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Abstract

Modelling the extremal dependence structure of spatial data is considerably easier if

that structure is stationary. However, for data observed over large or complicated do-

mains, non-stationarity will often prevail. Current methods for modelling non-stationarity

in extremal dependence rely on models that are either computationally difficult to fit or

require prior knowledge of covariates. Sampson and Guttorp (1992) proposed a simple

technique for handling non-stationarity in spatial dependence by smoothly mapping the

sampling locations of the process from the original geographical space to a latent space

where stationarity can be reasonably assumed. We present an extension of this method

to a spatial extremes framework by considering least squares minimisation of pairwise

theoretical and empirical extremal dependence measures. Along with some practical ad-

vice on applying these deformations, we provide a detailed simulation study in which we
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propose three spatial processes with varying degrees of non-stationarity in their extremal

and central dependence structures. The methodology is applied to Australian summer

temperature extremes and UK precipitation to illustrate its efficacy compared to a naive

modelling approach.

Keywords— non-stationary spatial dependence; extremal dependence; spatial deformation; max-

stable processes

1 Introduction

Statistical methodology for spatial extremes can increasingly handle data sampled at more observation

locations. If these observations are taken over large domains with complex features, then there is a

strong chance that the data will exhibit spatial non-stationarity in both the marginal distributions and

dependence structure. Marginal non-stationarity can often be dealt with by site-wise modelling and

transformation. However, there are currently few methods to deal with non-stationarity in extremal

dependence structures, and a typical approach is to falsely assume stationarity when fitting spatial

extremes models. This may be appropriate when modelling data sampled over small and/or homoge-

neous regions in space, but as we will illustrate through the examples in Section 3, this assumption is

not realistic for many datasets with larger spatial domains.

Beyond site-wise transformation of margins, marginal non-stationarity can be handled by jointly

modelling marginal parameters as functions of covariates. This can either be achieved parametrically

(Mannshardt-Shamseldin et al., 2010, Davison et al., 2012, Ribatet, 2013, Eastoe, 2019) or semipara-

metrically (Jonathan et al., 2014, Ross et al., 2017, Youngman, 2019, 2020, Zanini et al., 2020) through

the use of splines. Another widely applied approach is the use of Bayesian hierarchical models, in which

the marginal parameters are assumed to come from some non-stationary latent process (Casson and

Coles, 1999, Cooley et al., 2007, Sang and Gelfand, 2010, Opitz et al., 2018).

Non-stationarity in the spatial dependence structure has been studied by Huser and Genton

(2016) in the context of max-stable models, through incorporation of a non-stationary variogram.

However, this approach requires knowledge of relevant covariates, and asymptotically dependent max-

stable models for spatial extremes have been shown to be too inflexible for many spatial datasets
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(Wadsworth and Tawn, 2012, Davison et al., 2013, Huser et al., 2017, Huser and Wadsworth, 2019).

Another approach is to assume local stationarity for model fitting, see Blanchet and Creutin (2017),

Castro-Camilo and Huser (2019). This framework is well-suited to modelling processes with short-

range dependence but is unlikely to fully capture dependence at large distances. Cooley et al. (2007)

and Blanchet and Davison (2011) account for non-stationarity by transforming their spatial domain

of interest to some new ‘climate space’ in which observation locations with similar characteristics are

grouped closer together. Again, this approach requires access to relevant covariates and a deeper

understanding of the processes which are being modelled.

In this work we develop a computationally quick and simple method, which does not require

prior knowledge of covariates and which can be applied before fitting any model suited to spatial

extremes. Our method uses spatial deformation and is based on the work of Sampson and Guttorp

(1992) and Smith (1996), which has not been fully adapted for use in a spatial extremes framework.

The deformation methodology may reveal physical features and/or covariates that can be incorporated

into a spatial extremes model, removing the need for models with complex dependence structures.

Wadsworth and Tawn (2019) applied the deformation method of Smith (1996) before fitting a

conditional spatial extremes model to the same Australian summer temperatures data that we explore

in Section 4.1. However, because this method is not tailored to extremal dependence, it was neccesary

to assume that patterns in non-stationarity were similar for both the extremal and non-extremal

dependence structures. Youngman (2020) and Chevalier et al. (2017) provide extensions of the Sampson

and Guttorp (1992) methodology and fit models for spatial extremes using deformations: a Gaussian

process using a censored pairwise likelihood and a max-stable model, respectively. Although these

models may be reasonable for some processes, use of either puts restrictions on the types of dependence

that the process can exhibit. We look to develop a method that makes no strong assumptions on the

extremal dependence structure.

The remainder of this section provides an overview of existing methodology for spatial deformation

and modelling of spatial extremes. Our developments of the spatial deformation methodology are

detailed in Section 2. We present a simulation study in Section 3, which is usually absent from the

literature on spatial deformations. This study is used to convey that our adaptations to the deformation

methodology are necessary when considering extremal dependence and that our method can be used
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for different processes with a wide range of extremal dependence structures. Finally, we apply our

method to temperature and precipitation datasets in Section 4, and conclude with a discussion in

Section 5.

1.1 Non-stationary spatial processes

The spatial deformation approach for handling non-stationarity in spatial processes was first proposed

by Sampson and Guttorp (1992) and Guttorp and Sampson (1994), with further developments by

Meiring et al. (1997), see Sampson (2010, Ch. 9.5). The underlying principle of their approach is

that a smooth non-linear transformation can be used to map the sampling locations of a process from

a geographical plane, or G-plane, to some latent space, which they name a D-plane, or dispersion

plane. Within the D-plane, the dependence structure of the process is assumed to be both stationary

and isotropic, and the usual statistical inferences can be made using stationary geostatistical models.

To obtain the D-plane, optimisation techniques are used to minimise some objective function which

is associated with a stationary geostatistical model. Here Sampson and Guttorp (1992) use multi-

dimensional scaling and a stationary spatial dispersion function, whereas further work proposed by

Smith (1996) uses the likelihood for a stationary Gaussian process. Our approach is to change this

objective function for one which is associated with a stationary spatial extremes model, such as the

max-stable, or inverted max-stable, processes.

We begin by assuming we have realisations Z = {Z1, . . . , ZN} from a spatial field observed

at sampling locations s1, . . . , sd, and so we have Zk = {Zk(s1), . . . , Zk(sd)} for all k = 1, . . . , N .

We require some smooth mapping function from the G-plane to the D-plane, given by f(si) = s∗i

for i = 1, . . . , d, where si = (xi, yi) and s∗i = (x∗i , y
∗
i ) are the corresponding locations in the D-

plane. Both Sampson and Guttorp (1992) and Smith (1996) propose the use of thin-plate splines to

achieve this mapping. However, we note that under certain conditions on the correlation structure,

analytical forms for f(·) do exist. Perrin and Meiring (1999) prove that this mapping is identifiable

assuming differentiability of the stationary and isotropic correlation function used for fitting and Perrin

and Senoussi (2000) derive analytical forms for f(·) under the same assumption, with extensions to

anisotropic correlation structures. As these results are available only for correlation functions, and not

for extremal dependence functions, we instead use the more flexible thin-plate spline approach.
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A thin-plate spline is a mapping function f(·), passing through a finite number of data points

f∗i = f∗(xi, yi), (i = 1, . . . , n), minimising the bending energy

J(f) =

∫∫
R2

{(
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2
}

dxdy.

