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Abstract

How do young star-forming galaxies evolve with cosmic time? Exten-
sive work has been done over the past years on the discovery and
follow-up of numerous galaxies at the highest redshifts (look-back
times). However, most surveys aim for deep observations in small
volumes which often are not enough to detect the brightest (but also
rarer) sources. Comparing multiple studies/samples in an unbiased
way can also be challenging due to different selection methods. A
large volume program, which probes multiple look-back times using
the same method, would greatly contribute to our understanding of

how galaxies evolve in the distant Universe.

In this thesis, we use 12(+4) medium(+narrow) band images to iden-
tify ~ 4000 z ~ 2 — 6 Lyman-a emitters (LAEs) over 2 deg? in
the COSMOS field, producing the SC4K (Slicing COSMOS with 4k
LAEs) sample. Lyman-« (Ly«) emission is typically associated with
young star-forming galaxies (but also active galactic nuclei, AGNs).
We use these ~ 4000 LAEs to produce a 3D map of the early Uni-
verse, in 16 individual redshift slices, providing a unique sample to
explore galaxy evolution, with all sources being selected using the
same self-consistent selection method. We construct Lya luminosity
functions (LFs) with our LAEs selected over a very wide co-moving
volume (108 Mpc?), complementing ultra-deep surveys. The Schechter
component of the Lya LF reveals a ~ 5X rise in Lj, , and a ~ 7x
decline in @7, from z ~ 2 to 6. At 2 ~ 2 — 3 we find an excess

0%3 ergs™!) which

in number densities at high luminosities (Liyo > 1
is consistent with a higher AGN fraction at those luminosities. This

excess is not detected or falls below our detection limits at z > 4.



We measure a Lya luminosity density increase by a factor of ~ 2 from
z ~ 2 to 3, which then remains constant to z ~ 6, which contrasts
the ultraviolet (UV) luminosity density decrease at the same redshift
ranges. The Lya/UV luminosity density ratio rises from 4% to 30%

from 2z ~ 2.2 to 6.

We conduct aperture photometry for individual SC4K LAEs, us-
ing 34 bands of deep multi-wavelength data in the COSMOS field
from rest-frame UV to far-infrared (FIR), to measure their individ-
ual spectral energy distributions (SEDs). We find typical stellar
masses 10%3*%6 M, and star formation rates (SFR) of SFRsgp =
4.47%° Mg yr~! and SFRyy, = 5.975% My yr~!, combined with very
blue UV slopes of f = —2.170% but with significant variations within
the population. Overall, we measure little to no evolution of the Lya
EW,y and scale length parameter (wg) which are consistently high
(EWo = 140720 A wy = 129711 A) from 2z ~ 6 to z ~ 2, although
wy is anti-correlated with rest-frame UV luminosity (Myy) and stellar
mass. Our results imply that sources selected as LAEs have a high
Lya escape fraction (fescya) irrespective of cosmic time, but fes rya
is still higher for UV-fainter and lower mass LAEs. We also find that
the least massive LAEs are typically above the star formation “Main
Sequence” and thus undergoing intense star formation, which could

be explained by a bursty nature.

Furthermore, we measure the evolution from z ~ 2 to z ~ 6 of the
rest-frame UV luminosity function (LF) and the stellar mass function
(SMF) of the SC4K sample. We explore a range of 6 dex in Myy
and 5 dex in M,, which is unprecedented for such a large sample of
LAEs, covering such a redshift range. For both the LFs and SMFs,
we find that the Lya luminosity limit significantly affects the shape
and Schechter parameters of the distributions. As such, to probe for
evolution in an unbiased way, we study a subset of the SC4K sample,
with Lyye > 10%%ergs™, which is a luminosity regime probed at all
redshift ranges. For the UV LF of these LAEs, we find a characteristic



number density (®*) increase from log;,(®*/Mpc™3) ~ —5.2 at z =
2.5 to ~ —4.6 at z ~ 3, remaining constant up to z ~ 5 — 6 and a
characteristic UV luminosity (Mj},,) brightening from -21.1 at z ~ 3
to -22.0 at z ~ 5 — 6. We find no significant evolution of the SMF
of these LAEs with redshift, with log;,(®*/Mpc™3) staying constant
at ~ —5.5 from z ~ 2.5 to z ~ 6 and the characteristic stellar mass
staying constant at log,,(M*/Mg) ~ 10.7 for the same redshift range.
We measure that the UV luminosity density (pyy) changes from 10242
to 109 erg s™! Hz~! Mpc™ and the stellar mass density (pyr) remains
constant at ~ 10%° Mg Mpc—3, with both always being smaller than
literature measurements from continuum-selected galaxies. Both pyy
and py; of LAEs converge to the measurements of continuum-selected
galaxies at z > 6, which suggests a key role of LAEs in the epoch of

reionisation.

Overall, our results show that LAEs are a unique subset of the star-
forming population, and that as we move to higher redshifts, LAEs
become more and more representative of the full population of galax-
ies.

The SC4K sample is made fully public, together with derived physical

properties, so the community can fully benefit from this work.
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Chapter 1

Introduction

The evolution of the Universe across cosmic time is one of the most complex topics
humanity has ever attempted to grasp. Over the past century, with great effort
and dedication from the astrophysics community, a picture of how the Universe
and its contents evolve with time has started to emerge. This chapter aims to
briefly portray our current understanding of the Universe, and outline how this

thesis contributes to that knowledge.

1.1 Theoretical framework: ACDM Universe

As we attempt to probe the physics behind galaxy formation and evolution, it is
fundamental to start by outlining the cosmological framework, as it models the
initial conditions and seeds necessary to form primordial galaxies, which evolve
into the galaxies we will study in this thesis.

The ACDM cosmological model (A Cold Dark Matter, with A being the cos-
mological constant), regarded as the “standard model” of the Universe, provides
predictions for the evolution of the Universe since its initial stage, the Big Bang.
As the Universe expands, and gradually becomes less dense and cools down, it
eventually reaches a stage where gravity can dominate at small scales and struc-
ture can form. ACDM is built on the cosmological principle, which states that at

large scales the Universe is homogeneous and isotropic, and thus an observer will
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not be favoured by their position or by the direction they observe. It provides
good explanations for observables such as the anisotropy of the Cosmic Microwave
Background (CMB, Penzias & Wilson, 1965; Planck Collaboration et al., 2018)
and the accelerated expansion of the Universe (Perlmutter et al., 1999; Riess
et al., 1998).

1.1.1 Cosmological parameters

According to the ACDM model, the energy density of the Universe can be divided
into four components: matter (€y), dark energy (€24, the term that drives the
expansion of the Universe), radiation (Q2g) and curvature (2x). These cosmolog-
ical parameters have been constrained by measuring the power spectrum of the
CMB (Planck Collaboration et al., 2018; Spergel et al., 2003), the distances of
type la supernovae (Perlmutter et al., 1999; Riess et al., 1998) and through weak
gravitational lensing (Abbott et al., 2018; Hildebrandt et al., 2017). Although
there is some tension between measurements, they point towards a non-zero {2,
(and thus a non-zero cosmological constant A) that drives an accelerated expan-
sion of the Universe. The latest Planck Collaboration et al. (2018) results' are
On = 0.3111, 24 = 0.6889, Qr ~ 0 and Qk ~ 0 (consistent with a spatially flat
Qx = 0 Universe), with the latter two being negligible at the present day. ACDM
places the age of the Universe at 13.787 Gyr.

The matter component can be further divided into baryonic (€2, = 0.0490)
and (cold) dark matter (£2. = 0.2589). This means that the matter we can ob-
serve directly (baryonic) only constitutes 1/6 of the total mass and ~ 5% of the
total energy density of the Universe. Dark matter particles have never been di-
rectly observed, however, the existence of a non-negligible amount of matter that
does not emit light but interacts gravitationally is necessary to explain multiple
observational evidence. Some examples include: the velocity of galaxies in the
Coma Cluster (Abell 1656) is too high for the cluster to remain bound together

with the observed mass (Zwicky, 1933); movement of companions around the

L All values stated in this section are obtained from Planck Collaboration et al. (2018), Table
2, last column. €2 is computed from Qyh?, with h = Hy/100kms~! Mpc~! and Hy = 67.66 km
s~ Mpc!
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Milky Way requires massive haloes (Einasto et al., 1974); rotation speeds of stars
in the Milky Way is found to be significantly higher than the predicted estimates
for the observable mass (Rubin et al., 1980); spatial offset between the centre of
the total mass and the centre of the baryonic mass peaks on the Bullet Cluster
(Clowe et al., 2006; Markevitch et al., 2002); simulations have shown that primor-
dial galaxy formation in the early Universe requires dark matter haloes (Navarro
et al., 1997; Tormen et al., 1997, see Section 1.1.2 for a more detailed explanation
on primordial galaxy formation).

