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Abstract 

The application of heat to treat disease can be dated back over 5000 years. Ancient 

Egyptian papyrus records describe heated instruments being used to cauterise breast 

tumours. In recent times, hyperthermia range temperatures are increasingly routinely used 

to treat cancer. Heating tumours alongside conventional therapies and pre-heating aqueous 

drug suspensions prior to administration are both commonplace in oncology clinics. Despite 

this, the mechanisms which underpin the efficacy of hyperthermia therapy in cancer 

treatment remain poorly understood. In particular, the impact of temperature on cancer cell 

cycle dynamics is under explored. We set out to investigate these mechanisms. We 

employed time lapse confocal microscopy and fluorescence ubiquitin-based cell cycle 

indicator expressing cancer cell lines to interrogate the effects of temperature on the cell 

cycle. To complement our investigation, we utilised the open source cancer genomics 

platforms cBioPortal and XenaBrowser to explore potential molecular determinants of cancer 

thermosensitivity. Through tracking the breast cancer cell line MCF-7 we observed 

hyperthermia to result in increased instances of endoreplication and mitotic catastrophe 

induced cell death. We also highlight components of the T complex protein ring complex as 

playing a potential role in testicular cancer. These findings will guide design of future cancer 

thermosensitivity study and may contribute towards novel adjuvant therapeutic cancer 

strategies.   
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1. Introduction  

1.1. Cancer as a disease  

1.1.1. The burden of cancer 

Cancer is the second leading cause of death globally with an estimated 9.6 million deaths 

worldwide in 2018 (Ferlay et al., 2019). The high mortality rate, significant morbidity, and 

complexities involved in the treatment of cancer carry with it an economic burden of £7.6 billion 

per year in the UK alone (Smith, 2020). These statistics emphasise the need for advancement 

in our understanding of cancer in order to aid in the development of novel therapeutic avenues 

to alleviate the diseases economic burden and impact on public health.    

1.1.2. The biology of cancer  

The developed human body consists of approximately 3.72 × 1013 cells (Bianconi et al., 2013). 

The vast majority reside either terminally differentiated, or in a dormant state known as 

quiescence (Potten and Loeffler, 1990). Many cells, however, divide and differentiate in order 

to facilitate growth and maintain life (Kaneko and Yomo, 1994). Evolution has led to the 

development of complex multi-layered biochemical signalling networks which transmit 

information within and between cells in order to regulate a proper balance of proliferation, 

differentiation, quiescence, and programmed cell death (Sever and Brugge, 2015). It is a 

dysregulation of these processes which leads to cancer. An imbalance in the complex network 

of growth and death signals promotes aberrant proliferation. After multiple generations these 

cells present as a neoplasm; literally a new growth (Hanahan and Weinberg, 2011). Almost 

every cell type in the body has the capacity to dysregulate cell cycling in this way. Thus, cancer 

shouldn’t be thought of as an individual disease, but rather a family of diseases (Hoadley et 

al., 2018). To add further complexity, the major genes responsible for oncogenesis, tumour 

suppressor genes and proto-oncogenes, often differ in their mutational profile between 

individuals (Muir and Nunney, 2015). This variability in genetic signature can result in vastly 

different phenotypic profiles between patients whose cancers share the same tissue of origin. 

This inter-individual heterogeneity leads to complications in designing therapeutic regimens 

(Kittaneh et al., 2013).  

 

Cells usually proliferate in a highly regulated manner, progressing through defined phases 

collectively known as the cell cycle (Vermeulen et al., 2003). A disruption in cell cycle 

regulation can lead to reduced DNA replication fidelity, promoting genomic instability and thus 
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increasing mutational burden promoting neoplasms to select for new characteristics (Hanahan 

and Weinberg, 2011). Just as Darwinian evolution dictates for the selection of randomly 

occurring mutations which confer organismal fitness, cancerous cells select for mutations 

which confer fitness at the cellular level, promoting proliferation and survival (Little, 2010). For 

example, once a tumour outgrows its local microenvironment, selection pressure is placed on 

cells to acquire the capability to break through extracellular matrices and travel through blood 

and lymphatic vessels in order to inhabit new compartments within the body (Seyfried and 

Huysentruyt, 2013). This process, known as metastasis, is strongly correlated with poor 

prognosis due to pathophysiological accumulation of neoplastic cells in multiple sites and 

subsequent complexities involved in treatment (Riihimäki et al., 2013). Furthermore, the 

interaction between non-neoplastic cells and cancer cells within the tumour microenvironment 

play an important role in cancer pathogenesis. For example, it is widely accepted that tumour-

associated-macrophages are obligate partners for tumour invasion and metastasis (Condeelis 

and Pollard, 2006). It is evident that oncogenesis is a complex process involving multiple 

dysregulated molecular and cellular components; at the centre of the disease however, is 

aberrant cell cycle regulation (Knox, 2010). 

1.2. Cancer and the cell cycle 

1.2.1. Cell cycle phases 

The cell cycle is primarily characterised by four consecutive phases. In the first phase, G1, 

cells undergo increased growth and synthesize the components needed for DNA replication 

(Donjerkovic and Scott, 2000). Following G1 cells enter S phase, otherwise known as 

synthesis phase, where DNA and chromosomes undergo duplication (Bertoli et al., 2013). 

Subsequently, a further growth phase coined G2 commences where the cell increases protein 

synthesis in order to generate the machinery needed for the next phase, mitosis, where the 

cell divides (see figure 1.1)(Murray, 1993). The phases either side of M phase, where most 

cells generally reside, are collectively known as interphase (Vorsanova et al., 2010). Cells 

have evolved a multitude of mechanisms to drive cycling through these defined phases in a 

highly regulated manner. Signalling networks regulate the cycle ensuring phase directionality 

and provide checkpoints that act as a surveillance system to monitor the integrity and fidelity 

of cell cycle events. In cancer these mechanisms go awry, checkpoints become ignored, and 

the cell cycle is uncontrollably driven (Hanahan and Weinberg, 2011).  
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Figure 1. Cell cycle phases. Dividing cells pass through consecutive phases collectively 

known as the cell cycle. Growth 1 (G1) cells undergo metabolic changes in order prepare the 

cell for DNA synthesis. Synthesis phase (S) refers to the stage in which the cell replicates its 

chromosomes in preparation for providing progeny with equal genomic material. Growth 2 

(G2) phase represents further growth and massive upregulation of protein synthesis in order 

to generate the machinery needed for cell division. Mitosis (M) the cell segregates its 

chromosomes and divides (Bartee et al., 2017). 

1.2.2. DNA damage response checkpoints 

It is estimated that the human body suffers tens of thousands of DNA lesions per day (Lindahl 

and Barnes, 2000). This damage, if not repaired, or repaired incorrectly, can lead to cell 

heritable mutations which can disrupt cell cycle regulation and promote tumorigenesis. Some 

lesions arise through physiological processes such as DNA replication base-pair mismatching, 

and others due to exposure of exogenous toxic substances such as those found in tobacco 

smoke (Furrukh, 2013; Umar and Kunkel, 1997). To combat these degenerative changes, 

cells have evolved surveillance mechanisms which scan the genome and halt the cell cycle in 

order facilitate the repair of damage or signal for the destruction of the cell (Zhou and Elledge, 

2000). These mechanisms act to avoid producing progeny with aberrant genetic lesions which 

may promote dysregulated cycling. 

 

These processes are collectively known as the DNA damage response (DDR). The DDR is 

active throughout the entirety of the cell cycle and may alter the cycle at any given phase. 

Individual checkpoints are generally defined by the phase in which is the cell stalled (Houtgraaf 

et al., 2006). Although distinct molecular pathways have been demonstrated to act at specific 

phases, DDR proteins are often shared between phase checkpoints (Zhou and Elledge, 2000). 
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The response can be thought of as consisting of three core components; damage sensors 

and signal transducers, mediators, and effectors. Sensors act to initiate the signalling 

response to incorrect DNA structures (McGowan and Russell, 2004). The best understood of 

these is proliferating cell nuclear antigen (PCNA). PCNA is an essential processing factor in 

DNA replication and acts as a scaffold for the recruitment of factors needed for base mismatch 

repair (Umar et al., 1996; Majka and Burgers, 2004). Two master DDR signal transducers are 

the conserved and related serine/threonine kinases ataxia-telangiectasia mutated (ATM) and  

ataxia telangiectasia and Rad3-related protein (ATR). Following DNA damage hundreds of 

proteins are phosphorylated in an ATM or ATR dependent manner (Bensimon et al., 2010). 

ATM is activated predominantly by DNA double-strand breaks and ATR more generally in 

response to DNA damage (Maréchal and Zou, 2013). Inherited dysfunctional ATM is 

responsible for the neurodegenerative syndrome ataxia telangiectasia, which not surprisingly 

predisposes individuals to a range of cancers (Savitsky et al., 1995). Although there are 

distinct substrates between the two, there is also a considerable overlap. An important 

overlapping substrate is the tumour suppressor p53, often referred to as the guardian of the 

genome (Kim et al., 1999; Toufektchan and Toledo, 2018).  

 

Checkpoint kinase 1 (CHK1) and checkpoint kinase 2 (CHK2), also serine/threonine kinases, 

act as DDR effectors, phosphorylating downstream targets and halting the cell cycle. In 

mammals, CHK1 and CHK2 play an important role in all checkpoint DDR signalling pathways. 

RAD53 and CDS1, CHK2 yeast homologs, respond to replication blocks and DNA damage, 

whereas yeast CHK1 seems to act only in cell cycle arrest in response to damage (Brown et 

al., 1999; Matsuoka et al., 1998). CHK1 and CHK2 are activated via phosphorylation and 

transduced interchangeably by ATM or ATR depending on the specific damage scenario (Liu 

et al., 2000,p.1; Melchionna et al., 2000). These proteins then go onto mediate cell cycle arrest 

through phosphorylation and inactivation of proteins involved in driving the cell cycle. 

 

Specific DDR signalling generally depends of the type of DNA damage (Jackson and Bartek, 

2009). The G1/S checkpoint can be mediated through the phosphorylation and deactivation 

of dual specificity phosphatase cell division cycle protein 25A (CDC25A) by CHK1 or CHK2. 

CDC25A promotes entry past the G1/S transition through the desphosphorylation and 

activation of cyclin dependent kinase 2 (CDK2)(Hoffmann et al., 1994). Two well understood 

pathways are known to regulate an intra-S-phase checkpoint. The first, mediated by ATM and 

ATR, is similar to the G1/S checkpoint, arresting cycle progression through CDC25A 

inactivation (Sørensen et al., 2003, p.1). The second involves NBS1, the culprit responsible 

for the chromosomal instability disorder Nijmen Breakage syndrome (NBS) which predisposes 

individuals to a plethora of cancers. NBS1 in complex with p95 binds to hRAD50 and hMRE11 
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following their recognition of DNA double strand breakages and signals for p53 dependent 

cycle arrest (Jongmans et al., 1997). The G2/M checkpoint prevents the cell from entering 

mitosis. As is the case with previous checkpoints, the specific DNA lesion dictates the 

signalling pathway activated. ATM/ATR-CHK1/2-CDC25 pathways previously described are 

activated in response to double strand breaks and lesions which arise from UV damage 

(Matsuoka et al., 1998; Blasina et al., 1999). An important kinase required specifically for this 

checkpoint is Wee1, known as the gatekeeper G2/M. CHK1 signals through WEE1 which 

phosphorylates and inactivates CDK1, a key driver of mitosis (O’Connell et al., 1997). WEE1 

is over expressed in many cancers allowing for the repair of otherwise fatal DNA aberrations 

in the absence of p53, which is commonly dysfunctional in cancer cells. It has been 

hypothesised that this represents a potential Achilles heel in cancer, with much current interest 

in WEE1 as a potential therapeutic target (Do et al., 2013; Matheson et al., 2016; Bukhari et 

al., 2019). These DDR checkpoint signalling pathways have evolved into order to prevent the 

transmission of aberrant genetic information, therefore, it is little wonder that the dysregulation 

of these components is associated with cancer. 

1.2.3. The restriction point  

The point at which cells no longer require growth factor signalling to progress in cycling is the 

restriction point, or R point, which resides in late G1 (fig. 1). In cell culture the removal of growth 

factors prior to the R point will prevent the progression into S-phase (Pardee, 1974). Once 

past this point, cells are irreversibly committed to DNA synthesis and thus no longer require 

mitogenic signalling for cell cycle progression. The molecular mechanisms regulating this 

checkpoint are incompletely understood. However, members of the retinoblastoma (RB) family 

and associated proteins are indicated to be important regulators  which will be discussed 

further in section 1.2.6 (Chi et al., 2017, p.3; Sage et al., 2000). Naturally, loss of R-point 

signalling is thought to be critical in cancer, as dysregulation would permit cells to proliferate 

in the absence of mitogenic signal (DelSal et al., 1996). 

1.2.4. Spindle checkpoint 

Undoubtably the most visually remarkable phase of the cell cycle is mitosis, the phase in which 

chromosomes can be observed aligning and segregating under a microscope (Salmon et al., 

1994). The spindle checkpoint acts to ensure proper chromosomal alignment before the 

segregation of chromosomes during anaphase. The mitotic spindle is a complex and dynamic 

bipolar network of protein filaments which operate as the machinery needed to separate 

chromosomes during mitosis (Musacchio and Hardwick, 2002). Mitosis can be subdivided into 

well-defined individual sequential phases; prophase, metaphase (sometimes subdivided into 
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prometaphase and metaphase), anaphase, and telophase (Walczak et al., 2010). In prophase, 

chromosomes condense, replicated centrosomes move towards opposite poles, and 

breakdown of the nuclear envelope initiates. The central alignment of chromosomes takes 

place in metaphase and prometaphase. In anaphase, sister chromatids separate at the 

centromere and begin to move apart, and in telophase, the final stage, chromatids have 

reached poles and individual nuclear envelopes begin to form (See figure 2)(Cooper, 2000b). 

Finally, the physical separation of cells proceeds, known as cytokinesis. 

 

Figure 2. Mitotic phases. During interphase chromatin is mostly decondensed, conversely, 

in prophase, chromatin becomes highly compact and the nucleolar envelope begins to break 

down. In prometaphase, the nuclear envelope is fully broken down, allowing bundles of 

microtubules (K-fibres) to connect the kinetochore of chromosomes to the spindle. 

Chromosomes are then uniformly oriented along the equator of the cell, defining metaphase. 

In anaphase A, kinetochore microtubules shorten, pulling chromatids apart towards poles, 

followed by anaphase B where interpolar and astral microtubules provide force that separates 

the poles. In the final phase, telophase, the nuclear envelope begins to reform, and chromatin 

begins to decondense. The cytoplasm and nuclei are then divided into individual daughter 

cells, constituting cytokinesis (Walczak et al., 2010). 

Improper chromosomal segregation during mitosis can promote aneuploidy and genetic 

instability (Rajagopalan and Lengauer, 2004). Cells therefore must tightly regulate 

segregation in order to prevent instability. The spindle assembly checkpoint (SAC) consists 

of machinery which ensures the correct attachment of microtubules to all chromosomes prior 

to anaphase onset. Chromosomes attach to microtubules via the kinetochore, a 

proteinaceous platform associated with the centromere, the structure connecting sister 

chromatids (McKinley and Cheeseman, 2016). The process of microtubule attachment to the 
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kinetochore during prometaphase is a stochastic process in which microtubules extend and 

retract until two kinetochores of a sister chromatid pair attach to opposite poles (Cleveland et 

al., 2003). It is critical that cells ensure segregation of chromosomes ensues only once 

proper metaphase plate orientation is achieved. The core components of this checkpoint 

complex, first elucidated in Schizosaccharomyces pombe, are Mad, Bub and Cdc20 

(Overlack et al., 2014). Importantly, Cdc20 is also a core component of the anaphase 

promoting complex (APC/C), which when active, targets the destruction of securin (Thornton 

and Toczyski, 2003). Securin is an inhibitor of separase, which initiates anaphase onset 

through the cleavage Scc1, a key protein involved in the complex which holds sister 

chromatids together, cohesin. Fundamentally the checkpoint seems to act through the 

quenching of the cytoplasmic pool of Cdc20 by unattached kinetochores, thus inhibiting 

APC/C function and downstream signalling (Yu, 2002; Cleveland et al., 2003). It is inherent 

that defects in this network sensitise cells to improper chromosomal segregation and genetic 

instability. Indeed, such components, when defective, have been shown to predispose 

individuals to cancer and contribute to tumorigenesis (Bharadwaj and Yu, 2004; Ryan et al., 

2012; Hanks et al., 2004).   

1.2.5. Cytoskeletal changes 

The cytoskeleton is a group of filamentous proteins which, (1) organise spatial arrangement 

within the cell, (2) generate the physical forces which facilitate changes in cell morphology, 

and, (3) biochemically and physically link the cell to the external environment (Fletcher and 

Mullins, 2010). This web-like network is a dynamic and adaptive set of structures, constantly 

rearranging during the lifetime of a cell. Polymers of specific proteins form three main distinct 

structures. These are microtubules, actin filaments and intermediate filaments (Hohmann and 

Dehghani, 2019).  

 

Microtubules are stiff tube-like protein filaments made up of αβ-tubulin polymers. These 

structures function as a network for intracellular transport, support cellular shape, and 

facilitate the segregation of chromosomes during mitosis (Roostalu and Surrey, 2017). 

Microtubules are highly active structures, constantly undergoing dynamic polymerisation and 

depolymerisation (Brouhard and Rice, 2018). This dynamic instability is essential to their 

function in capturing chromosomes during mitosis (Sacristan et al., 2018). Moreover, the 

mechanisms which underpin microtubule organisation, and thus mitosis, have been long 

recognised to display high sensitivity to changes in temperature (Engelborghs et al., 1976; 

Grzanka et al., 2008). The organisational centre of microtubule assembly during the cell 

cycle is the centrosome, which consists of two cylindrical centrioles surrounded by a mass of 
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proteins collectively known as the pericentriolar material (PCM). The PCM is responsible for 

the de novo formation of microtubules, known as microtubule nucleation (Job et al., 2003). 

Microtubule nucleation is critical in cell migration, division, maintenance of cell shape, and 

cilia formation (Job et al., 2003). During S-phase the centrosome duplicates exactly once in 

preparation for division. As cells enter mitosis, microtubule nucleation initiates from these 

complexes forming an antiparallel structure which is pushed apart by kinesin motor proteins 

to form the mitotic spindle (Wordeman, 2010). It’s not surprising that these structures are 

normally tightly regulated, and that aberrant centrosome amplification is often observed 

cancer. Indeed, work in drosophila melanogaster has demonstrated amplification can 

contribute to tumorigenesis (Basto et al., 2008). On the other hand, whether centrosome 

amplification is a cause or consequence of cancer in mammals is controversial. It is clear 

that amplification does cause oncogenic traits such as aneuploidy, invasion, and metastasis 

(Ganem et al., 2009; Godinho et al., 2014). A recent study from (Levine et al., 2017) 

provides compelling evidence that centrosome amplification can indeed drive cancer 

formation in mammals. The study implemented a murine model in which centrosome 

number could be amplified in the absence of additional genetic alterations and demonstrated 

the spontaneous development of tumours in multiple tissues.  

 

Intermediate filaments make up the major morphological framework in a cell and undergo 

drastic reorganisation during the cell cycle. As their name suggests, these diverse cytoskeletal 

structures are intermediate in their size relative to microtubules and actin filaments. They are 

encoded by over 65 genes (Herrmann et al., 2002). Mutation in subunit components therefore 

is generally better tolerated than in microtubules and actin filaments, which consist solely of 

tubulin and actin, respectively (Klymkowsky, 2019). Moreover, intermediate filaments are not 

directly involved in cell motility, rather playing a structural role in tissues and cells (Cooper, 

2000a). Naturally the breakdown of these foundations is essential during mitosis. An example 

of such is the deconstruction of the architectural network of the nuclear lamina. The nuclear 

lamina is a thick fibrous network associated with the nuclear envelope made up of lamin 

proteins which assemble into V-type intermediate filaments. Nuclear lamina disassembly is 

triggered by the activation of mitotic kinases such as CDK1 through the direct phosphorylation 

of lamin filament subunits. This mechanism was eloquently elucidated through in vitro 

catalysis assays and phospho-dead mutants blocking lamina disassembly during mitosis 

(Heald and McKeon, 1990; Peter et al., 1990).  

 

Actin filaments are the thinnest of the trio and are often crosslinked into complex networks 

(Blanchoin et al., 2014). These filaments have an extremely diverse array of physiological 

functions, often involving myosin motor proteins which move along actin filaments in an ATP-
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dependent reaction which strikingly resembles walking (Kodera and Ando, 2014). Actin-

myosin chemistry generates the mechanical force needed for muscle contraction, vesicle 

transport, and cytokinesis to just name a few processes. During cytokinesis, the cytoplasm is 

divided in two by a complex meshwork of these filaments and associated proteins known as 

the cell cortex (Reichl et al., 2008). Furthermore, the actin filament cytoskeletal network plays 

a defining role in cell cycle progression past the G1 checkpoint through linking extra cellular 

matrix (ECM) signal transduction (Forgacs et al., 2004).  

 

Regulation of the cell cycle is tightly linked to the adhesive interactions of cells with the ECM. 

Integrin transmembrane receptors and proteoglycans mediate this communication at specific 

lipid raft areas, known as focal adhesions sites, which directly link to the actin cytoskeleton 

(Burridge et al., 1990). Multiple components of mitogenic signal transduction networks have 

been demonstrated to directly link to this actin cytoskeleton, prime examples include 

phospholipase C and phosphatidylinositol kinase (Payrastre et al., 1991). Indeed, 

pharmacological aberration of actin structure leads to G1 cell cycle arrest in multiple cell types 

(Huang and Ingber, 2002; Lohez et al., 2003). Furthermore, actin cytoskeletal dynamics are 

tightly linked with metastasis. The epithelial to mesenchymal transition (EMT) is a tissue 

remodelling cellular programme initiated during development. During EMT, actin cytoskeleton 

cell-cell junction linkages in epithelium break down, allowing cells to migrate. Cancer cells 

hijack this physiological process in order to promote metastasis, in which actin plays a critical 

role. This is reflected by regular presence of upregulated actin-associated proteins during 

cancer EMT (Lamouille et al., 2014). 

