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ABSTRACT 12 

Different mobilization mechanisms control the metal distribution in surface sediments of the 13 

Belgium coastal zone (BCZ) and the anoxic Gotland basin (GB). This mobilization was studied 14 

using DGT (Diffusive Gradients in Thin-films): vertical 1D profiles of Cd, Co, Cu, Fe, Mn, Ni, 15 

Pb, and Zn were measured at 5 mm intervals, while 2D high-resolution (100 µm) images of 16 

smaller zones of the sediment profile were obtained on separate DGT probes. Removal of 17 

dissolved Cd, Cu, and Pb in BCZ sediments caused steep vertical gradients at the sediment water 18 

interface that were well replicated in 1D profiles and 2D images. While 1D profiles showed 19 

apparent coincident maxima of Co, Mn, and Fe, 2D images revealed mutually exclusive Co and 20 

Fe mobilization. Correlation analysis supported this observation and showed a consistent linkage 21 

between Co and Mn. Sharp maxima of some metals in the vertical 1D profiles of GB sediment 22 

were attributed to localized mobilization in microniches. Examination of a ~1 mm diameter Cu 23 

and Ni maximum in 2D, defined by ~300 data points, showed that the metals were supplied from 24 

localized decomposition of reactive organic material, rather than release from reductively 25 

dissolving Fe or Mn oxides, and that they were removed as their sulfides. 26 

 27 

 28 

Key words: high resolution, two-dimensional imaging, trace metal mobilization, microniche, 29 

sediment water interface, Diffusive Gradients in Thin-films  30 



4 
 

INTRODUCTION 31 

The decomposition of organic matter and associated dissolution of Fe/Mn hydroxides can 32 

facilitate the remobilization of trace metals from sediment to porewater and in some cases to the 33 

water column.1,2 These processes have traditionally been studied by (1) collecting sediment cores, 34 

(2) slicing the sediment at 1 cm or more vertical intervals, which typically represents 20-80 mL 35 

of sediment,3 and (3) analyzing both solid and liquid phases. Our knowledge and modeling of 36 

early diagenesis is based on such measurements. Smaller scale sediment processes have been 37 

explored by making measurements at a finer scale of µm to mm,2,4 and in a few cases two 38 

dimensional (2D) images of solutes have been obtained.5,6 These new developments showed that 39 

remobilization processes may be occurring at discrete, small-scale locations (microniches) at 40 

various depths within surface sediments, indicating that diagenesis should not be solely 41 

considered as processes occurring sequentially with depth.  42 

Microelectrodes have played an important role in appreciating small-scale variations of many 43 

solutes, including oxygen, nitrogen species, sulfide, and iron and manganese,7,8 while planar 44 

optodes (PO) have provided high resolution oxygen and pH information in two dimensions.9 Two 45 

dimensional and high resolution (2D-HR) distributions of various trace metals have been 46 

obtained using the DGT (Diffusive Gradients in Thin-films) technique, consisting of a diffusive 47 

gel backed by a binding gel.6,10 DGT determines localized fluxes of metals that can be interpreted 48 

as dissolved concentrations.11 For analysis of trace metals subsequent to deployment, the gel 49 

binding the analyte is either sliced into small strips (e.g., 5 mm intervals), providing 1D profiles, 50 

or scanned directly by laser ablation coupled with ICP-MS (LA-ICP-MS) to obtain 2D images. 51 

Grey scale 2D images of dissolved sulfide that can be interpreted as concentrations can also be 52 

obtained by using a silver iodide (AgI) binding gel.6 A resolution of 100 µm × 100 µm (or even 53 



5 
 

finer), determined by the laser beam diameter or the dpi of a scanner, can be achieved by both 2D 54 

imaging methods.12 It is fine enough to observe microniches with a diameter principally varying 55 

from a few tens of microns up to the millimeter scale.13  56 

The formation of mobilization microniches is normally attributed to local decay of organic 57 

substrates such as algal aggregates14 and faecal pellets15 by microorganisms,16 where available 58 

oxidants (nitrate, Fe and Mn oxides, and sulfate) are quickly depleted and the associated trace 59 

metals are subsequently released. Other mechanisms that can create microniches are those linked 60 

to acidification of the porewater and dissolution of acid sensitive metal sulfides or carbonates,17 61 

or to oxidation of reduced metal solids. For example iron sulfides can be oxidized microbially 62 

with stronger oxidants than sulfate (Fe/Mn oxides or nitrate) as electron acceptor.18 Elevated 63 

concentrations of trace metals within microniches can thus be observed, which can be several-64 

folds higher than that in bulk sediment,6 resulting in accelerated trace metal recycling rates. A 65 

limited number of other studies on trace metal mobilization in microniches using DGT combined 66 

with LA-ICP-MS have been reported. In experimentally manipulated systems, without 67 

complementary larger scale measurements, Stahl et al.5 demonstrated localized elevated 68 

mobilization of Ni, Cu, and Pb close to a burrow wall in a sediment mesocosm, and Lehto et al.19 69 

showed that microniches can make a significant contribution to organic matter turnover at the 70 

sediment-water interface (SWI) and promote a high degree of variability in the cycling of 71 

associated compounds and trace metals in surface sediments. Direct measurements in unmodified 72 

sediment cores have focused on the simultaneous remobilization of dissolved sulfide and trace 73 

metals.6,20 In those studies, attention was primarily paid to method development and optimization 74 

