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Abstract 91 

Soil salinity is one of the major and widespread challenges in the recent era that hinders global 92 

food security and environmental sustainability. Worsening the situation, the harmful impacts 93 

of climate change accelerate the development of soil salinity, potentially spreading the 94 

problem, in the near future, to currently unaffected regions. This paper aims to synthesise 95 
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information from published literature about the extent, development mechanisms, and current 96 

mitigation strategies for tackling soil salinity, highlighting the opportunities and challenges 97 

under climate change situations. Mitigation approaches such as application of amendments, 98 

cultivation of tolerant genotypes, suitable irrigation, drainage and land use strategies, 99 

conservation agriculture, phytoremediation, and bioremediation techniques have successfully 100 

tackled the soil salinity issue, and offered associated benefits of soil carbon sequestration, and 101 

conservation and recycling of natural resources. These management practices further improve 102 

the socio-economic conditions of the rural farming community in salt-affected areas. We also 103 

discuss emerging reclamation strategies such as saline aquaculture integrated with sub surface 104 

drainage, tolerant microorganisms integrated with tolerant plant genotypes, integrated agro-105 

farming systems that warrant future research attention to restore the agricultural sustainability 106 

and global food security under climate change scenario. 107 

 108 

Key words: Salt-affected soil; Climate change; Soil reclamation; Environmental quality; 109 

Farmers’ livelihood; Sustainability 110 

 111 

1. Introduction 112 

Soil salinity is one of the largest global challenges in the arid and semi-arid regions that 113 

severely affects agricultural production (El hasini et al., 2019). Soil salinity already covers 20% 114 

of total cultivated, and 33% of the irrigated agricultural lands worldwide (Srivastava and 115 

Kumar, 2015) and expected to increase at a faster rate than now by the year 2050 (Central Soil 116 

Salinity Research Institute (CSSRI), 2014). For example, the percentage of saline soils in 117 

Bangladesh had increased from less than 1% in 1990 to 33% in 2015 mainly due to sea water 118 
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intrusion in the coastal areas resulting from excessive extraction of ground water sources 119 

(Rahman et al., 2018). The salt stress in soil is becoming prominent also due to other 120 

anthropogenic activities (e.g., over-application of groundwater and synthetic fertilizers) of the 121 

ever-increasing global population pressure (United Nations, 2011).   122 

Recently, the alarming impact of climate change on the build-up of soil salinity has attracted 123 

widespread research attention. The rise in atmospheric greenhouse gases’ (GHGs) 124 

concentrations and the consequent increase in air temperature and decline in relative humidity 125 

together with extreme events of rainfall are probable indicators of climate change that have 126 

huge impact on the pace of soil salinity development (IPCC, 2013; Haj-Amor and Bouri, 2019). 127 

The climate change could accelerate salt water intrusion into fertile soils due to sea level rise 128 

and excess groundwater extraction in the dry regions of the world could also increase soil and 129 

groundwater salinity (Dasgupta et al., 2015). It is estimated that about 600 million people living 130 

in the coastal zones throughout the world could be affected by salinization (Wheeler, 2011; 131 

Dasgupta et al., 2015). Numerous studies reporting the impact of climate change on crop yield 132 

indicate positive (e.g., wheat yield increased with increased CO2 concentration under optimal 133 

temperature) or negative (e.g., 3.8% drop in maize yield during 1980 to 2008) impacts, which 134 

could be balanced equally up to 2030 worldwide, but after that a clear dominance of the 135 

negative impact on crop yields will be visible (The Food and Agriculture Organization (FAO), 136 

2017). Moreover, about 40 million people would be at risk due to malnourishment if the current 137 

pace of climate change continues (FAO, 2017). Therefore, climate change is likely to become 138 

one of the primary obstacles to sustainable agriculture and global food security (Corwin, 2020).  139 

Rising air temperature, extreme events of rainfall, weather conditions (e.g., prolonged droughts 140 

and floods), changing soil fertility and health, and new pest infestations coupled with increasing 141 

salt-affected areas are major factors contributing to stagnant agricultural growth (Corwin, 142 

2020). Climate-smart agriculture is considered a pragmatic approach to ensuring food security 143 
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in the challenging environment (Jat et al., 2019a). The climate smart management practices 144 

(CSMPs) include site-specific reclamation management strategies (e.g., amendments, 145 

irrigation and drainage), conservation agriculture (CA) and use of stress-tolerant genotypes. 146 

These practices may deliver co-benefits in the forms of reduced GHG emission, and enhance 147 

soil carbon sequestration and ecosystem services. Therefore, CSMPs are the need of the hour 148 

to tackle soil salinity under current and future climatic conditions. 149 

Most of the literature is concentrated on desalination of brine water using reverse osmosis, and 150 

electro-remediation (Werber et al., 2017). These technologies have been proven effective for 151 

domestic water supply, but are expensive for irrigation of agricultural crops. Very limited 152 

literature is available concerning the complete management practice packages of soil salinity 153 

(Saifullah et al., 2018; Meena et al., 2019), especially under the varying climatic scenarios. A 154 

review paper portraying our current status of knowledge about the soil salinity management 155 

strategies under climate change scenarios aiming for food security is thus very important. In 156 

this article, we therefore aim to provide a holistic overview of global status of salt-affected 157 

soils, its relationship with climate change and food security along with various successful cost-158 

effective climate smart reclamation strategies for salt-affected soils. We critically discuss about 159 

amendments, irrigation and drainage strategies, CA, land use patterns, bioremediation and 160 

phytoremediation approaches for the management of soil salinity. Further, we shed lights on 161 

the environmental and economic implications of those strategies and suggest future research 162 

directions. 163 

 164 

2. Methodology adopted for the review 165 

A large number of published reports (n= 140) covering salt-affected soils were collected  to 166 

make an initial assessment on salt-affected soil genesis, classification, extent of distribution, 167 

mechanisms of salt stress and mitigation strategies on the basis of the topic and hypothesis 168 
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(Khan, 2019). We covered literature reviews based on information available from 169 

sciencedirect.com, springer.com, wiley.com, FAO reports, CSSRI technical bulletins, Scopus 170 

and Google Scholar databases using relevant keywords such as salinity, sodicity, reclamation, 171 

salt tolerance, and climate sustainability. After systematic review and content analysis, we 172 

identified the key management practices and key challenges associated with certain 173 

reclamation strategies. Finally, we reached to the conclusions and future research 174 

recommendations focussing on the hypothesis and objective of this review. 175 

 176 

3. Soil salinity and its global extent 177 

Soil salinity is classified based on pH of saturated soil paste, electrical conductivity of saturated 178 

paste extract (ECe) and exchangeable sodium percentage (ESP) (Richards, 1954). Salt-affected 179 

soil includes saline soil, sodic soil and saline-sodic soil. Saline soils have pH <8.5, ECe >4 180 

dS/m and ESP <15 containing soluble salts of Cl- and SO4
2- of Na+, Ca2+, and Mg2+. On 181 

contrary, sodic soils have pH >8.5, ECe <4 dS/m and ESP >15 containing soluble salts of CO3
2- 182 

and HCO3
- of Na+, Ca2+ and Mg2+ (Richards, 1954). Saline-sodic soil shows the characteristics 183 

of both saline and sodic soils. These soils are characterized by pH >8.5, ECe >4 dS/m and ESP 184 

>15 and contain a mixture of Cl-, SO4
2-, CO3

2- and HCO3
- salts of Na+, Ca2+, and Mg2+. Salt-185 

affected soils are distributed in 954 million hectare (Mha) area of 120 countries of the world, 186 

and contribute to 7-8% productivity loss (Table 1) (Meena et al., 2019). Among these, Australia 187 

shares the highest area of salt-affected soils constituting more than 50% of the sodic soils 188 

worldwide (Shahid et al., 2018).  189 

India is currently having 121 Mha of degraded land out of which 6.73, Mha area is covered by 190 

salt-affected soil (NAAS, 2012). Out of this, 2.96 Mha is saline, and 3.77 Mha is sodic soil 191 

