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We develop a Markov-Switching Autoregressive Conditional Intensity (MS-ACI) model with

time-varying transitional probability, and show that it can be reliably estimated via the Stochastic

Approximation Expectation-Maximization algorithm. Applying our model to high-frequency trans-

action data, we detect two distinct regimes in the intraday volatility process: a dominant volatility

regime that is observable throughout the trading day representing the risk-transferring trading ac-

tivity of investors, and a minor volatility regime that concentrates around market liquidity shocks

which mainly capture impacts of �rm-speci�c news arrivals. We propose a novel daily volatility

decomposition based on the two detected volatility regimes.
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1 Introduction

Since the seminal work of Engle and Russell (1998), a growing amount of literature has emerged on

parametric modelling of intraday �nancial data. An important strand of this literature concentrates

on the parametric modelling of intraday price volatility using point processes, including Gerhard and

Hautsch (2002), Tse and Yang (2012), Li et al. (2019), Hong et al. (2020), etc. These papers show

that point process based volatility estimators can provide valid intraday volatility estimates that are

comparable to the popular Realized Variance (RV) estimates of Andersen et al. (2001).

An interesting feature of the point process-based approach is that its parametric structure provides

a useful framework to examine intraday volatility interaction with market microstructure covariates

without compromising the quality of volatility estimates. Existing frameworks are either incapable of

incorporating other variables due to their non-parametric design (e.g. RV framework), or are considered

inappropriate for intraday volatility estimation (e.g. intraday GARCH framework).

Under the point process-based framework, we propose a Markov-switching extension to the Au-

toregressive Conditional Intensity (ACI) model of Russell (1999) for the modelling of intraday volatility.

To the best of our knowledge, we are among the �rst to develop such an extension to a conditional

intensity model. In fact, only few studies consider Markov-switching extensions to autoregressive mod-

els for point processes, e.g. Hujer et al. (2002); De Luca and Zuccolotto (2006); Gallo and Otranto

(2012), which are all developed from the Autoregressive Conditional Duration (ACD) model of Engle

and Russell (1998). We therefore �ll this gap by providing an intensity-based autoregressive model

with a Markov-switching feature for the modelling of point processes.

The lack of Markov-switching autoregressive models for point processes is possibly due to the

fact that a non-linear autoregressive structure is required to ensure the positivity of the durations

and the conditional intensity. This introduces a ‘path dependency problem’ in the construction of

the likelihood function1, which greatly complicates the estimation of such model. The most widely

applied strategy to circumvent the path dependency problem is to approximate the observed likelihood

function by a feasible version, for example Gray (1996); Kim (1994); Dueker (1997); Klaassen (2002);

Haas et al. (2004) in a MS-GARCH framework, and Hujer et al. (2002); De Luca and Zuccolotto

(2006); Gallo and Otranto (2012) for the MS-ACD model. However, these approaches do not solve

the path dependency problem directly, and the quality of these approximations is di�cult to verify

empirically (Billio et al., 2014).

Distinct from the aforementioned studies, a direct solution to the path dependency problem typi-

cally relies on simulation and data augmentation techniques. For example, Bauwens et al. (2010, 2014);

1Intuitively, as the Markov state variables are unobserved, the observed likelihood is computed by integrating out the

full path of the latent states. Since possible realizations of the Markov chain grows exponentially w.r.t. the number of

observations, direct computation of the observed likelihood quickly become intractable as the sample size expands.
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Billio et al. (2014) develop Bayesian estimation techniques for the MS-GARCH model. Augustyniak

(2014) introduces a Monte Carlo Expectation-Maximization (MCEM) algorithm (Wei and Tanner,

1990) for maximum likelihood estimation of the MS-GARCH model. Inspired by these approaches,

we develop a maximum likelihood estimator of the Markov-switching ACI (MS-ACI) model based on

the Stochastic Approximation Expectation-Maximization (SAEM) algorithm of Celeux and Diebolt

(1992); Delyon et al. (1999), which overcomes the path dependency problem and provides estimates of

the variance-covariance matrix of the estimated parameter and the most probable state vector. Our

approach can be computationally more e�cient than the method of Augustyniak (2014) as the SAEM

algorithm utilizes the simulated data more e�ciently than the MCEM algorithm (Delyon et al., 1999).

Via simulation, we show that our SAEM algorithm provides empirically feasible and reliable parameter

estimates of the MS-ACI model.

We apply the MS-ACI model on the high-frequency Trade and Quote (TAQ) data of ten fre-

quently traded securities (including a market index ETF, SPY) for the year 2016, timestamped at

milliseconds. We model the dynamics of price durations, that is, the amount of time for the log-price

to change by a given amount, and examine the contemporaneous relationship between price durations

and the cumulative trading volume within each price duration. Our MS-ACI model detects two dis-

tinct regimes in the intraday volume-duration relationship for individual stocks: a dominant regime

that is observable throughout the trading day in which the duration and volume exhibits a strong

power law relationship, and a minor regime that concentrates around large bid-ask spread events with

a much weaker connection between price duration and volume. However, the latter regime cannot be

observed for SPY, the stock index ETF. These �ndings are further corroborated by empirical results

based on an extended sample that covers all Dow Jones constituents in 2016, which we present in the

supplementary material of the paper.

Our empirical �ndings provide new insights into the dynamics of intraday volatility processes.

Firstly, we show that intraday volatility processes for individual stocks exhibit regime-switching be-

haviour on an intraday level, which is likely to be caused by unpredicted shocks to the liquidity state

of the market as a result of �rm-speci�c information arrivals. Secondly, we conjecture that the dom-

inant regime discussed above is likely to summarize risk transfers between market participants, and

the power law relationship between volume and price duration may hold across assets and time as

a result of the Market Microstructure Invariance hypothesis of Kyle and Obizhaeva (2016). Finally,

we propose a novel decomposition of daily volatility into two components based on the two detected

regimes, which allows us to disentangle di�erent driving forces of volatility on a daily basis.

The rest of this paper is structured as follows: Section 2 introduces some basic point process theory

and the original ACI model. In Section 3, the speci�cation and estimation technique of the MS-ACI

model are discussed. Simulation evidence is provided in Section 4, with the empirical application

following in Section 5. Section 6 concludes.

3

Electronic copy available at: https://ssrn.com/abstract=2785499



2 Conditional Intensity Modelling

2.1 Basic Point Process Theory

This section brie
y summarizes fundamental point process theory used in this paper following Hautsch

(2012). For an in-depth textbook treatment we refer to Karr (1991) and Daley and Vere-Jones (2003)

among others.

De�nition 1. On a �ltered probability space (
;F ; fFtgt�0;P), let t denote the physical time. A (simple)

point process is de�ned as the sequence of random event arrival times ftigi=0;1;2;:::, subject to t0 = 0

and ti < ti+1; 8i, almost surely. Each ti represents the arrival time of the i-th event. For a sample

size T , the complete observed sequence of the point process can be denoted as ftigi=1:T .

A point process can be uniquely characterized by three processes. The �rst one is the counting

process, denoted as N(t) :=
P

i�1 1l fti�tg for the right-continuous version and �N(t) :=
P

i�1 1l fti<tg

for the left-continuous one. The second process is the duration process de�ned as xi = ti � ti�1 for

i > 1 and x1 = t1. A related de�nition is the backward recurrence time, de�ned as x(t) = t � t �N(t).

Let Ft denote the information set available till time t to which the point process is adapted, the third

process is the Ft-conditional intensity process, de�ned formally as:

De�nition 2. (Hautsch, 2012, p. 71) Let N(t) be a simple point process on [0;1) that is adapted

to some history Ft and assume that �(tjFt) is a positive-valued process with sample paths that are

left-continuous and have right-hand limits. Then the process

�(tjFt) � �(t+ jFt) = lim
�#0

1
�

E[N(t+ �)�N(t)jFt]; �(t+) > 0; 8t; (2.1)

with �(t + jFt) := lim�#0 �(t + �jFt), is called the (Ft)-conditional intensity process of the counting

process N(t).