Here we have denoted f∗ the ‘true’ function that we wish to estimate with the thin-plate spline, f ,

and f∗i are observations. Green and Silverman (1994) give a solution to this problem in the form

f(x, y) = a+ bx+ cy +
n∑
i=1

δigi(x, y), (1)

where
n∑
i=1

δi =

n∑
i=1

δixi =

n∑
i=1

δiyi = 0, (2)

and gi(x, y) = h2i log hi, with hi the Euclidean distance between (x, y) and (xi, yi). This represents f as

the sum of linear terms and n radial basis functions with centres at the observed data locations (xi, yi)

and the constraints are in place to ensure that the system of equations does not become overdetermined.

An interpolating spline satisfies f∗i = f(xi, yi) for all i = 1, . . . , n, whereas we desire a smoothing spline;

this can be created by minimising

S(f) =
n∑
i=1

{f∗i − f(xi, yi)}2 + αJ(f),

for some smoothing parameter α > 0. Sampson and Guttorp (1992) give a method for estimating α

in the context of multidimensional scaling, but here we take the approach of Smith (1996), who uses

a restricted representation of (1) instead. A subset of m radial basis functions is used and so we let

δi = 0 for all i /∈ {i1, . . . , im}. The choice of this subset is discussed in Section 3.

The function in (1) maps R2 to R, so the spline is applied twice with different parameter estimates

to produce both components. Smith (1996) gives a parametrisation as

f (1)(x, y) = b21x+ ρb1b2y +
m∑
i=1

δ
(1)
i gi(x, y) (3)

f (2)(x, y) = b22y + ρb1b2x+
m∑
i=1

δ
(2)
i gi(x, y), (4)
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where b1 > 0, b2 > 0, ρ ∈ R and each of the sequences δ(1), δ(2) satisfy the constraint in (2). The

introduction of the parameters b1, b2 and ρ is to ensure that the model is invariant under orthogonal

rotations when m = 0. Overall, this yields a spline with 2m− 3 free parameters whenever m ≥ 3.

The resulting spline is then used to map the sampling locations si to locations s∗i in a latent space.

Parameters are estimated by minimising some objective function provided by a stationary model. As

previously mentioned, Sampson and Guttorp (1992) use a stationary spatial dispersion model and

multidimensional scaling, the details of which are not given here. Instead, we focus on the approach

by Smith (1996), who uses a stationary Gaussian likelihood. It is assumed that (Z(s∗1), . . . , Z(s∗d)) ∼

Nd(µ,Ω), where µ and Ω are the mean vector and a stationary covariance matrix, respectively. As we

are only interested in measuring the dependence structure, it is assumed that the means and variances

at each location are known. Analysis is then simplified to only considering the minimisation of the

negative log likelihood given by

− logL(Ω) =
N

2
log |Ω|+ N − 1

2
tr
(

Ω−1Ω̂
)
, (5)

where Ω and Ω̂ are the theoretical, and sample, correlation matrices and tr(·) and | · | are the trace and

determinant operators, respectively. The entries of the theoretical correlation matrix are produced by

using a stationary covariance function. Smith (1996) uses the Matérn covariance function, and so

Ωij =
1

2θ2−1Γ(θ2)

(
2h∗ij
√
θ2

θ1

)θ2
Kθ2

(
2h∗ij
√
θ2

θ1

)
, (6)

where θ1 > 0, θ2 > 0 and Kθ2(·) is the modified Bessel function of the second kind of order θ2 and

h∗ij = ‖s∗i − s∗j‖ is the Euclidean distance between locations s∗i and s∗j in the D-plane. It is noted that

θ1 can be set to 1 as the spatial scaling of the locations is controlled by the spline.

1.2 Spatial extremes

Before describing an extension of the spatial deformation methodology tailored to spatial extremes, we

first provide a brief review of methods for modelling spatial extremes.
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1.2.1 Max-stable and inverted max-stable processes

Max-stable processes were introduced by de Haan (1984) and developed further by Smith (1990) and

Schlather (2002), who suggested models that were first fitted by pairwise composite likelihood in

Padoan et al. (2010). They are usually described by a spectral construction. Suppose {ri; i ≥ 1} are

points of a Poisson process on (0,∞) with unit intensity. Let S ⊆ R2 be a spatial index set, and

{Wi(s); s ∈ S, i ≥ 1} be independent and identically distributed copies of a non-negative stochastic

process satisfying E[W (s)] = 1. Then

Z(s) = max
i≥1
{Wi(s)/ri} (7)

is a max-stable process with unit Fréchet margins. The d-dimensional joint distribution function for

Z is

Pr{Z(s1) ≤ z1, . . . , Z(sd) ≤ zd} = exp{−V (z1, . . . , zd)}, (8)

where the exponent is

V (z1, . . . , zd) = E
[
max

{
W (s1)

z1
, . . . ,

W (sd)

zd

}]
. (9)

Careful specification of the stochastic process W (s) leads to a limited selection of parametric models

for the max-stable process. A particularly flexible model is the Brown-Resnick model (Brown and

Resnick, 1977, Kabluchko et al., 2009). This involves specifying W (s) = exp{U(s)− γ∗(s, 0)} for U(s)

a centred Gaussian process with semivariogram γ∗(·, ·) and where U(0) = 0 almost surely. This leads

to a 2-dimensional joint distribution with exponent function

V (zi, zj) =
1

zi
Φ

{
a

2
− 1

a
log

(
zi
zj

)}
+

1

zj
Φ

{
a

2
− 1

a
log

(
zj
zi

)}
, (10)

where a = [2γ∗(si, sj)]
1/2 and Φ(·) denotes the standard normal distribution function. Note that for

a stationary and isotropic Brown-Resnick process, γ∗(si, sj) is dependent on hij = ‖si − sj‖ only. For

clarity, we write γ(hij) when Z is stationary and isotropic, and γ∗(si, sj), otherwise. Representations

for (10) in higher dimensions exist (see Huser and Davison (2013) or Wadsworth and Tawn (2014)), but

due to their computational complexity, inference for max-stable processes is typically done pairwise,

providing a reasonable balance between computation time and efficiency.
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Max-stable processes are inherently asymptotically dependent, or perfectly independent. That

is, Z(si) and Z(sj) are asymptotically dependent, or perfectly independent, for all si, sj ∈ S. Here

we characterise asymptotic dependence using the upper tail index χ (Joe, 1997). Assuming Z(si) ∼

Fi, Z(sj) ∼ Fj , we have

χ(si, sj) = lim
q→1

Pr{Fi{Z(si)} > q|Fj{Z(sj)} > q}, (11)

where the process is asymptotically independent at locations si and sj if χ(si, sj) = 0, and asymp-

totically dependent otherwise. Here we write χ(si, sj) as Z is not necessarily stationary; henceforth,

we write χ(hij) for hij = ‖si − sj‖ when it is assumed that χ is a function of distance only. As

this measure is theoretically non-zero at all spatial lags for any max-stable process exhibiting positive

spatial association ie., χ(si, sj) > 0 for all si, sj ∈ S, we require other modelling approaches to deal

with processes that may exhibit asymptotic independence.

