Li, Rui and Duan, Chenxi and Zheng, Shunyi and Zhang, Ce and Atkinson, Peter (2022) MACU-Net for Semantic Segmentation of Fine-Resolution Remotely Sensed Images. IEEE Geoscience and Remote Sensing Letters, 19 (1): 8007205. ISSN 1545-598X
MACU_Net_final.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (1MB)
Abstract
Semantic segmentation of remotely sensed images plays an important role in land resource management, yield estimation, and economic assessment. U-Net, a deep encoder-decoder architecture, has been used frequently for image segmentation with high accuracy. In this Letter, we incorporate multi-scale features generated by different layers of U-Net and design a multi-scale skip connected and asymmetric-convolution-based U-Net (MACU-Net), for segmentation using fine-resolution remotely sensed images. Our design has the following advantages: (1) The multi-scale skip connections combine and realign semantic features contained in both low-level and high-level feature maps; (2) the asymmetric convolution block strengthens the feature representation and feature extraction capability of a standard convolution layer. Experiments conducted on two remotely sensed datasets captured by different satellite sensors demonstrate that the proposed MACU-Net transcends the U-Net, U-NetPPL, U-Net 3+, amongst other benchmark approaches.