The following crucial property of the conditional intensity process is exploited in constructing

models for conditional intensity. Let us denote the integrated intensity between two events as:

�i =
tiZ

ti�1

�(sjFs)ds:

According to the Random Time Change theorem (RTCT hereafter, see e.g. Bowsher (2007)), the

process f�igi=1;2;::: is the duration process of a unit rate Poisson process with:

�i � i:i:d:exp(1): (2.2)

This property serves as a useful tool in constructing intensity-based models, and is used in constructing

residuals and diagnostic tests for point processes.
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The log-likelihood function of a point process can be constructed solely based on the conditional

intensity process (Karr, 1991):

ln L(�; Y) =
TX

i=1

�
��i + ln �(tijFti)

�
: (2.3)

Here Y = ftigi=1:T and � is the unique parameter vector for some parametrized conditional intensity

process.

2.2 The ACI Model

The seminal paper of Russell (1999) proposes the bivariate ACI model with applications to high-

frequency �nancial data. In this section, we describe the main ingredients of the original ACI model

in a univariate framework as in Hautsch (2012).

The ACI model is a fully parametric model, which speci�es the conditional intensity in a multi-

plicative form as follows:

�(tjFt) = �(t)�0(t): (2.4)

The �(t) is an autoregressive component that could include time-varying covariates, and �0(t) is

the baseline intensity function. Additional components can be included multiplicatively to capture

other e�ects of interest on the conditional intensity (e.g. a seasonality component), which we ignore

in this paper for simplicity. To ensure the non-negativity of the conditional intensity, �(t) is usually

parametrized as the exponential form of an ARMA-type structure, as an example:

�(t) = e
~� �N(t)+1+�0Z(t); (2.5)

~�i =
qX

j=1

�j ~"i�j +
pX

k=1

�k ~�i�k; (2.6)

in which �N(t) + 1 = i for ti�1 < t � ti, Z(t) is a matrix of covariates (can include both time-

varying and time-invariant covariates) and � is the corresponding parameter vector. ~�i is a zero mean

ARMA-type process, and the weak stationarity condition for ~�i is that all the roots of the polynomial

�(z) = 1�
Pq

k=1 �kz
k lie outside the unit circle. The innovation terms, ~"i, can be de�ned as:

~"i = �
 � ln �i: (2.7)

in which 
 is the Euler-Mascheroni constant. According to Eq. (2.2), since �i is i.i.d. unit exponential

if the ACI model is correctly speci�ed, � ln �i follows a standard type-I Gumbel distribution with

mean 
 hence ~"i is a zero mean martingale.

The baseline intensity component �0(t) can be speci�ed in various ways. Because a closed form

solution of the integrated conditional intensity and thus the error term is more computationally con-

venient, the following speci�cations are popular: (1) the exponential baseline �0(t) = ew, (2) the
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Weibull baseline �0(t) = aewax(t)a�1 with a > 0 (3) the Burr-type baseline �0(t) = e� ax(t)a�1

e�wa+x(t)a with

a > 0. The model can be estimated by standard maximum likelihood approach with the log-likelihood

function given in Eq. (2.3).

2.3 Stationarity of the ACI Model

The stationarity concept discussed in this paper refers to weak (covariance) stationarity unless stated

otherwise. Previous studies focus on discussing the stationarity of the ~�i component (see Russell

(1999), Hautsch (2012) for instance), and the stationarity condition of ~�i is considered as a su�cient

stationarity condition for the ACI model. We show that for a plain ACI model with Weibull baseline

and the error term speci�ed as in Eq. (2.7), the stationarity of ~�i is insu�cient for the conditional

intensity process �(tijFti) or the duration process xi to be stationary. Our �ndings are summarized

in the theorem below.

Theorem 2.1. The su�cient conditions for the stationarity of the conditional intensity and duration

processes generated by an ACI(p,q) model de�ned as in Eqs. (2.5) to (2.7) and �0(t) = aewax(t)a�1

with Z(t) = 0 are:

1. All roots of the polynomial �(z) lie outside the unit circle, where �(z) is the polynomial in the lag

operator form of ~�i: �(L)~�i = �(L)~"i�1, in which �(L) = 1�
Pp

i=1 �iL
i and �(L) =

Pq
j=1 �jL

j.

2. Let  (L) = �(L)
�(L) =

P1
i=1  jL

j. The following conditions are required:

a >
2
3
; sup j ij <

a
2
: (2.8)

Intuitively, condition 1 can be viewed as the stationarity condition for the ARMA component

and condition 2 is the moment condition since power transformed unit exponential variables do not

necessary have �nite second moments. Note that the stationarity of durations does not imply the

stationarity of the conditional intensity, and vice versa. We thus augment the results in Russell (1999)

and Hautsch (2012) by showing that extra parameter constraints are required for the ACI model to

be stationary.

3 Markov Switching ACI Model

In this section we propose the Markov Switching ACI (MS-ACI) model by augmenting the original

ACI model with a Markov switching structure.

Let S = fsigi=1:T ; si 2M = f1; : : : ;Mg denote a M -state �rst order Markov chain, understood as

marks attached to each point arrivals ftigi=1:T . The Markov chain is assumed to be ergodic with the

transition probability P(si = mjsi�1 = l) = �lm for l;m 2 M and an invariant probability measure
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�i. The MS(M)-ACI(p; q) model is speci�ed as:

�(t;Ft) = �(t)�0(t); (3.1)

�(t) = e
~� �N(t)+1(s �N(t)+1)+�(s �N(t)+1)Z(t); (3.2)

~�i(si) =
qX

j=1

�j(si)~"i�j(si�j) +
pX

k=1

�k(si)~�i�k(si�k); (3.3)

~"i(si) = �
 � ln
tiZ

ti�1

�(u;Fu)du; (3.4)

P(si = mjsi�1 = l) = �lm; l;m 2M; (3.5)

in which 
 is the Euler-Mascheroni constant, Z(t) is a matrix of some possible covariates, and

�(s �N(t)+1) is the corresponding regime-speci�c coe�cient vector. The component �(s �N(t)+1)Z(t) en-

ables state-speci�c relationships between the covariates and the intensity process.

In this paper we consider a Weibull baseline function for the MS-ACI model:

�0(t) = a(s �N(t)+1)ew(s �N(t)+1)a(s �N(t)+1)x(t)a(s �N(t)+1)�1: (3.6)

We restrict ourselves to the Weibull baseline which nests the exponential baseline, because it is in the

exponential family which allows for the convergence of the Stochastic Approximation EM algorithm

according to Delyon et al. (1999) and Allassonni�ere et al. (2010). We will denote all the dynamic and

baseline parameters with the parameter vector � and the transition parameters of the Markov chain

with the parameter vector �.

In Eq. (3.5), we assume that the transition parameters are constant over time. This can be relaxed

by assuming that the transition parameters depend on a set of covariates associated with each event

arrival fQlm;igi=1:T; l;m2M. Following the approach in Filardo (1994), we specify the structure of �lm;i

through a logistic link function:

�lm;i =
eclm+
0lmQlm;i�1

1 + eclm+
0lmQlm;i�1
; (3.7)

where clm controls for the baseline transition probability from state l to state m, and 
 0lm is a vector

of coe�cients that captures the impact of Qlm;i�1 on the transition probability from state l to state

m at the i-th observation.

Similar to a plain ACI model, the stationarity of a MS-ACI model requires both the stationarity

of ~�i and a moment condition for the conditional intensity and duration. Francq and Zako��an (2001)

and Stelzer (2009) provide the strict and weak stationarity conditions for ~�i. For conciseness we do

not present this condition, and refer the reader to Theorem 2.1 in Stelzer (2009) as a reference. For

the MS-ACI model de�ned by Eqs. (3.1) to (3.6) and assume the weak stationarity of ~�i, a su�cient

condition that ensures the existence of the second moment of the MS-ACI model is given by:

sup
m2M

fa(m)g >
2
3
; sup j i(S)j <

1
2

sup
m2M

fa(m)g; (3.8)
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where  i(S) are the MA(1) coe�cients of ~�i given some state vector S, and the supremum of j i(S)j

is taken over all i and all possible choices of S. The proof of the above condition is analogous to that

of Theorem 2.1 by conditioning on S, and is thus omitted. However, the requirement on sup j i(S)j

is di�cult to verify in practice for a general MS-ACI model due to the dependence on S. A feasible

criteria can be checked based on the following relation:

supm2M;k2f1;:::;pg j�k(m)j < 1;

supm2M;k2f1;:::;qg j�k(m)j < 1
2 supm2Mfa(m)g

9
=

;
) sup j i(S)j <

1
2

sup
m2M

fa(m)g; (3.9)

which holds true due to the MS-ARMA structure of ~�i.

