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Abstract 

In this study, a new bootstrapped hybrid artificial neural network is proposed for forecasting. 

This new neural network provides input significance, linearity and nonlinearity hypothesis tests 

in a unique network structure via a residual bootstrap approach. The network has three parts: 

linear, non-linear and a combination with associated weights and biases. These weights are used 

to test the input significance, linearity and nonlinearity hypotheses with this new method 

providing empirical distributions for forecasts and weights. The proposed method employs a 

bagging approach to obtain forecasts. It is then applied to real-time series including the M4 

Competition data set and stock exchange time series where its performance is compared with 

appropriate benchmark methods including other popular neural networks. The proposed method 

results are less affected than other neural networks by initial random weights, which means that 

the results of the proposed method are more stable and precise.  The new method provides 

improvements in forecasting accuracy over the established benchmarks.  

Key Words: Artificial Neural Networks, Deep Learning, Forecasting, Input Significance, 

Interval Forecast, Bootstrap 

1. Introduction 

Artificial neural networks (ANNs) can be used to obtain forecasts for linear or non-linear time 

series. Many types of artificial neural networks have been proposed in the literature. The findings 

of studies about the performance of ANNs for forecasting purpose vary from study to study. 

There is no consensus about the reasons behind the success or failure of ANNs performance on 

forecasting problem. In early research, Gorr et al. (1994) stated that ANN can (1) automatically 
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transform and represent complex and highly non-linear relationships and (2) automatically detect 

different states of phenomena through independently variable data patterns and switch on/off 

model components as appropriate. Besides these good properties, Gorr et al. (1994) emphasised 

that ANNs have several limitations, mostly noticeable in ‘explanation research’ (causal 

modelling and hypothesis testing) but not when used in forecasting. This occurs because ANN 

models are non-linear in the model coefficients and the normal probability models are not 

applicable. As a result of this, they do not have parametric statistical properties based on the t 

and F distributions. In this study, these problems are focused on and a new method proposed to 

solve them. Additional to these problems,  the mean square error function used as the loss 

function in estimating the weights in ANNs is multi-modal,  so the optimization algorithms suffer 

from the local optimum traps. The outputs of optimization methods are therefore not stable. The 

problem has been partially alleviated by using an artificial bee colony algorithm as an artificial 

intelligence optimization technique. In time series analysis, it is expected that a forecasting 

method provides forecasts, prediction intervals for forecasts, and hypothesis tests such as input 

significance, linearity and nonlinearity. These are important aspects of modelling to provide as 

simple a model as possible to conform to the data. 

 

Many studies have not considered input significance tests, model selection or model adequacy. 

Researchers have focused more on point estimations in ANNs.  In an ANN approach, 

determining inputs, the number of hidden layer nodes, activation function types and network 

architecture affect network performance. Moreover, inputs to the networks should influence the 

outputs. Determining relevant inputs have usually been identified by trial and error or from 

theoretical information about the data from the literature. The alternative is to develop statistical 

hypothesis tests for an ANN to determine input variables and appropriate functional forms to 

include. This viewpoint is supported by Anders and Korn (1999) who suggested that statistical 

analysis as described below should become an integral part of neural network modelling. (The 

terms given in parenthesis corresponding the meaning in the statistics literature.) 

 

 Input significance test: This test is needed to see which inputs are relevant to produce an 

output or outputs in ANN (Variable Selection) 
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 Non-linearity test: This test is needed to decide where to apply an ANN to the data, 

otherwise a linear alternative modelling method should be used. 

 Architecture tests: These tests are needed to establish if the network has a linear part or 

an additional non-linear part. These tests provide evidence that using the ANN 

architecture proposed has the potential to be useful in forecasting (Model Selection, e.g. 

RESET tests)    

 Weights significance tests: These tests are needed for pruning the ANN, eliminating 

unnecessary hidden connections (Parameter Significance Tests). 

 

Applying these tests is no easy task. Moody (1994) and Moody and Utans (1994) developed input 

selection and architecture selection approaches. Researchers faced some important problems for 

proposing these tests. Anders and Korn (1999) wanted to carry out parameter inference in a neural 

network based on an asymptotic normal distribution but they emphasise that the parameters of 

ANN are at least locally unique. To guarantee this, it is necessary to ensure that a given network 

model contains no irrelevant hidden units. One solution in the literature is to use model selection 

criteria to determine network architecture, the inputs and number of hidden nodes. Anders and 

Korn (1999) stated that criteria are not theoretically justified for over-parameterized networks, 

e.g. networks with irrelevant hidden units, even if the neural network model encompasses the 

true structure. Anders and Korn (1999) proposed strategies based on Terasvirta et al. (1993) using 

hypothesis tests and network information criteria but their method still suffered from the 

aforementioned problems.  To summarize Refenes and Zapranis (1999) stated that the following 

situations cause unwanted results in ANNs. 

 

 The omission of relevant variables as inputs in the ANN. 

 Inclusion of  irrelevant variables employed in the ANN 

 Measurement errors in inputs and targets 

 Incorrect specification of the architecture 

 Inadequacies of the  model selection and training algorithm, trapping local optimums 
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Refenes and Zapranis (1999) emphasised that consistent estimators can be obtained from ANNs 

if they satisfy the properties of convergence and uniqueness. This can be achieved by making a 

good decision for determining inputs,  and the architectures. The second problem requires 

estimating standard error for the parameters in the ANN. It is not easy to obtain theoretically a 

formula for the standard errors in ANN.  In discussing the second problem Zapranis and 

References (1999) proposed using a local bootstrap technique to make hypothesis tests in an 

ANN but because of the presence of local minima and the sensitivity of the training algorithm to 

initial conditions, resampling schemes tend to overestimate sampling variation. Their approach 

used derivate based training algorithm and this algorithm can be easily trapped in local optima.  

 

White (1989), Lee et al. (1993), Terasvirta et al. (1993) have proposed a hypothesis test method 

for the nonlinearity of time series. These studies only focused on a multilayer perceptron. Yolcu 

et al. (2019) proposed linearity and non-linearity hypothesis test methods by using particular 

ANN type and forecasting accuracy was improved by using bootstrap methods, suggesting a 

potential route forward. 

 

Bootstrap methods can be used to develop hypothesis tests in ANNs if we use an efficient 

learning algorithm by avoiding local optimum traps. Hypothesis tests and other statistical 

inferences can be made easily for non-linear of non-parametric models by using bootstrap 

methods as they delivering distributional estimates of components of the ANN.  They have been 

employed to forecasting methods, for example, Masaratto (1990) discussed bootstrap confidence 

intervals for an autoregressive model and a residual-based approach was employed in the study. 

Lam and Veall (2002) compared analytic and bootstrap prediction intervals and they found that 

bootstrap prediction intervals performed better in Monte Carlo experiments. Dantas et al. (2018) 

proposed a new forecasting method based on bootstrap aggregation. They combined clustering 

and bagging in exponential smoothing methods. They found that their method outperforms many 

methods in the literature for M3 and CIF competition data sets. Bootstrap methods also used for 

artificial neural networks in the literature. Tiwari and Chatterjee (2010a, 2010b) papers use a 

bootstrap method to improve the forecasting accuracy of MLP. Kourentzes et al. (2014) proposed 

an ensemble operator for bootstrap approaches in ANNs. They proved that their operator is better 
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than the mean ensemble operator. Barrow and Crone (2016) proposed a “crogging method” for 

ANNs: The method is very similar to bagging. In this study, the results on real and simulated 

series demonstrated significant improvements in forecasting accuracy especially for short time 

series and long forecast horizons. Politis and Dimitirs (2016) obtained interval forecasts from 

ANNs by using bootstrap approaches. Yolcu et al. (2017) obtained confidence intervals for 

forecasts with an SMNM-ANN. Szafranek (2019) proposed bagged artificial neural network 

method for forecasting inflation data set. Yolcu et al. (2019) proposed linearity and non-linearity 

hypothesis test methods by using special ANN type and they improved forecasting accuracy by 

using bootstrap methods.  

In summary, ANNs has been shown to produce good forecasting performance for some type of 

time series but ANNs cannot automatically produce statistical distributional results for forecasts 

and model coefficients. In contrast, statistical results can be obtained from other linear or non-

linear statistical forecasting methods and this is a deficiency of ANNs but ANNs have better 

forecasting accuracy for some nonlinear time series in the literature. Most recently, the results of 

the M4 competition (Makridakis, 2019) compared accuracy on some methods and the two 

winning methods used hybrid combinations of ML methods with statistical models. Such 

comparisons aim to provide researchers and practitioners:  Fildes (2019) commented on the M4 

competition results that “the results certainly should guide the short-list” of methods to consider. 