to detect the occurrence of microniches. The underlying mobilization mechanisms, explaining 75 

which sediment processes are linked to the increased metal and/or sulfide concentrations, 76 
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remained unclear. Moreover, detailed comparison of small-scale trace metal mobilization 77 

observed by 2D images and 1D profiles and the information that can be extracted from each of 78 

these results, has scarcely been made.   79 

In this study, we selected two contrasting environments, namely the Belgian coastal zone (BCZ, 80 

in the North Sea) and the Gotland basin (GB, in the Baltic Sea), where the bottom waters are oxic 81 

and anoxic respectively. This difference in redox conditions induces distinct diagenetic processes 82 

in the sediment and thus allows investigation of the underlying mobilization mechanisms in 83 

contrasting environments. We use a novel research approach to measure trace metals in 84 

undisturbed, natural sediment cores, whereby 1D profiles (5 mm resolution obtained by slicing 85 

DGT gels) were complemented with 2D-HR imaging (100 µm resolution obtained by DGT and 86 

LA-ICP-MS). With the 1D profiles, which are easier to obtain over larger spatial distances, we 87 

search for coincident peaks of trace metals and sulfide. The 2D images are then used to detect 88 

small, localized mobilization areas in the same sediment zone where the 1D peaks were found, 89 

and to further investigate on a detailed spatial scale the local diagenetic processes, enabling 90 

identification of mobilization mechanisms. 91 

MATERIALS AND METHODS 92 

Sampling sites and collection of sediment cores. There were a total of 5 sampling stations in 93 

the two study regions (BCZ and GB) (Figure S1): Station 130, located in BCZ; Stations 8, 6, 14, 94 

and 16, located in GB. Detailed information on the sampling stations are reported in the 95 

supporting information (SI). Two sediment cores with an overlying water layer of ~4 cm were 96 

collected at station 130 in October 2017. They were immediately transported back to the 97 

laboratory and placed in a tank filled with seawater collected at the same station. An aerating 98 

device was installed in the tank to maintain an adequate oxygen level, corresponding to that at 99 
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station 130, in the overlying water. Similarly, two sediment cores with an overlying water layer 100 

of ~4 cm were collected at stations 8, 6, 14, and 16 in June 2018. As the bottom water at these 101 

four stations was anoxic (< 0.3 mg L-1 of oxygen), the sediment cores were sealed with parafilm 102 

immediately after collection to avoid oxygen ingress and placed in a tank filled with flowing 103 

seawater to keep the ambient temperature constant on board. General features of the sediments in 104 

BCZ and GB (salinity, pH, and sediment layer structure) are reported in the SI. 105 

Preparation of DGT probes. A DGT probe is a rectangular, plastic moulding enclosing a 106 

binding gel layer, covered sequentially by a diffusive gel and a protecting filter membrane, and 107 

closed by a plastic front plate, with a window of 150 × 18 mm that exposed the filter membrane 108 

to the sediment. Two different types of DGT probes were used in this study; a ground Chelex-100 109 

(GCH) probe for metals and a silver iodide (AgI) probe for dissolved sulfide. GCH resin was 110 

made according to Zhou et al.21, with a minor modification to improve the efficiency of the 111 

grinding process and consequently obtain a smaller bead size of resin powder. Two grams of the 112 

ground resin were soaked overnight in 40 mL 1 M nitric acid in a 50 mL centrifuge tube. The 113 

cleaned resin was then washed thoroughly with MilliQ (MQ) water several times to remove the 114 

residual H+. The cleaned resin was converted to the sodium form necessary for DGT performance 115 

(details are reported in the SI) by adding 0.5 M NaOH to reach pH 11 and then washed 116 

thoroughly with MQ water to remove the residual OH-. Blank values of metals on a GCH binding 117 

gel disc were determined by eluting with 1 mL 1M nitric acid (see Table S1). AgI gel was made 118 

according to Gao et al.6. Standard polyacrylamide hydrogels, 0.8 mm thick, cross-linked with an 119 

agarose derivative were used for all diffusive gels. Filters were hydrophilic PVDF 120 

(polyvinylidene fluoride) membranes from Durapore®. Diffusive gel preparation, filter cleaning, 121 

and DGT probe assembly followed published procedures.6 122 
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Prior to deployment, DGT probes were deoxygenated overnight in 0.1 M NaCl solution 123 

continuously bubbled with N2 gas. 124 

DGT probes deployment and retrieval. DGT probes were vertically inserted into the sediment 125 

cores with minimum disturbance, leaving around 2 centimeters of the window area of the probe 126 

above the SWI. For station 130, GCH and AgI DGT probes were arranged back-to-back and 127 

inserted into a sediment core. A duplicate deployment was made in a separate core collected from 128 

the same station. After 10 hours deployment, the four probes were simultaneously retrieved and 129 

the exposure window was thoroughly rinsed several times with MQ water. For each GB station 8, 130 

6, 14, and 16, one GCH and one AgI DGT probe were inserted into separate sediment cores. A 131 

deployment time of 4 hours was adopted for the AgI probes to avoid saturation by the high 132 

sulfide concentrations. Deployment time of 20 hours was used for the GCH probes. After 133 

deployment, probes were retrieved and rinsed thoroughly. Binding gels were peeled from the 134 

probes prior to treatment. 135 

Sample treatment and analysis. GCH binding gels treatment and analysis. For determination of 136 

