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Remote sensing of urban green spaces: a review 1 
 2 

Abstract 3 
 4 
A knowledge of the characteristics of urban green spaces (UGSs) such as their abundance, spatial 5 

distribution and species composition, has an important role in a range of fields such as urban geography, 6 
urban planning and public health. Remote sensing technologies have made great contributions to the 7 
analysis of UGSs. However, a comprehensive review of the current status, challenges and potential in 8 
this area is lacking. In this paper, we scrutinize major trends in remote sensing approaches for 9 
characterising UGSs and evaluate the effectiveness of different remote sensing systems and analytical 10 
techniques. The results suggest that the number of studies focusing on mapping UGSs and classifying 11 
species within UGSs have increased rapidly over recent decades. However, there are fewer examples of 12 
non-tree species mapping, change detection, biomass and carbon mapping and vegetation health 13 
assessment within UGSs. Most studies have focused on UGSs (mainly trees) which cover large areal 14 
extents, with fewer studies of smaller patches such as street trees, urban gardens, recreational spaces 15 
and public parks, even though collectively such patches can cover substantial areas. Hence, we 16 
encourage future investigations to focus on a wider variety of different UGSs, particularly small-scale 17 
UGSs. We also recommend that research focuses on developing more effective image time series 18 
analysis techniques, methods to capture the complexity of UGSs and the use of SAR in studies of 19 
UGSs. At the same time, further research is needed to fully exploit remote sensing data within thematic 20 
applications such as monitoring changes in UGSs over time, quantifying biomass and carbon mapping 21 
and assessing vegetation health. 22 
Keywords: urban green spaces; remote sensing; mapping; species classification; urban trees 23 
 24 
 25 
1. Introduction 26 

 27 
Urban inhabitants are expected to reach 70% of the world population by 2050 (Chang et al., 2015) 28 

which is likely to lead to an array of environmental problems in cities such as increasing air pollution 29 

and climatic perturbations. In response, there is a growing recognition that urban green spaces (UGSs) 30 

have a role in mitigating such environmental pressures. UGSs are defined as all natural, semi-natural, 31 

and artificial systems within, around and between urban areas of all spatial scales (Chang et al., 2015). 32 

UGSs promote multiple effects such as health, wellbeing and aesthetic benefits to urban dwellers 33 

(Ossola and Hopton, 2018). To maintain these positive effects, there is an acute need for protecting and 34 

improving existing UGSs, and at the same time developing new urban green infrastructure. Therefore, 35 

data on UGSs are crucial to a range of issues in urban science such as planning, management and 36 

public health.  37 

Historically, various approaches have been employed to collect information about UGSs. Field 38 

campaigns can offer precise information on UGSs (Shojanoori and Shafri, 2016) but they are costly and 39 

time consuming (Pu and Landry, 2012). Visual interpretation and manual digitizing from hard-copy 40 

maps or aerial photographs have also been carried out for mapping UGSs. For example, Nowak et al. 41 

(1996) identified four different approaches for determining urban tree cover using aerial photos, namely, 42 
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using a crown cover scale, and the transect, dot and scanning methods. Using these methods aerial 43 

photography was the main source of information for mapping UGSs between the 1970s and 1990s. 44 

Although visual interpretation and manual digitizing are one of the most accurate techniques, they can 45 

be subjective and difficult to replicate, leading to inconsistent results (Morgan and Gergel, 2013; 46 

Shojanoori and Shafri, 2016)  47 

  In the past decades, remote sensing technologies have occupied an important place in the study of 48 

UGSs as they can generate repeated and complete coverage at different spatial scales and for different 49 

seasons (Pu and Landry, 2012). Based on recent advances such as high spatial resolution imagery and 50 

free data access policies, remote sensing is providing a valuable set of tools which are able to minimize 51 

the need for field survey, even in highly heterogeneous and complex urban settings. For instance, 52 

remote sensing has proven to be effective for mapping street trees (Parmehr et al., 2016), detecting 53 

species within UGSs (Shojanoori et al., 2018), mapping invasive shrubs in UGSs (Chance et al., 2016) 54 

and assessing vegetation health within UGSs (Nasi et al., 2018). Furthermore, current remote sensing 55 

programs such as Copernicus (Harris and Baumann, 2015) and Landsat (Zhu et al., 2019) not only 56 

provide historical time-series data but also facilitate access to recently acquired data. 57 

Owing to these benefits, many researchers and managers have utilized remote sensing to study 58 

UGSs (Shojanoori and Shafri, 2016). However, whilst remotely sensed data has become part of 59 

existing planning and management systems for UGSs, a comprehensive review of the current status, 60 

challenges, and future potential in this area is absent. It is noteworthy that most relevant review papers 61 

on UGSs have focused on the specific topics such as urban forests (Shojanoori and Shafri, 2016), 62 

mapping urban trees species distributions (Fassnacht et al., 2016), assessing the composition of urban 63 

settings (Patino and Duque, 2013) and mapping the social functions of UGSs (Chen et al., 2018). 64 

Driven by the growing concerns over urban environmental problems and the overarching benefits of 65 

UGSs, it is now important to systematically scrutinize the remote sensing of UGSs as a whole. 66 

This paper fulfills this requirement by providing knowledge that will enable better utilization of 67 

remotely sensed data and to stimulate wider interest in researchers for analyzing relationships between 68 

such data and studies of UGSs. The review begins by establishing key research questions related to the 69 

remote sensing of UGSs, with a particular interest in trends, data characteristics, analytical approaches 70 

and potential applications. Next, the methodological design for the review is presented. In the results 71 

section, we present the evidence to answer the key research questions while the discussion section 72 

covers future outlooks and recommendations. In order to keep the paper succinct, we have not included 73 

general background material on remote sensing (e.g., electromagnetic radiation principles and image 74 

quality), analytical techniques (e.g., mathematical explanations and computer programming) and UGSs 75 

(e.g., UGSs design and characteristics). Many technical textbooks and review papers have covered 76 

these topics.  However, where necessary, we refer readers to relevant papers for further details. Four 77 

key research questions are addressed in this review:  78 

 How and why has the use of remote sensing in studies of UGSs varied over time and space? 79 

 What are the main technical considerations when using remote sensing to study UGSs?  80 

 Which analytical techniques have been used in the remote sensing of UGSs? 81 
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 What are the major thematic application areas for remote sensing of UGSs?  82 

The contributions of this review on remote sensing of UGSs are to: 83 

1. Present general trends in remote sensing research concentrating on UGSs; 84 

2. Examine requirements for remote sensing of UGSs, with a particular interest in the effects of 85 

remote sensed sensor types (e.g, optical and LIDAR), characteristics (i.e., spatial, spectral 86 

and temporal resolutions), cost and pre-processing in the context of UGSs; 87 

3. Assess various techniques for extracting and estimating UGSs; 88 

4. Provide a detail overview of the use of remote sensing in studies focused on UGSs; 89 

5. Identify research gaps and future trends for remote sensing of UGSs. 90 

2. Methodology 91 

The evidence on which this paper is based was acquired using the guidelines for a systematic 92 

literature review methodology according to Pullin and Stewart (2006) and Viana et al. (2017). The 93 

collection and analysis of the published papers was performed according to these steps (Fig.1):  94 

 95 

Fig.1. Flowchart of the systematic review method 96 

 97 

(1) Collection: articles were gathered from the Web of Science, Bing and Google search engines 98 

using a range of keywords (Table 1) within the time span between January 1980 and August 2019.  99 

This period was selected as we hypothesized that the year 1980 could be considered as the 100 

beginning of medium spatial resolution remotely sensed data era (Landsat 4 TM, launched 1982) 101 

which might promote the application of remotely sensed data in the study of UGSs. While this 102 

research was conducted during 2019, we also wanted to know the major differences between early 103 

studies on UGSs and the contemporary studies.  104 

The Web of Science was used for finding Science Citation Index Expanded (SCIE)/ Social 105 

Science Citation Index (SSCI) peer-reviewed journals in the English language while Google and 106 

Bing were employed to source data on any conferences, workshops and international activities on 107 

remote sensing of UGS. In order to minimize the risk of missing any literatures, the search was also 108 

conducted within the digital library of Zhejiang University, China. This library includes a range of 109 

databases such as Scopus, Elsevier ScienceDirect, and Nature.  110 

(2) Optimization: More than 1500 studies were found to satisfy the conditional search as shown in 111 

Table 1. The collected papers were then screened independently by nine reviewers to identify 112 

eligible studies for review. The identification was conducted based on the following criteria:  113 

1. Remote sensing data and techniques: the research must consider application of 114 

remotely-sensed data and techniques within their methodological frameworks to study UGSs.  115 