1.2.6. Cyclins and cyclin dependent kinases 

The master regulators of eukaryotic cell cycle progression are cyclin dependent serine-

threonine kinases. The CDK catalysed phosphorylation of key substrates is central in ensuring 

major events are correctly orchestrated (Morgan, 1995). CDKs act as information processing 

nodes which integrate intracellular and extracellular signalling networks (Malumbres and 

Barbacid, 2009). CDK catalytic capacity requires their regulatory subunits; the cyclins, which 

are aptly named after their ability to drive cell cycling (Morgan, 1997). CDKs undergo 

constitutive expression, whereas specific cyclins oscillate at different cell cycle phases to 

activate their partner CDKs (Wright et al., 2019). Cyclins can be broadly divided into four 

classes, G1/S, S, M and G1 cyclins. G1 cyclins regulate entry into the cell cycle (Bertoli et al., 

2013). The Cyclin E family are expressed at the G1/S transition, Cyclin A in S phase and G2 

phase, and cyclin B in M phase (fig. 3)(Musgrove, 2006). D type cyclins pay a key role in G1 

phase initiation and are tightly regulated. Activation is complex and can occur at both the 
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transcriptional and post-transcriptional level (Blagosklonny and Pardee, 2002). Classically, 

cyclin D1 is transcriptionally activated via the Ras-Raf-MEK-ERK cascade in response to 

mitogenic signalling (Lavoie et al., 1996). Cyclin D is then available to bind with CDK4/6 and 

phosphorylate a number of downstream substrates. A key target of this complex is RB, a 

tumour suppressor commonly dysfunctional in many cancers (Dunn et al., 1988). The evolved 

complexity of signalling and tight regulation around this node of cell cycle initiation is pertinent 

given aberrant cell cycle entry promotes oncogenesis (Malumbres and Barbacid, 2009). 

Further highlighting importance of tight regulation, cyclin D mutation and overexpression is 

commonly seen in a range of cancers (Musgrove et al., 2011). 

 

Figure 3. Schematic representation of cyclin concentration over the course of the cell cycle 

(figure adapted from Morgan and Roberts, 2002). 

Provided mitogenic signalling is sustained, CyclinD-CDK4/6 remains catalytically active and 

phosphorylates RB (Rubin, 2013). In the absence of phosphorylation, RB inhibits E2F, a key 

transcription factor that upregulates a plethora of genes involved in DNA synthesis and 

nucleotide metabolism and thus licences cycle progression into S phase (Lundberg and 

Weinberg, 1998). RB phosphorylation releases E2F, which is then free to bind to its target 

promoters and upregulate key genes, an important one to note being cyclin E. Once 

synthesised, cyclin E then binds and activates CDK-2 which phosphorylates a number of 

substrates, one being RB, thus forming a feedback loop (Rubin, 2013). Sequential 

phosphorylation of RB by cyclinD-CDK4/6 and cyclinE-CDK-2 is required for complete 

hyperphosphorylation of RB and cell cycle progression past the restriction point (Lundberg 

and Weinberg, 1998). Once past the restriction point, the cell is irreversibly committed to DNA 

replication and cell cycle progression (Blagosklonny and Pardee, 2002). It is no surprise 

therefore that restriction point signalling components are commonly mutated and dysfunctional 

in cancer (Malumbres and Barbacid, 2001). In late G1 phase cyclin A concentration increases 
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playing essential role in S phase initiation, causing phosphorylation of key DNA replication 

components by activating CDK2. These levels rise and don’t start decline until mid G2 phase 

(Erlandsson et al., 2000). Interestingly, cyclin A functions in both S and M phase by associating 

with functionally distinct CDKs 1 and 2 (Pagano et al., 1992). In G2 A type cyclins are degraded 

and cyclin B is actively expressed activating CDK1 which phosphorylates a number of 

substrates involved in driving M phase processes such as chromosomal condensation and 

nuclear lamina breakdown (McHugh and Heck, 2003; Gavet and Pines, 2010). 

1.2.7. Ubiquitin and the cell cycle 

Selective and orderly protein degradation via the ubiquitin-proteasome system ensures correct 

cell cycle event timing and directionality. Ubiquitin is a small, highly conserved, ubiquitously 

expressed 76 amino acid protein that post-translationally marks proteins, either as a single 

ubiquitin moiety or as polyubiquitin chains (Cappadocia and Lima, 2018). Ubiquitination of 

proteins can mediate cellular localisation, function and stability (Pickart, 2001). Ubiquitin is 

covalently attached to lysine residues on a target protein and itself contains seven lysine 

residues, each of which serves as a potential linkage site for ubiquitin chain polymerisation. 

The linear and branching linkage possibilities provide immense structural diversity for effector 

protein recognition (Deol et al., 2019). For example, K11 or K48 linkages adopt a compact 

conformation and usually lead to proteasomal degradation. In contrast, K63/M1 linkages 

specify a more open configuration and are involved in proteasome-independent functions such 

as DNA damage repair signalling (Belzile et al., 2010; Metcalf et al., 2014). 

 

The tagging of target proteins with ubiquitin is a highly ordered process orchestrated by the 

sequential action of three enzymes. The process begins with E1 activating enzymes which 

activate ubiquitin in an ATP-dependent two-step reaction. E1 forms a thiol ester with the G76 

carboxyl of ubiquitin priming the C terminus for nucleophilic attack (Cappadocia and Lima, 

2018). E2 conjugating enzyme then transiently carries activated ubiquitin as a thioester and 

E3 ligase facilitates the addition of ubiquitin to a given substrate, most commonly forming an 

isopeptide bond between the substrate and ubiquitin (fig. 4)(Pickart, 2001). This process can 

be repeated, leading to poly-ubiquitylation, although a further novel E4 ubiquitylation factor 

may be required for certain linkages (Hoppe, 2005). Whilst E1 and E2 are generally involved 

in activating and carrying ubiquitin, E3 ligases are considered responsible for substrate 

specificity. Over 600 E3 domain proteins have been characterised in the human genome 

(Deshaies and Joazeiro, 2009). The majority of which form multi-subunit complexes, 

facilitating substrate recognition via complexed binding domains, representing a further layer 

of ubiquitin signalling complexity (Berndsen and Wolberger, 2014).  
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Figure 4. The ubiquitin cycle ubiquitylation is carried out by the sequential action of ubiquitin 

activating (E1), conjugating (E2) and ligating (E3) enzymes. Ubiquitin can be removed by 

deubiquitylases (labelled DUB). E3s can be subdivided into categories based on their 

structure and catalytic chemistry (RING E3 displayed). Blue circles represent ubiquitin (Figure 

adapted from Borg and Dixit, 2017). 

 

The dysregulation of this system is often seen in cancer. A key example is the overexpression 

of S-phase kinase associated protein 2 (SKP2). SKP2 is a core component of the SKP1-

CUL1-F-box (SCFSKP2) E3 ligase complex involved in the recognition and ubiquitin mediated 

proteasomal degradation of the G1 phase checkpoint protein p27 (Nakayama and Nakayama, 

2005). p27 is essential in G1 cell cycle arrest in response to DNA damage (Cuadrado et al., 

2009). It is pertinent therefore that many cancers select for overexpression of this component, 

promoting proliferation and genomic instability (Harper et al., 2002). SCF plays a central role 

in cell cycle control signalling. Dynamic interplay between ubiquitylation and phosphorylation 

form regulatory mechanisms and feedback loops (Swaney et al., 2013). Cyclin D is an 

example of phosphorylation dependent ubiquitylation directed proteasomal degradation, and 

contains a so called phosphodegron (O. et al., 2009). DNA damage activates MAP kinases 

which phosphorylate cyclin D facilitating SCFSKP2 recognition and subsequent ubiquitylation 

and degradation (Santra et al., 2009; Shan et al., 2009). The SCF core complex is in part 

regulated through variable substrate recognition subunits. SKP2 is the most well understood 

of these subunits with maximal expression seen at S and G2 phases. In addition to p27, SKP2 



 13 

targets other related cyclin kinase inhibitors and cyclins, promoting progression through these 

phases (Nakayama and Nakayama, 2005). 

 

A further important E3 ligase involved cell cycle regulation is the anaphase promoting 

complex/cyclosome (APC/C). APC consists of ~12 subunits and is regulated through 

activating subunits cell division cycle protein 20 (CDC20) and APC activator protein CDH1 

(CDH1), each conferring diverse substrate specificities (Harper et al., 2002). Shortly before 

mitosis, CDC20 is phosphorylated by CDK1, which in part facilitates its interaction with the 

core APC complex (Kramer et al., 2000). Once all chromosomes are successfully attached to 

the bipolar mitotic spindle, the spindle assembly checkpoint, described earlier, is satisfied and 

CDC20 binding to APC induces the recognition and ubiquitin mediated degradation of cyclin 

B and securin thus promoting anaphase. Moreover, activation of APC through CDH1 binding 

plays a pivotal role in G1 phase cycle progression by maintaining low CDK activity, in addition 

to, regulating the transition from G1 phase to S phase via the degradation of DNA replication 

origin regulation factors geminin and CDC6 (Petersen et al., 2000; McGarry and Kirschner, 

1998). Both APC activators play significant distinct roles in tumorigenesis. CDC20 is 

commonly upregulated in cancers and inhibition has been shown to reduce tumour growth 

(Manchado et al., 2010). Conversely, a reduction in CDH1 expression is common in many 

cancers suggesting a tumour suppressor role (Fujita et al., 2008b, 2008a).  

1.3. Monitoring the cell cycle  

In order to investigate cancer cell cycle regulation it is essential to have a means of monitoring 

cell cycle state (Price et al., 2016). Early studies of cell division involved observing 

morphological changes of cells, such as chromatin state changes during mitosis, thus limiting 

phase discrimination to interphase and mitosis (Nurse, 2000). Since then a myriad of 

techniques has emerged, each with their caveats and nuances (Schorl and Sedivy, 2007). 

Current monitoring technology can be divided into two categories; snapshot-type approaches 

and continuous live monitoring methods. Snapshot methods generally require cell 

synchronisation and/or fixation and provide limited temporal information (Davis et al., 2001). 

These include techniques which quantify DNA synthesis or content and immunohistochemical 

staining of cell cycle markers. Although flawed by their inability to monitor live cells, these 

classic methods are an important spanner in the investigative toolkit. The second category, 

live cell continuous monitoring methods, allow for the observation of dynamic changes in cell 

behaviour (Jensen, 2013). 
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1.3.1. Cell stains  

Treating fixed cells with dyes and stains were among the earliest innovations used to analyse 

cell cycle state. A prominent early example is Feuglen stain (Biesterfeld et al., 2011). In 1924 

German physiologist Robert Feulgen developed an assay which would lead to repeated 

fundamental discoveries in biology over the coming years. The assay used HCl hydrolysis to 

generate free aldehyde groups in DNA backbones followed by the staining of these groups in 

a coloured reaction developed over 50 years earlier (Schiff, 1866). This reaction then went on 

to aid in the establishment of the DNA/chromosome 1:1 relationship, DNA content doubling 

during mitosis, and provided a basis for early flow cytometry (Reviewed by Chieco and 

Derenzini, 1999, pp.345–358). Further advancement in cell cycle analysis came following the 

development of fluorescent DNA-intercalating dyes and deoxyribonucleotide analogs such as 

Hoechst and bromodeoxyuridine (BrdU) respectively. Hoechst’s low toxicity allowed for DNA 

staining of live cells and the incorporation of BrdU with the DNA of S-phases cells later 

provided a means of DNA replication temporal quantification through pulse-chase labelling 

(Humphreys, 2015; Latt, 1974). Shortly thereafter, the development of a BrdU specific 

antibody resulted in a more efficient means of BrdU incorporation detection (Gratzner et al., 

1975). In recent years cell staining’s have evolved considerably. There are now vast 

catalogues of cell-permeable organelle specific fluorescent dyes, allowing one to analyse 

multiple subcellular structures with live-continuous microscopy methods. Important to note 

however, that imaging of these molecules can lead to highly cytotoxic breakdown products, 

thus limiting application (Ettinger and Wittmann, 2014). 

1.3.2. Cell counting   

Accurately counting the number of cells in a sample is of importance to a diverse array of 

disciplines. From colony counting microbes in an agar dish, to the quantification of leukocytes 

in a blood sample, cell counting’s applications span the breadth of the life sciences. 

Furthermore, the quantitative analysis of cell proliferation through cell counting is a corner 

stone of both cancer biology and pharmacological screening (Romar et al., 2016). Counting 

cancer cells before and after a perturbation of interest, hypoxic exposure or drug treatment for 

example, can provide an important and economical initial outlook of the impact of the specific 

perturbation on proliferation rate (Fujimoto-Ouchi et al., 2007; Morten et al., 2016). The 

haemocytometer is one of the most rudimentary tools used to count cells. The instrument 

consists of two glass slides with precise markings which allow the user to manually count the 

number of cells in a predefined volume of solution under a microscope, thus producing a 

cell/ml approximation (Absher, 1973). Given its low-cost and ease of use the haemocytometer 

has earned its place as the cornerstone method of cell counting. Despite it being over 100 
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years since its invention, one can be found in the draw of practically every cell biologists lab 

across the globe (Vembadi et al., 2019). This method is relatively low throughput however, 

thus automated cell counting methods have evolved and become popular in modern life 

sciences. 

 

There are three main automated cell counting methods used to count cells. These are coulter 

counting, flow cytometry, and digital imaging combined with automated cell counting (Vembadi 

et al., 2019). The coulter counter is used most prevalently in clinical haematology (Mei et al., 

2012). The device works by individually passing cells through an orifice and measuring 

electrical impedance. This provides direct information on cell size, and thus is able to 

discriminate between lymphocytes and erythrocytes. From a cell cycle biologists perspective, 

Coulter counting has proven useful in investigating changes in mass, volume and density of 

cells during the cycle (Bryan et al., 2010; Ondracka et al., 2018). The counter is limited in cell 

cycle biology, however, as is unable to accurately differentiate between cell cycle phases.  

 

In flow cytometry cells are passed individually through an aperture in a similar way to Coulter 

counting. Although rather than measuring impedance, flow cytometers use laser beams to 

gather information on cell characteristics (McKinnon, 2018). As a cell passes through the 

aperture, laser light is scattered and gathered by a detector (Ormerod and Imrie, 1990). In 

addition to analysing cellular parameters, many cytometry systems also have the capability to 

physically separate cells based on their optical output, so called fluorescent activated cell 

sorting (Sergent-Tanguy et al., 2003). Moreover, the multiparametric capabilities of flow 

cytometry deliver considerable advantages over coulter counting. Moderns systems are able 

to analyse up to 20 parameters through laser scattering and the excitation/emission of 

fluorescent probes (Vembadi et al., 2019). In cell cycle investigations Hoechst DNA staining 

is often used alongside flow cytometry to discriminate between cells in G1 and S/G2 phases 

(Kim and Sederstrom, 2015). Standard flow cytometry methods are unable to provide dynamic 

cell cycle phase resolution or visualise cell morphology. However, automated image analysis 

of real-time confocal microscopy time lapse imaging can over-come such limitations (Ford et 

al., 2018). As such, this method of counting will be employed in this study. 

1.3.3. Fucci 

Fluorescence microscopy underwent a resurgence following the purification and 

characterisation of jelly fish green fluorescent protein (GFP) (Morise et al., 1974). Years later, 

in 1992, Prasher and colleagues went on to successfully genetically engineer GFP into living 

cells, demonstrating the transgenic expression of a fluorescent probe for the first time (Prasher 
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et al., 1992). This advancement blew open the possibilities of fluorescence microscopy by 

allowing almost any protein to be fluorescently tagged and imaged with fine temporal and 

submicrometer spatial resolution (Thorn, 2017). Furthermore, through protein engineering, the 

palette of colours available has expanded to almost any colour imaginable, allowing multiple 

labels to be imaged simultaneously (Greenwald et al., 2018). Despite this range, certain 

constraints must be considered when designing an imaging pipeline. When imaging multiple 

fluorochromes simultaneously, the experiment must be designed to avoid excitation and 

emission peak spectral overlap, otherwise one fluorochrome may be detected in another’s 

channel (North, 2006). This generally limits scanning laser confocal imaging to 4 colours at 

once. Although with careful fluorochrome selection and specialist set-ups, 6 colour is possible 

without the need for deconvolution (Eissing et al., 2014). 

 

Cell cycle biologists took advantage of this capability to fluorescently tag almost any gene and 

designed the fluorescent ubiquitination-based cell cycle indicator (Fucci). Asako Sakaue-

Sawano and colleagues (2008) linked orange fluorescent protein mKO2, and green mAG, to 

Cdt1 and geminin respectively. As aforementioned, these proteins oscillate reciprocally during 

the cell cycle due to timed and co-ordinated proteasomal degradation catalysed by E3 ligases 

SCF and APC (fig. 5A). Geminin levels are highest during S, G2 and M phases, and Cdt1 is 

highest during G1. Thus, Fucci can accurately and reproducibly discriminate between cells in 

G1 and S/G2/M phases (See fig 5B) (Sakaue-Sawano et al., 2008).  

 

 

Figure 5. Fucci (a) Cell cycle regulation by oscillating E3 ligases SCF and APC results in 

Cdt1 and Geminin bistability between G1 and S/G2/M phases. (b) Fluorescent probes label 

G1 phase cells in red, and S/G2/M phase cells in green. 

Since its creation, Fucci has been repeatedly modified and upgraded. Notable adaptations 

include Fucci2, which replaced previous fluorochromes with mCherry and mVenus resulting 

in better colour contrast (Abe et al., 2013). Fucci2a overcame issues with varied expression 

between probes by incorporating both into one polycistronic transcript by fusing the Thosea 

asigna virus 2A (T2A) self-cleaving peptide between probes (Mort et al., 2014a). One of the 

more recent modifications to Fucci involved the redesign of the truncated Cdt1 probe to include 
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the PIP box motif and exclude Cy motif (fig 6A-B). By modifying Cdt1 in this way the probe is 

no longer recognised by SCF, but rather by the S-phase specific E3 ligase CUL4Ddb1 (fig. 6A) 

(Sakaue-Sawano et al., 2017). The resultant biosensor, coined Fucci(CA), produces a distinct 

tri-colour separation of G1, S and G2/M phases (see fig 6C). In this study we intend to modify 

and extend Fucci(CA) in order to facilitate novel time-lapse confocal cell cycle imaging 

pipelines. We will do this by incorporating additional fluorochrome linked reporters with 

Fucci(CA).  

 

 

Figure 6. Fucci(CA) (a) CUL4 sensitive hCdt1 probe (b) APC sensitive hGeminin probe (c) 

modified probe provides tri-colour G1, S and G2/M phase discrimination.  

1.4. Disrupting the cell cycle 

Cancer treatment aims to rid the body of cancerous cells through their removal and/or 

destruction (Huang et al., 2017). The efficacy of surgical removal on its own is limited. 

Removal of metastases and microscopic disease often present an unworkable surgical 

challenge and surgery can lead to an increased risk of micrometastatic growth (Tohme et al., 

2017). For curative treatment cancer destructive modalities are generally needed. The most 

prevalent systemic therapeutic strategies involve disrupting the cell proliferation or DNA 

synthesis thus leading to the destruction of cancer cells (Khanna, 2015).  

1.4.1. Chemotherapy 

During the 1st world war both sides engaged in the production and experimentation of 

poisonous gases. One notably effective agent, di-(2-chloroethyl)sulphide, otherwise known as 

mustard gas, was recognised to cause bone marrow aplasia and gastrointestinal tract 

aberrations (Brookes, 1990). This cytotoxic activity was later discovered to be due to the 

agent’s DNA alkylating activity (Brookes and Lawley, 1961). This discovery serendipitously 

provided a basis for chemotherapeutic anti-cancer treatments and gave birth to the era of 

chemotherapy (Falzone et al., 2018; Gilman, 1963).  

A B C 
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Chemotherapeutic agents can broadly be split into two categories; cytotoxic and targeted 

therapies (Masui et al., 2013). Cytotoxic drugs are the more traditional of the two therapies 

and generally act through disrupting DNA synthesis or microtubule regulation (Mitchison, 

2012). It is thought that cytotoxic chemotherapies cancer killing specificity is due to preferential 

destruction of rapidly dividing cells (Brunton et al., 2006). This is supported by a myriad of 

evidence, including the drug’s effect on quickly dividing normal cell types, which can result in 

severe side effects such as alopecia, diarrhoea, vomiting, itchiness and cytopenia to name 

just a few (Liu et al., 2015). Interestingly however, cytotoxic regimens have been shown to be 

effective in shrinking tumours with relatively low proliferation rates, contradicting what is 

understood to be cytotoxic chemotherapies specificity mechanism (reviewed by Mitchison, 

2012).  

 

Cytotoxic chemotherapy can further be broadly divided into alkylating agents, antimetabolites, 

anti-microtubule agents, topoisomerase inhibitors and cytotoxic antibiotics. Alkylating agents 

are the most common and earliest to be used to treat cancers and generally function by 

covalently crosslinking strands of DNA in cycling cells resulting in cell death (Ralhan and Kaur, 

2007). Antimetabolites are molecules which structurally resemble purine and pyrimidine 

nucleotide bases and disrupt DNA synthesis by either inhibiting enzymes associated with DNA 

synthesis, or their incorporation into DNA resulting in dysfunction and cell death (Lind, 2008). 

Tubulin binding drugs, such as paclitaxel, prevent microtubule assembly or disassembly and 

thus disrupt chromosome separation and cell division (Weaver, 2014). Topoisomerases 

ameliorate topological DNA aberrations which occur during transcription, replication, 

recombination and chromatin remodelling by cleaving and re-joining DNA (Champoux, 2001). 

These enzymes are often upregulated in cancer and their inhibition can prevent cell cycling 

(Pommier, 2013). Cytotoxic antibiotics, such as anthracyclines, are thought to induce cell 

death through multiple mechanisms (Lind, 2008). The second broad category of drugs; 

targeted therapies, differ from traditional cytotoxic chemotherapy in that they inhibit specific 

molecular targets in cancer rather than broadly effecting cell division. These therapies include 

small molecule inhibitors, monoclonal antibodies and immunotherapy (Walter and Ahmed, 

2018).   

 

Chemotherapeutic regimens are predominantly designed to include a combination of drugs 

(Emil Frei and Eder, 2003). A single drug is often not a sufficient treatment due to acquired 

drug resistance (Pritchard et al., 2012). Combinatorial therapy can be designed to modulate 

multiple signalling cascades in order to overcome acquired drug resistance and maximise 

patient response (Hu et al., 2016). Moreover, when administering multiple drugs, the 
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therapeutic effect can by synergistic, whilst toxicity remain independent, allowing a higher 

cumulative dose of drug to be administered (Pritchard et al., 2012). The vast catalogue of 

approved agents combined with neoplastic disease heterogeneity have resulted in 

chemotherapeutic regimen design becoming somewhat of an art form. Clinicians prescribe a 

complex variable cocktail of agents of a particular composition depending on tumour 

classification and a myriad of other clinical parameters (Ibrahim et al., 2012). Despite such 

innovation and ingenuity systemic chemotherapy practically always leads to concerning side 

effects (Nurgali et al., 2018). Therefore, there is drive much in the oncological science 

community to develop novel therapeutic modalities to reduce toxicity (Alexander et al., 2017; 

Hedigan, 2010). 