Throughout this thesis, for simplicity and direct comparison with the liter-
ature, we use a ACDM cosmology with Hy = 70kms~! Mpc™!, Oy = 0.3 and
Qp =0.7.

1.1.2 Formation of primordial galaxies

A Universe that follows the cosmological principle with no fluctuations would
have stayed uniform and isotropic, and no structure would ever form. However,
this is evidently not the case. Guth (1981) proposed a rapid period of exponential
expansion right after the Big Bang, the inflation. This period allows density per-
turbations to originate from quantum fluctuations. These density perturbations,
made of baryonic and dark matter, would become the seeds for primordial galaxy
formation.

As the Universe expands and cools down, gravity can now dominate at small
scales. Higher density regions will attract more matter and become denser, while
voids will become emptier. White & Rees (1978) proposed a two-stage theory for
galaxy formation and clustering. (Cold) dark matter, which is collisionless and
will thus not heat up, will collapse and relax into so called dark matter haloes.
Baryonic mass will then fall into the potential wells created by the dark matter
haloes. As the gas is infalling, its gravity will dominate over the dark matter
halo, and it will collapse in clumps, originating stars. Dark matter haloes can
grow by merging with other dark matter haloes.

The formation of stars through gravitational collapse of gas is heavily influ-
enced by gas cooling. As the gas compresses, it heats, with radiative cooling

removing the excess energy. In this period of the Universe, only light elements
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(hydrogen, helium) are present, which are very inefficient at cooling, with the
main cooling mechanism being through Hs; molecules (Palla et al., 1983; Silk,
1977). This leads to the first generation of stars (Population III, Pop III) being
very massive, with earlier works predicting masses up to 1000 My, (Nakamura &
Umemura, 2001) or even higher (Bond et al., 1984; Carr et al., 1984). The shape
of the Initial Mass Function (IMF)! of Pop III stars and its boundaries? is chal-
lenging to estimate, but significant progress has been made in constraining them
through simulations (Nakamura & Umemura, 2001). Due to their high mass, Pop
IIT stars are very bright and short-lived. After ~ 100 Myr, 10-35 M Pop III stars
explode into type Il supernovae (Nakamura & Umemura, 2001), releasing heavy
elements into the IGM.

The first sources of light produce ioniosing photons which gradually turn a
then neutral Intergalactic Medium (IGM) into an ionised one (e.g. Couchman
& Rees, 1986; Fukugita & Kawasaki, 1994; Ostriker & Gnedin, 1996), with this
period being aptly named the epoch of reionisation (EoR). The reionisation of
the Universe was likely driven by two types of sources, quasars and star-forming
galaxies. The relative contribution of each and whether their contributions are
even enough to reionise the Universe remain big open questions which high red-
shift studies strive to answer (see e.g. Verhamme et al., 2017). Quasars do not
seem to be able to reionise the Universe by themselves (e.g. Cowie et al., 2009;
Fontanot et al., 2012), but a population of faint Active Galactic Nucleus (AGN)
recently reported by Giallongo et al. (2015) could provide the missing contribu-
tion assuming a 100% escape of ionising photons. Similarly, star-forming galaxies
could in principle reionise the Universe if enough ionising photons and thus Ly-
man Continuum radiation (LyC) escapes to the IGM. The escape fraction of LyC
photons and the escape fraction of Ly« photons is correlated (Dijkstra, 2017),
and Lya has been shown to escape more easily from UV-faint galaxies (Dijk-
stra, 2017). This population of UV faint galaxies which have high escape of Ly«
photons (and LyC photons) could have the necessary conditions to reionise the
Universe, and the discovery of galaxies with these properties provides a better

understanding of reionisation.

lempirical function that quantifies the initial mass distribution of a stellar population
2lower and upper mass limits at which stars are allowed to form for a specific IMF
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Planck Collaboration et al. (2018) places the EoR at z = 7.82+0.71 (assuming
an instantaneous reionisation) but studies of the Lyman forest of quasars have
shown that it extends until z ~ 6 (Fan et al., 2006). In fact, multiple studies
have proposed the EoR as being a patchy inhomogeneous period with preferred
locations (e.g. Matthee et al., 2015; Santos et al., 2016), with galaxies emitting
ionising radiation and carving ionised bubbles around them (e.g. Cen & Haiman,
2000; Hu et al., 2016; Mason & Gronke, 2020; Matthee & Sobral, 2020; Matthee
et al., 2018).

1.2 Observational tools to explore the z > 2 Uni-
verse

With the basic principles of primordial galaxy formation in a ACDM Universe now
laid out, we will cover the observational bases and tools necessary to directly (or
indirectly) find galaxies in the distant (z > 2) and young (< 2 Gyr) Universe, and
to measure their properties throughout cosmic time. During the past two decades,
giant leaps have been taken in our understanding of early galaxy evolution, mostly
due to the advent of a plethora of multi-wavelength data, with increasing depth
and resolution, from state-of-the-art facilities such as the Hubble Space Telescope
(HST), the Very Large Telescope (VLT) and the Atacama Large Millimeter Array
(ALMA), among many others.

1.2.1 Overview of the spectral energy distribution of a
galaxy

A galaxy consists mainly of stars, gas and dust gravitationally bound together in
a dark matter halo. Each star emits approximately as a black body, with the in-
tensity at some wavelength being a function of its temperature. Emitted radiation
will interact with the gas and recombine in the form of emission lines. Dust ab-

sorbs emission as a function of wavelength and re-emits in the mid- to far-infrared
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(MIR, FIR). The total emission of a galaxy will be all these individual (but in-
terlinked) components summed together. Disentangling all this information to
obtain intrinsic properties of a galaxy such as its stellar mass can be a daunting
task. We show in Figure 1.1 a fiducial spectral energy distribution (SED) tem-
plate of observed emission from a z = 3 galaxy at different wavelengths, from
X-ray to radio, and the causes of emission.

The stellar component (emission from stars) directly contributes to the SED
from rest-frame ultraviolet (UV) to infrared (IR). Blueward of rest-frame 912 A
(Lyman limit, with 912 A being the photoionisation potential of the atomic hy-
drogen) there is a distinct characteristic break (Lyman break), where the flux
abruptly drops to zero. This is a consequence of radiation more energetic than
the Lyman limit being easily absorbed by neutral gas in star-forming regions. The
detection and position of this break has been extensively used in high redshift
searches (see Section 1.2.2.1). Nebular emission from gas that gets ionised from
e.g. photons from young stars will emit from optical to FIR, most significantly
in the form of emission lines, which have also been extensively used to select
and follow-up high redshift galaxies (see Section 1.2.2.2). Thermal emission from
dust happens when emission from e.g. stars gets absorbed by dust and re-emitted
approximately as a blackbody in the FIR.