1D metal profiles, the GCH binding gels from stations 8, 6, and 14 in GB and station 130 in BCZ 137 

were sliced vertically at 5 mm intervals. Each slice was eluted with 1mL 1M HNO3 for 24 hours 138 

before ICP-MS measurement of the diluted eluent. 139 

For determination of 2D metal images, the GCH binding gels from station 16 in GB and station 140 

130 in BCZ were placed on a clean PVDF filter prior to the drying procedure as described 141 

previously.6,21 Briefly, the binding gel and filter were dried together at 60oC for 24 hours using a 142 

gel drier (Model 583, Bio-Rad) connected to a vacuum pump. Afterwards, the dried binding gel 143 

was cut to a suitable size and mounted on a micro-slide by double-sided tape before LA-ICP-MS 144 

analysis. Details of the LA-ICP-MS settings are shown in Table S2.  145 
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Treatment of AgI binding gels and analysis by computer imaging densitometry (CID). The color 146 

change of the gels from pale yellow to various shades of grey is due to the formation of AgS. A 147 

greyscale image, obtained using a flat-bed scanner (HP 3100), was processed by Fiji software 148 

(Fiji is an open source image processing package based on ImageJ) and the concentration of 149 

dissolved sulfide was calculated using the calibration curve plotted in Figure S3. Details relating 150 

to the calibration curve are reported in the SI. 1D depth profiles of dissolved sulfide were 151 

obtained by averaging 2D images over the horizontal dimension.  152 

The Person method was used to evaluate the significance of correlation between different metals 153 

at significance levels of 0.05 and 0.01 (Sigmaplot 14.0, Systat Software Inc.). QA/QC is reported 154 

in the SI. 155 

RESULTS 156 

1D profiles of dissolved metals and sulfide in the sediment at station 130 (BCZ). The 1D 157 

profiles of metals in the sediment at station 130 (BCZ) have two distinct patterns (Figure S4). Cd, 158 

Pb, Ni, Cu, and Zn all had higher concentrations in the overlying water that declined steeply 159 

across the SWI and then remained at a much lower level down to the bottom of the DGT probe. 160 

There were some localized maxima below the SWI. Cu increased up to 53 nM at -9 cm, which 161 

was 35 times higher than the background concentration of 1.5 nM (averaged value of three 162 

concentration points either side of the observed metal maximum). This Cu maximum was 163 

coincident with a small Pb peak of 2.4 nM, which was 5 times higher than the background 164 

concentration. Three dimensional modeling has shown that coincident sharp peaks of several 165 

metals in a DGT profile are characteristic of mobilization from localized microniches.22 This 166 

suggests that there is likely a microniche of elevated Cu and Pb mobilization. Zn increased to 400 167 
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nM at -7 cm, which was 2.7 times higher than the background value of 150 nM, which would 168 

imply a microniche where only one metal is mobilized. 169 

The sediment profiles of Fe, Mn, and Co were distinctly different from those described above 170 

(Figure S4). Their concentrations in the overlying water were close to zero, but increased 171 

markedly below the SWI. They reached 90 μM for Fe and 40 μM for Mn around -3 cm depth, 172 

remained constant for another 2 cm and decreased sharply at greater depth. Co also peaked in 173 

concentration (20 nM) at around -3 cm, but the peak was narrower than that for Fe and Mn, due 174 

to a progressively decline from -3 cm depth. The decline with depth of Fe, Mn, and Co most 175 

likely reflects precipitation of their sulfides as the concentration of dissolved sulfide generally 176 

increased from -7 cm to the bottom of the probe (Figure S4). A small peak of dissolved sulfide 177 

was observed at around -1 cm depth below the SWI where the concentrations of Fe, Mn, and Co 178 

were also high. Such simultaneous occurrence of metals and sulfide has been attributed to the 179 

degradation of reactive organic material that is abundantly present and the concurrent reduction 180 

of a number of oxidants, including sulfate.20,23  181 

2D-HR images of dissolved metals and sulfide at the SWI of station 130 (BCZ). The SWI (1 182 

to -2 cm) was selected for more detailed analysis to investigate further the contrasting 183 

mobilization patterns of the two groups of elements. Consistent with 1D profiles, Cd, Cu, and Pb 184 

were more abundant in the overlying water, decreasing markedly across the SWI, while Fe, Mn, 185 

and Co were more concentrated below the SWI (Figure 1). Images of Ni and Zn are not shown 186 

because their results were close to the detection limit of LA-ICP-MS, as previously reported.21 187 

Considering the data are from deployments in separate cores, the horizontally averaged 188 

concentrations were similar to those observed from the 1D profiles and the location of the main 189 

gradient change coincided remarkably well (Figure 2). However, the 2D images showed that 190 
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there were distinct horizontal gradients, not detectable from 1D profiles. Above the SWI, Pb and 191 

Cd were more elevated at the left side of the image. Below the SWI, Fe was elevated at the left 192 

side of the image while Co was more concentrated at the right side. Mn was more 193 

homogeneously distributed compared to Fe and Co. Consistent with the small peak below the 194 

SWI found in the 1D profile, the 2D image showed that dissolved sulfide was elevated in this 195 

region, but its horizontal distribution is not uniform: the zone of sulfide mobilization being closer 196 

to the SWI at the centre of the 2D image. The detail provided by the 2D image suggests that the 197 

zones of Fe and Co mobilization occur at different locations. Not surprisingly, the greatest 198 

differences in horizontally averaged concentrations from those of the 1D profiles are for Fe and 199 