1.4.2. Radiotherapy  

When Wilhelm Conrad Röntgen first discovered X-rays in 1895 the field of radiation oncology 

was born (Baskar et al., 2012). Very shortly after this discovery the clinical effectiveness of X-

rays was demonstrated by the treatment of a patient with breast cancer using radiation 

(Gianfaldoni et al., 2017). Shortly thereafter, Marie Sklodowska-Curie and husband Pierre 

Curie discovered radium as a radiation source. The following work on the physiological effects 

of radium would later award Marie Curie a Nobel prize (Diamantis et al., 2008). Radiation 

oncology has since developed into a vital wrench in the cancer treatment toolbox. Radiation 

therapy (RT) is used to treat >50% of cancers and is highly cost effective, incurring just ~5% 

of total cancer treatment cost (De Ruysscher et al., 2019; Ringborg et al., 2003).   

 

RT functions by applying ionizing radiation to cancer cells in order to destroy them. Ionizing 

radiation deposits energy in the form of electrically charged particles in the tissues it passes 

through, damaging DNA, and inducing apoptosis or blocking cell division (Jackson and Bartek, 

2009). RT high energy particles are damaging to both normal and cancer cells, however. Thus, 

the design of RT application aims to maximise the dose at the site of the tumour and minimise 

normal cell exposure (Baskar et al., 2012). RT is generally administered in one of two ways. 

The most common method of administration is done by using high energy rays delivered into 

the body from an external source. Many methods of delivery of this category have been 

developed in order to maximise the dose to cancer cells and minimise the dose to normal 

cells. One such approach is intensity-modulated radiation therapy (IMRT). IMRT uses 

radiation beams from multiple angles focused to a precise point at the tumour. This approach 

maximises the dose at the tumour, whilst minimal dosage is delivered to the normal tissues, 

allowing deep tissue tumours to be treated effectively (fig. 7) (Baumann et al., 2016). 
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Figure 7. Intensity-modulated radiation therapy (IMRT) functions through the precise 

focusing of radiation from multiple beams meeting at the site of the tumour (Figure adapted 

from Baumann et al., 2016).  

The second less common mode of administration is brachytherapy, which involves radioactive 

material being placed inside the body. This modality is predominantly used to treat 

gynaecological and prostate malignancies (Banerjee and Kamrava, 2014; Porter et al., 1995).  

 

Despite RT’s modern technological advancements a substantial proportion of patients 

experience radiation resistance and cancer reoccurrence (Kim et al., 2015). In radiation 

resistance, cancer cells adapt and are able to tolerate the molecular changes induced by RT. 

This process is complex and involves multiple factors and mechanisms (Tang et al., 2018). 

Furthermore, despite advances in delivery, RT is often associated with toxicity and long-term 

side effects. Side effects generally depend on the site of administration. These include 

impairments to bone growth, hair loss, reproductive disorders, gastrointestinal damage, 

cardiac toxicity and secondary cancer to name a few (Reviewed by De Ruysscher et al., 2019). 

Thus, there is much interest and effort in the development of novel combinatorial therapies to 

improve the therapeutic ratio of RT in order to reduce toxicity and side effects (Baskar et al., 

2012). 

1.4.3. Hyperthermia therapy 

Hyperthermia therapy (HT) aims to raise the temperature of a specific tissue, or the whole 

body, to temperatures usually between 39 and 45 oC to treat cancer (Behrouzkia et al., 2016). 

The application of heat to treat disease can be dated back as far as ancient Egypt. Papyrus 

scroll records describe the use of so called ‘fire drills’ used to treat breast cancer (Watmough 

and Ross, 1986). Moreover, records describe medical practitioners in ancient India and China 
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making use of hyperthermia range temperature treatments to treat tumours (Gas, 2017). In 

modern medicine, however, HT is predominantly used as an adjunctive and acts to increase 

the therapeutic ratio of conventional therapy. That is, combining HT with chemo or RT to 

increase the efficacy of a specific dose and reduce overall toxicity (Horsman and Overgaard, 

2007). HT is commonly used in clinic, with a plethora of clinical trial outcomes being reported 

in recent years (Arjona-Sánchez et al., 2018, 2018; Koole et al., 2020; Ohguri et al., 2018). 

Despite clinical application, the effect of HT on cancer cell cycle dynamics is poorly 

understood. Thus, an increased understanding of the parameters involved in HT may aid in 

the design of novel adjunctive therapeutic regimens. 

 

Clinical application generally falls under three categories, whole body, regional or local (van 

der Zee, 2002). Whole body HT is used to treat metastatic disease. Treatment of this type 

typically involves patients being anaesthetised and incubated in a flexible infra-red chamber 

(Jia and Liu, 2010). In regional HT the goal is to heat a limb or a particular body cavity. 

Hyperthermic chemoperfusion is a regional therapy that has shown marked success in treating 

peritoneal metastases. This involves filling the abdominal cavity with pre-heated 

chemotherapeutic agents (Goodman et al., 2016). Methods used for local therapy aim to 

specifically heat tumours and can be divided into superficial and deep tissue techniques. 

Superficial treatments are well developed and generally involve heating through the precise 

application of a microwave emitting contact medium at the skin surface (Maccarini et al., 

2004). Specifically heating a tumour deep within the body is more complicated task. Current 

methods used in clinic involve applying micro or ultrasound-waves from multiple sources 

focused to a point at the site of the tumour (Datta et al., 2015). This method has proven limited 

however, due to heterogeneous heat distribution and difficulties with overheating. Currently 

there is much interest in the development of magnetic nanoparticles (MNP) as a means of 

delivering site specific heating (Giustini et al., 2010; Hedayatnasab et al., 2017). This 

approach aims to target magnetic nanoparticles, which is a key challenge of the approach, to 

tumour sites and uses an alternating magnetic current to raise the temperature of the particles 

thus heating the surrounding tumour. An interesting targeting approach to note, which has 

shown efficacy in animal models, functions through hijacking the propensity of phagocytes to 

engulf nanoparticles and infiltrate tumours as a novel delivery system (Toraya-Brown et al., 

2013).  

 

Despite decades of investigation the effects of HT on tumours is not well understood. Selective 

tumour cytotoxicity in vivo is suggested to be in part to be due to differences between tumour 

and normal tissue physiology (van der Zee, 2002). Tumour vasculature is chaotic and 

unevenly distributed, which is attributed to the rate of angiogenesis often falling behind the 
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growth of rapidly proliferating neoplastic cells (Nagy et al., 2009). Consequently, tumour 

vasculature displays high resistance, fragility, and reduced blood flow, which leads to areas 

of tumour deprived of oxygen and glucose (Hanahan and Weinberg, 2011). Many studies have 

shown that moderate HT (41.5-42.5 oC) can significantly increase perfusion in tumours, thus 

increasing pO2 (reviewed by Song et al., 2001). This reduction in hypoxia is thought to be an 

important mechanism behind HT’s dose lowering effects on RT, given molecular oxygen is a 

potent radiosensitiser (Rockwell et al., 2009). Moreover, an increase in perfusion may lead to 

more efficient drug delivery, which is suggested to be partly responsible for HT’s additive 

effects to chemotherapy (van der Zee, 2002).  

 

In addition to these effects described above, HT can stimulate immunological attacks on 

tumours. The heat shock proteins (HSP) are a group of chaperone proteins that are induced 

in response to an array of physical and chemical cellular stresses. HSPs aid cell survival 

through chaperone activity and inhibition of caspase activation (Beere, 2004). The major 

orchestrater of HSP activation is transcription factor heat shock factor-1 (HSF-1). HSF-1 

undergoes constitutive expression and exists sequestered in an inactive state in the cytoplasm 

of unstressed cells. Once cells are heated, proteins begin to misfold, which signals the 

activation of HSF-1 through the depletion of the chaperone involved in assembling the HSF-1 

inhibitory complex (Shamovsky and Nudler, 2008). HSF-1 is then free to trimerise and 

upregulate the expression of a plethora of heat shock genes (Voellmy, 1994). In addition to 

assisting in protein folding, HSP complexes can directly elicit an anti-tumour immune 

response. Heat stressed tumour cells release heat shock protein 70 (HSP70) in complex with 

tumour-derived peptides into the extracellular space. These particles are then able to stimulate 

dendritic cell maturation and activation, which in turn prime and activate tumour specific 

cytotoxic T lymphocytes (fig. 5) (Frey et al., 2012). Indeed, autologous administration of these 

tumour derived complexes has been shown to elicit a specific immunological response, thus 

posing a potential attractive vaccination strategy (Murshid et al., 2011).   
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.  

Figure 8. HT renders tumour cells immunogenic. Following hyperthermia treatment, 

protein aggregation and misfolding induces the unfolded protein response (UPR). In this 

response, heat shock protein 70 (Hsp70) is upregulated, leading to increased surface Hsp70. 

In addition, hyperthermia treatment increases intracellular tumour antigen (Ag) levels. 

Following a second stress signal from conventional therapy for example, tumour cell necrosis 

is induced, which releases Hsp70/Ag complexes into the extracellular space. Exosomal 

Hsp70/Ag complexes are also released.  The exosome and free Hsp70/Ag complexes activate 

and attract dendritic cells (DC), which present tumour Ag and induce immunogenicity by 

priming cytotoxic T lymphocytes (Figure adapted from Frey et al., 2012). 

Early studies investigating the basic principles of in vitro hyperthermic cellular death 

uncovered a dose and time dependent relationship between a range of 41 oC and 47 oC. 

Moreover, the ability of HT to induce cell death is markedly higher ≥ 43 oC (Hildebrandt and 

Wust, 2007). A further observation is the tendency of cells to develop a thermotolerance. If 

cells are cooled to 37 oC between heat treatments a reduction in cell killing is observed. This 

adaptation is not inherited, and is thought to be a result of heat shock proteins and other 

processes regulated through post-translational modification (Ohnishi, 2016). Another 

pioneering in vitro discovery was the propensity of HT to sensitise tumour cells to RT and 

chemotherapy. Although incompletely understood, this phenomena is thought to occur due to 

the inactivation of double-strand break repair machinery (Bolomey et al., 1995; Zhu et al., 

2015). 
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The topic of differences in HT sensitivity between normal cells and cancer cells is one of 

complexity. The vast majority of studies aim to investigate intrinsic differences in HT sensitivity 

as an adjunctive with chemotherapy and/or RT. Differences in sensitivity to HT alone are 

somewhat controversial. Mixed data are available for both the support and contradiction of 

autonomous cellular sensitivity differences. A review Van der Zee and colleagues (2002) 

suggested the data point towards there being “no intrinsic differences between hyperthermia 

sensitivity of normal and tumour cells except for haematological malignancies”. Conversely, a 

review from Chi-Dug Kang and Sun-Hee Kim(Kang and Kim, 2016)stated “many preclinical 

and clinical studies have shown that cancer cells are more sensitive to moderate hyperthermia 

than normal cells”. Interestingly, both reviews lack cited literature to support their statements. 

Furthermore, Kanwal Ahmed and colleagues (2015) stated in their review of HT apoptosis 

induction in cancer that generally cancer cells and normal cells bear no intrinsic differences in 

HT sensitivity. Oddly, the study cited to support this claim contains no relevant data, only data 

from the analysis of various breast cancer cell lines (Brade et al., 2003).  

 

A recent bioinformatics study boldly states that it has been known for over three decades that 

tumour cells are significantly more sensitive to mild hyperthermia than normal cells (Amaya et 

al., 2014). Although similarly, the literature cited to support this understanding contains no 

supporting data (Habash et al., 2006a, 2006b), only a sweeping statement, cited by another 

study (Dickson and Calderwood, 1980), which cites an investigation that carried out HT cell 

survival assays of Chinese hamster ovary (CHO) cells at varying pH concentrations to mimic 

the acidic environment of tumour cells (Freeman et al., 1977). As CHO cells do not represent 

true tumour cells this approach carries obvious limitations, thus, drawing a reasonable 

conclusion on the question of intrinsic differences could be considered unsuitable. A recent 

study demonstrated that immortalised keratinocytes are significantly more resistant to HT 

when compared with melanoma cells (Mantso et al., 2018). Although whether this is a 

characteristic of differences in sensitivity between cell types or neoplasticity remains 

unanswered. It is clear therefore, that the question of differences in HT sensitivity between 

neoplastic and non-neoplastic cells is one that is poorly understood and warrants further 

investigation. 

 

It’s been long recognised that cell cycle compartments vary in their sensitivity to hyperthermia. 

In the 1970s is was shown that cells in S-phase present a sensitivity to hyperthermia and the 

treatment therefore induces chromosomal irregularities (Dewey et al., 1971). Cells in M phase 

display the highest sensitivity to hyperthermia, with M phase cells undergoing microscopically 

observable aberrant mitotic apparatus formation (Hildebrandt and Wust, 2007), and HT 

treated lung cancer cells undergo cell death via mitotic catastrophe (Pawlik et al., 2013a). 
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Furthermore, it has been shown that cancer cells exposed to HT arrest in G2/M phase of the 

cell cycle, and given a sufficient temperature and treatment duration, will undergo apoptosis 

in a ATR-Chk1 dependent manner (Furusawa et al., 2012). Further, Amaya and colleagues 

(2014) found that breast cancers cells, but not mammary epithelial cells, accumulated in G2/M 

phase following HT treatment. Despite intensive research it is not understood which of the  

three apoptosis pathways; intrinsic, extrinsic, or the nascently elucidated endoplasmic 

reticulum intrinsic pathway (Sankari et al., 2012), are activated by hyperthermia (Reviewed by 

Ahmed et al., 2015).  

 

Differences in cell cycle dynamics in response to HT between cell types are understudied 

and poorly understood. As mentioned earlier, various aspects of the cytoskeleton, 

particularly the polymerisation of microtubules and actin, are sensitive to changes in 

temperature. It was also described how microtubule and actin dynamics are key to cell cycle 

progression. In particular, the dynamic instability of microtubules is required for chromosome 

capture and therefore successful progress through mitosis. Moreover, it was detailed how 

the actin cytoskleleton is involved in the G1/S checkpoint and extensive remodelling of actin 

is required for mitosis and cytokinesis. We therefore hypothesize that a disruption of 

cytoskeletal dynamics by heat treatment will lead to cell cycle aberrations in G1/S and 

mitosis. These aberrations may lead to cancer-specific effects due to cancer cells generally 

cycling more rapidly, and therefore will be more susceptible to cell-cycle disruption. To 

investigate, we set out to design novel Fucci based biosensors and engineer them into a 

range of cell types before exposing these cells to HT relevant temperatures whilst 

simultaneously carrying out time-lapse confocal microscopy. Such analysis may uncover 

novel differences in cell cycle compartment sensitivity between cell types. Also, it is possible 

that the molecular components regulating microtubule and actin dynamics will be 

dysregulated in cancer cells, which may be responsible for their sensitivity to changes in 

temperature. In addition, the mitotic regulators previously described to show altered 

expression in response to HT by Amaya (2014) and colleagues may confer cancer vs 

normal and cancer type/subtype specific thermosensitivity. We therefore took interest in 

these mitotic regulators and a number of cytoskeletal associated genes (table 1). To 

investigate the role of these genes in cancer thermosensitivity we utilised the cancer 

genomics open platforms cBioPortal and Xenabrowser (Goldman et al., 2020; Cerami et al., 

2012). We used these platforms to manipulate cancer genomic data sets in order to explore 

the expression of these genes in cancer and normal tissues. It is predicted that this analysis 

may elucidate potential molecular determinants of cancer specific sensitivity to HT. 

Elucidation of these mechanisms may aid in the design of adjunctive therapeutic cancer 

specific regimens and is thus of clinical importance.  
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Table 1. List of genes hypothesised to be involved in cancer specific thermosensitivity.. 

 

 

 

 

 

 

    

    

    

    

    

Genes Function Rationale Refs 

KIF11, STAG2, 

NEK2, CHUK, 

KPNA4, CENPF, 

NCAPG 

Mitotic regulators Breast cancer cells treated with 

HT displayed a reduction in 

expression of these genes 

when compared with epithelial 

control. Reduced function of 

these genes and their 

regulators may confer 

thermosensitivity.  

 

(Amaya et 

al., 2014) 

CFL1, CFL2, DSTN  

 

Actin binding 

proteins 

Cofilin has been shown to 

thermally stabilise G-actin and 

stabilise F-actin.  

(Levitsky et 

al., 2008) 

 

RAPH1, EVL 

 

Cytoskeletal 

remodelling 

Promotes actin assembly. (Hansen 

and Mullins, 

2015) 

TCP1, CCT2, CCT3, 

CCT4, CCT5, 

CCT6A, CCT6B, 

CCT7, CCT8  

 

T-complex protein 

ring complex 

(TRiC) 

Major microtubule stability 

complex. 

(Quintá et 

al., 2011) 
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2. Materials and Methods 

2.1. Materials 

All custom oligo-nucleotide primers and cell culture media were sourced from ThermoFisher 

(Invitrogen). 

All PCR kits and molecular biology reagents were sourced from New England Bio labs. 

Transfections carried out with Genejuice (Merck) transfection reagent. 

 

Table 2. Oligo-nucleotide sequences used to form poly-linker insertion and primers used for 

NEB HiFi cloning. 

Oligo name Direction Sequence 5' to 3' Tm(°C) 

Polylinker  Fwd 

CCGGGCAATTGGCCGCCACCATGAC

GCGTTCGCGAACCGGTTTCGAATTTA

AACTC 
 

- 

Polylinker  Rev 

GGCCGAGTTTAAATTCGAAACCGGTT

CGCGAACGCGTCATGGTGGCGGCCA

ATTGC 
 

- 

FP1(iRFP670-Qu) Fwd  

CACCACCAACGCTAAAGATCTGACGA

GGTGGACTTCCAG 

 

61 (last 

24bp) 

FP2(iRFP670-Qu) Fwd  

GATCCTGGACAGGCTGGCGGCCGCG

ACTCTAGAT 

 

61 (last 

18bp) 

RP1(iRFP670-Qu) Rev 

AGTCGCGGCCGCCAGCCTGTCCAGG

ATCCACAGG 

 

62 (last 

22bp) 

RP2(iRFP670-Qu) Rev 

TCCACCTCGTCAGATCTTTAGCGTTG

GTGGTGGGCG 

 

61 (last 

19bp) 
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2.2. Methods 

2.2.1. PCR 

All PCR reactions carried out were done so under these conditions outlined in tables 3 and 4 

with amplification verification carried out through gel electrophoresis. 

 

Table 3. PCR cycling parameters (Touchdown) 

Step Temperature (oC) Time (s) 

Phase I (10 cycles)  

Initial denaturation 98 30 

Denaturation 98 10 

Anneal Tm + 10 30 

Elongate 72 60 (or more dependent on bp) 

Phase II (20 cycles)  

Denaturation 98 10 

Anneal Tm - 5 30 

Elongate 72 60 (or more dependent on bp) 

Final elongation 72 5 mins 

Hold 4 

 

 

Table 4. PCR reaction components. 

 

 

 

 

 

 

 

Component Volume (μl) 

Forward primer (10 mM) 2.5 

Reverse primer (10 mM) 2.5 

Phusion Hot-Start II Flex master mix 25 

DMSO 1.5 

DNA 1 ng 

dH2O X 
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2.2.2. Poly-linker synthesis  

Oligomer sequences outlined in table 2 were resuspended in TE buffer according to 

manufacturer’s specifications to produce a concentration of 1 μg/μl. 5 μl of each oligomer, 2.5 

μl 5x ligase buffer and 35 μl dH2O were mixed and incubated at 98 oC for 5 minutes in a PCR 

cycler. 

2.2.3. NEB HiFi  

PCR Amplified DNA was first treated with DpnI restriction enzyme (as outlined in table 6) to 

degrade template DNA. PCR amplified fragments were added at specific pmol ratios 

calculated using the formula (weight in ng) x 1,000 / (base pairs x 650 daltons). For insertions 

of fragments below 250 bp, a 1:6 vector/insert ratio was used. 10 μl NEB HiFi master mix and 

dH2O was added to total 20 μl as outlined in table 5. Mixtures were incubated at 50oC for 15 

mins in a PCR cycler. 

 

Table 5. NEB HiFi reaction components.   

 

 

 

 

 

 

2.2.4. Restriction digests 

All enzymes and buffers were supplied by NEB labs. Digests were set up dependent on 

desired enzymes. Constituents were set up and mixed as outlined in table 6 and incubated at 

37 oC for one hour. Restriction enzymes used for screening, ligations and template 

degradation were: AgeI, NotI, PmeI, BamHI, SpeI, MluI, NruI, MfeI, DpnI. 

 

 

Table 6. Restriction enzyme digestion reaction constituents 

Component Single digest 

(μl) 

Double digest 

(μl) 

Triple digest  

DNA 2 2 2 

DNA ratio Vector/Insert 1:2 vol 

Total fragments 0.12/0.23 pmol X 

NEB HiFI master 

mix... 

 10 µl 

Water…  Up to 20 µl 
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Enzyme 1 1 1 1 

Enzyme 2 - 1 1 

Enzyme 3 - - 1 

Cutsmart 10x 2 2 2 

dH2O 15 14 13 

 

2.2.5. Ligations 

Table 7. Ligation reaction components. All ligation reactions were incubated at 4 oC for 24 

hours. Ligase and ligase buffer sourced from NEB labs. 

Ligation 1 (μl) 2 (μl) 3 (μl) 4 (μl) 

Recipient 1 1 1 1 

Donor 2 3 4 - 

10x T4 buffer 1 1 1 1 

T4 ligase 1 1 1 1 

dH20 5 4 3 7 

 

2.2.6.  DNA purification 

All Purification of PCR products was carried out using Purelink PCR purification kit 

(ThermoFisher). Manufacturers specifications were followed, expect for the case of 

elution, in which 30 µl elution buffer was used in order to generate a more 

concentrated sample. Briefly, 50 µl binding buffer was added to mixture and was 

loaded into the purification columns and centrifuged at >12,000 g for one minute. 

Elutant was then discarded and 600 µl wash buffer was added, before another three 

minutes of centrifugation at the same speed. Elutant was again discarded and 30 µl 

pre-warmed elution buffer was added to column and centrifuged at 12,000 g for two 

minutes. DNA concentration was measured using a Nano-drop instrument. 

2.2.7. Mini preps  

Mini preps were carried out with a ThermoFisher Scientific #K0502 kit according to 

manufacturer’s specifications. Briefly, three ml of LB broth was inoculated with a single 

bacterial colony using a pipette tip. Cultures were then incubated shaking at 37 oC for 24 

hours. The resultant cultures were then centrifuged at 12,000 G for two minutes, supernatant 
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removed, and cell pellet resuspended in 250 μl resuspension buffer (Including RNAase A). 

250 μl Lysis buffer was then added and incubated at RT for five minutes. 350 μl precipitation 

buffer was then added and mixed until homogenous before the mixture was centrifuged for 10 

minutes at 12,000 G, the supernatant was then further centrifuged in a spin column at the 

same G for one minute. The flow through was then discarded, and 700 μl wash buffer was 

added columns then centrifuged for one minute at 12,000 G, flow through discarded and spun 

again for a further minute. Spin columns then put into a elution tube, 30 µl of TE buffer added 

to column and spun at 12,000 G for one minute before DNA concentration was determined 

using a NanoDrop Instrument.  

