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Abstract 

Fuel cells (FC) have been developed for automobiles and stationary power units. In addition to a power 

generator function, we propose a new application of hydrogen isotope separation. In this paper, 

deuterium (D) separation is investigated by two types of AFCs with platinum (Pt) or ruthenium (Ru) 

anode catalysts. The characteristics of the AFCs are evaluated by pure protium (H) or deuterium gas 

separately. In the case of Pt catalyst, the cell current/voltage curves show similar results for both gases. 

But a remarkable decrease in the voltage value is observed probably due to the mass transportation 

(diffusion) limitation at Ru catalyst. The limitation effect was larger for D2 than H2 gas. The AC 

impedance measurements supports that the slow reaction rate of D2 gas on Ru catalyst. The separation 

experiments are verified with hydrogen gas mixed with 1 at% D. The D is diluted in the unreacted gas 
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discharged from AFC with Pt catalyst, but it is concentrated with Ru one. The inverse response may 

be attributed to the elementary process of the hydrogen oxidation reaction and the difference in the 

adsorption energy of gas and water molecules on the catalyst surface. 
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1．Introduction 

Hydrogen as an energy vector is very important for addressing world energy and 

environmental issues. Green hydrogen, in which carbon dioxide is not involved, is produced by water 

electrolysis and can then be utilized by FCs, thus providing a route to clean energy storage. Hence, 

when the primary electrical generation is via renewables such as wind, the system can be considered 

‘green’. The hydrogen energy society will be established in the automobile industry as one of the first 

main commercial applications.  

There are several types of FCs which are usually classified by their electrolyte type. Alkaline 

fuel cells (AFCs) were the first variant to be developed for commercial usage and were employed in 

space applications due to their high reliability [1, 2]. These alkaline fuel cells used a liquid electrolyte 

but more recently, FCs using anion exchange membranes have been developed [3]. Alkaline fuel cells 

have an advantage of less cathode overpotential than other FCs allowing cells to be run at higher 

efficiencies. This also has significant impacts on cost, because AFCs can use non-precious catalysts or 

low precious metal loadings and inexpensive KOH as an electrolyte [4, 5]. However, the slow kinetic 

of hydrogen oxidation reaction (HOR) is still a problem [6-8]. It is reported that Pt-Ru alloy catalysts 

improve HOR and overtake the performance of Pt [9, 10]. Therefore, it is worthwhile investing Ru 

catalyst for HOR particularly as it is one of the least expensive platinum group metals. 

Fuel cells have been much researched and developed as power devices, while the hydrogen 

isotopes separation as a new application has been explored although to a much lesser extent [11-14]. 

There exist three hydrogen isotopes: protium (H), deuterium (D) and tritium (T). D is used as a neutron 

moderator in heavy water reactors. The D-T reaction is involved in energy production in fusion reactors, 

which are expected to represent the next generation of nuclear energy. Therefore, large amounts of 

these isotopes are required for the energy industry. However, the separation and purification are 

difficult because of the similarity in physical and chemical properties. Research on hydrogen isotope 
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separation began in the 1930s [15, 16]. Many researchers have studied a variety of the separation 

methods, including water distillation [17, 18], chemical exchange [19], water electrolysis [20-22], and 

the combined electrolysis catalytic exchange (CECE) [23]. Electrolysis is the most efficient way, but 

it still has the disadvantage of high electricity consumption.  

To overcome this drawback, the authors previously proposed a new hydrogen isotope 

separation system, that combines water electrolysis and FCs [24]. Here, hydrogen and oxygen are 

produced by electrolysis and consumed by the FC. During hydrogen gas consumption in the FCs, 

power is generated and hydrogen isotopes are separated simultaneously. Previously we reported 

successful D separation using polymer electrolyte fuel cells (PEFCs) and alkaline exchange membrane 

FCs [25-27]. The mechanism of isotope separation is explained by the kinetic isotope effect (KIE). 

The separation reaction is discussed from the electrochemical elementary steps of oxidation and 

reduction reactions by a number of authors [28-30] and forms the basis for separation in both the 

electrolysis and fuel cell reactions. 

 However, although AFCs are potentially the lowest cost and most efficient fuel cell variant, 

the kinetic isotope effect in AFCs has not been investigated. In this paper, we employ Pt and Ru as the 

anode catalyst, respectively, and successfully separate D from mixtures of H2 and D2 gas. Several 

electrochemical techniques are applied to aid understanding of the separation mechanism.  

 

2．Experimental 

2-1. Preparation of Electrodes 

The AFC gas diffusion layer (GDL) were made from its constituent components in our 

laboratory. Carbon black (Vulcan XC 72 R, Cabot, USA), activated charcoal (Norit, Sigma-Aldrich, 

UK) and carbon nanotube powder (NANOCYL NC 7000, Nanocyl, Belgium) were mixed in isopropyl 

alcohol to form a slurry. A wetproofing binder was added in the form of PTFE solution (60 wt% in 
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H2O, Sigma-Aldrich) to give a paste like consistency. The homogeneous paste was calendared through 

rolls to a thickness of approximately 1 mm, dried and then laminated at 2,500 kg for 30 seconds onto 

a nickel mesh (4x4cm2 perforated area). This gave a GDL and current collector assembly. Catalyst inks 

were prepared using a binder and solvent system consisting of PTFE, Texanol and Tergitol TMN6 

(Sigma-Aldrich) solutions. The carbon -supported catalyst (10% Ru/C or 10% Pt/C, Alfa Aesar, USA) 

was added to this system to produce the final catalyst layer ink. These inks were then deposited on the 

GDL / current collector assembly by a screen printing method. The finished electrodes were cured at 

250 °C in an oven for 10 minutes. 

2-2. Electrochemical Measurements 

A proprietary AFC test station (TS -11, AFC Energy Co., UK) which managed electrolyte and 

gas flows as well as temperature, was used for the experimental cell tests. Anode catalyst layers 

consisted of Ru or Pt catalyst, whereas the cathode was Pt in all cases. For the electrolyte fresh 5 M 

KOH solution was used each time. In the experimental procedure, after N2 gas was introduced at 100 

ml/min for 10 minutes, H2 or D2 gas was flowed at 20.0 ml/min to the anode. Air was flowed at 40 

ml/min to the cathode. The cell temperature was controlled at 323 K. The voltage-current response of 

the cells were investigated by sweeping the cell current. A variable resistor (PLZ 164 WA, Kikusui 

Electronics Corp., Japan) was used to keep the current sweep rate of 20 mA/sec. The measurement 

was stopped when the output voltage reached 0.4 V or the current reached 1.5 A. Electrochemical 

impedance spectroscopy was employed to further understand the different responses using a frequency 

response analyzer (Solartron Analytical). These measurements were performed from 10 kHz to 0.1 Hz 

when the fuel cell was operating at a constant current of 0.5 A.  