Wadsworth and Tawn (2012) introduced the inverted max-stable process as that obtained by

applying a monotonically decreasing marginal transformation to a max-stable process. For example,

with Z as defined in (7), taking Y (s) = 1/Z(s) gives an inverted max-stable process with exponential

margins and joint survival function

Pr{Y (s1) ≥ y1, . . . , Y (sd) ≥ yd} = exp{−V (1/y1, . . . , 1/yd)}, (12)

where V is as given in (9). Such a process is asymptotically independent with χ(si, sj) = 0 for all

si 6= sj , but can accommodate a variety of flexible extremal dependences structures exhibiting positive

association. The dependence in asymptotically independent processes may be characterised by a pre-

limiting version of (11). Specifically, under an assumption of hidden regular variation (Ledford and

Tawn, 1996, Resnick, 2002),

χq(si, sj) = Pr{Fi{Z(si)} > q|Fj{Z(sj)} > q} = L(1− q)(1− q)1/η(si,sj)−1, (13)

with L(·) slowly varying at 0 and η(si, sj) ∈ (0, 1] the coefficient of tail dependence. For an inverted

max-stable process, χq(si, sj) = (1− q)V (1,1)−1.
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We fit both max-stable and inverted max-stable models after applying our deformation method

for non-stationary spatial extremes. Note that although max-stable processes are typically taken to

represent the limiting behaviour of maxima, in practice they, along with inverted max-stable processes,

can be used for all extreme values through specification of a censored likelihood; see Section 2.5.

Inference on these models can then be used to determine the efficacy of our deformation method.

1.2.2 Conditional extremes

An alternative approach to modelling spatial extremes is to condition on the behaviour of the process

when it is extreme at a single site. Here we give a brief overview of modelling the extremal behaviour

of the process at two sites using this approach. For a full characterisation, see Wadsworth and Tawn

(2019) or Shooter et al. (2019). We suppress some of the notation used by Wadsworth and Tawn (2019)

and Shooter et al. (2019) as we are only considering a discrete pairwise fit, that we will employ in Section

4 as a diagnostic measure. For further details of the discrete approach, see Heffernan and Tawn (2004).

Winter et al. (2016) apply this same methodology to a dataset of Australian temperatures, which we

revisit in Section 4.1.

We begin by assuming that {X(s) : s ∈ S ⊂ R2} is a stationary and isotropic process with

exponential-tailed marginals and denote X(si) = Xi. Conditioning on Xi = xi > u being large

and considering Xj , i 6= j, Heffernan and Tawn (2004) assume that there exist normalising functions

a(xi) : R→ R, b(xi) : R→ R+, for which

lim
xi→∞

[Pr(Xj ≤ a(xi) + b(xi)z|Xi = xi)] = G(z),

where G is non-degenerate. Re-writing Z = {Xj − a(xi)}/b(xi) as the standardised residual, and

making the assumption that the limit holds above some high threshold u, we have

Pr(Z ≤ z|Xi = xi) = G(z), xi > u,

where Xi|Xi > u ∼ Exp(1) is independent of Z. Inference on G is often simplified by making the

working assumption that Z ∼ N(µ, σ2) and using a specified parametric form for the normalising

functions a(·), b(·). For positively dependent data, we simplify the normalising functions to a(xi) = αxi
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for α ∈ [0, 1] and b(xi) = xβi for β ∈ [0, 1). The bivariate form of the conditional model can thus be

expressed

Xj | (Xi = xi) = αxi + xβi Z, xi > u.

The conditional model holds some useful advantages over joint modelling using max-stable, or inverted

max-stable, processes. For one, it is able to handle both asymptotically dependent, or asymptotically

independent, data. Parameter estimates for α and β can indicate the nature of the dependence between

Xj and Xi. For example, asymptotic dependence between Xj and Xi is implied by estimates α = 1, β =

0. Within the class of asymptotically independent variables, α < 1, β > 0, with α = β = 0 giving near

extremal independence.

The spatial extensions of this model (Wadsworth and Tawn, 2019, Shooter et al., 2019) specify α

and β as functions of distance between sites, when the underlying process is stationary and isotropic.

As such, we can use these parameter estimates as diagnostics, to determine whether our deformation

method has created a process that has a more stationary extremal dependence structure. We are

motivated to use these estimates as our deformation method does not use a conditional extremes

approach for fitting.

2 Spatial deformation for extremes

In this section, we discuss our adaptations of the deformation methodology for application in a spatial

extremes framework. We begin in Section 2.1 by proposing a new objective function to that of (5).

Instead, we consider minimising the difference between theoretical and empirical χ measures, where

the former are produced through specification of a stationary max-stable dependence structure for the

process in the D-plane. This does not in fact mean that this method will not work for asymptotically

independent data; on the contrary, in Sections 2.2 and 2.3 we show that the model choice for χ(·)

is somewhat arbitrary and a single, simple parametric form works well for both classes of extremal

dependence. Section 2.4 follows with some practical advice for choosing the anchor points used in

estimating the thin-plane spline and we conclude with details of model fitting and selection using

censored pairwise likelihoods in Section 2.5. To assess the efficacy of the deformations we produce, we

fit full max-stable, and inverted max-stable, dependence models.
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2.1 Objective function

To adapt the methodology of Sampson and Guttorp (1992) and Smith (1996) to better suit a spatial

extremes framework, we change the objective function given in (5) to the Frobenius norm of the

difference between theoretical and empirical pairwise dependence matrices X := [χ(h∗ij)] and X̂ :=

[χ̂(h∗ij)]. That is, we estimate the parameters of the thin plate spline through computing

min ‖X− X̂‖F = min

√√√√ d∑
i=1

d∑
j=1

{
χ(h∗ij)− χ̂(h∗ij)

}2
, (14)

where χ(h∗ij), defined in (11), is the upper tail index calculated between the process at locations s∗i

and s∗j in the D-plane and χ̂(h∗ij) is its empirical estimate. Recall that we assume stationarity in the

D-plane, and so write χ(h∗ij), rather than χ(s∗i , s
∗
j ). In practice, this measure cannot be estimated in

the limit as q → 1. As such, we estimate χ̂(h∗ij) by fixing some high threshold q < 1 and calculating

χ̂q(h
∗
ij) = Pr{F̂i{Z(s∗i )} > q|F̂j{Z(s∗j )} > q} = Pr{F̂i{Z(si)} > q|F̂j{Z(sj)} > q}, (15)

where F̂k(·) is the empirical distribution of observations Z(s∗k) = Z(sk). Under asymptotic depen-

dence, we assume that χq(h
∗
ij) ≡ χ(h∗ij) for large enough q. Under asymptotic independence, although

χq(h
∗)→ 0 as q → 1, we typically have χq(h

∗) > 0 for q < 1 and spatial structure in this measure that

makes it informative about non-stationarity.

We now focus on a choice of function χ(h∗), which we only require to be monotonically decreasing

from 1 to 0. This leaves several options, including specific parametric forms for χ(h∗) and χq(h
∗) from

max-stable, and inverted max-stable, processes. We remark that while we have used χ to measure

extremal dependence, other extremal dependence measures exist, and can also be used in this frame-

work. For example, the coefficient of tail dependence, η(h∗ij), from (13) can also be used to characterise

the strength of asymptotic independence in extremes. This can be estimated separately from χ(h∗ij),

however, we found that due to the high variance of the estimator for η(h∗ij), it was often outperformed

by using χ(h∗ij).
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2.2 Asymptotic dependence versus asymptotic independence

As a parametric model for χ(h∗) we take the form implied by the stationary Brown-Resnick process,

χ(h∗ij) = 2− θ(h∗ij) = 2− 2Φ

{
[2γ(h∗ij)]

1/2

2

}
, (16)

where θ(·) is the extremal coefficient function (Schlather and Tawn, 2003) and θ(h∗ij) = V (1, 1), with