(Tripathi et al., 2011). Thus, India’s 2% of the total geographic area is salt-affected, which 192 

poses a potential threat to India’s sustainable agriculture and food security.  193 
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 194 

4. Mechanisms of salt tolerance in plants 195 

Soil salinity results in increased ECe, poor soil structure and low soil water potential (ψw). The 196 

development of salt stress in plants could be described in two ways: (i) osmotic phase, and (ii) 197 

ionic phase (Figure 1) (Munns and Tester, 2008; Sirault et al., 2009). Osmotic phase takes place 198 

within few minutes of salt accumulation in root zone. Stomata closure, increase in leaf 199 

temperature and inhibited shoot elongation are the fundamental indicators of plants during 200 

osmotic phase, because of low soil water potential and thick inner wall of the guard cells. 201 

Conversely, the ionic phase starts after few minutes to few hours in different cases of salt input 202 

which involves salt accumulation in shoots over a long period of time and leads to leaf 203 

senescence and premature abscission.  204 

 205 

5. Interrelationship between soil salinity, climate change and food security 206 

Climate change refers to long-term changes in weather conditions and climate systems. As a 207 

result, the global air temperature has increased by 1.5°C above the pre-industrialization level, 208 

and the rise in CO2 concentration in the atmosphere has gone up 20 µmol/mol per decade since 209 

2000, and now it has reached >400 µmol/mol (Corwin et al., 2020). Consequently, following 210 

drastic changes have already been observed, which greatly influence the development of soil 211 

salinity (Corwin, 2020): 212 

(i) Increase in the frequency of extreme weather conditions such as rise in air 213 

temperature, evaporation rate, excessive rainfall and heat stress. 214 

(ii) Global warming due to increased concentration of GHGs (e.g., CO2, N2O, CH4) 215 

which trap the heat within the atmosphere. 216 
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(iii) Spatial and temporal variability of rainfall distribution leads to changes in soil 217 

moisture contents. 218 

(iv) Increase in precipitation leads to soil erosion, groundwater recharge, infiltration and 219 

storage, whereas rise in temperature promotes the transpiration and moisture 220 

depletion from the soil profile. 221 

(v) Rise in sea-level and sea water intrusion in the coastal areas limits their application 222 

for irrigation. It is projected that 130 million people will be inundated by rise in sea 223 

level within 120 years (Chen and Mueller, 2018). 224 

Besides, excessive use of mineral fertilizers and groundwater during the post green revolution 225 

era added neutral soluble salts to the soil, which in turn contributed to salinity build up.  226 

The livelihood of 40-50% people in Asia is highly dependent on agricultural practices, while 227 

the corresponding value is 66% for Africa (ILO, 2007). Reclamation of salt-affected soils can 228 

potentially contribute to increased production of millions of tonnes of food grains worldwide. 229 

Thus, a complete package of climate smart technologies for reclamation of salt-affected soils 230 

is the need of the hour. Some of these reclamation approaches, which may reduce the area under 231 

salt-affected soil, helping to maintain agricultural sustainability and global food security, are 232 

discussed in the subsequent sections. 233 

 234 

6. Soil salinity mitigation approaches for sustainable agriculture and food security 235 

Useful techniques for reclaiming salt-affected soils in affected countries along with their major 236 

cropping systems are given in Table 2. In addition to various organic and inorganic 237 

amendments, applications of microorganisms, halophytes, tree species, land use pattern 238 

change, CA, and innovative irrigation and drainage strategies have been employed to reclaim 239 

salt-affected soils worldwide. 240 

 241 
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6.1. Amendments 242 

Organic amendments such as biochar, compost of municipal solid wastes (MSW) and inorganic 243 

amendments that are rich in Ca (e.g., fly ash, gypsum, phosphogypsum), and zeolites have been 244 

used to reclaim sodic soils (Singh et al., 2018a; Mishra et al., 2019). Application of the above 245 

amendment materials improve the soil bulk density, aggregate stability, hydraulic conductivity, 246 

and lower down the pH, EC, ESP of salt-affected soils (Mishra et al., 2019; Sundha et al., 247 

2020). In addition, improved soil biological properties (e.g., soil enzymatic activities, microbial 248 

population, and microbial biomass N and P contents) are observed due to beneficial effects of 249 

amendments. A schematic diagram is presented in Figure 2 to elucidate the influences of 250 

various amendments on soil properties. 251 

 252 

6.1.1. Gypsum 253 

Gypsum is the most effective amendment for reclaiming sodic soil due to its wider availability, 254 

and substantial Ca2+ supply capacity. Ca2+ replaces Na+ from the soil colloids, and leaches 255 

NaSO4 deeper in the soil profile (Eq. 1) (Singh et al., 2018a). A combination of gypsum and 256 

mineral langbeinite (rich in Mg2+ and K+) resulted in significant reduction of soil exchangeable 257 

Na+ and sodium adsorption ratio (SAR), and improved soil saturated hydraulic conductivity 258 

(Aydemir and Najjar, 2005). Naturally available mined gypsum is of poor quality, and its 259 

availability to agriculture is limited due to excess mining within the cement industry. 260 

Phosphogypsum, a by-product of phosphate fertilizer production, is used as an alternative to 261 

gypsum to minimize the use of mineral gypsum (Singh et al., 2018a). However, 262 

phosphogypsum may contain traces of potentially toxic elements (PTEs) (e.g., Cd), and its 263 

solubility is less than gypsum. Flue gas desulphurization (FGD) gypsum, a by-product of FGD 264 

process involving the capture of sulphur gases in coal-fired power stations, is also a rich source 265 
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of Ca2+, hence can be used to replace Na+ with Ca2+ from soil exchange sites (Seshadri et al., 266 

2013).   267 

2Na+- soil + CaSO4.2H2O → Ca2+- soil + Na2SO4 (soluble)    (Eq. 1) 268 

 269 

6.1.2. Compost 270 

Composts such as green waste compost, green manure compost, and municipal solid waste 271 

compost were reported to increase soil salinity initially, but decreased it substantially in the 272 

later stage. El hasini et al. (2019) used a green waste compost (mixture of melon rind and olive 273 

pomace), sugarcane compost and gypsum to reclaim saline soils. They reported that the 274 

combined application of organic amendment (green waste compost) and gypsum (3.8 mg/g 275 

soil) increased the soil EC initially during 100 days due to the presence of dissolved salts in 276 

the compost and limited flushing. However, the EC was reduced to 2.80 from 16.65 dS/m after 277 

120 days due to replacement of Na+ with Ca2+ in soil exchange sites and solute leaching. 278 

Similarly, vermicompost at the rate of 10 t/ha in combination with 100% recommended dose 279 

of N (RDN) decreased the soil bulk density, pH, EC, ESP and soil solution Na+ content of a 280 

degraded sodic soil by 2.0, 4.2, 26.5, 42.8, and 56.6%, respectively, and increased the soil 281 

organic carbon (SOC) content by 34.6% over control (Singh et al., 2019). The properties of 282 

degraded sodic soils could be improved considerably due to the decomposition of organic 283 

residues by enhanced microbial activity, microflora populations and displacement of excess 284 