2-3. Separation Factor Measurement 

A schematic diagram of the separation measurement is shown in Fig. 1. The flow rates of H2 

gas (15 ml/min) and D2 gas (0.15 ml/min) were adjusted by mass flow controllers. They were mixed 
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and introduced into the anode. Pure O2 gas (30 ml/min) was flown into the cathode. The hydrogen gas 

passing through the anode side was continuously sampled into a quadrupole mass spectrometer (QMS, 

Qulee-HGM 202, Ulvac Corp., Japan). The flow rate to the QMS was controlled with a needle valve 

to ensure that the total pressure in the chamber remained constant. The ion currents of the three gas 

species—with masses m = 2, 3, and 4 representing H2, HD, and D2, respectively—were monitored.  

 

3．Results and Discussion 

3-1 Electrochemical Measurement 

 Two different types of AFC were examined; one with a Ru anode / Pt cathode (AFCRu), the 

other with a Pt anode / Pt cathode (AFCPt). The AFC performance was investigated when pure H2 (red 

symbol) or D2 gas (blue symbol) was supplied (Fig. 2). The open circuit voltages of both AFCs show 

about 1.03 V. No difference between isotopes is experienced at open circuit as expected. When the 

cells are connected across a load, the voltage was drops significantly as current is drawn. The large 

initial drop is attributed to the activation overvoltage by the nonequilibrium state. The drop value is 

about 0.13 V for AFCRu and 0.12 V for AFCPt.  

Beyond this initial activation loss the cell voltages decrease proportional to the output current. 

This is explained by a resistive overvoltage, ohm [31]. The value is given by, 

 

ohm = iRohm 

 

where i is the current and Rohm is the ohmic resistance of AFC. The Rohm of AFCRu is 0.25 Ω for H2 

and 0.28 Ω for D2 in the current range of 0.1 ~ 0.9 A. The AFCPt is more active and shows 0.18 Ω for 

both gases. The cell voltage of AFCRu show a large drop at currents greater than 1.3 A for H2 and 1.0 

A for D2, as the cells approach a transport limit for gas diffusion in the GDL. At this point the 

insufficient gas supply increases the concentration overvoltage. The different onset of the voltage drop 

(1) 
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indicates the slower D2 diffusion in GDL.    

The anode and the cathode potentials are measured using a reference electrode (Fig. 3). In 

each cell both cathode potentials (filled symbol) show almost the same behavior so difference in cell 

behavior can be attributed to the anode. The potential drop is confirmed as soon as the current draw is 

started. This initial drop is due to the sluggish oxygen reduction (ORR) kinetics experienced in all low 

temperature fuel cells. Beyond this point the cathode potentials decrease linearly with increasing 

current drawn. The ohmic resistances are about 0.12 . The anode (opened symbol) does not show the 

potential jump having much more facile kinetics and increases linearly with increasing current (0.0 A 

≤ i ≤ 0.5 A). The slope value depends on the gas type. The ohmic resistance for H2 (0.14 is smaller 

than that for D2 (0.16 When the current is more than 1.0 A, the potential sharply increases. This 

effect occurs at a smaller current for D2 compared to H2. This result is in agreement with the voltage 

drop due to the gas diffusion limitation, as seen in Fig. 2.  

Electrochemical impedance measurements of the AFC anodes were measured. The data were 

collected during the power generation at 0.5 A. Figure 4 shows Nyquist plots of AFCPt (open symbol) 

and AFCRu (filled symbol). The AFCPt for H2 (red plot) and D2 (blue plot) shows the small semi-

circular shape. They show almost same value of impedance of the right edge of the semi-circle at low 

frequency, which is equivalent to the charge transfer resistance. The small circle of AFCPt demonstrates 

the high catalytic activity for HOR, while AFCRu has a larger semi-circle which also varies with the 

gas type. The charge transfer resistance of D2 is about 1.5 time as large as that of H2.  

 

3-2 D Isotope Separation 

The D separation from a mixed gas of H2 and D2 was investigated. The mixing ratio of H and 

D was 1.0 at% D. The unreacted gas from the anode was introduced into the QMS. The ion currents 

of mass components (iH2; m = 2, iHD; m = 3, iD2; m = 4) were measured at open circuit, before they 

were monitored during the AFC operation at 0.5 A.  
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Figure 5 shows the time variation of the ion currents of AFCRu. The D2 form is changed into 

HD by passing through the anode. This is attributed to the exchange reaction, H2 + D2 → 2HD, 

occurring on the catalyst. We have also confirmed this exchange reaction on PEFC anodes with Pt 

catalyst [26, 27].  

When the AFCRu is put under load at 30 min after starting the measurement (arrow point in 

Fig. 5), the ion current, iH2, decreases from 2.0 × 10-8 A to 1.7 × 10-8 A by 120 min, while iD2 increased 

from 3.1 × 10-12 A to 4.5 × 10-12 A. The value of iHD does not change before or after the load is applied. 

It is noted that the ion current corresponds to the partial pressure of each compositions. By considering 

the reduction of iH2, the HD partial pressure actually increases relative to the H2 one. Thus, the D 

atomic ratio in the gas increases during the power generation.  

To evaluate the isotope separation, we calculate the separation factor, , which compares the 

atomic ratios before/after the power generation phase. The value of  is defined by the following 

equation, 

 

α = ([H]/[D])after/([H]/[D])before 

 

where [H] and [D] represent atomic concentrations of H and D.  

The  values of both AFCs are summarized in Table 1. The  of AFCRu is less than 1.0, 

meaning that H concentration in the anode exhaust gas is depleted, while D is enriched. However, the 

 of AFCPt is more than 1.0. In this case D is concentrated in the water produced by power generation. 