2. Requirements: the research must investigate the influence of spatial, temporal, spectral, 116 

pre-processing and cost-efficiency on studies of UGSs. 117 

3. Thematic applications: the research must present thematic application areas for remote sensing 118 

of UGSs. 119 

It is worth emphasizing that all sections of the papers (including keywords and highlights, if 120 
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available) were screened by reviewers under above criteria: three reviewers conducted the review 121 

under the methodological perspective, another three reviewers under the requirements aspect and 122 

other three under thematic applications. The detailed examination yielded 136 eligible papers for 123 

this review (these are listed are in the Supplementary Data1) and the final number of cases was 159 124 

(references of all studies are presented in the reference list). Although 23 out of 159 papers did not 125 

fulfill all criteria, they offered very relevant information on the topic of UGSs for certain time 126 

periods, such as prior to 2000,and for certain remote sensing systems, such as synthetic aperture 127 

radar(SAR), where eligible papers were sparse. We observed that the rest of these studies (4 papers 128 

out of 23) used medium spatial resolution satellite sensors to study UGSs with the similar research 129 

directions to 136 eligible papers. However, the main difference lay in application of Google Earth 130 

Engine (GEE) platform which was employed in the aforementioned studies. For the sake of clarity, 131 

these papers were therefore placed in the new subsection named as Google Earth Engine.  132 

(3) Thematic applications: In order to informatively present the thematic areas of studies focused 133 

on UGSs, studies within which remote sensing has been used, the papers were allocated to one of 134 

seven application areas. The allocation to an application area was based on the topics covered, 135 

keywords, objectives and analytical approaches of the reviewed papers (e.g., change detection, 136 

species classification, vegetation mapping). In the small number of cases where a single paper was 137 

related to more than one application area, it was allocated to the dominant area of interest. 138 

Furthermore, we mined the methodology section of each paper to identify the core of the analytical 139 

approach that was used in the research. The extracted thematic applications were as follows: 140 

(a) Inventory and assessment: includes studies that evaluate the biophysical properties of 141 

UGSs, such as leaf area index, and the health of vegetation in UGSs. 142 

(b) Biomass and carbon: includes studies that estimate these variables within UGSs.  143 

(c) Change detection: includes studies that monitor change in UGSs.  144 

(d) Ecosystem services: includes studies of the role of UGSs in delivering urban ecosystem 145 

services. 146 

(e) Overall UGSs mapping: includes studies of the spatial distribution of UGSs which can be 147 

at the categorical (i.e. UGSs and non-UGSs) or fractional (per cent of UGSs within each 148 

pixel) levels. 149 

(f) Species mapping: includes studies that identify vegetation species within UGSs. 150 

(g)Three-dimensional modeling: includes studies that establish three-dimensional models of 151 

UGSs. 152 

 153 

(4) Statistical analysis: All papers that were included in the review were analyzed by publication 154 

year, country, remotely sensed data requirements, names of satellites, analytical methods and 155 

thematic groups.  The extracted information was organized in a Microsoft Excel environment 156 

(www.microsoft.com ) while R statistical software (www.r-project.org) was employed to plot charts. 157 

It is important to note that this study was exempted from ethical approval as no human individuals, 158 

institutes and government departments were included and only publicly available electronic 159 

http://www.microsoft.com/en-ww/microsoft-365/excel
http://www.r-project.org/
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information was used for investigation.   160 

(5)Presenting results and discussion 161 

 162 

Table 1 163 

Criteria used to select publications for review in this research 164 

 165 

3.Results  166 

 167 

For the presentation of the main findings, each of the research questions referred to in Section 1 of 168 

this paper will be addressed: 169 

 170 

3.1. How and why has the use of remote sensing in studies of UGSs varied over time and space? 171 

The results showed that there were no relevant eligible publications on remote sensing of UGSs 172 

prior to 2001. Between 1980 and 2000, most studies focused on demonstrating the environmental 173 

importance of UGSs and used data from visual interpretation of aerial photographs (Nowak et al., 1996) 174 

and field campaigns (Shojanoori and Shafri, 2016). This could be largely because of the lack of 175 

appropriate remote sensing technology for detecting and mapping UGSs, immature digital image 176 

processing and pattern recognition algorithms, limited computing power and lack of open access 177 

remotely-sensed data (Jensen and Cowen, 1999; Shojanoori and Shafri, 2016). Moreover, it is worth 178 

noting that while some high spatial resolution satellite sensors (e.g., IKONOS) were launched prior to 179 

2001, lack of appropriate image processing techniques could have hindered progress towards 180 

applications of these data in UGSs (Blaschke, 2010). At the beginning of the 21st century, the use of 181 

remote sensing to study UGSs increased rapidly, as evidenced by an exponential increase in 182 

publications (Fig. 2(a)).  183 

Although many remote sensing milestones have occurred during 2001-2019, we selected four major 184 

developments which have promoted the remote sensing of UGSs (Fig.2(a)). Firstly, the increased 185 

availability of high spatial resolution remote sensing technology (e.g., QUICKBIRD (launched in 186 

2001), OrbView (launched in 2003)) has made fine scale monitoring of UGSs possible, which is 187 

important in most UGS investigations. Additionally, high spatial resolution imagery has become 188 

available at a global scale through Google Earth, in the form of different products such as aerial 189 

photographs, satellite imagery and street views. Secondly, there has been an increasingly wide spread 190 

deployment of two data sources either stand-alone or combined together: Light Detection and Ranging 191 

(LiDAR) and hyperspectral remote sensing technologies. LiDAR sensors are able to generate precise 192 

information on the vertical structure of vegetation within UGSs by using discrete returns and waveform 193 

data. Hyperspectral sensors facilitate the identification of vegetation species within UGSs via 194 

spectroscopic analysis(Jensen et al., 2009). Stand-alone or combined use of LiDAR and hyperspectral 195 

sensing have become important in many practical studies of UGSs. Thirdly, prior to 2008, the cost of 196 

access to Landsat imagery (medium spatial resolution) had constrained our ability to monitor UGSs. 197 

Since 2009, however, all archived Landsat scenes have become available to all users at no charge via 198 
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several web sites. This has revolutionized the use of the Landsat archives in establishing new science, 199 

algorithms and data products in urban geography. Fourthly, the European Space Agency’s has 200 

implemented the Copernicus program with a free and open access policy for imagery from the Sentinel 201 

satellites since 2015 (medium spatial resolution optical and radar data) which has been beneficial in 202 

many studies of UGSs (Dennis et al., 2018). The combined effects of these four key developments in 203 

remote sensing can be seen via the increasing number of publications that have exploited these 204 

technical capabilities to study UGSs (Fig.2(b)).  205 

A further reason for the surge in remote sensing-based studies of UGSs has been the calls by 206 

international organizations for more extensive investigations of UGSs in recent years. For instance, the 207 

World Health Organization (WHO) has devoted a special report to UGSs which demonstrates their 208 

multiple benefits for public health(WHO, 2016). 209 

 210 

 211 

 212 

Fig. 2, (a) number of publications using remote sensing to study UGSs, annually from 2001 to 2019. 213 

Annotations show four key developments in remote sensing; (b) number of publications exploiting the 214 

key developments in remote sensing. Note that Google refers to Google Earth products; High spatial 215 

resolution (Hig); High spatial resolution & Medium spatial resolution (Hig_Med); Hyperspectral (Hyp); 216 

LiDAR(Li); LiDAR & High spatialresolution (Li_Hig); LiDAR & Hyperspectral (Li_Hyp); Medium 217 

spatial resolution(Med). 218 

 219 

 220 

The selected publications on remote sensing of UGSs were also classified according to the country in 221 

which the study was conducted, journal publication and thematic application area. The results showed 222 

that most studies were conducted within China (37 cases) and the U.S.A (36 cases) (Fig.3a). The 223 

remaining studies were undertaken in Europe (Total:25; study per country:1-4), Africa (1 case-Rwanda), 224 

Asia (Total:18; study per country:1-4) and Canada (10 cases) (Fig.3a).The majority of the studies were 225 

published in the 10 top-ranking journals (covered by SCIE or SSCI) in the categories of remote sensing, 226 

urban geography and forestry. The three main journals were: Urban Forestry & Urban greening 227 

(Number of studies:17), Remote Sensing of Environment (12), and Landscapeand Urban Planning (15). 228 

Moreover, the results showed that frequency of publications on remote sensing of UGSs was limited 229 

between 2001 and 2007. Since 2008, remote sensing of UGS has been considerably gaining attention in 230 

the UGSs and remote sensing research communities (Fig.3b). 231 

 In terms of thematic application areas, overall UGSs mapping accounts for 39 of the papers, 232 

followed by species mapping (25 cases), inventory and assessment (18 cases), change detection (19 233 

cases) and ecosystem services (15 cases). A smaller proportion of papers focus on biomass and carbon 234 

estimation (11 cases) and three-dimensional modeling (8 cases). Additionally, a growing interest has 235 

been observed for the use of remote sensing of UGSs in thematic application areas since 2008. In 236 

particular, the number of studies on change detection and biomass and carbon estimation has increased 237 
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considerably, likely due to the addition of advances in remote sensing such as new sensors and image 238 

processing techniques which have prompted such research topics. 239 

 240 

 241 

Fig.3. (a)World map presenting where the 136 selected articles has been conducted in the world(per 242 

country publication);(b) frequency of publication according to the year; Ecological Indicators (EI); 243 