2.2.8. Maxi preps 

Maxi preps were carried out with a ThermoFisher PureLink kit with modifications the 

manufacturer’s protocols as follows. A three ml miniprep starter culture was used to inoculate 

200 ml of LB and was incubated at 37 oC shaking for 30 hours. This mixture was then split 

evenly, to within 0.01 gram, between two Nalgene PPCO 250 ml centrifuge containers and 

span at 4,000 G for 10 minutes at four degrees Celsius. Supernatant was then removed, and 

pellet resuspended in 20 ml resuspension buffer. 20 ml lysis buffer was then added and 

mixture incubated for five minutes at RT. 20 ml precipitation buffer was added and then 

centrifuged at 4,000 G for one hour at RT. Supernatant was then added to equilibrated column 

and left to drain for 20 minutes. 60 ml wash buffer then added to the column and left to drain 

for 30 minutes. Columns then placed in falcon tubes and 15 ml elution buffer added to columns 

and allowed to drain into falcons. 10.5 ml IPA was then added to elution tube and mixed. 

Falcons then centrifuged at 4000g for one hour 30 minutes at 4 oC. Supernatant then removed, 

and pellet resuspended in five ml 70% ethanol. Mixture was then centrifuged again for 15 

minutes at 4,000 G at four degrees Celsius. The supernatant then removed and pellet allowed 

to air dry before being resuspended in 200 μl TE buffer and DNA quantified using a NanoDrop 

instrument. 

2.2.9. Electrophoresis  

All gel electrophoresis was carried out using a 0.5% w/v agarose, TBE (Tris/borate/EDTA) 

buffer gel with 1:20,000 SYBR safe stain (ThermoFisher) added for band visualisation. Gels 

were ran for one hour at 100 V using TBE as running buffer. 10x Sigma OG loading buffer 

was loaded with samples and seven μl of 1 Kb+ DNA fast ladder (ThermoFisher) used for 

band quantification.  
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2.2.10. Cell culture 

RPMI/Glutamax 1640 was used for all cell lines with 10,000 UI/ml and 10,000 μg/ml 

Penicillin/streptomycin added. For MCF-7 and Melan-A media 50 ml foetal calf serum (FCS) 

was added to each bottle (10%). For B16F10, 25 ml (5%) was added. Melan-A media also 

included 200 μM TPA. 

2.2.11. Cell passage 

Media was aspirated off before the cells were washed with two ml trypsin (Gibco). This trypsin 

was then aspirated and one ml fresh trypsin added and cells incubated at 37oC for five minutes 

to detach cells. Nine ml (complete as described) media was added to the flask and pipetted 

up and down to help detach cells. This trypsin/cell mixture was then added to a flask with 

desired ratio to fresh media. For MCF-7 cells this ratio was 1:5 trypsinate/media respectively.  

2.2.12. Cell counting 

Media was aspirated off before the cells were washed with two ml trypsin (Gibco). This trypsin 

was then aspirated and one ml fresh trypsin added and cell incubated for five minutes at 37oC. 

Once cells had visibly detached, nine ml media was added to the cells and pipetted up and 

down to detach cells. 200 μl of the suspended cells were then added to a haemocytometer. 

Cells/ml were calculated by counting the number of cells in one large square, five times, and 

producing an average cell count per large square. The resultant value x104 then produced our 

cell/ml value.  

2.2.13. Transfections 

All transfections were carried out with Genejuice (Merck) transfection reagent. Cells were 

seeded into 6-well plates at appropriate count (240,000 per well for MCF-7s). 24 hours later 

three μl Genejuice reagent and 100 μl Optimem reduced serum media were mixed and 

incubated at RT for five minutes. Varying quantities of DNA were then added to this mixture 

(as outlined in table 8) in order to find optimal molar ratio of PiggyBac and transposase 

plasmids (hybase) and incubated at RT for 20 minutes. Cell media was then replaced before 

transfection mixture was added dropwise to cells. 24 hours after cells were then split into 10 

cm dishes. After a further 24 hours the appropriate antibiotic selection media was added to 

the dishes. Transfections were validated through confocal microscopy.  
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Table 8. Transfection plasmid ratios  

Well Plasmid 1 (ul) 

PiggyBac-

Construct 

Plasmid 2 (ul) 

Transposase 

(Hybase) 

1 0 0 

2 2 0 

3 2 0.4 

4 1 1 

 

2.2.14. Transformations 

Five ng plasmid DNA was mixed with 50 μl dH5α chemically competent E. coli (ThermoFisher), 

cells were then incubated on ice for 30 minutes. The cells were then heatshocked for 30 

seconds at 42oC, 950 μl of pre-warmed SOC media was added and then incubated at 37oC 

for one hour. The cells were then spread onto LB agar plates containing appropriate antibiotic 

(100 μg/ml ampicillin or 50 μg/ml kanamycin). 

2.2.15. cBioPortal and XenaBrowser 

Analysis was carried out using the open source cancer genomics platform cBioPortal 

(https://www.cbioportal.org/). Genes outlined in table 1 were queried against TCGA Pan 

Cancer Studies consisting of 10967 samples from 32 studies. Genes were sorted into three 

catagories, mitotic regulators (KIF11, STAG2, NEK2, CHUK, KPNA4, CENPF, NCAPG), 

cytoskeletal associated genes (CFL1, CFL2, DSTN, RAPH1, EVL), and T-complex protein 

ring genes (TCP1, CCT2, CCT3, CCT4, CCT5, CCT6A, CCT6B, CCT7, CCT8 ). Each 

category was queried and data analysed independently. For cancer types summary both copy 

number alterations and mutations tabs were checked. Genes were queried independently for 

expression analysis between cancer types. For expression cancer specific analysis alteration 

data was sorted by median. For comparing transcript data the TCGA Pan Cancer Studies 

aforementioned were loaded into Xenabrowser (https://xenabrowser.net/) and compared with 

normal tissue expression data through the TCGA TARGET GTEx platform 

(https://gtexportal.org/home/). Each gene was queried individually in this manner with 

comparisons drawn between metastatic, primary tumour, normal tissue and solid tissue 

normal samples. 

https://www.cbioportal.org/
https://xenabrowser.net/
https://gtexportal.org/home/
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2.2.16. Confocal imaging and cell counting 

Cells were seeded at a density of 50,000 per well in 15 mm diameter 24-well glass bottom 

imaging plates. Four channels were used during acquisition, excitation and emission 

wavelengths are listed in table 9. Time intervals used during acquisition varied between 

experiments. Briefly, for MCF-7 37oC and 41oC runs data was collected in five minutes time 

intervals and all other imaging was done using 15-minute time points. All images were 

collected as seven slice Z stacks and maximum intensity projects generated post acquisition. 

33 oC treated lines were imaged at 0.8 zoom and all others at one. Cells in each field of view 

were counted manually using the Fiji cell counting tool. Percentage change in cell counts were 

calculated using the following equation where B = cell count at the beginning of treatment and 

E = cell count at the end of treatment. E/B x 100.  

 

 Table 9. Image acquisition fluorophore wavelengths 
 

 

2.2.17. Statistics 

All statistics were performed using GraphPad Prism version 8.4.3 (471) for Windows, 

GraphPad Software, San Diego, California USA, www.graphpad.com. Transcriptomic data 

analysed with One-way ANOVA followed by Dunnett’s multiple comparisons test. Cell 

tracking comparison done through students t-test with normality tested D'Agostino-Pearson 

test. Standard deviation listed alongside mean values. All data tested to significance level of 

P = 0.05. 

 

 

 

 

 

 

Fluorophore  Excitation wavelength (λ) 

(nm) 

 

Emission wavelength (λ) 

(nm) 

 

mCherry 561 637 

mVenus 514 554 

CFP 458 521 

iRFP670 643 670 

http://www.graphpad.com/
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3. Results 

3.1. Biosensor construction 

3.1.1. PiggyBac vector multiple cloning site poly-linker insertion 

The PiggyBac transposase system can effectively and stably integrate multiple construct 

copies into cells without affecting genome integrity. We set out to utilise the system. The 

current PiggyBac plasmid available to us lacked multiple unique restriction sites. We thus 

modified our vector through the insertion of a custom multiple cloning site oligonucleotide to 

facilitate the generation of polycistronic biosensors from multiple construct copies. We built 

the linker to include multiple unique restriction enzyme cleavage sites (see fig 9A).Our poly-

linker was constructed with AgeI and NotI compatible sticky ends for ligation with our PiggyBac 

vector. We prepared mini-prep cultures transformed with our novel vector and screened the 

cultures using the restriction enzymes Mlul and BamHI. One of six mini prep cultures showed 

the predicted bands of ~5656 and ~1775 indicating successful ligation (fig. 9B). Figure 9C 

displays the resultant novel PiggyBac vector with multiple cloning site insert ready to accept 

biosensor constructs and stably transfect cell lines.    
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Figure 9. PiggyBac vector multiple cloning site insertion. A) Schematic of custom double 

stranded oligonucleotide polylinker sequence with restriction sites and cohesive ends marked. 

B) Gel electrophoresis of poly linker inserted vector Mlul and BamHI digestion products. One 

mini-prep displaying banding pattern of ~5656 and ~1775 confirming successful insertion. C) 

plasmid map of PiggyBac vector displaying inserted multiple cloning site. 

3.1.2. H1-Fucci(CA) PiggyBac vector insertion 

Fucci(CA) is a cell cycle biosensor with triple colour G1, S and G2 phase discrimination 

(Sakaue-Sawano et al., 2017). A modified polycistronic Fucci(CA), which includes the H1.0 

histone nuclear marker linked to cerulean fluorescent protein (CFP) has previously been 

constructed in the Mort lab (fig. 10A). To facilitate stable transfection, this construct was 

inserted into our previously modified PiggyBac vector. This was done via cutting the construct 

from the vector in which it was housed using MfeI and PmeI restriction enzymes leaving us 

with the linear construct ready for PiggyBac insertion. To screen for successful insertion, the 

plasmid was transformed and mini-prepped and triple digested with BamHI, NotI and Mlul 

restriction enzymes. Figure 10B shows the gel electrophoresis banding pattern confirming 

successful insertion. Our resultant stable expression vector housing the novel cell cycle and 

nuclear marker biosensor H1-Fucci(CA) is displayed in figure 10C. 
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Figure 10. H1-Fucci(CA) PiggyBac vector insertion. A) Schematic of H1-Fucci(CA) 

biosensor displaying restriction sites used for vector insertion and self-cleaving P2A and T2A 

sequences B) BamHI, NotI and Mlul plasmid digestion agarose gel electrophoresis post-

cloning displaying expected banding pattern confirming successful insertion. C) Plasmid map 

of Pb-H1-Fucci(CA). 

3.1.3. Apoptosis Biosensor Design 

Apoptosis is indicated to be a prevalent form of cell death in HT. We therefore set out to extend 

our H1-Fucci(CA) biosensor by incorporating an apoptosis reporter. Nicholls and colleagues 

(2011) developed a dark-to-bright GFP apoptosis biosensor. The reporter functions through 

the linkage of a caspase-7 cleavable recognition site and hydrophobic quenching peptide at 

the C-terminus of GFP. This peptide quenches GFP fluorescence through disrupting proper 

chromophore maturation. Once apoptotic caspase cascade is initiated the quenching peptide 

is cleaved by caspase-7 and GFP is allowed to mature and fluoresce resulting in real time 

apoptosis monitoring. Our H1-Fucci(CA) biosensor consists of fluorochromes CFP, mCherry, 

and mVenus. Thus, to facilitate extension of our biosensor and avoid emission and excitation 

spectral overlap, we set out to utilise the far-red bacterial phytochrome iRFP670 for our 

apoptosis sensor. We linked this quenching peptide to iRFP670 in order to investigate whether 

H1.0 CFP mCherry mVenus 
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this would adequately disrupt fluorescence. We used NEBuilder HiFi DNA assembly cloning 

to insert the quenching peptide at the C-terminus of iRFP670. Primers were designed to 

amplify the vector and insert with homologous regions to facilitate the HiFi assembly reaction 

(fig. 11A). Following construction, the vector was transformed, mini-prepped and screened 

through BamHI digestion. Both our insert and vector contain a single BamHI site (fig. 11C). 

Agarose gel electrophoresis confirmed successful insertion in all five mini-preps displaying 

fragments matching the suspected sizes of 4010 and 1052 bp when digested with BamHI (fig. 

11B). 

 

 

Figure 11. iRFP670 apoptosis biosensor construction. A) PCR amplified linearised 

iRFP670 vector and quenching peptide insert with extended homologous ends to facilitate 

HiFi assembly. B) BamHI plasmid digestion agarose gel electrophoresis post-cloning 

displaying expected banding pattern of 4010 and 1052 bp confirming successful insertion. C) 

Plasmid map of iRFP670-quencher apoptosis biosensor. 
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3.2. Confocal microscopy biosensor validations 

3.2.1. MCF-7 H1-Fucci(CA) generation and construct validation  

HT is known to be particularly effective in treating breast cancer (Zagar et al., 2010). We 

therefore set out to use the breast cancer cell line MCF-7 as a model system to investigate 

thermosensitivity. To determine whether our PiggyBac-H1-Fucci(CA) vector (fig. 10C) 

functioned as expected we transfected MCF-7 cells with this vector. When imaged, the 

resultant cells produced stable nuclear (fig. 12D) and phase specific fluorescence (fig. 12B-

C), thus validating the expression of our probes and efficiency of our PiggyBac vector system, 

as well as providing a cellular tool for subsequent cell cycle thermosensitivity investigation. 

 

Figure 12. MCF-7 H1-Fucci(CA) (A) Brightfield representation of MCF-7 (B) Red channel 

displaying Cdt-mCherry probe (C) Green channel displaying Geminin-mVenus probe (D) Blue 

channel displaying the histone marker H1-CFP. Scale bar 50 µm. 

3.2.2. Caspase cleavable quenching peptide fails to disrupt iRFP670 

fluorescence 

To investigate iRFP670 dark to bright apoptosis biosensor suitability we transiently transfected 

MCF-7 cells with our iRFP670-Quenching peptide construct (fig. 11C). In addition, we 

transfected MCF-7 cells with a iRFP670 construct which lacked the quenching peptide in 

parallel as a negative control. Confocal microscopy indicated the quenching peptide was 

insufficient in disrupting fluorescence through observable fluorescence in iRFP670 quenching 

peptide transfected cells (fig. 13A). Thus, the peptide’s quenching capacity likely specifically 

impacts GFP chromophore structure.  
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Figure 13. MCF-7 expressing iRFP670-quencher and iRFP670 control A) MCF-7 

expressing iRFP670-quencher construct showing fluorescence indicating inefficient 

quenching. B) MCF-7 negative control expressing unmodified iRFP670. Scale bar 50 µm. 

3.3. Time lapse confocal microscopy  

3.3.1. MCF-7 41 oC incubation leads to reduced proliferation, endoreplication, 

and cell death via mitotic catastrophe 

Breast cancer is a particular malignancy that is known to respond to HT (Zagar et al., 2010). 

We therefore set out to investigate the impact of a range of temperatures on the growth and 

cell cycle phase dynamics of the breast cancer cell line MCF-7. It was intended that we would 

investigate thermosensitivity by utilising our previously constructed biosensor (fig. 10C) and 

novel MCF-7-H1-Fucci(CA) cell line (Fig. 12). We were unfortunately limited due to the forced 

closing of our lab during the coronavirus outbreak. Due to this reduced lab time we were 

unable to expand individual clones of our MCF-7-H1-Fucci(CA) cell line. Additionally, it was 

intended that we would transfect a immortalised breast epithelial cell line with our PiggyBac-

H1-Fucci(CA) vector (fig. 10C) to act as a normal tissue control for investigating cancer 

specific thermosensitivity. Due to constrained lab time this was also unfortunately not possible.  
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Figure 14 MCF-7 cells decrease in plate number when incubated at 41 oC. Cells were 

incubated for 48 hours at 33 oC, 37 oC and 41 oC and imaged. Cell count was quantified by 

manually counting cells at T=0 and T=48 hours. Percentage change in cell count over time 

was calculated using the following equation, where B = cell count at the beginning of treatment 

and E = cell count at the end of treatment. E/B x 100 (A-C) Imaging of MCF-7 at varying 

temperatures including cell counting overlay (D) Percentage change in cell count between 

zero and 48 hours displaying an increase of 164% at 33oC, 245% at 37 oC and a decrease of 

19% at 41 oC. Scale bar 50 µm. 

As an alternative we utilised a previously constructed MCF-7-Fucci2a cell line for 

thermosensitivity confocal imaging. Fucci2a functions similarly to Fucci(CA) although is unable 

to sharply discriminate S phase (Mort et al., 2014b). Cells were plated and incubated at either 

33 oC, 37 oC or 41 oC for 48 hours whilst live time-lapse confocal microscopy was 

simultaneously carried out. For an initial outlook on the impact of these different temperatures 

on the proliferation of MCF-7 we measured cell count at T=0 and T=48 hours by using the 
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ImageJ cell counting tool (fig. 14 A-C). As expected, the 37 oC treatment displayed the largest 

increase in cell count, showing a 245% increase in cell count at T=48 relative to T=0 (fig. 14D). 

An increase was also observed at 33 oC, with cells showing a percentage change increase of 

164% (fig. 14D). These data confirm cells grown at 33 oC demonstrate a reduced replicative 

capacity when compared with 37 oC incubation. In contrast, the cells treated at 41 oC showed 

a reduction in cell count of 19%. Thus, the hyperthermic range temperature of 41 oC retards 

cell viability of MCF-7. We next looked to investigate dynamic cell cycle phase alterations 

between temperature treatments. 

 

Figure 15. MCF-7 Fucci2a full cell cycle montages displaying phase specific 

fluorescence (A) Brightfield, red, green and merge montages of full cell cycle from mitosis to 

mitosis at one hour time points. (B) Merge channel montage displaying five minute time point 

intervals of a complete cell cycle. Scale bar 50 µm. 
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To demonstrate the cell cycle phase reporting capacity of our MCF-7-Fucci2a cell line we have 

constructed an individual time step montage of a full cell cycle at 37 oC. Figure 15A shows a 

full cell cycle at 1-hour time points and 15B displays individual 5-minute time points of MCF-7 

cycling. Both display mCherry (red) G1 fluorescence, mVenus (green) S/G2/M fluorescence, 

and a brief period of yellow fluorescence due to the presence of both probes conferring G1/S 

phase.  

 

 

 

Figure 16. Incubating MCF-7 cells for 48 hours at 41 oC stalls leads to G1 stalling. MCF-

7 Fucci2a total cell cycle phases compared over time between temperature treatments. Cell 

cycle phases were tallied at T=0 and T=48 hours (A-C) Merge channel confocal imaging of 

different heat treatments displaying T=0 and T=48 hour time points. 33 oC larger field of view 

33
o
C 

37
o
C 41

o
C 0 Hours 

48 Hours 

33
o
C A B C 

D 

33 37 41 33 37 41

0

20

40

60

80

100

Temperature (oC)

C
e
ll
 C

y
c
le

 P
h

a
s
e
 (

%
)

G2/M

G1/S

G1

0 Hours 48 Hours



 44 

due to imaging acquired at 0.8 zoom, for further details in methods section (D) Cell cycle 

phases as percentages of total fluorescent cells at both time points showing all cells in 41 oC 

treatment stall in G1 after 48 hours. Scale bar 50 µm. 

In order to investigate cell cycle phase alterations between temperatures, we utilised a similar 

pipeline to our cell count analysis (fig. 14). Cells were plated, incubated at either 33 oC, 37 oC 

or 41 oC and imaged for 48 hours. The ImageJ cell counting tool was then used to quantify 

the total percentage of cells in a given phase at T=0 and T=48 hours. Figure 16A-C displays 

confocal Fucci2a imaging at T=0 and T=48 hours for each temperature treatment. We then 

quantified the total cells in a given phase and plotted as a percentage of total cells (fig. 16D). 

We observed slight differences in cell cycle phase percentages at T=0, although this is to be 

expected for homogenous asynchronous cell culture. After 48 hours the 33 oC and 37 oC 

treatments displayed slight changes in cell cycle phase percentages relative to T=0 (Fig. 16D). 

Conversely, at 41 oC a striking difference was observed, with all cells stalling in G1. We next 

set out to investigate differences in MCF-7 cell cycle phase duration between temperature 

treatments. 

 

To determine whether G1 or G2/M phase duration is impacted by temperature we tracked the 

intensity of the cell cycle phase specific mCherry and mVenus probes over full individual cell 

cycles. 10 full cell cycles for each treatment were tracked using a cell tracking ImageJ package 

developed in the Mort lab. This automated package measures the normalised integrated 

intensity of each probe during a full cell cycle. By tracking full cell cycles in this way, we were 

able to quantify the duration of G1 and G2/M phases by monitoring the rise and fall of the 

individual probes. Figure 17A and B both represent the tracking of one full cell cycle at 37 oC. 

This tracking allowed us to quantify G1 and G2/M phases by measuring the lengths of the 

respective peaks. In line with our previous analysis of counting cells  over time (fig. 14), we 

observed increased G1 and G2/M phase lengths in cells treated at 33 oC compared with 37 

oC (fig. 17C). The mean G1 and G2/M phase times at 33 oC were 1095 ± 269 and 1245 ± 237 

minutes respectively (n = 10 mitoses for each treatment). Both of these times were significantly 

longer than the cells treated at 37 oC (t-test P < 0.0001), which showed a duration of 642.5 ± 

86.64 and 565 ± 63.68 minutes for G1 and G2/M phases respectively.  
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Figure 17. MCF-7 cell cycle phase time tracking (A-B) Relative intensity plots showing 

mCherry and mVenus peaks. Each plot represents individual MCF-7-Fucci2a cells incubated 

at 37 oC. Each figure represents tracking of one full cell cycle. Tracking multiple cells in this 

way allows for estimation of G1 and S/G2/M phases. (C) Quantification of cell cycle phase 

lengths between temperature treatments. Incubating cells at 33 oC resulted in a statistically 

significant increase in G1 and S/G2/M phase lengths relative to 37 oC (**t-test P < 0.0001, 

normality tested using D'Agostino-Pearson test). 41oC treatment was unable to be analysed 

in this way due to the lack of observable full cell cycles (N.C. = Not calculated), Please refer 

to figure 18 for further details.  

We were unable to track cells incubated at 41 oC in this way due to the lack observable full 

cell cycles. When tracking these cells however, we observed a number of abnormal events. 