Na+ by Ca2+ in the soil exchange sites (Wang et al., 2014).   285 

 286 

6.1.3. Municipal solid waste compost  287 

Municipal solid waste (MSW) compost received wide acceptance for reclaiming sodic soils, 288 

and improved soil physicochemical properties when it was combined with gypsum, mineral 289 

fertilizers and other inorganic amendments (Sundha et al., 2020). Singh et al. (2018a) reported 290 
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that application of gypsum (at the rate of 25% of the gypsum requirement) in combination with 291 

on-farm MSW compost at the rate of 10 t/ha reduced soil ESP and bulk density by 14 and 11%, 292 

respectively, and increased infiltration rate, SOC content and available N by 54, 10 and 13%, 293 

respectively, over recommended dose of gypsum. Similarly, a combined application of MSW 294 

(at the rate of 10 t/ha) along with 75% RDN improved the dehydrogenase activity in a sodic 295 

soil to the tune of 9.3 to 47.3% due to enhanced intra and extracellular enzyme secretions 296 

(Singh et al., 2019). Thus, to reclaim sodic soils, MSW compost could minimize the 297 

requirement of mineral gypsum. A similar study conducted by Meena et al. (2016) in saline 298 

soil, showed that soil nutrient availability (N, P and K) was improved by the application of rice, 299 

wheat straw compost in combination with 50% recommended dose of fertilizer (RDF) instead 300 

of MSW compost. The N, P and K availability was increased by 14, 17 and 9%, respectively, 301 

after pearl millet harvest, likely due to the slow release of nutrients from the compost in the 302 

degraded soil. However, the combined use of chemical fertilizers and compost might decrease 303 

the organic P fraction in the soil, likely due to the increased microbial activities in the 304 

rhizosphere (Chang Hoon et al., 2004). In contrast, Meena et al. (2018) reported that a 305 

combined application of MSW compost (at the rate of 8 t/ha) and 50% RDF increased all 306 

fractions of P in soil under a mustard and pearl millet cropping system, likely due to the addition 307 

of organic P through the compost. However, MSW added some amounts of PTEs to the soil, 308 

especially lead (Pb2+) and chromium (Cr6+) depending upon the raw materials of the MSW 309 

compost. The measured PTEs levels were well below the critical level for inducing soil 310 

pollution (Meena et al., 2019). Therefore, a holistic improvement of salt-affected soil properties 311 

(physicochemical and biological) could be achieved via MSW applications with or without 312 

fertilizers, or other amendments. However, care should be taken for the selection and 313 

application rates of MSW compost so that it does not pose the risk of a secondary pollution in 314 

reclaimed soils. 315 
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 316 

6.1.4. Biochar 317 

Biochar has become popular for soil carbon sequestration, soil health improvement and 318 

reclamation of salt-affected soils. Depending upon the nature of feedstock and preparation 319 

conditions, biochar can contain a substantial amount of N, P, K, and micronutrients (Sun et al., 320 

2017; Purakayastha et al., 2019). Additionally, N-losses via NH3 volatilization and 321 

denitrification can be substantially reduced by biochar application, due to NH4 adsorption 322 

inside biochar pore spaces (Mandal et al., 2016). However, high application rates of biochar 323 

can increase the volatilization loss of N due to high pH of biochar applied to soil (Sun et al., 324 

2017). The availability of P in sodic soil can be enhanced by decreasing the pH by 0.3 unit, 325 

blocking the clay adsorption sites by dissolved organic carbon, and releasing organic acids for 326 

P mobilization in soil (Lashari et al., 2013). A wood-based biochar prepared from hardwood 327 

feedstock and pyrolyzed at 450◦C showed acidic pH (5.6) which could be used for reclamation 328 

of sodic soil (Shaheen et al., 2019). Acidic wood biochar (pH=3.25; pyrolysis temperature 329 

650◦C) might also be used to reduce the pH of sodic soil (Qi et al., 2018). In contrast, biochar 330 

application could increase the soil pH too, which would decrease P availability due to 331 

precipitation of insoluble P compounds (Xu et al., 2016). The K availability was reported to be 332 

increased by 44% after biochar application in salt-affected soils depending upon soil types and 333 

biochar properties (Lin et al., 2015). Therefore, the selection of biochar feedstock and pyrolysis 334 

temperature are important factors to be considered before applying this amendment to salt-335 

affected soils. Soil physical properties (e.g., bulk density, porosity, and water holding capacity) 336 

were also improved considerably due to porous nature of biochar (Burrell et al., 2016). Amini 337 

et al. (2016) noticed significant effect of biochar (acidic vs alkaline) on soil physical properties 338 

such as saturated hydraulic conductivity and aggregate stability in a saline-sodic soil. The 339 

organic molecules present in biochar helped to bind polyvalent cations and clay particles for 340 
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improving the aggregation of particles in degraded salt-affected soils. The soil structure and 341 

SOC content were found to be improved in salt-affected soil by biochar application with a 342 

simultaneous lowering of ESP (Amini et al., 2016).  Similarly, soil ECe decreased by 42% 343 

following a combined application of poultry manure and biochar (Lashari et al., 2015). It is 344 

inferred that acidic biochar could be a potential amendment for the reclamation of sodic soils.  345 

 346 

6.1.5. Fly ash 347 

Fly ash is a combustion product of coal industry having potential role in reclaiming sodic soils 348 

when applied jointly with gypsum and green manure (Mishra et al., 2019). Fly ash, applied in 349 

combination with manure and gypsum (25% gypsum requirement), showed significantly 350 

higher rice yield than the control treatment, that consisted of the application of fly ash only 351 

(2.5% fly ash on mass basis i.e. 1.96 t/ha) (Mishra et al., 2019). The beneficial properties of fly 352 

ash, such as high Ca2+ content, low bulk density, and the presence of substantial amounts of 353 

sesquioxides, improved the physicochemical properties of the degraded soil (Shirale et al., 354 

2017). In contrast, fly ash application in soil under rice crop did not significantly reduce the 355 

soil pH, but reduced 68.4% exchangeable Na+ content of the soil (Lal et al., 2012). Fly ash 356 

derived from coal combustion is generally alkaline because of the addition of lime for capturing 357 

sulphur gases. However, FGD gypsum was reported to improve the N uptake of corn plants 358 

when applied together with N-fertilizers in the soil (Seshadri et al., 2013). Therefore, fly ash 359 

products could be a potential amendment for the reclamation of sodic soils due to their high 360 

Ca2+ supplying capacity. 361 

 362 

6.1.6. Zeolites  363 

Zeolites, a hydrated crystalline aluminosilicate of alkali and alkaline earth metals, can be used 364 

to reclaim saline soils. Zeolites such as clinoptilolite, erionite and heulandites are used as soil 365 
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conditioners to improve soil properties and nutrient availability (Manjaiah et al., 2019). It was 366 

observed that Ca-rich clinoptilolite substantially improved the crop yield and quality of a saline 367 

soil due to adsorption of Na+ and Cl- in the mineral cavities (Noori et al., 2006). Similarly, 5% 368 

zeolite application to a saline soil increased Ca2+ concentration, and micronutrient Fe2+ and 369 

Mn2+ by 19 and 10%, respectively (Al-Busaidi et al., 2008). The mechanisms governing the 370 

salt removal process by zeolites are mainly ion exchange, adsorption, and salt storage (Wen et 371 

al., 2018). The possible ion exchange reaction of zeolites in salt-affected soil is shown in Eq. 372 

2. 373 

(2Na+- soil) + (Ca2+-zeolites) → (Ca2+- soil) + (zeolites) + (2Na+ solution)  (Eq. 2) 374 

 375 

6.2. Irrigation and drainage strategies 376 

Saline groundwater in the arid and semi-arid regions of the world has become a major challenge 377 

for water management to ensure agricultural sustainability (Yao et al., 2012). Almost 43% of 378 

world’s irrigated area is groundwater dependent (Minhas et al., 2019), out of which India (39 379 