Additionally, a galaxy can have very significant contribution from an AGN,
i.e. from the supermassive black hole in the centre of a galaxy in the process
of accreting matter, which when active can boost emission across the full wave-
length spectrum. AGN can have X-ray emission from inverse Compton effect
and Synchrotron radiation, UV-NIR emission from the disk and torus, and radio
Synchrotron emission from radio AGN. It is important to establish whether a
galaxy has an active AGN boosting its photometry before deriving physical prop-
erties from its spectral energy distribution. While the central supermassive black
hole is very small in size compared to the scale of a galaxy, it can dominate the
emission at certain wavelengths. Additionally, the supermassive black hole even
seems to regulate galaxy processes, with the peak of super massive black holes
activity coinciding with the peak of star-formation history (e.g. Aird et al., 2010;
Calhau et al., 2017; Delvecchio et al., 2014; Shankar et al., 2009).
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Figure 1.1: Overview of observed emission from a z = 3 star-forming galaxy with
an AGN, identifying the key mechanisms that originate emission at different wave-
lengths, from X-ray to radio. We show the contribution from the stellar component
(light blue line), nebular emission (including Lyc, black line) and thermal emission
from dust and PAHs” (red line). Shaded regions show the contribution from the
AGN disk (blue) and torus (red), and X-ray emission from inverse Compton effect
and Synchrotron radiation (green). The dark blue line is the contribution from X-
ray binaries. X-ray hard Synchrotron with no absorption (green dotted line, left)
and the radio Synchrotron emission from radio AGN and supernovae (green dashed
line). The telescopes Chandra, Herschel and VLA can follow up the template z = 3
galaxy in the X-ray, FIR and radio, respectively. The grey shaded regions mark
the Chandra and VLA filters for such a multi-wavelenght follow-up in Calhau et al.
(2020), credited for this figure.

?PAHs (polycyclic aromatic hydrocarbons) are associated with strong emission lines which
can dominate the MIR spectrum of star-forming galaxies (e.g. Cortzen et al., 2019).
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1.2.2 Observational strategies to hunt for distant galaxies

Multiple strategies have been deployed to search for young galaxies in the distant
Universe. Here, we focus on two main approaches: rest-frame UV continuum

searches and emission line searches.

1.2.2.1 Rest-frame UV continuum searches

UV searches have successfully used the Lyman break selection technique (Steidel
et al., 1996a) to select tens of thousands of galaxies at z ~ 2 — 10 (e.g. Bouwens
et al.,; 2015; Bunker et al., 2004; Finkelstein et al., 2015; Ono et al., 2018; Reddy
& Steidel, 2009; Steidel et al., 1999), by searching for a characteristic feature of
galaxy emission: the redshifted Lyman break (see Section 1.2.1). In Figure 1.2 we
provide an example of the photometric profiles of Lyman Break galaxies (LBGs),
showing the sharp break in photometry from stacked broad band imaging in 8
bands of 754 LBGs in the range z =5 — 6 (McLure et al., 2009).

Typical strategies to detect LBGs focus on obtaining extremely deep observa-
tions of small areas of the sky (e.g. Bouwens et al., 2010, 2015; Finkelstein et al.,
2015), targeting well-known patches of the sky such as the Hubble Ultra Deep
field. Sources selected this way are typically too faint for spectroscopic follow-up
and for multi-wavelength follow-up with e.g. ALMA. Multiple studies have also
resorted to targeting clusters to search for gravitationally lensed high redshift
galaxies (e.g. Atek et al., 2015; Bartelmann, 2010; Zitrin et al., 2015), which re-
veals even fainter populations that require amplification to be detected. Sources
selected this way are typically also difficult to follow up and require lensing mod-
elling to reconstruct the amplified image. Some other studies have targeted wider
areas (e.g. Bowler et al., 2017; Ono et al., 2018), which has led to the discovery of
brighter LBGs, pushing the observing limits of z = 4 LBGs from Myy ~ —23 to
as bright as Myy ~ —26. While a significant fraction of these extremely bright
Myy sources are AGN (Ono et al., 2018), they reveal an important population
which statistically can only be detected by probing large volumes (~ 1 source per
108 Mpc?), which can be ~ 2 — 3 orders of magnitude larger than volumes probed

by typical surveys.
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Figure 1.2: Stacked photometry in 8 broad bands of 754 galaxies at z =5—6. A
sharp break in colour, associated with the Lyman break, is visible in the top left
panels. Top row: BVRi’. Bottom row: z’JHK. Credit McLure et al. (2009).

1.2.2.2 Rest-frame optical emission line surveys

Alternatively, some studies have selected large samples of galaxies by searching for
their most prominent features: emission lines. Up to z ~ 2.2, Ha (Ayest = 6563 A)
has been commonly used to select and study star-forming galaxies (SFGs). Ha is
a non-resonant line, requiring only a dust correction when converting luminosity
to star-formation rate (see Section 1.2.3, and see also Sobral et al. (2013) for SFR
measurements of Ha emitters at z = 0.40 — 2.23). At higher redshifts, which we
aim to probe in this thesis, Ha gets redshifted into the MIR and can no longer be
observed from ground-based telescopes, with alternatives being necessary until
new generations of space telescopes are capable of conducting Ha surveys. Lya
(Arest = 1216 A), being intrinsically the brightest emission line in the UV-optical
range due to the abundance and nature of atomic hydrogen, is an option to explore
the z > 2 Universe. It has been very successful in selecting high redshift galaxies
(see Section 1.4), albeit its complex radiative transfer and resonant nature make
it challenging to interpret (for a review see Dijkstra, 2017). Constructing large
samples of galaxies with Lya emission and studying their evolution across cosmic

time is the focus of this thesis.
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1.2.3 Quantifying galaxy activity: star-formation rates

As we seek to measure galaxy evolution, we introduce a key parameter which
quantifies how active a galaxy is: the star-formation rate (SFR), i.e. the mass of
stars formed per unit of time. While stellar formation occurs with the collapse of
clouds of gas in star-forming regions, resolving such regions individually within
a z > 2 galaxy is not possible with current instrumentation and techniques (al-
though there is significant progress in simulations to reach ~10pc resolutions,
e.g. Agertz & Kravtsov, 2015; Muratov et al., 2015; Shimizu et al., 2019). We
can thus only estimate the SFR of the entire galaxy system, and measurements
should be interpreted as the total SFR of the whole galaxy. As the only observ-
able is emission at different wavelengths, inferring the rates of stellar formation in
galaxies is thus a problem of measuring mass from light (for a review see Madau
& Dickinson, 2014).

The process of forming stars creates signatures, which we can use to trace and
measure the SFR. These tracers of star-formation are mostly associated with the
presence (or death in the form of supernovae) of very massive O and B stars, which
are short-lived and emit vast amounts of ionising photons. These include direct
tracers such as the UV light, which is directly emitted by these very massive stars,
or more indirect tracers such as nebular emission in the form of e.g. Ha and Ly«
(with the later being harder to translate directly into SFR due to the complex
radiative transfer associated with this line, see Section 1.3.3) and also infrared
emission due to dust absorbing UV radiation and re-emitting in the MIR-FIR.
All these calibrations are based on estimating the Lyman continuum emitted by
the most massive stars and inferring the contribution of the full stellar population
under some assumptions of the initial mass function (within a mass boundary)

and a prescription of stellar evolution.

e UV as a SFR tracer

UV light traces recent star-formation in the past 100 Myr (e.g. Boselli et al.,
2001; Salim et al., 2009), as very hot and massive stars that emit copious
UV radiation are short-lived, with their detection being evidence of a recent
episode of star-formation. Very massive stars dominate emission in UV,

around 1500 A, and we can use this wavelength range to estimate the SFR.

10



1.2 Observational tools to explore the z > 2 Universe

Assuming a Salpeter (1955) IMF with mass range 0.1-100 My!, and the
prescription from Madau et al. (1998) we can estimate SFR directly from
the UV luminosity as (Kennicutt, 1998):

SFRyv [Me yr~!] = 1.4 x 107L,, (1.1)

with L, being the UV luminosity in ergs™' Hz™!, computed at rest-frame
1500 A . Tt should be noted that UV radiation is very susceptible to dust

extinction, and these SFRs require a dust correction.

e FIR as a SFR tracer

Dust preferentially absorbs UV photons due to the high cross section of its
grains, and then radiates as a blackbody, with the intensity of the FIR emis-
sion scaling with the intensity of radiation that is absorbed. FIR can thus
be used as an indirect measurement of the UV light (if we can estimate how
much is absorbed) and it is thus an indirect tracer of star-formation. SFR
can be estimated from the FIR luminosity (Lgr) by applying the models of
Leitherer & Heckman (1995) for continuous bursts of age 10 — 100 Myr, and
adopting a Salpeter (1955) IMF, yielding the relation (Kennicutt, 1998):

SFRpr Mo yr '] = 4.5 x 107 "L, (1.2)

with Lprg in ergs™!. The FIR provides a window into obscured SFR.

e Nebular lines as SFR tracers

Very massive O and B stars ionise HII regions and originate nebular emis-
sion, in the form of lines such as Ha and Lya. These nebular lines trace
star-formation activity of very massive stars and can be used to estimate the
SFR. For solar abundances and the same Salpeter (1955) IMF (0.1—100 M)
that was used in deriving Equation 1.1, the calibrations of Kennicutt et al.
(1994) and Madau et al. (1998) yield (Kennicutt, 1998):

! An assumption of the IMF and its mass boundaries is necessary to estimate the total SFR,
so we can extrapolate the UV emission (traces mostly the contribution from the very massive
stars) to lower masses.