Due to the observation of reduced cell count over 48 hours (Fig. 14), we assumed the 

occurrence of cell death in our 41 oC treatment. Indeed, ~10 cellular death events (Fig. 18C) 

were observed at 41 oC. Interestingly, each of these occurrences of cell death occurred during 

mitosis. Figure 18A displays a montage of MCF-7 full cell cycle at 37 oC with focusing on 

mitosis. Nuclear envelope breakdown is the first observable morphological change marking 

mitotic initiation- 

 

N.C. 
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Figure 18. Incubating MCF-7 cells at 41 oC increases endoreplication and cell death via 

mitotic catastrophe. Cells were incubated at 33 oC, 37 oC or 41 oC and simultaneously 

imaged for 48 hours. Montage time steps are indicated in figure (A) Montage displaying full 

MCF-7 cell cycle incubated at 37 oC with focusing on mitosis. (B) Montages displaying mitotic 

catastrophe and endoreplication events in cells incubated at 41 oC. In mitotic catastrophe, 

nuclear envelope breakdown occurs in similar manner to mitosis in 37 oC, followed by 

observable cell death and apparent membrane blebbing after ~300 minutes (12th time point). 

Endoreplication event is displayed showing cells transition from G2 back to G1 (without 

undergoing mitosis) in a duration of ~250 minutes (5 time points). (C) Quantification of mitosis, 

cell death, and endoreplication events in 33 oC, 37 oC and 41 oC treatments. 33 oC and 37 oC 

treatments displayed 34 and 46 mitoses respectively and 0 endoreplication and mitotic 
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catastrophe events. The 41 oC incubated cells displayed 8 mitoses, 15 endoreplication events 

and 10 mitotic catastrophe events.  

 

-, as is displayed in the 3rd time point of the mitosis cell cycle montage displayed in figure 18A. 

In cell death at 41 oC, cells observably gained green fluorescence intensity and rounded 

marking mitosis, then stalled for ~250 minutes after nuclear envelope breakdown before 

observably shrivelling and dying (fig. 18B). This behaviour was similar in all occurrences of 

cell death at this temperature treatment. Thus, we propose the mechanism of cell death in 

MCF-7 at 41 oC may occur via mitotic catastrophe. However, further biochemical analysis 

should be carried out to verify our proposed cell death mechanism. A further interesting 

behaviour of endoreplication was observed in cells treated at 41 oC. Endoreplication is the 

duplication of genomic material in the absence of mitosis. We noted ~15 observable 

occurrences of cells entering G2, then cycling back into G1, as is displayed in figure 19B. We 

then tallied each of these events with mitoses in the 41 oC treatment and contrasted this with 

events at 33 oC and 37 oC (fig. 18C). The impact of this higher temperature treatment on 

aberrant cellular events and repressed proliferation is substantial. We therefore concluded 

that 41 oC treatment of MCF-7 induces both mitotic aberrations resulting in cell death and 

polyploidy through endoreplication. 

3.3.2. Melanocyte cell line Melan-A displays increased G1 phase duration at 33 

oC relative to the melanoma line B16F10 

Melanoma is further malignancy known to respond to HT. We therefore set out to investigate 

cell cycle thermosensitivity of the melanoma model cell line B16F10 and the immortalised 

melanocyte cell line Melan-A as a normal tissue control. Previous work carried out in the Mort 

lab led to the development of Fucci2a B16F10 and Melan-A lines. We utilised these lines to 

interrogate differences in thermosensitivity between melanoma and melanocytes. Due to the 

aforementioned limited lab time and technical issues with the department confocal, we were 

unfortunately only able to perform one experiment at 33 oC.  
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Cells were plated, incubated at 33 oC, and imaged for 48 hours. Figure 19A displays both 

B16F10 and Melan-A at T=0 and T=48 hours. Firstly, we tallied the total cells in a given phase 

for each line at T=0 and T=48 hours using the ImageJ cell counting tool (Figure 19B). This 

analysis revealed no striking differences in total cell cycle percentages at either time point. 

We did observe a slightly higher percentage of cells in G1 at T=48 hours in each line (Fig 

19B). Although this effect is likely due to cells reaching confluency thus more cells arresting 

in G1 due to contact inhibition. 

 

To determine whether G1 or G2/M phase duration differed between cell lines we tracked 10 

full cell cycles for each line. We did this though utilising the aforementioned automated ImageJ 

cell tracking package developed in the Mort lab. This analysis produces normalised integrated 

intensities for both probes in each cell line tracked. Examples of these intensities are plotted 

and displayed in figure 20A-B. Figure 20A shows one full Melan-A cell cycle displaying a 

longer G1 (red) phase duration relative to both G2/M (green) and B16F10 G1 phases (Fig 

20B). We quantified G1 and G2/M phase durations of 10 cells for each line and found a 

significantly longer G1 phase in the Melan-A cell line. Melan-A G1 phase showed a duration 

of 885 ± 308 minutes when compared with the B16F10 line time of 565 ± 66 (Normality tested 

using D'Agostino-Pearson test, t test P = 0.0049)(fig. 20C). Determining whether this 

A B 

Figure 19. B16F10 and Melan-A display similar cell cycle phase totals at 33 oC. B16F10-

Fucci2a and Melan-A-Fucci2a total cell cycle phases compared over time between 

temperature treatments. Cell cycle phases were tallied at T=0 and T=48 hours. (A) Merge 

channel confocal imaging of different heat treatments displaying T=0 and T=48 hour time 

points. Cell cycle phases as percentages of total fluorescent cells at both time points. 
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behaviour is a function of temperature or plasticity is difficult however due to our lack of a 37 

oC control. 

 

 

Figure 20. 33 oC B16F10 and Melan-A cell cycle phase tracking (A-B) Relative intensity 

plots displaying mCherry and mVenus peaks in one full Melan-A and B16F10 cell cycle 

respectively. Note observably longer G1 peak fluorescence relative to G2 in Melan-A plot 

when compared to B16F10. (C) Quantification of cell cycle phase lengths. Melan-A cells 

displayed a statistically significant increase in G1 phase length when compared with B16F10 

(n = 10, t-test P < 0.0049, normality tested using D'Agostino-Pearson test). **= Significant, ns 

= not significant. 

3.4. The cBio Cancer Genomics Portal 

3.4.1. Identification of cancer genetic alterations in gene groups of interest 

In order to investigate whether the genes outlined in table 1 conferred cancer specific 

thermosensitivity we utilised the open source cancer genomics platform cBioPortal (Cerami et 

al., 2012). We split our genes of interest into three groups; mitotic regulators, cytoskeletal 

associated proteins, and T complex protein ring (TRiC) proteins. In order to decipher whether 

these groups of genes were altered in cancer we queried each group of genes against 

collective TCGA PanCancer Atlas Studies. Analysing in this way queries each group of 

proteins against 32 studies each of which consisting of a different cancer type with a total 

sample count 10967. This analysis showed considerable alterations in each group across 

multiple cancers (Fig. 22). The Mitotic regulator group displayed a general high mutational 
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profile trend, most notably in uterine, bladder and melanoma malignancies (Fig 21A). This 

trend may be an artefact of general mutational burden, as opposed to functional driver 

mutations. Our cytoskeleton associated protein group displayed a similar trend, although 

notably uterine carcinosarcoma contained amplification or multiple alterations only (Fig 21B). 

The TRiC group displayed a trend of high gene amplifications across all cancers except uterine 

(Fig 21C). Moreover, given the complex’s key role in protein folding homeostasis, these 

amplifications led to us taking an interest in this group of proteins and carrying them forward 

for transcript expression investigation. We then moved to investigating differences in gene 

expression of these groups between cancer and normal tissues. 

3.4.2. Transcript-level expression analysis 

To determine whether these genes differed in expression between cancer and normal tissue 

we used the Xenabrowser platform to compare the expression of each individual gene of 

interest in all cancers against the Genotype-Tissue Expression (GTEx) project database 

(Goldman et al., 2020). GTEx consists of two main data of interest for our analysis, solid tissue 

normal, which is sampled near to tumour site, and normal tissue, which is taken from cancer 

free individuals. Using the Xenabrowser platform we compared the metastatic and solid 

tumour expression data of each our genes of interest against solid tissue normal and normal 

tissue data. Figure 22 lists two genes from each group which showed the most striking 

differences in expression. NEK2 displayed the most drastic increase in expression in cancer, 

with a normalised RNAseq count mean value of 8.1 +/- 2.1 and 8.6 +/- 1.2 for primary and 

metastatic tissues compared with 3.6 +/- 2.5 for normal tissue (P < 0.0001 One-way ANOVA 

with Dunnett’s Post-Hoc test)(fig. 22A1). NEK2 is a mitotic regulatory protein, which as 

aforementioned, displays a decrease in expression in response to hyperthermia (Amaya et 

al., 2014). The mitotic regulator NCAPG also displayed an increase in expression in cancer 

with respective primary and metastatic normalised RNAseq count means of 8.8 +/- 1.8 and 

9.7 +/- 1.1 compared with 5.2 +/- 2.0 for the normal control tissue (P < 0.0001 One-way 

ANOVA with Dunnett’s Post-Hoc test)(fig. 22A2). Thus, NCAPG may similarly play a role in 

cancer specific thermosensitivity. Of the cytoskeletal associated proteins we investigated, 

CFL1 and CFL2 showed the largest differences in expression in cancer. Both of which are 

actin modulating proteins. Interestingly these genes displayed significant contrasting 

differences in expression in cancer compared to normal tissue, with CFL1 showing an 

increase, and CFL2 a decrease (P < 0.0001 One-way ANOVA with Dunnett’s Post-Hoc 

test)(Fig. 22A1-2). Furthermore, in line our previous observation of gene amplifications (fig. 

21C), we observed a significant increase in expression in cancer in two subunits of the TriC 
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complex (P < 0.0001 One-way ANOVA with Dunnett’s Post-Hoc test)(fig. 22 C1-2). These 

observation’s led us to explore alterations of these genes in specific cancer types. 
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Figure 21 Cross cancer alteration summary of genetic changes in groups of genes 

hypothesised to confer thermosensitivity. All data obtained using cBioPortal comparative 

cancer genomics. Cohort: TCGA Pan Cancer Atlas studies (32 studies, 10967 samples) (A) 

Mitotic regulators (KIF11, STAG2, NEK2, CHUK, KPNA4, CENPF, NCAPG) displaying 

general tread of high mutational profiles. (B) Cytoskeleton associated proteins (CFL1, CFL2, 

DSTN, RAPH1, EVL) showing a general trend of gene amplifications (C) T-complex Protein 

Ring Complex proteins (TCP1, CCT2, CCT3, CCT4, CCT5, CCT5, CCT6A, CCT6B, CCT7, 

CCT8) showing a trend of gene amplifications across cancer types. 
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Figure 22. Tumour vs normal expression of genes hypothesised to confer thermosensitivity. 

TCGA Pan Cancer Atlas study cohort expression (32 studies, 10967 samples), compared with 

the Genotype-Tissue Expression (GTEx) data (19131 samples). (A1-A2) Mitotic regulatory 

proteins NEK2 and NCAPG displaying significant elevated expression when compared with 

normal tissue. NEK2 showing most drastic increase. (B1-B2) CFL1 and CFL2 actin dynamic 

stability displayed varied expression in cancer when with normal tissue. CFL1 displayed an 

increase relative to normal tissue, conversely, CFL2 displayed a decrease. (C1-C2) Both 

CCT6A and CCT2 displaying increased expression in cancer compared to normal tissue. All 
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comparisons of metastatic and primary tumour are significant compared to normal tissue One-

way ANOVA with Dunnett’s Post-Hoc test (P < 0.0001). 

 

3.4.3. Cancer specific alterations in genes of interest 

We then went back to the open source cancer genomics platform cBioPortal to investigate 

which specific cancer types contain genetic aberrations in our genes of interest. Each gene 

was queried individually against collective TCGA PanCancer Atlas Studies. This referenced 

each gene against 32 cancer subtypes from 10967 samples. In the mitotic regulatory proteins 

investigated NEK2 displayed high amplification and a high number of gene amplifications in 

breast cancer (Fig. 23). Breast cancer is known to respond to HT, and the treatment of such 

has been shown to reduce NEK2 expression (Amaya et al., 2014). Our observations support 

this previously highlighted importance of NEK2 in breast cancer, although further more 

detailed analysis is required to verify our findings.. The actin modulating genes CFL1 and 

CFL2 displayed no apparent correlation with cancer types (fig. 24).  The TRiC complex 

subunits CCT6A and CCT2 both showed highest expression in testicular germ cell cancer (fig. 

25). Both of which displaying high numbers of gains in copy number.  Whether this observation 

has any biological significance is inconclusive, although supports further investigation into the 

complexes role in testicular cancer.  
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Figure 23. Mitotic regulators NEK2 and NCAPG cancer specific mutations and copy number 
alterations. each spot-on figure represents a specific alteration. NEK2 showing high 
expression and gene amplification in breast cancer. 
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Figure 24.  Cancer specific mutation and copy number alterations in cytoskeletal associated 
proteins CFL1 and CFL2. Each spot-on figure represents a specific alteration.  
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Figure 25. Cancer specific mutation and copy number alterations in T-complex protein ring 
complex proteins CCT6A and CCT2. Each spot-on figure represents a specific alteration. 
Both showing highest expression and high gain in copy number in testicular germ cell 
cancer. 
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4. Discussion 

 

Interest in HT has undergone a resurgence in recent years due to innovations in methods of 

application and combination therapies (Datta et al., 2020). Despite this, the cellular and 

molecular rationale behind HT remains unclear. Fucci is a verified and established tool for the 

investigation of cell cycle dynamics in cancer (Prasedya et al., 2016; Yano et al., 2014). 

cBioportal is a powerful open source cancer genomics platform which allows for visualisation 

and analysis of large-scale genomics data sets (Cerami et al., 2012). These tools complement 

each other in developing the understanding of cancer, as is demonstrated in recent studies 

(Hastings et al., 2020; Markovsky et al., 2018). In this investigation, we have applied Fucci 

alongside cBioPortal based comparative genomics in order to shed light on the mechanisms 

underpinning HT’s efficacy in cancer treatment.  

4.1. Biosensor and cell line development 

4.1.1. A better multiple cloning site for polycistronic vector approaches 

The construction of polycistronic biosensors through the linkage of multiple components 

depends on multiple specific and novel restriction sites. Our transfection vector initially lacked 

such sites. In this study, we have constructed and inserted a novel multiple cloning site linker 

readily able to accept a variety of constructs through restriction cloning. Our vector with unique 

engineered multiple cloning site (fig. 9C) allows for the easy insertion of DNA consisting of a 

range of restriction sticky ends. This was demonstrated by the insertion of H1-Fucci(CA) via 

Mlul and BamHl restriction sites (fig. 10). The cloning site includes 6 unique restriction sites, 

making it a versatile and valuable tool for building polycistronic biosensors from multiple 

constructs. This is in line with previous work optimising and engineering vector cloning sites 

to allow for ease of restriction cloning (Staal et al., 2019, 2018).  

4.1.2. Developing a robust strategy for batch transformation of Fucci vectors 

with PiggyBac 

Transiently transfected genetic material is often lost during cell division. This approach is 

hence limited when using transgenetic biosensors to study the cell cycle. The PiggyBac 

transposase system is able to stably and efficiently genomically integrate constructs. We 

therefore set out to utilise this system to generate biosensor expressing cell lines to investigate 

HT in cancer. We have generated a PiggyBac vector housing the polycistronic cell cycle and 

histone biosensor H1-Fucci(CA)(fig. 10C). Moreover, we have demonstrated this systems 
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transfection ease and efficiency through the generation of a novel MCF-7 H1-Fucci(CA) 

expressing cell line (figure 12). This work supports previous reports of PiggyBac constituting 

an efficient vector in human cell genetic transfer (Wilson et al., 2007; Yusa et al., 2011). 

Fucci(CA) allows for the accurate discrimination of G1, S, G2/M cell cycle phases (Sakaue-

Sawano et al., 2017). Extending Fucci(CA) via the addition of the histone marker H1 linked 

with CFP expands spatial dynamic interrogation capability through facilitating the 

simultaneous tracking of chromatin organisation with cell cycle phases (Figure 12D). 

Furthermore, housing this construct in our PiggyBac vector system allows for future rapid and 

efficient H1-Fucci(CA) transfection in cell lines of interest, as demonstrated in Figure 12D. 

Unfortunately, in this study we were unable to utilise these novel tools for cancer cell 

thermosensitivity investigation. This is due to the coronavirus pandemic forcing the closing of 

our lab, as it did many others across the world (Vasiliadou, 2020). This limited lab time meant 

during this study we were unable to select MCF-7-H1-Fucci(CA) clones, or transfect further 

lines with our PiggyBac-H1-Fucci(CA) construct. For future cancer thermosensitivity 

investigation these tools will prove invaluable. A clear benefit of this biosensor is the inclusion 

of the nuclear marker H1. In our MCF-7 thermosensitivity imaging experiments we have shown 

the main mechanism of cell death in cells treated at 41 oC to occur via mitotic catastrophe 

(Figure19B). Simultaneous tracking of the H1 nuclear marker during these events will provide 

further insight into chromatin organisation during these events. (Wang et al., 2010) 

demonstrated the surface exposure of H1 in apoptotic cells and nuclear localised H1 in 

necrotic cells. Thus, tracking the localisation of H1 during cell death may provide insight as to 

whether apoptosis or necrosis follows mitotic catastrophe in MCF-7 HT response. 

4.1.3. Monitoring multiple cell cycle outcomes with a single vector 

The impact of HT on cancer cell cycling and cell fate is poorly understood. In particular the 

mechanism of cell death in response to HT is one of interest. Generating cellular tools able 

to report in real time on the cell cycle and cell fate will provide insight into these 

mechanisms. We therefore set out to generate a polycistronic biosensor able to report cell 

cycle phase dynamics and apoptosis. Nicholls and colleagues (2011) developed a 

genetically encoded GFP based apoptosis biosensor which functions as a dark to bright 

reporter. The sensor functions through the incorporation of a quenching peptide at the N-

terminus of GFP which disrupts proper chromophore maturation. Linking this peptide to GFP 

via a caspase-9 recognition motif results in a real-time dark to bright apoptotic biosensor. 

Identification of other fluorochromes able to function in this system will aid in the design of 

novel multi-colour biosensor imaging pipelines. iRFP670 is a bright and highly stable far-red 

fluorochrome which is well tolerated by live cells (Shcherbakova and Verkhusha, 2013). We 
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linked the aforementioned quenching peptide/caspase-9 recognition motif to the N terminus 

of iRFP670. Through MCF-7 transient transfection and subsequent time-lapse confocal 

imaging we found that the peptide is insufficient in quenching iRFP670 fluorescence (Fig. 

13A). Thus, iRFP670 is an unsuitable fluorochrome for a biosensor of this sort. Our findings 

indicate the quenching function of this peptide is unique to GFP and derivatives thereof. This 

supports a previous study which indicates that the peptide specifically disrupts GFP β-barrel 

formation and thus chromophore maturation (Nicholls and Hardy, 2013). iRFP670 is a 

bacterial phytochrome consisting of a bilin chromophore core, a drastically different structure 

and chemical configuration to GFP (Rockwell et al., 2006; Shcherbakova and Verkhusha, 

2013). We conclude these fluorochromes do not respond to quenching via linkage of this 

peptide. Moving forward in biosensor construction, replacing CFP in our H1 reporter (Fig. 

10C) with iRFP670 should function sufficiently as this reporter acts simply by localisation. 

This will allow for CFP, a derivative of GFP, to be linked to the quenching peptide and thus 

lead to a functional dark to bright apoptotic biosensor. A polycistronic biosensor capable of 

discriminating between G1, S and G2/M cell cycle phase state, in addition to, indicating 

apoptosis and chromatin organisation will be provide invaluable tool for thermosensitivity 

investigation. 

4.2. Thermosensitivity 

4.2.1. HT induces mitotic catastrophe and endoreplication in breast cancer 

Breast cancer is the second most common form of cancer among women and is estimated to 

affect at least 1 in 8 women in their lifetime (Rojas and Stucky, 2016). Despite breast cancer 

research being at the forefront of cancer biology for decades, the disease is often still fatal. In 

particular, hyper aggressive breast malignancies such as triple negative breast cancer carry 

with them extremely poor prognostic outcomes (Jitariu et al., 2017). Therefore, there is much 

effort in the oncology community to develop and harness novel therapeutic strategies to 

improve breast cancer patient outcome. HT is one such therapy of current high interest. HT 

has been shown to significantly reduce breast cancer growth and to improve the therapeutic 

ratio of conventional therapies (Zagar et al., 2010). Not surprisingly therefore, HT is commonly 

applied in clinic for breast cancer and is the subject of numerous ongoing clinical trials (Datta 

et al., 2020). Despite HT’s wide application, the mechanisms by which HT selectively inhibits 

tumour growth are poorly understood. In particular, the impact hyperthermia has on cell cycle 

phase dynamics in cancer remain unclear. Considering HT’s common combinatorial 

application alongside cell cycle phase specific drugs, elucidating the effects of HT on cell cycle 

dynamics in breast cancer may aid in the design of therapeutic regimens (Otto and Sicinski, 
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2017). In this study, we employed the breast cancer cell line MCF-7 as a model to investigate 

the effect of HT cell cycle phase dynamics. 

 

Through utilising the cell cycle biosensor Fucci2a and performing live time-lapse confocal 

microscopy we observed recurrent cell death in HT treated cells specifically at the point of 

mitosis. We propose this phenomenon to be mitotic catastrophe induced cell death. Mitotic 

catastrophe is a pre-stage of cell death which occurs preceding necrosis or apoptosis 

(Vakifahmetoglu et al., 2008). This finding is consistent with previous reports indicating HT 

induces mitotic catastrophe in both breast and lung cancer cells (Giovinazzi et al., 2013; 

Pawlik et al., 2013a). It should be noted that mitotic catastrophe is also induced by microtubule 

hyper-polymerising and depolymerising drugs, such as taxanes and Vinca alkaloids 

respectively (Castedo et al., 2004). The induction of mitotic catastrophe by microtubule 

aberration coupled with HT’s induction of mitotic catastrophe support further investigation into  

cancer specific microtubule molecular alterations as a potential  mechanism by which cancer 

cells are susceptible to HT. This will be further discussed in section 4.2.3. 

