences 107 

between similar land uses; for example between different types of  forest (Bormpoudakis et al., 108 

2013, Eldridge et al., 2018, Do Nascimento et al., 2020), or require a very large number of spatial 109 

replications to do so (Mitchell et al., 2020). The second issue relates to their fidelity as indicators of 110 

biodiversity, as they can be inconsistent predictors of traditionally-used biodiversity metrics such as 111 

species richness (Eldridge et al., 2018; Fuller et al., 2015; Jorge et al., 2018; Mammides et al., 2017).  112 

The problems of low sensitivity and inconsistent fidelity are potentially caused by signal 113 

masking – whilst certain vocalising taxa or taxonomic groups may respond strongly to 114 

changes in environmental condition, others may not. By measuring acoustic indices at 115 

intervals that measure across multiple taxonomic groups, sensitivity to these varied 116 

responses is lost, which may not be the case if indices were measured with multiple 117 

intervals. Similarly, fidelity to a single taxonomic group is lost by the use of broad time and 118 

frequency intervals, which may be improved by the use of narrower, tailored intervals. 119 

There are two key ways in which signal masking can occur in acoustic indices. The first, 120 

temporal masking, can occur when acoustic indices are measured over time periods that 121 

are too long, so that sounds from sensitive time periods may be confounded by a lack of 122 



change or contrasting responses in other time periods. For example, the vocal community 123 

at dawn may respond to a disturbance event very differently from the dusk community 124 

(Deichmann et al., 2017), so that measuring both together masks overall community 125 

responses. To avoid this, the analysis of acoustic indices often involves temporally limiting 126 

or splitting the data analysed into discrete periods, such as dawn and dusk (Bradfer-127 

Lawrence et al. 2020, Deichmann et al., 2017; Fuller et al., 2015, Eldridge et al., 2018; 128 

Machado et al., 2017), selecting time periods that coincide with the peak communication 129 

time for certain groups.  130 

The second form of signal masking, frequency masking, can occur when acoustic indices are 131 

measured at frequency bins that are too broad, so that sounds at sensitive frequencies are swamped 132 

by contrasting or null responses at other frequencies. Although the importance of frequency 133 

masking has not been explicitly considered in relation to acoustic index functioning, there is strong a 134 

priori reason to believe it may be important, and has been postulated by others (Eldridge et al., 135 

2018). There is a broad negative relationship between body size and the frequency at which animals 136 

vocalize (Gillooly and Ophir, 2010; Ryan and Brenowitz, 1985; Seddon, 2005; Wilkins et al., 2013), 137 

meaning that the largest species, predominantly mammals, vocalize at the lowest frequencies, whilst 138 

orders composed of smaller species such as orthopterans predominate at higher frequencies. In 139 

addition, neotropical bird vocalisations exhibit both temporal and frequency partitioning to avoid 140 

signal masking from cicadas and other loud insects (Aide et al., 2017, Hart et al., 2015). At its 141 

simplest, this should result in different frequency bins being dominated by sounds from different 142 

broad taxonomic groupings.  143 

 144 

Here, we use a data set from one of the world’s most speciose ecosystems - the Brazilian Amazon – 145 

to explore how the use of time and frequency bins (henceforth TFBs) can improve the sensitivity and 146 

fidelity of acoustic indices. By calculating acoustic index values within restricted frequency bands, 147 



the potential masking effect could be reduced, and correlations with specific taxonomic groups 148 

increased. Initially, we establish whether measuring indices at broad time and frequency scales, as is 149 

standard practice, masks variation in acoustic responses across narrower TFBs. Next, we look at the 150 

impact of signal masking on the efficacy of acoustic indices as a proxy for biodiversity and test the 151 

suitability of using TFBs as a solution by asking two questions of high relevance to practitioners and 152 

policy makers. First, do TFBs improve the sensitivity of acoustic indices to changes in forest condition 153 

(e.g. disturbance)? This is key to monitoring forest recovery following disturbances such as selective 154 

logging or wildfire, analyses which underpin many applied ecology questions. Second, do TFBs 155 

improve the fidelity of acoustic indices as proxies for traditional field surveys aimed at establishing 156 

species richness and composition? These field surveys can be expensive and inefficient for a range of 157 

taxonomic groups (Gardner et al., 2008), and if acoustic indices can be shown to be a reliable 158 

replacement for traditional survey methods, such as point count bird surveys, then they may offer a 159 

significant cost-saving.  160 

 161 

Methods 162 

Study area and data collection: 163 

We collected acoustic data in the eastern Brazilian Amazon in the municipalities of Santarém-164 