This is the opposite result compared to the Ru catalysts. For comparison, the  of PEFC using Pt 

catalyst is shown in Table 1 [26]. In PEFC with a Pt catalyst, the D isotope was also preferentially 

oxidized as experienced with the AFCPt results presented here.  

 The isotope separation was inversed between Ru and Pt [32]. The HOR consists of three 

elementary steps. When an alkali aqueous electrolyte is used, the steps are expressed by following; 

(2) 
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L2 → 2 Lad (Tafel step)  

L2 + OH- →Lad + LHO + e- (Heyrovsky step) 

Lad + OH- → LHO + e- (Volmer step) 

 

Where L is symbol of H or D, and Lad is a hydrogen atom adsorbed on the catalyst.   

For Ru catalyst, the Tafel-Volmer combination is the main reaction path of hydrogen oxidation. 

The Volmer step with the charge transfer reaction is the rate determining [10, 33]. From the impedance 

results (Fig. 3), there is a significant difference in charge transfer resistance between H and D. 

Moreover, the desorption of hydrogen adatoms presumably contributes to the reaction rate of the 

Volmer step. The binding energy is -2.72 eV for H-Ru and -2.77 eV for D-Ru, respectively [34]. Since 

the desorption force of D-Ru is larger than that of H-Ru, D is not easily detached from the Ru catalyst 

surface. That is, the slow rate of Dad detachment causes the less D2 gas consumption, resulting in D 

enrichment in the gas exhausted from AFCRu. As another possibility, Ru adsorbs water molecules and 

hydronium ions more easily than Pt. If the adsorption tendency could be influenced by the mass number, 

the gas adsorption side at Eq. (3) would be blocked and the D2 reaction rate might be reduced.  

In the Pt catalyst case, Tafel-Volmer at low overpotential and Heyrovsky-Volmer at high 

overpotential occurs on the Pt catalyst [33]. Both Heyrovsky and Volmer steps, which accompany a 

charge transfer, hardly contribute to the isotope separation as illustrated by the Nyquist plots of H and 

D which are almost identical (Fig. 3). Therefore, the Tafel step may be important. The binding energy 

is -2.62 eV for H-Pt and -2.66 eV for D-Pt, respectively [34]. The reaction of D2 with higher binding 

energy occurs preferentially at the Tafel step, where a gas molecule is dissociated and adsorbed on Pt 

atoms. Therefore, unlike the AFCRu results, more D2 gas is consumed during AFCPt power generation.  

 

(3) 

(4) 

(5) 
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4. Conclusions 

This research demonstrates D separation using AFCRu and AFCPt. When the AFCRu is 

operated, the cell voltage when using D2 as fuel is lower than that when using H2. The impedance 

measurement indicates the larger charge transfer resistance for D compared to H, resulting in the slow 

oxidation reaction of D2. The power performance of AFCPt is better than that of AFCRu and is not 

dependent on the gas species. The isotope separation was investigated when AFCs were operated at 

0.5 A with using 1.0 at% D2 mixture gas. The  value of AFCRu is 0.85 and D is enriched as product 

water, while  of AFCPt is 1.08. This inverse phenomenon, depending on the catalyst might be related 

to the differences in adsorption energy between the hydrogen atom and the catalyst surface for the two 

isotopes. The presented results demonstrate that the D concentration could be controlled by selecting 

proper catalysts. This will be meaningful knowledge for the isotope separation processes in the future. 
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Figure Captions 

Figure 1    

Schematic illustration of isotope separation measurement using an alkaline fuel cell.  

 

Figure 2 

Current / cell voltage plots of alkaline fuel cell with Ru (●: AFCRu) and Pt (○: AFCPt) anode catalyst 

when suppling H2 (red) and D2 (blue) gas. (Temperature, 323 K; Cathode catalyst, Pt). 

 

Figure 3 

Current / potential plots of cathode (■) and anode (□) at AFCRu when suppling H2 (red) and D2 (blue) 

gas. (Temperature, 323 K; Cathode catalyst, Pt). 

 

Figure 4 

Complex plane plots for AFCRu (●) and AFCPt (○) when suppling H2 (red) and D2 (blue) gas. 

(Temperature, 323 K; Cathode catalyst, Pt). 

 

Figure 5 

Transient behavior of ionization currents of mass components (iH2; red, iHD; blue, iD2; green) during 

AFCRu operation at 0.5 A with 1.0 at% D2 mixture gas.  

 

Table 1  Separation factor, , of AFCRu, AFCPt and PEMFC. 
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anode catalysts. The characteristics of the AFCs are evaluated by pure protium (H) or deuterium gas 

separately. In the case of Pt catalyst, the cell current/voltage curves show similar results for both gases. 

But a remarkable decrease in the voltage value is observed probably due to the mass transportation 
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1．Introduction 

Hydrogen as an energy vector is very important for addressing world energy and 

environmental issues. Green hydrogen, in which carbon dioxide is not involved, is produced by water 

electrolysis and can then be utilized by FCs, thus providing a route to clean energy storage. Hence, 

when the primary electrical generation is via renewables such as wind, the system can be considered 

‘green’. The hydrogen energy society will be established in the automobile industry as one of the first 

main commercial applications.  

There are several types of FCs which are usually classified by their electrolyte type. Alkaline 

fuel cells (AFCs) were the first variant to be developed for commercial usage and were employed in 

space applications due to their high reliability [1, 2]. These alkaline fuel cells used a liquid electrolyte 

but more recently, FCs using anion exchange membranes have been developed [3]. Alkaline fuel cells 

have an advantage of less cathode overpotential than other FCs allowing cells to be run at higher 

efficiencies. This also has significant impacts on cost, because AFCs can use non-precious catalysts or 

low precious metal loadings and inexpensive KOH as an electrolyte [4, 5]. However, the slow kinetic 

of hydrogen oxidation reaction (HOR) is still a problem [6-8]. It is reported that Pt-Ru alloy catalysts 

improve HOR and overtake the performance of Pt [9, 10]. Therefore, it is worthwhile investing Ru 

catalyst for HOR particularly as it is one of the least expensive platinum group metals. 

Fuel cells have been much researched and developed as power devices, while the hydrogen 

isotopes separation as a new application has been explored although to a much lesser extent [11-14]. 