11
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SFRi, Mo yr 1] = 7.9 x 10" * Ly, (1.3)

with Ly, in erg s71.

Due to Lya’s resonant nature (see Section 1.3.3), converting Lya luminosity
to SFR is much more challenging, as the percentage of Lya photons that
can escape a galaxy can be very uncertain. However, it is possible to infer
Ha luminosity from Lya luminosity if we can predict the escape fraction
(see Section 1.3 for full details) and assuming case-B recombination (Brock-
lehurst, 1971). For a Salpeter (Chabrier) IMF (0.1 —100 M) and assuming
fese Lyc = 0, the SFR becomes (Sobral & Matthee, 2019, we provide a more

detailed explanation of the derivation of this equation in Section 1.3.3):

- Live X 7.9(4.4) x 10742
SFRLya [MQ yr 1] - - 0 04(2 E\?Vo 7

(1.4)

with Ly, in erg st and EW, in A.

1.2.4 Cosmic star-formation history

The measurement of the cosmic star-formation density (pspr), i.e. mass of stars
formed per unit of time per unit of volume at each epoch of the Universe, offers a
global overview of the evolution of the Universe. Multiple studies with indepen-
dent approaches have measured pspr over the past ~ 12 Gyrs and we now have
a well-defined picture of how the star-formation history of the Universe evolves
with time. We show in Figure 1.3 pspr measurements from four distinct methods,
using continuum UV and FIR (see Madau & Dickinson (2014) for a review) or
emission lines Ha (Sobral et al., 2013), [O11] and HS + [Omi1] (Khostovan et al.,
2015). The peak of pspr is found to occur at ~ 2 — 3 (e.g. Karim et al., 2011;
Lilly et al., 1996; Madau et al., 1996), indicating galaxies were on average forming
more stars during this period (cosmic noon), with a subsequent decline for lower
(e.g. Sobral et al., 2013) and higher redshifts (e.g. Bunker et al., 2010; Khostovan
et al., 2015; Stanway et al., 2003). This results in about half of all stellar mass
already being formed by z = 1 (e.g. Bundy et al., 2005; Mortlock et al., 2011).

12
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Figure 1.3: Cosmic star-formation history estimated through different ap-
proaches: UV (top left, credit Madau & Dickinson (2014)), IR (bottom left, credit
Madau & Dickinson (2014)), Ha (top right, credit Sobral et al. (2013)), [O11] and
HS + [O1m] (bottom right, credit Khostovan et al. (2015)). The evolution of pgrr
with redshift gives a global overview of galaxy evolution in the Universe, painting
a picture where galaxies were on average forming more stars at z ~ 2 — 3 and are
on average less active at both lower and higher redshifts.
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1.3 Lyman-a: a powerful tool to probe the high-

redshift Universe

Hydrogen is the most abundant element of the Universe, currently composing
~ 75% of the total baryonic mass (Planck Collaboration et al., 2018). Radiative
transfers of this element are thus present everywhere, and become a powerful
tool to study galaxy formation and evolution. The presence of hydrogen lines has

indeed been shown to be ubiquitous in the early Universe:

“Nearly 100% of the sky is covered by Lyman-« emission around high
redshift galaxies” - Wisotzki et al. (2018)

We show in Figure 1.4 the detection of the Lyman-a (Lya; Ao = 1215.67 A)
transition of the hydrogen atom at z = 3 — 6, using data from the MUSE in-
strument. Lya extended emission covers most of the sky when probing faint
enough surface brightnesses, highlighting its significance when studying the early
Universe.

Historically, Lya was first predicted to be associated with young star-forming
galaxies by Partridge & Peebles (1967):

“It seems possible that the Lyman-a line might be detected if it is a
strong feature of the spectra of young galaxies.” - Partridge & Peebles
(1967)

This rests on the assumption that very young, massive and short-lived O and
B stars emit large amounts of ionising photons which first ionise the gas, then
the electrons recombine into atoms in the vast clouds of hydrogen that surround
star-forming regions. The resulting recombination lines, including Ly, would be
indicative of the existence of on-going star-formation activity and could thus be
used to find young star-forming galaxies. Ever since this prediction, Ly« (either
in emission or absorption) has become a very powerful and widely used tool to
explore the distant Universe. In addition to being used to select young star-
forming galaxies at z > 2 (e.g. Cowie & Hu, 1998; Malhotra & Rhoads, 2004;
Rhoads et al., 2000, 2003), it has been used to map the neutral state of the

14
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Figure 1.4: Distribution of the observed Ly« emission in the Hubble Ultra Deep
Field. The extended Ly« emission (shown in blue), obtained by the Integral Field
Unit MUSE, is the sum of the Lya emission in the range 3 < z < 6. This is

superimposed over a colour composite image obtained by HST. Credit Wisotzki
et al. (2018).

Universe across cosmic time through absorption features known as the Ly« forest
(Fan et al., 2006). Ly« is intrinsically the brightest line in the UV-optical range,
making it a staple in high redshift studies of galaxy formation and evolution, for
both the selection (e.g. Cowie & Hu, 1998; Ouchi et al., 2008) and spectroscopic
confirmation (e.g. Caruana et al., 2014; Ono et al., 2012; Pentericci et al., 2011;
Stanway et al., 2004) of galaxies, with particular significance at z > 2 where it
can be observed from the ground.

However, Lya radiative transfer is a very complex process and translating
observed measurements into intrinsic properties is a non-trivial task. In this
section, we will describe the main physics behind Lya emission and radiative

transfer in galaxies.
1.3.1 The hydrogen atom and its transition lines

A hydrogen atom consists of one electron orbiting around one proton. The elec-

tron is described by two quantum numbers, n (n =1,2,...) and [ ({ =0,1,..,n—1
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Figure 1.5: Transitions of the hydrogen atom. Cascades that result in the emis-
sion of a Lya photon (2p — 1s) are shown in green and the ones that do not are
shown in red. Credit Dijkstra (2017).

or equivalent [ = s, p,d, f..). At its ground state 1s (n = 1, 1 = 0) the electron has
an energy of —13.6eV, which is the energy needed to strip the electron from the
atom. When hydrogen absorbs energy, the electron will move to a higher energy
state and then proceed to cascade down to the ground state, obeying Al=1 and
emitting a photon at a well defined wavelength for every transition. We show in
Figure 1.5 a diagram of transitions in the hydrogen atom.

When electrons cascade down from higher energy levels to the ground state,
there is a probability that it will end with a 2p — 1s transition (Lya). There
are two main mechanisms that bring electrons to these higher excited states:
collisions and recombination. Collisions occur when a hydrogen atom interacts
with a free electron, with the free electron transferring some of its kinetic energy
to the hydrogen atom, which will reach a higher energy state. This process
will cool down the gas and is referred to as Lya production via cooling. The
recombination of a free proton and a free electron will produce a hydrogen atom
with the electron at some quantum state (n,l). The electron will cascade down to
the ground state with a probability of ending with a Ly« transition. The higher
the temperature the lower the probability of producing Lya.
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1.3.2 Sources of Lya emission

The most significant sources of Ly« emission are Interstellar HII regions (regions
of atomic hydrogen that is ionised). These regions are powered by young, hot,
massive stars that produce ionising photons that ionise the interstellar medium
(ISM). Recombining protons and electrons will produce hydrogen in excited
states, leading to cascades which include Lya transitions. We can estimate the
probability of a Ly« line being created, under a few assumptions.