Belterra-Mojuí dos Campos (latitude -3.046, longitude -54.947, hereafter Santarém) in Pará state, 165 

between 12 June 2018 and 16 August 2018. We used the permanent transects of the Sustainable 166 

Amazon Network (Gardner et al. 2013) distributed in terra firme forest habitats. We sampled 28 300-167 

m transects distributed into five forest classes: undisturbed primary forests (n = 4), logged primary 168 

forests (n = 4), burned primary forests (n= 5), logged-and-burned primary forests (n = 12), and 169 

secondary forests (n = 3); forests recovering after being completely felled). We installed Frontier 170 

Labs Bioacoustic Recording Units with a 16 bit 44.1 kHz sampling rate at points halfway along each 171 

transect. Recorders were placed in trees at a height of 7-10 m, with the microphone placed in a 172 



downward facing position, at a distance of 10-20 m from the transect to reduce the chance of 173 

recorder theft. Recording units were placed away from immediately overhanging dense vegetation 174 

to avoid sound being blocked and to limit geophony from leaves and branches. The microphones 175 

used have 80 dB signal to noise ratio and 14dBA self-noise, a fixed gain pre-amp of 20dB, a flat 176 

frequency response (±2dB) from 80Hz to 20kHz and an 80Hz high-pass filter to filter out low-177 

frequency wind noise (Frontier Labs, 2015). All files were recorded in wav format. Recordings were 178 

made continuously (Frontier Labs software writes a new file every ~6 hrs) over multiple discrete time 179 

periods of differing length at each point with discrete time periods ranged in duration between 3 180 

and 20 days. Total recording duration and first and last recording dates are included in SOM 1 181 

Appendix 1. The inaccessibility of some transects used in previous studies meant that a balanced 182 

survey design was impossible across the disturbance categories (Table 1). 183 

Table 1: Audio sampling by forest class after automated removal of recordings containing heavy 184 

rainfall 185 

Forest Class Sampled points (n) Total sampling time (minutes) 

Primary  4 90,600 

Logged primary 4 89,540 

Burned primary 5 139,720 

Logged-and-burned primary 12 238,130 

Secondary 3 60,970 

 186 

Data Analysis: 187 

We selected two acoustic indices, the Acoustic Complexity Index and the Biodiversity Index as they 188 

are two of the commonest indices used in ecoacoustic studies. However the Acoustic Complexity 189 

Index is commonly applied across broad frequency ranges, and the Bioacoustic Index is typically 190 



applied at restricted frequency ranges, making an ideal comparison for this study as in combination, 191 

they are likely to be representative of how many acoustic indices will be affected by the use of 192 

narrower time and frequency bins.  The Acoustic Complexity Index is intended to quantify biotic 193 

sound whilst being robust to non-target noise (Duarte et al., 2015; Fairbrass et al., 2017; Pieretti et 194 

al., 2011), and is commonly applied across broad frequency bins. Acoustic Complexity Index 195 

measures the irregularity in amplitude across time samples by frequency bin, relative to the total 196 

amplitude of the frequency bin. The Acoustic Complexity Index has been found to significantly 197 

correlate with species richness for some taxa (Bertucci et al., 2016, Bradfer-Lawrence et al. 2020, 198 

Eldridge et al., 2018, Mitchell et al., 2020), whilst in others it showed little or no correlation (Fuller et 199 

al., 2015; Mammides et al., 2017; Moreno-Gomez et al., 2019) although this may be due to 200 

limitations in methodology and small sample sizes. In contrast, the Bioacoustic Index (BI) is generally 201 

applied to narrower frequency bins, and is intended to provide relative abundance of avian 202 

community within a frequency range that contains most bird sound (Boelman et al., 2007). It 203 

measures the disparity between the quietest and loudest 1 kHz frequency bins. Again, the 204 

Bioacoustic Index has been found to be a good predictor of diversity in some studies (Eldridge et al., 205 

2018, Hilje et al., 2017, Gasc et al., 2017, Mitchell et al., 2020) whilst others have found it to be poor 206 