Mha) and China (19 Mha) share the maximum area under groundwater irrigation. Therefore, 380 

strategic water management techniques are required to tackle saline groundwater during crop 381 

production. 382 

 383 

6.2.1. Irrigation techniques 384 

South-Asian countries mainly focus on rice-wheat (RW) system to ensure food security, and 385 

this cropping system is resource intensive, viz. it entails high requirement of irrigation water 386 

(200-250 cm/yr), synthetic fertilizers, energy, and labour. A constant depletion of groundwater 387 

aquifers and salinity build up are becoming pronounced in South Asia. Irrigation with saline 388 

water was reported to increase salinity up to 12.2 dS/m, and SAR up to 20 (Yadav et al., 2007). 389 

Consequently, significant negative changes occurred in soil properties including reduced 390 
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saturated hydraulic conductivity, aggregate stability and increased dispersion and run-off 391 

(Mandal et al., 2008).  Hence, judicious application of irrigation water along with smart crop 392 

management practices is an essential approach to avoid salinity build up and tackle water 393 

scarcity in dry land areas (Minhas et al., 2020a). Saline and best quality available water have 394 

been used in a mixture to avoid the water salinity during pearl millet production and to compare 395 

yield of two varieties AVKB-19 and ICMV-15111 under saline soil (Makrana et al., 2019). 396 

The AVKB-19 showed 16.26 % higher grain yield than ICMV-15111 when good quality water 397 

was mixed with saline water for irrigation. Bed planting of crops, straw mulching, and micro 398 

irrigation (e.g., sprinkler, drip (surface and subsurface) irrigation) are known to save irrigation 399 

water, and improve N- use efficiency and grain yield. For example, drip irrigation with residue 400 

retention and raised bed planting in maize and wheat showed 13.7 and 23.1% higher yield, 401 

respectively, than furrow irrigation system without residue retention (Sandhu et al., 2019). The 402 

drip system (with residue retention) saved 88 and 168 mm of water, and increased water 403 

productivity by 66 and 259%, respectively, in CA-based wheat and maize compared to the 404 

conventional irrigation system. Moreover, sub-surface drip irrigation in combination with CA 405 

saved 48-53 and 42-53% of the irrigation water in rice and wheat, respectively, and saved 406 

overall 20% N input (Sidhu et al., 2019). Apart from drip system, irrigation techniques using 407 

sprinkler and low energy water application device saved 30-40% water compared to surface 408 

irrigation, and recorded 4.4 t/ha rice yield which was at par with maximum yield with surface 409 

irrigation in a sodic soil (Singh et al., 2018b). Kumar et al. (2019a) proposed novel matric 410 

potential based irrigation strategies for direct seeded rice (DSR) which could save substantial 411 

amount of water, and sustain the productivity of salt tolerant basmati rice (CSR30). They 412 

suggested that irrigations at or below -30 kPa (field capacity) during initial 90 days of rice 413 

growth, and at -15 kPa during rest of the growth period exhibited similar yield under traditional 414 

irrigation method. Thus, the use of saline water in conjugation with fresh water, sub-surface 415 
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drip irrigation, and DSR techniques might effectively reduce the salinity effects, and tackle 416 

water scarcity in semi-arid and arid regions. 417 

 418 

6.2.2. Drainage strategies and groundwater recharge 419 

Agricultural drainage is important to remove excess water due to high precipitation, eliminate 420 

dissolved soluble salts from the soil profile, and maintain the groundwater table. However, due 421 

to lack of care, waterlogged salinity remains a severe problem in many productive areas of 422 

Australia, Middle East, United States, and Asia (Emadodin et al. 2012). Sub-surface drainage 423 

(SSD) was identified as one of the most important techniques to remove salts from 1.5 m depth 424 

(Nijland et al., 2005). Two types of SSD can be useful for the reclamation of saline soils: (i) 425 

horizontal sub-surface drainage which works up to 1.5-2.0 m depth of root zone, and involves 426 

a network of drain consisted of the main drain, lateral drains and collectors (Nijland et al., 427 

2005), and (ii) vertical sub-surface drainage which is related to pumping of excess water by 428 

tube well (Bos, 2001). Srinivasulu et al. (2005) reported SSD installation (pipe drain) in 8 ha 429 

saline waterlogged area of Prakasam district of India (water table depth 0-3.7 m; ECe: 1.3-18.6 430 

dS/m) with 30 and 60 m drain spacing. Around 0.2-0.35 m lowering of water table depth, and 431 

50.4 tonnes of salt accumulation in the pipes occurred during 1999-2002. Yields were increased 432 

by 50-100% in most of the crops due to installation of SSD, which is really a profitable solution 433 

to the farmers of salt-affected areas (Kamra et al., 2013). Bhattacharya (2007) reported that 434 

investments on surface drainage too are economically viable with yield benefits ranging from 435 

20 to 28% in sugarcane, 20 to 25% in paddy, 32% in gram, and 50% in Indian bean.  436 

Intensively irrigated agriculture suffers severely from long-term increase of salinity in the 437 

groundwater derived from irrigated permeable soils in arid and semi-arid regions (Foster et al., 438 

2018). Groundwater recharge through preparation of artificial recharge structures using 439 

rainwater was found useful to minimize the salt load in surface water and groundwater. 440 
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Groundwater salinity of semi-arid area of Karnal district, India, was reduced to 1.33 from 1.36 441 

dS/m within one year while alkalinity reduced from 6.63 to 1.33 meq/L with 3.16 m rise in 442 

groundwater table due to groundwater recharge events (Narjary et al., 2014). Similarly, 1.26 443 

and 0.65 m rise in water table during monsoon through an artificial recharge structure was 444 

observed in Nirmana and Kutba village of Uttar Pradesh, India, with a reduced salinity level of 445 

the groundwater (e.g., EC declined from 0.90 to 0.24 dS/m in Kutba village) (Kumar et al., 446 

2019b). Furthermore, the alkalinity of groundwater was reduced by 2-3 meq/L in Kaithal 447 

district of Haryana, India, which minimized crop damage from 35-40% in open field to 5-15% 448 

under groundwater recharge structure with a benefit to cost ratio of 1.93 (Kumar et al., 2020). 449 

Horriche and Benabdallah (2020) reported that an artificial recharge structure with 1500 450 

m3/day recharge rate minimized salt load by 5.7 g/L. Hence, groundwater recharge in saline 451 

areas is one of the feasible solutions for increasing the level of groundwater table and 452 

improving the groundwater quality. 453 

 454 

6.3. Salt tolerant genotypes 455 

Salt tolerant crops are an important tool for sustaining productivity in salt-affected regions. 456 

Plant salt tolerance has been demonstrated through specificity in ion accumulation and better 457 

partitioning of accumulated ions within plant cells and tissues. For example, wheat showed salt 458 

tolerance via: (i) salt exclusion, (ii) osmotic tolerance, and (iii) tissue tolerance (Munns et al., 459 

2016). In addition, the salinity tolerance of wheat showed dependence on forms of N-fertilizers 460 

(NH4
+ preferred) indicating that NO3-N could be harmful (Elgharably et al., 2010). In case of 461 

barley, salt exclusion and osmotic tolerance were the main operative mechanisms both under 462 

hydroponic and saline soil growth conditions (Tavakkoli et al., 2012). Krishnamurthy et al. 463 

(2016) evaluated 131 rice accessions at normal (1.2 dS/m) and highly saline (10 dS/m) 464 

irrigation water, and found that root and shoot lengths were decreased by 52 and 50%, 465 
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respectively, due to high Na+/K+ ratio in plants. They identified three accessions namely, IC 466 

545004, IC 545486 and IC 545215 which were suitable as parent donors under saline 467 

conditions. Ravikiran et al. (2017) experimented with 192 genotypes of rice at normal (1.2 468 

dS/m) and high salinity (12 dS/m) hydroponic conditions. They concluded that CST 7-1 and 469 