The case-B approximation (Brocklehurst, 1971) assumes the gas is optically
thick to all Lyman series photons (in contrast with case-A where it is assumed
the gas is transparent to all Lyman series), and it is a viable approximation
in Astrophysics as gases efficiently re-absorb very energetic photons. This means
that any Lyman photon produced will get absorbed by a nearby neutral hydrogen
atom and immediately re-emitted, in a process known as resonant scattering.
With each scattering, there is a probability that the cascade will not end with a
Lyman transition but will instead produce other higher order radiative transfers.

Assuming case-B recombination, for a hydrogen cloud with temperature T, the
probability of a recombination event resulting in a Ly« transition is (Cantalupo

et al., 2008):

T —0.44
P(Lya) = 0.686 — 0.106 log,, (1—04) —0.009 (1—04) (1.5)

For a temperature of T=10"K, the probability is P(Lya)=0.68, while for a
lower temperature of T=10°K, it has a higher probably P(Lya)=0.77. Other
recombination lines will be produced during the cascade, such as Ha which has a
probability P(Ha)=0.45 for T=10* K (Dijkstra, 2017). This non-resonant line can
be used to calibrate Ly« as the total ratio of fluxes Lya/Hea is 8.7 (Brocklehurst,
1971).

Lya emission can also originate from the circumgalactic and intergalactic
medium (CGM/IGM). Here, Lya emission is triggered by sources external to
these regions, usually star-forming galaxies or AGN. Emission occurs when radi-
ation from these sources is absorbed by the CGM/IGM which, through recombi-

nation, goes through various radiative transfers which include the Ly« transition,
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in a process known as fluorescence. This emission is spatially extended and can
be observed as Ly« haloes around these star-forming galaxies or AGN. It is im-
portant to note that Ly« photons present in the CGM/IGM can be a combination

of the two aforementioned sources of Ly« emission.

1.3.3 Complex radiative transfer physics

The journey of Lya photons from their emission until they reach the observer is
a difficult one, often shut down through resonant scattering and absorption by
dust. When looking at Ly« emission originated by on-going star-formation in a
star-forming galaxy, we need to consider that these photons have to escape the
(dusty) ISM into the CGM /IGM and then have to travel through the CGM /IGM,
which can be particularly difficult at higher redshifts where reionisation is still
on-going and the medium around galaxies is not completely ionised.

Dust plays a very significant role in whether Lya photons can escape from the
ISM. Dust grains have sizes of the same order of magnitude as the wavelength
of UV photons. This means that the energetic photons will get easily scattered
and absorbed by dust. Thus, when a Lya photon hits a grain of dust, it will get
absorbed and radiation will be re-emitted in the FIR. The resonant nature of Ly«
results in much longer path lengths, increasing the probability of Lya photons
encountering and being absorbed by grains of dust. Other redder, less energetic
lines, such as Ha, will be less affected by dust, and we can use these lines to
estimate intrinsic properties of lines that get destroyed by dust, after correcting
for reddening.

Studies have tackled the complex problem of determining the amount of Ly«
photons that escape by estimating the intrinsic Lya luminosity and comparing it
with the observed Ly« luminosity. This is quantified as the Lya escape fraction
(fese,Lya), Which by definition is the ratio:

_ LLycu,obs
esc,Lya =

(1.6)

Y
LLya,int
where Liyaobs is the observed Lya luminosity and Liyqine is the intrinsic Lya

luminosity.

18



1.3 Lyman-a: a powerful tool to probe the high-redshift Universe

As previously mentioned, making some assumptions (case-B recombination,
T=10*K), the Ha and Lya luminosity follow the ratios:

LL a,int LL a,0bs
Ly, = — — ye , 1.7
" 87 8.7 X fuorya (1.7)

From the Ha luminosity we are able to calculate the SFR (see Section 1.2.3).
However, measuring fes. 1yq is a difficult task. Hayes et al. (2011) have estimated
fosc.Lya X &ion', Where &, is the ionising efficiency (number of produced ionising
photons per unit UV luminosity; e.g. Matthee et al., 2017a) in samples of galaxies
selected by their Lya emission (compiling different searches at z ~ 0 — 8) and
found a significant increase of fesc ya X &on With redshift, reporting ~ 1 - 2% at
2z~ 0.3, ~ 5% at z ~ 2 (both using direct measurements of Ha) and ~ 30 - 50%
at z ~ 6 (using dust corrected UV-continuum as Ha is no longer available at
these redshifts from the ground), with an abrupt decline at z > 6 which can be
attributed to reionisation. The most simple explanation for the increase in the
escape fraction with redshift is a decrease in the dust content of galaxies, which
would allow more Lya photons to escape. Using a different approach, Wardlow
et al. (2014) estimated the fe 1y Of stacked z = 2.8,3.1 and 4.5 Lya emitters
as the ratio between the SFR derived from Lya luminosity (assuming case-B
recombination) and the intrinsic (obscured+unobscured) SFR derived from SED
templates. They find fescrya > 10% at all redshifts. These lower limits are
consistent with the global evolution of fes 1yo from Hayes et al. (2011).

Sobral & Matthee (2019) propose a simple empirical way to estimate fesc rya
of a galaxy, requiring only the measurement of a much more easy to determine
property, the Ly« equivalent width (EW). The EW is a measurement of strength
of an emission (or absorption) line and by definition the width of continuum
required to integrate in order to obtain the same area as the line (see Equation

2.6). The two properties follow the linear correlation:

!Computed from the ratio between the Lya star-formation rate density and the UV star-
formation rate density. An evolution of this ratio has historically been interpreted as an evolu-
tion of fese,Lya. More recently, an evolving o, was predicted and defined as an important factor
that would contribute to the ratio (e.g. Matthee et al., 2017a). So the fes 1yo measurement
from Hayes et al. (2011) should be interpreted as fesc Lya X ion-
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fuse.Lya = 0.0048 x EW, (1.8)

where EW, (A) is the rest-frame EW. Combining this correlation with Equations

1.3 and 1.7, we can obtain a SFR estimate using only the observed Lya luminosity
and EW, (Equation 1.4).

1.4 Searches for Lya emitters

After describing the mechanics behind Ly« emission and transmission, we now
describe the strategies that have been commonly used to select galaxies with
Lya emission: Lya emitters (LAEs). Lya emission can be observed from ground
based observatories at z > 2, so most Ly« studies are focused on higher redshifts.
At lower redshifts, Ha is more commonly used as its non-resonant nature makes
it easier to interpret. Nonetheless, some studies have searched for Lya emitting
galaxies at low redshift, such as the Ly« imaging+spectroscopy survey LARS
(The Lyman-alpha reference sample Ostlin et al., 2014) which used deep HST
images to provide a reference sample of 14 Lya emitting galaxies. This refer-
ence sample can be used to establish direct comparisons with its high redshift
counterparts.

The search for high-redshift LAEs started with decades of unsuccessful at-
tempts, with earlier works only being able to produce upper limits (e.g. Lowenthal
et al., 1990; Pritchet & Hartwick, 1987; Thompson et al., 1995). The first LAEs
were discovered in the early 1990s, with the discovery of a z = 2.3 LAE near a
damped Lya absorber (DLA) (e.g. Lowenthal et al., 1991), and three z = 2.81
candidate LAEs, also near a DLA (Mgller & Warren, 1993). Additionally, the
analysis of LBG samples, revealed that only ~ 50% of LBGs have Lya emission,
with a significant portion even showing absorption (Shapley et al., 2003).