(Fuller et al.,2015, Moreno-Gomez et al., 2019), although concerns about the limitations of the 207 

methodologies used in these studies apply here too. We expect both indices to increase with 208 

increasing species richness and species abundance, and for correlations between both abundance 209 

and richness with the indices to be strongest in the frequency and time bins that are most 210 

dominated by the target taxa (Table 2), particularly diurnal bird species at dawn between 0.3-12 kHz 211 

and nocturnal taxa at night between 0.3-4 kHz. 212 

 213 

We calculated the indices using the soundecology package (Villanueva-Rivera et al., 2011, v1.3.3) in 214 

R (R Core Team, 2019) which includes minimum and maximum frequency limits for both the Acoustic 215 



Complexity Index and Bioacoustic Index, allowing easy and consistent index calculation at a range of 216 

frequency bins. To limit microphone self-noise the lowest frequency included in analysis was 300 Hz. 217 

We then calculated the mean index value per 10 minute interval of data collected for each acoustic 218 

index and each of the 20 TFBs (Fig.1a), having first screened out recording periods containing heavy 219 

rainfall (n = 527) using the hardRain package in R Studio (Metcalf et al., 2020, v0.1.1). 220 

We selected TFBs with the objective of capturing periods of time and frequency bands that 221 

are most taxonomically homogenous. TFBs were not quantitatively optimised, but rather 222 

subjective approximations that aimed to effectively capture broad taxonomic groupings in 223 

tropical forest landscapes. Temporal limits were determined by patterns in animal 224 

communication in the diel cycle, to encapsulate dawn, dusk, daytime and night-time 225 

periods (Pieretti et al., 2015; Rodriguez et al., 2014); commonly used sampling periods in 226 

acoustic recording (Sugai et al., 2019). ‘Dawn’ was assigned to the period from 30 minutes 227 

prior to sunrise and for the following 2 hours, whilst ‘Dusk’ was the 2 hour period ending 228 

at 30 minutes after sunset. ‘Day’ and ‘Night’ are the respective intervening periods. 229 

Frequency limits were determined by a review of the literature and our own experience of 230 

manually analysing 100s of hours of acoustic data from the region. The taxonomic 231 

groupings we hypothesize dominate each TFB are illustrated in Figure 1a. Table 2 contains 232 

some of the TFBs likely to contain particularly high activity from particularly homogenous 233 

groupings. 0.3-22.1 kHz frequency bin (hereafter ‘baseline’) was used as baseline data, 234 

representative of how most terrestrial acoustic indices are currently calculated across the 235 

spectrum of human hearing or the common sampling rate of 44.1 kHz. However, it is 236 

worth noting that the Bioacoustic Index is commonly calculated with a narrower frequency 237 

bin than the baseline, typically from 2 to 8 or 11 Khz (Boelman et al., 2007, Bradfer-238 

Lawrence et al., 2019, Villanueva-Rivera et al., 2011). We have used the same baseline as 239 

the Acoustic Complexity Index for ease of comparison, and because the mechanisms 240 



causing masking between ecologically relevant and non-relevant frequency bins is the 241 

same regardless of absolute frequency. Of course, macro frequency bands will never solely 242 

encompass single taxonomic groups, and boundaries will always be somewhat arbitrary 243 

due to variations in acoustic communication at species, temporal and even individual 244 

levels. 245 

Table 2: Selected time-frequency bins and the taxonomic groups expected to dominate each sample. 246 

Frequency Band (kHz) Time Period Taxonomic group References 

0.3-4 Night Terrestrial/arboreal 

mammals, anuran and 

birds 

Chek, Bogart, & 

Lougheed, 2003; 

Lima, Pederassi, 

Pineschi, & 

Barbosa, 2019 

4-12 Day Hemiptera/Orthoptera Hart et al., 2015, 

Schmidt et al., 2013 

4-12 Night Hemiptera/Orthoptera Hart et al., Schmidt 

et al., 2013 

0.3-12 Dawn Diurnal/crepuscular 

birds 

Tobias, Planqué, 

Cram, & Seddon, 

2014 

12-22.1 Dusk Insects, bats and frogs Lima, Pederassi, 

Pineschi, & 

Barbosa, 2019, 

Schmidt et al., 2013 

12-22.1 Night Insects Schmidt et al., 2013 

 247 



Signal Masking 248 

To investigate whether the soundscape responds differently to human-driven disturbance across 249 

time and frequency, we looked at the variation in response of each disturbance class for each TFB. 250 