V (·, ·) defined in (10). The semivariogram γ(h∗ij) controls the dependence of the max-stable field and

a typical choice for the semivariogram would be

γ(h∗ij) = (h∗ij/λ)κ, (17)

where λ > 0 is a scaling parameter and κ ∈ (0, 2] is a smoothing parameter. Note that setting κ = 2

yields the Smith process (Smith, 1990), a special case of the Brown-Resnick process. As previously

mentioned when discussing the Smith (1996) methodology for spatial deformation, we can set the

scaling parameter λ to 1, as the spatial scaling of locations is controlled by the deformation itself. Note

that the motivation for using the Brown-Resnick process as a parametric model is that χ(h∗) → 0 as

h∗ → ∞, unlike other popular parametric models. For a stationary inverted Brown-Resnick process,

we have

χq(h
∗
ij) = (1− q)θ(h

∗
ij)−1. (18)

We denote the dependence measures in (16) and (18) as χBR and χIBRq , respectively. Note that

although these two measures have different parametric forms, and are applicable to different dependence

structures, they often approximate each other very closely when used within a deformation framework;

this is illustrated in Figure 1. Here we create deformations for a simulated dataset as described in

Section 3.1 using both χBR and χIBRq . The plots show that both methods give very similar deformations

when considering the non-stationarity in the χ(h∗ij) estimates. This seems to be the case for both

asymptotically dependent and asymptotically independent data. Hence, for the sake of simplicity we

only use χBR to create deformations in the case studies in Section 4, as it appears to be flexible enough

to capture non-stationarity in both classes of extremal dependence.
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Figure 1: Comparison of deformations created using both parametric forms χBR and χIBRq for
χ(·) for both max-stable data (left) and inverted max-stable data (right). Plots show empirical
χ(h∗ij) estimates against distance, where the black triangles correspond to those created using
χ(·) given by (16) and green triangles for those created using (18). The blue and red lines
give the fitted function from (16) and (18), respectively. Distances are normalised so that the
maximum distance is consistent between deformations.

2.3 Choice of parametric model for χ(h∗)

We have also found that the function χ(h∗) from a Brown-Resnick process is sufficiently flexible to

create suitable deformations for a variety of different extremal dependence structures. This is for

similar reasons to above; different functions χ(h∗) which decrease to zero as h∗ →∞ can approximate

each other well. To illustrate this, we also considered the Gaussian-Gaussian process (Wadsworth and

Tawn, 2012), which encompasses different dependence structures to the Brown-Resnick process, but

for which χ(h∗)→ 0 as h∗ →∞. Its theoretical form is

χGG(h∗) = 1− 1

2

∫
R2

{φ(u)2 − 2ρ(h∗)φ(u)φ(u− h̃) + φ(u− h̃)2}1/2du,

where ρ(h∗) is a stationary correlation function and h̃ = (h∗, h∗)T and φ(·) is the bivariate Gaussian

density function with mean 0 and covariance matrix Σ = diag(σ2, σ2). Note that using a Matérn

correlation function given in (6) with parameters θ1 > 0 and θ2 > 0, this function has one extra

parameter than χBR(h∗), namely σ > 0.

We chose not to use this parametric form for χ(h∗), due to the high computational cost required
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to compute the double integral for each pair of locations. However, we have found that the deformation

method described in Section 2 appears fairly robust to the choice of χ(h∗). As Supplementary Figure S1

in the Supplementary Material shows, the much simpler χBR(h∗) can approximate the more complex

χGG(h∗) very closely for much of h∗ ∈ R+.

2.4 Practical aspects for creating deformations

We now comment on practical aspects of creating the deformations, including choosing a subset of

radial basis functions for the thin-plate spline and reducing the chances of producing a non-bijective

transformation.

We found that there is no simple robust method for picking the number m, or configuration, of

the anchor points used in the deformation splines given in (3). As detailed in Sampson and Guttorp

(1992), there is a trade-off in picking m. Larger values provide “better” deformations, in the sense

that the objective function to be calculated is lower and the deformations seem to capture more of

the non-stationarity in the process. However, this comes at the price of computational cost, the risk

of over-fitting and the phenomenon in which the D-plane folds on to itself. This provides a non-

bijective transformation, which is physically unrealistic. Iovleff and Perrin (2004) detail an approach

to ensure that the deformation is always bijective through use of a simulated annealing algorithm, with

later extensions by Youngman (2020). These approaches add further constraints into the modelling

procedure, which we have chosen to avoid. Instead we use a more heuristic approach for avoiding

non-bijectivity.

We begin by randomly samplingm0 initial anchor points with index set given by I0 = {i1, . . . , im0}.

There is no single best way to choose I0; however, we found that ensuring that the anchor points are

spread out over the spatial domain helped to create better deformations. Performing a deformation with

I0 yields parameter estimates ψ̂0 = (b̂1, b̂2, ρ̂, κ̂, δ̂
(1)
4 , δ̂

(2)
4 , . . . , δ̂

(1)
m0 , δ̂

(2)
m0). Recall that we have parameters

δ
(1)
i , δ

(2)
i indexed by i ≥ 4 as those indexed by i = 1, 2, 3 are uniquely determined by the constraints

given in (2). If the deformation for I0 is bijective, we create a new set of indices I1 = {I0, im0+1}, where

im0+1 is sampled from the remaining indices. A deformation is then created using I1, but with initial

parameters in the optimisation program given by ψ̂1 = {ψ̂0, δ
(1)
m0+1 = 0, δ

(2)
m0+1 = 0}. This ensures that

the initial input into the optimisation program creates a deformation that is already bijective. We
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then continue in this fashion until we have created a deformation using m∗ anchor points. Bijectivity

is checked by eye.

Using this approach reduces the chances of the D-plane folding as m increases and provides a

deformation with m∗ anchor points. Here we set m∗ as approximately a quarter of the sampling

locations as we have not found a clear way to optimize this aspect. Typically this approach can be

used for a number of initial index sets. However, in the interest of reducing computational cost, the

simulation studies in Section 3 are conducted using the same initial index set for each deformation

method. We also ensure that the new index sampled at each iteration is consistent across different

samples, processes and deformation methods.

2.5 Model fitting and selection

To determine whether the deformation has created a process that is more stationary in the extremal

dependence structure, and to compare between deformation methods, we look to fitting max-stable and

inverted max-stable models to the data using the sampling locations in both the G-plane and the D-

plane. In Section 1, the computational complexities of the max-stable and inverted max-stable models

were discussed. To accommodate for this, we take a pairwise composite likelihood approach and assume

independence between pairs (Padoan et al., 2010). The joint distribution for a Brown-Resnick process

is given in (8) and the joint survival function for an inverted Brown-Resnick process is given in (12).

Note that the former is on standard Fréchet margins, whereas the latter is on standard exponential. To

compare between the asymptotically dependent and asymptotically independent structures provided by

the two models, we calculate all likelihoods on exponential margins, by first using a site-wise empirical

transformation.