Co, the two metals with the greatest horizontal variation in their 2D images (Figures 1 and 2).  200 

1D profiles of dissolved metals and sulfide in sediments at stations 8, 6, and 14 (GB). The 1D 201 

profiles of dissolved metals and sulfide in the sediment at station 8 (GB) are shown in Figure S5. 202 

Cd showed a maximum at -5 cm, with the concentration reaching 1.0 nM, while a narrower 203 

maximum of 6.8 nM was found at the same depth for Cu. A coincident peak of Pb, Cu, and Fe 204 

was found at -2 cm, with maximum concentrations of 0.4 nM, 6.5 nM, and 0.8 μM respectively. 205 

Concentrations of Fe and Co were generally much lower in the porewaters of station 8 compared 206 

to those of station 130. The maximum concentration of Fe, equal to 0.8 μM, appearing at -2 cm, 207 

was 110 times lower than the peak concentration of 90 μM at station 130. Similarly, a 14 times 208 

difference was found for Co. Formation of metal sulfides due to the high level of sulfide (up to 90 209 

μM) at station 8 is most likely responsible for this huge difference (Figure S5). Mn, which is 210 

more likely to form carbonates than sulfides,24 increased progressively with depth to reach a 211 

concentration of 7 μM. Manganese-calcium-carbonate-phosphate minerals have been observed in 212 

GB sediments.25,26 Under anoxic conditions this solid phase acts as a source for Mn and 213 
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phosphate in the porewater and is responsible for the observed similar depth profiles of Mn and 214 

phosphate concentrations in GB porewaters.27 215 

With the exception of Mn, which consistently increased with depth, irregular metal mobilization 216 

patterns were observed in the sediments at stations 6 and 14 (Figures S6 and S7). Although there 217 

was no clear trend with depth for Ni and Cu, there were two distinct, coincident maxima at -6 cm 218 

and -11 cm in the core from station 6. Similarly, a peak for Fe, Mn, Ni, Cu, and Zn was observed 219 

at -2 cm depth at station 14. Summarizing, three potential microniches with elevated mobilization 220 

of various elements were observed: Cu and Ni at station 6 (at -6 and -11 cm depths), Pb, Cu, and 221 

Fe at station 8 (at -2 cm depth), and Fe, Mn, Ni, Cu, and Zn at station 14 (at -2 cm depth). 222 

2D-HR images of dissolved metals and sulfide in sub-surface sediment at station 16 (GB). 223 

The mobilization of metals and sulfide in the sub-surface zone (-8.5 cm to -10.5 cm) were further 224 

investigated by 2D-HR imaging in the sediment at station 16 (GB) (Figure 3). Cd and Pb 225 

concentrations stayed low in this zone (below 1.5 nM for Cd and 3 nM for Pb) without clear 226 

gradients. Two spheroidal microniches (diameter around 1 mm) were observed for Cu and Ni at 227 

exactly the same location indicating that they were mobilized simultaneously with maximum 228 

concentrations up to 350 and 150 nM respectively. A zone of elevated Fe concentrations covering 229 

an area of around 1 cm2 occurred between -9.5 and -10.5 cm depth. The maximum concentration 230 

of 20 μM in this zone was much higher than the concentration of Fe (below 1 μM) in the 231 

sediments at other GB stations. The maximum concentration (35 μM) of Mn was consistent with 232 

the findings at other GB stations. Although Mn was slightly elevated in the lateral centre of the 233 

image, overall, unlike Fe, it declined progressively with depth. Sulfide was more enriched in the 234 

upper- and lower- left parts of the image.  235 

DISCUSSION 236 
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The traditional way to study the mobilization of metals and sulfide in sediments is to slice the 237 

solid phase at a vertical resolution of 1 to 5 cm followed by porewater extraction.28 The technique 238 

of DGT with manual gel cutting can achieve a vertical resolution as low as 0.1 cm.29 This 239 

improvement in resolution has been well documented and discussed.4,28,30 However, because the 240 

volume of sediment contributing to each DGT data point, of typically 0.02-0.1 mL, is much 241 

smaller than in conventional sampling, concentration-depth profiles can appear to be noisy, 242 

especially if there are near spherical microniches of mobilization occurring at the mm scale. 243 

Consequently, it can be more difficult to assess the overall mobilization trends.2,30 One way of 244 

overcoming these deficiencies, is to make measurements on a finer scale in two dimensions so 245 

that highly localized concentration maxima are accurately characterised by a set of data points 246 

rather than a few or even a single data point in one dimension. This goal has been achieved by 247 

measuring DGT binding gels in two dimensions at typically 50 to 100 μm spatial resolution, 248 

using LA-ICP-MS for determination of metals and computer imaging densitometry for sulfide 249 

determination.6,21 With this higher resolution, smoother transitions can be observed between 250 

lower and higher concentration zones, allowing microniches of mobilization at the mm scale to 251 

be fully resolved. The drawback is that collecting such data is expensive and time consuming, 252 

placing limits on the number and size of binding gels that can be analysed. This work investigates 253 

how well using DGT with vertical slicing at the 5 mm scale, allied to selective samples of much 254 

finer scale 2D imaging, can complement each other to advance understanding of sediment 255 

processes. 256 

Understanding the horizontal gradients of metals and sulfide in the sediment. The 1D profile 257 

of metals in our study was generated by manually gel cutting at 5 mm intervals. Thus every 258 

single point in the 1D profile represents the average concentration of a 0.5 × 1.8 cm2 (length × 259 
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width) rectangle piece of binding gel. Such a rectangle contains more than 8000 data points in our 260 