Arvattelu genotypes could be novel sources of seedling stage salinity tolerance among all the 470 

experimental genotypes. A comparison study between rice varieties CSR10 and MI48 was 471 

conducted, and CSR10 expressed lower Na+/K+ ratio in shoots than MI48 (Singh et al., 2018c). 472 

For mustard, a set of 97 salt tolerant genotypes were planted in highly saline soil (ECe: 10.7 473 

dS/m). The erucic acid content in mustard was increased under salinity by 12.2%, while oil, 474 

protein and crude fibre contents were decreased by 5.78, 29.31, and 20.45% (Singh et al., 475 

2014). Tomato genotypes were also evaluated in salt solution (0, 1.0 and 3.0% NaCl salt 476 

concentration in Hoagland solution). Important traits of tomato genotypes such as % 477 

germination, and root shoot dry weight responded negatively towards high salinity for most of 478 

the tomato genotypes except Sel-7 and Arka Vikas (Singh et al., 2012). Sugarcane was also 479 

found salt tolerant (varieties-Co 6806, Co 7717 and Co 8208) in coastal saline areas of India, 480 

and but experienced major yield loss (~40%) under massive salt water intrusion in coastal areas 481 

(Balasundaram, 2004).  482 

 483 

6.4. Land use management 484 

Conversion of barren land to crop lands naturally improve the soil nutrients status and organic 485 

carbon inputs (Yu et al., 2018). Therefore, changes in land use systems of salt-affected soil 486 

through cropping systems, agroforestry, and fruit crops would improve the soil quality. Earlier, 487 

five land use systems comprised of corn cropland (CL), alfalfa perennial forage (AF), 488 

monoculture Lyemus chinensis grassland (AG), monoculture L. chinensis grassland for hay 489 
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(Mowing) (AG+M) and successional regrowth grassland (RG) were evaluated in salt-affected 490 

soil of north-eastern China (Yu et al., 2019) and it was revealed that SOC, total N, total P and 491 

total K contents of surface soils were increased by 40.42, 17.66, 15.71 and 11.5%, respectively 492 

due to addition of organic litter inputs from forage crops. Rice based cropping system showed 493 

promising impact for improving soil physicochemical properties and carbon content in the salt-494 

affected canal command area of Indo-Gangetic Plain (Bhardwaj et al., 2019). Results suggested 495 

that rice-okra-mentha (ROM) and RW systems displayed a decreasing trend of ESP to the tune 496 

of 37 and 35.5%, respectively, and an increasing trend of carbon stock (4-70%) compared to 497 

barren sodic land due to addition of organic matter input. Likewise, Jatropha (Jatropha curcas 498 

L.) cultivation as an intercrop between sweet basmati rice and Matricaria was effective in 499 

increasing soil microbial biomass carbon (MBC) (+24.68% over control-no intercrop), 500 

microbial activity and improving soil properties in a degraded sodic soil of northern India. The 501 

above practice received 5288.4 US$/ha as economic return via Jatropha intercropping with the 502 

sweet basmati rice-Matricaria cropping system because of high yield and market value of sweet 503 

basmati rice and Matricaria flowers (Singh et al., 2016). Another study on the influence of 504 

different land uses (sorghum, paddy, forest, wetland, wasteland and meadow) on microbial 505 

community structure in saline-sodic soil suggested that bacterial abundance was maximum 506 

under wetland (1.03 × 109 copies/g dry weight of soil), whereas fungal population was 507 

maximum (5.83 × 106 copies/g dry weight of soil) under forest ecosystem, due to drying and 508 

wetting phenomenon in the former (Feng et al., 2019). In case of GHG emission, emission of 509 

CO2 decreased (lowest in bare land) with increasing salinity, which might be due to the 510 

reduction of activity of heterotrophic microorganisms. The N2O production increased with 511 

increasing salinity under Tamarix chinensis and Phragmites australis ecosystems due to 512 

increased ion concentrations, less solubility of N2O, and low N2O reductase activity (Zhang et 513 

al., 2018). However, N application increased the CO2 emission under Suaeda salsa and P. 514 
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australis ecosystems, while N2O emission was large under vegetative cover because of 515 

increased microbial activity (denitrifying bacteria) (Zhang et al., 2019).  516 

Crop establishment methods such as dry seeded rice, non-puddled transplanted rice (non-PTR) 517 

provided 25-44% higher rice yield than rapeseed grown after puddled transplanted rice (PTR), 518 

while yields of maize were 8–13% higher when grown after either dry seeded rice or Non-PTR 519 

in coastal salt-affected areas of West Bengal, India (Sarangi et al., 2019).  In addition, maize 520 

was found more profitable (US$301-405/ha) than rapeseed (US$ 5-113/ha) in coastal salt-521 

affected soils of India. Impacts of different land shaping techniques such as farm pond (FP), 522 

deep furrow and high ridge (RF), and paddy cum fish (PCF) systems were studied for rainwater 523 

harvesting to improve the productivity of coastal saline soils of Sundarbans, India (Mandal et 524 

al., 2019). These areas receive 2.7 times higher annual rainfall than crop evapotranspiration. 525 

The estimated runoff was 19.5, 29.1 and 27.75% of the annual rainfall in FP, RF and PCF 526 

systems, respectively, whereas in rice-fallow system it was 34.6% of the annual rainfall. 527 

Additionally, the calculated water footprints were much higher in the rice-fallow and rice-rice 528 

ecosystems than the individual land shaping system, indicating an increased cropping intensity 529 

and high net farm income, during the summer and reduced salinity and waterlogging during 530 

the rainy season.  531 

 532 

6.5. Climate smart conservation agriculture 533 

Climate smart conservation agriculture (CSCA) works on the principles of conservation 534 

agriculture along with precise input management practices, i.e., nutrient, water, genotypes, 535 

labour, and pesticides. Conservation agriculture maintains three basic principles: (i) residue 536 

retention, (ii) minimum tillage, and (iii) crop diversification in order to enhance the 537 

productivity of agri-food systems through better adaptation to climate change (Aryal et al., 538 

2016). A short description of CSCA based agro-ecosystem is presented in Figure 3.  539 
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The CSCA is becoming a potential mitigation strategy for soil salinity under climate change in 540 

Asian countries, especially in north western parts of India. Jat et al. (2018) evaluated four 541 

scenarios (Sc), namely conventional RW cropping system (Sc1), partial CA-based rice-wheat-542 

mungbean system (RWMS) (Sc2), CA-based RWMS (Sc3), and CA-based maize-wheat-543 

mungbean (Sc4) system to assess soil properties and carbon storage under CA-based treatments 544 

in a reclaimed sodic soil. Sc2 indicated remarkably lower soil bulk density (1.52 Mg/m3) 545 

compared to the conventional system, while Sc3 and Sc4 showed greater organic carbon (OC) 546 

content (0.75 and 0.77% OC content under Sc3 and Sc4, respectively), and N availability (33 547 

and 68% higher under Sc3 and Sc4, respectively) compared to Sc1. The SOC pools at surface 548 

soil showed the following order: Sc4 > Sc3 > Sc2 > Sc1 (Jat et al., 2019a). Around 34% higher 549 

soil respiration was noticed under different CA-based scenarios. The predominant phyla of soil 550 

bacteria in all scenarios were Proteobacteria, Acidobacteria, Actinobacteria, and 551 

Bacteroidetes, accounting for >70% of the identified phyla. The bacterial diversity was 552 

prominent under all CA-based maize-wheat-mungbean cropping systems (Choudhary et al., 553 

2018a). Besides, lignocellulose degrading fungal species such as Aspergillus flavus, 554 