 

Furthermore, through our imaging pipeline we found HT induces endoreplication and G1 

phase stalling in MCF-7 cells. Endoreplication is defined as the replication of genetic material 

in the absence of mitosis resulting in polyploidy (Lee et al., 2009). Endoreplication is essential 

for normal developmental and physiological processes (Fox and Duronio, 2013). An example 

of such is megakaryocyte endoreplication (Sher et al., 2013). Megakaryocytes are rare cells 

which can undergo cellular enlargement and endoreplication which can amplify DNA up to 64-

fold in order to facilitate platelet biogenesis (Patel et al., 2005). A previous study has confirmed 

Fucci2 as a reliable indicator of endoreplication through observing Fucci2 probes in 

megakaryocyte endoreplication cycling (Sakaue-Sawano et al., 2011). Induction of 

endoreplication and polyploidy in cancer has been similarly observed in response to anti-

cancer drugs, the most prevalent and well documented of which being topoisomerase II 

inhibitors (Cortés and Pastor, 2003). Interestingly, HT has previously been shown to enhance 

the sensitivity of cancer cells to topoisomerase II targeting drugs, and has been indicated to 

cause nuclear protein aggregation at the sites of topoisomerase-II DNA interaction (Hirohashi 

et al., 1995; Kampinga, 1995)(Hirohashi et al., 1995). These reports suggest that an alteration 

in topoisomerase II function or downstream signalling is a potential causal mechanism for the 

increased endoreplication events in response to HT seen in figure 19B. Further investigation 

of this potential causal relationship may aid in the design of HT topoisomerase II inhibitor 

combinatorial regimens.  
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As aforementioned we were greatly limited for laboratory time in this study due to the 

coronavirus pandemic causing the closing of our department. This led to us being unable to 

perform many experiments which were initially planned. Immortalised cell lines are a powerful 

tool for studying and comparing neoplastic and normal cell physiology (Boehm and Hahn, 

2004). Moving forward, the generation of a Fucci immortalised mammary epithelial cell will be 

useful for thermosensitivity investigation. As previously stated, whether there are intrinsic 

cellular differences in sensitivity to HT between normal and cancer cells is unclear and 

somewhat controversial. The generation of a normal tissue Fucci control for HT treatment and 

subsequent imaging alongside MCF-7-Fucci2a may offer insight into this unanswered 

question. In addition, it will also be useful to examine triple negative breast cancer cells lines, 

such as BT549 or MDA-MB-231, for their responses to HT as triple negative breast cancer 

has a high therapeutic need. Furthermore, the precise mode of cell death following mitotic 

catastrophe remains unclear. Pawlik and colleagues (2013) indicated apoptosis to occur 

following mitotic catastrophe in lung cancer cells treated with HT. This prediction is based only 

on morphological characteristics however, thus, further investigation is required in order for a 

more definitive conclusion to be drawn. Whether HT induces apoptosis occurs via intrinsic, 

extrinsic, or endoplasmic pathways (as reviewed (Ahmed et al., 2015) remains unclear. To 

interrogate these pathways, the aforementioned dark to bright apoptosis biosensor may 

provide a useful tool. Given the sensor functions through reporting the catalytic activation of 

caspase-9, and thus intrinsic apoptosis activation, we propose the sensor may act similarly 

when replacing the recognition motif to report on the catalytic activation of an alternative 

pathway. By replacing the caspase-9 recognition motif with the extrinsic pathway specific 

caspase-8 recognition sequence, one may be able to generate apoptotic pathway specific 

real-time genetically encoded biosensors. Transfecting these sensors alongside Fucci2a in 

both normal tissue and MCF-7 cell lines may prove fruitful in uncovering cancer specific 

thermosensitive cell death mechanisms.  

 

We have demonstrated the induction of mitotic catastrophe, endoreplication, and G1 phase 

stalling in breast cancer cells in response to HT. These findings coincide with previous reports 

of mitotic catastrophe based cell death induction (Giovinazzi et al., 2013; Pawlik et al., 2013b). 

Moreover, to our knowledge we have illustrated for the first time the induction of 

endoreplication in breast cancer in response to HT alone. However, generating biological 

replicates for these experiments is required in order to solidify these findings. This work may 

guide the design of future themosensitivity investigation.  
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4.2.2. Melanoma 

Melanoma is a further malignancy of interest for HT treatment (Mantso et al., 2018). We 

therefore set out to interrogate the effect of temperature on melanocyte (Melan-A) and 

melanoma (B16F10) Fucci2a cell lines. We were unfortunately limited to analysing just 33 oC 

treatment however, due to the coronavirus pandemic reducing lab time and technical issues 

with the department’s confocal microscope. We had initially intended on investigating a range 

of temperatures, from 33 oC up to HT relevant temperature treatment. Our thermosensitivity 

imaging pipeline has demonstrated its effectiveness through analysing MCF-7 cells. Moving 

forward, investigating HT range temperature in both melanoma and normal tissue control lines 

may shed light on intrinsic cellular differences between cancer and normal cell 

thermosensitivity. We did observe significantly longer G1 phase durations in Melan-A 

compared with B16F10. Although whether this phenomenon is a function of temperature, or 

general differences in cell cycling between lines is yet to be resolved. Further experiments 

using a range of temperatures will shed light on this. 

4.2.3. NEK2 is a key player in HT and mitotic catastrophe? 

HT is currently the focus of many clinical trials in a range of cancers including ovarian, bladder, 

breast and neurological malignancies to name just a few (Cowan et al., 2017; Longo et al., 

2016; Mahmoudi et al., 2018; Mu et al., 2018). Currently the molecular determinants which 

sensitise cancer to HT are poorly understood. In addition, specific cancer type responses to 

HT are underexplored. Identification of the genetic changes and molecular pathways which 

confer HT response in cancer may facilitate the development of novel therapeutic strategy. 

Moreover, predicting which specific cancer subclasses may respond to HT could guide the 

design of future cancer thermosensitivity studies. In this study we utilised the bioinformatic 

open platforms cBioPortal and Xenabrowser to explore the genetic changes of three 

categories of genes in cancer which we have hypothesised to be involved cancer 

thermosensitivity (Goldman et al., 2020; Cerami et al., 2012). 

 

Amaya and colleagues (2014) demonstrated reduced expression of the mitotic regulators 

KIF11, STAG2, NEK2, CHUK, KPNA4, CENPF and NCAPG in HT treated breast cancer cells. 

Through cross referencing Pan Cancer Genome atlas studies with Genotype Tissue-

expression data we identified NEK2 as being highly differentially expressed in cancer. In 

particular, we found NEK2 displayed a striking number of gene amplifications in breast 

invasive carcinoma (fig. 22A1). It should be noted however that this observation lacks 

statistical investigation due to time constraints, so should be considered speculative. However, 

the observation is consistent with previous reports of NEK2 being over expressed in a variety 
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of cancers and in particular in breast cancer (Wang et al., 2011). NEK2 is an oncogenic 

multifunctional serine/threonine kinase which plays roles in cell cycle control, centrosome 

amplification, and microtubule stability (Fang and Zhang, 2016). There is currently high 

interest in targeting NEK2 as a therapeutic approach for breast cancer. Small molecular 

inhibitors have shown significant anti-cancer activity in vitro and in vivo murine xenograft 

models (Henise and Taunton, 2011, p.2; Kokuryo et al., 2007, p.2). The efficacy of NEK2 

inhibition combined with finding that HT acts to reduce the expression of NEK2 in breast 

cancer suggests HT’s anti breast cancer activity may function through impacting NEK2 

signalling. Moreover, NEK2 has been demonstrated to play an essential role in the integrity of 

centrosome structure and microtubule nucleation activity (Jeong et al., 2007). Aberrant 

centrosome structure and spindle formation is associated with high rates of mitotic catastrophe 

(Pihan, 2013). We propose high rates of mitotic catastrophe to occur in MCF-7 cells treated 

with hyperthermia (fig 19B). This observation alongside these reports indicate HT’s anti breast 

cancer activity may function via reducing NEK2 expression/activity, leading to disruption of 

centrosome integrity and thus mitotic catastrophe. In further support of NEK2 playing a key 

role in HT, the cancers we found to most highly express NEK2 (cervical, oesophageal, 

stomach and ovarian) are each known to respond well to HT (Franckena et al., 2009; Gori et 

al., 2005; Hulshof et al., 2009; Kaaij et al., 2017). Future directions should include investigating 

the mechanism of HT reduced NEK2 expression in cancer previously observed (Amaya et al., 

2014). NEK2 expression is complex, showing regulation at both the transcriptional and post-

transcriptional level (Hames and Fry, 2002). Chromatin immunoprecipitation and proteomic 

avenues of investigation may prove insightful in elucidating any effects HT has on NEK2 

transcriptional regulators or signalling pathways. Additionally, knockdown of NEK2 in breast 

cancer cells, using siRNA for example, and simultaneously treating these cells with HT may 

prove fruitful. A combinatorial effect of these perturbations may uncover further mechanistic 

insight into HT in breast cancer, in addition to, guiding the design of therapies. 

4.2.4. TRiC and testicular cancer  

Hyperthermia’s aberrant effects on microtubules are well established (Coss and Linnemans, 

1996). We therefore took interest in the microtubule regulatory TRiC complex. TRiC is a 

chaperone complex which mediates protein folding in the cytosol, most notably tubulin and 

actin, as is required for their proper folding (Dunn et al., 2001). We rationalised therefore that 

cancer genetic alterations in components of this complex in cancer may lead to increased 

thermosensitivity. Indeed, we found two subunits of this complex CCT6A and CCT2 to show 

increased expression when cross referencing Pan Cancer Genome atlas studies with 

Genotype Tissue-expression data (fig. 22C1-C2). When we referenced the expression of 



 68 

CCT6A and CCT2 against specific cancers we found the highest expression of both genes in 

testicular germ cell cancer out of all 32 cancer types investigated (fig 23C1-C2). Almost all 

alterations of CCT6A and CCT2 being gene amplifications. These observations suggest TRiC 

components as being potentially upregulated in testicular cancer, however, further 

investigation is needed in order to verify this proposal. Interestingly, a recent study from Guest 

and colleagues (2015) identified CCT2 and TCP1 (another TRiC subunit) as being necessary 

for the survival of breast cancer cell line SUM-52. The study further found CCT2 and TCP1 to 

be determinants of overall survival in breast cancer patients. These data suggest TRiC 

complex components function as drivers in breast cancer. This supports further investigation 

into TRiC’s potential role in testicular cancer. Exploring potential correlation of components of 

TRiC with testicular cancer patient survival and in vitro RNAi knock down study represent 

potential avenues of investigation. Whether this complex contributes to cancer specific 

thermosensitivity remains inconclusive. 

4.3. Conclusion  

We here describe the cell fates of the model breast cancer cell line MCF-7 in response to HT. 

We have constructed a novel cell cycle and chromatin state biosensor transfection vector and 

demonstrated its functionality through the generation of the MCF-7 H1-Fucci(CA) cell line. 

Moreover, we have proposed potential molecular mechanisms responsible for cancer cell 

specific thermosensitivity through interrogating genomic alterations in cBioPortal. This work 

may guide further investigation into the thermosensitivity of cancer cell cycle dynamics, 

provide tools for cell cycle study, and has given insight into potential molecular determinants 

of HT and testicular cancer. 

 

 

 

 

 

 

 

 

 



 69 

5. Acknowledgements 

I would like to express my deep and sincere gratitude to my supervisors Dr. A. Benedetto, Dr. 

A. Feilding and Dr. R. Mort for giving me the opportunity to undertake this project and for their 

patience and invaluable guidance. I would also like to extend my thanks to each and every 

person, student and faculty, in the Biomedical and Life Science department at Lancaster 

University who advised and helped me during this project. In addition, thank you to North West 

Cancer Research for funding the project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 70 

6. Reference List 

 

Abe, T. et al. (2013) Visualization of cell cycle in mouse embryos with Fucci2 reporter 
directed by Rosa26 promoter. Development (Cambridge, England), 140(1), 237–246. 

Absher, M. (1973) Hemocytometer counting. In: Elsevier Tissue culture. Elsevier. 

Ahmed, K. et al. (2015) Hyperthermia: an effective strategy to induce apoptosis in cancer 
cells. Apoptosis, 20(11), 1411–1419. 

Alexander, J.L. et al. (2017) Gut microbiota modulation of chemotherapy efficacy and 
toxicity. Nature Reviews Gastroenterology & Hepatology, 14(6), 356–365. Nature Publishing 
Group. 

Amaya, C. et al. (2014) A genomics approach to identify susceptibilities of breast cancer cells 
to “fever-range” hyperthermia. BMC Cancer, 14(1), 81. 

Arjona-Sánchez, A. et al. (2018) HIPECT4: multicentre, randomized clinical trial to evaluate 
safety and efficacy of Hyperthermic intra-peritoneal chemotherapy (HIPEC) with Mitomycin 
C used during surgery for treatment of locally advanced colorectal carcinoma. BMC cancer, 
18(1), 1–8. BioMed Central. 

Banerjee, R. & Kamrava, M. (2014) Brachytherapy in the treatment of cervical cancer: a 
review. International Journal of Women’s Health, 6, 555–564. 

Bartee, L. et al. (2017) The Eukaryotic Cell Cycle. Principles of Biology: Biology 211, 212, and 
213. Open Oregon Educational Resources. 

Baskar, R. et al. (2012) Cancer and Radiation Therapy: Current Advances and Future 
Directions. International Journal of Medical Sciences, 9(3), 193–199. 

Basto, R. et al. (2008) Centrosome Amplification Can Initiate Tumorigenesis in Flies. Cell, 
133(6), 1032–1042. 

Baumann, M. et al. (2016) Radiation oncology in the era of precision medicine. Nature 
Reviews Cancer, 16(4), 234–249. Nature Publishing Group. 

Beere, H.M. (2004) `The stress of dying’: the role of heat shock proteins in the regulation of 
apoptosis. Journal of Cell Science, 117(13), 2641–2651. The Company of Biologists Ltd. 

Behrouzkia, Z. et al. (2016) Hyperthermia: How Can It Be Used? Oman Medical Journal, 
31(2), 89–97. 

Belzile, J.-P. et al. (2010) HIV-1 Vpr induces the K48-linked polyubiquitination and 
proteasomal degradation of target cellular proteins to activate ATR and promote G2 arrest. 
Journal of virology, 84(7), 3320–3330. Am Soc Microbiol. 



 71 

Bensimon, A. et al. (2010) ATM-Dependent and -Independent Dynamics of the Nuclear 
Phosphoproteome After DNA Damage. Science Signaling, 3(151), rs3–rs3. American 
Association for the Advancement of Science. 

Berndsen, C.E. & Wolberger, C. (2014) New insights into ubiquitin E3 ligase mechanism. 
Nature structural & molecular biology, 21(4), 301. Nature Publishing Group. 

Bertoli, C. et al. (2013) Control of cell cycle transcription during G1 and S phases. Nature 
Reviews Molecular Cell Biology, 14(8), 518–528. Nature Publishing Group. 

Bharadwaj, R. & Yu, H. (2004) The spindle checkpoint, aneuploidy, and cancer. Oncogene, 
23(11), 2016–2027. Nature Publishing Group. 

Bianconi, E. et al. (2013) An estimation of the number of cells in the human body. Annals of 
Human Biology, 40(6), 463–471. Taylor & Francis. 

Biesterfeld, S. et al. (2011) Feulgen Staining Remains the Gold Standard for Precise DNA 
Image Cytometry. Anticancer Research, 31(1), 53–58. International Institute of Anticancer 
Research. 

Blagosklonny, M.V. & Pardee, A.B. (2002) The Restriction Point of the Cell Cycle. Cell Cycle, 
1(2), 102–109. Taylor & Francis. 

Blanchoin, L. et al. (2014) Actin Dynamics, Architecture, and Mechanics in Cell Motility. 
Physiological Reviews, 94(1), 235–263. American Physiological Society. 

Blasina, A. et al. (1999) A human homologue of the checkpoint kinase Cds1 directly inhibits 
Cdc25 phosphatase. Current Biology, 9(1), 1–10. Elsevier. 

Boehm, J.S. & Hahn, W.C. (2004) Immortalized cells as experimental models to study cancer. 
Cytotechnology, 45(1–2), 47–59. 

Bolomey, J.-C. et al. (1995) Thermoradiotherapy and Thermochemotherapy: Biology, 
Physiology, Physics. Springer Science & Business Media. 

Borg, N.A. & Dixit, V.M. (2017) Ubiquitin in Cell-Cycle Regulation and Dysregulation in 
Cancer. Annual Review of Cancer Biology, 1(1), 59–77. 

Brade, A.M. et al. (2003) Heat-directed suicide gene therapy for breast cancer. Cancer Gene 
Therapy, 10(4), 294–301. Nature Publishing Group. 

Brookes, P. (1990) The early history of the biological alkylating agents, 1918–1968. Mutation 
Research/Fundamental and Molecular Mechanisms of Mutagenesis, 233(1), 3–14. 

Brookes, P. & Lawley, P. (1961) The reaction of mono- and di-functional alkylating agents 
with nucleic acids. Biochemical Journal, 80(3), 496–503. 

Brouhard, G.J. & Rice, L.M. (2018) Microtubule dynamics: an interplay of biochemistry and 
mechanics. Nature Reviews Molecular Cell Biology, 19(7), 451–463. Nature Publishing 
Group. 



 72 

Brown, A.L. et al. (1999) A human Cds1-related kinase that functions downstream of ATM 
protein in the cellular response to DNA damage. Proceedings of the National Academy of 
Sciences, 96(7), 3745–3750. National Academy of Sciences. 

Brunton, L.L. et al. (2006) Antineoplastic agents. Goodman and Gilmans The 
Pharmacological Basis of Therapeutics, 11th edition, McGrow–Hill Companies, USA, 1315–
1405. 

Bryan, A.K. et al. (2010) Measurement of mass, density, and volume during the cell cycle of 
yeast. Proceedings of the National Academy of Sciences, 107(3), 999–1004. National 
Academy of Sciences. 

Bukhari, A.B. et al. (2019) Inhibiting Wee1 and ATR kinases produces tumor-selective 
synthetic lethality and suppresses metastasis. The Journal of Clinical Investigation, 129(3), 
1329–1344. American Society for Clinical Investigation. 

Burridge, K. et al. (1990) Actin—membrane interaction in focal adhesions. Cell 
Differentiation and Development, 32(3), 337–342. 

Cappadocia, L. & Lima, C.D. (2018) Ubiquitin-like Protein Conjugation: Structures, Chemistry, 
and Mechanism. Chemical Reviews, 118(3), 889–918. American Chemical Society. 

Castedo, M. et al. (2004) Cell death by mitotic catastrophe: a molecular definition. 
Oncogene, 23(16), 2825–2837. Nature Publishing Group. 

Cerami, E. et al. (2012) The cBio Cancer Genomics Portal: An Open Platform for Exploring 
Multidimensional Cancer Genomics Data. Cancer Discovery, 2(5), 401–404. American 
Association for Cancer Research. 

Champoux, J.J. (2001) DNA Topoisomerases: Structure, Function, and Mechanism. Annual 
Review of Biochemistry, 70(1), 369–413. 

Chi, X.-Z. et al. (2017) Runx3 plays a critical role in restriction-point and defense against 
cellular transformation. Oncogene, 36(50), 6884–6894. Nature Publishing Group. 

Chieco, P. & Derenzini, M. (1999) The Feulgen reaction 75 years on. Histochemistry and Cell 
Biology, 111(5), 345–358. 

Cleveland, D.W. et al. (2003) Centromeres and Kinetochores: From Epigenetics to Mitotic 
Checkpoint Signaling. Cell, 112(4), 407–421. 

Condeelis, J. & Pollard, J.W. (2006) Macrophages: Obligate Partners for Tumor Cell 
Migration, Invasion, and Metastasis. Cell, 124(2), 263–266. 

Cooper, G.M. (2000a) Intermediate Filaments. The Cell: A Molecular Approach. 2nd edition. 
Sinauer Associates. [Accessed: 21 May 2020]. 

Cooper, G.M. (2000b) The Events of M Phase. The Cell: A Molecular Approach. 2nd edition. 
Sinauer Associates. [Accessed: 16 May 2020]. 



 73 

Cortés, F. & Pastor, N. (2003) Induction of endoreduplication by topoisomerase II catalytic 
inhibitors. Mutagenesis, 18(2), 105–112. Oxford Academic. 

Coss, R.A. & Linnemans, W.A.M. (1996) The effects of hyperthermia on the cytoskeleton: a 
review. International Journal of Hyperthermia, 12(2), 173–196. Taylor & Francis. 

Cowan, R.A. et al. (2017) Current status and future prospects of hyperthermic intraoperative 
intraperitoneal chemotherapy (HIPEC) clinical trials in ovarian cancer. International Journal 
of Hyperthermia, 33(5), 548–553. Taylor & Francis. 

Cuadrado, M. et al. (2009) p27Kip1 Stabilization Is Essential for the Maintenance of Cell 
Cycle Arrest in Response to DNA Damage. Cancer Research, 69(22), 8726–8732. American 
Association for Cancer Research. 

Datta, N.R. et al. (2015) Local hyperthermia combined with radiotherapy and-/or 
chemotherapy: Recent advances and promises for the future. Cancer Treatment Reviews, 
41(9), 742–753. 

Datta, N.R. et al. (2020) Integrating Loco-Regional Hyperthermia Into the Current Oncology 
Practice: SWOT and TOWS Analyses. Frontiers in Oncology, 10. Frontiers. [Accessed: 8 
September 2020]. 

Davis, P.K. et al. (2001) Biological methods for cell-cycle synchronization of mammalian 
cells. BioTechniques, 30(6), 1322–1326, 1328, 1330–1331. 

De Ruysscher, D. et al. (2019) Radiotherapy toxicity. Nature Reviews Disease Primers, 5(1), 
1–20. Nature Publishing Group. 

DelSal, G. et al. (1996) Cell Cycle and Cancer: Critical Events at the G1 Restriction Point. 
Critical Reviews&trade; in Oncogenesis, 7(1–2). Begel House Inc. [Accessed: 10 August 
2020]. 

Deol, K.K. et al. (2019) Enzymatic Logic of Ubiquitin Chain Assembly. Frontiers in Physiology, 
10. [Accessed: 10 August 2020]. 

Deshaies, R.J. & Joazeiro, C.A.P. (2009) RING Domain E3 Ubiquitin Ligases. Annual Review of 
Biochemistry, 78(1), 399–434. 

Dewey, W.C. et al. (1971) Heat-induced lethality and chromosomal damage in synchronized 
Chinese hamster cells treated with 5-bromodeoxyuridine. International Journal of Radiation 
Biology and Related Studies in Physics, Chemistry and Medicine, 20(6), 505–520. Taylor & 
Francis. 

Diamantis, A. et al. (2008) The contribution of Maria Sklodowska-Curie and Pierre Curie to 
Nuclear and Medical Physics. A hundred and ten years after the discovery of radium. 
Hellenic Journal of Nuclear Medicine, 11(1), 33–38. 

Dickson, J.A. & Calderwood, S.K. (1980) Temperature Range and Selective Sensitivity of 
Tumors to Hyperthermia: A Critical Review. Annals of the New York Academy of Sciences, 
335(1), 180–205. 



 74 

Do, K. et al. (2013) Wee1 kinase as a target for cancer therapy. Cell Cycle, 12(19), 3159–
3164. 

Donjerkovic, D. & Scott, D.W. (2000) Regulation of the G1 phase of the mammalian cell 
cycle. Cell Research, 10(1), 1–16. Nature Publishing Group. 

Dunn, A.Y. et al. (2001) Review: Cellular Substrates of the Eukaryotic Chaperonin TRiC/CCT. 
Journal of Structural Biology, 135(2), 176–184. 

Dunn, J.M. et al. (1988) Identification of germline and somatic mutations affecting the 
retinoblastoma gene. Science, 241(4874), 1797–1800. American Association for the 
Advancement of Science. 

Eissing, N. et al. (2014) Easy performance of 6-color confocal immunofluorescence with 4-
laser line microscopes. Immunology Letters, 161(1), 1–5. 