There exist three hydrogen isotopes: protium (H), deuterium (D) and tritium (T). D is used as a neutron 

moderator in heavy water reactors. The D-T reaction is involved in energy production in fusion reactors, 

which are expected to represent the next generation of nuclear energy. Therefore, large amounts of 

these isotopes are required for the energy industry. However, the separation and purification are 

difficult because of the similarity in physical and chemical properties. Research on hydrogen isotope 
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separation began in the 1930s [15, 16]. Many researchers have studied a variety of the separation 

methods, including water distillation [17, 18], chemical exchange [19], water electrolysis [20-22], and 

the combined electrolysis catalytic exchange (CECE) [23]. Electrolysis is the most efficient way, but 

it still has the disadvantage of high electricity consumption.  

To overcome this drawback, the authors previously proposed a new hydrogen isotope 

separation system, that combines water electrolysis and FCs [24]. Here, hydrogen and oxygen are 

produced by electrolysis and consumed by the FC. During hydrogen gas consumption in the FCs, 

power is generated and hydrogen isotopes are separated simultaneously. Previously we reported 

successful D separation using polymer electrolyte fuel cells (PEFCs) and alkaline exchange membrane 

FCs [25-27]. The mechanism of isotope separation is explained by the kinetic isotope effect (KIE). 

The separation reaction is discussed from the electrochemical elementary steps of oxidation and 

reduction reactions by a number of authors [28-30] and forms the basis for separation in both the 

electrolysis and fuel cell reactions. 

 However, although AFCs are potentially the lowest cost and most efficient fuel cell variant, 

the isotope effect in AFCs has not been investigated. In this paper, we employ Pt and Ru as the anode 

catalyst, respectively, and successfully separate D from mixtures of H2 and D2 gas. Several 

electrochemical techniques are applied to aid understanding of the separation mechanism.  

 

2．Experimental 

2-1. Preparation of Electrodes 

The AFC gas diffusion layer (GDL) were made from its constituent components in our 

laboratory. Carbon black (Vulcan XC 72 R, Cabot, USA), activated charcoal (Norit, Sigma-Aldrich, 

UK) and carbon nanotube powder (NANOCYL NC 7000, Nanocyl, Belgium) were mixed in isopropyl 

alcohol to form a slurry. A wetproofing binder was added in the form of PTFE solution (60 wt% in 
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H2O, Sigma-Aldrich) to give a paste like consistency. The homogeneous paste was calendared through 

rolls to a thickness of approximately 1 mm, dried and then laminated at 2,500 kg for 30 seconds onto 

a nickel mesh (4x4cm2 perforated area). This gave a GDL and current collector assembly. Catalyst inks 

were prepared using a binder and solvent system consisting of PTFE, Texanol and Tergitol TMN6 

(Sigma-Aldrich) solutions. The carbon -supported catalyst (10% Ru/C or 10% Pt/C, Alfa Aesar, USA) 

was added to this system to produce the final catalyst layer ink. These inks were then deposited on the 

GDL / current collector assembly by a screen printing method. The finished electrodes were cured at 

250 °C in an oven for 10 minutes. 

2-2. Electrochemical Measurements 

A proprietary AFC test station (TS -11, AFC Energy Co., UK) which managed electrolyte and 

gas flows as well as temperature, was used for the experimental cell tests. Anode catalyst layers 

consisted of Ru or Pt catalyst, whereas the cathode was Pt in all cases. For the electrolyte fresh 5 M 

KOH solution was used each time. In the experimental procedure, after N2 gas was introduced at 100 

ml/min for 10 minutes, H2 or D2 gas was flowed at 20.0 ml/min to the anode. Air was flowed at 40 

ml/min to the cathode. The cell temperature was controlled at 323 K. The voltage-current response of 

the cells were investigated by sweeping the cell current. A variable resistor (PLZ 164 WA, Kikusui 

Electronics Corp., Japan) was used to keep the current sweep rate of 20 mA/sec. The measurement 

was stopped when the output voltage reached 0.4 V or the current reached 1.5 A. Electrochemical 

impedance spectroscopy was employed to further understand the different responses using a frequency 

response analyzer (Solartron Analytical). These measurements were performed from 10 kHz to 0.1 Hz 

when the fuel cell was operating at a constant current of 0.5 A.  

2-3. Separation Factor Measurement 

A schematic diagram of the separation measurement is shown in Fig. 1. The flow rates of H2 

gas (15 ml/min) and D2 gas (0.15 ml/min) were adjusted by mass flow controllers. They were mixed 
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and introduced into the anode. Pure O2 gas (30 ml/min) was flown into the cathode. The hydrogen gas 

passing through the anode side was continuously sampled into a quadrupole mass spectrometer (QMS, 

Qulee-HGM 202, Ulvac Corp., Japan). The flow rate to the QMS was controlled with a needle valve 

to ensure that the total pressure in the chamber remained constant. The ion currents of the three gas 

species—with masses m = 2, 3, and 4 representing H2, HD, and D2, respectively—were monitored.  

 

3．Results and Discussion 

3-1 Electrochemical Measurement 

 Two different types of AFC were examined; one with a Ru anode / Pt cathode (AFCRu), the 

other with a Pt anode / Pt cathode (AFCPt). The AFC performance was investigated when pure H2 (red 

symbol) or D2 gas (blue symbol) was supplied (Fig. 2). The open circuit voltages of both AFCs show 

about 1.03 V. No difference between isotopes is experienced at open circuit as expected. When the 

cells are connected across a load, the voltage was drops significantly as current is drawn. The large 

initial drop is attributed to the activation overvoltage by the nonequilibrium state. The drop value is 

about 0.13 V for AFCRu and 0.12 V for AFCPt.  

Beyond this initial activation loss the cell voltages decrease proportional to the output current. 

This is explained by a resistive overvoltage, ohm [31]. The value is given by, 

 

ohm = iRohm 

 

where i is the current and Rohm is the ohmic resistance of AFC. The Rohm of AFCRu is 0.25 Ω for H2 

and 0.28 Ω for D2 in the current range of 0.1 ~ 0.9 A. The AFCPt is more active and shows 0.18 Ω for 

both gases. The cell voltage of AFCRu show a large drop at currents greater than 1.3 A for H2 and 1.0 

A for D2, as the cells approach a transport limit for gas diffusion in the GDL. At this point the 

insufficient gas supply increases the concentration overvoltage. The different onset of the voltage drop 

(1) 
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indicates the slower D2 diffusion in GDL.    