Aspaergillus terreus, Penicilium pinophilum and Alternaria alternate were present for residue 555 

decomposition (Choudhary et al., 2016). In this connection, maize-wheat (MW) system with 556 

zero tillage (ZT) and residue mulch (Rm) (MW/ZT +Rm) recorded 208, 263, 210 and 48% 557 

improvement in MBC, microbial biomass N, dehydrogenase activity, and alkaline phosphatase 558 

activity, while RW system under RW/ZT +Rm showed 83, 81, 44 and 13% improvement, 559 

respectively, as compared to RW/ conventional tillage without residue mulch (Choudhary et 560 

al., 2018b; Choudhary et al., 2018c). Therefore, the CSCA practices hold future potential to 561 

tackle soil salinity under climate change scenarios.  562 

 563 

6.6. Phytoremediation 564 
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Phytoremediation is a well-known technique that uses plant species to accumulate salts in order 565 

to reduce their soil concentration. Mainly three kinds of approaches of phytoremediation are 566 

available to minimize soil salinity: (i) agroforestry, (ii) biodrainage, and (iii) halophytic plants. 567 

 568 

6.6.1. Agroforestry 569 

Salt-tolerant fruits, fodder, and tree species could survive under low water requiring saline 570 

irrigation in arid and semi-arid regions (Minhas et al., 2020b). Dagar et al. (2015a) used salt-571 

tolerant fruit crops, namely Carissa carandas, Emblica officinalis, and Aegle marmelos along 572 

with companion crops such as Hordeum vulgare, Brassica juncea, Cyamopsis tetragonoloba, 573 

and Pennisetum typhoides in inter-row spaces, irrigated with (ECiw: low= 4-5; high= 8.5-10.0 574 

dS/m) saline water. Results suggested that C. carandas with P. typhoides and H. vulgare 575 

performed the best with saline water irrigation in sandy calcareous soil. Recently, Dagar and 576 

Yadav (2017) reported that fruit crops such as gooseberry (E. officinalis), ber (Ziziyphus 577 

mauritiana) and sapota (Achras zapota) could tolerate ESP up to 60 in sodic soil. Similarly, 578 

among agroforestry trees, Prosopis juliflora was considered suitable (pH > 10) for sodic soils 579 

followed by Tamarix articulata and Acacia nilotica (Dagar et al., 2001). However, P. juliflora, 580 

T. articulata, and Salvadora persica could be raised successfully in saline soils at up to ECe 581 

30-40 dS/m (Dagar and Yadav, 2017). In another experiment, alfalfa (Medicago sativa) was 582 

evaluated for five years, and it reduced salinity considerably and added high C and N in soil to 583 

improve the soil quality across the profile (Cao et al., 2012). Biomass mulching, root exclusion 584 

and salt removal through alfalfa shoots could be the mechanisms for reduced soil salinity. 585 

Medicinal aromatic plants like Glycyrrhiza glabra was also found suitable in alkali soil with 586 

high economic values in terms of net returns (2.4–6.1 t/ha forage, and 6.0–7.9 t/ha root biomass, 587 

per annum) (Dagar et al., 2015b). 588 

 589 
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6.6.2.  Biodrainage 590 

Biodrainage is a technique of using tree species that reduce the water table by transpiration, 591 

mainly in waterlogged areas. Ram et al. (2011) evaluated the performance of clonal Eucalyptus 592 

(Eucalyptus tereticornis) planted on field boundaries in a waterlogged soil, and found that 593 

groundwater table was lowered down by 2 m after 5 years. Till date, Eucalyptus has been the 594 

most efficient species for lowering down of water table in canal command areas (Dagar et al., 595 

2016). Dagar et al. (2016) revealed that Eucalyptus lowered water table by 43.0 cm in 1 m × 596 

1m, 38.5 cm in 1 m × 2 m, and 31.5 cm in 1 m × 3 m spacings during the fourth year of 597 

plantation compared with no tree plantation. In addition, a recent study showed that Eucalyptus 598 

stored carbon to the tune of 21.2-22.8 Mg/ha in surface soil under agri-silvicultre system (i.e., 599 

intercropping of timber and fuel wood species, and/or fruit and other useful trees with 600 

vegetables and other crops in a common space, at the same time) (Kumar et al., 2019c). 601 

However, it was recommended that high water demanding trees such as Eucalyptus (E. 602 

tereticornis), Populus (Populus deltoides) along with Panicum (Panicum maximum), and 603 

Leptochloa (Leptochloa fusca) could manage the waterlogged saline soil (Dagar, 2014).  604 

 605 

6.6.3. Halophytes 606 

Halophytes refer to the plants which can grow and adapt under saline conditions. Halophytes 607 

of the genera such as Pandanus, Pongamia, Panicum, Plantago, Porterasia, Prosopis, 608 

Rhizophora, Salicornia, and Salvadora are popular for the reclamation of salt-affected soils. 609 

Halophytes are classified according to their salt tolerance or exclusion, which is shown in Table 610 

3 (Grigore and Toma, 2017). 611 

Three key mechanisms of salt tolerance by the halophytes include: (i) avoidance, (ii) evasion, 612 

and (iii) tolerance (Batanouny, 1993; Hayat et al., 2019). Cultivation of Atriplex halimus 613 

decreased EC from 39.2 to 26.5 dS/m of saline-sodic soil, and from 6.2 to 4.9 dS/m of saline 614 
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soil (Abdul-Kareem and Nazzal, 2013). Ravindran et al. (2007) reported that the halophytes 615 

(Suaeda maritima and Sesuvium portulacastrum) reduced ECe and SAR of a saline soil (ECe 616 

>4 dS/m and SAR >13) to a level of normal soil due to accumulation of large salt amounts in 617 

the plant tissues. Zahran and Abdel Wahid (1982) reported that Juncus rigidus reduced the soil 618 

EC from 33 to 22 dS/m during its growth cycle. In addition, mangroves having aerial roots 619 

were found useful and economic in coastal saline soil reclamation, protecting the coastal areas 620 

from tide and providing a common habitat for saline aquaculture with shrimps (Dagar and 621 

Yadav, 2017). Popular mangrove species include Aegialitis rotundifolia, Aegiceras 622 

corniculatum, Avicennia marina, Avicennia officinalis, and Bruguera gymnorrhiza which are 623 

habitat of Sundarban, and Andaman Islands in India (Dagar and Yadav, 2017). Therefore, 624 

halophytes offer an economic and ecological solutions for management of waterlogged saline 625 

soils. 626 

 627 

6.7. Bioremediation  628 

Bioremediation involves the use of various microorganisms or microbial consortium to reclaim 629 

salt-affected soil. The soil microbes include plant growth promoting rhizobacteria (PGPR), 630 

bacteria, mycorrhiza, and cyanobacteria able to reclaim salt-affected soil by producing various 631 

hormones and beneficial substances that enhance soil quality and plant growth.  632 

 633 

6.7.1. Plant growth promoting rhizobacteria  634 

Various PGPR showed their impact on salt-affected soil remediation by improving plant 635 

growth. The main mechanisms include production of 1-aminocyclopropane-1-carboxylate 636 

(ACC) deaminase, indole acetic acid (IAA), and exopolysaccharides secretion to enhance crop 637 

growth (Singh, 2015). A list of PGPR along with their mechanisms on agricultural crops is 638 

given in Table 4 (modified from Choudhary et al., 2019). 639 
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 640 

6.7.2. Salt tolerant bacteria 641 

Salt-tolerant bacteria generally show high requirement of salts, and exist in highly saline 642 

environment to regulate high osmotic pressure. The genera include Ammoniphilus, 643 