2D-HR image. To illustrate how the detailed information obtained from a 2D-HR image 261 

compares with information from a 1D profile, two zones in the sediment at station 130 (Figures 1 262 

and 4A), where metals were strongly mobilized, were selected. Zone 1 (0.25 to -0.25 cm of 263 

depth) in the 2D image corresponds to the concentration point at 0 cm in the 1D profile, while 264 

zone 2 (-1.25 to -1.75 cm of depth) in the 2D image corresponds to the point at -1.5 cm in the 1D 265 

profile. Statistical analysis of the distribution of concentrations of Cd, Cu, and Pb in zone 1, and 266 

of Fe, Mn, and Co in zone 2 of the 2D image showed that the concentrations of each metal were 267 

normally distributed, as demonstrated by the small difference observed between mean and 268 

median values (Figure 4B). However, due to the considerable concentration gradients within each 269 

zone, there was a substantial range in concentrations. Co had the largest maximum/minimum 270 

ratio of 4.8 while for Mn, Cd, Cu, Pb, and Fe it was 1.7, 2.3, 2.4, 2.7, and 4.3 respectively. Higher 271 

ratios reflect steeper concentration gradients that drive diffusional fluxes of the metal in and out 272 

of the zone. None of this information can be accessed from the single data point of the 1D profile.  273 

Our study provides strong evidence that Co was not co-mobilized with Fe (Figure 1). The 2D 274 

image shows that the zones of mobilization of Fe and Co were virtually mutually exclusive. This 275 

is illustrated more conventionally by Figure 4C, which shows the horizontal gradients of Fe, Mn, 276 

and Co in zone 2. Fe declined steeply at around 1 cm distance from the left edge of the 2D image, 277 

whereas the steep increase in Co started at this distance. There was a consistent, but modest rise 278 

in Mn from left to right. Correlation analysis between these metals (Fe, Mn, and Co) was 279 

performed using data from different sources: 1D vertical profiles (1D, 1 to -2 cm depth, shown in 280 

Figures 2 and S4), 1D vertical profiles from horizontally averaged 2D images (1DV2D, 1 to -2 281 

cm depth, shown in Figure 2), 1D horizontal transects from vertically averaged 2D images within 282 
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zone 2 (1DH2D, shown in Figure 4C) and the entire 2D images (E2D, shown in Figure 1). There 283 

were significant positive correlations (R2 > 0.8, p < 0.01) between these metals for 1D and 284 

1DV2D profiles (Table 1). However, negative correlations were found for Fe/Mn (R2 = -0.59, p < 285 

0.01) and Fe/Co (R2 = -0.97, p < 0.01) for the horizontal transect (1DH2D). These apparently 286 

contradictory results illustrate the danger in relying solely on information from 1D vertical 287 

profiles where the sampling technique incorporates horizontal averaging. Consideration of data 288 

for the entire 2D image automatically includes both vertical and horizontal information, but any 289 

correlation will be weakened by the presence of regions without gradients. The best correlation 290 

was for Mn and Co (R2 = 0.68, p < 0.01), but Mn and Fe also correlated significantly (R2 = 0.54, 291 

p < 0.01). There was no significant relationship between Fe and Co (R2 = 0.40, p > 0.05). 292 

Whichever data source was used, the relationship between Mn and Co was significant (Table 1).  293 

Coincident maxima of Co and Mn observed in vertical 1D profiles have been previously 294 

interpreted as evidence for their co-mobilization from reductive dissolution of oxides.4,31 295 

Although similar concentration maxima for Co and Fe were observed in a marine sediment, they 296 

were thought to be due to removal of Fe and Co as their sulfides rather than Co being released 297 

during reduction of authigenic Fe oxides.32 Attribution of Co mobilization to either Fe or Mn 298 

processes would not have been possible from our 1D measurements, but the 2D image securely 299 

demonstrates there is no relationship with Fe and a strong one with Mn. The behavior of Mn and 300 

Co in the marine environment is strongly linked to each other since Co(II) is oxidized to Co(III) 301 

in the same Eh-pH space where Mn(II) oxidation occurs,33 accounting for the oxidation of Co(II) 302 

and adsorption of Co(III) to precipitated Mn(III, IV) oxides.34 Iron(II) is oxidized to Fe(III) at a 303 

lower redox potential than Co(II) and Mn(II) at marine pH (7-8) and is less associated with Co. 304 

Therefore, Co enters sediment mainly associated with Mn hydroxides and is released to 305 
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porewater concurrently with Mn. Cable bacteria are known to be prevalent in the sediment at 306 

station 130 (BCZ).17,35 From the modeling of the effects of cable bacteria on chemical profiles, 307 

van der Velde et al.17 concluded that, due to the lowered pH that is similar to our observation 308 

(Figure S2), Mn(II) was largely supplied from dissolution of Ca(Mn)xCO3 in addition to 309 

dissolution of Mn hydroxides. Although Fe(II) was partly supplied from dissolution of FeS, 310 

reductive dissolution of iron oxides was still dominant. The different remobilization processes of 311 