3.1 Model Estimation

We rely on the maximum likelihood estimation (MLE) method to estimate the parameter vector �

and the state probability parameters �. A standard implementation of MLE maximizes the observed

log-likelihood of the data, which is the marginal log-likelihood of the observed data Y given �:

lnL(�; Y) = ln
X

S

L(�;�; Y;S): (3.10)

Note that all covariates in the above likelihood function are considered as conditionally exogenous

and omitted for conciseness. Eq. (3.10) is empirically very di�cult to maximize for two reasons:

(1) the functional form of the likelihood function is di�cult to maximize by standard gradient/score

methods; (2) the dimensionality of S growth exponentially and summing over the entire space of S

becomes infeasible even in a relatively small sample. We hence apply the Stochastic Approximation

Expectation-Maximization (SAEM) algorithm developed by Celeux and Diebolt (1992) and further

analysed by Kuhn and Lavielle (2004) to overcome the two di�culties in maximizing Eq. (3.10).

We �rstly explain three relevant likelihood functions in the estimation process. The conditional

log-likelihood of Y given the state vector S:

lnL(�; YjS) =
TX

i=1

h
� �i + ln�(tijFti)

i
: (3.11)

This log-likelihood can be easily maximized since it is in a log-linear form. The complete data log-

likelihood for the joint density of fY;Sg can be decomposed as:

lnL(�;�; Y; S) = lnL(�; YjS) + lnL(�; S); (3.12)

in which lnL(�; S) is the marginal log-likelihood for the Markov chain, given by:

lnL(�; S) =
TX

i=2

ln�si�1si;i: (3.13)

8

Electronic copy available at: https://ssrn.com/abstract=2785499



Note that since � is independent of L(�; YjS), the complete likelihood can be maximized by separately

maximising L(�; YjS) and L(�; S). Both log-likelihood functions can be maximized by gradient-based

algorithms such as the Newton-Raphson method. We provide the analytical gradient of lnL(�; YjS)

in Appendix B, which allows for a faster and more e�cient optimization compared to pure numerical

algorithms. The marginal likelihood of Y, which cannot be directly maximized as discussed in the

previous section, can be expressed as:

lnL(�; Y) = ln
X

S

L(�; YjS)L(�; S): (3.14)

To apply the SAEM algorithm, we draw a random sample from the conditional density of the state

given the current parameter estimate �(n), the data Y and the current state vector S(n) using the

single move Gibbs sampler developed by Bauwens et al. (2010). The single move sampler exploits the

following conditional density of the i-th state:

p(sijs
(n+1)
1:i�1 ; s

(n)
i+1:T ; �

(n);Y) / p(sijs
(n+1)
i�1 ; s(n)

i+1;�
(n))f(yi:T jsi; s

(n+1)
1:i�1 ; s

(n)
i+1:T ; �

(n)): (3.15)

At every n, by iterating i from 2 to T , we obtain a random draw of the vector S(n+1) conditioning

on the previous state vector. Based on the Gibbs sampler we can implement the SAEM algorithm to

estimate the MS-ACI model, which we summarize as follows.

Simulation Step (S-step): At the n-th iteration, given the current parameter estimate �(n), �(n)

and the current draws of state S(n;k), draw S(n+1;k) from the following density for i = 1 : T and

k = 1 : Kn:

p(si = ljs(n;k)
�i ; �(n);Y) =

p(si = ljs(n+1;k)
i�1 ; s(n;k)

i+1 ;�(n))f(yi:T jsi = l; s(n;k)
�i ; �(i))

PM
m p(si = mjs(n+1;k)

i�1 ; s(n;k)
i+1 ;�(n))f(yi:T jsi = m; s(n;k)

�i ; �(i))
; (3.16)

in which s(n;k)
�i = fs(n+1;k)

1:i�1 g [ fs
(n;k)
i+1:T g.

Stochastic Approximation: Let #(n) denote the vector that combines �(n) and all free probability

parameters in �(n), update the quantity:

Qn(#j#(n)) = (1� 
n)Qn�1(#j#(n�1)) +

n
Kn

KnX

k=1

lnL(#; Y;S(n+1;k)); (3.17)

in which 
n is a positive step size that gradually decreases to zero as n!1.

Maximization Step (M-step): Maximize Qn(#j#(n)) w.r.t. # to obtain #(n+1). Repeat until a

termination criterion is reached.

Note that maximizing Qn(#j#(n)) w.r.t. # is equivalent to maximizing a weighted sum of complete

log-likelihoods. Therefore it can be decomposed into a weighted sum of conditional log-likelihoods of

the data given the state vector and a weighted sum of log-likelihoods of simulated Markov chains, both

of which can be maximized using gradient-based algorithms.
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We now discuss the choices of tuning parameters. For the choice of the step size 
n, the general

guideline is that, as explained by Jank (2006), small (large) step sizes reduce (in
ate) the Monte Carlo

error and yield slower (faster) convergence. Our choice step size 
n is of the following form:


n =

8
><

>:

1; n � n0;

1
(n�n0)0:75 ; n > n0:

(3.18)

The initial n0 steps are understood as a burn-in period which will produce a sequence of parameter

estimates f#(i)gi=1:n0 that will converge fast but have large Monte Carlo error. We then use a local

average of parameters from the burn-in period as the starting values of the SAEM iterations, and 0:75

is a moderate convergence speed that balances the Monte Carlo error and the convergence speed of

the algorithm.

As to Kn, it controls for the Monte Carlo size drawn at each iteration. Intuitively, the term
1
Kn

PKn
k=1 lnL(#; Y; S(n+1;k)) is a Monte Carlo approximation of lnL(�; Y). Larger Kn accelerates the

speed of convergence but also increases the computational burden. Unlike the Monte Carlo EM of Wei

and Tanner (1990) which requires Kn !1 for the algorithm to converge, in the SAEM algorithm only

a �xed Kn is needed. In our implementation we choose Kn = 1 in the burn-in period and Kn = 20 in

SAEM iterations, which are chosen to �t our computational power and time constraints.

To ensure that the algorithm does not terminate prematurely, we set the termination criterion as

follows:
���
���

1
H

HX

h=1

(#(n�h+1) � #(n�H�h+1))
���
���
1
� �; (3.19)

where jj � jj1 denotes the supremum norm. This criterion compares the average parameter estimates

calculated from the most recent H iterations to those using H estimates prior to the most recent H

iterations. If the algorithm converges, we would expect that the criteria is close to zero. In our analysis

we choose H = 5 and � = 5e�3.

The initial values of the burn-in period, namely #(0) and S(0), are important factors in the esti-

mation procedure. We �nd that the estimation scheme is robust to choices of S(0), �(0) and all ARMA

parameters, but depends crucially on the baseline parameters. This is due to the fact that the regime

identi�cation is to a large extent determined by the baseline parameters. Guidances on choices of the

initial values are provided in Section 4.

The SAEM algorithm only provides a point estimate for the parameter vector. As suggested by

Delyon et al. (1999) and Kuhn and Lavielle (2004), we can also obtain variance-covariance matrix

estimates for the parameter estimates. From the posterior probability of the states conditioning on

the parameter estimates, we are able to provide an estimate of the most probable state vector. The

detailed estimation procedures for the variance-covariance matrix and the most probable state vector

are presented in Appendix C.
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3.2 Post-Estimation Diagnostics

According to the RTCT, the transformed residual process f�̂igi=1:T follows an i.i.d. unit exponential

process if the model speci�cation is correct. As a result, diagnostic tests of the original ACI model

usually involve testing the unit exponentiality and the presence of autocorrelation in f�̂igi=1:T . These

tests, however, are not directly applicable to the MS-ACI model with only parameter estimates #̂

from the SAEM algorithm. This is because a state vector S is required for the residual series to be

constructed. Thanks to the estimation of the most probable state sequence, we are able to obtain a

conditional residual series f�̂ijŜgi=1:T by plugging in the estimated (most probable) state sequence Ŝ,

which allows us to use standard diagnostic tests such as Ljung-Box tests or empirical density function

tests to evaluate the goodness-of-�t of our model. However, distribution of these tests statistics may

become non-standard due to the conditioning and thus test results only provide indicative rather than

conclusive evidence.