Arthrobacter, Azospirillum, Bacillus, Brevibacillus, and Brevibacterium which produce IAA, 644 

gibberellic acid, and other organic acids that can solubilize and transform nutrients present in 645 

soils. Some salt-tolerant endophytes have been reported to show similar mechanisms to PGPR 646 

for salt tolerance (Thijs et al., 2014).  Research revealed that Bacillus foraminis and Bacillus 647 

gibsonii tolerated up to 7.5% NaCl (Arora et al., 2014). In addition, Pseudomonas fluorescens, 648 

and Bacillus subtilis were found successful in NH3 production, while phosphate solubilisation 649 

was significantly higher under isolated Acinetobacter baumannii and P. fluorescens (Arora and 650 

Vanza, 2017). However, future researches should focus on salt-tolerant bacteria and their 651 

application to agricultural fields to avail success in this potential area. 652 

 653 

6.7.3. Mycorrhiza 654 

Mycorrhiza is the symbiotic association between roots of higher plants and fungi. Mycorrhiza 655 

is known for mobilization and solubilisation of nutrients even under saline environment. 656 

Reports are available on the beneficial impact of mycorrhiza such as improved mobility and 657 

availability of nutrients (Zn2+, Cu2+, P) in soils (Chang et al., 2018). Vesicular arbuscular 658 

mycorrhizae (VAM) generally helps in solubilisation of phosphate and P supply to plant roots 659 

in salt-affected soils because phosphate remains in precipitated forms due to presence of Ca2+- 660 

and Mg2+-based carbonate salts (Zhu et al., 2016). In addition, high K+/Na+ ratio maintenance 661 

by VAM fungi indicated their salt-tolerant mechanisms in saline soils (Wu et al., 2005). 662 

Contrasting reports are also available where VAM colonization in wheat was reported to be 663 

decreased by increasing salt concentration in the medium (Zhu et al., 2016). Other mechanism 664 



28 
 

related to mycorrhizal action to salt-tolerance is the control of abscisic acid accumulation under 665 

osmotic stress (Auge et al., 2015). However, further investigations are needed to understand 666 

the molecular mechanisms of mycorrhiza under salt stress conditions.  667 

 668 

6.7.4. Cyanobacteria 669 

Cyanobacteria are gram negative, prokaryote, autotrophic, and blue-green bacteria. They can 670 

survive in extreme environments including under highly saline condition, and improve soil 671 

quality (Rossi et al., 2017). Mostly cyanobacteria were utilized as biofertilizer. It is a challenge 672 

to remove salts from soil using cyanobacteria in terms of quantity, but the use of cyanobacteria 673 

in association with salt-tolerant plants helps to increase the quantity of removed salts (Jesus et 674 

al., 2015). The main mechanisms employed by cyanobacteria are N-fixation, high biomass 675 

production, and extra-cellular polymeric substances (EPS) production that help the 676 

microorganisms to survive under salt stress conditions. The cyanobacterial genera which were 677 

used in different pot and field studies include Anabaena, Nostoc, Calothrix, and Spirulina (Li 678 

et al., 2019). Soil pH and EC were decreased (Singh and Singh, 2015), while soil fertility and 679 

soil enzyme activities were improved using Nostoc ellipsosporum HH- 205 and Nostoc 680 

punctiforme HH-206 under saline soil of India (Nisha et al., 2018). Additionally, Anabaena 681 

laxa RPAN8 showed 21-times higher acetylene reducing activity under salt stress condition, 682 

which was an indication of N-fixation (Babu et al., 2015). Similarly, the intracellular trehalose 683 

content of Anabaena fertilissima increased significantly under 250 mmol NaCl concentration 684 

(Swapnil and Rai, 2018). Besides, the IAA concentrations were found to be 20.05 and 27.17 685 

μg/mL under 250 mmol NaCl in Nostoc carneum TUBT04 and Nostoc commune TUBT05, 686 

respectively (Chittapun et al., 2018). Gibberellins and cytokinins were also identified in Nostoc 687 

kihlmani and Anabaena cylindrical. However, potential application of cyanobacteria at field 688 
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levels should be explored in integration with manure, biochar, and salt tolerant plants to evolve 689 

a green remediation technology for salt-affected soils. 690 

 691 

7. Socio-economic and environmental impact 692 

The monetary and environmental loss due to salinity, and the implication of proper 693 

management practices in the improvement of farmers’ livelihood requires special attention, as 694 

described in the following sub-sections. 695 

 696 

7.1. Socio-economic impact 697 

Soil salinity caused crop growth and yield reductions which led to 27.3 billion US$ economic 698 

loss globally, and 1.2 billion US$ in India alone (Qadir et al., 2014). Among the mitigation 699 

technologies, SSD offered positive impact on farmers’ socio-economic conditions. Manually 700 

installed SSD provided a benefit-cost (B: C) ratio of 1.26 with viable internal net return of 701 

13.3% (Kamra et al., 2019). Reports revealed an approximate 40–50% yield increase in 702 

soybean-wheat cropping system compared to control (without SSD), which resulted in a B: C 703 

ratio of 2.6, and an internal rate of return (IRR) of 28% in Rajasthan, India (Sewa Ram et al., 704 

2000). Even after 20 years of SSD installation, 15-20% additional economic benefit was 705 

obtained by the farmers compared to the sites without SSD (Tejawat, 2015). Furthermore, the 706 

socio-economic analysis of SSD indicated B: C of 1.5, IRR of 20%, and employment 707 

generation of 128 man-days/ha every year (Datta et al., 2000; Sewa Ram et al., 2000). Salt-708 

tolerant genotypes played an outstanding role in the development of economy. Sharma (2010) 709 

reported that salt-tolerant rice, wheat and mustard varieties developed by CSSRI showed an 710 

estimated value of total annual produce around 4384, 46 and 69 million US$, respectively 711 

(calculated on the basis of the minimum support price rates of these crops in India for the years 712 

2009 & 2010). The rice yield was increased to the tune of 1 t/ha where there was an existing 713 
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practice of cultivating marginal salt-tolerant varieties (Sharma, 2010).  The use of salt-tolerant 714 

genotypes reduced gypsum application by 10-15 t/ha for the reclamation of sodic soils (Mandal 715 

et al., 2018). Gypsum application to sodic soil gave positive impact with net value of 3771 716 

US$/ha, B: C ratio of 2.47, IRR of 67% (Tripathi, 2011). The agricultural income generated 717 

from the reclaimed sodic soils was around 3410 million US$ in India (Mandal et al., 2018), 718 

which provided an opportunity of 2.8 million man days of jobs per annum. In coastal saline 719 

area of India, implementation of different land-shaping models along with best natural 720 

management practices resulted in enhanced farmers’ income, allowing net returns from around 721 

76 US$/ha for wet rice to 1935 US$/ha for wet rice-fish-vegetables (Mandal et al., 2018). 722 

Among agroforestry systems, G. glabra, a high value medicinal plant, produced 8000-10000 723 

US$/ha in terms of root and biomass of high medicinal values (Dagar et al., 2015b).  724 

 725 

7.2. Environmental impact 726 

Climate change has many adverse environmental impacts on soil and groundwater salinity. 727 

Therefore, climate smart salinity management practices could provide different paths to 728 

alleviate salinity and its environmental impacts. The emission of CH4 from salt-affected soils 729 

could be reduced by about 28-68% through biochar application, while the N2O emission could 730 

be reduced by about 50% through manure application (Begum et al., 2019; Nguyen et al., 731 

2020). Application of MSW compost to soils for the reclamation of salinity and sodicity might 732 

be harmful as the amendment contains multiple PTEs (e.g., Cd2+, Cr6+, Pb2+, Zn2+, and Cu2+) 733 

(Meena et al., 2019). Therefore, MSW compost should be checked before soil application. 734 