Having removed periods with extreme outlying index values, we took a random sample of acoustic 251 

index values for each acoustic index and TFB from each forest class (n=500), giving a total sample 252 

size of n=2500 per TFB/index. For each TFB and acoustic index we conducted a Kruskal-Wallis 253 

(Kruskal and Wallis, 1952) test between the five forest classes, and calculated the effect size (ε2). 254 

When significant differences between the classes were found, we used a Dunn’s test (Dunn, 1964) to 255 

establish how many of the ten forest class pairs were significantly different from each other. 256 

 257 

The sensitivity of acoustic indices to habitat 258 

To assess whether the use of TFBs increased acoustic index sensitivity to forest classes, we built 259 

distributed random forest models from the ‘h2o’ R package (LeDell et al., 2020 v3.30.0.1), varying 260 

the number of TFBs used as predictors. Firstly, we tested if the use of TFBs improved classification 261 

accuracy between the two most ecologically distinct sampled habitats; undisturbed primary forest 262 

and secondary forest (Moura et al., 2013). To do so, we built two binomial random forest models, 263 

the first using training data only from the baseline frequency bin across all time periods, the second 264 

using training data from all frequency bins and time periods. Next, models were trained and tested 265 

on data from all five forest classes, which previous studies (e.g. Moura et al. 2013) suggest would 266 

provide a more challenging classification problem. 267 

We used each combination of index and TFB as a separate predictor. The training datasets required 268 

subsampling to obtain predictors of equal length, as not all time periods were of the same duration, 269 

and forest classes had unequal survey effort. We used the same subsample as above (see Signal 270 

Masking), so that each TFB predictor had n=2,500 samples, with 500 samples from each forest class. 271 



This resulted in a greatly reduced dataset for training the models with 100,000 acoustic indices 272 

values compared to 1,277,560 in the original dataset. Prior to model training, the dataset was split 273 

with 75% of observations used for training and 25% as a test dataset. Model parameters were kept 274 

constant across all models (SOM 1 Appendix 2). We used balanced accuracy (Fielding and Bell, 1997), 275 

F1 scores (Chinchor, 1993) and Matthew’s Correlation Coefficient (Guilford., 1954) as accuracy 276 

metrics (Table 3), which were calculated per forest class based on predictions of the test dataset and 277 

are presented here as an unweighted mean across all forest classes included in the respective 278 

model. 279 

 280 

Fidelity of acoustic indices to taxonomic measures of biodiversity 281 

We assessed correlations between acoustic index scores and biodiversity indicator metrics, to see 282 

how representative the indices were of commonly used indicators of diversity. Data on the 283 

presence/absence of three sets of species were generated from two subsets of the audio data. Each 284 

audio subset consisted of 28 hrs of sound recordings, in the form of 240 15 s recordings from each 285 

point. The first data set was restricted to the dawn period (hereafter dawn birds), in which all 286 

identifiable avian vocalisations were assigned to species by an ornithologist (Nárgila Gomes De 287 

Moura) with extensive field experience of point counts in the same sites (e.g. Moura et al. 2013). 288 

This method of species detection is likely to produce comparable results to traditional point count 289 

surveys as several papers have shown that experienced observers reviewing recordings and 290 

spectrograms can be more or equally effective at detecting species than field-based surveys (Darras 291 

et al., 2019; Shonfield et al., 2018). The second set of data was restricted to the nocturnal period 292 

(hereafter nocturnal birds), and again all identifiable avian vocalisations were assigned to species by 293 

an experienced ornithologist (OCM). The third set was generated from the nocturnal data subset 294 

again (hereafter nocturnal taxa), but comprises all biophony below 4kHz, identified (by OCM) where 295 



possible or sonotyped if not. It is worth noting that all of the bird species identified at night vocalized 296 

below 4 kHz, so that the nocturnal bird set is wholly a subset of the nocturnal taxa set. 297 

 298 

For each of these matrices (i.e. dawn birds, nocturnal birds and nocturnal taxa), five metrics were 299 

calculated; total number of encounters (the sum of the number of 15 s recordings each species was 300 

present in), species richness, Shannon diversity, Pielou’s evenness, and the first axis from a 301 

nonmetric multidimensional scaling ordination (hereafter MDS1) using the Jaccard method from the 302 

vegan package (Oksanen et al., 2019). Total encounters was included as a proxy for the abundance 303 

of sounds, to test if indices responded more strongly to more sources of noise, regardless of 304 

composition. Estimated species richness from the dawn matrix was calculated for each point at 305 