To provide a descriptive statistic that re
ects the strength of the regime identi�cation, we focus

on the T �M posterior probability matrix P conditioning on the estimated parameters #̂ and the

estimated state vector Ŝ. The element at the intersection of row i and column m in P, denoted by

Pi;m = p(si = mjŝ1:i�1; ŝi+1:T ;Y; #̂), is the posterior probability of the i-th state being classi�ed as

state m conditioning on ŝ1:i�1, ŝi+1:T , Y and #̂ calculated similarly as in Eq. (3.15). Based on this

matrix, we construct a statistic named the ‘Signi�cance of Regimes’ (SoR hereafter) which serves as

an indicator of the overall signi�cance of the regime-switching structure. It is calculated as follows:

SoR = T�1
TX

i=1

max
m2M

Pi;m: (3.20)

Intuitively, SoR is the average of the largest probability in every row of P. It measures the average

(conditional) probability of each state being classi�ed into the most probable states. The rationale

behind this statistic is that, assuming the DGP consists of M distinct regimes with densities far apart

from each other, the probability of any observation being classi�ed into its corresponding true state,

hence the SoR, will be close to one. On the contrary, when all M densities are identical, all the

elements in the matrix P, and therefore the SoR, reduce to M�1. Therefore, conditioning on Ŝ and #̂,

a SoR close to 1 indicates that every observation is being assigned to a regime with a probability close

to 1, hence the regime identi�cation is strong. Nevertheless, when SoR is close to its lower bound

M�1, the model is indi�erent about assigning each observation into any of the M regimes (so the

probability of being assigned to any regime is M�1), which implies a very weak regime identi�cation.

The SoR allows for easy comparisons across models with di�erent number of regimes and baseline

speci�cations. Moreover, we can calculate SoR for each regime to compare their relative signi�cance.

The SoR for the l-th regime is de�ned as:

SoR(l) =
� TX

i=1

1l farg max
m2M

(Pi;m)=lg

��1 TX

i=1

max
m2M

Pi;m1l farg max
m2M

(Pi;m)=lg; (3.21)
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which basically calculates the average of the largest element in every row of P if the largest element

belongs to the l-th state. We provide some guidance on how to interpret the SoR in the following

section.

4 Monte Carlo Simulation Study

In this section, we conduct a Monte Carlo simulation study to highlight the estimation performance

of our SAEM algorithm under various parameter speci�cations. We mainly focus on the impact of

di�erent baseline parameters and transition parameters based on MS(2)-ACI(1,1) models without

covariates.

The selection of parameter constellations is designed to examine the aforementioned relationship

between speci�cations and estimation quality. The size of the Monte Carlo study for each speci�cation

is 1000. For each speci�cation, we choose T = 1000 and n0 = 10. We initialize �(0)
1 (1) = �(0)

1 (2) = 0,

�(0)
1 (1) = �(0)

1 (2) = �(0)
11 = �(0)

22 = 0:5 and S(0) to be a random draw of T independent fair coin

tosses. The initial values of the scale parameter w(0)(l) are carefully set to mitigate the label-switching

problem. Speci�cally, in the two-regime case, assume the true scale parameters w(1) > w(2), for ŵ(1)

to converge towards w(1) (instead of w(2) or being eliminated by the algorithm), we recommend

setting w(0)(1) > w(1) > w(2) > w(0)(2) or w(1) > w(0)(1)� w(0)(2) > w(2). On a Windows machine

with a 2.3GHz CPU, it takes about 1-3 minutes to obtain one set of parameter estimates based on our

SAEM algorithm implemented in MATLAB R2020a2.

The quality of the parameter estimates is assessed through the bias and the root mean squared

error (RMSE) of the Monte Carlo parameter estimates. In detail, for each parameter speci�cation, we

benchmark the bias and the RMSE of the Monte Carlo parameter estimates against the bias and the

RMSE from a Monte Carlo simulation of the same model given the latent state vector (referred to as

the complete model hereafter, and the incomplete model refers to the model with a latent state vector).

As parameter estimates from the complete model are statistically optimal, we are able to depict the

loss of accuracy associated with both parameter speci�cations and the observability of the Markov

chain by comparing the quality of parameter estimates of the incomplete model to its corresponding

complete counterpart.

The main results are presented in Table 1. We base our simulation on six di�erent speci�cations,

with spec. 1-5 using exponential baselines and spec. 6 using a Weibull baseline. The �rst part of the

table shows the bias and RMSE of the Monte Carlo parameter estimates of the incomplete model,

with the bias and RMSE of the complete counterparts included in the second part of the table. The

2Note that the time consumption is depends on the speci�cation of the model. In detail, models with a larger SoR converge

faster as there are less randomness in the parameter estimates. Also, the amount of computation grows quadratically

with the number of observations due to the single move Gibbs sampler which sweeps through the entire sample. For a

sample size of 3000, the required time to obtain 1 set of parameter estimates is about 10-15 minutes.
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Table 1: Monte Carlo simulation results of parameter estimates of MS(2)-ACI(1,1) models and the

corresponding complete models based on 1000 random draws

~�1(1) ~�1(2) ~�1(1) ~�1(2) ~w(1) ~w(2) ~a(1) ~a(2) ~�11 ~�22

Spec. Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias SoR
RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE �(SoR)

Results for Incomplete Models

1 0.05 0.1 0.8 0.95 0 -5 1 1 0.5 0.5
-0.0019 0.0028 -0.0092 -0.0618 0.0020 0.0039 . . -0.0010 -0.0011 0.9805
0.0328 0.0309 0.1668 0.1604 0.0654 0.0621 . . 0.0248 0.0247 0.0019

2 0.05 0.1 0.8 0.95 0 -3 1 1 0.5 0.5
0.0030 0.0030 -0.0371 -0.0878 0.0051 0.0034 . . -0.0008 -0.0012 0.9084
0.0479 0.0422 0.2241 0.2150 0.0802 0.0640 . . 0.0319 0.0309 0.0059

3 0.05 0.1 0.8 0.95 0 -3 1 1 0.9 0.9
-0.0009 0.0066 -0.1032 -0.0305 0.0088 0.0195 . . -0.0049 -0.0043 0.9759
0.0366 0.0343 0.2637 0.0910 0.0650 0.0847 . . 0.0169 0.0167 0.0041

4 0.05 0.1 0.8 0.95 0 -1 1 1 0.5 0.5
0.0041 0.0028 0.0493 -0.1126 -0.1899 -0.1520 . . 0.1832 -0.1318 0.7549
0.0434 0.0494 0.1539 0.2194 0.2158 0.1778 . . 0.1998 0.1608 0.0352

5 0.05 0.1 0.8 0.95 0 0 1 1 0.9 0.9
0.0267 -0.0217 0.0960 -0.0955 0.1301 -0.1952 . . -0.2018 -0.5489 0.6986
0.0410 0.0530 0.1284 0.1737 0.1515 0.2154 . . 0.2075 0.5543 0.0385

6 0.05 0.1 0.8 0.95 0 -1 1 2 0.5 0.5
-0.0014 0.0062 -0.0205 -0.0680 0.0353 -0.0123 0.0290 0.0702 0.0008 0.0036 0.7827
0.0508 0.0456 0.1997 0.1753 0.1032 0.0463 0.0611 0.1503 0.0546 0.0561 0.0234

Results for Complete Models

1 0.05 0.1 0.8 0.95 0 -5 1 1 0.5 0.5
-0.0018 0.0014 0.0042 -0.0365 0.0068 0.0063 . . -0.0013 -0.0011
0.0256 0.0262 0.1141 0.1045 0.0592 0.0624 . . 0.0221 0.0221

2 0.05 0.1 0.8 0.95 0 -3 1 1 0.5 0.5
-0.0004 0.0021 -0.0005 -0.0428 0.0054 0.0072 . . -0.0006 -0.0005
0.0256 0.0256 0.1148 0.1189 0.0569 0.0619 . . 0.0224 0.0228

3 0.05 0.1 0.8 0.95 0 -3 1 1 0.9 0.9
-0.0001 0.0007 -0.0350 -0.0142 0.0033 0.0030 . . -0.0010 -0.0005
0.0270 0.0238 0.1563 0.0558 0.0579 0.0765 . . 0.0136 0.0138