The anode and the cathode potentials are measured using a reference electrode (Fig. 3). In 

each cell both cathode potentials (filled symbol) show almost the same behavior so difference in cell 

behavior can be attributed to the anode. The potential drop is confirmed as soon as the current draw is 

started. This initial drop is due to the sluggish oxygen reduction (ORR) kinetics experienced in all low 

temperature fuel cells. Beyond this point the cathode potentials decrease linearly with increasing 

current drawn. The ohmic resistances are about 0.12 . The anode (opened symbol) does not show the 

potential jump having much more facile kinetics and increases linearly with increasing current (0.0 A 

≤ i ≤ 0.5 A). The slope value depends on the gas type. The ohmic resistance for H2 (0.14 is smaller 

than that for D2 (0.16 When the current is more than 1.0 A, the potential sharply increases. This 

effect occurs at a smaller current for D2 compared to H2. This result is in agreement with the voltage 

drop due to the gas diffusion limitation, as seen in Fig. 2.  

Electrochemical impedance measurements of the AFC anodes were measured. The data were 

collected during the power generation at 0.5 A. Figure 4 shows Nyquist plots of AFCPt (open symbol) 

and AFCRu (filled symbol). The AFCPt for H2 (red plot) and D2 (blue plot) shows the small semi-

circular shape. They show almost same value of impedance of the right edge of the semi-circle at low 

frequency, which is equivalent to the charge transfer resistance. The small circle of AFCPt demonstrates 

the high catalytic activity for HOR, while AFCRu has a larger semi-circle which also varies with the 

gas type. The charge transfer resistance of D2 is about 1.5 time as large as that of H2.  

 

3-2 D Isotope Separation 

The D separation from a mixed gas of H2 and D2 was investigated. The mixing ratio of H and 

D was 1.0 at% D. The unreacted gas from the anode was introduced into the QMS. The ion currents 

of mass components (iH2; m = 2, iHD; m = 3, iD2; m = 4) were measured at open circuit, before they 

were monitored during the AFC operation at 0.5 A.  
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Figure 5 shows the time variation of the ion currents of AFCRu. The D2 form is changed into 

HD by passing through the anode. This is attributed to the exchange reaction, H2 + D2 → 2HD, 

occurring on the catalyst. We have also confirmed this exchange reaction on PEFC anodes with Pt 

catalyst [26, 27].  

When the AFCRu is put under load at 30 min after starting the measurement (arrow point in 

Fig. 5), the ion current, iH2, decreases from 2.0 × 10-8 A to 1.7 × 10-8 A by 120 min, while iD2 increased 

from 3.1 × 10-12 A to 4.5 × 10-12 A. The value of iHD does not change before or after the load is applied. 

It is noted that the ion current corresponds to the partial pressure of each compositions. By considering 

the reduction of iH2, the HD partial pressure actually increases relative to the H2 one. Thus, the D 

atomic ratio in the gas increases during the power generation.  

To evaluate the isotope separation, we calculate the separation factor, , which compares the 

atomic ratios before/after the power generation phase. The value of  is defined by the following 

equation, 

 

α = ([H]/[D])after/([H]/[D])before 

 

where [H] and [D] represent atomic concentrations of H and D.  

The  values of both AFCs are summarized in Table 1. The  of AFCRu is less than 1.0, 

meaning that H concentration in the anode exhaust gas is depleted, while D is enriched. However, the 

 of AFCPt is more than 1.0. In this case D is concentrated in the water produced by power generation. 

This is the opposite result compared to the Ru catalysts. For comparison, the  of PEFC using Pt 

catalyst is shown in Table 1 [26]. In PEFC with a Pt catalyst, the D isotope was also preferentially 

oxidized as experienced with the AFCPt results presented here.  

 The isotope separation was inversed between Ru and Pt [32]. The HOR consists of three 

elementary steps. When an alkali aqueous electrolyte is used, the steps are expressed by following; 

(2) 
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L2 → 2 Lad (Tafel step)  

L2 + OH- →Lad + LHO + e- (Heyrovsky step) 

Lad + OH- → LHO + e- (Volmer step) 

 

Where L is symbol of H or D, and Lad is a hydrogen atom adsorbed on the catalyst.   

For Ru catalyst, the Tafel-Volmer combination is the main reaction path of hydrogen oxidation. 

The Volmer step with the charge transfer reaction is the rate determining [10, 33]. From the impedance 

results (Fig. 3), there is a significant difference in charge transfer resistance between H and D. 

Moreover, the desorption of hydrogen adatoms presumably contributes to the reaction rate of the 

Volmer step. The binding energy is -2.72 eV for H-Ru and -2.77 eV for D-Ru, respectively [34]. Since 

the desorption force of D-Ru is larger than that of H-Ru, D is not easily detached from the Ru catalyst 

surface. That is, the slow rate of Dad detachment causes the less D2 gas consumption, resulting in D 

enrichment in the gas exhausted from AFCRu. As another possibility, Ru adsorbs water molecules and 

hydronium ions more easily than Pt. If the adsorption tendency could be influenced by the mass number, 

the gas adsorption side at Eq. (3) would be blocked and the D2 reaction rate might be reduced.  

In the Pt catalyst case, Tafel-Volmer at low overpotential and Heyrovsky-Volmer at high 

overpotential occurs on the Pt catalyst [33]. Both Heyrovsky and Volmer steps, which accompany a 

charge transfer, hardly contribute to the isotope separation as illustrated by the Nyquist plots of H and 

D which are almost identical (Fig. 3). Therefore, the Tafel step may be important. The binding energy 

is -2.62 eV for H-Pt and -2.66 eV for D-Pt, respectively [34]. The reaction of D2 with higher binding 

energy occurs preferentially at the Tafel step, where a gas molecule is dissociated and adsorbed on Pt 

atoms. Therefore, unlike the AFCRu results, more D2 gas is consumed during AFCPt power generation.  

