
Improving Software Quality for Regular Expression

Matching Tools Using Automated Combinatorial

Testing

by

Fahad Aldebeyan

Bachelor in Computer and Information Science, King Saud University, KSA, 2013

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

© Fahad Aldebeyan

SIMON FRASER UNIVERSITY

Fall 2017

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

ii

Approval

Name: Fahad Aldebeyan

Degree: Master of Science

Title: The Title: Improving Quality of Regular Expression
Matching Tools Using Automated Combinatorial
Testing

Examining Committee: Chair: Dr. Kay Wiese
Associate Professor

Dr. Robert Cameron
Senior Supervisor
Professor

Dr. William Sumner
Supervisor
Assistant Professor

Dr. Thomas Shermer
Supervisor
Professor

Dr. Fred Popowich
Internal Examiner
Professor

Date Defended/Approved:

December 19, 2017

iii

Ethics Statement

iv

Abstract

Regular expression matching tools (grep) match regular expressions to lines of text.

However, because of the complexity that regular expressions can reach, it is challenging

to apply state of the art automated testing frameworks to grep tools. Combinatorial

testing has shown to be an effective testing methodology, especially for systems with

large input spaces. In this dissertation, we investigate the approach of a fully automated

combinatorial testing system for regular expression matching tools CoRE (Combinatorial

testing for Regular Expressions). CoRE automatically generates test cases using

combinatorial testing and measures correctness using differential testing. CoRE

outperformed AFL and AFLFast in terms of code coverage testing icGrep, GNU grep

and PCRE grep.

Keywords: Regular Expression;Grep;Automated testing;Combinatorial

testing;Regular Expression Generator; String Generator;Differential

testing;

v

Table of Contents

Approval ... ii
Ethics Statement ... iii
Abstract ... iv
Table of Contents ...v
List of Tables ... vi
List of Figures... vii

1. Introduction ... 1

2. Background and Overview .. 4
2.1. Regular Expression Matching .. 4
2.2. Combinatorial Testing .. 4
2.3. Automated Software Testing ... 6
2.4. Differential Testing ... 7

3. Design and Methodology. .. 9
3.1. Input Space Modeling. ... 9
3.2. Test Case Generation. ... 11

Regular Expression Generator. .. 12
Unicode Metacharacters. .. 15
Example. .. 18

String Generator. ... 19
3.3. Differential Testing. .. 21

Why Differential Testing? .. 21

4. Results and Evaluation. ... 23
Examples of bugs found exclusively by CoRE. .. 28
Limitations.. 30

5. Future work. .. 31

6. Conclusion. ... 32

Bibliography .. 33

vi

List of Tables

Table 3.1 Regular Expression parameters for icGrep.. 10

Table 3.2 Command-line Parameters for icGrep ... 11

Table 3.3: Parameter to metacharacter Transformation Based on Regular Expression
Syntax. .. 14

Table 3.4: Transformation of ACTS operator and assertion parameters to regular
expressions for icGrep supported syntaxes. .. 17

Table 3.5 Example of one test case from ACTS for icGrep. .. 18

Table 4.1 Code coverage and bug rate for different levels of combinatorial testing on
CoRE ... 24

vii

List of Figures

Figure 2.1 AETG pair-wise test cases [8]. P: parameter ABC: values. 5

Figure 2.2 IPO pair-wise test cases [8]. P: parameter ABC: values. 6

Figure 3.1 Architecture for CoRE ... 12

Figure 3.2 Snapshot of ACTS Combinatorial Testing .. 13

Figure 3.3 Regular Expression Generator Flow Chart ... 13

Figure 3.4 Pseudocode to extract the Character Class set ... 16

Figure 3.5 Pseudocode to extract the Regular Expression set. 16

Figure 3.6 Pseudocode for the string generator... 20

Figure 4.1 Code coverage for manual test suites and CoRE on 5-way combinatorial level
... 25

Figure 4.2 Code coverage for AFLFast and CoRE .. 27

Figure 4.3 Bug in FreeBSD Grep found by CoRE ... 28

Figure 4.4 Fail rate of CoRE with different combinatorial levels before and after
eliminiating the carry manager bug in icGrep ... 29

1

1. Introduction

Ever since regular expressions were first used to match text in 1968 by Ken

Thompson [1], regular expressions have experienced a remarkable rise in popularity [2,

3]. A regular expression is a specific kind of text pattern that you can use with many

modern applications and programming languages such as verifying input patterns,

finding text that matches the pattern within a larger body of text, replacing text matching

the pattern with other text and many other applications.

Today, almost all popular programming languages like Java, C and Python

include a powerful regular expression library, or even have regular expression support

built right into the language [4]. Many developers have taken advantage of these regular

expression features to provide users of their applications the ability to search or filter

through their data using a regular expression.

The adaptation of regular expressions in different tools and the differences in

supported features between these tools resulted in different regular expression syntaxes

(sometimes called flavors). Thus, creating additional challenges to the attempt of testing

regular expression matching tools [5].

In this dissertation, we reveal an approach to an automated testing framework for

regular expression matching tools (grep) using automated combinatorial testing and

differential testing.

 Over the past few years, combinatorial testing has shown to be an effective

testing strategy [6] [7] [8]. Combinatorial testing is considered a black box testing

technique. It requires no knowledge of the system’s implementation relying on the

knowledge of input space model. Some system problems only occur when a

combination of input parameters interact. For 2-way or pairwise testing, every pair of

input parameters must be tested at least once in the test suite. The same concept

applies to k-way testing. There are algorithms and tools like Automated Combinatorial

Testing for Software ACTS [6] to help generate all different combinations of parameters

to satisfy k-way testing. It takes the input parameters for the system under test and,

using covering arrays, produces abstract combinatorial tests. These abstract test cases

then need to be transformed into concrete test cases ready to run on the system under

2

test. But for systems with a large input space, it would take a lot of time and effort to

write concrete combinatorial test suites and thus may only be feasible when applied to

small systems or critical parts of bigger systems [8].

While ACTS generates raw combinatorial test cases, our contribution relies on

transforming these combinations into ready-to-run test cases.

In order to evaluate our approach, we implemented a tool CoRE (Combinatorial

testing for Regular Expressions) that tests regular expression matching tools like GNU

grep and icGrep. GNU grep is a grep tool implemented by GNU organization that

supports GNU basic regular expression syntax BRE as well as GNU extended regular

expression syntax ERE. On the other hand, icGrep is a powerful regular expression

matching tool with support of GNU BRE and ERE syntaxes along with Unicode RE

syntax.

Grep tools normally take three inputs. A regular expression, an input file and

command line options such as Case insensitive mode or count mode. A regular

expression is a sequence of characters that define a search pattern.

To reach full automation of combinatorial testing for regular expression matching

tools, we applied two main techniques:

• Automated transformation of ACTS abstract combinatorial test cases into

concrete grep test cases.

• Automation of result evaluation and error detection using differential testing.

There have been some efforts to use combinatorial testing to test grep tools [9].

Borazjany showed that applying such technique on a system like grep can improve fault

detection and software quality. Borazjany manually transformed ACTS output to test

cases hand writing regular expressions as well as input files.

In terms of Automated Testing, there are fuzzing tools like American Fuzzy Lop

(AFL) [10] and others [11] [12] which rely on generating extensive tests and looking for

crashes. AFL takes an initial test suite and mutates input using sequential bit

manipulation to explore new execution paths. AFLFast is an extension of AFL with a

different technique to mutate initial test suite using Markov chains [11].