Given realisations {z1, . . . , zN} from a spatial field, observed at sampling locations s1, . . . , sd, the

censored composite likelihood is

LCL(λ, κ) =

N∏
i=1

LCL(λ, κ; zi) =

N∏
i=1

d∏
k=2

∏
l<k

gu(zi(sk), zi(sl);λ, κ), (19)
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where

gu(zi(sk), zi(sl);λ, κ) =



f(zi(sk), zi(sl);λ, κ) if min(zi(sk), zi(sl)) > u,

∂
∂zi(sk)

F (zi(sk), u;λ, κ) if zi(sk) > u, zi(sl) ≤ u,

∂
∂zi(sl)

F (u, zi(sl);λ, κ) if zi(sk) ≤ u, zi(sl) > u,

F (u, u;λ, κ) if max(zi(sk), zi(sl)) ≤ u,

(20)

with u a high threshold and F (·) and f(·) the bivariate joint distribution and density functions for

the model. Note that although we set λ = 1 when producing the deformation, here we treat it as a

free parameter. Although the likelihoods give a good indication of the performance of the deformation

methods, we use the Composite Likelihood version of the Akaike Information Criterion (CLAIC) for

model selection. As given in Varin et al. (2011), the CLAIC is

− 2{logL(λ̂, κ̂)− tr(J(λ̂, κ̂)H−1(λ̂, κ̂))}, (21)

where (λ̂, κ̂) are the maximum likelihood estimates from (19), H(·) is the Hessian matrix and J(·) is

the variance of the score function, i.e.

J(λ̂, κ̂) = var
(
∇ logLCL(λ̂, κ̂)

)
= var

(
N∑
i=1

∇ logLCL(λ̂, κ̂; zi)

)
.

In practice, we estimate J(·) by using numerical methods to find ∆i = ∇ logLCL(λ̂, κ̂; zi), and then

estimating the variance of the score function by setting a block of length b < N and computing

Ĵ(λ̂, κ̂) =
N

b
× var

(
b∑
i=1

∆i, . . . ,
N∑

i=N−b+1

∆i

)
. (22)

The block sizes are chosen such that each block of data is more reasonably assumed approximately

independent. This is usually specific to the data and will be given alongside any results.

3 Simulation study

We conduct three simulation studies to illustrate the efficacy of the deformation framework for mod-

elling extremal dependence of non-stationary spatial processes. These studies are designed to highlight
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the following:

• When fitting a stationary model to the extremal dependence of non-stationary spatial data,

using a deformation method will improve the fit when compared to using the original sampling

locations in the G-plane;

• The deformation methodology described in Section 2.1 is more effective than the original Smith

(1996) method when modelling non-stationary extremal dependence, as the latter is tailored

towards modelling dependence in the body of the data rather than the extremes;

• It is often necessary to use a deformation method that is tailored explicitly to extremal de-

pendence, rather than dependence throughout the body; especially for processes that exhibit

different degrees of non-stationarity throughout their extremal and central dependence struc-

tures.

In order to illustrate these points, we consider five different processes. These processes are

chosen as they each exhibit different behaviour in their respective extremal dependence structures. In

Section 3.1, we consider two processes: a non-stationary Brown-Resnick process and a non-stationary

inverted Brown-Resnick process. In Section 3.2, we consider two more processes which are both

mixtures of stationary and non-stationary processes. We term these max-mixture process and one

exhibits asymptotic dependence whilst the other exhibits asymptotic independence. A final process is

considered in Section 3.3, which is an asymptotically independent Gaussian mixture process.

For each setting, we begin with a sample of 1000 realisations of a spatial process. For this

sample, we create four separate deformations using the procedure set out in Section 2.4. The first

two deformations are created using the approach detailed in Section 2.1; with χBR from (16) and

χIBRq from (18) as the dependence measures used in the objective function in (14). The latter two are

correlation-based deformation methods: one of these is the original Smith (1996) methodology, while

the other method replaces χ(h∗ij) in (14) with pairwise correlation ρ(h∗ij) as the dependence measure,

and replaces the theoretical χ(h∗) function with the stationary Matérn correlation function detailed

in (6). Note that in both of the latter two methods, correlation is estimated on a Gaussian marginal

scale, and for the former two methods, we set q = 0.9 in (15) and (18).
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As detailed in Section 2.5, we evaluate the efficacy of each of the four deformations by fitting

a model to the extremal dependence of the sample. We fit the same dependence model five times:

once using the sampling locations in the original G-plane and then once for each of the respective

D-plane sampling locations given from the four deformations. For each fitted model, we calculate the

CLAIC given in (21). Ordering of the CLAIC allows us to determine which deformation method (if

any) was the most effective in accounting for the non-stationarity in that sample. As the underlying

process from which the sample is drawn is known, we fit a stationary extremal dependence model of an

appropriate class. That is, for processes that are asymptotically dependent, we fit a stationary Brown-

Resnick model, and for processes that are asymptotically independent, we fit a stationary inverted

Brown-Resnick model.

This procedure is repeated for 50 different samples of a single process. In this simulation study,

each deformation for each sample is created using the same anchor points. For each sample, we

determine which deformation method was the most effective and the proportion of times this occurred

over all samples is reported, with the results in Tables 1, 2 and 3. These results show that stationary

dependence models for non-stationary spatial processes routinely provide a better fit if the deformation

methodology is used as a preprocessing step. We also show that the original Smith (1996) deformation

is outperformed by our extensions.

3.1 Non-stationary Brown-Resnick and inverted Brown-Resnick pro-

cess

The first setting we consider consists of replications of a non-stationary Brown-Resnick, and inverted

Brown-Resnick, process sampled at 64 equally spaced locations on [−1, 1] × [−1, 1]. We use a non-

stationary variogram in the exponent function in (16) to ensure that χ(hij) is not simply a function

of distance. In the context of non-stationary Gaussian processes, Fouedjio et al. (2015) propose a

semivariogram of the form γ∗(si, sj) where

γ∗(si, sj) = γ(‖ψ(sj)− ψ(sj)‖), (23)
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and

ψ(s) = o+ (s− o)‖s− o‖

is a radial basis function with some centre point o and γ(·) is the stationary and isotropic semivariogram

given in (17). The use of the radial basis function ψ(s) within this semivariogram causes pairs that

are closer to o to be more strongly dependent than those pairs that are further away. From (16) and

(17), the Brown-Resnick process with this semivariogram has theoretical χ(si, sj) given by

χ(si, sj) = 2− 2Φ

{
‖ψ(si)− ψ(sj)‖κ/2

λκ/2
√

2

}
, (24)

for locations si, sj and κ ∈ (0, 2], λ > 0. For this study, we take the centre o to be the origin and use

scale and shape parameters λ = 2 and κ = 0.8 in (24). To illustrate the process a high resolution

realisation is given in Supplementary Figure S2. Simulations are produced using the method of Dieker

and Mikosch (2015).

Table 1 contains some interesting results. Most notably, in all cases a deformation has aided

in model fitting when compared to using the original simulation grid. For both the max-stable, and

inverted max-stable, cases, improvements on the efficacy of the original Smith (1996) method are made

by utilising the Frobenius norm in the objective function. However, it is not entirely clear whether

use of an extremal dependence measure for creating deformations is necessary in this case. We often

found that deforming the space using measures for dependence throughout the distribution created

better deformations than those using extremal dependence measures. We believe that this is because

the variance of the estimator for ρ(h∗ij) is much lower than that of χ(h∗ij), as we use all of the data

to estimate correlation, and that there are strong similarities in patterns of spatial non-stationarity

for the central- and extremal-dependence structures of this process. We next consider other processes

with more complicated dependence structures.

3.2 Max-mixture process

We now consider the hybrid dependence model, detailed in full by Wadsworth and Tawn (2012). Let

X(s) be a max-stable process and Y (s) an asymptotically independent spatial process, both with

standard Fréchet margins. For ω ∈ [0, 1], H(s) = max{ωX(s), (1 − ω)Y (s)} is an asymptotically
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dependent spatial process with standard Fréchet margins. In particular, we take X(s) to be the non-

stationary Brown-Resnick process detailed in Section 3.1 and Y (s) to be a marginally transformed

stationary Gaussian process with the Matérn correlation structure detailed in (6).