 

(3) 

(4) 

(5) 
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4. Conclusions 

This research demonstrates D separation using AFCRu and AFCPt. When the AFCRu is 

operated, the cell voltage when using D2 as fuel is lower than that when using H2. The impedance 

measurement indicates the larger charge transfer resistance for D compared to H, resulting in the slow 

oxidation reaction of D2. The power performance of AFCPt is better than that of AFCRu and is not 

dependent on the gas species. The isotope separation was investigated when AFCs were operated at 

0.5 A with using 1.0 at% D2 mixture gas. The  value of AFCRu is 0.85 and D is enriched as product 

water, while  of AFCPt is 1.08. This inverse phenomenon, depending on the catalyst might be related 

to the differences in adsorption energy between the hydrogen atom and the catalyst surface for the two 

isotopes. The presented results demonstrate that the D concentration could be controlled by selecting 

proper catalysts. This will be meaningful knowledge for the isotope separation processes in the field 

of fusion reactor and material development [35-37].   
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Figure Captions 

Figure 1    

Schematic illustration of isotope separation measurement using an alkaline fuel cell.  

 

Figure 2 

Current / cell voltage plots of alkaline fuel cell with Ru (●: AFCRu) and Pt (○: AFCPt) anode catalyst 

when suppling H2 (red) and D2 (blue) gas. (Temperature, 323 K; Cathode catalyst, Pt). 

 

Figure 3 

Current / potential plots of cathode (■) and anode (□) at AFCRu when suppling H2 (red) and D2 (blue) 

gas. (Temperature, 323 K; Cathode catalyst, Pt). 

 

Figure 4 

Complex plane plots for AFCRu (●) and AFCPt (○) when suppling H2 (red) and D2 (blue) gas. 

(Temperature, 323 K; Cathode catalyst, Pt). 

 

Figure 5 

Transient behavior of ionization currents of mass components (iH2; red, iHD; blue, iD2; green) during 

AFCRu operation at 0.5 A with 1.0 at% D2 mixture gas.  

 

Table 1  Separation factor, , of AFCRu, AFCPt and PEMFC. 
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Abstract 

Fuel cells (FC) have been developed for automobiles and stationary power units. In addition to a power 

generator function, we propose a new application of hydrogen isotope separation. In this paper, 

deuterium (D) separation is investigated by two types of AFCs with platinum (Pt) or ruthenium (Ru) 

anode catalysts. The characteristics of the AFCs are evaluated by pure protium (H) or deuterium gas 

separately. In the case of Pt catalyst, the cell current/voltage curves show similar results for both gases. 

But a remarkable decrease in the voltage value is observed probably due to the mass transportation 

(diffusion) limitation at Ru catalyst. The limitation effect was larger for D2 than H2 gas. The AC 

impedance measurements supports that the slow reaction rate of D2 gas on Ru catalyst. The separation 

experiments are verified with hydrogen gas mixed with 1 at% D. The D is diluted in the unreacted gas 
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discharged from AFC with Pt catalyst, but it is concentrated with Ru one. The inverse response may 

be attributed to the elementary process of the hydrogen oxidation reaction and the difference in the 

adsorption energy of gas and water molecules on the catalyst surface. 
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1．Introduction 

Hydrogen as an energy vector is very important for addressing world energy and 

environmental issues. Green hydrogen, in which carbon dioxide is not involved, is produced by water 

electrolysis and can then be utilized by FCs, thus providing a route to clean energy storage. Hence, 

when the primary electrical generation is via renewables such as wind, the system can be considered 

‘green’. The hydrogen energy society will be established in the automobile industry as one of the first 

main commercial applications.  

There are several types of FCs which are usually classified by their electrolyte type. Alkaline 

fuel cells (AFCs) were the first variant to be developed for commercial usage and were employed in 

space applications due to their high reliability [1, 2]. These alkaline fuel cells used a liquid electrolyte 

but more recently, FCs using anion exchange membranes have been developed [3]. Alkaline fuel cells 

have an advantage of less cathode overpotential than other FCs allowing cells to be run at higher 

efficiencies. This also has significant impacts on cost, because AFCs can use non-precious catalysts or 

low precious metal loadings and inexpensive KOH as an electrolyte [4, 5]. However, the slow kinetic 

of hydrogen oxidation reaction (HOR) is still a problem [6-8]. It is reported that Pt-Ru alloy catalysts 

improve HOR and overtake the performance of Pt [9, 10]. Therefore, it is worthwhile investing Ru 

catalyst for HOR particularly as it is one of the least expensive platinum group metals. 

Fuel cells have been much researched and developed as power devices, while the hydrogen 

isotopes separation as a new application has been explored although to a much lesser extent [11-14]. 

There exist three hydrogen isotopes: protium (H), deuterium (D) and tritium (T). D is used as a neutron 

moderator in heavy water reactors. The D-T reaction is involved in energy production in fusion reactors, 

which are expected to represent the next generation of nuclear energy. Therefore, large amounts of 

these isotopes are required for the energy industry. However, the separation and purification are 

difficult because of the similarity in physical and chemical properties. Research on hydrogen isotope 
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separation began in the 1930s [15, 16]. Many researchers have studied a variety of the separation 

methods, including water distillation [17, 18], chemical exchange [19], water electrolysis [20-22], and 

the combined electrolysis catalytic exchange (CECE) [23]. Electrolysis is the most efficient way, but 

it still has the disadvantage of high electricity consumption.  

To overcome this drawback, the authors previously proposed a new hydrogen isotope 

separation system, that combines water electrolysis and FCs [24]. Here, hydrogen and oxygen are 

produced by electrolysis and consumed by the FC. During hydrogen gas consumption in the FCs, 

power is generated and hydrogen isotopes are separated simultaneously. Previously we reported 

successful D separation using polymer electrolyte fuel cells (PEFCs) and alkaline exchange membrane 

FCs [25-27]. The mechanism of isotope separation is explained by the kinetic isotope effect (KIE). 

The separation reaction is discussed from the electrochemical elementary steps of oxidation and 

reduction reactions by a number of authors [28-30] and forms the basis for separation in both the 

electrolysis and fuel cell reactions. 

 However, although AFCs are potentially the lowest cost and most efficient fuel cell variant, 

the isotope effect in AFCs has not been investigated. In this paper, we employ Pt and Ru as the anode 

catalyst, respectively, and successfully separate D from mixtures of H2 and D2 gas. Several 

electrochemical techniques are applied to aid understanding of the separation mechanism.  