Geocarto International (GI);International Journal of Applied Earth Observation and Geoinformation 244 

(IJAEO); International Journal of Remote sensing (IJRS); ISPRS Journal of Photogrammetry and 245 

Remote Sensing(ISPRS); Landscape and Urban Planning(LULP);Remote sensing (RS);Remote 246 

Sensing of Environment(RSE); Science of the Total Environment (STE);Urban Forestry&Urban 247 

Greening(UFUG); (c) frequency of use of thematic application area to year; Inventory and assessment 248 

(Inv_Ass);Biomass and carbon (BC);Change detection (CD); Ecosystem services (ES):Overall UGSs 249 

mapping (OUGS);Species mapping (Spe);Three-dimensional modeling (TDM) 250 

 251 

 252 

3.2. What are the main technical considerations when using remote sensing to study UGSs? 253 

3.2.1. Importance of technical considerations in UGSs classes and thematic areas 254 

UGSs classes and thematic areas have an important impact in remote sensing-based investigation. 255 

UGSs can be broadly divided into two classes (Wang et al., 2018; Haase et al., 2019): (a) Medium to 256 

large-scale UGSs such as parks and urban forests and (b) small-scale UGSs such as gardens or 257 

backyard green of private houses and scattered patches of trees. It bears emphasis that while 258 

small-scale UGSs each occupy a limited area, when considered in their totality, they can represent a 259 

significant amount of urban space. Moreover, thematic application areas of remote sensing UGSs 260 

can be classified as overall UGSs mapping, species mapping, inventory and assessment, change 261 

detection and ecosystem services. Although many research endeavors have been oriented towards the 262 

remote sensing of UGSs, the relationship between technical considerations of remote sensing, thematic 263 

areas and UGSs classes is unclear.  264 

The motivation for using remote sensing arises from the potential to extract information about 265 

UGSs precisely (e.g., detecting location of UGSs, identifying UGSs’ vegetation cover species and 266 

estimating fraction of UGSs), quickly and at minimum cost. However, the demands on remote sensing 267 

may vary according to the UGSs classes and thematic application areas and it is hard to define general 268 

standards or optimal characteristics for remote sensing of UGSs. In particular, the cost-effectiveness of 269 

using remote sensing may be dependent on the balance between data and processing costs and the 270 

benefits provided to a particular application. For example, urban tree species information might be 271 

desirable for precision management of UGSs, while land cover mapping (e.g. vegetation and 272 

impervious surfaces) at the landscape scale may be sufficient for the management of UGSs across an 273 

entire city. In this context, mapping of urban street tree species can be carried out using hyperspectral 274 

and LiDAR data which is likely to incur considerable costs (Jensen et al., 2009) while Landsat or 275 

Sentinel imagery can be used for large-scale UGSs mapping at a minimal cost (Rosina and Kopecka, 276 
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2016). Hence, there are a series of technical issues which need to be considered when determining the 277 

most appropriate remote sensing approaches in studies of UGSs, and evidence is drawn from the 278 

literature to highlight these issues in the remainder of this section.  279 

3.2.2. Spatial resolution 280 

Cities are incredibly complex and heterogeneous landscapes where vegetation is often present as 281 

very small patches or even scattered trees (Mitchell et al., 2018). Also, a portion of UGSs may be on 282 

private properties, which may be difficult to access in the field and relatively small in size, but 283 

numerous in quantity. Thus, the analysis of UGSs often demands high spatial resolution remotely 284 

sensed imagery, as demonstrated in many studies (Li et al., 2015b; Tigges and Lakes, 2017; Mitchell et 285 

al., 2018; Sun et al., 2019). Fig.2(b) also confirms this, as 38% of published studies utilized high 286 

spatial resolution imagery, followed by medium spatial resolution imagery (17%), and a combination of 287 

high and medium spatial resolution imagery (9%) (also see Supplementary Data1:Table 2).  288 

Our investigation showed that most studies using high spatial resolution imagery focused on the 289 

application areas of overall UGSs mapping (12 cases), inventory and assessment (9 cases), species 290 

mapping (9 cases) and ecosystem services (9 cases) (Supplementary Data 2: Table 1). There were seven 291 

studies which focused on change detection and four on biomass and carbon estimation, with only two 292 

studies using high spatial resolution imagery for three-dimensional modelling. Only one paper has 293 

explicitly identified the impacts of spatial resolution on the uncertainty of mapping UGSs using 294 

WorldView-2 (Sun et al., 2017). They synthesized a range of spatial resolution from 2m to 40m based 295 

on the WorldView-2.The results of this study demonstrated that UGSs can be captured successfully 296 

using imagery with spatial resolutions between 2m and 16m, with less effective results at lower 297 

resolutions. Moreover, it is worth noting that some studies employed high spatial resolution sensors on 298 

board of unmanned aerial vehicles (UAVs) (Liang et al., 2017) and aircraft (Mozgeris et al., 2018) 299 

(Supplementary Data 1: Table 2)   300 

High spatial resolution imagery, however, possesses three major drawbacks: (a) They are not freely 301 

available to researchers; (b) There are unique problems with these data, more importantly, shadow. 302 

Shadow is widely present in urban environments and covers a large amount of vegetation in avenues, 303 

backyards and beside high buildings. With high spatial resolution imagery a significant proportion of 304 

pixels may be under deep and complete shadow and this hinders image interpretation, for example by 305 

reducing classification accuracy (Jensen et al., 2012); and (c) High spatial resolution can generate high 306 

within class and low between class variability in urban areas due to the complex and heterogeneous 307 

environment (Pu and Landry, 2012; Geiss et al., 2016). 308 

The availability of medium spatial resolution imagery (e.g., Landsat and Sentinel archives) may 309 

compensate for some of the challenges of high spatial resolution imagery. Although these data cannot 310 

map UGSs at fine scales, they can be used to assess the overall pattern of UGSs and delineate major 311 

parks and patches of vegetation within cities (Small, 2001). The majority of published studies using 312 

medium resolution imagery have focused on overall UGSs mapping (12 cases) (Supplementary Data 2: 313 

Table 2). Other studies have used medium spatial resolution imagery for change detection of UGSs (4 314 

cases), quantifying ecosystem services (4 cases), biomass and carbon estimation (3 cases) and 315 
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inventory and assessment (1 case). However, we did not identify any studies where medium spatial 316 

resolution imagery has been applied to species mapping and three-dimensional modelling. This result is 317 

supported by previous studies which showed that medium spatial resolution imagery may not be 318 

sufficient for extracting such information (Pu and Landry, 2012; Alonzo et al., 2014; Tigges and Lakes, 319 

2017). 320 

Our review showed that some studies have used combinations of data from satellite sensors of 321 

differing spatial resolution (Kong and Nakagoshi, 2006; Rafiee et al., 2009; Solange, 2015; Zoran et al., 322 

2015; Chen et al., 2017a; Zhou et al., 2018). For instance, information on night time lights from coarse 323 

resolution imagery (Defense Meteorological Satellite Program) has been used for detecting boundaries 324 

of urban regions, within which medium resolution multispectral imagery (Landsat) were used for 325 

monitoring changes in UGSs (Chen et al., 2017a). Similarly, UGSs have been quantified using a 326 

combination of low spatial resolution (Terra MODIS) and high spatial resolution (IKONOS) imagery 327 

(Zoran et al., 2015). 328 

3.2.3. Spectral resolution  329 

The spectral response of UGSs is generated by radiation interacting with a mixture of vegetation and 330 

urban materials, both of which can be very heterogeneous. Thus, in order to discriminate UGSs from 331 

other urban features and characterize the vegetation within UGSs, remotely-sensed data of sufficient 332 

spectral resolution is required. The spectral resolution of remote sensing instruments can generally be 333 

divided into two groups: multispectral and hyperspectral. Multispectral sensors typically include 4-8 334 

bands that span the visible, near infrared, short wave infrared spectral, and thermal infrared domains 335 

whereas hyperspectral sensors typically have many hundreds of bands which cover these spectral 336 

domains. Both types of instruments can provide useful information for characterizing UGSs. 337 

Multispectral systems tend to be capable of discriminating vegetation within urban areas and mapping 338 

UGSs, while hyperspectral sensors are usually required for identifying vegetation species within UGSs 339 