3

The goal of this dissertation is to evaluate our proposed methodology against

existing approaches and observe the impact of our approach on the quality of the regular

expression matching tool under test. To do so, we compare the code coverage CoRE

reaches testing grep tools to the requirement based manually written test suites. We

evaluate CoRE testing icGrep, GNU grep and PCRE grep. icGrep is a powerful regular

expression matching tool based on Parabix, a parallel computing framework, supporting

different regular expression syntaxes [12]. We are interested in testing icGrep because it

relies on LLVM JIT compilation [13] which makes static analysis techniques used by fuzz

testing tools challenging. We also evaluate CoRE against two fuzzing tools, AFL and

AFLFast comparing statement and function coverage.

Additionally, we evaluated CoRE testing GNU grep performing differential testing

with FreeBSD grep. Both GNU grep and FreeBSD grep follow the same syntax and

should be returning identical results. We also evaluated CoRE testing PCRE Grep.

In Chapter 2, we discuss the history regular expressions, the growth of interest in

regular expressions and how they evolved to different flavors over different applications.

After that, we discuss previous efforts in the combinatorial testing and the automated

testing fields as well as some previous work on applying combinatorial testing on

systems like grep. Chapter 3 discusses the design and methodology of CoRE starting

from the input space modeling to regular expression generation and input file generation

ending with composing the test suite and comparing results with different grep tools. In

Chapter 4, we evaluate the effectiveness of automating combinatorial testing for regular

expression matching tools and observe its effect on system quality. Chapter 5 concludes

this dissertation with a summary of the contribution of our work. It also discusses

possible future work to further expand the benefits of such an approach.

4

2. Background and Overview

2.1. Regular Expression Matching

A regular expression is a pattern that consists of one or more character literals

and operators. Regular expression matching tools like icGrep search plain-text data sets

for lines that match a regular expression.

Ken Thompson used regular expressions to match patterns in a text editor in

1968 [1]. In the 1980’s, the Perl programming language incorporated regular

expressions as first-class elements of the programming language. Perl provided several

innovative extensions of regular expressions that became common. Since then, many

regular expression matching tools have emerged and started adding new features to

regular expressions like POSIX Character classes and Unicode support. Perl

Compatible Regular Expressions (PCRE) is a regular expression C library, originated in

1997, inspired by the regular expression capabilities in the Perl programming language

[13]. PCRE expanded regular expressions’ capabilities and features.

In 2014, Robert Cameron et al. introduced the regular expression matcher icGrep

[3]. icGrep uses bitwise data parallelism to achieve high performance regular expression

matching. The way icGrep is implemented makes it more challenging to test. icGrep

relies on LLVM, “a collection of modular and reusable compiler and toolchain

technologies” [14], to generate the match function at runtime (JIT). This means that

automated testing tools that rely on static code instrumentation such as AFL may not

perform as well on icGrep as it would on other grep tools that do not rely on JIT code

generation.

2.2. Combinatorial Testing

 Software failures are often the result of a faulty interaction between input

parameters. Testing all the combinations of the input parameters is often impossible for

large and/or complex software systems due to resource constraints. Combinatorial (or t-

way) testing covers every combination of any t parameter values at least once [15].

Empirical studies suggest that combinatorial testing can be very effective for fault

detection in practice. A NIST study suggests that all the faults in several applications are

caused by interactions among six or fewer parameters [6].

5

Combinatorial testing has shown to be an effective strategy to test grep tools [9].

Borazjany studied applying combinatorial testing to system with complex input spaces

like grep and found that t-way testing is more reliable and has better performance than

modeled-random testing.

Many combinatorial test generation strategies have been proposed to generate

test sets that are as small as possible but still satisfy t-way coverage. Grindal et al. [16]

surveyed fifteen important strategies that have been reported in the literature. Two

representative strategies, i.e., the AETG strategy [15] and the IPO strategy [17], are

described as follows. The AETG (Automatic Efficient Test Generation) strategy adopts a

greedy framework for combinatorial test generation. In this algorithm, a test is created to

cover as many uncovered t-way combinations as possible. First, it selects a value of a

parameter that appears in the most uncovered combinations. Second, it randomly

selects another parameter from the rest of the parameters to cover the most number of

uncovered pairs. Third, it includes values of the remaining parameters one by one, with

the policy used at the second step. Fourth, it repeats the above steps to generate a

certain number of candidate tests, and picks the candidate test that covers the most

uncovered t-way combinations as the final test. It repeats these steps until all t - way

combinations have been satisfied. Figure 2.1 shows AETG strategy for pair-wise test

cases.

Figure 2.1 AETG pair-wise test cases [9]. P: parameter ABC: values.

Lei et al. [17] proposed another t-way testing strategy called In-Parameter-Order

(IPO). The IPO strategy generates a t-way test set to cover all the t-way combinations

between the first t parameters and then extends the test set to cover all the t-way

combinations of the first t+1 parameters. This process is repeated until the test set

covers all the t -way combinations of the parameters. In this dissertation, we used a tool

called ACTS to generate our test cases. ACTS implements the IPO strategy. Figure 2.2

demonstrates the IPO strategy for pair-wise test cases.

6

Figure 2.2 IPO pair-wise test cases [9]. P: parameter ABC: values.

Kuhn et al. [18] reported a study of several fault databases and found that all the

faults in these databases are caused by no more than six factors. They analyzed 329

error reports of a large system with a number of subsystems in NASA. Different systems

such as database, server, and browser with various sizes (LOC) from 3000 to 2×106 are

used in this study. Faults are characterized in a database by date submitted, severity,

priority for fix, the location where found, status, the activity being performed when found,

and several other features. The summary of all failures reviewed in this paper were

triggered by no more than six factors. This study suggested that if all errors in a

particular class of software are triggered by finite combinations of t parameters or less,

then testing all combinations of t parameters would provide a form of pseudo–exhaustive

testing.

2.3. Automated Software Testing

Software testing automation can reduce costs dramatically by saving testers time

and energy and directing their efforts on other areas. There are several white box

automated testing techniques that have shown success in fault detection.

One successful automated testing technique is fuzzing [11] [19]. Fuzz testing

involves providing randomly generated inputs in an attempt to make the software under

test SUT fail [12]. This kind of testing is achieved by using a variety of strategies and

algorithms to mutate the test suite of the SUT [11]. American Fuzzy Lop (AFL) is a tool

which uses code analysis to mutate inputs to explore new paths in the control flow of the

software under test.

7

AFLFast is an extension of AFL and is also considered gray box testing, mid-

level between white box and black box testing. AFLFast requires no program analysis.

Instead of analyzing code as in AFL, AFLFast produces new tests by mutating a seed

input and tracking if the test visits interesting paths in the program. If so, the test is

added to the set of seeds and otherwise discarded. AFLFast claims to be more efficient

than AFL.

The problem with using fuzzers to test grep tools is that regular expressions are

syntactically constrained. Open and closed parenthesis and brackets have to match

while other metacharacters require a value from a pre-defined set. These constrains

make fuzzers hit a syntax error more often than not. Although testing these incidents are

important to know if the grep tool under test manages syntax errors correctly, most bugs

are found in tests with proper formed regular expressions. Another downside to fuzzers

is their inability to perform useful differential testing to find correctness bugs for grep

tools because of the need for input files containing matches to the generated regular

expression.

2.4. Differential Testing

Differential testing is a type of testing to measure correctness. It requires that two

or more comparable systems be available to the tester. These systems are presented

with an exhaustive series of mechanically generated test cases. If the results differ or

one of the systems loops indefinitely or crashes, the tester has a candidate for a bug-

exposing test.