 

2．Experimental 

2-1. Preparation of Electrodes 

The AFC gas diffusion layer (GDL) were made from its constituent components in our 

laboratory. Carbon black (Vulcan XC 72 R, Cabot, USA), activated charcoal (Norit, Sigma-Aldrich, 

UK) and carbon nanotube powder (NANOCYL NC 7000, Nanocyl, Belgium) were mixed in isopropyl 

alcohol to form a slurry. A wetproofing binder was added in the form of PTFE solution (60 wt% in 
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H2O, Sigma-Aldrich) to give a paste like consistency. The homogeneous paste was calendared through 

rolls to a thickness of approximately 1 mm, dried and then laminated at 2,500 kg for 30 seconds onto 

a nickel mesh (4x4cm2 perforated area). This gave a GDL and current collector assembly. Catalyst inks 

were prepared using a binder and solvent system consisting of PTFE, Texanol and Tergitol TMN6 

(Sigma-Aldrich) solutions. The carbon -supported catalyst (10% Ru/C or 10% Pt/C, Alfa Aesar, USA) 

was added to this system to produce the final catalyst layer ink. These inks were then deposited on the 

GDL / current collector assembly by a screen printing method. The finished electrodes were cured at 

250 °C in an oven for 10 minutes. 

2-2. Electrochemical Measurements 

A proprietary AFC test station (TS -11, AFC Energy Co., UK) which managed electrolyte and 

gas flows as well as temperature, was used for the experimental cell tests. Anode catalyst layers 

consisted of Ru or Pt catalyst, whereas the cathode was Pt in all cases. For the electrolyte fresh 5 M 

KOH solution was used each time. In the experimental procedure, after N2 gas was introduced at 100 

ml/min for 10 minutes, H2 or D2 gas was flowed at 20.0 ml/min to the anode. Air was flowed at 40 

ml/min to the cathode. The cell temperature was controlled at 323 K. The voltage-current response of 

the cells were investigated by sweeping the cell current. A variable resistor (PLZ 164 WA, Kikusui 

Electronics Corp., Japan) was used to keep the current sweep rate of 20 mA/sec. The measurement 

was stopped when the output voltage reached 0.4 V or the current reached 1.5 A. Electrochemical 

impedance spectroscopy was employed to further understand the different responses using a frequency 

response analyzer (Solartron Analytical). These measurements were performed from 10 kHz to 0.1 Hz 

when the fuel cell was operating at a constant current of 0.5 A.  

2-3. Separation Factor Measurement 

A schematic diagram of the separation measurement is shown in Fig. 1. The flow rates of H2 

gas (15 ml/min) and D2 gas (0.15 ml/min) were adjusted by mass flow controllers. They were mixed 
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and introduced into the anode. Pure O2 gas (30 ml/min) was flown into the cathode. The hydrogen gas 

passing through the anode side was continuously sampled into a quadrupole mass spectrometer (QMS, 

Qulee-HGM 202, Ulvac Corp., Japan). The flow rate to the QMS was controlled with a needle valve 

to ensure that the total pressure in the chamber remained constant. The ion currents of the three gas 

species—with masses m = 2, 3, and 4 representing H2, HD, and D2, respectively—were monitored.  

 

3．Results and Discussion 

3-1 Electrochemical Measurement 

 Two different types of AFC were examined; one with a Ru anode / Pt cathode (AFCRu), the 

other with a Pt anode / Pt cathode (AFCPt). The AFC performance was investigated when pure H2 (red 

symbol) or D2 gas (blue symbol) was supplied (Fig. 2). The open circuit voltages of both AFCs show 

about 1.03 V. No difference between isotopes is experienced at open circuit as expected. When the 

cells are connected across a load, the voltage was drops significantly as current is drawn. The large 

initial drop is attributed to the activation overvoltage by the nonequilibrium state. The drop value is 

about 0.13 V for AFCRu and 0.12 V for AFCPt.  

Beyond this initial activation loss the cell voltages decrease proportional to the output current. 

This is explained by a resistive overvoltage, ohm [31]. The value is given by, 

 

ohm = iRohm 

 

where i is the current and Rohm is the ohmic resistance of AFC. The Rohm of AFCRu is 0.25 Ω for H2 

and 0.28 Ω for D2 in the current range of 0.1 ~ 0.9 A. The AFCPt is more active and shows 0.18 Ω for 

both gases. The cell voltage of AFCRu show a large drop at currents greater than 1.3 A for H2 and 1.0 

A for D2, as the cells approach a transport limit for gas diffusion in the GDL. At this point the 

insufficient gas supply increases the concentration overvoltage. The different onset of the voltage drop 

(1) 
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indicates the slower D2 diffusion in GDL.    

The anode and the cathode potentials are measured using a reference electrode (Fig. 3). In 

each cell both cathode potentials (filled symbol) show almost the same behavior so difference in cell 

behavior can be attributed to the anode. The potential drop is confirmed as soon as the current draw is 

started. This initial drop is due to the sluggish oxygen reduction (ORR) kinetics experienced in all low 

temperature fuel cells. Beyond this point the cathode potentials decrease linearly with increasing 

current drawn. The ohmic resistances are about 0.12 . The anode (opened symbol) does not show the 

potential jump having much more facile kinetics and increases linearly with increasing current (0.0 A 

≤ i ≤ 0.5 A). The slope value depends on the gas type. The ohmic resistance for H2 (0.14 is smaller 

than that for D2 (0.16 When the current is more than 1.0 A, the potential sharply increases. This 

effect occurs at a smaller current for D2 compared to H2. This result is in agreement with the voltage 

drop due to the gas diffusion limitation, as seen in Fig. 2.  

Electrochemical impedance measurements of the AFC anodes were measured. The data were 

collected during the power generation at 0.5 A. Figure 4 shows Nyquist plots of AFCPt (open symbol) 

and AFCRu (filled symbol). The AFCPt for H2 (red plot) and D2 (blue plot) shows the small semi-

circular shape. They show almost same value of impedance of the right edge of the semi-circle at low 

frequency, which is equivalent to the charge transfer resistance. The small circle of AFCPt demonstrates 

the high catalytic activity for HOR, while AFCRu has a larger semi-circle which also varies with the 

gas type. The charge transfer resistance of D2 is about 1.5 time as large as that of H2.  