(Voss and Sugumaran, 2008; Alonzo et al., 2014). Nevertheless, improving the spectral resolution of 340 

multispectral system can have a significant impact, for example, it has been shown that the addition of 341 

four new bands to World View 2 improves the capabilities for species discrimination compared to 342 

IKONOS (Pu and Landry, 2012). Only one study has conducted a comparison between the use of 343 

hyperspectral data at high spatial resolution and multispectral data with similar resolution when 344 

studying UGSs (Pu and Landry, 2012). A detailed review of the effects of spectral resolution on 345 

detecting urban vegetation can be found in Fassnacht et al. (2016). Some studies using hyperspectral 346 

systems have identified important wavelength regions for classifying urban forests and trees, notably 347 

the green edge, green peak, yellow edge, red and near infrared (Xiao et al., 2004; Alonzo et al., 2013; 348 

Liu et al., 2017). Moreover, it has be argued that urban tree species can be classified using the blue 349 

region due to their relatively lower photosynthetic activity in this region (Pu and Liu, 2011). Despite 350 

the potential value of hyperspectral sensors, we observed that only 5% of studies have used these 351 

sensors in investigations of UGSs, while the rest rely on multispectral remote sensing mainly at the 352 

medium spatial resolution (Fig 1(b) and Supplementary Data 1: Table 2). This is likely due to the 353 

limited accessibility to hyperspectral data which are collected from airborne platforms and few satellite 354 
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sensors that have limited spatial coverage and relatively high acquisition costs. It is important to note 355 

that while EO-Hyperion data can make a contribution in analyzing UGS due to their hypespectral 356 

sensing capability and free access (Lv and Liu, 2009), their medium spatial resolution(30m), limited 357 

spatial coverage and coarse temporal resolution have hampered frequent use of this satellite sensor in 358 

such studies. 359 

3.2.4. Timing of image acquisition 360 

Timing of image acquisition is a very important consideration in remote sensing of UGSs because 361 

of vegetation phenological cycles which cause changes in leaf biochemistry and canopy structure of 362 

vegetation (Voss and Sugumaran, 2008; Tigges et al., 2013; Li et al., 2015a; Pu et al., 2018). Such 363 

phenological cycles lead to temporal variations in the remotely-sensed response of vegetation. In 364 

general, fall and spring have been found to be the most appropriate seasons for mapping UGSs and 365 

identifying vegetation species (Voss and Sugumaran, 2008; Jensen et al., 2012; Zhang and Qiu, 2012; 366 

Duarte et al., 2018) . However, there are a variety of findings on this issue. For example, Liu et al. 367 

(2017) reported that for a species diverse area, the presence of a mixture of trees with leaf-on and 368 

leaf-off conditions could reduce classification accuracy when mapping urban tree species. Another 369 

study indicated an improvement in accuracy of tree species mapping in late spring (April) (Pu et al., 370 

2018). Voss and Sugumaran (2008) reported no improvement in overall accuracy when applying 371 

hyperspectral data from fall as compared to a summer dataset, yet the fall dataset provides more 372 

consistent results for all tree species while the summer dataset had a few higher individual class 373 

accuracies. It is likely that the variability in results related to the timing of acquisition may be 374 

explained by variations in species composition of the study sites used across different studies and the 375 

varying physiological responses of species to the different climatic contexts of the study sites. 376 

To minimize such conflict, an alternative way is to use multi-date imagery rather than single date 377 

for studies of UGSs (Tigges et al., 2013; Li et al., 2015a; Pu et al., 2018; Yan et al., 2018). For 378 

example, using remotely sensed imagery acquired in summer and winter seasons can facilitate the 379 

discrimination of deciduous and ever green trees (Xiao et al., 2004).  380 

3.2.5. LiDAR 381 

Light detection and ranging (LiDAR) systems offer one of the most accurate techniques for 382 

characterizing vegetation covers from local to regional scales (Liu et al., 2017). The main mechanism 383 

of LiDAR is that laser pulses are emitted at the measured object and back scattered returns are recorded 384 

and analyzed in order to characterize the 3-dimentional(D) properties of the vegetation surface and 385 

canopy structure(Tanhuanpaa et al., 2014). Therefore, LiDAR can reduce influence of shadow, measure 386 

structural attributes and biophysical parameters, and provide three-dimensional information (Voss and 387 

Sugumaran, 2008; Jiang et al., 2017; Liu et al., 2017). Our results showed that 8% of papers used 388 

LiDAR to study UGSs (Supplementary Data 1:Table 2) and of these three cases focused on inventory 389 

and assessment, followed by four cases on overall UGSs mapping and four cases on three-dimensional 390 

mapping (Supplementary Data 2: Table 3). 391 

Several studies have demonstrated the benefits of combining LiDAR with hyperspectral data and 392 

high spatial resolution imagery (Zhang and Qiu, 2012; Alonzo et al., 2013; Dian et al., 2016). For 393 
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instance, combination of LiDAR and hyperspectral data can aid in the detection of invasive vegetation 394 

in urban environments (Chance et al., 2016). Combined LiDAR and hyperspectral data were used in 395 

7.1% of studies while the integration of LiDAR data and high spatial resolution imagery was observed 396 

in 10% of studies. At the applications level, the combination of LiDAR with hyperspectral data was 397 

mainly employed in UGSs species mapping (8 cases) and inventory and assessment (2 cases) 398 

(Supplementary Data 2: Table 4). Moreover, integrated LiDAR data and high spatial resolution imagery 399 

were used in UGSs species mapping (4 cases), three-dimensional modeling (2 cases), biomass and 400 

carbon analysis (3 cases), change detection (2 cases), ecosystem services (1 case) and overall UGSs 401 

mapping (2 cases) (Supplementary Data 2: Table 5). 402 

3.2.6. Synthetic aperture radar (SAR) 403 

SAR sensors actively send microwave signals to the Earth’s surface and detect the back scattered 404 

energy. Therefore, SAR sensors detect Earth’s surface day or night and under all weather conditions. 405 

Transmitted microwave signals can also penetrate vegetation canopies and soil surface layers which 406 

may be of value in some assessments of UGSs. However, despite these advantages of SAR sensors, the 407 

literature pays scant attention on the use of SAR data in studies of UGSs. Our investigation showed 408 

that a range of studies have demonstrated a potential role for SAR, mainly through fusion with optical 409 

sensor data, in the classification of broad urban land cover types i.e. without a specific focus on UGSs 410 

(e.g.,Ban et al., 2010; Niu and Ban, 2013; Werner et al., 2014; Zhang et al., 2018; Zhang and Xu, 2018) 411 

as well as through the acknowledged contributions of SAR data in forestry (Fassnacht et al., 2016). 412 

Therefore, the use of SAR data in studies of UGSs appears to be a valuable area for future 413 

investigations.   414 

 415 

3.2.7.Google Earth products- Google Street View 416 

Satellite sensors imagery may not provide information on the visual effects of UGSs on citizens 417 

(Yang et al., 2009; Jiang et al., 2017; Li et al., 2018). To compensate for this problem, a range of 418 

studies (3.5%) have used Google Earth products, including Google Street View. For instance, Yang et 419 

al. (2009) developed the Green View Index which is based on assessing vertical profiles from Google 420 

Street View imagery to analyze urban forest structures. Likewise, Li et al.(2018) calculated the Sky 421 

View Factor using Google Street View imagery to measure the proportion of sky that is obstructed by 422 

buildings and tree canopies. Jiang et al. (2017) pointed out that Google Earth imagery and the software 423 

i-Tree street can be used to objectively calculate tree cover density at little or no cost to user. Richards 424 

and Edwards (2017) demonstrated that hemispherical canopy photographs taken from Google Street 425 

View could be used to assess the shading of diffuse and direct radiation by the canopy at a particular 426 

location. Hence, there is growing evidence that Google Earth products can have a role to play in 427 

understanding UGSs. 428 

3.2.8. Google Earth Engine(GEE) 429 

Google Earth Engine (GEE), a cloud-based geospatial processing computing platform, offers 430 

satellite data processing and geographic information system(GIS) analysis from local to global scale 431 

(Gorelick et al., 2017). GEE employs medium spatial resolution satellite sensors such as Landsat and 432 
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Sentinel for monitoring land use and land cover in an efficient way. Our findings illustrated that a range 433 

of studies have highlighted a potential role for GEE in UGSs (Huang et al., 2017; Huang et al., 2018b; 434 

Zhang et al., 2019). For example, Huang et al. (2018b) assessed the influence of urban form on the 435 

structure of UGSs in 262 cities in China based on the GEE. Huang et al. (2017) quantified the change 436 

in health benefits generated by urban green spaces in 28 megacities worldwide between 2005 and 2015 437 

by using GEE. Zhang et al. (2019) estimated the spatial accessibility of urban forests based on the GEE. 438 