4 0.05 0.1 0.8 0.95 0 -1 1 1 0.5 0.5
-0.0009 0.0021 -0.0031 -0.0369 0.0044 0.0032 . . 0.0000 -0.0006
0.0253 0.0265 0.1193 0.1044 0.0607 0.0631 . . 0.0213 0.0220

5 0.05 0.1 0.8 0.95 0 0 1 1 0.9 0.9
-0.0010 0.0006 -0.0303 -0.0148 0.0061 0.0047 . . -0.0001 -0.0011
0.0269 0.0235 0.1387 0.0593 0.0562 0.0763 . . 0.0137 0.0138

6 0.05 0.1 0.8 0.95 0 -1 1 2 0.5 0.5
-0.0004 0.0025 -0.0049 -0.0365 -0.0007 0.0017 0.0071 0.0097 -0.0013 -0.0008
0.0246 0.0258 0.1184 0.1126 0.0636 0.0336 0.0366 0.0727 0.0224 0.0218

RMSE Ratios

1 1.2785 1.1790 1.4619 1.5354 1.1060 0.9939 . . 1.1252 1.1167
2 1.8702 1.6479 1.9516 1.8081 1.4099 1.0354 . . 1.4235 1.3592
3 1.3576 1.4404 1.6870 1.6327 1.1224 1.1068 . . 1.2438 1.2064
4 1.7152 1.8597 1.2906 2.1021 3.5552 2.8180 . . 9.3974 7.3268
5 1.5217 2.2556 0.9261 2.9292 2.6942 2.8216 . . 15.1995 40.2603
6 2.0667 1.7680 1.6866 1.5572 1.6217 1.3775 1.6694 2.0692 2.4374 2.5743

Note: ~� denotes the DGP value of �. SoR and �(SoR) are the mean and standard deviation of the signi�cance of regime de�ned

in equation Eq. (3.20). RMSE is the root mean square error of the Monte Carlo parameter estimates. The RMSE ratio section

presents the RMSE of the corresponding parameter of the incomplete model divided by the RMSE of its complete counterpart.
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RMSE ratio calculated by dividing the RMSE of each parameter estimate of the incomplete model

by that of the complete model allows for an easy comparison. Generally, the bias and RMSE of the

incomplete model tend to 
uctuate across speci�cations, while those for the complete model are much

more consistent.

Results for the incomplete model shows that, by comparing spec. 1, 2 and 4, the closer the gap

between the two regime-speci�c densities implied by the scale parameters ~w(1) and ~w(2), the smaller

the mean SoR. According to the RMSE ratios, it is evident that the quality of the parameter estimates

deteriorates with the mean SoR implied by the increasingly narrowing gap between the DGP scale

parameters.

A more persistent latent Markov chain improves the mean SoR and the estimation performance,

as can be seen from the RMSE ratios of spec. 2 and 3. However, a persistent latent Markov chain

alone cannot guarantee reliable parameter estimates, as is shown in spec. 5. It is worth mentioning

that in spec. 5, the regime-speci�c scale parameters are identical, and the only information on the

latent state vector implied by the observable data is the di�erences in the ARMA parameters, which

do not generate enough discrepancy in the density for the latent Markov chain to be well identi�ed.

This is explained by the large downward biases in the transitional parameters in spec. 5. Moreover,

the mean parameter estimates for the ARMA parameters of the incomplete model are very close to

each other, suggesting a label-switching problem caused by a common baseline.

Finally, comparing spec. 4 and 6, we observe that a more complex baseline function can improve

the mean SoR by generating more 
exible discrepancies between the regime-speci�c densities. In

spec. 6, by changing the Weibull parameter, the Markov chain parameters are estimated with much

better accuracy compared to spec. 4 (smaller bias and RMSE ratio).

An important message from Table 1 is that, since the latent Markov chain will inevitably result

in a loss of information, the quality of the parameter estimates depends crucially on how much we can

learn about the latent states from the observed data. Complexity of baselines and the persistence of

the latent Markov chain largely in
uence the amount of information available in the observed data, and

will have a signi�cant impact on the quality of the parameter estimates. However, the predominant

factors are the DGP scale parameters of the baseline functions, which generally control the location of

the distribution and the ability of our sampler to correctly classify the states. This rationalizes the use

of the SoR as an indicator of the quality of the parameter estimates, as it is a measure of con�dence

of the Gibb’s sampler in classifying the observations. For reliable parameter estimates of the MS-ACI

model, we recommend a SoR of at least 90% so that the hidden Markov chain is on average properly

identi�ed (as can be observed from the RMSE ratios for the last three speci�cations).
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5 Application to High-Frequency Stock Prices

We apply the MS-ACI model to high-frequency stock prices to analyse regime shifts in the intraday

trading activities. Our sample comprises of 9 highly liquid stocks and a stock index ETF traded on

the U.S. stock market, namely AIG, CVX, GM, INTC, JPM, PFE, T, VZ, WMT and SPY, whose

detailed descriptions are shown in Table 2. The raw data is obtained from the Trade and Quote3 (TAQ)

dataset, and is cleaned according to Holden and Jacobsen (2014) and Barndor�-Nielsen et al. (2009).

The sampling period ranges from 1 Jan 2016 to 31 Dec 2016. The trade dataset consists of prices and

trading volumes timestamped at milliseconds, and the trades are matched with the quotes using the

Lee and Ready’s (1991) algorithm to determine trade directions and prevailing bid-ask spread at each

trade. To conserve space, we mainly focus on the empirical results for AIG, VZ and SPY, which are

representative for all assets considered in our sample. Detailed empirical results for all 10 stocks are

relegated to the supplementary material of the paper, which also includes empirical analyses based on

an extended sample of 24 individual stocks that cover all Dow Jones constituents in 2016.

Table 2: Description of the sampled stocks/ETFs and their ticker symbols

Ticker Corporate/ETF name DJ 2016

AIG American International Group, Inc. N

CVX Chevron Corporation Y

GM General Motors Corporation N

INTC Intel Corporation Y

JPM JPMorgan Chase & Co. Y

PFE P�zer Inc. Y

T AT&T Inc. N

VZ Verison Communications Inc. Y

WMT Walmart Inc. Y

SPY SPDR S&P500 ETF Trust N

Note: the DJ 2016 column indicates whether the stock belongs to the Dow Jones 30 index constituents in 2016.

We apply our MS-ACI model to the point process of absolute price change events constructed as

follows. For a sequence of trade observations with its associated log-price ftj ; P (tj)gj=1:J , we construct

a sequence of ‘price events’ based on a price change threshold � using the following algorithm:

1. From j = 1, set t0 = t1. Set the value of �.

2. Let t(�)i = inf
tj>t

(�)
i�1

fjP (tj)� P (t(�)i�1)j � �g.

3. Iterate until the end of the sample.
3https://www.nyse.com/market-data/historical/daily-taq
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We use mid-quotes in our empirical analysis to alleviate the problem of bid-ask bounce e�ects. The

process ft(�)i gi=1:T records the arrival times of each price event, and is known as the �-related absolute

price change process. We will also denote x(�)
i � t(�)i � t

(�)
i�1 as the price duration between two price

events. Since we only sample the price process whenever the absolute price change is equal or larger

than �, intuitively the accumulated price volatility is approximately �2 for each price duration. In fact,

under a continuous martingale framework, it is proved by Li et al. (2019) proved that the integrated

variance between consecutive price events are i.i.d. with mean �2 and variance 2�4=3. Therefore, we

can interpret price durations as an inverse measure of average spot volatility within each interval.

For our analysis, we choose a daily � which produces a mean daily price duration that is closest

to a �ve-minute interval. Empirical results in Tse and Yang (2012) show that volatility estimates

constructed based on this sampling frequency perform reasonably well against noise-robust measures

of RV estimates. Moreover, this choice of � forces the daily number of price events to be identical

up to a random discretization perturbation, which removes daily dynamics from the price durations

and thus greatly simpli�es our model speci�cation. In fact, the daily �2 is an estimate of the average

5-minute integrated variance under the continuous martingale price assumption. Therefore, each price

duration can be interpreted as the time elapse for the volatility to accumulate by 1/78 of the day’s

total volatility. An example of daily choices of � is presented in Figure 1.