Out-of-the-box, ML methods did not perform well. As a result of these findings, proposing new 

ANN methods can be useful for forecasters if they provide statistical distributional results and 

more accurate forecasts. The main focus of this study is providing this kind of ANN approach. 

In this study, a new hybrid artificial neural network is proposed. New methods for testing input 

significance, linearity and non-linearity in this new ANN are proposed. Hypothesis tests are 

realized by using the residual bootstrap method to take care of time series serial dependency.  

Moreover, the forecasting accuracy is improved by using bootstrap methods in the new ANN. 

The new ANN is trained by an artificial bee colony algorithm for avoiding local optimum traps. 

The proposed method provides the following advantages for users: 

 Empirical distributions and confidence intervals for forecasts 

 Empirical distributions and confidence intervals for weights of ANN 

 A method to test linearity and nonlinearity 
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 A method to test input significance 

 More accurate and confidential forecasts 

In the second section, a new hybrid artificial neural network is introduced. In the third section, 

the training algorithm of the HANN is introduced. In the fourth section, the bootstrapped HANN 

method is introduced. Moreover, input significance, linearity and nonlinearity hypothesis test 

methods are introduced in this section. In the fifth section, the performance of the proposed 

method is investigated by using stock exchange data sets and M4 yearly competition data set. In 

section six, the obtained results are discussed. the proposed method is shown to perform well on 

both data sets compared to benchmark approaches.  

2. A new Hybrid Artificial Neural Network (HANN) Model 

Artificial neural networks (ANNs) have been commonly used for forecasting time series in 

the literature in recent years. ANNs generally create a nonlinear model between output and 

inputs. ANNs are preferred as a forecasting tool for non-linear time series besides they can also 

be used for forecasting linear time series. In the literature, many hybrid methods have been 

proposed for forecasting time series which have linear and nonlinear components. In some time 

series, the linear component is dominant or vice versa. In the literature, some hybrid methods use 

artificial neural networks and linear models such as autoregressive integrated moving average 

(ARIMA) model. Hybrid artificial neural network architectures have linear and non-linear parts 

are proposed in the literature. In this study, multilayer perceptron and autoregressive method are 

hybridized in a unique architecture. The architecture of the HANN is presented in Figure 1. 
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Figure 1. The architecture of the HANN 

In HANN, lagged variables 𝑋𝑡−1, … , 𝑋𝑡−𝑝 are inputs, �̂�𝑡 is output and 𝑋𝑡 is target. 𝐼𝑊 presents 

input weights vector and has p elements. Each element of 𝐼𝑊 corresponds to an input. 

𝐼𝑊 = [𝑖𝑤1 𝑖𝑤2 … 𝑖𝑤𝑝]                                                                                                                             (1) 

𝑊1 is weight matrix between inputs and hidden nodes for nonlinear part of HANN. The 

dimension of 𝑊1 matrix is 𝑝 × 𝑛ℎ and 𝑛ℎ is the number of hidden nodes in the nonlinear part. 

For each hidden nodes, there is a bias term and they collected in a 𝑏1 = [𝑏1,1  𝑏1,2 … 𝑏1,𝑛ℎ] vector. 

𝑊2 is the weight vector between hidden nodes and output nodes of the nonlinear part.  𝑊2 has 

𝑛ℎ elements and 𝑊2 = [𝑣1 𝑣2 … 𝑣𝑛ℎ]. The output of the nonlinear part has a bias term 𝑏2and it 

is a scalar. 𝑊3 is weights between inputs and hidden node in the linear part. 𝑊3 =

[ 𝑤3,1 𝑤3,2 … 𝑤3,𝑝] has p elements. The output of the linear part has a bias term 𝑏3 and it is a 

scalar. 

𝑊𝑐 is combination weight vector and it has two elements 𝑊𝑐 = [𝑤𝑐1 𝑤𝑐2]. Elements of the 𝑊𝑐 

vector are weights of nonlinear and linear parts. In the HANN, 𝑓1 is logistic and 𝑓2 is linear 

activation functions. 
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𝑓1(𝑥) =
1

1+exp (−𝑥)
                                                                                                                                         (2) 

𝑓2(𝑥) = 𝑥                                                                                                                                                  (3) 

Elements of 𝐼𝑊 are used to make input significance tests, elements of  𝑊𝑐 are used to test linearity 

and linearity.  

If any element of the IW statistically equals to zero, its corresponding lagged variable is 

insignificant.  If the first element of 𝑊𝑐 statistically equals to zero, time series has not a nonlinear 

component or it can be said time series is not nonlinear. If the second element of 𝑊𝑐 statistically 

equals to zero, time series has not a linear component or it can be said time series is not linear. 

The output of the HANN can be calculated with the following algorithm. 

Algorithm 1. Calculation output of HANN 

Step 1. Calculate the output of the first layer with the following formula. 

𝒐𝒊
𝟏 = 𝑓2(𝑋𝑡−𝑖 × 𝑖𝑤𝑖) = 𝑋𝑡−𝑖 × 𝑖𝑤𝑖 ; 𝑖 = 1,2, … , 𝑝                                                                                       (4) 

Step 2. Calculate outputs of the hidden layer in the nonlinear part.  

𝒐𝒋
𝒏𝒍−𝒉 = 𝑓1(∑ 𝑜𝑖

1 ×𝑝
𝑖=1 𝑤𝑖,𝑗 + 𝑏1,𝑗) ; 𝑗 = 1,2, … , 𝑛ℎ                                                                                    (5) 

Step 3. Calculate the output of the nonlinear part. 

𝒐𝒏𝒍 = 𝑓1(∑ 𝑜𝑗
𝑛𝑙−ℎ ×𝑛ℎ

𝑗=1 𝑣𝑗 + 𝑏2)                                                                                                                 (6) 

Step 4. Calculate the output of the linear part. 

𝑜𝑙 = ∑ 𝑋𝑡−𝑖 × 𝑤3,𝑖 + 𝑏3
𝑝
𝑖=1                                                                                                                           (7) 

Step 5. Calculate the output of HANN. 

�̂�𝑡 = 𝑤𝑐1 × 𝑜𝑛𝑙 + 𝑤𝑐2 × 𝑜𝑙                                                                                                                     (8) 
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3. Training of the HANN 

Training of artificial neural networks has been managed with various training methods. Some 

methods were based on derivate of the specific error functions and these methods have been 

commonly used in literature. Moreover, artificial intelligent optimization methods have been 

used for training of the ANNs in recent years. Genetic algorithm, differential evaluation 

algorithm and particle swarm optimization are the most preferred for the training of ANNs. 

Although it is not the most preferred training algorithm, artificial bee colony (ABC) algorithm 

has good results for training ANNs in the literature. Artificial bee colony algorithm was firstly 

proposed in Karaboga (2005). Karaboga et al. (2007) discussed the training of feed-forward 

neural networks by using the ABC algorithm. The ABC algorithm does not need computation 

derivate of any error function. The ABC algorithm can use any error function, it only needs for 

computing values of the error function in its stages. The flowchart of the ABC algorithm for 

general optimization problems is given in Figure 2. For training of HANN step by step algorithm 

is proposed and presented in Algorithm 2. 

 

Figure 2. Flowchart of ABC Algorithm 
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Algorithm 2. Training of HANN by using ABC Algorithm 

Step 1. Parameters of the ABC algorithm is selected according to the size of HANNs. These 

parameters are defined and listed below: 

The number of sources (𝑆𝑁): The value of this parameter can be selected as 30 or 50. If the size 

of the network is too big, the parameter can be selected as 100 or more. 

The dimension of the problem (𝐷): The dimension depends on the network size. The value of 

this parameter is selected automatically based on the number of inputs and hidden nodes in the 

HANN. 

The number of onlooker bees (𝑁𝑂𝐵): This parameter is generally selected as 30 or 50.  

Limit value (𝐿𝐼𝑀𝐼𝑇): This parameter controls whether a source is exhausted or not. The selection 

of this parameter can be done by the user but there are some formulas for selecting the parameter 

in the literature. The parameter is generally selected as 200. 

The maximum number of iterations (𝑀𝐴𝑋𝐼𝑇𝑅): The parameter is selected as 50, 100, 200 or 

500.  The value of this parameter should be more than the number of required iterations.  

Allowed number of the consecutive failure steps (ANFS): The parameter can be selected as 5, 6, 

10 and 50. If you want to stop the algorithm earlier, the value of ANFS can be selected as a small 

value.  

Step 2.  Randomly initialization of sources 

Initial values of source positions are generated randomly from a uniform distribution with (0,1) 

parameters. Decision variables are presented with 𝑥1, 𝑥2, … , 𝑥𝐷 and the value of 𝐷 is the total 

number of weights and biases in the HANN and 𝐷 = 2𝑝 + (𝑝 + 2)𝑛ℎ + 4. 