It can be shown that the theoretical χ(hij) values for H(s) are the same as for X(s), but multiplied

by ω. There is no closed form for the correlation for H(s) on the Gaussian scale. Computationally,

it can be shown that it is a mixture of the correlation from both X(s) and Y (s). As such, we would

expect the extremal dependence and central dependence of H(s) to be mixtures of those coming from

X(s) and Y (s), with different amounts of mixing occurring for both. We set ω to be 0.3 and take

(θ1, θ2) = (1, 1.2) in (6).

By construction of H(s), taking its reciprocal creates an asymptotically independent process on

standard exponential margins, as with the inverted max-stable process. As in Section 3.1, the simu-

lation study is repeated separately for the asymptotically dependent and asymptotically independent

mixtures. The results are given in Table 2.

In contrast to the results given in Table 1, Table 2 shows a clearer need for an extremal

dependence-based approach when creating deformations for a process that exhibits more complicated

dependence structures. Here this max-mixture process is designed to represent a process with a mix-

ture of stationarity in both the extremal dependence and dependence throughout the distribution. We

now consider a process that has non-stationary extremal dependence, but is nearly stationary in the

body.

3.3 Gaussian mixture process

With previous simulations, we found it is sometimes sufficient to simply use measures of central depen-

dence when deforming the spatial domain to create a process with a more stationary extremal depen-

dence structure. This is because the central- and extremal-dependence structures of these processes

are closely related and using either approach typically creates similar deformations. In applications,

we may find that these structures are not so closely related. As such, we are motivated to consider a

process that is designed to have completely different dependence in the body to the tails.

Let YS(s), YNS(s) be stationary and non-stationary Gaussian processes, respectively, each with
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standard Gaussian margins. We then consider the process

Y ∗(s) =


YS(s), if Φ(Y (s0)) ≤ p

YNS(s), if Φ(Y (s0)) > p

, (25)

where s0 ∈ S is a fixed location, Φ(·) is the standard Gaussian cdf, and p ∈ [0, 1] is a probability. By

specifying Y ∗(s) in this manner, we create a process with an extremal dependence structure determined

mostly by the correlation structure of YNS and with dependence through the body determined mostly

by YS. Simulation of this process is simple; we draw Y (s0) ∼ N(0, 1) and then simulate the rest of the

field conditioning on that value and whether Φ(Y (s0)) ≤ p or Φ(Y (s0)) > p.

For this particular study, we use replications of this Gaussian mixture sampled at 81 equally

spaced locations in [−1, 1] × [−1, 1]. We take s0 to be the origin and p = 0.9. Both YS and YNS

are specified to have the Matérn correlation structure given in (6), with respective parameter sets

θ(S) = (θ
(S)
1 , θ

(S)
2 ) and θ(NS) = (θ

(NS)
1 , θ

(NS)
2 , o). Note that θ(NS) contains an extra parameter as we use

the difference of the radial basis functions given in (23) and detailed by (Fouedjio et al., 2015) as a

measure of pairwise distance, rather than Euclidean distance. The parameters for this study are set

to θ(S) = (2, 1) and θ(NS) = (2, 0.8, (0, 0)). Results are given in Table 3.

Table 3 highlights a clear need for extremal dependence-based methods when creating defor-

mations for processes that have different patterns of non-stationarity in their central- and extremal

dependence structures. In contrast to the results given in the previous studies, here using χ(h∗ij) or

χq(h
∗
ij) is always favoured.

4 Case studies

We present two case studies using our deformation methodology. In both cases, we follow the procedure

set out in Section 2.4. However, as we consider relatively large spatial domains we use Great Earth

distance in place of Euclidean distance for h and h∗. We consider 30 different initial index sets, taking

the best deformation over all sets. Here we define the best deformation to be that which provides the

lowest objective value in (14) whilst remaining a bijective mapping. When using extremal dependence
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measures, we focus on deformations based on χBR only, following the justification in Section 2.2. We

then fit max-stable and inverted max-stable models to the data in the G-plane and D-plane, comparing

the model fits using CLAIC estimates. For both studies, all pairs of sampling locations are used in

model fitting and the block size in (22) corresponds to a season. We propose two diagnostics for

scrutinising the model fits and deformations.

4.1 Australian summer temperatures

Data consist of daily summer (DJF) maximum near-surface air temperatures taken from the HadGHCND

global gridded dataset (Caesar et al., 2006) and interpolated to 72 grid point locations covering Aus-

tralia, for the period 1957-2014. Previous analysis of this data has been conducted using the mul-

tivariate conditional extremes model, detailed in Section 1.2.2 (Winter et al., 2016) and its spatial

extension (Wadsworth and Tawn, 2019). Figure 2 shows the original sampling locations and estimated

pairwise χ(hij) against distances. We estimate χ(hij) by setting q = 0.98 in (15). The deformation

was produced using m∗ = 18, i.e. a quarter of the original sampling locations. These are presented

as the blue points on Figures 2 and 3, where the latter figure depicts the sampling locations in the

D-plane. Figure 3 also presents χ̂(h∗ij) against distance in the deformed space. We observe that the

deformation has created a process that appears to be much more stationary with regards to the χ(h∗ij)

estimates in the new coordinates.
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Figure 2: Australia summer temperatures. Left: the original 72 sampling locations. The blue
points are the anchor points used for the thin-plate splines. Right: empirical χ(hij) measures
against distance (km). Estimates χ̂(hij) are calculated above a threshold given by the 98%
empirical quantile.
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Figure 3: Australia summer temperatures. Left: the 72 sampling locations in the D-plane. The
blue points are the anchor points used for the thin-plate splines. The coordinates have been
scaled to [0, 1]× [0, 1], which equals the aspect ratio of the left plot in Figure 2. Right: empirical
χ(h∗ij) measures against distance in the D-plane. The red line gives the fitted function χ(h∗)
used in the deformation.
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The fits of the max-stable and inverted max-stable models are summarised in Table 4. The

CLAIC estimates suggest that a max-stable model is more appropriate for the data. This becomes

even more apparent when we consider that fitting an inverted Brown-Resnick model yields an inverted

Smith model as the best fit. These processes are typically quite smooth and often provide unrealistic

representations of actual data. However, we note that when naively fitting models on the G-plane,

the inverted Smith model provided the lowest CLAIC estimate. This is further evidence that non-

stationarity in this data should be incorporated into the modelling procedure.

We use two diagnostics to scrutinise the deformation and the model fit. As our deformation

method is tailored to χ(h∗ij), we seek to use other extremal dependence measures to verify that the

resulting deformation is not subject to overfitting. To do this, the conditional extremes model described

in Section 1.2.2 is fitted pairwise and the parameter estimates are used to calculate the conditional

expectation of one variable when the other variable is at the modelling threshold u, taken as the 98%

quantile of the marginal distribution. For each pair, (X(si), X(sj)), i 6= j, we have

E [X(sj)|X(si) = u] = α̂u+ uβ̂µ̂,

where (α̂, β̂, µ̂) are the maximum likelihood estimates for the model. For a stationary and isotropic

process, we would expect this measure to be a smooth function of Euclidean distance. The conditional

expectation is plotted against distance for both the process on the G-plane and the D-plane.