On the search for LAEs in the early/distant Universe, three main approaches
have been typically used: blind slit spectroscopy (e.g. Bayliss et al., 2010; Cassata
et al., 2011; Martin & Sawicki, 2004; Rauch et al., 2008; Sawicki et al., 2008; Stark
et al., 2007), Integral Field Unit observations (IFU, e.g. Adams et al., 2011; Bacon
et al., 2015; Blanc et al., 2011; Drake et al., 2017a,b; Karman et al., 2015; van
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Breukelen et al., 2005) and narrow (or medium) band surveys (e.g. Arrabal Haro
et al., 2018; Cowie & Hu, 1998; Hu et al., 2010; Iye et al., 2006; Kashikawa et al.,
2011; Konno et al., 2014; Malhotra & Rhoads, 2004; Matthee et al., 2014, 2015;
Murayama et al., 2007; Nilsson et al., 2007; Ouchi et al., 2008, 2010; Rhoads et al.,
2000, 2003; Santos et al., 2016; Shibuya et al., 2012, 2018; Shimasaku et al., 2006;
Sobral et al., 2009; Taniguchi et al., 2005; Westra et al., 2006).

e Narrow band surveys: historically the first approach applied specifically
to hunt for LAEs over large areas. In the late 1990s, Cowie & Hu (1998)
successfully selected a sample of LAEs by using a custom narrow band filter
centred at A = 5390A, sensitive to Lyo emission at z = 3.4. This approach
requires imaging observations with one narrow band and at least one broad
band at the wavelength of the narrow band to estimate the continuum of a
galaxy. Sources with significant excess in the narrow band (see Bunker et al.,
1995, and Section 2.3 for a more detailed explanation on the criteria for
sources to be classified as line-emitters) likely have an emission line boosting
the photometry at those wavelengths. Further colour-colour criteria, based
on the presence of the Lyman break is applied to identify Lya emitters
from the full sample of line-emitters. Narrow band surveys are very efficient
at quickly and cheaply covering wide areas/volumes, to select samples of
thousands of candidate LAEs with little observing time. The wide volumes
covered allow the selection of the brightest (but more rare) sources, which
are prime targets for spectroscopic follow-up (e.g. Hu et al., 2016; Matthee
et al., 2017¢; Sobral et al., 2015). Additionally, narrow band surveys could
in principle be conducted with medium bands, efficiently probing wider
redshift slices at the cost of only being sensitive to higher EWs. Being
based on purely photometric surveys, this approach often has an associated

non-negligible interloper fraction (see Section 2.3.5).

e Blind slit spectroscopy: blindly placing long slits in blank areas can be
an effective way to identify and obtain spectra of high-redshift galaxies,
including LAEs, in an unbiased (blind) way. However, placing narrow slits
in blind positions can lead to a significant loss of flux, particularly when

dealing with Ly« emission which can be very extended (see Section 1.5.3).
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Furthermore, the small areas/volumes and hard to estimate completeness
corrections can lead to bias in measurements, particularly when attempting

to probe brighter luminosities.

e Integral field unit observations: with the advent of new generations
of integral field units such as MUSE/VLT, it became possible to obtain
extremely deep data cubes in modest sized areas (~ 1arcmin?), with the
added benefit of having not only a photometric survey, but also a spectrum
per pixel. This allows the immediate spectroscopic analysis of LAEs, in-
cluding the study of spectral line profiles of Lya and other emission lines.
The deep observations provide an excellent probe of very faint luminosities,
much fainter than the ones reached by e.g. narrow band surveys, allowing
the constraint of the faint end slope of the luminosity function. However,
the small volumes probed (when compared to narrow band surveys) are
not enough to analyse the brightest luminosity regimes, and also are more

subject to cosmic variance.

The different approaches (among others, e.g. slitless spectroscopy with HST)
are sensitive to different luminosity ranges. Understanding their scope and limi-
tations, and combining measurements from multiple surveys can provide a much

more clear picture of the full population of LAEs.

1.5 Properties of Lya emitters

Here, we give a brief overview of the characteristic properties of galaxies selected

by the strength of their Lya emission.

1.5.1 Nature of LAEs: star-forming galaxies vs AGIN

We have discussed how Ly« emission is expected to be a strong feature of young
star-forming galaxies (Partridge & Peebles, 1967) but also in AGN. The nature
of LAEs can thus be very distinct, but observations can reveal the origin of Ly«
emission. Very broad emission lines in the spectra of galaxies is typically indica-
tive of AGN activity (e.g. Sobral et al., 2018b), with the broadening being caused
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Figure 1.6: UV luminosity dependence on Lya luminosity for a sample of z ~ 2—3
LAESs. There is a clear division between SFGs and AGNs, with the latter populating
the most luminous regimes, both in UV and Lya. Credit Sobral et al. (2018b).

by a rotating accretion disk. Furthermore, line ratios can also shed some light
on the presence of an AGN, as AGNs typically have stronger metal lines. Aside
from the differences revealed by the spectra, there is also significant photomet-
ric differences between the SFG and AGN Lya emitting populations. In Figure
1.6, we show the UV luminosity dependence on Ly« luminosity for a sample of
z ~2—3 LAEs (Sobral et al., 2018b). There is a clear distinction between SFGs
and AGNs, with the latter dominating the more luminous regime, both in UV and
Lya. The transition from star-forming dominated to AGN dominated happens
at 2xL* (characteristic luminosity) and can be linked with a physical limit for
the maximum observed output of an unobscured starburst (Sobral et al., 2018b).

Additionally, emission in the X-ray and radio is indicative of AGN activity
(see Section 1.2.1). While X-ray and radio emission can be originated by star-
forming processes due to X-ray binaries (e.g. Lehmer et al., 2016) and relativistic
electrons accelerated by supernovae remnants (Condon, 1992), respectively, direct
detections in the X-ray or radio at z > 2 should be dominated by AGN activity.
In this work, LAEs are classified as candidate AGN if they are directly detected
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in X-ray or radio (see Calhau et al., 2020), although we note this only gives a
lower constrain on the total number of AGNs, as not all AGN have strong X-ray

or radio emission.

1.5.2 Ages and metallicities

The age and metallicity of a population of stars influences the Lyman contin-
uum output. As such, the strength of the Lya emission will also be conditioned
by intrinsic properties of the population. Schaerer (2003) used stellar synthesis
models to show that high Lya EW is associated with younger populations, lower
metallicities and/or top heavy IMFs. LAEs, which are by definition galaxies with
strong Lya emission, will thus be typically associated with these properties. In
Figure 1.7, we show the Lyaw EW dependence on age. For any fixed metallicity, a
higher Lya EW|, translates into a younger age. By lowering the metallicity, this
dependence shifts to even higher Lya EW,. These trends are qualitatively the

same for both a burst or constant star-formation history.

1.5.3 Size/morphology

The size or morphology of a galaxy reveal on-going physical processes. Lya
photons suffer resonant scattering when escaping a galaxy, increasing the random
walks and the likelihood that a Lya photon will get absorbed by dust, with the
escape fraction being constrained by the morphology of a galaxy (see discussion
in Paulino-Afonso et al., 2018). LAEs are found to be very compact in the UV
(Malhotra et al., 2012; Paulino-Afonso et al., 2018). This may suggest that a
compact morphology favours the escape of Lya photons. In Figure 1.8, we show
the UV sizes at different redshifts of continuum-selected galaxies and LAEs. UV
sizes of continuum-selected galaxies are typically much larger but at z > 4 they
become very similar to the sizes of LAEs, which are always small. This suggests
that typical star-forming galaxies become LAE-like at high-redshift, possibly due
to a bigger overlap between the two populations.

On the other hand, Ly« emission is very extended. This is a consequence of the

resonant scattering that Lya photons suffer in the gas that surrounds galaxies,

24



1.5 Properties of Lya emitters

burst SFH constant SFH

8 6 7 8 9
log(age) [yr]

Figure 1.7: Lya EW( dependence on age. For a fixed metallicity, younger popu-
lations have higher Lyawe EWs. In addition, lower metallicities result in higher Ly«
EWs, for both burst and constant star-formation history (SFH). Credit Hashimoto
et al. (2017).

creating Lya halos (e.g. Momose et al., 2014). In Figure 1.9, we show Ly«
emission, compared to Ha and UV-continuum emission in a sample of z = 2.23
Ha-selected galaxies (Matthee et al., 2016). Lya emission is extended over much

larger scales than both UV continuum and the non-resonant line Hov.