Studies on groundwater salinity and toxicology due to climate change and salt leaching during 735 

the reclamation process also need research priorities. 736 

 737 

8. Future research directions 738 
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Following are the thrust research areas that need worldwide future attention to sustain 739 

productivity of salt-affected soils under climate change conditions: 740 

(i) Climate change impact on root zone salinity, solute movement at different 741 

depths, and the impact on soil properties of various agro-ecological regions of 742 

the world need immediate research attention using hydro-salinity modelling 743 

approaches (Corwin, 2020). 744 

(ii) Sub-surface drainage integrated with inland saline aquaculture is a new area of 745 

research to achieve sustainable management of salt-affected soils. Experiments 746 

in this field should be conducted considering at the same time salt-load, soil 747 

nutrients, carbon loss. Their environmental impacts should then be assessed 748 

over long period (Castellano et al., 2019). 749 

(iii) Halophytes have worldwide potential for salt tolerance (Hayat et al., 2019). 750 

The genes of halophytic plants could be transferred to crop genotypes in order 751 

to improve the salt-tolerance capacity of crops, especially for coastal saline 752 

areas. 753 

(iv) Naturally available gypsum is scarce and of poor quality. Therefore, 754 

development of suitable alternative amendments to gypsum is the need of the 755 

hour. 756 

(v) Functionalized biochar has enormous potential to manage sodic soils. 757 

Investigations on the impact of functionalized biochar on CaCO3 dissolution 758 

in sodic soils, and on the associated soil properties should be pursued in the 759 

near future. 760 

(vi) Salt-tolerant plant genotypes can cope up with soil salinity (Genc et al., 2019). 761 

Microbiological interventions with cyanobacteria on salt-tolerant plant roots 762 
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and their integration with various organic amendments are a potential area of 763 

salt remediation warranting further research development (Rossi et al., 2017). 764 

(vii) Integration of land shaping techniques with multi-enterprise agro-farming 765 

system is already performing well in coastal saline areas of West Bengal, India, 766 

and needs future research attention in coastal saline areas worldwide. 767 

 768 

9. Conclusions 769 

Climate change could accelerate the pace of soil salinity development all over the world 770 

and primarily in the arid and semi-arid regions. The different mitigation technologies, such 771 

as amendments (gypsum, biochar, MSW, zeolites), salt-tolerant genotypes, sub-surface 772 

drainage in waterlogged saline areas, micro-irrigation techniques (drip system), climate 773 

smart conservation agriculture, land shaping techniques, agroforestry, and microorganisms, 774 

have the capacity to reclaim salt-affected soils. These technologies can improve the 775 

physicochemical (pH, EC, bulk density, available soil nutrients) and biological properties 776 

(enzyme activities, MBC) of salt-affected soils worldwide, allowing to achieve improved 777 

soil health and productivity. The mitigation approaches are environmentally sound, and 778 

socio-economically viable to the farmers across various agro-ecological regions, and can 779 

be adopted according to the bio-physical and socio-economic conditions of the farming 780 

communities. Incessant research activities in this area (including a worldwide practice of 781 

the above technologies) would boost the global agricultural sustainability and food security 782 

in salt-affected regions. 783 
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Tables 1332 

Table 1. Continent-wise area distribution of salt-affected soils (in Mha) 1333 

Continents Area under saline 

soil (Mha) 

Area under sodic 

soil (Mha) 

Total salt-affected 

area (Mha) 

Sharing of the total 

global salt-affected 

area (%) 

Reference 

North America 6.19 9.56 15.75 1.69 Fageria et al. (2011) 

Mexico and Central 

America 

1.97 0.00 1.97 0.21 Fageria et al. (2011) 

South America 69.41 59.57 128.98 13.84 Fageria et al. (2011) 

Africa  53.49 26.95 80.44 8.63 Fageria et al. (2011) 

Australia and New 

Zealand 

17.36 339.97 357.33 38.35 Fageria et al. (2011) 

Europe 7.8 22.9 30.7 3.31 Shahid et al. (2018) 

Asia 194.7 121.9 316.5 33.97 Shahid et al. (2018) 

Total 350.92 580.85 931.67 100 Shahid et al. (2018) 

  1334 



57 
 

Table 2. Country-wise salt reclamation strategies with major cropping systems in the world 1335 

Type of salt-related 

problem 

Countries Popular methods of 

reclamation 

Major cropping system Reference 

Sodicity Australia Gypsum application Wheat-pulses Stevens and Pitt (2012) 

Salinity and sodicity India Sub surface drainage, salt 

tolerant genotypes and 

gypsum application 

Rice-wheat CSSRI, 2014; Tiwari and 

Goel (2015) 

Salinity and sodicity China Sub surface drainage, 

scraping out of salts and 

gypsum application 

Rice-rice Li et al. (2014) 

Salinity and sodicity United States & Mexico Salt flushing, drainage, 

gypsum and organic 

amendment applications 

Corn-wheat Macmillan and Marciak 

(2001)  

Salinity and sodicity Pakistan Sub surface drainage, 

amendments, salt-tolerant 

Rice-wheat Ahmed (2014) 
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genotypes and gypsum 

application 

Salinity Egypt Sub surface drainage Wheat-vegetables El-Agha et al. (2019) 

Salinity Iraq Sub surface drainage Wheat-oil seeds/legume Tiwari and Goel (2015) 

Salinity Iran Drainage  Wheat-vegetables Tiwari and Goel (2015) 

Salinity Israel Drip irrigation  Wheat-vegetables Girma and Abdulahi 

(2015) 
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Table 3. Classification of halophyte plants used for the reclamation of salt-affected soils 1346 

Class Definition  Example 

Euhalophytes Plants that can accumulate salts and grow in 

saline condition having low respiration rate 

and salt permeable cell cytoplasm. They show 

succulence due to accumulation of salts and 

high osmotic potential. 

Salicornia europaea, S. maritima, Salosa 

soda and Halocnemum strobilaceum 

Cryno-halophytes Plants that can grow in low to high salinity 

and excrete salts through salt glands in the 

leaves. 

Statice gmelini and Tamarix gallica 

Glyco-halophytes  Plants that have no capacity to salt 

permeability through cytoplasm but have 

limited capacity to grow in salts. These are 

mainly freshwater plants. 

Artemisia 

maritima. 

1347 
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Table 4. List of plant growth promoting rhizobacteria and their mechanisms on agricultural 1348 

crops in salt-affected soils  1349 

Microorganisms Associated 

mechanisms 

Crops Reference 

Enterobacter sp. ACC deaminase Okra Habib et al. (2016) 

Pseudomonas spp. ACC deaminase Tomato Win et al. (2018) 

Pseudomonas spp. ACC deaminase Wheat Nadeem et al. (2013) 

Klebsiella sp IAA, organic acids Oat Sapre et al. (2018) 

Azotobacter sp. IAA, N-fixation Maize Rojas-Tapias et 

al. (2012) 

Bacillus 

amyloliquefaciens 

Gibberalic acid, 

abcisic acid 

Soybean Kim et al. (2017) 

Enterobacter cloacae IAA, ACC 

deaminase 

Canola Li et al. (2017) 

Enterobacter sp. ACC deaminase Wheat Sarkar et al. (2018) 

Pseudomonas 

fluorescens and 

Azospirillum 

Brasilense 

Phopshate 

solubilisation, auxin 

production 

Wheat Kadmiri et al. (2018) 

Pseudomonas 

fluorescens and 

pseudomonas putida 

ACC deaminase Canola Jalili et al. (2009) 

Pseudomonas 

Fluorescens 

IAA, siderophore Black gram Yasin et al. (2018) 

Pseudomonas 

Fluorescens 

IAA Maize Zerrouk et al. 

(2016) 

Alcaligenes sp. and 

Bacillus sp. 

ACC deaminase Rice Bal et al. (2013) 
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Enterobacter 

aerogenes and 

Pseudomonas 

Aeruginosa 

ACC deaminase Alfalfa Liu et al. (2018) 

Bacillales ACC deaminase, 

siderophore 

production 

Rice Zhang et al. (2018) 
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