𝑥𝑗 ∈ [0,1]  , 𝑗 = 1,2, . . , 𝐷                                                                                                                          (9) 

𝑥𝑖𝑗 is the value of the jth  position of the ith source and it is randomly generated from 

𝑥𝑖𝑗~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1). 

Failure indexes are defined for each source, they are taken as zero in the initial step. 

https://tureng.com/tr/turkce-ingilizce/consecutive
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𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑖 = 0 ; 𝑖 = 1,2, … , 𝑆𝑁                                                                                                                 (10) 

Moreover, the number of the consecutive failure steps (𝑁𝐹𝑆 = 0) parameter is taken as zero. 

Step 3. Fitness function values (𝑓𝑖   ;  𝑖 = 1,2, … , 𝑆𝑁) are calculated for each source. The number 

of the best source is saved.  

The fitness function is taken as the mean square error (MSE) for the training set and it is 

calculated with the following formula: 

𝑀𝑆𝐸 =
1

𝑛𝑡𝑟𝑎𝑖𝑛−𝑝
∑ (𝑋𝑡 − �̂�𝑡)

2𝑛𝑡𝑟𝑎𝑖𝑛
𝑖=𝑝+1                                                                                                            (11)  

In the MSE formula, �̂�𝑡 values are needed and these values are calculated by using Algorithm 1. 

The inputs of the algorithm 1 are weights and biases values and they are taken from the 

corresponding source positions.  

Step 4.  Employed bee phase 

Employed bees are assigned to corresponding sources. Let employed bee number and neighbour 

bee number are 𝑖1 and 𝑖2, respectively. Each employed bee is made similar following operations. 

The operations are given below for source 𝑖1. 

- Select a neighbour source number 𝑖2 different from 𝑖1. 

- Select a position 𝑖3.  

- Generate ∅ number from (−1,1) interval. 

- Calculate a new position value by using (12) equation. 

𝑥𝑖1,𝑖3
𝑛𝑒𝑤 = 𝑥𝑖1,𝑖3 + ∅(𝑥𝑖1,𝑖3 − 𝑥𝑖2,𝑖3)                                                                                                          (12) 

- A new source is created by using the new position value. Fitness function value for the 

new source (𝑓𝑛𝑒𝑤) is calculated by using Algorithm 1 and positions of the new sources. 𝑓𝑛𝑒𝑤 and 

fitness value for 𝑖1 source (𝑓𝑖1
) are compared. Following rules are applied. 

If 𝑓𝑛𝑒𝑤 ≤ 𝑓𝑖1
 then  the new source is accepted and failure𝑖1

= 0.  

If 𝑓𝑛𝑒𝑤 > 𝑓𝑖1
 then the new source is rejected and failure𝑖1

= failure𝑖1
+1. 

 

Step 5.  Onlooker bee phase 

https://tureng.com/tr/turkce-ingilizce/consecutive
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Onlooker bees are sent to sources with corresponding probabilities. These probabilities are 

calculated as below: 

𝑃𝑖 =
1 𝑓𝑖⁄

∑ 1 𝑓𝑖⁄𝑆𝑁
𝑡=1

                                                                                                                                            (13) 

Following steps are repeated for each onlooker bee  

- 𝑖1 is randomly selected with calculated probabilities.   

- A neighbour source number 𝑖2 is randomly selected different from 𝑖1. 

- A position 𝑖3 is randomly selected. 

- A new position value is computed by using (12) equation. 

- A new source is created by using the new position value. Fitness function value for the 

new source (𝑓𝑛𝑒𝑤) is calculated by using Algorithm 1 and positions of the new sources. 𝑓𝑛𝑒𝑤 and 

fitness value for 𝑖1 source (𝑓𝑖1
) are compared. Following rules are applied. 

If 𝑓𝑛𝑒𝑤 ≤ 𝑓𝑖1
 then  the new source is accepted and failure𝑖1

= 0.  

If 𝑓𝑛𝑒𝑤 > 𝑓𝑖1
 then the new source is rejected and failure𝑖1

= failure𝑖1
+1. 

 

Step 6. The best source of the swarm is updated (or determined in the first step). If the fitness 

value of the best source is changed then 𝑁𝐹𝑆 = 0 otherwise 𝑁𝐹𝑆 = 𝑁𝐹𝑆 + 1. 

Step 7. Scout bee phase 

A scout bee is sent to all source.  

If 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑖 > 𝐿𝐼𝑀𝐼𝑇 ; 𝑖 = 1,2, … , 𝑆𝑁 then the source is excluded from the swarm and a new 

source is generated by using  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) distribution.   

Step 8. The stopping condition is checked. If 𝑁𝐹𝑆 > 𝐴𝑁𝐹𝑆 then the algorithm was stopped. 

 

4. B-HANN Method 

In this paper, bootstrapped hybrid artificial neural network (B-HANN) method is introduced. In 

the B-HANN, the residual bootstrap method is preferred to use. Residual bootstrap is a model-

based bootstrap method and it can preserve the autocorrelation structure of the training time 
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series. In B-HANN, bootstrapped training samples are generated and the test set is taken as fixed 

for each bootstrap iteration. The forecasts for the test set and estimated weights and biases are 

obtained in each bootstrap iteration. The algorithm of the B-HANN is given step by step in 

Algorithm 3. This study presents B-HANN as a forecasting method and HANN provides network 

structure for B-HANN. 

Algorithm 3. Bootstrapped Hybrid Artificial Neural Network Method  

Step 1. Determine the parameters of B-HANN 

Number of inputs or number of lagged variables (p): Inputs of the B-HANN can be selected as 

[𝑋𝑡−1, 𝑋𝑡−2, 𝑋𝑡−3, 𝑋𝑡−4] (𝑝 = 4) or [𝑋𝑡−1, 𝑋𝑡−12] (𝑝 = 2). If we prefer inputs in the second form, 

Algorithm 1 needs a simple correction in some formulas. 

Maximum lag number of inputs (𝑚): This parameter is 4 for the [𝑋𝑡−1, 𝑋𝑡−2, 𝑋𝑡−3, 𝑋𝑡−4] and it is 

12 for the [𝑋𝑡−1, 𝑋𝑡−12]. The value of the 𝑚 is determined by inputs. 

The number of Hidden nodes (𝑛ℎ): This parameter should be selected as a small number to 

prevent memorization problem of the ANN. 

The number of bootstrap repetitions (nbst): The parameter can be selected as 200 or more to 

obtain confident inference results.  

The length of the test set(𝑛𝑡𝑒𝑠𝑡): The test set is selected end of the time series to see performance 

of the method for recent observations. The number of observations is presented by 𝑛 and the 

length of the training set is 𝑛𝑡𝑟𝑎𝑖𝑛 = 𝑛 − 𝑛𝑡𝑒𝑠𝑡. 

 

Step 2. H-ANN is trained for original training time series by applying Algorithm 1 and Algorithm 

2. The forecasts (�̂�𝑡 ; 𝑡 = m + 1, m + 2, … , 𝑛𝑡𝑟𝑎𝑖𝑛) are calculated. The forecasts are saved as 

�̂�𝑡
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = �̂�𝑡 ; 𝑡 = m + 1, m + 2, … , 𝑛𝑡𝑟𝑎𝑖𝑛. The standard deviation of the training forecasts are 

calculated by the following formula: 

 

𝑣 = √
1

𝑛𝑡𝑟𝑎𝑖𝑛−1
∑ (�̃�𝑡)𝑛𝑡𝑟𝑎𝑖𝑛

𝑖=𝑝+1                                                                                                                            (14) 

�̃�𝑡 = (𝑋𝑡 − �̂�𝑡) −
1

𝑛𝑡𝑟𝑎𝑖𝑛−𝑝
∑ (𝑋𝑡 − �̂�𝑡)𝑛𝑡𝑟𝑎𝑖𝑛

𝑡=𝑚+1                                                                                           (15) 
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Step 3. Bootstrap time series training set is generated by using step 3.1 – 3.2. 

 Step 3.1. Artificial residuals are randomly generated from the normal distribution 

 𝑒𝑡
∗~𝑁(0, 𝑣), 𝑡 = 𝑚 + 1, 𝑚 + 2, … , 𝑛𝑡𝑟𝑎𝑖𝑛 

Step 3.2. Bootstrap training time series (�̃�𝑡) are calculated as follow: 

𝑋𝑡
∗ = �̂�𝑡

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑒𝑡
∗ ; 𝑡 = 𝑚 + 1, 𝑚 + 2, … , 𝑛𝑡𝑟𝑎𝑖𝑛                                                     (16) 

�̃�𝑡 = [𝑋1, 𝑋2, . . , 𝑋𝑚, 𝑋𝑚+1
∗ , 𝑋𝑚+2

∗ , … , 𝑋𝑛𝑡𝑟𝑎𝑖𝑛
∗ ]                                                              (17) 

Step 4. H-ANN is trained for the bootstrap training series (�̃�𝑡) by applying Algorithm 1 and 

Algorithm 2. The forecasts are calculated for the test set. The forecasts from HANN for the 𝑖𝑡ℎ 

bootstrap time series at time 𝑡 is represented by 𝐹𝑡
𝑖.  Estimated weights and biases are saved and 

they presented in 𝐼𝑊𝑖 , 𝑊𝑐𝑖 , 𝑖 = 1,2, … , 𝑛𝑏𝑠𝑡. 