Figure 1: Daily choices of � for AIG, VZ and SPY

Jan Apr Jul Oct Jan
2016   

0

1
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3
10-3 AIG

Jan Apr Jul Oct Jan
2016   

0

1

2

3
10-3 VZ

Jan Apr Jul Oct Jan
2016   

0

1

2

3
10-3 SPY

Note: The �gure plots daily price change threshold � for AIG, CVX and SPY. For each asset, � is calculated as the maximum

threshold that produces a mean price duration which is closest to a 5-minute interval.

In this paper, we demonstrate that there exists an intraday regime-switching behaviour between

price durations (x(�)
i ) and the cumulative trading volume within each price duration (V oli). Due to

the well-documented diurnal pattern in the intraday trading process, we �rstly extract the diurnal

component of x(�)
i and V oli using a 
exible Fourier regression estimated on a monthly basis following

the approach in Andersen and Bollerslev (1997) and Engle and Russell (1998). Taking x(�)
i as an

example:
x(�)
i

�x(�)
i

= c0 + c1�ti�1 +
3X

n=1

cs;n sin(2n��ti�1) + cc;n cos(2n��ti�1) + �i; (5.1)

where �ti is the fraction of trading hours normalized to be between [0,1], and �x(�)
i is the sample mean

of the price durations in the regression above. Let us denote by ŝi the �tted values from Eq. (5.1), the
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deseasonalized price duration is then computed as:

~x(�)
i = x(�)

i =ŝi:

For the cumulative volume, we �rstly compute lnV oli and deseasonalize it using Eq. (5.1) to obtain

ln ~V oli. We plot the average monthly autocorrelations for raw and deseasonalized price durations and

log-volumes in Figure 2. The �gure shows clearly that both raw duration and volume have a sinusoid-

shaped autocorrelation function which peaks at multiples of roughly 78, the average number of price

durations per day. This is completely removed by our deseasonalization procedure. The deseasonalized

price durations do not appear to have long memory, which indicates that the long-range dependence

of volatility is subsumed into our daily � sequences.

Figure 2: Correlograms of the raw and deseasonalized price duration and log-cumulative volume
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Note: The �gure plots monthly averaged autocorrelations of raw and deseasonalized price durations and log-cumulative volumes

for AIG, VZ and SPY.

We �t a MS(2)-ACI(1,1) model to the deseasonalized price durations series on a monthly basis

to capture the regime-switching behaviour of price durations upon information arrivals. The model

is summarized by Eqs. (3.1) to (3.4), (3.6) and (3.7) with p = q = 1. To capture a regime-switching

contemporaneous duration-volume relationship, we specify Z(t) = lngV ol �N(t)+1. We set the transition

probability covariates Q11;i = Q22;i = lnBASi, where BASi is the prevailing bid-ask spread at time

t(�)i . The parameters being estimated are: # = f�1(l); �1(l); a(l); w(l); �(l); cll; 
llg0l2f1;2g, where �(l)

captures the impact of contemporaneous log-volume on the conditional intensity in state l and 
ll

captures the impact of the bid-ask spread on the transitional probability from state l to l.
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To reveal some basic features of the data used in the model estimation, we present descriptive

statistics of the deseasonalized durations and volumes along with the bid-ask spread for the 10 sampled

assets in Table 3. The table shows that the mean duration is indeed close to 5 minute as expected.

Interestingly, the moments and quantiles of ~x(�)
i are very similar across all assets, which is a consequence

of the daily � sequences that homogenize the price durations across stock-days. SPY’s mean lngV oli

is considerably higher than the individual stocks as it is much more heavily traded in the market.

Finally, BASi are highly skewed to the right with a large kurtosis, which is due to the fact that the

prevailing bid-ask spread for most of the price durations (at least 75% for most of the sampled stocks)

are $0.01, which is the smallest possible bid-ask spread.

For illustrative purposes, we present our estimation outputs for three representative stock-months

in Table 4. In the table, we can see that for AIG and VZ, our model detects two distinct regimes

with high dSoR (overall > 98%). Regime 1 only accounts for a small proportion (less than 10%) of the

data, with a less persistent intensity dynamics (�̂1(1) < �̂1(2)) and a much smaller interaction with

trading volume (j�̂(1)j < j�̂(2)j). The results on ĉ11 and 
̂11 is somewhat mixed, but 
̂22 are negative

and signi�cant for both stocks, which suggest that durations with larger prevailing bid-ask spreads are

less likely to be assigned into regime 2.

As to the estimation output for SPY, our �ndings are drastically di�erent compared to the in-

dividual stocks. Firstly, the dSoR is much smaller relative to that of AIG and VZ, suggesting that

the model is less con�dent about the assignment of regimes. The estimated �̂(l) are similar for both

regimes. The bid-ask spread does not seem to play any role in the classi�cation of regimes, resulting

in insigni�cant 
̂ll estimates. In fact, since ĉ11 � ĉ22, the model suggests a fair coin toss for the

regime classi�cation. Summarizing from the diagnostics statistics of the three estimation outputs, the

MS-ACI model performs reasonably well in capturing the dynamics of price durations.

To demonstrate that the regimes we detect are consistent in the sampling period considered, we

present the evolution of monthly parameter estimates of �̂(l), 
̂ll and dSoR(l) in Figure 3 for AIG, VZ

and SPY. From the �gure, we can clearly see that both regimes for AIG and VZ behave consistently

throughout the sampling period, with parameter estimates of �̂(l) and 
̂ll following the pattern in

Table 1. The estimated dSoR(l) are all above 90% and in fact very close to 1, indicating a very strong

regime identi�cation of the MS-ACI model. For SPY, the discrepancy between of �̂(1) and �̂(2) is

much weaker, and the estimates of 
̂ll appear noisier comparing to AIG and VZ. Importantly, dSoR(l)

for SPY is signi�cantly smaller than that of AIG and VZ except for the result in 2016-11, consistent

with our �ndings in Table 1. More comprehensive analyses in the supplementary material of the paper

show that this �nding is robust to the choice of �, and in general hold true for all individual stocks

considered in our sample and the extended sample.

The most interesting �nding from Table 4 and Figure 3 is the di�erence between the regimes we
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Table 3: Descriptive statistics of ~x(�)
i , lngV oli and BASi for the sampled assets

Ticker Variable #Obs. Mean Std. Dev. Skew. Kurt. Min Q(25%) Median Q(75%) Max

~x(�)
i 19379 297.498 315.326 2.931 18.258 0.000 95.296 201.589 389.780 4687.967

AIG ln gV oli 19379 10.365 1.181 -0.382 5.009 0.798 9.637 10.396 11.122 15.990

BASi 19379 0.017 0.031 8.240 86.933 0.010 0.010 0.010 0.010 0.490

~x(�)
i 19595 298.593 306.085 2.619 14.403 0.000 98.037 203.700 393.132 3960.754

CVX ln gV oli 19595 10.662 1.102 -0.415 4.657 3.545 9.989 10.693 11.382 16.400

BASi 19595 0.027 0.042 5.678 43.757 0.010 0.010 0.020 0.030 0.570

~x(�)
i 19078 298.537 338.925 3.386 25.589 0.001 89.036 193.135 384.597 6247.964

GM ln gV oli 19078 11.026 1.165 -0.351 4.346 2.301 10.312 11.056 11.780 16.104

BASi 19078 0.013 0.014 11.146 169.889 0.010 0.010 0.010 0.010 0.360

~x(�)
i 18677 301.785 353.832 3.314 22.753 0.000 83.880 191.422 391.219 6134.462

INTC ln gV oli 18677 11.586 1.208 -0.305 5.477 1.871 10.870 11.613 12.323 18.512

BASi 18677 0.012 0.014 9.377 115.052 0.010 0.010 0.010 0.010 0.310

~x(�)
i 19497 297.057 323.500 3.428 27.295 0.000 95.010 198.490 384.909 6127.337

JPM ln gV oli 19497 11.370 1.089 -0.390 5.080 0.000 10.691 11.394 12.080 16.758

BASi 19497 0.014 0.019 10.259 154.256 0.010 0.010 0.010 0.010 0.500

~x(�)
i 18790 304.966 348.679 3.463 26.603 0.000 89.944 196.880 394.796 6036.711

PFE ln gV oli 18790 11.874 1.255 -0.489 5.539 1.248 11.111 11.902 12.666 17.676

BASi 18790 0.012 0.011 13.388 285.449 0.010 0.010 0.010 0.010 0.470

~x(�)
i 18765 305.012 360.357 4.347 56.314 0.000 87.733 193.495 390.823 10548.260