1.5.4 Line profiles

The spectral profile of the Lya emission line reveals the intrinsic conditions of
a galaxy and surrounding IGM/CGM, such that the escape of Lya photons is
possible at the wavelengths given by the shape of the profile (see e.g. Hayes et al.,
2020). The Ly« profile is modulated by the kinematics of the HII region where it
is produced (Section 1.3.2), but also modulated by the resonant scattering that
occurs within such HII regions. The constant scattering will lead to a broadening
of the line and a subsequent wing scattering (Adams, 1972; Neufeld, 1990), which
combined with the higher optical depth at the line centre leads to a double peaked

profile. The separation of peaks will depend on the column density. Furthermore,
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Figure 1.9: Lya extended emission, compared to Ha and UV-continuum emission
for a sample of z = 2.23 Ha-selected galaxies. Credit Matthee et al. (2016).
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due to the preferred absorption at bluer wavelengths, the blue peak will often get
attenuated, leading to a typical Ly« line profile consisting of a single asymmetric
red peak. A strong blue peak is associated with a low gas column density, with
the detection of a blue peak becoming exceedingly rare at z > 6, when the IGM is
still mostly neutral. However, a detection of such a blue peak has been reported
at z = 6.6 (Hu et al., 2016; Matthee et al., 2018), which reveals the powerful

dynamics of LAEs which can carve ionising bubbles around them.

1.5.5 Luminosity functions

The luminosity function (LF), i.e. the number density of sources per luminosity
bin, of LAEs and its evolution with redshift provides direct insight in the LAE
population. Earlier works have obtained LFs of LAEs in individual redshift slices
between z = 3 and z = 6 (e.g. Malhotra & Rhoads, 2004; Murayama et al., 2007;
Ouchi et al., 2008), with Ouchi et al. (2008) reporting little redshift evolution at
z ~ 3 — 6. On the other hand, the characteristic number density of the UV LF
of LBGs decreases with redshift (Bouwens et al., 2015; Finkelstein et al., 2015),
which in a first approach may not be expected since UV and Ly« are associated
with the same star-forming processes (both trace emission from very massive O
and B stars, see Section 1.2.3). Such distinct trends of evolution can however
be explained by an evolution of the escape fraction of Lya photons, lower dust
content with increasing redshift, an evolution of the ionising efficiency and/or a
combination of all. It is also important to explore whether these trends hold for
larger volumes, which both reduce cosmic variance but also allow the probe of
the most luminous regimes.

Matthee et al. (2015) and Santos et al. (2016) explored a large volume to
select LAEs at two individual redshift slices (z = 6.6 and z = 5.7, repectively)
and to probe the evolution of the LF near the epoch of reionisation. We show
in Figure 1.10 the Lya LF at z = 5.7 and z = 6.6 (and beyond). Previous
works suggested that due to Lya being easily shut down by neutral hydrogen,
the number densities of LAEs would very significantly drop at at z > 6. However,

using a very wide area approach, it was shown that even at z = 6.6 there are still
many extremely luminous LAEs e.g. CR7, MASOSA (Sobral et al., 2015), VR7
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Figure 1.10: Evolution of the Lya LF from z = 5.7 to z = 6.6. There is a strong
decrease with increasing redshift in the number density of faint LAEs. However,
there is little evolution in the number densities of bright LAEs, which can be
explained by a preferential reionisation around the brightest sources, which can
ionise the IGM around them and be observed. Credit Santos et al. (2016).
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(Matthee et al., 2016) and Himiko (Ouchi et al., 2010), among others (Matthee
et al., 2017¢). Such sources can only be observed at those redshift ranges if they
can carve ionised large bubbles around them, allowing Ly« to redshift out of the
resonance wavelength and escape. Santos et al. (2016) report that the number
densities of LAEs drops substantially for the faint end, but there is little evolution
on the bright end. This differential evolution of the LF of LAEs, together with
measurements of the extent of Lya emission favour the line of thought that very
bright sources are capable of ionising their own bubbles, and allow the escape of
Lya photons even at z = 6.6, while faint sources are not capable of doing it, and
will only be observed if they are inside the bubbles of other sources of if they are

clustered.

1.6 This Thesis

In this thesis, we aim to improve our current understanding of the evolution
of galaxies properties at z ~ 2 — 6, particularly focusing on young star-forming
galaxies. We achieve this by constructing a large sample of Lya emitting galaxies,
which we select with a compilation of narrow and medium bands over the 2 deg?
of the COSMOS field. We use this sample to measure the properties of these
galaxies, such as number densities, stellar masses and star formation rates and
estimate how they evolve with redshift.

This thesis can be summarised in the following key points:

e constructing a large sample of ~ 4000 LAEs at 16 specific redshift slices
between z ~ 2 and z ~ 6, selected over large co-moving volumes with

similar selection methods (Chapter 2)

e building Lya luminosity functions at z ~ 2 to z ~ 6 and measuring their

evolution with redshift (Chapter 3)

e estimating the evolution of the Lya escape fraction from the integrated

luminosity functions (Chapter 4)
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e conducting aperture photometry in 34 individual filters from rest-frame UV
to FIR to measure the spectral energy distribution of our SC4K sample of
LAEs (Chapter 5)

e measuring how SED-derived properties (stellar mass, UV luminosity, UV
slopes) evolve with redshift (Chapter 6)

e building UV luminosity and stellar mass functions of LAEs at z ~ 2 to

z ~ 6 and measuring their evolution with redshift (Chapter 7)

We present our final conclusions in Chapter 8, and also discuss possible future
work and questions still unsolved.

Throughout this thesis we use a ACDM cosmology with Hy = 70kms™!
Mpc=t, Oy = 0.3 and 9, = 0.7. All magnitudes are presented in the AB system
(Oke & Gunn, 1983). In Chapters 2-4 we use a Salpeter (Salpeter, 1955) initial
mass function (IMF), and in Chapters 5-7 we use a Chabrier (Chabrier, 2003)
IMF.
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Chapter 2

Slicing COSMOS with SC4K:
constructing a sample of z ~ 2 — 6

Lya emitters
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Abstract

We present and explore deep narrow and medium band data obtained
with the Subaru and the Isaac Newton telescopes in the ~ 2 deg? COS-
MOS field. We use these data as an extremely wide, low-resolution
(R ~ 20 — 80) IFU survey to slice through the COSMOS field and
obtain a large sample of ~ 4000 Ly« emitters (LAEs) from z ~ 2
to z ~ 6 in 16 redshift slices (SC4K). This unique sample of star-
forming galaxies (and AGNs), provides a unique opportunity to probe
for galaxy evolution in a sample selected by the same selection meth-

ods.



2.1 Introduction

2.1 Introduction

Understanding how galaxies form and evolve across cosmic time is a complex
challenge which requires identifying and studying the inter-dependencies of key
physical mechanisms over a range of environments (see e.g. Crain et al., 2015;
Henriques et al., 2015; Muldrew et al., 2018; Schaye et al., 2015), informed by a
variety of observations (e.g. Muzzin et al., 2013). It is now well established that
the star formation rate density (SFRD) of the Universe evolves with redshift,
peaking at z ~ 2—3 (e.g. Karim et al., 2011; Lilly et al., 1996; Madau & Dickinson,
2014; Sobral et al., 2013) and declining at even higher redshift (e.g. Bouwens et al.,
2015; Khostovan et al., 2015), but several questions related to the physics of such
evolution remain unanswered.

In order to unveil the evolution of physical properties of galaxies and active
galactic nuclei (AGN) across time one requires self-consistent selection methods
which can be applied across redshift. The Lyman Break selection (e.g. Giavalisco
et al., 1996; Koo & Kron, 1980; Steidel & Hamilton, 1993) has been successfully
used to produce large samples of galaxies up to z ~ 10 (e.g. Bielby et al., 2016;
Bouwens et al., 2014a,b; Ellis et al., 2013; Finkelstein, 2016; McLure et al., 2010)
through extremely deep optical to near-infrared (NIR) observations. However,
UV-continuum selected samples using the Hubble Space Telescope (HST) are
typically too faint (e.g. Atek et al., 2015) for extensive spectroscopic follow-up,
particularly when probing distant look-back times (but large area surveys can still
provide ideal follow-up targets e.g. Bowler et al., 2014, 2017). One alternative is
to select galaxies by their hydrogen nebular recombination lines, such as Ha in
the rest-frame optical (e.g. Colbert et al., 2013; Sobral et al., 2013) or Lyman-«
(Lyo; Ao = 1215.67 A) in the rest-frame UV.