Step 5. Step 3 and Step 4 are repeated 𝑛𝑏𝑠𝑡 times.  

Step 6. Forecasts of B-HANN are calculated from bootstrap samples. 

The obtained forecasts from bootstrap repetitions and their statistics are presented in Table 1.  

Table 1 Forecasts of the trained HANN for bootstrap samples 

Time(𝒕) / Bootstrap Sample 𝟏 𝟐 … 𝒏𝒃𝒔𝒕 Mean 
Standard 

Deviation 

1 𝐹1
1 𝐹1

2 … 𝐹1
𝑛𝑏𝑠𝑡 �̂�1 SE(�̂�1) 

2 𝐹2
1 𝐹2

2 … 𝐹2
𝑛𝑏𝑠𝑡 �̂�2 SE(�̂�2) 

⋮ ⋮ ⋮ … ⋮ ⋮ ⋮ 

Ntest 𝐹𝑛𝑡𝑒𝑠𝑡
1  𝐹𝑛𝑡𝑒𝑠𝑡

2  … 𝐹𝑛𝑡𝑒𝑠𝑡
𝑛𝑏𝑠𝑡  �̂�𝑛𝑡𝑒𝑠𝑡 SE(�̂�𝑛𝑡𝑒𝑠𝑡) 

 

In table 1, mean statistics presents forecasts of B-HANN. Different statistics can be used such as 

median, weighted mean but this is a limitation of the study. The other statistics are not preferred 

to combine forecasts. Moreover, standard error estimations are shown for each forecast in the 

last column of Table 1.  
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Step 7.  Bootstrap confidence intervals are calculated from empirical distributions of the 

forecasts. 

In this method, percentile confidence intervals are preferred as a bootstrap confidence interval 

type. Quartiles 𝛼/2 and 1 − 𝛼/2 are calculated for each forecast from its bootstrap replicates. 

Here, 𝑄(𝐹𝑡
𝑖, 𝛼/2) and 𝑄(𝐹𝑡

𝑖, 1 − 𝛼/2) represent the 𝛼/2 and 1 − 𝛼/2 quartiles in the bootstrap 

distribution of 𝐹𝑡. The bootstrap percentile confidence interval is [𝑄(𝐹𝑡
𝑖, 𝛼/2), 𝑄(𝐹𝑡

𝑖, 1 − 𝛼/2)]. 

Step 8.  Linearity and nonlinearity tests are applied for time series. 

The combination weights (𝑊𝑐) are used to test linearity and non-linearity. In each bootstrap 

replicates, the estimated values of   𝑤𝑐1 and 𝑤𝑐2 are obtained and they showed in Table 2. 

Table 2 Weights of the linear and nonlinear parts for trained HANN for bootstrap samples 

Time(t)/Bootstrap 

Sample 
𝟏 𝟐 … 𝒏𝒃𝒔𝒕 Mean Standard Deviation 

𝒘𝒄𝟏 (non-linearity 

weight) 

𝑤𝑐1
1  𝑤𝑐1

2  … 𝑤𝑐1
𝑛𝑏𝑠𝑡 𝒘𝒄𝟏̅̅ ̅̅ ̅ 𝑠1 =SD{𝑤𝑐1

𝑖 , 𝑖 =

1,2, … , 𝑛𝑏𝑠𝑡} 

𝒘𝒄𝟐 (linearity weight) 𝑤𝑐2
1  𝑤𝑐2

2  … 𝑤𝑐2
𝑛𝑏𝑠𝑡 𝒘𝒄𝟐̅̅ ̅̅ ̅ 𝑠2 =SD{𝑤𝑐2

𝑖 , 𝑖 =

1,2, … , 𝑛𝑏𝑠𝑡} 

 

The linearity and nonlinearity are tested using bootstrap samples and t-statistics. Details of the 

nonlinearity test are given in Table 3. When the normality assumption is violated, nonparametric 

“sign rank test” is used instead of t-test. 

 

Table 3. Details of the nonlinearity test 

 Hypotheses  

 Null Hypothesis Alternative Hypothesis Test statistics under 𝑯𝒐 is  true 

Nonlinearity 𝐻0
𝑁𝐿: 𝒘𝒄𝟏 = 𝟎 𝐻1

𝑁𝐿: 𝒘𝒄𝟏 ≠ 𝟎 𝑡𝑁𝐿 =
𝒘𝒄𝟏̅̅ ̅̅ ̅

𝑠1/√𝑛𝑏𝑠𝑡
 

Linearity 𝐻0
𝐿: 𝒘𝐜𝟐 = 𝟎 𝐻1

𝐿: 𝒘𝐜𝟐 ≠ 𝟎 𝑡𝐿 =
𝒘𝒄𝟐̅̅ ̅̅ ̅

𝑠2/√𝑛𝑏𝑠𝑡
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The decision rules are as follows. If 𝑡 < 𝑡𝛼

2
;𝑛𝑏𝑠𝑡−1 or 𝑡 > 𝑡1−

𝛼

2
;𝑛𝑏𝑠𝑡−1, then 𝐻0 is rejected. 

Otherwise, 𝐻0 cannot be rejected. When 𝐻0
𝐿 (𝐻0

𝑁𝐿) is rejected, it can be said that the time series 

has a non-linear (linear) component. 

 

Step 9. Input significance tests are applied. These tests are made based on the empirical 

distribution of  𝐼𝑊 = [𝑖𝑤1 𝑖𝑤2 … 𝑖𝑤𝑝] weights. In each bootstrap replicates, the estimated values 

of elements of 𝐼𝑊 are obtained and they showed in Table 4. 

Table 4 Weights of the inputs for trained HANN for bootstrap samples 

Time(t)/Bootstrap 

Sample 
𝟏 𝟐 … 𝒏𝒃𝒔𝒕 Mean Standard Deviation 

𝒊𝒘𝟏 (1th Input ) 𝑖𝑤1
1 𝑖𝑤1

2 … 𝑖𝑤1
𝑛𝑏𝑠𝑡 𝒊𝒘𝟏̅̅ ̅̅ ̅ 𝑠1

𝑖𝑛𝑝 =SD{𝑖𝑤1
𝑖 , 𝑖 = 1,2, … , 𝑛𝑏𝑠𝑡} 

𝒊𝒘𝟐 (2th Input) 𝑖𝑤2
1 𝑖𝑤2

2 … 𝑖𝑤2
𝑛𝑏𝑠𝑡 𝒊𝒘𝟐̅̅ ̅̅ ̅ 𝑠2

𝑖𝑛𝑝 =SD{𝑖𝑤2
𝑖 , 𝑖 = 1,2, … , 𝑛𝑏𝑠𝑡} 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝒊𝒘𝒑 (2th Input) 𝑖𝑤𝑝
1 𝑖𝑤𝑝

2 … 𝑖𝑤𝑝
𝑛𝑏𝑠𝑡 𝒊𝒘𝒑̅̅ ̅̅ ̅ 𝑠𝑝

𝑖𝑛𝑝 =SD{𝑖𝑤𝑝
𝑖 , 𝑖 = 1,2, … , 𝑛𝑏𝑠𝑡} 
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The input significance is tested using bootstrap samples and t-statistics. Details of the 

nonlinearity test are given in Table 5. When the normality assumption is violated, 

nonparametric “sign rank test” is used instead of t-test. 