Thus, although the spatial resolution of remotely sensed data in GEE may not be sufficient for 439 

capturing details of UGSs, there is growing evidence that GEE can play a central role in analyzing 440 

UGSs at regional and global scales. 441 

3.2.9. Pre-processing-Atmospheric correction 442 

Earth’s atmosphere influences surface-reflected radiation recorded by satellite sensors; this can be 443 

detrimental to the remote sensing of surface characteristics and the effect can be amplified over urban 444 

regions because of the polluted atmosphere. Consequently, the quality of satellite images usually needs 445 

to be improved by using atmospheric correction algorithms (Pu and Landary, 2012). Our results 446 

showed that 38 of the studies used atmospheric correction techniques while the remaining majority of 447 

the studies did not mention atmospheric correction in their pre-processing section (Supplementary Data 448 

1:Table 3).The most common atmospheric correction methods were Fast Line-of-sight Atmospheric 449 

Analysis of Hypercubes (FLAASH; 13 cases) and Atmospheric and Topographic Correction (ATCOR; 450 

7 cases) (Supplementary Data 1:Table 3). Other techniques such as QUick Atmospheric Correction 451 

(QUAC) (Shojanoori et al., 2016), dark object subtraction (Asmaryan et al., 2013), and Second 452 

Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV)(Li et al., 2015a) were employed in 453 

the rest of UGSs studies (18 cases). 454 

While atmospheric correction was used as a pre-processing step in several studies, less attention 455 

has been devoted to revealing the specific contributions of atmospheric correction in the remote 456 

sensing of UGSs. In this respect, only Pu et al.(2015) evaluated the effects of atmospheric correction 457 

for identifying urban tree species with WorldView-2 imagery. This study provided two major 458 

conclusions: (1) there is uncertainty around the assumed surface reflection model and atmospheric 459 

parameters for using atmospheric correction models; and (2) atmospheric correction is not necessary 460 

for single date imagery as it may result in a reduction of the signal-to-noise ratio. Hence, it seems that 461 

there is scope for more explicit consideration of the impacts of atmospheric effects in remote sensing 462 

studies of UGSs, with more judicious use of correction methods for the preprocessing of imagery time 463 

series where the detection of real changes in UGSs characteristics is required. 464 

3.2.10. User demands and cost-efficiency 465 

The main rationale behind using remotely sensed imagery in studies of UGSs is to reduce the costs 466 

associated with field data collection campaigns. To the best of our knowledge, detailed evaluations of 467 

the financial benefits or detriments of using remotely sensed data in measurements of UGSs have not 468 

been presented. Among the 136 papers reviewed, the results showed that only two articles conducted 469 

comprehensive investigations on the cost efficiency of remotely sensed data in studies of UGSs. Li et 470 

al.(2015) showed that high spatial resolution images offer fine scale information on UGSs though they 471 
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are expensive compared to the moderate spatial resolution (30m). Furthermore, Jensen et al. (2009) 472 

found that modeling urban leaf area index using hyperspectral imagery is cost-effective, accurate and 473 

practically feasible. Although the cost of remotely sensed imagery could be an obstacle for detailed, 474 

large scale and repetitive measurement of UGSs, it is contended that such costs are outweighed by the 475 

value derived from such work in improving UGSs and delivering multiple benefits and services (Jensen 476 

et al., 2009; Chen et al., 2017b). 477 

3.3.Which analytical techniques have been used in the remote sensing of UGSs? 478 

Remote sensing-assisted mapping of UGSs can play an important role in characterizing the spatial 479 

distribution of vegetation cover within urban regions (e.g., Puissant et al. 2014) and several analytical 480 

techniques have been suggested for mapping UGSs. Our results show that the techniques are hybrid 481 

methods (37 cases), followed by object-based image analysis (29 cases), land cover indices (20 cases) 482 

and fraction methods (16 cases) (Supplementary Data1:Table 4). Further details on these techniques are 483 

provided below. Fig.4 (a) and (b) outlines the different techniques that have been used to characterize 484 

UGSs according to different types of remotely sensed data and thematic application areas, respectively. 485 

 486 

 487 

Fig.4. Different techniques to characterize UGSs: (a) frequency of use of techniques according to type 488 

of remotely-sensed data, and (b) frequency of use of techniques according to application area. 489 

 490 

As seen in Fig.4 hybrid methods are popular for characterizing UGS. This is because combining the 491 

strengths of various algorithms into a single framework tends to increase the performance of the 492 

technique. A standard architecture for hybrid methods consists of combining per pixel classification, 493 

soft classifiers and object-based classification. Hybrid techniques can be dependent, whereby the 494 

output of one technique is used to inform the next classifier, or independent, whereby each technique is 495 

run independently and the outputs are combined. For example, Liu and Yang (2013) first partitioned 496 

the entire landscape into rural and urban subsets according to road network density, thereby each subset 497 

can be analyzed independently to reduce spectral confusion between some urban landscapes and 498 

agricultural land covers. Then the combination of a soft classifier and a supervised classification were 499 

employed to generate a map of UGSs. Pontius et al. (2017) used the combination of a mixture-tuned 500 

match filtering (MTMF)-based spectral unmixing, watershed segmentation and image multiresolution 501 

segmentation to map urban ash trees. In this research, MTMF was used for species detection while 502 

multiresolution segmentation was used to differentiate forest/non-forest and watershed segmentation to 503 

delineate tree crowns. This hybrid method facilitated the synthesis of information from LiDAR and 504 

hyperspectral data and this type of hybrid approach is frequently used in this context (Fig. 4(a)). For 505 

instance, Liu and Wu (2018) developed a hybrid technique to map vegetation species within UGSs. 506 

This method consisted of three steps (Liu and Wu, 2018): (1) delineating individual trees using local 507 

maxima (LM) and linear regression based on the relationship between the height of the trees and their 508 

crown sizes; (2) extracting crown spectra from hyperspectral imagery using linear spectral mixture 509 

analysis; and (3) classifying tree species from crown spectra by applying a support vector machine. In 510 
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general, hybrid methods have been used in all application areas, but are more frequently observed in 511 

UGSs species mapping (14 cases) and overall UGSs mapping (7 cases) (Fig. 4(b)). 512 

Many authors have applied object-based image analysis (OBIA) for mapping UGSs. Fig. 4(a) shows 513 

that OBIA approaches are dominant in studies using high spatial resolution imagery. OBIA techniques 514 

are generally based on segmentation algorithms which use auxiliary information, such as image texture 515 

and context, in tandem with spectral information. For example, Pu and Landry (2012) mapped urban 516 

vegetation species by employing texture information from IKONOS and WorldView imagery within an 517 

integrated analysis using linear discriminant analysis and regression trees. Likewise, Yan et al.(2018) 518 

used OBIA to map vegetation functional types within urban regions. It is noteworthy that most studies 519 

employing OBIA (either individually or within a hybrid method) mainly used segmentation algorithms 520 

in the eCognition software. Among the different application areas, OBIA was used extensively in 521 

UGSs species mapping (9 cases) and overall UGSs mapping (8 cases) (Fig. 4(b)).  522 

One large stream of studies employs land cover indices to characterize UGSs from satellite imagery. 523 

These techniques typically use combinations of different wave bands from multispectral satellite 524 

sensors. Among the land cover indices, the normalized difference vegetation index (NDVI) is the most 525 

well-known and most widely applied index for mapping UGSs (Jensen et al., 2012). For example, 526 

Chen et al.(2017a) employed NDVI to differentiate green and non-green regions within urban areas. 527 

Land cover indices have been used in different application areas such as change detection (6 cases) and 528 

ecosystem services (5 cases) (Fig. 4b)). For example, Lwin and Murayam (2011) quantified UGSs 529 

using NDVI in order to model the accessibility of UGSs and for assessing the implications for 530 

environmental quality and health of residents. The popularity of these methods is attributed to their 531 

simple estimation techniques, easy interpretation of results, and because they can provide a continuous 532 

spatial variable (as opposed to a classified map) which can be integrated in modeling and simulations.  533 

Fraction methods have been used in a number of studies. Mapping urban green spaces at the 534 

fraction level (sub-pixel level) provides information on the density of vegetated areas in urban regions 535 

(Van de Voorde et al., 2008). In urban geography, fraction estimation is mainly based on the 536 

vegetation-impervious surface-soil (V-I-S) model which considers a pixel an urban area as being 537 

covered by these three surface types in variable proportions(Van de Voorde et al., 2008). Fraction 538 

techniques facilitate overall mapping of vegetation and are particularly effective when using medium 539 

spatial resolution imagery. For example, Lu et al. (2017) employed an unmixing technique to map 540 

urban vegetation fraction across 25 cities using Landsat imagery. Likewise, Hasse et al. (2019) used a 541 

combination of spectral unmixing and random forest regression to map front and back yard vegetation 542 

in residential areas using Rapideye imagery. Fraction methods are much more widely used in overall 543 