Differential testing is the use of two or more programs with similar functionality to

test one program against the rest [20] [21]. Differential testing finds semantic bugs by

using different implementations of the same functionality as cross-referencing oracles,

pinpointing differences in their outputs across many inputs: any discrepancy between the

program behaviors on the same input is marked as a potential bug.

Many different domains like SSL/TLS implementations [22] [23] [24], C compilers

[25], JVM implementations [26], Web application firewalls [27], security policies for APIs

[28], and antivirus software [20] [29] have taken advantage of differential testing. It has

8

also been used for automated fingerprint generation from different network

protocol implementations [30].

Differential testing addresses a specific problem—the cost of evaluating test

results. If a single test is fed to several comparable programs (In our case, several grep

tools), and one program gives a different result, a bug may have been exposed.

However, Differential testing usually depends on a source of test generator or a test

suite. NEZHA is a differential testing tool that relies on fuzzing to generate tests [20]. But

it would be very ineffective to apply NEZHA on grep tools because of the missing step of

string generation explained in our methodology. In other words, fuzzing tools do not

generate a text file for each test to find differences in matches between the two grep

tools under test.

9

3. Design and Methodology.

Throughout this section, we use icGrep as an example to illustrate the design

and methodology to test a grep tool using CoRE. All of what is explained here applies to

most if not all grep tools similarly.

3.1. Input Space Modeling.

Prior to performing combinatorial testing to the software under test, we must model

the system’s input space in a way that captures all input parameters for grep tools. A

regular expression is a sequence of characters that form a pattern. These characters

can either match themselves, i.e. ‘abc’ and ‘123’, or can have a special property like ‘+’

or ‘\s’ and are called metacharacters. We decided to categorize combinatorial

parameters based on metacharacters. Doing so gives us the ability to test

metacharacters with different combinatorial settings. Metacharacters only appear in the

test if their value was not set to ‘off’ in the combinatorial test. Table 3.1 Show the

combinatorial parameters of a combinatorial testing tool (ACTS) for regular expressions.

For Boolean parameters, the feature exists in the regular expression used for the test

only if the value is “True”. There are some parameters that have enumerated values for

the parameters. For example, the values for the Property parameter are categorized

based on the property type [31]. Enumeration properties have enumerated values which

constitute a logical partition space. Binary properties are a special case of Enumeration

properties, which have exactly two values: Yes and No (or True and False) while

Numeric properties specify the actual numeric values for digits and other characters

associated with numbers in some way. Finally, String typed Properties take a character

class or a regular expression as a value of the property itself. Expanding our

combinatorial parameter to capture all these types of parameters increases the coverage

of Unicode properties. Our proposed methodology makes adding new features and

metacharacters easy. Doing so requires adding the appropriate parameters in the

combinatorial testing tool as well as some code to transform the parameter into the

appropriate metacharacter.

10

Parameter Value Type Description

Any Boolean ‘.’ matches any single character.

Zero or One Boolean ‘?’ makes the preceding pattern optional.

Zero or More Boolean ‘*’ makes the preceding pattern matched zero or more times.

One or More Boolean ‘+’ makes the preceding pattern matched one or more times.

Repetition {n}
Unum = {small, medium,

large}
‘{n}’ makes the preceding pattern matched n times.

Repetition {n,m}

Enum = {small-small,

small-medium, small-

large, medium-large,

large}

‘{n,m}’ makes the preceding pattern matched between n and

m times.

Repetition {n,}
Enum = {small, medium,

large}
‘{n,}’ matches the preceding pattern n or more times

Repetition {,m}
Enum = {small, medium,

large}
‘{n,}’ matches the preceding patter at most m times

Alternation Boolean
‘|’ matches either the preceding pattern or the following

pattern

List Boolean ‘[xyz]’ matches either x or y or z.

Not List Boolean ‘[^xyz]’ matches any character except x, y and z.

Range Boolean ‘[1-9]’ matches a character from 1 until 9.

Posix Bracket

Expression

Enum = {off, alnum,

alpha, blank, digit, graph,

lower, upper, print, punct,

xdigit}

Special kind of character classes. For example, ‘[:alpha:]’

matches any alphabet character.

Word Character Boolean ‘\w’ matches word constituent

Not Word Character Boolean ‘\W’ matches non-word constituent

Whitespace Boolean ‘\s’ matches the whitespace character.

Not whitespace Boolean ‘\S’ matches any non-whitespace characters.

Tab Boolean ‘\t’ matches the horizontal tab character.

Digit Boolean ‘\d’ matches a digit character.

Not Digit Boolean ‘\D’ matches a non-digit character.

Property
Enum = {off, binary,

enum, string, numeric}

‘\p{property}’ matches any character with the specified

Unicode property.

Not Property
Enum = {off, binary,

enum, catalog, numeric}

‘\P{property}’ matches any character not having the

specified Unicode property.

Name Property Boolean ‘\N{Name}’ matches the named character.

Unicode Codepoint Boolean
‘\uFFFF’ where FFFF are four hexadecimal digits, matches a

specific Unicode codepoint.

Lookahead Boolean

‘(?=pattern)’ Matches at a position where the pattern inside

the lookahead can be matched. Matches only the position. It

does not consume any characters or expand the match.

Negative Lookahead Boolean

‘(?!pattern)’ Similar to positive lookahead, except that

negative lookahead only succeeds if the regex inside the

lookahead fails to match.

Lookbehind Boolean
‘(?<=pattern) Matches at a position if the pattern inside the

lookbehind can be matched ending at that position.

Negative Lookbehind Boolean
‘(?<!pattern)’ Matches at a position if the pattern inside the

lookbehind cannot be matched ending at that position.

Start Boolean ‘^’ matches the empty string at the beginning of a line.

End Boolean ‘$’ matches the empty string at the end of a line.

Back Referencing Boolean
‘\n’ where 1  n  9, match the same text as previously

matched by the nth capturing group.

Table 3.1 Regular Expression parameters for icGrep

11

Table 3.2 shows the parameters for the combinatorial testing for the command line

flags. The flags can affect the matched regular expression, like case insensitive match

and regular expression syntax. Other types of flags provide input and output options like

counting matches. There are flags which are icGrep specific like segment size and

thread count. icGrep supports GNU basic regular expression syntax “-G” as well as their

extended regular expression syntax “-E”. icGrep also supports Unicode ICU regular

expression syntax. Some combinatorial parameters may not be supported in the basic

and extended regular expression syntaxes. These parameters can be modified

depending on the grep tool under test.

3.2. Test Case Generation.

After setting all the parameters for the grep tool under test, we generate test

cases from the model using combinatorial testing tools such as ACTS. These test cases

Parameter

Type
Parameter Value Type Description

Regular

Expression

Interpretation

Case Insensitive Boolean
‘-i’ Ignores case distinctions

in the pattern.

Regular Expression Syntax Enum = {off, -G, -E, -P}

‘-G’, ‘-E’ and ‘-P’ specify the

regular expression syntax

used.

Word Regular Expression Boolean
‘-w’ requires that whole

words be matches.

Line Regular Expression Boolean
‘-x’ requires that entire lines

be matched.

Input Options

Multiple Regular Expressions Boolean

‘-e pattern’ is used to match

multiple regular expression or

with ‘-f’.

Regular Expression File Boolean

‘-f File’ is used to read regular

expression from File line by

line.

Output

Options

Count Boolean
‘-c’ displays only the number

of matches.

Inverted Match Boolean
‘-v’ selects non-matching

lines.

icGrep

Specific Flags

Threads Enum ={off,1,2,3,4}

‘-t=n’ where n is a digit,

specifies the number of

threads used.

Block Size Enum = {off, 64,128,265,512}

‘-BlockSize=n’ where n is a

digit, specifies the processing

block size.