 

Table 5. Details of the input significance test 

 Hypotheses  

 Null Hypothesis Alternative Hypothesis Test statistics under 𝑯𝒐 is  true 

1th Input 𝐻0
1𝑡ℎ: 𝒊𝒘𝟏 = 𝟎 𝐻1

1𝑡ℎ: 𝒊𝒘𝟏 ≠ 𝟎 𝑡1 =
𝒊𝒘𝟏̅̅ ̅̅ ̅

𝑠1
𝑖𝑛𝑝

/√𝑛𝑏𝑠𝑡
 

2th Input 𝐻0
2𝑡ℎ: 𝒊𝒘𝟐 = 𝟎 𝐻1

2𝑡ℎ: 𝒊𝒘𝟐 ≠ 𝟎 𝑡2 =
𝒊𝒘𝟐̅̅ ̅̅ ̅

𝑠2
𝑖𝑛𝑝

/√𝑛𝑏𝑠𝑡
 

⋮ ⋮ ⋮ ⋮ 

pth Input 𝐻0
𝑝𝑡ℎ

: 𝒊𝒘𝐩 = 𝟎 𝐻1
𝑝𝑡ℎ

: 𝒊𝒘𝐩 ≠ 𝟎 𝑡𝑝 =
𝒊𝒘𝐩̅̅ ̅̅ ̅

𝑠𝑝
𝑖𝑛𝑝

/√𝑛𝑏𝑠𝑡
 

  

The architecture selection problem of H-ANN is solved by using Algorithm 4. The strategy is 

based on dividing training data into two sets. The first set is used to obtain optimal weights of 

the HANN, the second part is a validation set and it used to select the best values of 𝑝 and 𝑛ℎ 

by calculating the root mean square error. The algorithm is given below as step by step. The 

best architecture is selected by using the following algorithm before Algorithm 3 is applied. 

Algorithm 4. Model Selection Algorithm for B-HANN 

Step 1. The bounds of the intervals 𝑝1, 𝑝2 and 𝑛ℎ
1 , 𝑛ℎ

2  are selected for 𝑝 and 𝑛ℎ parameters. 

𝑝 ∈ [𝑝1, 𝑝2] , 𝑝 is integer 

𝑛ℎ ∈ [𝑛ℎ
1 , 𝑛ℎ

2] , 𝑛ℎ is integer  

Step 2.  𝑝 = 𝑝1 and 𝑛ℎ = 𝑛ℎ
1  

Step 3. The algorithm 2 is applied and the RMSE values are calculated for the validation test 

and it is saved to 𝑅𝑀𝑆𝐸1. Let 𝑘 = 1. 

Step 4. Set 𝑘 = 𝑘 + 1 

Step 5.  Set   𝑝 = 𝑝1 + 1 
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Step 6.  The algorithm 2 is applied and the RMSE values are calculated for the validation test 

and it is saved to 𝑅𝑀𝑆𝐸𝑘. 

Step 7. If 𝑝 < 𝑝2 go to Step 4. 

Step 8. Set 𝑛ℎ = 𝑛ℎ
1+1. 

Step 9. If  𝑛ℎ < 𝑛ℎ
2  , set 𝑝 = 𝑝1-1 and go to Step 4. 

Step 10. Find minimum 𝑅𝑀𝑆𝐸𝑘 value and take 𝑝 and 𝑛ℎ values corresponding to the minimum 

𝑅𝑀𝑆𝐸𝑘. 

5. Applications and Evaluation 

When a new forecasting method is proposed it is incumbent on its developers to thoroughly 

evaluate its performance. The key features of how this should be done have been laid out, for 

example in Ord et al. (2017, Chapter 12). Key features as they apply here are the choice of 

suitable benchmark methods with which to compare the proposed new method, a range of error 

measures to measure comparative accuracy. Crucially, a large number of data series should be 

examined for a given forecast horizon. In this section, the performance of the B-HANN method 

is investigated by using stock exchange time series and M4 yearly competition data set and the 

results are compared with performance on suitable benchmarks.  

5.1  Application to Stock Exchange Data Sets 

Forecasting stock exchange data sets have long been important and their analysis attracted by 

ANNs researcher because linear models are not the good methods for them. Granger (1992) 

and Timmerman and Granger (2004) examine possible gains from new stock price forecasting 

methods, mentioning novel non-linear methods as potentially rewarding (if only temporarily).   

Sarantis (2001) used a SETAR model for forecasting of stock prices of seven major industrial 

countries. He applied nonlinearity tests to stock price data and linearity was rejected for all 

stock price time series. Olson and Mossman (2003) investigated the performance of ANNs on 

Canadian stock returns. They found that ANNs produce accurate point forecasts than statistical 

models. Bradley and Jansen (2004) used linear and non-linear models for forecasting stock 

returns and industrial production time series. They found that linear models are better than 

nonlinear models for stock returns but the situation was reversed for industrial production 

series. McMillan (2007) investigated four international stock market returns data forecasting 

by using lagged volume as the threshold in a logistic smooth-transition model. It was found that 

the model produced better forecasts than simple AR, random walk model and the logistic 
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smooth-transition model. Nyberg (2011) used dynamic binary probit models for forecasting the 

direction of the US stock market.  Ebrahimpour et al. (2011) proposed a combined neural 

network approach for forecasting in the Tehran stock exchange. Lohrmann and Luukka (2019) 

forecasted classes of S&P500 time series by using random forests. Overall the studies support 

the conjectures of Granger (1992): gains in accuracy from time series methods should be 

possible but are probably not long-term sustainable. 

In this study, the first data set was downloaded from (https://finance.yahoo.com). The first data 

set is called “S&P 500 (GSPC), SNP - SNP Real-Time Price. Currency in USD”. This data set 

is constituted from daily opening prices for years 2014-2018. In the experimental study, 10 

different sub-time series of length 500 observations are randomly taken from the whole time 

series. The observations of random time series are summarized in Table 6. 

Table 6. The random time series observation dates and numbers 

Series 

No 
Starting date Ending Date 

Number of 

Observations 

1 '2016-06-15' '2018-06-08' 500 

2 '2016-09-22' '2018-09-17' 500 

3 '2014-05-22' '2016-05-16' 500 

4 '2015-11-25' '2017-11-17' 500 

5 '2014-04-21' '2016-04-13' 500 

6 '2014-11-03' '2015-10-29' 250 

7 '2015-08-25' '2016-08-19' 250 

8 '2016-11-16' '2017-11-13' 250 

9 '2017-11-09' '2018-11-06' 250 

10 '2014-08-20' '2015-08-17' 250 

 

The time series have been modelled by the proposed approach, long short term memory deep 

artificial neural network (LSTM: Hochreiter and Schmidhuber; 1997) and pi-sigma artificial 

neural network (PSGM: Shin and Ghosh; 2001). All methods are applied our program codes in 

MATLAB and Matlab Neural Networks and Deep Learning Toolboxes. The length of the 

validation set and test set is taken as 50. The data dividing strategy is summarized in Figure 3. 

In the figure, n represents the total number of observations (here 500) and forecasts are made 

for 1 period ahead. 

https://en.wikipedia.org/wiki/Sepp_Hochreiter
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
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Figure 3. The data dividing strategy 

The best model configuration is determined by using the validation set. The forecasts for the 

best configuration are calculated for the test set. First-order differencing is applied to each time 

series as a pre-processes method for all methods except Holt method. The error metric, the root 

of mean square error, is calculated for the test set by using the original time series.  In all method 

applications, the number of inputs is varied from 1 to 5. The number of hidden layers is also 

varied from 1 to 5. After Model Selection for BHANN (algorithm 4) applied to the time series 

for each method, the best model configuration is replicated 50 times by using different initial 

weights and biases. The root of mean square errors metric values is calculated for the test set 

from all methods by using the following formula. The calculations are repeated for the 50 

replications.  

𝑅𝑀𝑆𝐸𝑗 = √
1

𝑛𝑡𝑒𝑠𝑡
∑ (𝑋𝑡 − 𝑋�̂�)

2𝑛
𝑡=𝑛−𝑛𝑒𝑡𝑒𝑠𝑡+1   ; 𝑗 = 1,2, … ,50                                                     (18) 

RMSE is the standard error measure used for stock prices despite its sensitivity to outliers. The 

mean and standard deviation statistics are calculated for RMSE values from all methods and 

they summarized in Table 7. The random walk is used as the standard benchmark for forecasting 

stock price indices and also, Holt’s linear exponential smoothing method has been included in 

the comparisons. Holt’s smoothing parameters are estimated in MATLAB by using particle 

swarm optimization in. The best results are given in bold style in Table 7. 