UGSs mapping compared to other application areas. 544 

Per-pixel analysis (conventional classification techniques) has also been employed for mapping 545 

UGSs. For example, Kopecka et al., (2017) extracted urban vegetation from Sentinel-2A imagery using 546 

a supervised maximum likelihood classification, while Thaiutsa et al.(2008) classified UGSs using an 547 

unsupervised classification. It is also noteworthy that researchers have employed point sampling and 548 

visual interpretation to characterize UGSs from remotely-sensed imagery. A number of studies have 549 
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also used pre-existing maps as a tool for extracting thematic UGSs datasets (Supplementary Data 550 

1:Table 4).We found that only one study used deep learning algorithm, Dense Convolutional Network 551 

(DenseNet), to map USGs from remotely-sensed data (Hartling et al., 2019).  552 

3.4 What are the major thematic application areas for remote sensing of UGSs? 553 

In this section we focus on the variety of thematic application areas related to UGSs that have been 554 

supported using remote sensing and the specific approaches within each application area that have been 555 

used (Table2). It is worth nothing that providing the details of analytical methods is beyond the scope 556 

of this paper and it is suggested that readers consult the corresponding cited literature for further 557 

information on the approaches used. 558 

3.4.1 Inventory and assessment 559 

In inventory and assessment applications, researchers have focused on measuring different aspects of 560 

UGSs which is also reflected in the context or title of their studies (Table 2). We found that studies 561 

assessing the health of vegetation in UGSs (Xiao and Mcpherson, 2005; Asmaryan et al., 2013; Nasi et 562 

al., 2018; Nouri et al., 2018) and geospatial modeling were dominant within this group (Table 2). The 563 

rest of the studies concentrated on other aspects such as leaf area modeling, vegetation phenology and 564 

economical investigations. Among this group, Nouri et al. (2018) quantified impacts of salinity on 565 

UGSs while Asmaryanet al. (2013) monitored effects of pollution on the urban vegetation. 566 

3.4.2 Biomass and carbon estimation 567 

Remotely sensed data have been used in monitoring carbon and biomass within UGSs. This 568 

research has mainly used regression modeling between carbon/biomass and remotely sensed variables 569 

(Table2). For instance, Yao et al. (2015) established regression models between above ground carbon 570 

stock in UGSs and several vegetation indices. The Difference Vegetation Index (DVI), Ratio 571 

Vegetation Index (RVI), Soil Adjusted Vegetation Index (SAVI), Modified Soil Adjusted Vegetation 572 

Index (MSAVI) and Renormalized Difference Vegetative Index (RDVI) were all less well correlated 573 

with carbon than NDVI. In another study, carbon stock within UGSs was estimated using guidelines 574 

from the Intergovernmental Panel on Climate Change (IPCC) and employing a point sampling 575 

approach to analyze aerial photographs (McGovern and Pasher, 2016).  576 

3.4.3 Change detection 577 

An important topic for urban policy makers is the objective measurement of UGSs changes through 578 

an approach that takes into account not only major changes between land cover types (e.g., urban 579 

brownfields to green spaces) but also information on more subtle changes within UGSs (e.g., changing 580 

species composition). Various techniques for monitoring UGSs have been developed using medium 581 

and high spatial resolution imagery (Table2). Most change detection studies have employed landscape 582 

metrics. For instance, Zhou et al.(2018) used landscape shape index (LSI) complexity, mean patch size 583 

(MPS), patch density (PD), and edge density (ED) to quantify changes in UGSs of nine Chinese cities. 584 

Some studies have employed GIS-based spatial analysis to quantify change in UGSs within concentric 585 

buffer zones (e.g., Gan et al., 2014). One study focused on developing maximum information-based 586 

nonparametric exploration (Yang et al., 2014). This study calculated maximum information 587 

coefficients between the trend of urban green coverage and changes in socio-economic and climate 588 
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variables. Wang et al.(2018) introduced new metrics for UGSs at the patch level in order to quantify 589 

the process of growth, shrinkage, creation or disappearance of patches. Moreover, several models have 590 

been developed to quantify change in UGSs. For example, Ossola et al. (2018) used multi-temporal 591 

airborne LiDAR and multi-spectral imagery collected at a 5-year interval to measure urban tree loss 592 

dynamics. Multivariate regression models were then established to relate the number and height of tree 593 

stems lost in residential parcels in each census tract to a range of urban morphological and 594 

socio-economic variables.  595 

3.4.4. Ecosystem services 596 

In this thematic application area, we found three major groups of studies: modeling, policy 597 

investigation, and morphological spatial pattern analysis (MSPA) (Table2). A range of models have 598 

been constructed to evaluate different aspects of UGSs. For example, Jensen et al. (2004) built a neural 599 

network model to estimate urban leaf area using field measurements and satellite remote sensing data 600 

for studying urban quality of life and urban forest amenities. Some studies have employed a hedonic 601 

model for UGSs evaluations (Franco and Macdonald, 2018; Mei et al., 2018). The hedonic method is 602 

an indirect approach to valuing public goods and has been widely used in environmental economics 603 

studies (Franco and Macdonald, 2018; Mei et al., 2018). This is the best known and most widely 604 

accepted method for valuing urban forest amenities. A number of studies have focused on policy and 605 

planning evaluations, mainly using GIS or Google Street View analysis. For instance, Richards et 606 

al.(2017) analyzed hemispherical photographs extracted from Google Street View to quantify the 607 

proportion of green canopy coverage and the proportion of annual radiation that is blocked from 608 

reaching ground level by the canopy along Singapore’s road network. They showed that there was 609 

significant variation between different urban land use types, with trees providing more shade in parks 610 

and low-density low-rise areas than in industrial and higher-density residential areas. Mapping the 611 

provision of street tree ecosystem services could help to prioritize areas for new planting by identifying 612 

streets or street sections with low shading. Moreover, MSPA was also employed in two studies (Table2) 613 

with the aim of quantifying urban sustainability in the context of the planning and management of 614 

UGSs. 615 

3.4.5 Overall UGSs mapping 616 

Our review showed that previous studies have examined a wide range of aspects of overall UGSs 617 

mapping (Table2). Studies have concentrated upon urban vegetation mapping (all types of vegetation 618 

covers) and urban tree mapping. This is consistent with previous research showing the importance of 619 

establishing a database on the spatial distribution and abundance of UGSs which could play a 620 

significant role in supporting existing sustainable urban regulations and may emerge as an indicator of 621 

the degree of urban quality (Van de Voorde et al., 2008).  622 

Beyond mapping, characterizing biophysical parameters and types of UGSs are of central 623 

importance in the smart management of UGSs (Jensen et al., 2009). However, there are only a small 624 

number of studies making use of remote sensing technology for such purposes (Table2). For example, 625 

Ren et al. (2015) estimated canopy density, basal area and leaf area index using remotely sensed 626 

vegetation indices. Despite gardens being important urban ecosystems, there were only two studies 627 
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which focused specifically on this type of UGS (Baker et al., 2018; Haase et al., 2019). This may imply 628 

that there are difficulties in extracting detailed information on the precise land use characteristics of 629 

UGSs from remotely sensed imagery.   630 

3.4.6. Species mapping 631 

Managers of urban areas are interested to know about vegetation species to maintain UGSs 632 

appropriately and more importantly to protect UGSs from invasive species. Previously, species 633 

mapping in UGSs species was challenging and costly because it was based on field surveys. However, 634 

urban managers and scientific communities are now able to identify vegetation species within urban 635 

regions in an accurate and timely way through remote sensing technology. As shown in Table 2, the 636 

dominant research focus has been to identify urban tree species. The popularity of this topic could be 637 

attributed to the dominance of tree cover in almost all cities. Therefore, tree covers can be detected 638 

readily compared to other types of vegetation. Shrub detection has also been studied (Table 2). Such 639 

research was mainly conducted for detecting invasive vegetation within urban regions. It is also 640 

noteworthy that some studies have quantified atmospheric and phenological effects on species 641 

detection from remote sensing. 642 

3.4.7.Three-dimensional modeling 643 

This group of studies covers the analysis of the vertical characteristics of UGSs, and using such 644 

information to establish three-dimensional models. Such studies are based on LiDAR data and a 645 

combination of LiDAR and high spatial resolution imagery. For example, Caynes et al. (2016) 646 

quantified the relative density of vegetation within different vertical strata using LiDAR data. They 647 

also calculated the foliage height diversity for each raster cell to characterize the vertical complexity of 648 

vegetation in UGSs. Moreover, several models using vertical information derived from remote sensing 649 

were developed to estimate the volume of UGSs. For instance, Hetch et al.(2008) developed a model 650 

based on fuzzy logic techniques and LiDAR point clouds to estimate UGS volume. 651 