Table 3.2 Command-line Parameters for icGrep

12

are abstract test cases because the parameters and values in the model are abstract.

Thus, it is necessary to derive concrete test cases from these abstract test cases before

the actual testing can be performed. Note that an abstract test case typically represents

a set of concrete test cases, from which one representative is typically selected to

perform the actual testing.

We show in Figure 3.1 The architecture of the proposed methodology. In order to

perform this testing technique, we process the abstract test cases one by one. At each

cycle, we first transform the abstract test case into a concrete test case using the regular

expression generator and the string generator. The regular expression generator takes

the values of the test case generated from ACTS and generates a corresponding regular

expression and command line flags to be tested. The string generator takes the

generated regular expression as input and generates a file containing a match to the

regular expression.

Figure 3.1 Architecture for CoRE

Regular Expression Generator.

The first step to transform the ACTS raw test cases into ready-to-run test cases is the

regular expression generator. The regular expression generator transforms a set of

parameter values in ACTS into a regular expression along with the command line flags.

13

Looking at Figure 3.2, a snapshot of icGrep project on ACTS, the first row represents the

parameters specified in the input space modeling phase where the figure only shows a

subset of the parameters. Each of the following rows is a set of values that represent a

single test case.

Figure 3.2 Snapshot of ACTS Combinatorial Testing

First, we set the syntax of the regular expression based on the associated

parameter value where –G is the GNU basic regular expression syntax, -E is the GNU

extended regular expression syntax [32] and –P is the default icGrep regular expression

syntax that follows the Unicode ICU regular expression syntax [33]. Figure 3.3 shows the

flow chart for the regular expression generator.

 Figure 3.3 Regular Expression Generator Flow Chart

14

Second, we collect a set that contains the parameters representing character

classes whose value is not “false”. For each of these parameters, the syntax of the

corresponding regular expression metacharacter may differ depending on the regular

expression syntax. The GNU basic regular expression syntax only supports a few

metacharacters that are considered character classes. The “Any” metacharacter is

transformed to the metacharacter “.” in all syntaxes. The same applies to the whitespace

character which transforms to “\s” and its complement “\S”. The rest of the

metacharacters supported by the GNU basic regular expression syntax an operational

behavior and will be discussed further down this section.

The GNU extended regular expression syntax supports the basic metacharacters

as well as a few other metacharacters. The word character parameter transforms to “\w”

and its complement “\W”. the start and end parameters transform to “\<” and “\>”

respectively. For any other metacharacter that are not supported by GNU basic and

extended regular expression syntax, we add a literal character to CC to increase the size

of the set. Table 3.3 shows each parameter and its transformation based on the regular

expression syntax.

The Unicode ICU regular expression syntax supports several more

metacharacters. The Tab parameter transforms to “\t”. The Digit and Not Digit

parameters transform to “\d” and “\D”. The POSIX Bracket Expression transforms to

Parameter GNU Basic GNU Extended Unicode ICU

Any “.” “.” “.”

Posix Bracket

Expression
“p” “p”

“[[:value:]]” where

value is a POSIX

name.

Word Character “w” “\w” “\w”

Not Word Character “W” “\W” “\W”

Whitespace “\s” “\s” “\s”

Not whitespace “\S” “\S” “\S”

Tab “t” “t” “\t”

Digit “d” “d” “\D”

Not Digit “D” “D” “\D”

Property “p” “p” “\p{property}”

Not Property “P” “P” “\P{property}”

Name Property “N” “N” “\N{property name}

Unicode Codepoint “u” “u” “\uFFFF”

Table 3.3: Parameter to metacharacter Transformation Based on Regular Expression Syntax.

15

“[[:value:]]” where “value” is the value of the parameter (alnum, alpha, blank, digit, graph,

lower, upper, print, punct and xdigit).

Unicode Metacharacters.

The Unicode ICU regular expression syntax supports a number of Unicode related

metacharacters that need to be handled different from the previous metacharacters to

test their functionality to the maximum. The Unicode Property metacharacter “\p”

supports many properties that represent different character classes. We categorized

these properties based on their types (binary, enum, numeric, string). After that, the

regular expression generator randomly selects a property from one of the lists based on

the type specified in the parameter value. For example, if the parameter had the value

“Property=Binary”, the regular expression generator would randomly select one of the

binary properties and transform the parameter to, for example, “\p{Alpha}”.

For other types of properties, they need to have a value and come in the syntax

“\p{property=value}”. We first randomly select a property matching the type specified in

the parameter. After that, if the type is “enum”, the regular expression generator

randomly selects one of the predefined property values for that property. If the type is

“numeric”, the regular expression generator uses a random number as a property value.

If the property type is “string”, the regular expression generator randomly generates a

string value for the selected property. The negated Unicode property is treated the same

as the Unicode property but with “\P” instead of “\p”.

Another Unicode metacharacter is the name property “\N{name}” where “name”

is a standard Unicode character name. It is equivalent to “\p{Name=name}” but we

decided to have it as a separate parameter since it is treated differently in our regular

expression generator. Every Unicode Character has a standard name in the Unicode

standard. The name property returns the Unicode character associated with the provided

name. icGrep supports “\N{regex}” where it matches regex to the list of Unicode

Character Names. The regular expression generator randomly selects one of character

names from the standard Unicode data file and add the property, i.e. “\N{ LATIN

CAPITAL LETTER A}”, to the set CC.

The final Unicode metacharacter supported by icGrep is the Unicode code point.

When given “\uFFFF” where FFFF are four hexadecimal digits, icGrep matches a single

code point encoded U+FFFF. If the value of the Unicode Code Point parameter is “true”,

the regular expression generator randomly selects a four hexadecimal Unicode encoding

16

and adds the met character along with the encoding to the character class set (CC). We

also use Unicode code point representation for ranges in ICU syntax. Figure 3.4 shows

the pseudocode for collecting character classes.

After filling the character class set using the algorithm in Figure 3.4, the regular

expression generator iterates through the rest of the metacharacters that function as

either operators on the character class set or are assertion metacharacters. Each of the

operator metacharacters use one or more elements from the character class set. The

result of the transformation is stored in another set (RE). RE contains elements of a

regular expression after applying the operators to the character class set. The

pseudocode for generating elements of RE is described in Figure 3.5.

FOR ALL parameter in P:

 IF Value of parameter is not False THEN

 IF parameter is “Any” THEN

 generateRandom(Any, Syntax)

 ADD generated string to CC set

 ELSE IF parameter is “Property” THEN

 generateRandom(Property, Value, Syntax)

 ADD generated string to CC set

 ELSE IF ...

 …

RETURN the set CC

Algorithm 1 Pseudocode for extracting Character Class set

FOR ALL parameter in P:

IF Value of parameter is not False THEN

 IF parameter is “Repetition {n}” THEN

 SELECT random c from CC

 generateRandom(RepetitionN, c, Syntax)

 ADD generated string to RE set

 ELSE IF parameter is “List” THEN

 SELECT random c1, c2 and c3 from CC

 generateRandom(List, c1, c2, c3, Syntax)

 ADD generated string to RE set

 ELSE IF…

 …

SHUFFLE RE

IF value of START is True THEN

 ADD start Character to RE

IF value of END is True THEN

 ADD end character to RE

RETURN the set RE

Algorithm 2 Pseudocode for extracting Character Class set

Figure 3.4 Pseudocode to extract the Character Class set

Figure 3.5 Pseudocode to extract the Regular Expression set.

17

Table 3.4 shows how each of the operator parameters is transformed depending

on the regular expression syntax.