Fe and Mn are likely the explanation for their different distributions in our 2D image which 312 

provides the first direct evidence for their mechanistic decoupling. 313 

There were marked horizontal gradients of sulfide in zone 2 (Figure S8). As the sulfide image 314 

was obtained from a different deployed probe to the trace metals precise locational comparison is 315 

not justified, but it further illustrates the steep horizontal gradients of reduced species in this 316 

sediment.  317 

Characterisation of trace metal microniches in sediment. The 1D profiles in the GB sediments 318 

(Figures S5, S6, and S7) suggest the potential existence of microniches of trace metal 319 

mobilization, as certain metals peak at the same depth. Single point elevations do not allow 320 

characterization of the shape, size or nature of a microniche. However, a well-defined, circular 321 

elevation of Cu and Ni was observed in a 2D-HR image from GB sediment (Figure 3). This 322 

mobilization microniche, which had a diameter of ~1 mm and was defined by around 300 323 

individual data points, would have appeared as a single point in our 1D profiles. No other metals 324 

were elevated at the same location.  325 

Previous studies have suggested that two distinct processes may be responsible for such localized 326 

mobilization. Using 2D DGT in a marine sediment incubation experiment, Lehto et al.19 observed 327 

two sub-surface microniches (around 1.5 and 2.5 mm2 respectively) where Co, Ni, and Zn were 328 
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substantially mobilized. They were attributed to release during the dissolution of Fe and Mn 329 

oxides, as there was coincidental elevation of Fe and Mn. Similarly, Motelica-Heino et al.20 330 

observed elevated Co, Ni, Cu, Fe, and Mn, along with sulfide, in a ~4 mm diameter microniche 331 

of a freshwater sediment. While Fones et al.2 in their 1D DGT study of North Atlantic sediments 332 

observed coincident peaks of Ni, Cu, Cd, and Zn with Fe and particularly Mn, they considered 333 

there was more evidence in favor of the trace metals being released from organic material. 334 

Tankere-Muller et al.4 found the simultaneous release of Cu and Cd near to the surface of the 335 

sediment of a marine microcosm. As this was above the mobilization zone of Fe and Mn, their 336 

release was attributed to the degradation of organic matter as it oxidized at the sediment surface. 337 

In another mesocosm study, Stahl et al.5 observed localized co-mobilization of Cu and Ni close to 338 

the wall of an artificial burrow. The high O2 levels in the burrow excluded release from reductive 339 

dissolution of oxides and favored release from rapidly oxidising organic matter. More generally, 340 

the transport of Cu and Ni in marine systems is predominantly controlled by biological uptake 341 

and adsorption on organic matter rather than on Fe oxides.36,37 Hence, Cu and Ni have been used 342 

as proxies for the organic carbon sinking flux.38,39 We examine which of these two mechanisms, 343 

release from decomposing organic material or during reductive dissolution of oxides, can account 344 

for the observed Ni and Cu microniche.  345 

Figure 5 shows the metal concentrations along a single laser ablation line that transects the Cu 346 

and Ni microniche. A prominent peak of Cu and Ni was observed at the same location. Fe 347 

slightly increased across the transect with no indication of a peak, while Mn remained constant 348 

throughout. The absence of coincident features in the Fe or Mn transects favours localized 349 

degradation of organic matter as the source of Cu and Ni to the porewater, but examination of 350 
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metal ratios in metal oxides and organic material, as well as consideration of the role of sulfide, 351 

provide a more quantitative perspective.  352 

Tessier and co-workers40,41 obtained authigenic phases of iron deposited in situ on plastic plates 353 

inserted into sediments. The metal ratios (0.81 mmol Cu / mol of Fe, 0.63 mmol Ni / mol of Fe) 354 

they found were comparable to the ratios reported in other studies of freshly formed oxides.42–44 355 

These ratios allow estimation of the concentration of Cu and Ni that can be potentially generated 356 

from the reductive dissolution of iron oxides. If the entire Fe concentration within the microniche 357 

zone of 10 μM is attributed to localized reductive dissolution, corresponding concentrations of 358 

Cu and Ni that would be simultaneously released are 8.1 nM and 6.3 nM respectively (Figure 5). 359 

These values are much lower than the observed peak concentrations of 250 nM Cu and 100 nM 360 

Ni. As there is no apparent concentration increase of Mn within the microniche, the co-release of 361 

Cu and Ni from the dissolution of Mn oxides is less likely. Furthermore, in anoxic GB sediments, 362 

Mn carbonates are the dominant form of Mn in the sediment solid phase, which account for over 363 