 

3-2 D Isotope Separation 

The D separation from a mixed gas of H2 and D2 was investigated. The mixing ratio of H and 

D was 1.0 at% D. The unreacted gas from the anode was introduced into the QMS. The ion currents 

of mass components (iH2; m = 2, iHD; m = 3, iD2; m = 4) were measured at open circuit, before they 

were monitored during the AFC operation at 0.5 A.  
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Figure 5 shows the time variation of the ion currents of AFCRu. The D2 form is changed into 

HD by passing through the anode. This is attributed to the exchange reaction, H2 + D2 → 2HD, 

occurring on the catalyst. We have also confirmed this exchange reaction on PEFC anodes with Pt 

catalyst [26, 27].  

When the AFCRu is put under load at 30 min after starting the measurement (arrow point in 

Fig. 5), the ion current, iH2, decreases from 2.0 × 10-8 A to 1.7 × 10-8 A by 120 min, while iD2 increased 

from 3.1 × 10-12 A to 4.5 × 10-12 A. The value of iHD does not change before or after the load is applied. 

It is noted that the ion current corresponds to the partial pressure of each compositions. By considering 

the reduction of iH2, the HD partial pressure actually increases relative to the H2 one. Thus, the D 

atomic ratio in the gas increases during the power generation.  

To evaluate the isotope separation, we calculate the separation factor, , which compares the 

atomic ratios before/after the power generation phase. The value of  is defined by the following 

equation, 

 

α = ([H]/[D])after/([H]/[D])before 

 

where [H] and [D] represent atomic concentrations of H and D.  

The  values of both AFCs are summarized in Table 1. The  of AFCRu is less than 1.0, 

meaning that H concentration in the anode exhaust gas is depleted, while D is enriched. However, the 

 of AFCPt is more than 1.0. In this case D is concentrated in the water produced by power generation. 

This is the opposite result compared to the Ru catalysts. For comparison, the  of PEFC using Pt 

catalyst is shown in Table 1 [26]. In PEFC with a Pt catalyst, the D isotope was also preferentially 

oxidized as experienced with the AFCPt results presented here.  

 The isotope separation was inversed between Ru and Pt [32]. The HOR consists of three 

elementary steps. When an alkali aqueous electrolyte is used, the steps are expressed by following; 

(2) 
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L2 → 2 Lad (Tafel step)  

L2 + OH- →Lad + LHO + e- (Heyrovsky step) 

Lad + OH- → LHO + e- (Volmer step) 

 

Where L is symbol of H or D, and Lad is a hydrogen atom adsorbed on the catalyst.   

For Ru catalyst, the Tafel-Volmer combination is the main reaction path of hydrogen oxidation. 

The Volmer step with the charge transfer reaction is the rate determining [10, 33]. From the impedance 

results (Fig. 3), there is a significant difference in charge transfer resistance between H and D. 

Moreover, the desorption of hydrogen adatoms presumably contributes to the reaction rate of the 

Volmer step. The binding energy is -2.72 eV for H-Ru and -2.77 eV for D-Ru, respectively [34]. Since 

the desorption force of D-Ru is larger than that of H-Ru, D is not easily detached from the Ru catalyst 

surface. That is, the slow rate of Dad detachment causes the less D2 gas consumption, resulting in D 

enrichment in the gas exhausted from AFCRu. As another possibility, Ru adsorbs water molecules and 

hydronium ions more easily than Pt. If the adsorption tendency could be influenced by the mass number, 

the gas adsorption side at Eq. (3) would be blocked and the D2 reaction rate might be reduced.  

In the Pt catalyst case, Tafel-Volmer at low overpotential and Heyrovsky-Volmer at high 

overpotential occurs on the Pt catalyst [33]. Both Heyrovsky and Volmer steps, which accompany a 

charge transfer, hardly contribute to the isotope separation as illustrated by the Nyquist plots of H and 

D which are almost identical (Fig. 3). Therefore, the Tafel step may be important. The binding energy 

is -2.62 eV for H-Pt and -2.66 eV for D-Pt, respectively [34]. The reaction of D2 with higher binding 

energy occurs preferentially at the Tafel step, where a gas molecule is dissociated and adsorbed on Pt 

atoms. Therefore, unlike the AFCRu results, more D2 gas is consumed during AFCPt power generation.  

 

(3) 

(4) 

(5) 
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4. Conclusions 

This research demonstrates D separation using AFCRu and AFCPt. When the AFCRu is 

operated, the cell voltage when using D2 as fuel is lower than that when using H2. The impedance 

measurement indicates the larger charge transfer resistance for D compared to H, resulting in the slow 

oxidation reaction of D2. The power performance of AFCPt is better than that of AFCRu and is not 

dependent on the gas species. The isotope separation was investigated when AFCs were operated at 

0.5 A with using 1.0 at% D2 mixture gas. The  value of AFCRu is 0.85 and D is enriched as product 

water, while  of AFCPt is 1.08. This inverse phenomenon, depending on the catalyst might be related 

to the differences in adsorption energy between the hydrogen atom and the catalyst surface for the two 

isotopes. The presented results demonstrate that the D concentration could be controlled by selecting 

proper catalysts. This will be meaningful knowledge for the isotope separation processes in the field 

of fusion reactor and material development [35-37].   
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Figure Captions 

Figure 1    

Schematic illustration of isotope separation measurement using an alkaline fuel cell.  

 

Figure 2 

Current / cell voltage plots of alkaline fuel cell with Ru (●: AFCRu) and Pt (○: AFCPt) anode catalyst 

when suppling H2 (red) and D2 (blue) gas. (Temperature, 323 K; Cathode catalyst, Pt). 

 

Figure 3 

Current / potential plots of cathode (■) and anode (□) at AFCRu when suppling H2 (red) and D2 (blue) 

gas. (Temperature, 323 K; Cathode catalyst, Pt). 

 

Figure 4 

Complex plane plots for AFCRu (●) and AFCPt (○) when suppling H2 (red) and D2 (blue) gas. 

(Temperature, 323 K; Cathode catalyst, Pt). 

 

Figure 5 

Transient behavior of ionization currents of mass components (iH2; red, iHD; blue, iD2; green) during 

AFCRu operation at 0.5 A with 1.0 at% D2 mixture gas.  

 

Table 1  Separation factor, , of AFCRu, AFCPt and PEMFC. 
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Table 1  Separation factor, , of AFCRu, AFCPt and PEMFC. 

 

         Type of FC                           

             AFCRu                0.85               

             AFCPt                 1.08   

            PEMFC               2.0~3.0 

 

 

Table 1
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