For Repetition parameters with n and m, the regular expression generator

randomly selects a number between 0 and 10 if their value is “small”, 0 and 100 if their

value is “medium” and 0 and 1000 for “large” values. These numbers are set arbitrarily

and can be changed if needed. On the other hand, if the Range parameter is set to

“true”, the regular expression generator randomly generates two Unicode code points

and adds the range between the two code points.

The regular expression generator shuffles the set (RE) for random positioning of

each element. After that, if the Back-Referencing parameter is set to “true”, then the

regular expression generator randomly selects an element from RE, adds brackets to

the element and returns the element to RE and “\1” is appended to the RE set.

Parameter GNU Basic GNU Extended Unicode ICU

Zero or One “cc\?” “cc?” “cc?”

Zero or More “cc*” “cc*” “cc*”

One or More “cc\+” “cc+” “cc+”

Repetition {n} “cc\{n\}” “cc{n}” “cc{n}”

Repetition {n,m} “cc\{n,m\}” “cc{n,m}” “cc{n,m}”

Repetition {n,} “cc\{n,\}” “cc{n,}” “cc{n,}”

Repetition {,m} “cc\{,m\}” “cc{,m}” “cc{,m}”

Alternation “cc1\|cc2” “cc1|cc2” “cc1|cc2”

List “l” “[cc1cc2cc3]” “[cc1cc2cc3]”

Not List “L” “[^cc1cc2cc3]” “[^cc1cc2cc3]”

Range “r” {"[a-zA-Z0-9]","[A-Za-z]","[0-9]"} “[\uFFFF-\uFFFF]” where FFFF are

four hexadecimal digits.

Boundary “\b” “\b” “b”

Not Boundary “\B” “\B” “\B”

Look Ahead “la” “la” “(?=cc)”

Negative Look

Ahead

“nla” “nla” “(?!cc)”

Look Behind “lb” “lb” “(?<=cc)”

Negative Look

Behind

“nlb” “nlb” “(?<!cc)”

Back

Referencing

“\(re\)...\1” “(re)...\1” “(re)...\1”

Start “^” “^” “^”

End “$” “$” “$”

Table 3.4: Transformation of ACTS operator and assertion parameters to regular expressions for icGrep
supported syntaxes.

18

Finally, the Start and End parameters are added to the beginning and the end of

the RE set respectively if their value is “true”. These metacharacters would have no

meaning if present in the middle of a regular expression, therefor are added after

shuffling the RE set. The regular expression is the combination of each of the elements

in RE in an ordered matter.

After transforming the raw ACTS combinatorial values into a regular expression,

the regular expression generator iterates through the flags parameters storing each

command line flag in a set (F).

Example.

Table 3.5 shows an example of a raw test case from ACTS. We will show how the

regular expression generator might transform this entity into a concrete test case.

Parameter Value Parameter Value Parameter Value Parameter Value

Any True
Name

Property
True Not List False -C True

Posix

Bracket

Expression

Alnum
Unicode

Codepoint
False Range False -I True

Word

Character
False Zero Or One True Boundary False -E False

Not Word

Character
True

Zero Or

More
Off

Not

Boundary
True -F False

Whitespace False
One Or

More
True Look Ahead False -W True

Not

Whitespace
False

Repetition

{N}
Large

Negative

Look Ahead
True -X False

Tab Ture
Repetition

{N,M}
Off Look Behind False

Regular

Expression

Syntax

Off

Digit True
Repetition

{N,}
Small

Negative

Look Behind
False Threads 2

Not Digit True
Repetition

{,M}
False

Back

Referencing
False Block Size 256

Property Numeric Alternation False Start True

Not Property Binary List True End True

Table 3.5 Example of one test case from ACTS for icGrep.

First, the regular expression generator detects the regular expression syntax. If it

is set to “off” like in this example, the regular expression has the default Unicode ICU

19

syntax. Next, the regular expression generator extracts the character class set taking in

consideration the regular expression syntax. As described previously, the Unicode

property character classes are randomly generated.

CC = {“.”, “[[:alnum:]]”, “\W”, “\t”, “\d”, “\D”, “\p{nv=38}”, “\p{QMark}”, “\n{ CANADIAN

SYLLABICS Y-CREE LOO }".

RE = {“.{457}”, “\N{CANADIAN SYLLABICS Y-CREE LOO}”, “[\t\d\W]”, “\D+” “\P{QMark}?”,

“a(?![[:alnum:]])”, “\p{nv=38}{5,}”}.

After shuffling the RE set and adding assertions, Start and End metacharacters,

the regular expression adds the appropriate flags to the flag set F.

F = {“-c”, “-i”, “-w”, “-x”, “-t=2”, “-BlockSize=256”}

Finally, the regular expression generator returns the regular expression, i.e.

“^\N{^CANADIAN SYLLABICS Y-CREE LOO$}[\t\d\W].{8}\P{QMark}?a(?![[:alnum:]])\D+\p{nv=38}{5,}$”. It

also returns the set F.

String Generator.

The next step to creating ready to run test cases is creating input files that create

matches to the created regular expression. Borazjany manually wrote the input files for

910 test cases [9]. The idea behind the string generator is to parse the regular

expression and create a file containing a match to the regular expression. This step is

crucial to a fully automated testing solution. This gives us the ability to not only test for

failure producing bugs but also to test for correctness. Figure 3.6 shows the pseudocode

for the string generator.

20

We included a parameter in ACTS for the input file size. If the size is “small”, the

string generator generates a single line matching the regular expression. If the file size is

“medium”, Then a file of 10 lines would be generated. Finally, if the size is “large”, the

string generator generates a 100-line input file containing 100 matches.

The string generator relies on icGrep’s regular expression parser to generate a

regular expression syntax tree AST. It is biased to test icGrep by generating files using

icGrep regular expression parser but since we are performing differential testing in the

end, we minimize the bias factor. If icGrep finds a match in a file and the comparing

software does not find a match, then a potential bug is reported.

Now that we have a full concrete test case with an input file to test against, we

perform the differential testing on the test case.

S denotes the string generated.

COMPUTE re AST from RE.

FUNCTION GenerateString(AST):

 SWITCH AST:

 Character Class CC THEN:

 APPEND Random character from CC to S.

 Sequence THEN:

 FOR each sub-AST in the sequence:

 APPEND GenerateString(sub-AST) to S

 Difference THEN:

 RH  GenerateString(right sub-AST)

 LH  GenerateString(left sub-AST)

 APPEND RH   LH to S

 Intersect THEN:

RH  GenerateString(right sub-AST)

 LH  GenerateString(left sub-AST)

 APPEND RH  LH to S

 Alternation THEN:

RH  GenerateString(right sub-AST)

 LH  GenerateString(left sub-AST)

 APPEND RH  LH to S

 Repetition THEN:

 LB  Lower Repetition Bound.

 IF Bounded Repetition THEN:

 UB  Upper Repetition Bound.

 ELSE:

 UB  LB + 1000.

 R  Random integer LB <= R <= UB.

 ITERATE through R:

 APPEND GenerateString(sub-AST)

 Return list S.

Figure 3.6 Pseudocode for the string generator

21

3.3. Differential Testing.

CoRE implements differential testing by running the generated test cases on

icGrep as well as other comparing grep tools to find semantic or logic bugs that do not

exhibit explicit erroneous behaviour like crashes or assertion failures.

Why Differential Testing?

At first, it may seem that CoRE did not need the differential testing step. Since

we can generate a regular expression and generate an input file, a bug is found if grep

fails to find the match.