A second diagnostic is used to evaluate the best model fit in the D-plane. As we have used χ(h∗ij)

to create the deformations, we compare the theoretical triple-wise χ, which we denote χ(s∗i , s
∗
j , s
∗
k) =

χ(si, sj , sk), from the model fits against empirical estimates. The triple-wise χ is defined as

χ(s∗i , s
∗
j , s
∗
k) = lim

q→1
Pr[Fi{Z(s∗i )} > q, Fj{Z(s∗j )} > q|Fk{Z(s∗k)} > q]

= lim
q→1

Pr[Fi{Z(si)} > q, Fj{Z(sj)} > q|Fk{Z(sk)} > q] = χ(si, sj , sk)

for i 6= j 6= k. For a Brown-Resnick process, the theoretical value for this measure is

χ(s∗i , s
∗
j , s
∗
k) = 3− V2(1, 1; i, j)− V2(1, 1; i, k)− V2(1, 1; j, k) + V3(1, 1, 1),
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where V2(·, ·; l,m) is the pairwise exponent given in (10) and V3(·, ·, ·) is the triple-wise exponent

measure, for which the parametric form is given in Huser and Davison (2013); recall that if the process

is stationary, both of these are functions of Euclidean distance. A similar parametrisation can be given

for χq(s
∗
i , s
∗
j , s
∗
k) for an inverted Brown-Resnick process, which is χq(s

∗
i , s
∗
j , s
∗
k) = (1− q)V3(1,1,1)−1.

Standard errors for empirical estimates of χq(s
∗
i , s
∗
j , s
∗
k) are estimated using a stationary bootstrap

(Politis and Romano, 1994). We begin by drawing a random block size B from a geometric distribution

with mean K. The bootstrap sample for locations si, sj , sk, i 6= j 6= k is built by drawing a random

starting time τ and creating a block of observations

{z∗τ , . . . , z∗τ+B−1}, where z∗t = {zt(si), zt(sj), zt(sk)},

which we add to the bootstrap sample. This procedure is repeated and the bootstrap is built up

iteratively until it has length n. We then estimate χ(s∗i , s
∗
j , s
∗
k) for that sample and repeat for a number

of samples. When choosing locations to compare empirical and theoretical values of χ(s∗i , s
∗
j , s
∗
k), we

take advantage of the gridded structure of the coordinates in the G-plane, and ensure that each set

of points share roughly the same configuration and pairwise distances. This is used to evaluate the

stationarity of the dependence structure on the original G-plane, as we would expect the empirical

values of χ(s∗i , s
∗
j , s
∗
k) to be consistently similar across sets of locations with the same configuration.

Diagnostics for the deformations and best model fit are given in Figure 4. For the estimation

of χ(s∗i , s
∗
j , s
∗
k), 30 sets of three adjacent locations along the north/south transect in the G-plane are

randomly selected and a stationary bootstrap with mean block size K = 14 and 1000 samples is used

to create 95% confidence intervals for the empirical estimates of χ(s∗i , s
∗
j , s
∗
k). Empirical estimates of

χ(s∗i , s
∗
j , s
∗
k) are calculated above the 98% quantile. The right panel of Figure 4 displays estimates for

the conditional expectation from the conditional extremes model, where distances are normalised so

that the average distance is equal for both the values in the G-plane and the D-plane.
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Figure 4: Australian summer temperatures diagnostics. Left: estimates of χ(s∗i , s
∗
j , s
∗
k) (black

dots) and 95% confidence intervals using the stationary bootstrap. Red dots are the respective
theoretical values suggested by the model fit. Right: conditional expectation from conditional
extremes model. Red points denote estimates for the process on the D-plane; black points are
those on the G-plane.

The diagnostic based on χ(s∗i , s
∗
j , s
∗
k) from Figure 4 suggests that a max-stable model is a rea-

sonable fit for the data in the deformed space, as the patterns of the theoretical χ(s∗i , s
∗
j , s
∗
k) values

follow the empirical estimates. The large variability in the bootstrap estimates across sets of locations

with similar configurations suggests that the process on the original plane is highly non-stationary.

Estimates from the conditional extremes model provide further evidence that the deformation has

produced something more stationary with regards to the dependence structure, especially at smaller

distances. The use of a measure for extremal dependence that is not used for fitting lends credibility

to the χ(h∗ij) plot in Figure 3 and suggests that the deformation has worked well.

4.2 UK precipitation rate

Data consist of hourly precipitation rate (mm/day) observed at locations on two 10 × 10 grids; the

first is centred in Snowdonia, Wales and the second is centred in the Scottish Highlands. Observations

are taken from the UK climate projections 2018 (UKCP18) (Lowe et al., 2018) which contain values

produced at hourly intervals on 2.2 × 2.2km2 grid boxes between the years 1980 and 2000. We have

treated the centre of each grid box as a sampling location and we take every fifth grid box to create

the 10 × 10 grid of sampling locations. Observations are aggregated to 12-hr intervals, beginning at
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12pm, and to remove the seasonal effect often observed in precipitation data, we have taken only winter

observations (DJF). This leaves 3600 observations at each sampling location.

Figure 5 shows both sets of original sampling locations and their respective estimates of χ(hij)

against distances. In both cases, we estimate χ(hij) by setting q = 0.95 in (15). Both deformations

are produced using m∗ = 25 and these are presented as the blue points in Figure 5. Figure 6 presents

both deformations and estimates of χ̂(h∗ij) against distance in the respective deformed spaces. We

observe that both deformations have created a process that appears to be much more stationary with

regards to their respective χ(h∗ij) estimates in the new coordinates. In both cases, deformations are

more prominent around areas of higher elevation.
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ĉ
(h
ij)

Figure 5: Top row: Snowdonia. Bottom row: Scottish Highlands. Left: the original 100
sampling locations. The blue points are the anchor points used for the thin-plate splines.
Right: empirical χ(hij) measures against distance (km) in the respective G-planes. Estimates
χ̂(hij) are calculated above a threshold given by the 95% empirical quantile.
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Figure 6: Top row: Snowdonia. Bottom row: Scottish Highlands. Left: the 100 sampling loca-
tions in their respective D-planes. The points are coloured such that darker points correspond
to sampling locations with higher elevation and black points correspond to locations over sea.
The coordinates have been scaled to [0, 1]× [0, 1], which equals the aspect ratio of the left plots
in Figure 5. Right: empirical χ(h∗ij) measures against distance in the D-plane. The red line
gives the fitted function χ(h∗) used in the deformation.

Table 5 summarises the fits for the Brown-Resnick and inverted Brown-Resnick models for both

sets of sampling locations. The CLAIC estimates in Table 5 suggest that an inverted max-stable model

is the most appropriate for both the Snowdonia and Highlands data. Both see improved fits using the

sampling locations mapped to the respective D-planes. In Figures 7 and 8, we present diagnostics for
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the deformations and best model fits using the same measures described in Section 4.1. As the best

fitting model for both datasets is the inverted Brown-Resnick process, Figure 7 compares empirical

estimates and model-based values of χq(s
∗
i , s
∗
j , s
∗
k) with q = 0.95. Confidence intervals for the empirical

estimates of χq(s
∗
i , s
∗
j , s
∗
k) are calculated by randomly selecting 30 sets of three adjacent locations along

the east/west transect and a using stationary bootstrap with mean block size K = 14 and 1000 samples.

For the diagnostic given in Figure 8, the 95% quantile is used for fitting the conditional extremes model

and we plot the pairwise conditional expectation estimates against distance. Distances are normalised

so that the average distance is equal for both the values in the G-plane and the D-plane.
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Figure 7: UK precipitation model fit diagnostics. Estimates of χq(s
∗
i , s
∗
j , s
∗
k) (black dots) with

q = 0.95 and 95% confidence intervals using the stationary bootstrap. Red dots are the respec-
tive theoretical values suggested by the model fits. Left: Snowdonia. Right: Highlands.
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Figure 8: UK precipitation deformation diagnostics. Conditional expectation from conditional
extremes model. Red points denote estimates for the process on the D-plane; black points are
those on the G-plane. Left: Snowdonia. Right: Highlands.