50% (up to 90% for deep stations) of total Mn, while the percentage of Mn oxides is generally 364 

less than 5%.27 The association of Cu and Ni with Mn carbonates is weak,45,46 suggesting that 365 

their release from the dissolution of Mn carbonates is an unlikely source. 366 

Natural phytoplankton species are a major source of reactive organic matter deposited on the 367 

sediment surface, but the trace metal to organic carbon ratios in phytoplankton varies widely 368 

among species and marine areas.47,48 The most common species that is well-developed in summer 369 

time at the GB of the Baltic Sea is nitrogen-fixing cyanobacteria,49 in which the ratios of 370 

metal/carbon (mmol/mol) are 7.8 for Cu and 1.8 for Ni.48 With these ratios, the organic carbon 371 

concentration, necessary to comply with the peak concentrations of Cu (250 nM) and Ni (100 372 

nM), is between 30 and 50 µM of carbon. As the average HCO3
- concentration of porewater in 373 
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GB surface sediment is almost 2800 µM,50,51 degradation of 50 µM of organic carbon will 374 

increase the HCO3
- concentration by less than 2%. Given the uncertainty of solely applying the 375 

metal/carbon ratio, the metal/nitrogen and metal/phosphorus ratios were also calculated to 376 

constrain the uncertainty. For the same cyanobacteria species with Cu/C and Ni/C ratios of 7.8 377 

and 1.8, the ratios of Cu/N and Ni/N are 48 and 11 (mmol/mol) respectively, and those of Cu/P 378 

and Ni/P are 1.0 and 0.24 (mol/mol) respectively. This means that 5 to 10 µM of NH4
+ and 0.25 379 

to 0.42 µM of HPO4
2- would be co-released during organic carbon degradation to comply with 380 

the peak concentrations of Cu and Ni. Given the concentrations of NH4
+ and HPO4

2- in GB 381 

surface sediment are generally higher than 75 and 30 µM respectively,27,50 the co-released NH4
+ 382 

and HPO4
2- will have no influence on their porewater concentrations. These calculations as well 383 

as the findings of Ingri et al.52, that the input of Cu and Ni to Baltic Sea sediments is dominated 384 

by the deposition of organic particles from the water column, further support the idea that the 385 

origin of the Cu and Ni microniche is from localized decomposition of organic matter.   386 

Dynamic, three-dimensional modeling of process in microniches has suggested that localized 387 

formation of metal sulfides can be an important sediment process.13 Mineral saturation indices 388 

(SI) for Fe, Mn, Cu, and Ni sulfides inside and outside the microniche were calculated using 389 

Visual Minteq. Results are shown in Table S4 and detailed discussion is available in the SI. Our 390 

results are in agreement with the finding of Stockdale et al.13 that metals released in microniches 391 

are removed by precipitation as their sulfides.  392 

Underlying mechanisms of small-scale mobilization of trace metals in two contrasting 393 

sediments. Mineralization of organic matter is the driving force of early diagenetic 394 

transformations in marine sediments.53,54 The mineralization process requires electron acceptors, 395 

which are consumed until their depletion in the order oxygen, nitrate, iron and manganese oxy-396 
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hydroxides, and sulfate, although sometimes the consumption can appear to occur concurrently.23 397 

When sulfate is also exhausted, organic matter can still be degraded via methanogenesis. In 398 

sediments of the BCZ of the North Sea substantial concentrations of Fe and Mn along with 399 

redox-sensitive cobalt occur in near surface sediments where microniche mobilization of Fe, Mn, 400 

and sulfide have previously been observed.6,23 In the GB of the Baltic Sea, sediments are 401 

dominated by sulfide, but several microniches of elevated metals were observed, both in 1D 402 

profiles (Figures S5, S6, and S7) and 2D images (Figure 3). The observations are indicators of 403 

different diagenetic processes. 404 

In BCZ sediment, sulfide is low, but present throughout the sediment profile with increased 405 

concentration immediately below the interface (Figure S4), indicating sulfate being used 406 

throughout as an electron acceptor. The elevated concentrations of dissolved Fe and Mn in near 407 

surface sediments shown in the 1D profiles, suggest their oxides are also electron acceptors. 408 

However, the high resolution 2D images suggest different process may be occurring. The more 409 

uniform Mn distribution is consistent with modeling studies17,35 that indicated supply of Mn(II) 410 

from dissolution of carbonate minerals. As there is some correspondence between Mn and Co 411 

(Figure 4C, Table 1), indicative of some coupling through their established redox characteristics, 412 

the two processes appear to contribute to Mn mobilization.  413 

In contrast to BCZ sediment, GB sediments are dominated by sulfide and completely anoxic 414 

(Figures S5, S6, and S7). The high concentrations of sulfide ensure low concentrations of Fe. If 415 

reactive organic matter, mainly consisting of phytoplankton aggregates,55,56 are displaced from 416 

the surface before decomposition, their constituent trace metals are released, causing the 417 

observed localized maxima. The decomposition of this reactive organic matter is probably caused 418 

by methanogenesis: 419 
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2CH2O + H2O → CH4 + H+ + HCO3
-   420 

Previous studies have demonstrated that in sulfate reducing zones, methanogenesis and sulfate 421 

reduction can be concurrently active, where members of the family Methanosarcinaceae57,58 and 422 

Desulfobacteraceae59 are responsible for the two processes.  423 

Environmental implications. 2D-HR imaging of the mobilization of metals in sediments 424 

revealed two important features that cannot be fully inferred from 1D profiles, the clear 425 

horizontal mobilization gradients and the existence of localized microniches. Care should be 426 

exercised in attributing coincident maxima of metals in 1D profiles to mechanisms, as our 2D 427 

imaging of BCZ sediments showed that Fe and Co were not co-mobilized, even though they both 428 

had sub-surface 1D maxima. According to Ho et al.60, the size of fragments of organic particles in 429 

sediments could be as small as 10 μm. As their decomposition drives metal mobilization, either 430 

through direct release or associated reductive or acidic dissolution processes, the mobilization of 431 

metals in sediment may be inherently discrete and take place at a very small scale. Traditional 432 

sampling where sediment is sliced and porewater extracted from at least tens of mL of sediment, 433 

automatically averages such features and therefore interpretations focus on the overall diagenetic 434 

reactions. The 1D DGT used here effectively samples ~0.1 mL of sediment for each data point. 435 