We mentioned while describing the string generator that we perform differential

testing to minimize bias from using icGrep regular expression parser during the string

generation. Another reason for differential testing is that some of the generated regular

expression may be unmatchable. Unmatchable regular expressions are regular

expressions that contain contradictory metacharacters making it impossible to match any

string. Looking at one of the shortest unmatchable regular expression like “(?!x)x”, this

regular expression contains a contradiction. It says to look for a character “x” that is not

“x”. The regular expression generator can be modified to handle unmatchable regular

expressions but having unmatchable regular expressions turns out to have some

benefits. There are bugs that cause grep to find a match where it should not have. So,

having these tests may help us detect some of these bugs.

The first step of differential testing is identifying the regular expression syntax.

icGrep is compared with different grep tools depending on the regular expression syntax.

If the syntax is GNU basic regular expression, the comparing grep tool would be GNU

grep. If the syntax is GNU Extended regular expression, differential testing is performed

on icGrep and GNU egrep, i.e. GNU grep with “-E” flag on. Finally, if the syntax is the

default Unicode ICU syntax, icGrep is compared with ICU4C RegexMatcher [33].

After identifying the regular expression syntax, the input for the comparing grep

tool may be slightly modified if there are any minor syntax differences. For example, the

Unicode name property “\N{name}” is handled differently between icGrep and Unicode

ICU grep. icGrep treat the name in the brackets as a regular expression and matches it

to the lines of Unicode character names then returns a character class of all characters

with a name that matches the regular expression. On the other hand, ICU4C

RegexMatcher handles the name as a string and returns a syntax error if no character is

22

found. A regular expression like “\N{SPACE}” match the space character in ICU4C

RegexMatcher while it would match 85 characters in icGrep. We alter the regular

expression for icGrep by adding the Start “^” and End “$” metacharacters before and

after the name. The previous example would look like this “\N{^SPACE$}”.

After CoRE performs the differential testing. It reports potential bugs if one of the

following situations happen:

• If icGrep or the comparing grep tool crashes.

• If there is a difference in the number of matches found by icGrep and the

number of matches found by the comparing grep tool.

• If either icGrep or the comparing grep tool report a syntax error in the

provided regular expression.

The first case is straight forward. CoRE runs the test case on icGrep and the

comparing grep tool. If any of the processes returns an error code, CoRE reports the test

case as a potential bug.

If one of the other two scenarios occurs, it indicates that icGrep may not be

matching what it is supposed to match or matching something it is not supposed to

match. CoRE can set a time limit to execute tests and we can decide what to do in case

the process was ended because the time limit was reached. In our evaluation process,

we simply eliminated tests that made icGrep or the comparing grep reach a time limit.

This puts us at a risk of missing bugs that cause grep to hang and having more time

would enable us to explore this area to detect hang producing bugs.

23

4. Results and Evaluation.

In order to thoroughly evaluate CoRE, we first run CoRE over different t-way

combinatorial configurations and calculate the statement and coverage rate for each run.

We also measure the fail rate by the formula:

 𝐹𝑎𝑖𝑙 𝑅𝑎𝑡𝑒 =
𝐹𝑎𝑖𝑙𝑒𝑑 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠

𝐴𝑙𝑙 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠

Once we find a configuration where adding more combinatorial constraints does

not increase code coverage nor the fail rate, we will use this configuration to evaluate

CoRE against two different testing techniques. The first is the manually written test suite.

It is written by icGrep developers based on the icGrep requirement specification. The

other testing techniques we evaluate CoRE against are two automated testing tools AFL

and AFL and AFLFast. AFLFast is an extension of the state of the art fuzzer American

Fuzzy Lop. AFLFast performed better than AFL with a better fault detection rate on GNU

binutils, a collection of binary tools widely used for the analysis of program binaries [11].

We will evaluate CoRE against AFL and AFLFast to determine how well CoRE performs

against state of the art automated testing methods.

Experimental Infrastructure. We ran our experiments on a MacBook Air with a 2.2

GHz Intel Core i7 processor with 4 cores and 8GB RAM. We ran the testing tools on

icGrep revision 5720. We ran each test 10 times and we used Gcov tool to measure

code coverage. We also ran AFL and AFLFast on all 4 cores to maximize its

performance. We set 10 seconds to be the time limit for each test run. GNU grep version

3.1 and the library ICU4C version 59 were used in CoRE for differential testing.

24

Table 4.1 shows the code coverage for CoRE running different levels of t-way

combinatorial testing. It also shows the number of tests generated in each level as well

as the execution times for different levels of combinatorial interaction on CoRE testing

icGrep with differential testing with GNU grep and ICU RegexMatcher.

Another note is that 6-way was dropped out of the evaluation process despite the

possibility of having even more complex tests than 5-way. The reason we did not

evaluate 6-way is because we could not generate a 6-way combinatorial test suite in

ACTS before running out of memory.

From Table 4.1, We notice that the combinatorial interaction level has almost no

effect on statement or function coverage. But when we look at the fail rate, we find that

as we increase the level of combinatorial testing, the percentage of failed tests

increases. For this reason, we evaluate CoRE against manually written test suits, AFL

and AFLFast using 5-way combinatorial testing.

Combinatorial
Level

Number
of Tests

Statement
Coverage %

Function
Coverage %

Fail Rate
%

Elapsed
Time

1-way 10 66.8 73.3 20 12s

2-way 64 67.1 73.4 22.2 1m39s

3-way 394 67.8 73.6 26.5 12m5s

4-way 2228 68.1 74.3 29.1 1h8m46s

5-way 10926 68.4 74.4 32.3 5h42m21

Table 4.1 Code coverage and bug rate for different levels of combinatorial testing on CoRE

25

Figure 4.1 Code coverage for manual test suites and CoRE on 5-way combinatorial level

From Figure 4.1, we note that CoRE has almost the same score for both

statement coverage and function coverage as the manual test suites. Manual test suites

scored 1% higher in both statement and function coverage. Even when comparing

manual test suites with 2-way combinatorial level on CoRE to have similar execution

times (manual tests take 1m41 seconds to execute), the difference in about 1% lower

coverage in statements and functions.

To evaluate CoRE against AFL and AFLFast, we ran each testing tool 10 times

for a period of 24 hours on each run. AFL and AFLFast take a base test suite as input

and track the code coverage and alter the input in an attempt to reach new branches

[10] [11]. The difference between the two fuzzers is the way the input is mutated to form

new tests. We set the empty set as the base test suite for AFL and AFLFast since

performance is better when the test suite is minimal according to AFL manual. We ran 5-

way combinatorial testing using CoRE for 24 hours iterating through the CSV file as

many as needed during that period.

Figure 4.2 Shows code coverage and bug detection over a 24-hour period for

CoRE, AFL and AFLFast.

50%

55%

60%

65%

70%

75%

80%

Manual Test Suites CoRE

Statement Coverage Function Coverage

26

Looking at Figure 4.2, we see that CoRE performs better than both AFL and

AFLFast in statement coverage and function coverage. CoRE reaches 70% and 75% for

statement and function coverage rate respectively while AFLFast scored 64% for

statement coverage and 69% for function coverage. AFLFast was not able to find any

real bugs on icGrep. AFL on the other hand performed better than AFLFast yet it failed

to reach the level of coverage CoRE scored. AFL found 2 unique bugs in icGrep CoRE

missed. These bugs occurred when dealing with empty sub-patterns like the alternation

between an empty sub-pattern and a non-empty pattern, i.e. “|b”, and matching an

empty regular expression in a file. We extended CoRE to incorporate empty sub-

patterns for metacharacters that support such patterns.

We ran CoRE on GNU grep comparing test results with the FreeBSD version of

grep. We chose GNU grep and FreeBSD grep because they are both very well

maintained and finding a bug using CoRE would demonstrate how powerful our

approach is. Figure 4.3 shows the statement and function coverage of the manual test

suites, AFL, AFLFast and CoRE testing GNU grep. The two graphs show a greater

variance in code coverage between the different testing techniques than in icGrep.