Figure 7 shows that the inverted max-stable model gives a relatively good fit to the extremal

dependence of both datasets with sampling locations mapped to their respective D-planes, but the fit

appears better for the Scottish Highlands. The low variability in the χq(s
∗
i , s
∗
j , s
∗
k) estimates suggests

that the original process may not be highly non-stationary. The pairwise conditional expectation

estimates in Figure 8 suggest that both deformations have produced a more stationary process, albeit

more so in the case of the Snowdonia D-plane. The small change in the Highlands estimates may

suggest that overfitting to the χ(hij) values has occurred, especially when compared to the Snowdonia

estimates. This may also explain the stronger agreement of the χq(s
∗
i , s
∗
j , s
∗
k) measures in Figure 8. To

investigate the possibility of overfitting, we recreated the diagnostic using deformations created with

fewer anchor points, but this did not show any improvements.

5 Discussion

In this paper, we presented a simple yet effective approach to modelling non-stationary extremal depen-

dence. This approach extends that of Sampson and Guttorp (1992) and Smith (1996) to be applicable

for modelling extremal dependence, rather than dependence throughout the body. We do this by

replacing the objective function in these methods with the Frobenius norm of the difference between

empirical, and theoretical, pairwise dependency matrices, with the theoretical measures coming from a
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stationary dependence model. Although most of our focus is on χ(h∗ij) as the dependence measure, we

have also shown that this is easily replaced by other measures, such as χq(h
∗
ij) and correlation. Model

selection is carried out using pairwise composite likelihoods and CLAIC estimation and we propose

diagnostics for evaluating these model fits.

We presented two case studies; in each scenario, we showed that when modelling the extremal

dependence of the data using stationary models, better fits are provided using our methodology. Here

we have fit very simple models to the data. However, in practice these deformations may be used as

a pre-processing step to reveal covariates or orography that can be incorporated into the modelling

procedure. Two diagnostics were introduced and used to provide evidence that our approach has

produced a process which is more stationary with regards to the extremal dependence.

As with many areas of extreme value analysis, there is a bias-variance trade-off present when

estimating χq. Using values of q closer to 1 puts greater focus on extremal dependence at the expense

of increased variance of the estimator. In Sections 3 and 4, we choose q close to 1 whilst preserving

some initial spatial structure observed in the χ estimates. However, if q is too high then it is possible

that any structure is masked by the high variability of the estimators and the deformation methodology

is likely to fail in such circumstances. We have not considered the effect of estimator variability on the

deformation, but note this could form a future research direction.

A further issue that could be considered is the possible non-bijectivity of the mapping used in the

deformation. We detail an approach to reduce this in Section 3, however, this method is not particularly

robust. Bijectivity of deformations must be checked by eye which can become cumbersome when a

large number are produced. To avoid this necessary supervision, the G-plane can be represented as a

Delaunay triangulation, see Iovleff and Perrin (2004) and Youngman (2020). Incorporating this extra

computational aspect into the model adds to the complexity, and so as to preserve the simplicity of

our approach, we leave this as a future consideration.
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Process
(G-plane)

Fitted Model
(D-plane)

Deformation
Method

Proportion of
lowest CLAIC

Non-stationary
Brown-Resnick

Stationary
Brown-Resnick

None 0
χBR 0.22

0.34
χIBRq 0.12
ρ 0.44

0.66
Smith (1996) 0.22

Non-stationary
Inverted

Brown-Resnick

Stationary
Inverted

Brown-Resnick

None 0
χBR 0.24

0.56
χIBRq 0.32
ρ 0.28

0.44
Smith (1996) 0.16

Table 1: Proportion of lowest CLAIC estimates provided by fitting models to deformations for
50 realisations of non-stationary Brown-Resnick and inverted Brown-Resnick processes. The
CLAIC has been estimated with a block size of b = 1, corresponding to temporal independence.
Composite likelihoods are estimated with the threshold in (20) as the 90% empirical quantile,
which is also used for estimating χ(h∗ij) in (15).

Process
(G-plane)

Fitted Model
(D-plane)

Deformation
Method

Proportion of
lowest CLAIC

Asymptotically-dependent
Max-mixture

Stationary
Brown-Resnick

None 0.06
χBR 0.14

0.78
χIBRq 0.64
ρ 0.16

0.16
Smith (1996) 0

Asymptotically-independent
Max-mixture

Stationary
Inverted

Brown-Resnick

None 0
χBR 0.42

0.90
χIBRq 0.48
ρ 0.06

0.10
Smith (1996) 0.04

Table 2: Proportion of lowest CLAIC estimates provided by fitting models to deformations
of 50 realisations of asymptotically dependent and asymptotically independent max-mixture
processes. The CLAIC has been estimated with a block size of b = 1, corresponding to temporal
independence. Composite likelihoods are estimated with the threshold in (20) as the 90%
empirical quantile, which is also used for estimating χ(h∗ij) in (15).
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Process
(G-plane)

Fitted Model
(D-plane)

Deformation
Method

Proportion of
lowest CLAIC

Gaussian
Mixture

Stationary
Inverted

Brown-Resnick

None 0
χBR 0.08

1
χIBRq 0.92
ρ 0

0
Smith (1996) 0

Table 3: Proportion of lowest CLAIC estimates provided by fitting models to deformations
of 50 realisations of the Gaussian mixture process, see (25). The CLAIC has been estimated
with a block size of b = 1, corresponding to temporal independence. Composite likelihoods
are estimated with the threshold in (20) as the 90% empirical quantile, which is also used for
estimating χ(h∗ij) in (15).

Model Negative Composite Log-Likelihood (×106) (κ̂, λ̂) (2 d.p.) CLAIC (×107)

G-Plane
IMSP∗ 3.078 (2.00, 1048.20) 6.157
MSP 3.078 (1.59, 358.30) 6.157

D-Plane
IMSP∗ 3.074 (2.00, 2.61) 6.148
MSP 3.073 (1.71, 0.95) 6.146

Table 4: Model parameters and diagnostics for the Australian summer temperatures data.
Composite likelihoods are estimated with the threshold in (20) as the 98% empirical quantile.
(∗ estimated using Smith process likelihood). CLAIC and negative composite log-likelihood
estimates are given to four significant figures.

Model
Negative Composite

(κ̂, λ̂) (2 d.p.) CLAIC (×107)
Log-Likelihood (×106)

Snowdonia
G-Plane

IMSP 8.023 (1.40, 111.84) 1.605
MSP 8.050 (1.00, 25.96) 1.610

D-Plane
IMSP 8.011 (1.29, 3.33) 1.602
MSP 8.037 (0.93, 0.69) 1.607

Highlands
G-Plane

IMSP 8.099 (1.25, 143.77) 1.620
MSP 8.124 (0.87, 27.37) 1.625

D-Plane
IMSP 8.076 (1.30, 3.34) 1.615
MSP 8.099 (0.93, 0.69) 1.620

Table 5: Model parameters and diagnostics for the UK precipitation data. Composite likelihoods
are estimated with the threshold in (20) as the 95% empirical quantile. CLAIC and negative
composite log-likelihood estimates are given to four significant figures.
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