98.5% coverage based on rarefaction/extrapolation using the iNEXT package (Hsieh et al., 2020, 306 

v2.0.20), as some of the survey files were removed as they contained periods of heavy rain which 307 

affected the number of vocalizing species. Observed species richness was used for metrics from the 308 

nocturnal matrix, as the data were pre-screened for rain. Shannon diversity, Pielou’s evenness and 309 

species richness were included as standard measures of ecological diversity (Oksanen et al., 2019). 310 

MDS1 was included to reflect turnover mediated by disturbance, as high values correspond with less 311 

disturbed habitats, whilst lower values have communities associated with more disturbed habitats. 312 

Correlations between these metrics are available in SOM 1 Appendix 3. Median values of each 313 

acoustic index were calculated for each point and TFB, and Spearman’s rank order correlations (α = 314 

0.05) were calculated between these and the biodiversity metrics. Significant differences between 315 

each correlation and the respective baseline correlation were calculated using Zou’s confidence 316 

interval test (Zou, 2007) in the ‘cocor’ package (Diedenhofen and Musch, 2015 v.1.1-3). 317 

 318 

Results 319 



Sensitivity: forest disturbance 320 

The Kruskal-Wallis and Dunn’s test revealed strong evidence that acoustic masking affects the 321 

sensitivity of acoustic indices, both temporally and by frequency. All of the Kruskal-Wallis tests were 322 

significant (p<0.05), showing that acoustic indices are sensitive to at least some disturbance events 323 

regardless of frequency band or time period. There were significant differences between all ten 324 

forest class pairs in every time period and with both indices when considering all frequency-325 

restricted TFBs together. In contrast, there were no time periods with significant differences 326 

between all forest class pairs when using only the baseline TFBs, but Acoustic Complexity did have 327 

significant differences between nine forest class pairs in three time periods, and Bioacoustic Index 328 

once.  Twelve TFBs showed significant difference (p<0.05) between more forest classes than the 329 

corresponding baseline, and 21 TFBs had higher effect sizes than the corresponding baseline, 330 

suggesting that in many cases stronger responses to disturbance events at narrower frequency bins 331 

are masked by the use of broad frequency bins (Fig. 2). No baseline TFB achieved perfect separation 332 

between all ten forest-class pairs but this was achieved by three of the non-baseline TFBs. 333 

Furthermore, Acoustic Complexity Index at dusk and the baseline frequency bin produced the lowest 334 

number of significantly different forest class pairs, just two, suggesting that using only the broadest 335 

frequency bin can result in relatively poor  differentiation between forest disturbance classes. No 336 

one frequency bin or time period had a consistently larger effect size, or consistently differentiated 337 

between more forest classes. There were several occasions in which effect size increased in 338 

comparison to the baseline, whilst the number of different forest classes decreased (e.g. Acoustic 339 

Complexity Index at dawn, 0.3-4 kHz, Bioacoustic Index at night, 0.3-4 kHz). This suggests that the 340 

soundscape at this frequency bin is showing a particularly strong response to disturbance in one or 341 

more of the forest classes (in SOM 1 Appendix 4).” 342 

 343 

Sensitivity: Forest class differentiation 344 



The random forest models generated using all of the TFBs as predictors were able to classify forest 345 

classes with a high degree of accuracy, with 99.6% balanced accuracy between secondary and 346 

undisturbed forest and 88.2% between the five forest classes (Fig. 3). The models using all TFBs as 347 

predictors outperformed the corresponding baseline models in both tests, but as expected the 348 

baseline models performed particularly poorly when classifying between all five forest classes, 349 

achieving just 62.1%. The confusion matrix for the random forest model using all TFBs across all five 350 

classes suggest that acoustic indices do respond to soundscapes in ecologically meaningful ways, as 351 

both burned forest classes had comparatively high error between them, as did the two most 352 

disturbed classes, logged and burned vs secondary forest (SOM 1 Appendix 5).  353 