Although manual tests had a much better score than CoRE, CoRE still managed to

score better than AFL and AFLFast in both statement and function coverage.

30%

40%

50%

60%

70%

80%

90%

100%

AFL AFLFast CoRE

Function Coverage

High Low Average

30%

40%

50%

60%

70%

80%

90%

100%

AFL AFLFast CoRE

Statement Coverage

High Low Average

Figure 4.2 Code coverage for AFL, AFLFast and CoRE testing icGrep

27

30%

40%

50%

60%

70%

80%

90%

100%

AFL AFLFast CoRE Manual
Tests

Function Coverage

High Low Average

30%

40%

50%

60%

70%

80%

90%

100%

AFL AFLFast CoRE Manual
Tests

Statement Coverage

High Low Average

Figure 4.3 Code coverage for AFL, AFLFast, CoRE and Manual Tests testing GNU Grep.

30%

40%

50%

60%

70%

80%

90%

100%

AFL AFLFast CoRE Manual
Tests

Statement Coverage

High Low Average

30%

40%

50%

60%

70%

80%

90%

100%

AFL AFLFast CoRE Manual
Tests

Function Coverage

High Low Average

Figure 4.4 Code coverage for AFL, AFLFast, CoRE and Manual Tests testing PCRE Grep.

28

Finally, we evaluated CoRE against PCRE grep’s manual test suite as well as

AFL and AFLFast. Figure 4.4 shows the results of code coverage for all testing

techniques. The two graphs show a similar distribution to the ones in Figure 4.3. The

reason why the coverage results for icGrep are different from GNU grep and PCRE grep

may be because we measure the coverage of static code and not the JIT code that

icGrep relies on.

Examples of bugs found exclusively by CoRE.

Table 4.3 shows a bug found in FreeBSD grep running on Mac OSX 10.13.1.

The three commands were run on GNU grep 3.1 and FreeBSD grep 2.5. The bug occurs

whenever there is an optional grouped sub-pattern that does not match anything

followed by a back reference.

Command GNU Grep Output FreeBSD Grep Output

echo abc | grep –E –color ‘a(d?)b?’ abc abc

echo abc | grep –E –color ‘a(d?)b?\1’ abc abc

echo abc | grep –E –color ‘a(d?)b?\1c’ abc
Table 4.2 Bug in FreeBSD Grep found by CoRE

Another interesting finding was the regular expression “n*(n{113,150}) n+\1” took

220 seconds to match a single line of 591 characters on GNU grep while it takes a

fraction of a second on icGrep and ICU RegexMatcher. Since regular expression

matching is widely used in web applications for field validation, a performance defect like

this could be taken advantage of by hackers to perform a denial-of-service attacks.

For icGrep, CoRE found a bug in icGrep’s carry manager. The carry manager

controls the carry bits of bitwise operations done by icGrep to find matches. The bug

occurs when three of ACTS parameters interact. When setting the block size command

flag to either “64” or “128”, icGrep throws a failure when matching a regular expression

containing a bounded repetition of Unicode properties. Eliminating this bug reduced the

fail rate of CoRE by around 50% over different combinatorial levels. Figure 4.5 shows

the decrease in fail rate for each combinatorial level after eliminating the carry manager

bug.

29

Figure 4.5 Fail rate of CoRE with different combinatorial levels before and after eliminating the
carry manager bug in icGrep

Another bug was found in icGrep cache. In order to improve its performance,

icGrep stores kernel metadata and compiled object files for reuse. It done is by hashing

compiled code for commands with a signature that is the regular expression AST. The

bug was in the naming of captured groups. A regular expression like “a(bc)d” would print

the AST “(Seq[Name "CC_61" ,Name "\1",Name "CC_64"])”. This meant that the

signature for the command would be the same as the signature for matching the regular

expression “a(123)d”. To fix this, icGrep now adds a unique name to each capturing

group depending on the captured pattern. So for our example “a(bc)d”, icGrep now prints

the AST as “(Seq[Name "CC_61" ,Name "\1" =((Seq[Name "CC_62" ,Name "CC_63"

])),Name "CC_64"]).

CoRE detected another bug in one of the Unicode properties supported by

icGrep. As mentioned earlier, unlike in ICU RegexMatcher, icGrep treats the name

“\N{name}” as a regular expression matching all characters matching the name regular

expression whereas ICU RegexMatcher treats the name as a fixed string matching a

single character. This means if we want to match the Latin digit zero “0”, ICU uses the

syntax “\N”{DIGIT ZERO}” while icGrep’s syntax would be “\N{^DIGIT ZERO$}” to

constrain it from matching other zero digits containing “DIGIT ZERO” as part of their

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1-way 2-way 3-way 4-way 5-way

Fail Rate Before Fix Fail Rate After Fix

30

name. The bug was in using the Start metacharacter “^” in the name. It was making the

property fail to match any character.

Limitations.

The string generator in CoRE relies on icGrep’s parser to construct the regular

expression abstract syntax tree. This limits CoRE to test grep tools with syntaxes similar

to the ones supported by icGrep. Also, relying on icGrep’s parser adds some bias to the

generated strings since the string generator will only generate characters that are

defined in the character class by icGrep’s parser.

Another limitation is that the string generator only generates strings that match a

regular expression. This means if a regular expression matching tool returns all line as

matches and returns nothing when inverted match is invoked would theoretically pass all

tests generated by CoRE. Adding a feature to the string generator to generate non-

matching lines would eliminate this concern.

31

5. Future work.

CoRE is an implementation of a fully automated combinatorial testing

methodology for regular expression matching tools. It showcases our idea of a fully

automated combinatorial testing approach to testing regular expression matching tools.

There are different areas to continue our research in.

One way to enhance CoRE is to expand the capabilities of core enabling it to

perform differential testing between grep tools with different syntaxes testing the

common features between them. We could generate a regular expression AST instead

of a full regular expression. Then, we could transform the AST to different syntaxes

based on the grep tools under test. For instance, any regular expression written in the

GNU BRE syntax could be transformed into a GNU ERE syntax. This give us the ability

to test grep’s GNU BRE syntax against its ERE syntax.

The experiments we have done show an advantage of CoRE over AFL and

AFLFast testing icGrep, GNU grep and PCRE grep in statement and function coverage.

Having more time and resources would give us the chance to evaluate CoRE against

other automated testing techniques like Nezha. Nezha uses fuzzing as well as

differential testing to test for correctness but it requires writing code to make it work on

icGrep and other grep tools.

Another interesting take on CoRE would be to use differential testing to measure

performance differences between regular expression matching tool. Performance is an

important aspect of regular expression matching tools and would be interesting to know

which test cases cause performance problems to icGrep compared to other grep tools

and which test cases give icGrep the performance advantage.

We would like to further enhance CoRE by identifying unique bugs. This requires

little instrumentation of the system under test to track the control flow of each test case

and only report bugs that explore new paths in the control glow graph.

Finally, Expanding our methodology for a fully automated combinatorial testing

solution and testing systems with complex input spaces other than regular expression

matching tools.

32

6. Conclusion.

In this dissertation, we presented a methodology to reach fully automated combinatorial

testing for regular expression matching tools. We implemented CoRE, a testing tool

based on our proposed approach testing icGrep, GNU grep and PCRE grep.

To reach full automation, we implemented a regular expression generator and a

string generator to generate test cases. We also performed differential testing on the

generated test cases.