 

 

 



6 
 

Table 7. Statistics for RMSE values for S&P500 Time Series from the methods 

Data Sets Methods Mean 
Standard 

Deviation 

Number 

of 

Inputs 

Numb

er of 

Hidde

n 

Layer 

Nodes 

Random 

Walk 

Holt 

Linear 

Trend 

1 

LSTM 26,7972 6,9135 1 5 

22,2968 22,1581 PSGM 22,2869 0,0223 1 3 

B-HANN 22,1675 0,0723 1 4 

2 

LSTM 13,5936 1,6621 2 2 

13,1351 12,9066 PSGM 12,9026 0,0174 1 4 

B-HANN 12,8986 0,0534 2 4 

3 

LSTM 11,7483 0,0386 1 1 

11,6595 11,6601 PSGM 11,8692 0,1516 5 4 

B-HANN 11,6573 0,0264 2 3 

4 

LSTM 7,1527 2,4158 5 2 

6,5195 6,17604 PSGM 6,1907 0,0423 5 3 

B-HANN 6,2591 0,0257 2 3 

5 

LSTM 16,9119 0,0342 1 1 

16,8722 16,8789 PSGM 17,1041 0,1728 4 3 

B-HANN 16,8556 0,0495 4 4 

6 

LSTM 28,9444 0,1245 3 1 

27,6093 27,6125 PSGM 27,2991 0,1948 2 2 

B-HANN 27,6056 0,0353 4 2 

7 

LSTM 16,1913 0,2616 2 3 

15,5547 15,5074 PSGM 15,5377 0,0334 1 5 

B-HANN 15,5015 0,0157 1 1 

8 

LSTM 7,8493 0,5879 3 4 

6,4085 6,1294 PSGM 5,9579 0,0434 4 5 

B-HANN 6,1072 0,0220 5 2 

9 

LSTM 28,5454 1,0378 2 2 

25,0223 25,1678 PSGM 25,2009 0,0157 1 4 

B-HANN 25,2341 0,0622 5 1 

10 

LSTM 13,7945 0,4205 1 1 

13,548 13,5711 PSGM 13,6109 0,0408 1 5 

B-HANN 13,5671 0,0084 3 1 

 

The best model configurations for LSTM, PSGM and B-HANN methods are given in Table 7. 

The model configuration is not needed for a random walk model and Holt’s exponential 

smoothing methods. According to Table 7, the proposed method has more accurate and stable 
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forecasts from the LSTM and PSGM. Moreover, it produces better results than Holt’s linear 

trend and the random walk. The best model configurations are different and values depend on 

the time series. ANN methods are better than the random walk method on 80% of the time 

series. Similarly, ANN methods are better than Holt’s linear trend method on 80% of the time 

series. 

In table 8, the mean of RMSE statistics for LSTM, PSGM and B-HANN methods and RMSE 

values for a random walk and Holt’s exponential smoothing methods are given. Moreover, 

percentages of success are given and the percentage of success means that the method produced 

the best results in the mentioned percentage of all experiments, as measured by RMSE.  The 

rank statistics are calculated for all methods. 

Table 8. Mean statistics of RMSE for LSTM, PSGM and BHANN and RMSE values for a 

random walk and Holt’s linear trend method in S&P500 Random Time Series. 

Random Data LSTM PSGM BHANN 

Random 

Walk 

Holt’s Linear 

Trend 

1 26,7972 22,2869 22,1675 22,2968 22,1581 

2 13,5936 12,9026 12,8986 13,1351 12,9066 

3 11,7483 11,8692 11,6573 11,6595 11,6601 

4 7,1527 6,1907 6,2591 6,5195 6,1760 

5 16,9119 17,1041 16,8556 16,8722 16,8789 

6 28,9444 27,2991 27,6056 27,6093 27,6125 

7 16,1913 15,5377 15,5015 15,5547 15,5074 

8 7,8493 5,9579 6,1072 6,4085 6,1294 

9 28,5454 25,2009 25,2341 25,0223 25,1678 

10 13,7945 13,6109 13,5671 13,5480 13,5711 

Percentage of 

Success 
0% 20% 40% 20% 20% 

Mean of Rank 4,8000 2,9000 1,9000 2,9000 2,5000 

 

In Table 8, B-HANN method has the best statics with %40 percentage of success and 1,90 mean 

of rank. LSTM couldn’t give the best results and its performance looks the worst. 

The second data set is the Financial Times Stock Exchange 100 Index, also called the FTSE 

100 Index. The data set was daily recorded opening prices between 01/01/2014 and 31/12/2018.  

In the experimental study, 10 different sub-time series are randomly taken from the whole time 

series. The observations of random time series are summarized in Table 9. 
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Table 9. The random time series observation dates and numbers 

Series 

No 
Starting date Ending Date 

Number of 

Observations 

1 ‘2016-06-20’ ‘2018-06-11’ 500 

2 '2016-09-27' '2018-09-18' 500 

3 '2014-05-22' '2016-05-12' 500 

4 '2016-10-04' '2018-09-25' 500 

5 '2015-11-27' '2017-11-17' 500 

6 '2014-05-27' '2015-05-20' 250 

7 '2015-02-13' '2016-02-09' 250 

8 '2016-03-10' '2017-03-06' 250 

9 '2017-11-01' '2018-10-26' 250 

10 '2014-08-20' '2015-08-14' 250 

 

The same methods are applied to the FTSE 100 Index random time series in the same condition 

with the previous application. The mean and standard deviation statistics are calculated for 

RMSE values from all methods and they summarized in Table 10. Moreover, the best model 

configurations for ANN methods and results for a random walk and Holt method are given in 

Table 10.  

Table 10. Statistics for RMSE values for FTSE 100 Random Time Series from the methods 

Random 

Data 
Methods Mean 

Standard 

Deviation 

Number 

of 

Inputs 

Number 

of 

Hidden 

Layer 

Nodes 

Random 

Walk 

Holt 

Linear 

Trend 

1 

LSTM 52,3928 0,5579 4 1 

52,19 52,0963 PSGM 52,9689 0,1510 2 5 

B-HANN 51,8214 0,1903 5 4 

2 

LSTM 53,3868 4,2900 3 2 

50,2549 50,3696 PSGM 50,0872 0,2783 4 4 

B-HANN 50,4826 0,0827 5 1 

3 

LSTM 56,0447 15,4767 1 4 

49,3421 49,4277 PSGM 49,4790 0,4062 5 3 

B-HANN 49,4319 0,0856 4 1 

4 

LSTM 53,6121 2,0794 1 5 

50,2108 50,3992 PSGM 50,1893 0,0816 3 1 

B-HANN 50,3465 0,0748 4 3 

5 
LSTM 36,8277 5,8923 2 5 

33,7235 33,9079 
PSGM 34,6996 0,4375 2 5 
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B-HANN 33,7895 0,0578 4 2 

6 

LSTM 64,0471 5,3453 5 3 

60,6946 60,6925 PSGM 61,5636 0,8713 4 4 

B-HANN 60,6778 0,0564 3 4 

7 

LSTM 88,3087 2,1842 1 5 

84,6748 84,2412 PSGM 84,3469 1,1589 5 5 

B-HANN 84,1721 0,2520 3 5 

8 

LSTM 41,3384 1,1785 5 1 

33,8047 33,2034 PSGM 34,3204 0,6011 5 4 

B-HANN 33,3129 0,0942 3 1 

9 

LSTM 67,6733 4,3137 5 5 

51,5091 52,7195 PSGM 52,8866 0,6958 2 5 

B-HANN 51,4240 0,1577 3 5 

10 

LSTM 57,5474 1,2997 5 1 

58,1974 58,3895 PSGM 59,1550 0,5876 4 3 

B-HANN 58,3040 0,2229 4 4 

 

When table 10 is examined, B-HANN has smaller means and standard deviations from LSTM 

and PSGM. The B-ANN has the smallest standard deviation almost all situations. This shows 

B-HANN produce forecasts has smaller variance. In table 11, the mean of RMSE statistics for 

LSTM, PSGM and B-HANN methods and RMSE values for a random walk and Holt’s 

exponential smoothing methods are given. Moreover, percentages of success are given and the 

percentage of success means that the method produced the best results in the mentioned 

percentage of all experiments.  The rank statistics are calculated for all methods. 

Table 11. Mean statistics of RMSE for LSTM, PSGM and BHANN and RMSE values for a 

random walk and Holt’s linear trend method in FTSE100 Random Time Series. 

Random 

Data 
LSTM PSGM BHANN Random Walk Holt Linear Trend 

1 52,3928 52,9689 51,8214 52,1900 52,0963 

2 53,3868 50,0872 50,4826 50,2549 50,3696 

3 56,0447 49,4790 49,4319 49,3421 49,4277 

4 53,6121 50,1893 50,3465 50,2108 50,3992 

5 36,8277 34,6996 33,7895 33,7235 33,9079 

6 64,0471 61,5636 60,6778 60,6946 60,6925 

7 88,3087 84,3469 84,1721 84,6748 84,2412 

8 41,3384 34,3204 33,3129 33,8047 33,2034 

9 67,6733 52,8866 51,4240 51,5091 52,7195 
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10 57,5474 59,1550 58,3040 58,1974 58,3895 

Percentage 

of Success 
0% 20% 40% 30% 10% 

Mean of 

Rank 
4,5000 3,5000 2,1000 2,3000 2,6000 

 

When table 11 is examined, B-HANN method has the best performance according to the 

percentage of success and mean of rank statistics. The ANN methods have %60 success for all 

situations. Moreover, B-ANN has the best results %70 of the situations among ANN methods. 