T ln gV oli 18765 11.636 1.174 -0.430 5.483 0.000 10.930 11.666 12.379 17.648

BASi 18765 0.012 0.009 10.060 142.817 0.010 0.010 0.010 0.010 0.240

~x(�)
i 19101 297.310 341.632 3.480 27.493 0.001 85.895 190.414 383.705 6748.658

VZ ln gV oli 19101 11.071 1.192 -0.317 5.122 1.282 10.356 11.093 11.820 17.254

BASi 19101 0.014 0.018 10.593 152.611 0.010 0.010 0.010 0.010 0.460

~x(�)
i 19399 295.006 351.566 7.275 229.075 0.000 85.828 188.136 382.683 16181.508

WMT ln gV oli 19399 10.656 1.187 -0.409 5.576 0.000 9.933 10.683 11.400 17.006

BASi 19399 0.019 0.032 7.667 78.031 0.010 0.010 0.010 0.020 0.490

~x(�)
i 19443 301.465 306.120 3.303 30.796 0.161 99.394 210.126 404.082 6133.803

SPY ln gV oli 19443 13.272 0.937 -0.220 3.104 5.738 12.645 13.316 13.935 16.355

BASi 19443 0.011 0.004 32.729 2108.344 0.010 0.010 0.010 0.010 0.320

Note: The statistics in the table are computed from ~x(�)
i , ln gV oli and BASi for the 10 sampled assets constructed from all trading

days in 2016. #Obs. is the number of observations in the sample. Std. Dev., Skew. and Kurt. represent sample standard deviation,

sample skewness and sample kurtosis, respectively.
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Table 4: Estimation outputs for AIG 2016-01, VZ 2016-05 and SPY 2016-03

AIG 2016-01 VZ 2016-05 SPY 2016-03

l = 1 2 1 2 1 2

�̂1(l) 0:662��� 0:231��� 0:421��� 0:242��� 0:204��� 0:456���

(0:077) (0:018) (0:057) (0:019) (0:049) (0:017)

�̂1(l) 0:548��� 0:904��� 0:234�� 0:939��� 0:976��� 0:865���

(0:109) (0:014) (0:117) (0:011) (0:022) (0:027)

ŵ(l) �0:263 3:650��� 2:020��� 4:109��� 11:343��� 7:046���

(0:804) (0:117) (0:600) (0:136) (0:444) (0:306)

â(l) 0:907��� 2:956��� 0:738��� 2:541��� 2:993��� 3:523���

(0:075) (0:070) (0:049) (0:063) (0:131) (0:165)

�̂(l) �0:350��� �2:454��� �0:435��� �2:240��� �3:693��� �3:319���

(0:079) (0:064) (0:047) (0:065) (0:195) (0:119)

ĉll �0:463 �5:010��� 8:570��� �8:685��� 3:064 2:932

(0:798) (0:809) (1:595) (1:534) (3:435) (3:260)


̂ll �0:353 �2:204��� 1:865��� �2:746��� 0:575 0:341

(0:215) (0:217) (0:358) (0:363) (0:729) (0:696)

Regime Statistics

T 1477 1594 1708

N(si = l) 90 1387 154 1440 563 1145
dSoR 0:990 0:980 0:845

dSoR(l) 0:948 0:993 0:932 0:985 0:810 0:859

Diagnostic Statistics

L(�̂; YjŜ) �8491:725 �9176:952 �9575:877

L(#̂; Y; Ŝ) �8613:934 �9371:204 �10470:729

E[�̂ijŜ] 1:012 1:012 0:987

Var[�̂ijŜ] 1:263 1:058 0:954

AD-stat 3:235�� 0:496 1:746

KS-stat 0:032� 0:020 0:026

LB(20) 18:026 20:207 29:606�

Note: Standard errors are in parentheses. ***, ** and * represent signi�cance at 1%, 5% and 10% respectively. N(si = l) counts

the number of durations in state l. AD-stat and KS-stat are Andersen-Darling and Kolmogorov-Smirnov test statistics for unit

exponential distribution constructed on �̂i. LB(20) is the Ljung-Box test statistics at lag 20. De�nitions of dSoR and dSoR(l) can

be found in Eq. (3.20) and Eq. (3.21).
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Figure 3: Monthly estimates of �̂(l), 
̂ll and dSoR(l) for AIG, VZ and SPY
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Note: We plot monthly estimated �̂(l), 
̂ll and dSoR(l) for AIG, VZ and SPY in the sampling period. Parameter estimates for

regime 1 (l = 1) and regime 2 (l = 2) are represented by red circles and black diamonds, respectively. For �̂(l) and 
̂ll, �lled markers

represent parameter estimates that are signi�cant at the 5% level.

capture for the individual stock and SPY. To explain this di�erence, we plot ln ~x(�)
i against lngV oli for

two estimated regimes in Figure 4. In this �gure, we can clearly see that for AIG and VZ, ln ~x(�)
i and

lngV oli are highly co-linear with an R2(2) of > 60% in regime 2, while this linear relationship is much

less obvious in regime 1. However, we can observe similar linear relationships for both regimes 1 and

2 in SPY. This is clear evidence supporting a regime-switching volume-duration relationship in AIG

and VZ, but not SPY, which partly explains the lower dSoR of SPY.

Our �ndings in Figure 4 suggest a clear power law relation between ~xi and gV oli for regime 2.

To demonstrate this, we run the regime-speci�c OLS regression lngV oli = b0(l) + b1(l) ln ~x(�)
i + ui for

l = 1; 2 and provide descriptive statistics of the estimated b̂1(l) and R2(l) in Table 5. From the table

we can clearly observe that there is a big discrepancy between R2(1) and R2(2) for individual stocks

in the sense that lngV oli and ln ~x(�)
i are highly co-linear in regime 2 with an average R2(2) of 67%,

while R2(1) is only 31% for regime 1. This result cannot be observed from SPY with similar averages

of R2(1) and R2(2). The �ndings in Table 5 is robust to di�erent choices of � and holds true when we

include stocks in the extended sample, which is demonstrated in the supplementary material.

More importantly, the power law relationship between ~x(�)
i and gV oli as described in Table 5

resembles the market microstructure invariance hypothesis of Kyle and Obizhaeva (2016), which also

suggests a power law between the number of bets placed by the investors and trading activity for a

given time interval that holds for any asset across time. Following Kyle and Obizhaeva (2016), we

propose the following hypothesis:
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Figure 4: Scatter plots of ln ~x(�)
i against lngV oli for regimes 1 and 2
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Note: We plot ln ~x(�)
i against ln gV oli for regimes 1 and 2, where the regime classi�cation is estimated monthly by the MS(2)-ACI(1,1)

model. The dotted and dashed lines are �tted plots for the regression ln gV oli = b0(l) + b1(l) ln ~x(�)
i + ui for l = 1; 2, with estimated

parameters and R2 given in the legend.

Table 5: Descriptive statistics of b̂1(l) and R2(l) for regimes 1 and 2

Mean Std. Dev. Q(25%) Median Q(75%)

All Individual Stocks

b̂1(1) 0.4680 0.1185 0.3908 0.4592 0.5411

b̂1(2) 0.7999 0.0476 0.7732 0.8040 0.8311

R2(1) 0.3080 0.1164 0.2325 0.3020 0.3997

R2(2) 0.6706 0.0660 0.6375 0.6788 0.7151

SPY Only

b̂1(1) 0.5727 0.0779 0.5513 0.5732 0.6111

b̂1(2) 0.7807 0.0318 0.7504 0.7849 0.7983

R2(1) 0.7126 0.1810 0.7308 0.7538 0.8013

R2(2) 0.6813 0.0566 0.6240 0.6932 0.7403

Note: the table presents descriptive statistics of estimated b̂1(l) and R2(l) from ln gV oli = b0(l) + b1(l) ln ~x(�)
i + ui with l = 1; 2 for

all 120 stock-months in our sample. The regime classi�cation is estimated monthly by the MS(2)-ACI(1,1) model. Results for SPY

are excluded in the ‘All Individual Stocks’ panel and are presented separately in the ‘SPY Only’ panel. Q(x%) is the x% quantile.