We evaluated CoRE against hand written test suites and two fuzzing tools, AFL

and AFLFast testing icGrep and measuring code coverage and bug detection rate.

CoRE outperformed AFL and AFLFast in both statement coverage and function

coverage in icGrep, GNU grep and PCRE grep. CoRE also found bugs that were not

caught by manual test suites nor AFL or AFLFast. CoRE also detected a bug in

FreeBSD grep running Mac OSX 10.1.

Our proposed approach to automated combinatorial testing for regular

expression matching tools showed to be effective and can improve the quality of regular

expression matching tools.

33

Bibliography

[1] K. Thompson, "Programming Techniques: Regular Expression Search Algorithm,"

vol. 11, no. 6, pp. 419-422, 1968.

[2] B. Kernighan, "A Regular Expressions Matcher," in Beautiful Code, O'Reilly Media,

2007.

[3] R. D. Cameron, T. C. Shermer, A. Shrirman, K. S. Herdy, D. Lin, B. R. Hull and D.

Lin, "Bitwise data parallelism in regular expression matching," in The 23rd

international conference on Parallel architectures and compilation, Edmonton,

2014.

[4] T. Stubblebine, Regular Expression Pocket Reference, Sebastopol, CA: O'Reilly &

Associates, Inc, 2003.

[5] J. Goyvaerts and S. Levinthan, Regular Expressions Cookbook, O'Reilly Media,

2012, pp. 1-2.

[6] D. R. Kuhn, R. N. Kacker and Y. Lei, Introduction to Compinatorial Testing,

Chapman and Hall/CRC, 2013.

[7] M. N. Borazjany, G. Laleh, Y. Lei, R. Kacker and R. Kuhn, "An Input Space

Modeling MEthodology for Combinatorial Testing," in 2nd International Workshop

on Combinatorial Testing, Luxembourg, 2013.

[8] D. R. Kuhn and M. J. Reilly, "An investigation of the Applicability of Design of

Experiments to Software Testing," in 27th Annual Nasa Goddard/IEEE, 2012.

[9] M. N. Borazjany, "Applying Combinatorial Testing to Systems with A Complex Input

Space," Thesis (Ph. D), 2013.

[10] M. Zalewski, "American Fuzzy Lop," [Online]. Available:

http://lcamtuf.coredump.cx/afl/README.txt. [Accessed 2 11 2017].

34

[11] M. Bohme, V. Pham and A. Roychoudhury, "Coverage-based Greybox Fuzzing as

Markov Chain," in SIGSAC Conference on Computer and Communications

Security, 2016.

[12] R. D. Cameron, N. Medforth, D. Lin, D. Denis and W. N. Sumner, "Bitwise Data

Parallelism with LLVM: The ICgrep Case Study," Zhangjiajie, 2015.

[13] P. Hazel, "Exim and PCRE: How free software hijacked my life," 12 1999. [Online].

Available: http://www.ukuug.org/events/winter99/proc/PH.ps. [Accessed 3 11

2017].

[14] LLVM, "The LLVM Compiler Infrastructure," [Online]. Available: http://llvm.org/.

[Accessed 3 11 2017].

[15] D. M. Cohen, S. R. Dalal, J. Parelius and C. Patton, "The Combinatorial Design to

Automatic Test Generation," vol. 13, no. 5, pp. 83-88, 9 1996.

[16] M. Grindal, J. Offutt and S. F. Andler, "Combination Testing Strategies: A Survey,"

vol. 15, no. 3, pp. 167-199, 9 2005.

[17] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun and J. Lawrence, "IPOG/IPO -D: Effecient

Test Generation for Multi-Way Combinatorial Testing," vol. 18, no. 3, pp. 125-148,

2007.

[18] R. W. D. Kuhn and R. Gallo, "Software fault interactions and implications for

software testing," vol. 30, no. 6, pp. 418-421, 2004.

[19] C. Lemieux and K. Sen, "FairFuzz:Targeting Rare Branches to Rapidly Increase

Greybox Fuzz Testinig Coverage," [Online]. Available:

https://arxiv.org/pdf/1709.07101.pdf. [Accessed 3 11 2017].

[20] T. Petsios, A. Tang, S. Stolfo, A. Keromytis and S. Jana, "NEZHA: Efficient

Domain-Independent Differential Testing," 2017.

[21] W. M. McKeeman, "Differential Testing for Software," vol. 10, no. 1, pp. 100-107,

1998.

35

[22] C. Brubaker, S. Jana, B. Ray, S. Khurshid and V. Shmatikov, "Using frankencerts

for automated adversarial testing of certificate validation in SSL/TLS

implementations," in IEEE Symposium on Security and Privacy, 2014.

[23] Y. Chen and Z. Su, "Guided differential testing of certificate validation in SSL/TLS

implementations," in The 10th Joint Meeting on Foundations of Software

Engineering, 2015.

[24] S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis and S. Jana, "HVLearn:

Automates Black-Box Analysis of Hostname Verification in SSL/TLS

Implementations," in IEEE Symposium on Security and Privacy, San Jose, 2017.

[25] X. Yang, Y. Chen, E. Eide and J. Regehr, "Finding and Understanding Bugs in C

Compilers," in The 32nd ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2011.

[26] Y. Chen, T. Su, C. Sun, Z. Su and J. Zhao, "Coverage-directed differential testing

of JVM implementations," in The 37th ACM SIGPLAN Conference on Programming

Language Design and Implementation, 2016.

[27] G. Argyros, I. Stais, S. Jana, A. D. Keromytis and A. Kiaylias, "SFADiff: Automated

Evasion Attacks and Fingerprinting using Black-box Differential Automata

Learning," in ACM SIGSAC Conference on Computer and Communications

Security, 2016.

[28] V. Srivastava, M. D. M. K. S. Bond and V. Shmatikov, "A Security Policy Oracle:

Detecting Security Holes using Multiple API Implementations," ACM SIGPLAN

Notices, vol. 46, no. 6, 2011.

[29] S. Jana and V. Shmatikov, "Abusing File Processing in Malware Detectors for Fun

and Profit," in IEEE Symposium on Security and Privacy, 2012.

[30] D. Brumley, J. Caballero, Z. Liang, J. Newsome and D. Song, "Towards Automatic

Discovery of Deviations in Binary Implementations with Applications to Error

Detection and Fingerprint generation," in The 16th USENIX Security Symposium,

2007.

36

[31] Unicode.org, "Unicode Character Database," The Unicode Consortium, 14 6 2017.

[Online]. Available: http://www.unicode.org/reports/tr44/. [Accessed 3 11 2017].

[32] "GNU Grep Manual," GNU, 9 2 2017. [Online]. Available:

https://www.gnu.org/software/grep/manual/grep.html. [Accessed 3 11 2017].

[33] "ICU User Guide (Regular Expressions)," [Online]. Available: http://userguide.icu-

project.org/strings/regexp. [Accessed 3 11 2017].

[34] R. Expressions.info. [Online]. Available: https://www.regular-

expressions.info/posixbrackets.html#class. [Accessed 3 12 2017].

	Approval
	Ethics Statement
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	1. Introduction
	2. Background and Overview
	2.1. Regular Expression Matching
	2.2. Combinatorial Testing
	2.3. Automated Software Testing
	2.4. Differential Testing

	3. Design and Methodology.
	3.1. Input Space Modeling.
	3.2. Test Case Generation.
	Regular Expression Generator.
	Unicode Metacharacters.
	Example.

	String Generator.

	3.3. Differential Testing.
	Why Differential Testing?

	4. Results and Evaluation.
	Examples of bugs found exclusively by CoRE.
	Limitations.

	5. Future work.
	6. Conclusion.
	Bibliography