Emil Frei, I.I.I. & Eder, J.P. (2003) Combination Chemotherapy. Holland-Frei Cancer Medicine. 
6th edition. BC Decker. [Accessed: 6 August 2020]. 

Engelborghs, Y. et al. (1976) Effect of temperature and pressure on polymerisation 
equilibrium of neuronal microtubules. Nature, 259(5545), 686–689. Nature Publishing 
Group. 

Erlandsson, F. et al. (2000) A Detailed Analysis of Cyclin A Accumulation at the G1/S Border 
in Normal and Transformed Cells. Experimental Cell Research, 259(1), 86–95. 

Ettinger, A. & Wittmann, T. (2014) Fluorescence Live Cell Imaging. Methods in cell biology, 
123, 77–94. 

Falzone, L. et al. (2018) Evolution of Cancer Pharmacological Treatments at the Turn of the 
Third Millennium. Frontiers in Pharmacology, 9. Frontiers. [Accessed: 4 August 2020]. 

Fang, Y. & Zhang, X. (2016) Targeting NEK2 as a promising therapeutic approach for cancer 
treatment. Cell Cycle, 15(7), 895–907. Taylor & Francis. 

Ferlay, J. et al. (2019) Estimating the global cancer incidence and mortality in 2018: 
GLOBOCAN sources and methods. International Journal of Cancer, 144(8), 1941–1953. 

Fletcher, D.A. & Mullins, R.D. (2010) Cell mechanics and the cytoskeleton. Nature, 
463(7280), 485–492. 

Ford, M.J. et al. (2018) A Cell/Cilia Cycle Biosensor for Single-Cell Kinetics Reveals 
Persistence of Cilia after G1/S Transition Is a General Property in Cells and Mice. 
Developmental Cell, 47(4), 509-523.e5. 

Forgacs, G. et al. (2004) Role of the cytoskeleton in signaling networks. Journal of Cell 
Science, 117(Pt 13), 2769–2775. 



 75 

Fox, D.T. & Duronio, R.J. (2013) Endoreplication and polyploidy: insights into development 
and disease. Development, 140(1), 3–12. Oxford University Press for The Company of 
Biologists Limited. 

Franckena, M. et al. (2009) Hyperthermia dose-effect relationship in 420 patients with 
cervical cancer treated with combined radiotherapy and hyperthermia. European Journal of 
Cancer, 45(11), 1969–1978. 

Freeman, M.L. et al. (1977) Effect of pH on Hyperthermic Cell Survival: Brief Communication. 
JNCI: Journal of the National Cancer Institute, 58(6), 1837–1839. Oxford Academic. 

Frey, B. et al. (2012) Old and new facts about hyperthermia-induced modulations of the 
immune system. International Journal of Hyperthermia, 28(6), 528–542. Taylor & Francis. 

Fujimoto-Ouchi, K. et al. (2007) Antitumor activity of trastuzumab in combination with 
chemotherapy in human gastric cancer xenograft models. Cancer chemotherapy and 
pharmacology, 59(6), 795–805. Springer. 

Fujita, T. et al. (2008a) Dissection of the APCCdh1-Skp2 Cascade in Breast Cancer. Clinical 
Cancer Research, 14(7), 1966–1975. American Association for Cancer Research. 

Fujita, T. et al. (2008b) Regulation of Skp2-p27 Axis by the Cdh1/Anaphase-Promoting 
Complex Pathway in Colorectal Tumorigenesis. The American Journal of Pathology, 173(1), 
217–228. 

Furrukh, M. (2013) Tobacco Smoking and Lung Cancer. Sultan Qaboos University Medical 
Journal, 13(3), 345–358. 

Furusawa, Y. et al. (2012) Inhibition of checkpoint kinase 1 abrogates G2/M checkpoint 
activation and promotes apoptosis under heat stress. Apoptosis, 17(1), 102–112. 

Ganem, N.J. et al. (2009) A mechanism linking extra centrosomes to chromosomal 
instability. Nature, 460(7252), 278–282. Nature Publishing Group. 

Gas, P. (2017) Essential Facts on the History of Hyperthermia and their Connections with 
Electromedicine. arXiv:1710.00652 [physics, q-bio]. [Accessed: 4 June 2020]. 

Gavet, O. & Pines, J. (2010) Activation of cyclin B1–Cdk1 synchronizes events in the nucleus 
and the cytoplasm at mitosis. Journal of Cell Biology, 189(2), 247–259. The Rockefeller 
University Press. 

Gianfaldoni, S. et al. (2017) An Overview on Radiotherapy: From Its History to Its Current 
Applications in Dermatology. Open Access Macedonian Journal of Medical Sciences, 5(4), 
521–525. 

Gilman, A. (1963) The initial clinical trial of nitrogen mustard. The American Journal of 
Surgery, 105(5), 574–578. Elsevier. 

Giovinazzi, S. et al. (2013) Targeting mitotic exit with hyperthermia or APC/C inhibition to 
increase paclitaxel efficacy. Cell Cycle, 12(16), 2598–2607. 



 76 

Giustini, A.J. et al. (2010) MAGNETIC NANOPARTICLE HYPERTHERMIA IN CANCER 
TREATMENT. Nano LIFE, 1(01n02). [Accessed: 6 June 2020]. 

Godinho, S.A. et al. (2014) Oncogene-like induction of cellular invasion from centrosome 
amplification. Nature, 510(7503), 167–171. Nature Publishing Group. 

Goldman, M.J. et al. (2020) Visualizing and interpreting cancer genomics data via the Xena 
platform. Nature Biotechnology, 38(6), 675–678. Nature Publishing Group. 

Goodman, M.D. et al. (2016) Chemotherapy for intraperitoneal use: a review of 
hyperthermic intraperitoneal chemotherapy and early post-operative intraperitoneal 
chemotherapy. Journal of Gastrointestinal Oncology, 7(1), 45–57. 

Gori, J. et al. (2005) Intraperitoneal hyperthermic chemotherapy in ovarian cancer. 
International Journal of Gynecologic Cancer, 15(2). BMJ Specialist Journals. [Accessed: 10 
September 2020]. 

Gratzner, H.G. et al. (1975) The use of antibody specific for bromodeoxyuridine for the 
immunofluorescent determination of DNA replication in single cells and chromosomes. 
Experimental Cell Research, 95(1), 88–94. 

Greenwald, E.C. et al. (2018) Genetically Encoded Fluorescent Biosensors Illuminate the 
Spatiotemporal Regulation of Signaling Networks. Chemical Reviews, 118(24), 11707–11794. 
American Chemical Society. 

Grzanka, D. et al. (2008) Hyperthermia-induced reorganization of microtubules and 
microfilaments and cell killing in CHO AA8 cell line. Neoplasma, 55(5), 409–415. 

Guest, S.T. et al. (2015) Two members of the TRiC chaperonin complex, CCT2 and TCP1 are 
essential for survival of breast cancer cells and are linked to driving oncogenes. 
Experimental Cell Research, 332(2), 223–235. 

Habash, R.W.Y. et al. (2006a) Thermal Therapy, Part 1: An Introduction to Thermal Therapy. 
Critical ReviewsTM in Biomedical Engineering, 34(6), 459–489. 

Habash, R.W.Y. et al. (2006b) Thermal Therapy, Part 2: Hyperthermia Techniques. Critical 
Reviews&trade; in Biomedical Engineering, 34(6). Begel House Inc. [Accessed: 2 July 2020]. 

Hames, R.S. & Fry, A.M. (2002) Alternative splice variants of the human centrosome kinase 
Nek2 exhibit distinct patterns of expression in mitosis. Biochemical Journal, 361(1), 77–85. 
Portland Press. 

Hanahan, D. & Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 
144(5), 646–674. Elsevier. 

Hanks, S. et al. (2004) Constitutional aneuploidy and cancer predisposition caused by 
biallelic mutations in BUB1B. Nature Genetics, 36(11), 1159–1161. Nature Publishing Group. 



 77 

Hansen, S.D. & Mullins, R.D. (2015) Lamellipodin promotes actin assembly by clustering 
Ena/VASP proteins and tethering them to actin filaments. eLife, 4, e06585. eLife Sciences 
Publications, Ltd. 

Harper, J.W. et al. (2002) The anaphase-promoting complex: it’s not just for mitosis any 
more. Genes & Development, 16(17), 2179–2206. 

Hastings, J.F. et al. (2020) Analysis of pulsed cisplatin signalling dynamics identifies effectors 
of resistance in lung adenocarcinoma. eLife, 9, e53367. eLife Sciences Publications, Ltd. 

Heald, R. & McKeon, F. (1990) Mutations of phosphorylation sites in lamin A that prevent 
nuclear lamina disassembly in mitosis. Cell, 61(4), 579–589. 

Hedayatnasab, Z. et al. (2017) Review on magnetic nanoparticles for magnetic nanofluid 
hyperthermia application. Materials & Design, 123, 174–196. 

Hedigan, K. (2010) Herbal medicine reduces chemotherapy toxicity. Nature Reviews Drug 
Discovery, 9(10), 765–765. Nature Publishing Group. 

Henise, J.C. & Taunton, J. (2011) Irreversible Nek2 kinase inhibitors with cellular activity. 
Journal of medicinal chemistry, 54(12), 4133–4146. ACS Publications. 

Herrmann, H. et al. (2002) Functional complexity of intermediate filament cytoskeletons: 
From structure to assembly to gene ablation. In: Academic Press International Review of 
Cytology. [Online]. Academic Press. Available at: doi:10.1016/S0074-7696(05)23003-6 
[Accessed: 21 May 2020]. 

Hildebrandt, B. & Wust, P. (2007) The Biologic Rationale of Hyperthermia. In: Ceelen, W.P. 
(ed.) Peritoneal Carcinomatosis: A Multidisciplinary Approach. [Online]. Boston, MA: 
Springer US. Available at: doi:10.1007/978-0-387-48993-3_10 [Accessed: 5 July 2020]. 

Hirohashi, Y. et al. (1995) Biomodulation by Hyperthermia of Topoisomerase II‐Targeting 
Drugs in Human Colorectal Cancer Cells. Japanese Journal of Cancer Research : Gann, 
86(11), 1097–1105. 

Hoadley, K.A. et al. (2018) Cell-of-origin patterns dominate the molecular classification of 
10,000 tumors from 33 types of cancer. Cell, 173(2), 291–304. Elsevier. 

Hoffmann, I. et al. (1994) Activation of the phosphatase activity of human cdc25A by a cdk2-
cyclin E dependent phosphorylation at the G1/S transition. The EMBO journal, 13(18), 4302–
4310. 

Hohmann, T. & Dehghani, F. (2019) The Cytoskeleton—A Complex Interacting Meshwork. 
Cells, 8(4). [Accessed: 10 August 2020]. 

Hoppe, T. (2005) Multiubiquitylation by E4 enzymes: ‘one size’ doesn’t fit all. Trends in 
Biochemical Sciences, 30(4), 183–187. 

Horsman, M.R. & Overgaard, J. (2007) Hyperthermia: a Potent Enhancer of Radiotherapy. 
Clinical Oncology, 19(6), 418–426. 



 78 

Houtgraaf, J.H. et al. (2006) A concise review of DNA damage checkpoints and repair in 
mammalian cells. Cardiovascular Revascularization Medicine, 7(3), 165–172. 

Hu, Q. et al. (2016) Recent Advances of Cocktail Chemotherapy by Combination Drug 
Delivery Systems. Advanced drug delivery reviews, 98, 19–34. 

Huang, C.-Y. et al. (2017) A review on the effects of current chemotherapy drugs and natural 
agents in treating non–small cell lung cancer. Biomedicine, 7(4). EDP Sciences. 

Huang, S. & Ingber, D.E. (2002) A Discrete Cell Cycle Checkpoint in Late G1 That Is 
Cytoskeleton-Dependent and MAP Kinase (Erk)-Independent. Experimental Cell Research, 
275(2), 255–264. 

Hulshof, M.C.C.M. et al. (2009) Preoperative chemoradiation combined with regional 
hyperthermia for patients with resectable esophageal cancer. International Journal of 
Hyperthermia, 25(1), 79–85. Taylor & Francis. 

Humphreys, B.D. (2015) Cutting to the chase: taking the pulse of label-retaining cells in 
kidney. American Journal of Physiology - Renal Physiology, 308(1), F29–F30. 

Ibrahim, N. et al. (2012) Molecular targeted therapies for cancer: sorafenib mono-therapy 
and its combination with other therapies (review). Oncology Reports, 27(5), 1303–1311. 

Jackson, S.P. & Bartek, J. (2009) The DNA-damage response in human biology and disease. 
Nature, 461(7267), 1071–1078. Nature Publishing Group. 

Jensen, E.C. (2013) Overview of Live-Cell Imaging: Requirements and Methods Used. The 
Anatomical Record, 296(1), 1–8. 

Jeong, Y. et al. (2007) Characterization of NIP2/centrobin, a novel substrate of Nek2, and its 
potential role in microtubule stabilization. Journal of Cell Science, 120(12), 2106–2116. The 
Company of Biologists Ltd. 

Jia, D. & Liu, J. (2010) Current devices for high-performance whole-body hyperthermia 
therapy. Expert Review of Medical Devices, 7(3), 407–423. Taylor & Francis. 

Jitariu, A.-A. et al. (2017) Triple negative breast cancer: the kiss of death. Oncotarget, 8(28), 
46652–46662. 

Job, D. et al. (2003) Microtubule nucleation. Current Opinion in Cell Biology, 15(1), 111–117. 

Jongmans, W. et al. (1997) Nijmegen breakage syndrome cells fail to induce the p53-
mediated DNA damage response following exposure to ionizing radiation. Molecular and 
Cellular Biology, 17(9), 5016–5022. American Society for Microbiology Journals. 

Kaaij, R.T. van der et al. (2017) Treatment of Peritoneal Dissemination in Stomach Cancer 
Patients With Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy 
(HIPEC): Rationale and Design of the PERISCOPE Study. JMIR Research Protocols, 6(7), e136. 



 79 

Kampinga, H.H. (1995) Hyperthermia, thermotolerance and topoisomerase II inhibitors. 
British Journal of Cancer, 72(2), 333–338. 

Kaneko, K. & Yomo, T. (1994) Cell division, differentiation and dynamic clustering. Physica D: 
Nonlinear Phenomena, 75(1), 89–102. 

Kang, C.-D. & Kim, S.-H. (2016) Effects of Regional Hyperthermia with Moderate 

Temperature on Cancer Treatment. 생명과학회지, 26(9), 1088–1096. 

Khanna, A. (2015) DNA Damage in Cancer Therapeutics: A Boon or a Curse? Cancer 
Research, 75(11), 2133–2138. American Association for Cancer Research. 

Kim, B.M. et al. (2015) Therapeutic Implications for Overcoming Radiation Resistance in 
Cancer Therapy. International Journal of Molecular Sciences, 16(11), 26880–26913. 

Kim, K.H. & Sederstrom, J.M. (2015) Assaying cell cycle status using flow cytometry. Current 
protocols in molecular biology / edited by Frederick M. Ausubel ... [et al.], 111, 28.6.1-
28.6.11. 

Kim, S.-T. et al. (1999) Substrate Specificities and Identification of Putative Substrates of 
ATM Kinase Family Members. Journal of Biological Chemistry, 274(53), 37538–37543. 
American Society for Biochemistry and Molecular Biology. 

Kittaneh, M. et al. (2013) Molecular Profiling for Breast Cancer: A Comprehensive Review. 
Biomarkers in Cancer, 5, BIC.S9455. SAGE Publications Ltd STM. 

Klymkowsky, M.W. (2019) Filaments and phenotypes: cellular roles and orphan effects 
associated with mutations in cytoplasmic intermediate filament proteins. F1000Research, 8. 
[Accessed: 10 August 2020]. 

Knox, S.S. (2010) From ‘omics’ to complex disease: a systems biology approach to gene-
environment interactions in cancer. Cancer Cell International, 10, 11. 

Kodera, N. & Ando, T. (2014) The path to visualization of walking myosin V by high-speed 
atomic force microscopy. Biophysical Reviews, 6(3), 237–260. 

Kokuryo, T. et al. (2007) Nek2 as an effective target for inhibition of tumorigenic growth and 
peritoneal dissemination of cholangiocarcinoma. Cancer Research, 67(20), 9637–9642. 
AACR. 

Koole, S. et al. (2020) Primary cytoreductive surgery with or without hyperthermic 
intraperitoneal chemotherapy (HIPEC) for FIGO stage III epithelial ovarian cancer: OVHIPEC-
2, a phase III randomized clinical trial. International Journal of Gynecologic Cancer, 30(6). 
BMJ Specialist Journals. 

Kramer, E.R. et al. (2000) Mitotic Regulation of the APC Activator Proteins CDC20 and CDH1. 
Molecular Biology of the Cell, 11(5), 1555–1569. American Society for Cell Biology (mboc). 



 80 

Lamouille, S. et al. (2014) Molecular mechanisms of epithelial–mesenchymal transition. 
Nature Reviews Molecular Cell Biology, 15(3), 178–196. Nature Publishing Group. 

Latt, S.A. (1974) DETECTION OF DNA SYNTHESIS IN INTERPHASE NUCLEI BY FLUORESCENCE 
MICROSCOPY. The Journal of Cell Biology, 62(2), 546–550. 

Lavoie, J.N. et al. (1996) Cyclin D1 Expression Is Regulated Positively by the p42/p44MAPK 
and Negatively by the p38/HOGMAPK Pathway. Journal of Biological Chemistry, 271(34), 
20608–20616. American Society for Biochemistry and Molecular Biology. 

Lee, H.O. et al. (2009) Endoreplication: polyploidy with purpose. Genes & Development, 
23(21), 2461–2477. 

Levine, M.S. et al. (2017) Centrosome Amplification Is Sufficient to Promote Spontaneous 
Tumorigenesis in Mammals. Developmental Cell, 40(3), 313-322.e5. 

Levitsky, D.I. et al. (2008) Thermal unfolding and aggregation of actin. The FEBS Journal, 
275(17), 4280–4295. 

Lind, M.J. (2008) Principles of cytotoxic chemotherapy. Medicine, 36(1), 19–23. 

Lindahl, T. & Barnes, D.E. (2000) Repair of Endogenous DNA Damage. Cold Spring Harbor 
Symposia on Quantitative Biology, 65, 127–134. Cold Spring Harbor Laboratory Press. 

Little, M.P. (2010) Cancer models, genomic instability and somatic cellular Darwinian 
evolution. Biology Direct, 5(1), 19. 

Liu, B. et al. (2015) Protecting the normal in order to better kill the cancer. Cancer Medicine, 
4(9), 1394–1403. 

Liu, Q. et al. (2000) Chk1 is an essential kinase that is regulated by Atr and required for the 
G2/M DNA damage checkpoint. Genes & Development, 14(12), 1448–1459. 

Lohez, O.D. et al. (2003) Arrest of mammalian fibroblasts in G1 in response to actin 
inhibition is dependent on retinoblastoma pocket proteins but not on p53. Journal of Cell 
Biology, 161(1), 67–77. The Rockefeller University Press. 

Longo, T.A. et al. (2016) A systematic review of regional hyperthermia therapy in bladder 
cancer. International Journal of Hyperthermia, 32(4), 381–389. Taylor & Francis. 

Lundberg, A.S. & Weinberg, R.A. (1998) Functional inactivation of the retinoblastoma 
protein requires sequential modification by at least two distinct cyclin-cdk complexes. 
Molecular and cellular biology, 18(2), 753–761. Am Soc Microbiol. 

Maccarini, P.F. et al. (2004) Optimization of a dual concentric conductor antenna for 
superficial hyperthermia applications. In: The 26th Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society. Sep, 2004. Available at: 
doi:10.1109/IEMBS.2004.1403725 



 81 

Mahmoudi, K. et al. (2018) Magnetic hyperthermia therapy for the treatment of 
glioblastoma: a review of the therapy’s history, efficacy and application in humans. 
International Journal of Hyperthermia, 34(8), 1316–1328. Taylor & Francis. 

Majka, J. & Burgers, P.M.J. (2004) The PCNA–RFC Families of DNA Clamps and Clamp 
Loaders. In: Academic Press Progress in Nucleic Acid Research and Molecular Biology. 
[Online]. Academic Press. Available at: doi:10.1016/S0079-6603(04)78006-X [Accessed: 7 
May 2020]. 

Malumbres, M. & Barbacid, M. (2001) To cycle or not to cycle: a critical decision in cancer. 
Nature Reviews Cancer, 1(3), 222–231. Nature Publishing Group. 

Malumbres, M. & Barbacid, M. (2009) Cell cycle, CDKs and cancer: a changing paradigm. 
Nature Reviews Cancer, 9(3), 153–166. Nature Publishing Group. 

Manchado, E. et al. (2010) Targeting Mitotic Exit Leads to Tumor Regression In Vivo: 
Modulation by Cdk1, Mastl, and the PP2A/B55α,δ Phosphatase. Cancer Cell, 18(6), 641–654. 

Mantso, T. et al. (2018) Hyperthermia induces therapeutic effectiveness and potentiates 
adjuvant therapy with non-targeted and targeted drugs in an in vitro model of human 
malignant melanoma. Scientific Reports, 8(1), 10724. 

Maréchal, A. & Zou, L. (2013) DNA Damage Sensing by the ATM and ATR Kinases. Cold 
Spring Harbor Perspectives in Biology, 5(9). [Accessed: 25 May 2020]. 

Markovsky, E. et al. (2018) Phosphorylation state of Ser165 in α-tubulin is a toggle switch 
that controls proliferating human breast tumors. Cellular Signalling, 52, 74–82. 

Masui, K. et al. (2013) A tale of two approaches: complementary mechanisms of cytotoxic 
and targeted therapy resistance may inform next-generation cancer treatments. 
Carcinogenesis, 34(4), 725–738. 

Matheson, C.J. et al. (2016) Targeting WEE1 Kinase in Cancer. Trends in Pharmacological 
Sciences, 37(10), 872–881. Elsevier. 

Matsuoka, S. et al. (1998) Linkage of ATM to Cell Cycle Regulation by the Chk2 Protein 
Kinase. Science, 282(5395), 1893–1897. American Association for the Advancement of 
Science. 

McGarry, T.J. & Kirschner, M.W. (1998) Geminin, an Inhibitor of DNA Replication, Is 
Degraded during Mitosis. Cell, 93(6), 1043–1053. 

McGowan, C.H. & Russell, P. (2004) The DNA damage response: sensing and signaling. 
Current Opinion in Cell Biology, 16(6), 629–633. 

McHugh, B. & Heck, M.M. (2003) Regulation of chromosome condensation and segregation. 
Current Opinion in Genetics & Development, 13(2), 185–190. 

McKinley, K.L. & Cheeseman, I.M. (2016) The molecular basis for centromere identity and 
function. Nature Reviews Molecular Cell Biology, 17(1), 16–29. Nature Publishing Group. 



 82 

McKinnon, K.M. (2018) Flow Cytometry: An Overview. Current protocols in immunology, 
120, 5.1.1-5.1.11. 