Hypothesis 1 (Intraday Volume-Duration Invariance). For a su�ciently large level of price change

�, the (seasonality adjusted) price duration ~x(�)
i and cumulative trading volume generated by bets
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satis�es the following relationship for all stocks across time:

gV oli / (~x(�)
i )

4
5 : (5.2)

We conjecture that regime 2 captures price movements triggered by the bets placed by the in-

vestors, which represents the sharing of risk between di�erent types of market participants that are

typically not associated with news arrivals. We note that the results in Kyle and Obizhaeva (2016)

do not directly imply Eq. (5.2) without any assumptions on the arrival rate of bets, and the exponent

4/5 is also likely to be dependent on the average sampling interval which is determined by �. Fur-

ther research is required to examine the economic connection between Eq. (5.2) and the invariance

relationship documented in Kyle and Obizhaeva (2016), which is beyond the scope of this paper.

To provide further insight into the regimes we detected, we plot the log bid-ask spread against

time of day4 for the estimated regimes in Figure 5. The �gure shows that bid-ask spread to a good

extent explains the classi�cation of regime 1 for AIG and VZ. Observations in regime 1 are mostly

concentrated at the start of the trading day when the bid-ask spread widens, while observations in

regime 2 spread across the whole trading day with a smaller bid-ask spread. As the bid-ask spread

of SPY is more evenly distributed throughout the trading day, it appears that both regimes in SPY

behave similarly to regime 2 of the individual stocks. The small bid-ask spread of regime 2 observations

is also consistent with our previous bet-based argument, as investors planning to submit large bets

into the market typically slice their bets into sequences of small orders with the aim to reduce market

impact of the bets. Therefore, it is likely for these investors to only submit their orders when the

market is su�ciently liquid with a small bid-ask spread.

The cluster of regime 1 observations at the beginning of a trading day can be explained by

overnight �rm-speci�c information accumulation. Information-based market microstructure theory

(e.g. Glosten and Milgrom (1985), Easley et al. (1996)) predicts that the market makers widen the

bid-ask spread in the presence of private information to mitigate their potential loss trading with

informed traders. Therefore, trading volume from the informed traders adjusts the price level rapidly

when the market opens, which lowers the liquidity of the market, increases the bid-ask spread and

causes the volume-duration relationship to deviate from the intraday volume-duration invariance. This

also explain why we cannot observe the same e�ect from SPY, as �rm-speci�c news overnight is unlikely

to have an impact on the stock index ETF.

To support our news-based explanation of regime 1, we plot the duration adjusted volume
gV oli=(~x(�)

i )
4
5 alongside with the prevailing bid-ask spread against time of day for AIG on Jan 22

and 27, 2016 in Figure 6. On both days there are very few regime 1 observations at the beginning

of the trading day. On 22-Jan 2016, we see a cluster of regime 1 observations at around 15:30 in the
4Note that the x-axis covers the regular trading session of a typical U.S. security exchange on a trading day, which is from

9:30 to 16:00 Eastern Standard Time.
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Figure 5: Scatter plots of BASi against time of day for regimes 1 and 2
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Note: We plot lnBASi against t(�)i for regimes 1 and 2, where the regime classi�cation is estimated monthly by the MS(2)-ACI(1,1)

model. Note that the regime of lnBASi is determined by si+1.

afternoon, accompanied by an increase in the bid-ask spread. This is likely to be triggered by AIG’s

announcement of a spin-o� of mortgage unit. We track this event using the RavenPack5 dataset which

collects all publicly available �rm-speci�c news. The �rst entry of this event is recorded at 15:32:47

on Jan 22, 2016 with RavenPack unique story ID \CB6E9267993A172986E45E07EBFDC723". This

event triggers fast price adjustments with large duration-adjusted volume, which is identi�ed by our

model as regime 1.

By contrast, the lower panel of Figure 6 also presents a cluster of widened bid-ask spread right

after 14:00, and the duration-adjusted volume is also slightly elevated. This is possibly caused by

the Federal Open Market Committee (FOMC) meetings scheduled at 14:00 on 27-Jan 2016. As this

market-wide event does not have enough �rm-speci�c information content about AIG, our model

does not detect a regime shift in the duration-adjusted volume. Therefore, observations right after

14:00 are not classi�ed into regime 1, despite a signi�cantly widened bid-ask spread. This is direct

evidence supporting our argument that regime 1 is mainly capturing market impact of �rm-speci�c

news arrivals.

The behaviour of regime 1 observations has a close connection to the �ndings in Jiang et al. (2010)

and Christensen et al. (2014). In these papers, they describe the phenomenon that a burst of volatility

in the market is often accompanied by a shock to liquidity, which is often identi�ed as jumps with

less frequent sampling (e.g. once every 5 minutes). Plotting the price path and bid-ask spread of AIG

around 15:30 on 22-Jan-2016 in Figure 7, we see that a larger cluster of price events is observed after

15:30 with a signi�cantly widened bid-ask spread, which is triggered by a signi�cant increase in price

volatility. Importantly, the cluster of price events is not a result of a single jump which only triggers

5https://www.ravenpack.com/
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Figure 6: Example of regime classi�cation for AIG on 22 and 27, Jan 2016
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Note: The duration-adjusted volume is de�ned as gV oli=(~x(�)
i )

4
5 . The the regime classi�cation is estimated monthly by the MS(2)-

ACI(1,1) model. For each duration-adjusted volume plotted on the right y-axis, we plot the corresponding prevailing bid-ask spread

BASi�1 on the left axis.

one price event. Therefore, our �ndings can provide a method to detect bursts of volatility proposed

by Christensen et al. (2014) in an ultra high-frequency context.

As an application to the two regimes detected by our MS-ACI model, we propose a news-based

decomposition of daily volatility estimates for individual stocks. Based on Tse and Yang (2012) and

Li et al. (2019), daily volatility estimates can be directly derived from �̂i. Let f�̂igi=1:Td denote the

�tted integrated intensity over the i-th price duration from the MS-ACI model for day d, the Integrated

Conditional Variance (ICV) estimate of day d is constructed as:

ICVd = �2
d

TdX

i=1

F�1(1� e��̂i); (5.3)

where �d is the daily choice of price threshold and F�1(x) is the inverse function of F (x) = 2 �

2
P1

k=�1 erf
�1+4kp

2x

�
, which is the cumulative density function of the �rst exit time of a standard

Brownian motion to exit the [�1; 1] bound. As each duration is classi�ed into one regime based on

the estimated states ŝi, we propose the following decomposition of total daily ICV:

ICVd = ICVd(1) + ICVd(2); (5.4)

where ICVd(l) = �2
d
PTd

i=1 F
�1(1� e��̂i)1l fŝi=lg is the volatility contribution from regime l in day d.

We plot the ICV decomposition for AIG and VZ in Figure 8. The �gure shows that, for most of

the trading days, the total ICV is dominated by ICVd(2) that is not related to news arrivals. However,
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Figure 7: AIG price and bid-ask spread plot on 22-Jan-2016

Note: each black dot is associated with a trade plotted in chronological order. The corresponding mid-quote and bid-ask spread

at every trade is plotted in the upper and lower panel, respectively. The price events are indicated by red pentagrams and purple

diamonds, with a corresponding � = 0:00178.

in some cases ICVd(1) can be even higher than ICVd(2), which can be an indicator of important �rm-

speci�c events occurring either during the overnight period or within the trading hours that act as

shocks to the liquidity of the market.

The component ICVd(1) has drastically di�erent statistical properties in comparison to ICVd(2).

In Table 6 we present some descriptive statistics for the ICV decomposition for all 9 individual stocks in

our sample. The table shows that, �rstly, ICVd(1) is on average only a small (about 10%) percentage

of total ICVd. The autocorrelation of ICVd(1) is much weaker than that of ICVd(2), which implies

that forecasting ICVd(1) is much more di�cult. Finally, ICVd(2) is highly correlated with ICVd and

ICV SPY
d , while for ICVd(1) the correlations are much weaker.

Concluding from above, we argue that the volatility components ICVd(1) and ICVd(2) measure

di�erent aspect of risks for the individual stocks. ICVd(2) mainly captures market-wide risk factors

which are highly-persistent and predictable, whereas ICVd(1) is largely in
uenced by liquidity shocks

possibly caused by �rm-speci�c news arrivals that are more likely to be transitory and idiosyncratic.

This decomposition provides unique insights in understanding the driving forces of price volatility, and

can be applied by practitioners to evaluate their exposure to di�erent sources of risk.
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