Advancing hydrological process understanding from long term resistivity monitoring (LTRM) systems

Slater, Lee and Binley, Andrew (2021) Advancing hydrological process understanding from long term resistivity monitoring (LTRM) systems. WIREs WATER, 8 (3): e1513. ISSN 2049-1948

[thumbnail of Slater & Binley WATER accepted (author copy)]
Text (Slater & Binley WATER accepted (author copy))
Slater_Binley_WATER_accepted_author_copy_.pdf - Accepted Version
Restricted to Repository staff only until 1 January 2050.
Available under License Creative Commons Attribution-NonCommercial.

Download (2MB)

Abstract

Monitoring subsurface flow and transport processes over a wide range of spatiotemporal scales remains one of the greatest challenges in hydrology. Electrical geophysical techniques have been implemented to non-invasively investigate a broad range of subsurface hydrological processes. Recent advances in instrumentation and interpretational tools highlight the emerging opportunities to adopt long term resistivity monitoring (LTRM) to improve understanding of flow and transport processes operating over monthly to decadal timescales that are not adequately captured in short-term monitoring datasets and are temporally aliased in datasets constructed from occasional reoccupation of a study site. The emergence of LTRM as a robust tool in hydrology represents a paradigm shift in geophysical data acquisition and analysis, with resistivity monitoring now evolving into a hydrological decision support technology. We describe the theoretical basis for adopting LTRM for non-invasive monitoring of hydrological state variables over multiple spatial scales and with higher temporal resolution than achieved from periodic reoccupation of a field site. Instrumentation developments facilitating autonomous data acquisition at off the grid field sites are discussed, along with advances in data processing that enhance the hydrological information content inherent in LTRM datasets. Case studies from a diverse range of hydrology subdisciplines highlight the largely untapped potential for LTRM to provide information beyond the reach of established hydrology tools. Future opportunities and challenges relating to the more widespread adoption of LTRM, including addressing inherent uncertainty in resistivity interpretation, upscaling, computational and modelling needs are critically discussed.

Item Type:
Journal Article
Journal or Publication Title:
WIREs WATER
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2300/2312
Subjects:
?? electrical resistivitygeophysicslong termmonitoringwater science and technologybiochemistryaquatic sciencegeography, planning and development ??
ID Code:
150897
Deposited By:
Deposited On:
19 Jan 2021 17:28
Refereed?:
Yes
Published?:
Published
Last Modified:
09 Oct 2024 11:06