Mei, Z. et al. (2012) Counting leukocytes from whole blood using a lab-on-a-chip Coulter 
counter. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society. Aug, 2012. Available at: doi:10.1109/EMBC.2012.6347429 

Melchionna, R. et al. (2000) Threonine 68 is required for radiation-induced phosphorylation 
and activation of Cds1. Nature Cell Biology, 2(10), 762–765. Nature Publishing Group. 

Metcalf, J.L. et al. (2014) K63-ubiquitylation of VHL by SOCS1 mediates DNA double-strand 
break repair. Oncogene, 33(8), 1055–1065. Nature Publishing Group. 

Mitchison, T.J. (2012) The proliferation rate paradox in antimitotic chemotherapy. Molecular 
Biology of the Cell, 23(1), 1–6. American Society for Cell Biology (mboc). 

Morgan, D.O. (1995) Principles of CDK regulation. Nature, 374(6518), 131–134. Nature 
Publishing Group. 

Morgan, D.O. (1997) CYCLIN-DEPENDENT KINASES: Engines, Clocks, and Microprocessors. 
Annual Review of Cell and Developmental Biology, 13(1), 261–291. 

Morgan, D.O. & Roberts, J.M. (2002) Oscillation sensation. Nature, 418(6897), 495–496. 
Nature Publishing Group. 

Morise, H. et al. (1974) Intermolecular energy transfer in the bioluminescent system of 
Aequorea. Biochemistry, 13(12), 2656–2662. 

Mort, R.L. et al. (2014a) Fucci2a: A bicistronic cell cycle reporter that allows Cre mediated 
tissue specific expression in mice. Cell Cycle, 13(17), 2681–2696. Taylor & Francis. 

Mort, R.L. et al. (2014b) Fucci2a: A bicistronic cell cycle reporter that allows Cre mediated 
tissue specific expression in mice. Cell Cycle, 13(17), 2681–2696. 

Morten, B.C. et al. (2016) Comparison of Three Different Methods for Determining Cell 
Proliferation in Breast Cancer Cell Lines. Journal of Visualized Experiments : JoVE, (115). 
[Accessed: 17 July 2020]. 

Mu, C. et al. (2018) Chemotherapy Sensitizes Therapy-Resistant Cells to Mild Hyperthermia 
by Suppressing Heat Shock Protein 27 Expression in Triple-Negative Breast Cancer. Clinical 
Cancer Research, 24(19), 4900–4912. American Association for Cancer Research. 

Muir, B. & Nunney, L. (2015) The expression of tumour suppressors and proto-oncogenes in 
tissues susceptible to their hereditary cancers. British Journal of Cancer, 113(2), 345–353. 
Nature Publishing Group. 

Murray, A. (1993) The cell cycle: an introduction.  



 83 

Murshid, A. et al. (2011) Heat shock proteins and cancer vaccines: developments in the past 
decade and chaperoning in the decade to come. Expert Review of Vaccines, 10(11), 1553–
1568. Taylor & Francis. 

Musacchio, A. & Hardwick, K.G. (2002) The spindle checkpoint: structural insights into 
dynamic signalling. Nature Reviews Molecular Cell Biology, 3(10), 731–741. Nature 
Publishing Group. 

Musgrove, E.A. (2006) Cyclins: Roles in mitogenic signaling and oncogenic transformation. 
Growth Factors, 24(1), 13–19. Taylor & Francis. 

Musgrove, E.A. et al. (2011) Cyclin D as a therapeutic target in cancer. Nature Reviews 
Cancer, 11(8), 558–572. Nature Publishing Group. 

Nagy, J.A. et al. (2009) Why are tumour blood vessels abnormal and why is it important to 
know? British Journal of Cancer, 100(6), 865–869. Nature Publishing Group. 

Nakayama, K.I. & Nakayama, K. (2005) Regulation of the cell cycle by SCF-type ubiquitin 
ligases. In: Elsevier, 2005. Elsevier. 

Nicholls, S.B. et al. (2011) Mechanism of a Genetically Encoded Dark-to-Bright Reporter for 
Caspase Activity. Journal of Biological Chemistry, 286(28), 24977–24986. American Society 
for Biochemistry and Molecular Biology. 

Nicholls, S.B. & Hardy, J.A. (2013) Structural basis of fluorescence quenching in caspase 
activatable-GFP. Protein Science : A Publication of the Protein Society, 22(3), 247–257. 

North, A.J. (2006) Seeing is believing? A beginners’ guide to practical pitfalls in image 
acquisition. The Journal of Cell Biology, 172(1), 9–18. 

Nurgali, K. et al. (2018) Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to 
Improve Tolerance and Reduce Sequelae? Frontiers in Pharmacology, 9. [Accessed: 6 August 
2020]. 

Nurse, P. (2000) A Long Twentieth Century of the Cell Cycle and Beyond. Cell, 100(1), 71–78. 
Elsevier. 

O., B. et al. (2009) Lysine 269 is essential for cyclin D1 ubiquitylation by the SCFFbx4/αB-
crystallin ligase and subsequent proteasome-dependent degradation. Oncogene, 28(49), 
4317–4325. 

O’Connell, M.J. et al. (1997) Chk1 is a wee1 kinase in the G2 DNA damage checkpoint 
inhibiting cdc2 by Y15 phosphorylation. The EMBO journal, 16(3), 545–554. 

Ohguri, T. et al. (2018) Relationships between thermal dose parameters and the efficacy of 
definitive chemoradiotherapy plus regional hyperthermia in the treatment of locally 
advanced cervical cancer: data from a multicentre randomised clinical trial. International 
Journal of Hyperthermia, 34(4), 461–468. Taylor & Francis. 



 84 

Ohnishi, K. (2016) Thermo-Tolerance. In: Kokura, S. et al. (eds.) Hyperthermic Oncology from 
Bench to Bedside. [Online]. Singapore: Springer. Available at: doi:10.1007/978-981-10-0719-
4_7 [Accessed: 5 July 2020]. 

Ondracka, A. et al. (2018) Decoupling of Nuclear Division Cycles and Cell Size during the 
Coenocytic Growth of the Ichthyosporean Sphaeroforma arctica. Current Biology, 28(12), 
1964-1969.e2. 

Ormerod, M.G. & Imrie, P.R. (1990) Flow Cytometry. In: Walker, J.M. et al. (eds.) Animal Cell 
Culture Methods in Molecular Biology. [Online]. Totowa, NJ: Humana Press. Available at: 
doi:10.1385/0-89603-150-0:543 [Accessed: 27 July 2020]. 

Otto, T. & Sicinski, P. (2017) Cell cycle proteins as promising targets in cancer therapy. 
Nature Reviews Cancer, 17(2), 93–115. 

Overlack, K. et al. (2014) When Mad met Bub. EMBO Reports, 15(4), 326–328. 

Pagano, M. et al. (1992) Cyclin A is required at two points in the human cell cycle. The EMBO 
journal, 11(3), 961–971. John Wiley & Sons, Ltd. 

Pardee, A.B. (1974) A restriction point for control of normal animal cell proliferation. 
Proceedings of the National Academy of Sciences of the United States of America, 71(4), 
1286–1290. 

Patel, S.R. et al. (2005) The biogenesis of platelets from megakaryocyte proplatelets. Journal 
of Clinical Investigation, 115(12), 3348–3354. 

Pawlik, A. et al. (2013a) Hyperthermia induces cytoskeletal alterations and mitotic 
catastrophe in p53-deficient H1299 lung cancer cells. Acta Histochemica, 115(1), 8–15. 

Pawlik, A. et al. (2013b) Hyperthermia induces cytoskeletal alterations and mitotic 
catastrophe in p53-deficient H1299 lung cancer cells. Acta Histochemica, 115(1), 8–15. 

Payrastre, B. et al. (1991) Phosphoinositide kinase, diacylglycerol kinase, and phospholipase 
C activities associated to the cytoskeleton: effect of epidermal growth factor. Journal of Cell 
Biology, 115(1), 121–128. The Rockefeller University Press. 

Peter, M. et al. (1990) In vitro disassembly of the nuclear lamina and M phase-specific 
phosphorylation of lamins by cdc2 kinase. Cell, 61(4), 591–602. Elsevier. 

Petersen, B.O. et al. (2000) Cell cycle– and cell growth–regulated proteolysis of mammalian 
CDC6 is dependent on APC–CDH1. Genes & Development, 14(18), 2330–2343. 

Pickart, C.M. (2001) Mechanisms Underlying Ubiquitination. Annual Review of Biochemistry, 
70(1), 503–533. 

Pihan, G.A. (2013) Centrosome Dysfunction Contributes to Chromosome Instability, 
Chromoanagenesis, and Genome Reprograming in Cancer. Frontiers in Oncology, 3. 
[Accessed: 9 September 2020]. 



 85 

Pommier, Y. (2013) Drugging Topoisomerases: Lessons and Challenges. ACS Chemical 
Biology, 8(1), 82–95. American Chemical Society. 

Porter, A.T. et al. (1995) Brachytherapy for prostate cancer. CA: A Cancer Journal for 
Clinicians, 45(3), 165–178. American Cancer Society. 

Potten, C.S. & Loeffler, M. (1990) Stem cells: attributes, cycles, spirals, pitfalls and 
uncertainties. Lessons for and from the crypt. Development, 110(4), 1001–1020. The 
Company of Biologists Ltd. 

Prasedya, E.S. et al. (2016) Carrageenan delays cell cycle progression in human cancer cells 
in vitro demonstrated by FUCCI imaging. BMC Complementary and Alternative Medicine, 
16(1), 270. 

Prasher, D.C. et al. (1992) Primary structure of the Aequorea victoria green-fluorescent 
protein. Gene, 111(2), 229–233. 

Price, K.M. et al. (2016) Proliferation by Many Other Names: Monitoring Cell Cycle 
Progression and Cell Division by Flow Cytometry. Cytometry. Part A : the journal of the 
International Society for Analytical Cytology, 89(3), 233–235. 

Pritchard, J.R. et al. (2012) Understanding resistance to combination chemotherapy. Drug 
Resistance Updates, 15(5), 249–257. 

Quaresma, M. et al. (2015) 40-year trends in an index of survival for all cancers combined 
and survival adjusted for age and sex for each cancer in England and Wales, 1971-2011: a 
population-based study. Lancet (London, England), 385(9974), 1206–1218. 

Quintá, H.R. et al. (2011) Management of cytoskeleton architecture by molecular 
chaperones and immunophilins. Cellular Signalling, 23(12), 1907–1920. 

Rajagopalan, H. & Lengauer, C. (2004) Aneuploidy and cancer. Nature, 432(7015), 338–341. 
Nature Publishing Group. 

Ralhan, R. & Kaur, J. (2007) Alkylating agents and cancer therapy. Expert Opinion on 
Therapeutic Patents, 17(9), 1061–1075. Taylor & Francis. 

Reichl, E.M. et al. (2008) Interactions between myosin and actin crosslinkers control 
cytokinesis contractility dynamics and mechanics. Current biology: CB, 18(7), 471–480. 

Riihimäki, M. et al. (2013) Comparison of survival of patients with metastases from known 
versus unknown primaries: survival in metastatic cancer. BMC Cancer, 13, 36. 

Ringborg, U. et al. (2003) The Swedish Council on Technology Assessment in Health Care 
(SBU) systematic overview of radiotherapy for cancer including a prospective survey of 
radiotherapy practice in Sweden 2001--summary and conclusions. Acta Oncologica 
(Stockholm, Sweden), 42(5–6), 357–365. 

Rockwell, N.C. et al. (2006) PHYTOCHOME STRUCTURE AND SIGNALING MECHANISMS. 
Annual review of plant biology, 57, 837–858. 



 86 

Rockwell, S. et al. (2009) Hypoxia and radiation therapy: Past history, ongoing research, and 
future promise. Current molecular medicine, 9(4), 442–458. 

ROJAS, K. & STUCKEY, A. (2016) Breast Cancer Epidemiology and Risk Factors. Clinical 
Obstetrics and Gynecology, 59(4), 651–672. 

Romar, G.A. et al. (2016) Research Techniques Made Simple: Techniques to Assess Cell 
Proliferation. Journal of Investigative Dermatology, 136(1), e1–e7. 

Roostalu, J. & Surrey, T. (2017) Microtubule nucleation: beyond the template. Nature 
Reviews Molecular Cell Biology, 18(11), 702–710. Nature Publishing Group. 

Rubin, S.M. (2013) Deciphering the retinoblastoma protein phosphorylation code. Trends in 
Biochemical Sciences, 38(1), 12–19. 

Ryan, S.D. et al. (2012) Up-regulation of the mitotic checkpoint component Mad1 causes 
chromosomal instability and resistance to microtubule poisons. Proceedings of the National 
Academy of Sciences, 109(33), E2205–E2214. National Academy of Sciences. 

Sacristan, C. et al. (2018) Dynamic kinetochore size regulation promotes microtubule 
capture and chromosome biorientation in mitosis. Nature Cell Biology, 20(7), 800–810. 
Nature Publishing Group. 

Sage, J. et al. (2000) Targeted disruption of the three Rb-related genes leads to loss of G1 
control and immortalization. Genes & Development, 14(23), 3037–3050. 

Sakaue-Sawano, A. et al. (2008) Visualizing Spatiotemporal Dynamics of Multicellular Cell-
Cycle Progression. Cell, 132(3), 487–498. 

Sakaue-Sawano, A. et al. (2011) Drug-induced cell cycle modulation leading to cell-cycle 
arrest, nuclear mis-segregation, or endoreplication. BMC Cell Biology, 12(1), 2. 

Sakaue-Sawano, A. et al. (2017) Genetically encoded tools for optical dissection of the 
mammalian cell cycle. Molecular cell, 68(3), 626–640. Elsevier. 

Salmon, E.D. et al. (1994) High resolution multimode digital imaging system for mitosis 
studies in vivo and in vitro. The Biological Bulletin, 187(2), 231–232. Marine Biological 
Laboratory. 

Sankari, S.L. et al. (2012) Apoptosis in cancer-an update. Asian Pac J Cancer Prev, 13(10), 
4873–4878. 

Santra, M.K. et al. (2009) F-box protein FBXO31 mediates cyclin D1 degradation to induce 
G1 arrest after DNA damage. Nature, 459(7247), 722–725. Nature Publishing Group. 

Savitsky, K. et al. (1995) A single ataxia telangiectasia gene with a product similar to PI-3 
kinase. Science, 268(5218), 1749–1753. American Association for the Advancement of 
Science. 



 87 

Schiff, H. (1866) Eine neue Reihe organischer Diamine; Justus Liebigs Annalen der Chemie, 
140(1), 92–137. John Wiley & Sons, Ltd. 

Schorl, C. & Sedivy, J.M. (2007) Analysis of Cell Cycle Phases and Progression in Cultured 
Mammalian Cells. Methods (San Diego, Calif.), 41(2), 143–150. 

Sergent-Tanguy, S. et al. (2003) Fluorescent activated cell sorting (FACS): a rapid and reliable 
method to estimate the number of neurons in a mixed population. Journal of Neuroscience 
Methods, 129(1), 73–79. 

Sever, R. & Brugge, J.S. (2015) Signal Transduction in Cancer. Cold Spring Harbor 
Perspectives in Medicine, 5(4). [Accessed: 3 July 2020]. 

Seyfried, T.N. & Huysentruyt, L.C. (2013) On the Origin of Cancer Metastasis. Critical reviews 
in oncogenesis, 18(1–2), 43–73. 

Shamovsky, I. & Nudler, E. (2008) New insights into the mechanism of heat shock response 
activation. Cellular and Molecular Life Sciences, 65(6), 855–861. 

Shan, J. et al. (2009) Suppression of Cancer Cell Growth by Promoting Cyclin D1 
Degradation. Molecular Cell, 36(3), 469–476. 

Shcherbakova, D.M. & Verkhusha, V.V. (2013) Near-infrared fluorescent proteins for 
multicolor in vivo imaging. Nature methods, 10(8), 751–754. 

Sher, N. et al. (2013) Fundamental differences in endoreplication in mammals and 
Drosophila revealed by analysis of endocycling and endomitotic cells. Proceedings of the 
National Academy of Sciences of the United States of America, 110(23), 9368–9373. 

Smith, A. (2020) Economic burden of cancer costs UK £7.6bn a year. PharmaTimes Media 
Limited. Available at: 
http://www.pharmatimes.com/news/economic_burden_of_cancer_costs_uk_7.6bn_a_year
_1321994 [Accessed: 9 April 2020]. 

Song, C.W. et al. (2001) Improvement of Tumor Oxygenation by Mild Hyperthermia. 
Radiation Research, 155(4), 515–528. Allen Press. 

Sørensen, C.S. et al. (2003) Chk1 regulates the S phase checkpoint by coupling the 
physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. 
Cancer Cell, 3(3), 247–258. 

Staal, J. et al. (2018) Engineering a Minimal 1185 Bp Cloning Vector from a Puc18 Plasmid 
Backbone with an Extended Multiple Cloning Site.  

Staal, J. et al. (2019) Engineering a minimal cloning vector from a pUC18 plasmid backbone 
with an extended multiple cloning site. BioTechniques, 66(6), 254–259. Future Science. 

Swaney, D.L. et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in 
protein degradation. Nature Methods, 10(7), 676–682. Nature Publishing Group. 



 88 

Tang, L. et al. (2018) Role of metabolism in cancer cell radioresistance and radiosensitization 
methods. Journal of Experimental & Clinical Cancer Research : CR, 37. [Accessed: 11 August 
2020]. 

Thorn, K. (2017) Genetically encoded fluorescent tags. Molecular Biology of the Cell, 28(7), 
848–857. 

Thornton, B.R. & Toczyski, D.P. (2003) Securin and B-cyclin/CDK are the only essential 
targets of the APC. Nature Cell Biology, 5(12), 1090–1094. Nature Publishing Group. 

Tohme, S. et al. (2017) Surgery for Cancer: A Trigger for Metastases. Cancer Research, 77(7), 
1548–1552. American Association for Cancer Research. 

Toraya-Brown, S. et al. (2013) Phagocytes mediate targeting of iron oxide nanoparticles to 
tumors for cancer therapy. Integrative Biology, 5(1), 159–171. Oxford Academic. 

Toufektchan, E. & Toledo, F. (2018) The Guardian of the Genome Revisited: p53 
Downregulates Genes Required for Telomere Maintenance, DNA Repair, and Centromere 
Structure. Cancers, 10(5). [Accessed: 7 May 2020]. 

Umar, A. et al. (1996) Requirement for PCNA in DNA Mismatch Repair at a Step Preceding 
DNA Resynthesis. Cell, 87(1), 65–73. 

Umar, A. & Kunkel, T.A. (1997) DNA-replication fidelity, mismatch repair and genome 
instability in cancer cells. In: Christen, P. & Hofmann, E. (eds.) EJB Reviews 1996 EJB 
Reviews. [Online]. Berlin, Heidelberg: Springer. Available at: doi:10.1007/978-3-642-60659-
5_9 [Accessed: 7 May 2020]. 

Vakifahmetoglu, H. et al. (2008) Death through a tragedy: mitotic catastrophe. Cell Death & 
Differentiation, 15(7), 1153–1162. Nature Publishing Group. 

Vasiliadou, R. (2020) Virtual laboratories during coronavirus (COVID-19) pandemic. 
Biochemistry and Molecular Biology Education. Wiley Online Library. 

Vembadi, A. et al. (2019) Cell cytometry: review and perspective on biotechnological 
advances. Frontiers in Bioengineering and Biotechnology, 7. Frontiers Media SA. 

Vermeulen, K. et al. (2003) The cell cycle: a review of regulation, deregulation and 
therapeutic targets in cancer. Cell Proliferation, 36(3), 131–149. 

Voellmy, R. (1994) Transduction of the stress signal and mechanisms of transcriptional 
regulation of heat shock/stress protein gene expression in higher eukaryotes. Critical 
Reviews in Eukaryotic Gene Expression, 4(4), 357–401. 

Vorsanova, S.G. et al. (2010) Human interphase chromosomes: a review of available 
molecular cytogenetic technologies. Molecular Cytogenetics, 3(1), 1. 

Walczak, C.E. et al. (2010) Mechanisms of chromosome behaviour during mitosis. Nature 
Reviews Molecular Cell Biology, 11(2), 91–102. Nature Publishing Group. 



 89 

Walter, H.S. & Ahmed, S. (2018) Targeted therapies in cancer. Surgery (Oxford), 36(3), 122–
127. 

Wang, K. et al. (2010) In vivo imaging of tumor apoptosis using histone H1-targeting 
peptide. Journal of Controlled Release, 148(3), 283–291. 

Wang, S. et al. (2011) Abnormal expression of Nek2 and β-catenin in breast carcinoma: 
clinicopathological correlations. Histopathology, 59(4), 631–642. 

Watmough, D.J. & Ross, W.M. (1986) Hyperthermia: Clinical and scientific aspects. Blackie 
and Son, Glasgow. 

Weaver, B.A. (2014) How Taxol/paclitaxel kills cancer cells. Molecular Biology of the Cell, 
25(18), 2677–2681. 

Wilson, M.H. et al. (2007) PiggyBac Transposon-mediated Gene Transfer in Human Cells. 
Molecular Therapy, 15(1), 139–145. 

Wordeman, L. (2010) How Kinesin Motor Proteins Drive Mitotic Spindle Function: Lessons 
from Molecular Assays. Seminars in cell & developmental biology, 21(3), 260–268. 

Wright, P. et al. (2019) Differential expression of cyclin-dependent kinases in the adult 
human retina in relation to CDK inhibitor retinotoxicity. Archives of Toxicology, 93(3), 659–
671. 

Yano, S. et al. (2014) Selective methioninase-induced trap of cancer cells in S/G2 phase 
visualized by FUCCI imaging confers chemosensitivity. Oncotarget, 5(18), 8729–8736. 

Yu, H. (2002) Regulation of APC–Cdc20 by the spindle checkpoint. Current Opinion in Cell 
Biology, 14(6), 706–714. 

Yusa, K. et al. (2011) A hyperactive piggyBac transposase for mammalian applications. 
Proceedings of the National Academy of Sciences, 108(4), 1531–1536. National Acad 
Sciences. 

Zagar, T.M. et al. (2010) Hyperthermia for locally advanced breast cancer. International 
journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, 
North American Hyperthermia Group, 26(7), 618–624. 

van der Zee, J. (2002) Heating the patient: a promising approach? Annals of Oncology, 13(8), 
1173–1184. 

Zhou, B.-B.S. & Elledge, S.J. (2000) The DNA damage response: putting checkpoints in 
perspective. Nature, 408(6811), 433–439. Nature Publishing Group. 

Zhu, S. et al. (2015) Culture at a Higher Temperature Mildly Inhibits Cancer Cell Growth but 
Enhances Chemotherapeutic Effects by Inhibiting Cell-Cell Collaboration. PLOS ONE, 10(10), 
e0137042. 

 



 90 

 

 

 

  