 354 

Fidelity: Biodiversity Correlations 355 

Correlations with traditional biodiversity metrics revealed complex patterns, underpinned by strong 356 

variation across index, frequency bins and time periods. For simplicity, we have focussed on time 357 

periods in which acoustic index values most directly reflect variation in manually reviewed datasets - 358 

dawn and day time for the dawn bird dataset, and night for the nocturnal datasets (Fig. 4), 359 

Correlations at other time periods are presented in SOM 2 Appendix 6. The two strongest 360 

correlations, were at night between Bioacoustic Index and diurnal avian MDS1 at 4-12 kHz (rs =0.74) 361 

and dusk at 0.3-12 kHz (rs = 0.72). 362 

The correlation scores provide strong evidence that the use of TFBs increase the fidelity of 363 

correlations. We found that correlation directions of the frequency/ bins differed from the 364 

corresponding baseline frequency bin for at least one of the metrics in every time period in both 365 

indices. The strongest examples of this were between Bioacoustic Index at dawn with dawn birds, 366 

which saw predominantly significant positive correlations at frequency bands at which dawn birds 367 

vocalize, but negative correlations in the baseline and 12-22.1 kHz frequency bins. We also found 28 368 



instances in which correlations were significantly different to the corresponding baseline frequency 369 

bin. 370 

Overall, the Acoustic Complexity Index was inconsistently correlated with biodiversity indicator 371 

metrics with predominantly negative and significant correlations with diversity metrics at dawn, but 372 

mostly positive correlations during the day and at night for most frequency bands, with far fewer 373 

significant correlations. In contrast, the Bioacoustic Index showed predominantly positive 374 

correlations with most diversity metrics except MDS1 across all three time periods and all three 375 

frequency bins only including sound below 12 kHz. For the community metrics most likely to be 376 

useful to ecologists, species richness and Shannon diversity, there were 19 significant correlations. 377 

However, where we found significant correlations with these metrics, there were still strong reasons 378 

for doubting the fidelity of acoustic indices as proxies. At dawn, correlations for both indices were 379 

weaker than the respective correlations with total encounters or MDS1, suggesting the indices were 380 

more sensitive to the number of individual sounds or the overall community. At night, nocturnal 381 

birds and taxa correlations with the Bioacoustic Index showed conflicting patterns with correlations 382 

at frequency bins more likely to be relevant to the relevant taxonomic group, suggesting a strong 383 

masking effect by vocalisations of non-target taxa. The exception to this is the correlation between 384 

dawn birds and BI during the day at 0.3-4 kHz, which shows strong correlations with species richness 385 

and Shannon diversity (rs = 0.44 and 0.40), a similar correlation with total encounters (rs = 0.40) and 386 

no significant correlation with MDS1.  387 

 388 

Discussion 389 

We found that calculating acoustic indices at narrower TFBs results in large increases in the 390 

sensitivity of acoustic indices to the soundscape response of different forest classes. Calculating 391 

acoustic indices across a single broad frequency bin, as is commonplace in the ecoacoustic literature 392 

(Sueur et al., 2014; Buxton et al., 2018; Gibb et al., 2019) can mask varied responses across time 393 



periods and frequency bins, reducing the sensitivity of acoustic indices. Furthermore, when acoustic 394 

indices are used as proxies for biodiversity indicator metrics, masking can have a serious impact on 395 

the fidelity of the correlations. Correlating broad frequency bins with biodiversity metrics generated 396 

from taxa whose vocalisations do not occur across the entire frequency range is likely to be highly 397 

misleading. It not only misrepresents the magnitude of correlations, but potentially results in 398 

spurious inverse correlations caused by the responses of acoustically dominant species or patterns 399 

from acoustic space that are not biologically relevant. 400 

 401 

The sensitivity gains of this new methodology are particularly apparent when using acoustic indices 402 

to differentiate between environments with classification accuracy greatly increased. Accuracy 403 

scores are as good or better than many in the literature (Bormpoudakis et al., 2013; Bradfer‐404 

Lawrence et al., 2019; Eldridge et al., 2018, Do Nascimento et al., 2020), especially considering that 405 

model hyperparameters are not optimised, fewer acoustic indices were used, and that the forest 406 

classes considered here are all of the same land cover (tropical forest) and within the same 407 

landscape. In addition, these results have been achieved whilst using only approximately one sixth of 408 

the training data compared to the models using only a single baseline frequency band, suggesting 409 

that by using TFBs, large efficiency savings can be made in terms of data collection. We therefore 410 

recommend that acoustic indices are calculated across a range of frequency bins and temporal 411 

periods in any study using acoustic index values to characterise and identify land use. 412 