The third data set is the Borsa Istanbul Stock Exchange 100 Index, also called the BIST 100 

Index. The data set was daily recorded opening prices between 01/02/2014 and 09/02/2018. In 

the experimental study, 10 different sub-time series are randomly taken from the whole time 

series. The observations of random time series are summarized in Table 12. 

Table 12. The random time series observation dates and numbers 

Series 

No 
Starting date Ending Date 

Number of 

Observations 

1 '2014-01-31' '2015-12-31' 500 

2 '2015-11-12' '2017-10-11' 500 

3 '2016-01-20' '2017-12-19' 500 

4 '2015-06-30' '2017-05-29' 500 

5 '2015-09-01' '2017-07-31' 500 

6 '2016-05-06' '2017-04-20' 250 

7 '2015-03-31' '2016-03-14' 250 

8 '2016-01-27' '2017-01-10' 250 

9 '2014-07-18' '2015-07-02' 250 

10 '2016-03-24' '2017-03-08' 250 

 

The applications are made in the same design with previous stock exchange data sets. Similar 

application results are summarized in Table 13 and 14. 

Table 13. Statistics for RMSE values for BIST 100 Random Time Series from the methods 

Random 

Data 
Methods Mean 

Standard 

Deviation 

Number 

of 

Inputs 

Number 

of 

Hidden 

Layer 

Nodes 

Random 

Walk 

Holt 

Linear 

Trend 

1 LSTM 1223,6421 15,1430 2 2 1207,08 1210,35 



11 
 

PSGM 1214,5322 8,1635 4 4 

B-HANN 1212,3883 1,8548 4 5 

2 

LSTM 1151,4959 14,1011 1 4 

1137,14 1141,48 PSGM 1168,0600 12,4945 5 3 

B-HANN 1142,9581 3,0053 5 3 

3 

LSTM 1270,5354 6,8289 4 2 

1294,22 1287,21 PSGM 1295,6321 5,5221 2 5 

B-HANN 1288,6971 2,4888 5 1 

4 

LSTM 922,5593 310,0753 1 5 

761,156 758,495 PSGM 773,3504 6,9704 5 5 

B-HANN 759,4848 3,6537 4 3 

5 

LSTM 1010,8165 285,6847 1 5 

725,734 716,068 PSGM 713,0735 2,2901 5 3 

B-HANN 711,9066 4,4957 2 2 

6 

LSTM 795,0413 12,7961 1 2 

761,709 760,249 PSGM 740,9551 9,2555 3 5 

B-HANN 759,6025 1,3078 2 1 

7 

LSTM 939,8823 24,2007 2 2 

852,025 867,407 PSGM 895,2005 2,0108 1 5 

B-HANN 869,7583 4,9018 3 3 

8 

LSTM 860,0633 333,0192 4 5 

729,921 729,921 PSGM 746,2750 6,3012 2 5 

B-HANN 731,1405 2,4780 5 1 

9 

LSTM 1238,0248 36,2521 5 2 

1181,71 1183,01 PSGM 1183,3946 20,1003 5 3 

B-HANN 1182,7036 2,9808 3 5 

10 

LSTM 1098,7635 35,4691 1 1 

894,523 902,259 PSGM 951,8525 4,3548 2 4 

B-HANN 904,0714 9,5661 4 2 

 

Table 14. Mean statistics of RMSE for LSTM, PSGM and BHANN and RMSE values for a 

random walk and Holt’s linear trend method in BIST100 Random Time Series. 

Random 

Data LSTM PSGM BHANN Random Walk Holt Linear Trend 

1 1223,6421 1214,5322 1212,3883 1207,0800 1210,3548 

2 1151,4959 1168,0600 1142,9581 1137,1357 1141,4752 

3 1270,5354 1295,6321 1288,6971 1294,2246 1287,2056 

4 922,5593 773,3504 759,4848 761,1564 758,4954 

5 1010,8165 713,0735 711,9066 725,7341 716,0679 
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6 795,0413 740,9551 759,6025 761,7089 760,2486 

7 939,8823 895,2005 869,7583 852,0251 867,4073 

8 860,0633 746,2750 731,1405 729,9209 729,9209 

9 1238,0248 1183,3946 1182,7036 1181,7073 1183,0130 

10 1098,7635 951,8525 904,0714 894,5232 902,2589 

Percentage 

of Success 
10% 10% 10% 50% 20% 

Mean of 

Rank 
4,5000 3,7000 2,5000 2,2000 2,1000 

 

When Table 13 is examined, B-HANN is the best ANN method for %80 of the situations. The 

B-HANN is outperformed the other ANNs. The random walk and Holt methods produced better 

forecast results than ANN methods for BIST100 stock exchange. B-HANN method produced 

very close results to a random walk and Holt methods. If B-HANN compared with a random 

walk, B-HANN is better than random walk and Holt methods in %40 and %30 of BIST100 

applications, respectively. Finally, it can be said that B-HANN can be preferred as a forecasting 

method for BIST100 data set. 

 

 5.2 Applications of Input Significance Tests, Linearity and Nonlinearity Tests and 

Confidence Intervals 

In this section, a time series is randomly generated from the FTSE100 time series by using 

randomly selected started points. The random time series has 60 observations. The random time 

series are used to apply input significance tests, linearity and non-linearity tests and obtaining 

confidence intervals. The last 10 observations are separated as a test set. The confidence 

intervals are constructed for one step ahead forecasts. The proposed method is applied to time 

series with  𝑝 = 5 and 𝑛ℎ = 2 parameters.  Holt linear trend, Yolcu et al. (2019) and B-HANN 

methods are applied to obtain confidence intervals for 1-step ahead forecasts. Obtained 

confidence intervals are given in Table 15. Moreover, reliability evaluation (RE), sharpness 

evaluation (SE), lower bound closeness (LBC), upper bound closeness (UBC) and mean of 

closeness (MC) criteria are calculated and given in Table 15. RE and CE statistics were used in 

Yolcu et al. (2019). LBC, UBC and MC criteria are firstly considered in this study. These 

criteria measure the closeness of bounds to real value without taking into considering bounds 

contain real values. The formulas of RE, SE, UBC, LBC and MC are given below: 
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𝑅𝐸 = (
𝜉(1−𝛼)

𝑛𝑡𝑒𝑠𝑡
− (1 − 𝛼)) 𝑥100%                                                                                                                (18) 

𝑆𝐸 =
1

𝑛𝑡𝑒𝑠𝑡
∑ (𝑈𝐵𝑡 − 𝐿𝐵𝑡)𝑛𝑡𝑒𝑠𝑡

𝑡=1                                                                                                    (19) 

𝐿𝐵𝐶 =
1

𝑛𝑡𝑒𝑠𝑡
∑ |𝐿𝐵𝑡 − 𝑋𝑡|𝑛𝑡𝑒𝑠𝑡

𝑡=1                                                                                                   (20) 

𝑈𝐵𝐶 =
1

𝑛𝑡𝑒𝑠𝑡
∑ |𝑈𝐵𝑡 − 𝑋𝑡|𝑛𝑡𝑒𝑠𝑡

𝑡=1                                                                                                   (21) 

𝑀𝐶 =
𝐿𝐵𝐶+𝑈𝐵𝐶

2
                                                                                                                           (22) 

Where ntest is # of testing points, 𝜉(1−𝛼) is # times that actual target values do indeed lie within 

the 𝛼-level prediction intervals. 𝑈𝑏𝑡 and 𝐿𝑏𝑡 are the lower and upper bound of the 𝛼-level 

prediction interval.  

When Table 15 is examined, Holt’s linear trend methods’ confidence intervals produced better 

RE and UBC statistics but it is not good in terms of SE, LBC and MC metrics. Yolcu et al. 

(2019) method are not better than Holt’s linear trend method in terms of RE, SE, UBC and MC. 

B-HANN is better than Holt’s linear trend method in terms of SE, LBC and MC. B-HANN is 

better than Yolcu et al. (2019) method in terms of all metrics except RE. The B-HANN 

produced competitive results for the simulated data.  

Table 15. Confidence Intervals and some metrics for Random FTSE Data 

Test 

Data 

Holt Linear Trend 

Method 

Yolcu et al. (2019) 

Method B-HANN 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

6746 6627 6749 6719 6856 6776 6830 

6710 6682 6807 6756 6892 6786 6837 

6785 6646 6771 6718 6896 6779 6843 

6738 6717 6848 6743 6930 6794 6853 

6749 6670 6803 6723 6888 6790 6851 

6728 6682 6813 6722 6890 6791 6853 

6795 6661 6792 6705 6869 6784 6850 

6798 6720 6854 6803 6886 6798 6849 

6821 6730 6863 6779 6898 6802 6856 

6792 6753 6886 6796 6901 6807 6854 

RE -15% -35% -55% 

SE 129,79 144,33 56,97 

LBC 77,566 31,92 31,49 

UBC 55,659 124,21 81,2 
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MC 66,6125 78,07 56,35 

 

The proposed method produced input significance tests, linearity and nonlinearity tests. These 

test results are given in Table 16. According to Table 6, all inputs are significant in B-HANN. 