At this resolution microniches of mobilization will not be averaged, but they are ill defined. They 436 

therefore appear in the vertical profile as maxima of 1 or a few data points, making the profile 437 

look inherently noisy. It would be wrong to dismiss the localized microniches that are fully 438 

resolved by the 2D imaging as too small to have any importance. They can make a significant 439 

contribution to organic matter turnover and element cycling in aquatic sediments.61,62 If 440 

microniches were to account for only 1% of the total available organic matter, but had turnover 441 

rates 50 times higher than the bulk material, the microniche activity would account for one third 442 
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of the carbon turnover of the whole system.3 The prevalence of microniches was demonstrated by 443 

Widerlund and Davison14 recording over 3000 sulfide microniches in the sediments of an 444 

eutrophic lake over a five-months period. Elevated trace metal mobilization was found in sulfidic 445 

microniches in this lake and in marine sediments.6,20 When sulfide is plentiful, as in the GB, 446 

metal sulfide formation is responsible for the steep removal of metal away from the source. 447 

Substantial release of trace metals from microniches to adjacent porewater can be expected if 448 

sulfide concentrations are low, as observed by Lehto et al.19 who found that metal microniches at 449 

the SWI of a marine harbour sediment generated considerable effluxes of Fe, Mn, and Pb to the 450 

water column. 451 

Our novel approach allowed us to identify the prevalence of microniches of metal mobilization 452 

using 1D profiles. More detailed 2D images were then able to geometrically define local 453 

mobilization zones and charcterise coincident mobilization of various chemical compounds. 454 

Those discoveries helped us to better understand the mobilization mechanisms of trace metals in 455 

marine sediments in relation to the prevailing environmental conditions. For example, Co and Fe 456 

mobilization were shown to be mutually exclusive, even though they were coincident in 1D 457 

profiles. A well-defined local microniche of Co and Ni mobilization was shown to be supplied 458 

from localized decomposition of reactive organic material rather than release from reductively 459 

dissolving Fe or Mn oxides. However, there are limitations to 2D-HR imaging. It is clear that 1D 460 

profiles are much easier to obtain than 2D images and provide information over often relevant 461 

distances of tens of cm. Therefore, to assess potential mobilization zones it is recommended to 462 

first obtain 1D profiles. However, traditional measurements based on sediment core slicing that 463 

complement the DGT profiles and images should not be overlooked because (1) a wider range of 464 

analytes, including a number that cannot be measured by DGT, can be assessed in this way; (2) 465 
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with DGT only labile trace metal concentrations in sediment porewater (free ions and easily 466 

dissociated complexes) are measured,63,64 while the total dissolved concentration is assessed by 467 

the traditional method. Further progress is likely to come from combining such data and allying it 468 

to kinetic and equilibrium data on the solid phase.64  469 
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 711 

Figure 1. Two dimensional, high-resolution (2D-HR) images of dissolved metals and dissolved 712 

sulfide at the sediment-water interface (SWI, 1 to -2 cm depth) of station 130 (BCZ). 713 
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 714 

Figure 2. Comparison of the vertical profiles of metals at the SWI (1 to -2 cm depth) of station 715 

130 between 1D profiles (red points, collected from Figure S4) and horizontally averaged 2D 716 

images (black points with the grey bars representing the standard deviations, collected from 717 

Figure 1). 718 

 719 
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 721 

Figure 3. Two dimensional, high resolution (2D-HR) images of dissolved metals and dissolved 722 

sulfide in sub-surface sediment (-8.5 to -10.5 cm depth) at station 16 (GB). 723 

 724 

 725 
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 727 

Figure 4. (A) shows two selected zones in the 2D-HR image of metals in the sediment at BCZ 728 

station 130 (2D-HR results are shown in Figure 1). Each selected zone corresponds to a single 729 

concentration point in the 1D profile at station 130 (1D results are shown in Figures 2 and S4). 730 

Concentration values of Cd, Cu, and Pb were selected from zone 1 (0.25 to -0.25 cm of depth) 731 

corresponding to the 1D result at 0 cm of depth, while those of Fe, Mn, and Co were selected 732 

from zone 2 (-1.25 to -1.75 cm of depth) corresponding to the 1D result at -1.5 cm of depth. (B) 733 

is the box plot showing the range and distribution of the concentration values of metals in the 734 

selected zones in the 2D-HR image. Each grey box includes values between 25th and 75th 735 

percentile with the black line inside indicating the median value and the red line inside indicating 736 

the mean value. The whiskers above and below the box show the maximum (75th percentile + 1.5 737 

× interquartile range) and minimum (25th percentile – 1.5 × interquartile range) values. Two 738 
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points at the bottom and top represent 5th and 95th percentile respectively. (C) shows the 739 

horizontal distribution of the concentrations of Fe, Mn, and Co in zone 2. The horizontal axis 740 

presents the distance from the left edge, set at 0 cm.  741 
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 743 

Figure 5. The concentration distribution of metals (Fe, Mn, Cu, and Ni) along the red line across 744 

the observed microniche in the sediment at station 16 (GB). 745 
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