The impact of signal masking, and the benefits of using narrower time-frequency bins to avoid it, are 413 

equally apparent when correlating acoustic indices with biodiversity metrics. However, despite the 414 

increased fidelity of the correlations, the use of single acoustic indices as direct proxies for 415 

biodiversity indicator metrics is still problematic. Whilst we found the predicted positive correlations 416 

between diversity, richness and the Bioacoustic Index at the most relevant TFBs, we found a 417 

negative correlation between the Acoustic Complexity Index at dawn with bird species richness and 418 



abundance. This contrasts with other similar studies in comparable habitats that found positive 419 

relationships (Bradfer-Lawrence et al., 2020, Eldridge et al., 2018, Mitchell et al., 2020). However, 420 

Mitchell et al., (2020) found high Acoustic Complexity values in oil-palm plantations where diversity 421 

was low, and noted that the significant relationships they found were within habitat types, but not 422 

across different habitats. Furthermore, the complex mechanisms determining abundance and 423 

species richness in tropical forests remain poorly understood, particularly in relation to the impacts 424 

of disturbance (Barlow et al., 2016, Terborgh et al., 1990). It is possible that idiosyncratic responses 425 

of single or a few taxa to disturbance could create such a negative correlation (Moura et al., 2016), 426 

especially if the taxa are acoustically dominant. In general, the strongest correlations we found were 427 

with total encounters and MDS1 – metrics that would only be of ecological interest if the 428 

underpinning species were well understood, requiring extensive manual surveys and undermining 429 

the purpose of acoustic indices. Despite this, the strong positive correlation between Bioacoustic 430 

Index and dawn bird species richness and diversity in the day at 0.3-4 kHz is interesting. It is plausible 431 

that this time-frequency bin contains the least vocalization from non-target taxa, insects sonify 432 

predominantly around >4 kHz and after the dawn chorusing of acoustically dominant vertebrates, 433 

particularly red-handed howler monkey Alouatta belzebul (Sekulic, 1982). Furthermore, it is after the 434 

end of the bird dawn chorus, during which it is possible that intense vocal activity of a few species 435 

may mask underlying richness and diversity.  436 

We have deliberately chosen to use subjective frequency bins determined by a priori knowledge of 437 

acoustic space use in our study system, to demonstrate both the wide applicability of this method, 438 

and that frequency bin selection need not be onerous to generate substantial benefits. However, 439 

choosing narrower or different frequency bins and time periods based on prior quantification of 440 

acoustic space use could provide substantial further benefits in understanding the effects of signal 441 

masking on correlations. Several existing methods exist to do so, either comprehensively through 442 

the multiscalar fractal approach (Monacchi and Farina, 2019), or more broadly using measures of 443 

acoustic space use or biophonic density (Aide et al., 2017,Eldridge et al., 2018) Quantifying TFB 444 



dominance by even broad acoustic clades could be highly informative and could provide quantifiable 445 

data on the relative effect size of the impact of disturbance types on those clades. Additionally, 446 

variation in the granularity of TFBs may well reveal further unknown ecological patterns. Whilst we 447 

have focused primarily on masking in the frequency domain, and across the diel cycle in the 448 

temporal domain, it is entirely plausible that analysis of acoustic indices at both greater and finer 449 

temporal scales, and broad frequency ranges, could reveal other patterns. For instance, within dawn 450 

choruses where we already know bird species can hold very specific temporal niches in the tropics 451 

(Fjeldså et al, 2020), or across seasonal scales such as the winter midday chorus in temperate forests 452 

(Farina and Gage, 2017).”  453 

We found that acoustic indices are sensitive to soundscapes modified by habitat disturbance and can 454 

therefore be highly cost-effective tools for assessing forest condition and monitoring changes in 455 

conservation value in response to management interventions or other environmental changes. 456 

Acoustic indices are however highly susceptible to signal masking, where divergent responses across 457 

temporal and frequency spectrums are masked by calculating indices at inappropriate scales. We 458 

therefore recommend that acoustic indices are calculated either at a range of time and frequency 459 

bins when used to characterise a landscape, or a narrow bin predetermined by a priori ecological 460 

understanding of the soundscape when used as a proxy for the biodiversity of a specific taxonomic 461 

group. 462 

  463 
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