Moreover, the time series has both linear and non-linear components. Similar linearity and 

nonlinearity test results are obtained from Yolcu et al. (2019).  

Table 16. Test Results from B-HANN for FTSE Random Data 

Input Significance Test Results 

İnput 1 Input 2 Input 3 Input 4 Input 5 

p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

Linearity Test Non-Linearity Test     

p<0.001 p<0.001     

 

The proposed method produced empirical distributions for all weights and forecasts. In figure 

4 and 5, histograms for input weights and first forecast are given, respectively. Empirical 

distributions can give more information about the estimators. For example, Figure 5 gives us 

that empirical distribution of the first forecast from B-HANN contains real observation value. 

The forecasts from bootstrap repetitions are generally bigger than the test observation value. It 

is possible to see 6650 value as a forecast for first observation from B-HANN. Practitioners can 

use the empirical distribution of the forecast instead of relying on point forecasts or just relying 

on the prediction intervals.  
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Figure 4. Histogram for Input Weights 

 

Figure 5. Histogram for 1-step ahead forecast 

 5.3 Application to M4 Yearly Competition Data Set 

The various M-Competitions, as well as other forecast accuracy comparisons (Hyndman, 2020), 

have proved influential. Most recently Makridakis (2018) published results for competitors in 

M4 competition which extended the number of series to be analysed to 100K and the number 

of methods an extended range of ML methods developed by experts. ANNs has been included 

in some forecasting competitions in the past. ANNs performance generally had not performed 

well. In the M3 competition, Balkin and Ord (2000) had proposed an automatic neural network 

modelling tool for univariate time series forecasting. They examined the performance on ANNs 

and found that ANNs could produce the most successful results for some of the time series. 

They stated that “results for the M3 and other competitions are generalized over a large number 

of series. So, simple methods may produce overall better results, but the complex models will 

perform better for those series with the relevant structure. Such distinctions require that we 

analyze each series individually”.  A more detailed study was done by Crone et al. (2014) but 

overall the performance was disappointing. With an expanded range of ML methods, for the 

M4 the winner method was a hybrid method of a statistical and an ANN in the competition. 

Smyl (2020) described the winner method and it is a hybridization of LSTM and an exponential 

smoothing method. Barker (2020) emphasised that “the M4 competition marked a turning point 

in the Makridakis competition series, as, for the first time, the winning model was one which 

would be classified colloquially as machine learning.” Barker (2019) classified methods as 

structured and unstructured. It can be concluded that unstructured ML methods can be 
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developed to give more successful results Barker (2020). In the M4 Competition, pure ML 

methods did not demonstrate good forecasting performances. However, ML methods could it 

seemed to produce good forecast by hybridization of statistical methods. 

 

The B-HANN method proposed in this paper is a pure ML method. Because B-HANN employs 

bootstrap approaches in its algorithm, someone can comment on it as a hybridization of 

statistical and ML method. Bootstrap approaches are generally classified into ensemble 

approaches in the ML literature and are not considered as statistical approaches in the ML 

literature. To examine the hypothesis implicit in the M4 discussions of the limitations of the 

ML methods, in this study, we evaluate a pure ML method using the M4 yearly competition 

data. The obtained results are compared with the best ten methods in the M4 competition.  The 

proposed method is applied with a fixed architecture: The model selection step is omitted to 

work with a simple model. In the B-HANN, the parameter configuration is  𝑝 = 2, 𝑛ℎ = 1, 

𝑛𝑏𝑠𝑡 = 50, 𝑛𝑡𝑒𝑠𝑡 = 1 and 𝑀𝐴𝑋𝐼𝑇𝑅 = 50. Before applying B-HANN, the series is applied to 

first-order differencing. 

The obtained results are given in Table 17. In table 17, the median of SMAPE values for 23.000-

time series are given for different forecast horizons. The other competitor results are taken from 

Makridakis et al. (2018). The details of other competitor methods can be obtained from 

Makridakis et al. (2018). These methods are statistical, ML methods and hybrid forecasting 

methods. When Table 17 is examined, the proposed method has the third rank overall. B-HANN 

is the best ML approach for the M4 yearly competition data. For 1:2 forecast horizon, B-HANN 

is better than the winner method and it has the fourth rank.  For horizons 3:4, and 5:6 B-HANN 

has the second rank. 

Table 17. M4 yearly competition data results for B-HANN and the best ten method 

Submission 

ID 
Method 

Median(SMAPE) 

1:2 3:4 5:6 Total 

118 Syml  4,9260 7,4807 9,9448 7,8513 

260 Legaki  & Koutsouri 4,7746 7,7020 10,3192 7,9694 

New B-HANN 4,9019 7,6545 10,1099 7,9946 

69 Fiorucci & Louzada 4,8825 7,7369 10,3862 8,0876 

245 Montero-Manso, et al. 4,8906 7,7547 10,4879 8,1117 

36 Petropoulos & Svetunkov 4,9996 7,8228 10,5441 8,1434 

72 Jaganathan & Prakash 5,0079 7,8677 10,6704 8,2192 

237 Pawlikowski, et al. 4,9643 7,9624 10,7065 8,3280 
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5 Spiliotis & Assimakopoulos 5,1263 8,1022 10,9940 8,4853 

39 Pedregal, et al. 5,1360 8,0908 10,9929 8,4882 

238 Doornik, et al. 5,2742 8,3924 11,5181 8,7721 

 

N.B. The error measure used is the symmetric MAPE to make the results comparable to those 

given in Makridakis (2018).  

According to Table 17, the proposed method is a rival for the best two methods. More results 

are given to compare the best 2 methods and B-HANN method. For each series, SMAPE values 

are compared between Syml method and B-HANN, Legaki &Koutsouri and B-HANN, the 

results are given in Table 18. 

Table 18. Comparison of the best two methods with B-HANN on the M4 annual data 

Compared Methods 

Success Rate for B-HANN 

1:2 3:4 5:6 Total 

Syml vs B-HANN 49,35% 47,1700% 48,4800% 48,0000% 

Legaki &Koutsouri vs B-

HANN 
49,62% 50,7900% 50,2000% 50,4300% 

 

According to Table 18, B-HANN has smaller SMAPE than the Syml method 49,35%  of the 

23000 time series for forecast horizons 1:2. For other forecast horizons, B-HANN is almost as 

good as the Syml method half of all series. Moreover, B-HANN is better than 

Legaki&Koutsouri method for 3:4, 5:6 forecast horizons and total.  

According to Table 18, B-HANN has smaller SMAPE than the Syml method on 48% of the 

23000-time series while the figure is 50.4% when compared to Legaki&Koutsouri, thereby 

demonstrating the strength of a pure ML method. 

 

6. Conclusions and Discussion 

 

Artificial neural networks can provide powerful forecasting methods for some time series. It is 

well known that ANNs are useful for stock exchange data sets because results of traditional 

time series methods produce forecasts that are very close to random walk forecasts. Although 

ANNs can produce good point forecasts for some kind of time series, it is not easy to apply 
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hypothesis tests and to obtain empirical distribution for the estimators. In this study, a new 

hybrid ANN architecture is proposed and it is combined with an identically independent 

distributed residual bootstrap method to obtain probabilistic results such as empirical 

distributions for the forecasts, prediction intervals and hypothesis tests. The forecasting 

performance of the B-HANN method is investigated on FTSE, BIST and SP500 stock exchange 

data sets with a random choice of data segments. B-HANN produced the best results for FTSE 

and SP500 but its results were not better than traditional methods for BIST. However, B-HANN 

produced better results than alternative methods,  LSTM and PSGM ANNs for all three stock 

exchange indices. Moreover, one random data application is used as an example showing how 

to obtain probabilistic results from the B-HANN. The confidence (prediction) intervals 

obtained were compared with an ANN and a traditional method on a simulated time series. It 

was seen that the B-HANN can produce meaningful and good distributional forecasts in terms 

of most standard metrics.  Moreover, B-HANN is the best ML method for M4 yearly 

competition and B-HANN has the third rank for total forecast horizons. Moreover, B-HANN 

was compared with the best two methods and it is concluded that B-HANN is a serious rival to 

them. In future studies, different bootstrap techniques can be used to enhance the performance 

of the proposed method. Moreover, simulation studies have the potential to investigate 

hypothesis test performance under different bootstrap techniques. B-HANN can be extended 

for seasonal or periodic series and tested on the extended M4 data set. 
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