 652 

Table 2 653 

Thematic areas of application of remote sensing in the context of UGSs 654 

 655 

4. Discussion 656 

4.1 Future technical requirements 657 

  The findings of this review showed that the amount of scientific literature relevant to remote 658 

sensing-assisted analysis of UGSs has been increasing rapidly since 2000. This trend demonstrated the 659 

significant contribution of the science of remote sensing to the monitoring, planning and management 660 

of UGSs. The review revealed that the analysis of fine scale remotely sensed data lies at the core of 661 

much work on UGSs. Fine scale remotely sensed data offer a wealth of detailed information that may 662 

be used to answer a wide range of critical questions related to UGSs. In addition, LiDAR data, 663 

ultra-high spatial resolution imagery, hyperspectral data and Google Earth Products provide a spectrum 664 

of useful information which can be used stand alone or in combination. Although the remote sensing of 665 

UGSs has matured considerably, there is scope for significant further development. The key concerns 666 
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that have been identified based on the review are presented below.  667 

 Presence of shadow in high spatial resolution imagery can reduce the accuracy of UGSs mapping 668 

(Zhang and Qiu, 2012; Merry, 2014). Considerable further research is therefore needed for 669 

recovering information from areas under shadow or at least to minimize the effects of shadow. 670 

 Compared to species detection (Table 2), studies on the use of hyperspectral information in UGSs 671 

such as public parks and urban gardens are currently still in an early experimental stage. Spectra of 672 

UGSs respond to a mixture of different types of vegetation species and urban materials (Jense, 673 

2012). Future research should improve the understanding of the reflectance characteristics of 674 

vegetation covers in such environments. Ultimately, this could facilitate accurate species mapping, 675 

invasive plant detection, health assessment, and above all, smart management of UGSs. 676 

 There is a need to develop methods for extracting informative and intelligent information from 677 

Google Street View, for example, species characteristics and the quality of UGSs as might be 678 

perceived by users of the spaces. 679 

 Existing mapping approaches may not be sufficient to capture the complexity of the UGSs such as 680 

mapping private gardens and yards. More advanced techniques such as fractional approaches 681 

(Haase et al., 2019), deep learning algorithms (e.g., DenseNet (Hartling et al., 2019)) and hybrid 682 

frameworks (Liu and Wu, 2018) could be used as alternative methods for achieving this.  683 

 Copernicus, Landsat and Google Earth data policies guarantee continuous data acquisition and 684 

dissemination for decades. This capability is triggering a shift from single image analysis to time 685 

series processing. Novel approaches must be established to optimally analyze the temporal 686 

characteristics jointly with spatial and spectral information within these images.  687 

 Since GEE is composed mainly medium spatial resolution imagery, developing new approaches 688 

for quantifying small UGSs patches based on GEE platform should be addressed in future studies. 689 

 While this review covered the contributions of remote sensing in studies of UGSs, we did not 690 

review the detailed technical aspects. A robust evaluation of all algorithms used in the reviewed 691 

studies would require a standardized setting with respect to targeted topics which is beyond the 692 

scope of this research. Future research should, therefore, review the analytical approaches used in 693 

the application of remote sensing in USGs studies, such as the techniques used to model leaf area 694 

in urban regions or to detect changes in UGSs.  695 

 Although several studies have indicated that SAR imagery could be of value in urban land cover 696 

mapping (e.g.,Ban et al., 2010; Niu and Ban, 2013; Werner et al., 2014; Zhang et al., 2018; Zhang 697 

and Xu, 2018), the potential of such data specifically in studies of UGSs seems to be 698 

under-examined. Given the increasing availability of high quality SAR data, notably Sentinel-1A 699 

data from the Copernicus programme, there is now a timely opportunity to explore the 700 

contributions of these data in studies of UGSs. 701 

 Although many research endeavors have been oriented towards applications of GEE in study of 702 
UGSs, there is a great need for providing a comprehensive comparison (e.g. systematic review) 703 
among a range of techniques in GEE in terms of analyzing UGSs. 704 
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 Small-scale UGSs, when considered in their totality, can represent a significant amount of urban 705 

spaces. In this view, the result of the present review was consistent with previous research (Wang 706 

et al., 2018; Haase et al., 2019) showing that remote sensing of UGS has tended to overlook the 707 

analysis of small-scale UGS. Therefore, more research is needed to quantify small-scale UGSs. 708 

4.2 A potential framework for future applications of remote sensing in the context of UGCs 709 

The utility of remotely sensed data for investigating UGSs has been explored in this paper. It has 710 

been demonstrated that the remotely sensed data offer a valuable source of information that allows 711 

researchers and managers working with UGSs to move beyond traditional methods and tackle large 712 

scale problems. However, for this potential to be realised it will be crucial to follow a suitable 713 

framework in order to appropriately conduct scientific or engineering projects based on remote sensing 714 

of UGSs. For example, Fig. 5 presents the potential nested architecture for designing projects that 715 

apply remote sensing to UGSs. In this architecture, forging a link between research or management 716 

objectives and satellite sensors is essential and this could be obtained through a thorough understanding 717 

of user demands. Accordingly, if a project focuses on large scale UGSs mapping with less details (e.g., 718 

UGSs and non-UGSs) medium spatial resolution imagery such as Landsat and Sentinel data are worth 719 

exploring for the initial step. However, if a project demands fine scale details, other remotely sensed 720 

data can be integrated. This architecture ends with obtaining ultra-detailed maps, which offer 721 

information such as documenting the number of urban trees, number of gardens and their health status, 722 

which may demand the use of detailed imagery from sensors on board UAVs (Liang et al., 2017).This 723 

architecture holds potential as a means of maximizing the efficiency of using remotely sensed data to 724 

analyze UGSs whilst minimizing costs, and potential errors; thereby achieving sustainable management 725 

of UGSs. 726 

 727 
Fig.5. A possible nested architecture for remote sensing of UGSs 728 

 729 

5. Conclusion 730 

Monitoring the overall magnitude, trends and spatial patterns of UGSs is critical for designing 731 

effective schemes to improve the environmental conditions within cities, and for the sustainable 732 

management of urban vegetation. This review aimed to highlight the role of remote sensing technology 733 

in this respect, and thereby, serve as a potential guide to managers and researchers. A systematic review 734 

of the literature was established to succinctly summarize and analyze: trends in the remote sensing of 735 

UGSs over space and time, remotely sensed data considerations in the context of UGSs, methods for 736 

extracting information on UGSs from remotely sensed data and the different thematic application areas 737 

for remote sensing of UGSs.  738 

The review indicated that studies have employed various types of remotely sensed imagery to extract 739 

key parameters necessary to analyze UGSs regions. The data used were found to consist of two main 740 

classes. Firstly, satellite imagery at medium spatial resolution. Here, sensors such as Landsat, and 741 

Sentinel (optical sensors) have contributed significantly to the capabilities in overall mapping of UGSs 742 

and change detection using time series archives. Such data offer the benefits of requiring less complex 743 
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of image processing techniques and being free to access. However, the spatial resolution of these 744 

sensors hinders the process of detecting fine scale characteristics of UGSs in complex urban regions. In 745 

contrast, sensors with high and ultra-high spatial resolution (e.g., IKONOS) have offered fine scale 746 

information (e.g., urban street tree detections (Tanhuanpaa et al., 2014), monitoring subtle change 747 

within USGs (Wang et al., 2018)) in studies of USGs. A number of studies have employed LiDAR, 748 

hyperspectral and other data sources in order to determine specific characteristics of UGSs.  749 

The review also undertook in-depth analysis of the image processing approaches employed to derive 750 

information on UGSs. The techniques used include hybrid approaches, fraction analysis, land cover 751 

indices, per pixel classification, point sampling, visual interpretation, analysis of pre-existing maps and 752 

deep learning. The review suggested that researchers selected their methodologies based on the 753 

complexity of the project. For example, land cover indices may be sufficient to obtain information on 754 

the general pattern of UGSs while mapping street trees may need a hybrid approach. Thus, in this 755 

respect, project demands determine remotely sensed data types and corresponding processing 756 

requirements. 757 

A critical part of the review was to consider the different thematic applications of remote sensing in 758 

the context of UGSs. The findings showed that overall UGSs mapping and species mapping are the 759 

dominant applications while less attention has been given to other aspects. It is likely that the 760 

aforementioned applications can be handled easily, for example by being less reliant on field 761 

campaigns and having easy access to the data sources, compared to other application areas such as 762 

biomass and carbon estimation where data for calibrating and validating remote sensing techniques is 763 

more difficult to acquire.  764 

Although the remote sensing of UGSs has matured considerably, some major considerations 765 

remain: 766 

(1) Further work is needed to develop processing techniques that overcome or reduce the effect 767 

of shadow in urban images. 768 

(2) Research efforts towards developing temporal approaches to analyze changes in a range of 769 

different properties of UGSs should be increased.  770 

(3) There is a great need to develop more effective analytical approaches for the use of remote 771 

sensing across a range of thematic applications related to USGs, such as change detection, 772 

ecosystem services and species mapping.  773 

(4) Despite small-scale UGSs such as gardens being important in urban ecosystems, there were 774 

only few studies which focused specifically on this type of UGSs. Therefore, further 775 

research is needed to quantify small-scale UGSs. 776 

Standing on the edge of a paradigm shift from remote sensing science to application level, it is 777 

important that those with expertise in UGSs bring their expertise into remote sensing science so as to 778 

introduce innovative approaches for solving UGSs problems. Moreover, we encourage efforts within 779 

the UGSs community to share data and techniques for dealing with the challenges presented by UGSs 780 

for the years to come. 781 
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Figures 

 

Fig.1. Flowchart of the systematic review method 
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Fig. 2, (a) number of publications using remote sensing to study UGSs, annually from 2001 to 
2019.Annotations show four key developments in remote sensing; (b)number of publications exploiting 
the key developments in remote sensing. Note that Google refers to Google Earth products; High 
spatial resolution (Hig); High spatial resolution & Medium spatial resolution (Hig_Med); 
Hyperspectral (Hyp); LiDAR(Li); LiDAR & High spatialresolution (Li_Hig); LiDAR & Hyperspectral 
(Li_Hyp); Medium spatial resolution(Med). 
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Fig.3. (a)World map presenting where the 136 selected articles has been conducted throughout the 
world(per country publication);(b) frequency of publication according to the year; Ecological 
Indicators (EI); Geocarto International (GI);International Journal of Applied Earth Observation and 
Geoinformation (IJAEO); Internationa Journal of Remote sensing (IJRS); ISPRS Journal of 
Photogrammetry and Remote Sensing(ISPRS); Landscape and Urban Planning (LULP);Remote 
sensing (RS);Remote Sensing of Environment(RSE); Science of the Total Environment (STE);Urban 
Forestry&Urban Greening (UFUG); (c) frequency of use of thematic application area to year; 
Inventory and assessment (Inv_Ass);Biomass and carbon (BC);Change detection (CD); Ecosystem 
services (ES):Overall UGSs mapping (OUGS);Species mapping (Spe);Three-dimensional modeling 
(TDM) 
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Fig.4.Different techniques to characterize UGSs: (a) frequency of use of techniques according to type 
of remotely-sensed data, and (b) frequency of use of techniques according to application area 
 

 

 
Fig.5. A possible nested architecture for remote sensing of UGSs 
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Tables 
 

Table 1 

Criteria used to select publications for review in this research 

Key words within abstract “Urban forest” OR “Urban vegetation” OR 
“Urban green space” AND “Satellite sensor 
image” OR “Remote sensing” AND “Review” 
 

Document Type Journal papers, conference proceedings, book 
chapters 

Peer-review status Only peer-reviewed material 
Language English 
Publication date range 1980-2019 
Publication status SCIE, SSCI 
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Table 2 
Thematic areas of application of remote sensingin the context ofUGSs 
 

Thematic 
application 

area 

Core of analytical 
approach 

Number of 
studies 

Literaturesources 

Inventory and 
Assessment 

Models based on LiDAR 
information 

3 
Mak and Hu (2014),(Plowright et al., 

2015), Plowright et al. (2016) 

Modeling chlorophyll 
content and leaf area index 

 
1 

Degerickx et al. (2018) 

Geo-spatial modeling 4 
Yang et al. (2009), Bardhan et al. 

(2016),Ucar et al. (2016),Huang et al. 
(2018a) 

Phenological evaluation 1 
Dhami et al. (2011) 

 

Mapping the health of 
UGSs 

4 
Xiao and Mcpherson (2005), 

Asmaryan et al. (2013),Nasi et al. 
(2018),Nouri et al. (2018) 

 
Assessment of spatial 

resolution 
1 

 
Sun et al. (2017) 

 Other type of assessment 4 

Heritage tree assessment,Thaiutsa et al. 
(2008); UGS benefits, Li et al. 

(2015b); Tree measurement 
density,Jiang et al. (2017); 
Measurement of tree shade 
provision,Li et al. (2018) 

 
 

Biomass and 
carbon 

estimation 

 
 

Modeling 

 
 

11 

 
 

Myeong et al. (2006),Liu and Li 
(2012),Pasher et al. (2014),Yao et al. 

(2015),McGovern and Pasher 
(2016),Raciti et al. (2015),Zheng et al. 
(2017),Chen et al. (2017b),Mitchell et 
al. (2018),Lv et al. (2018),Amoatey et 

al. (2018) 

 
Change 

detection 

GIS and Landscape 
metrics analysis 

14 

Zhou and Wang (2011),Gan et al. 
(2014),Kong et al. (2010),Tian et al. 

(2011),Qian et al. (2015),Rafiee et al. 
(2009),Zhou et al. (2018),Kong and 
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Nakagoshi (2006),Zoran et al. 
(2015),Solange (2015),Fung and Siu 
(2001),Sun et al. (2019),Merry et al. 

(2014),Kord et al. (2014) 
Maximum 

information-based 
nonparametric exploration 

1 
 

Yang et al. (2014) 

Object metrics 1 Wang et al. (2018) 

Model 3 
Ossola and Hopton (2018),Handayani 

et al. (2018b),Chen et al. (2017a) 

Overall UGSs 
mapping 

Classification(Street tree 
mapping) 

6 

Tanhuanpaa et al. (2014),Goodwin et 
al. (2009),Puissant et al. (2014),Ardila 

et al. (2012),Seiferling et al. 
(2017),Parmehr et al. (2016) 

Classification(Urban 
vegetation mapping) 

27 

Hofle et al. (2012),Behling et al. 
(2015),Van de Voorde et al. (2008),Zhu 
et al. (2005),Dennis et al. (2018),Liu 
and Yang (2013),Rosina and Kopecka 

(2016),Small (2001),Lu et al. 
(2017),Kopecka et al. (2017),Small 
(2005),Vatseva et al. (2016), Lv and 

Liu (2009),Franke et al. (2009),Iovan 
et al. (2008),Li et al. (2016),Santos et 
al. (2016),Zylshal et al. (2016),Yan et 
al. (2018),Rougier et al. (2016), Feng 

et al. (2015),Small (2003),Yu et al. 
(2016),Liu et al. (2016),Gupta et al. 

(2012),Small and Lu (2006),Zhang et 
al. (2007) 

Classification(Charaterizin
g UGSs) 

4 
Jensen and Hardin (2005),Jensen et al. 

(2009),Han et al. (2014),Ren et al. 
(2015) 

Classification(Urban 
garden mapping) 

2 
Baker et al. (2018), Haase et al. (2019) 

Ecosystem 
services 

Model 6 

Jensen et al. (2004),Mei et al. 
(2018),Kanniah (2017),Franco and 

Macdonald (2018),Lwin and 
Murayama (2011),Wang et al. (2016),  

Policy investigation 7 

Yu et al. (2017),Senanayake et al. 
(2013),Van de Voorde (2017),Landry 

and Pu (2010),Tian et al. 
(2014),Richards and Edwards 

(2017),Sung (2012) 
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Morphological spatial 
pattern analysis 

2 
Chang et al. (2015),Wei et al. (2018) 

Species 
mapping 

Classification(Gradient 
analysis) 

1 
Gu et al. (2015) 

Classification(Tree 
species) 

20 

Liu et al. (2017),Zhang and Qiu 
(2012),Dian et al. (2016),Alonzo et al. 
(2014),Liu and Wu (2018),Alonzo et 
al. (2013),Jensen et al. (2012),Pu and 
Liu (2011), Pontius et al. (2017),Pu 
and Landry (2012),Shojanoori et al. 
(2016),Zhang and Hu (2012),Zhou et 

al. (2016),Mozgeris et al. (2018),Pu et 
al. (2018),Tooke et al. (2009),Tigges et 

al. (2013),Hartling et al. 
(2019),Shojanoori et al. (2018),Li et al. 

(2015a) 

Classification(Shrub 
mapping) 

2 
Chance et al. (2016),Singh et al. (2015) 

Classification(Effects of 
atmospheric correction on 

species detection) 
1 

Pu et al. (2015) 
 
 

Classification(Seasonal 
effect) 

1 
Voss and Sugumaran (2008) 

Three-dimensi
onal modeling 

Quantification 4 
Cheng et al. (2017),Caynes et al. 

(2016),Liang et al. (2017),Omasa et al. 
(2008) 

Green Volume 4 
Yu et al. (2016),Huang et al. 

(2013),Hecht et al. (2008),Handayani 
et al. (2018a) 
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