Ly« is intrinsically the strongest emission line in the rest-frame optical and
UV (e.g. Partridge & Peebles, 1967; Pritchet, 1994) and it is routinely used to
select high redshift sources (z ~ 2 —7; see e.g. Malhotra & Rhoads 2004). Ly« is
expected to be emitted by young star-forming galaxies (e.g. Charlot & Fall, 1993;
Pritchet, 1994), but it is also observed around AGN (e.g. Miley & De Breuck,
2008). Searches for Lya emitters (LAEs) have created samples of thousands of

galaxies/AGN, including sources that are too faint to be detected by continuum
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based searches (e.g. Bacon et al., 2015). The techniques used to detect LAEs
include narrow band surveys (e.g. Hu et al., 2010; Konno et al., 2018; Matthee
et al., 2015; Ouchi et al., 2008; Rhoads et al., 2000; Westra et al., 2006; Zheng
et al., 2017), Integral Field Unit (IFU) surveys (e.g. Bacon et al., 2015; Drake
et al., 2017a; van Breukelen et al., 2005) and blind slit spectroscopy (e.g. Cassata
et al., 2011, 2015; Martin & Sawicki, 2004; Rauch et al., 2008). Galaxies selected
through their Lya emission allow for easy spectroscopic follow-up due to their
high EWs (e.g. Hashimoto et al., 2017) and typically probe low stellar masses
(see e.g. Gawiser et al., 2007; Hagen et al., 2016; Oyarzin et al., 2017). Narrow
band and/or IFU surveys have the added benefit of being truly blind, and thus
allow a good assessment of the volume and selection completeness.
Unfortunately, inferring intrinsic properties of galaxies from Ly« observations
alone can be challenging due to the highly complex resonant nature of this emis-
sion line (for a review on the physics of Ly« radiative transfer see e.g. Dijkstra,
2017, and see also Section 1.3.3). A significant fraction of Ly« photons is scattered
by the Inter-Stellar Medium (ISM), increasing the likelihood of being absorbed
by dust, and in the Circum-Galactic Medium (CGM) as evidenced by the pres-
ence of extended Lya halos (e.g. Momose et al., 2014; Wisotzki et al., 2016).
Therefore, the Lya escape fraction! (fu; see e.g. Atek et al., 2008, and see also
Section 1.3.3), the ratio between the observed and the intrinsically produced Ly«
luminosity from a galaxy, is still poorly understood quantitatively. New studies
are now directly measuring f.. of large samples of galaxies and over a range of
redshifts by obtaining Ha and Lya observations simultaneously (see Harikane
et al., 2018; Matthee et al., 2016; Nakajima et al., 2012; Sobral et al., 2017). For
example, fes. is found to be anti-correlated with stellar mass (e.g. Matthee et al.,
2016; Oyarzun et al., 2017), dust attenuation (e.g. Hayes et al., 2011; Matthee
et al., 2016; Verhamme et al., 2008) and SFR (e.g. Matthee et al., 2016). In-
terestingly, the Lya EWq seems to be the simplest empirical predictor of f.. in
LAEs with a relation that shows no evolution from z ~ 0 to z ~ 2 (Sobral et al.,

2017) and that may remain the same all the way to z ~ 5 (Harikane et al., 2018).

!Throughout this study we use fo.. to quantify the escape fraction of Lya photons, not
Lyman-continuum photons.
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“Typical” star-forming galaxies at z ~ 2 have low fo. (~ 1—5%; e.g. Cassata
et al. 2015; Oteo et al. 2015), likely because the dust present in their ISM easily
absorbs Ly« photons (e.g. Ciardullo et al., 2014; Oteo et al., 2015; Oyarzin et al.,
2017) and prevents most Ly« emission from escaping (see e.g. Song et al., 2014).
However, sources selected through their Lya emission typically have ~ 10 times
higher escape fractions (e.g. Sobral et al., 2017; Song et al., 2014), with Ly«
escaping over ~ 2x larger radii than Ha (e.g. Sobral et al., 2017). Furthermore,
due to the sensitivity of fe. to neutral hydrogen, Lya can be used as a proxy of
the ISM neutral gas (HI) content (Konno et al., 2016; Trainor et al., 2015) and
the dust content (Hayes et al., 2011).

Statistically, the number density of LAEs as a function of luminosity (the
luminosity function, LF), encodes valuable information on the global properties
of LAEs and Ly« emission. Observations have revealed that the Lya LF remains
roughly constant at z ~ 3 —6 (e.g. Drake et al., 2017a; Ouchi et al., 2008; Santos
et al., 2016). This is in principle unexpected, as the cosmic SFRD, as traced
by the UV LF, drops significantly at those redshifts (e.g. Bouwens et al., 2015;
Finkelstein et al., 2015) and implies that intrinsic properties of galaxies may
be evolving, on average, with redshift. Those may include lower dust content,
leading to a higher f.. which could compensate for a lower intrinsic production of
Lya photons (e.g. Hayes et al., 2011; Konno et al., 2016). Another possibility is
that &on, which measures the ratio between ionising (LyC) and UV flux density
increases with redshift (e.g. Duncan & Conselice, 2015; Khostovan et al., 2016;
Matthee et al., 2017a). In practice, a combined increase of both &g, and fe. is
also possible, which could tell us about an evolution of both the typical stellar
populations/burstiness but also on the evolving physics/ISM conditions) of the
escape of Lya photons.

In this work, we use 16 different narrow and medium band filters (NB/MB)
over the COSMOS field to select a large sample of LAEs in a total co-moving
volume of 6.4 x 10" Mpc?® and a wide redshift range of z ~ 2 — 6, addressing the
current shortcomings of deep, small area surveys. Our survey can be seen as a
very wide (= 2 deg?), low resolution IFU survey between 400-850 nm, probing
LAEs from the end of the epoch of re-ionisation at z ~ 6 (e.g. Fan et al., 2006)

to the peak of star-formation history at z ~ 2 — 3.
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2.2 Data and source extraction

We structure this Chapter as follows: Section 2.2 presents the data and the
extraction of sources. Section 2.3 presents the selection of line emitters, the
criteria we applied to select LAE candidates at z ~ 2 — 6 and the final SC4K

sample. We present a brief summary in Section 2.4.

2.2 Data and source extraction

The COSMOS field (Capak et al., 2007; Scoville et al., 2007) is one of the most
widely studied regions of extragalactic sky, with a plethora of publicly available
multi-wavelength coverage. Data in COSMOS include X-ray, UV, optical, NIR,
FIR and radio (see e.g. Civano et al., 2016; Ilbert et al., 2009; Laigle et al., 2016;
Smolci¢ et al., 2017). We explore a range of narrow and medium band data
(Capak et al., 2007; Matthee et al., 2017b; Santos et al., 2016; Sobral et al., 2017;
Taniguchi et al., 2007, 2015a) over roughly the full COSMOS field in order to 1)
create detection-catalogues for each band, 2) identify sources with strong excess
emission in those bands relative to their broad band counterparts and 3) obtain
dual-mode photometry on all other bands available in order to further constrain
the (photometric-)redshift of each source. In Figure 2.1 we show the filter profiles
of all the 12 medium bands (MBs) and the 4 narrow bands (NBs) used in this
work. These filters are capable of detecting various emission lines, particularly

redshifted Lya spanning a wide redshift range, from z ~ 2 to z ~ 6.

2.2.1 Medium band data

We retrieve the publicly available fully reduced medium band data (see Table
2.1 and Figure 2.1) from the COSMOS archive (see Ilbert et al., 2009; Taniguchi
et al., 2015a). All data were obtained with the Suprime-Cam (S-Cam) instrument
on the Subaru Telescope (Miyazaki et al., 2002). The data were taken with
seeing conditions varying from 0.6” to 1.0”, with an overall FWHM of 0.8 +
0.1” (see also Muzzin et al., 2013; Taniguchi et al., 2015a). The images have a
roughly similar average depth (Muzzin et al., 2013) but with some exceptions (see
Table 2.1), varying from 26.2 mag (deepest: 1A427, TA484 and TA527) to 25.4 mag
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Figure 2.1: Normalised filter profiles used in this work. The top axis indicates
the redshift of Lya emission for the corresponding observed wavelength. Top: The
broad bands (u, B, g, V, r*, i* and 2T; typical FWHM ~ 100 nm) which we use
to estimate the continuum for candidate line-emitters and four narrow bands which
we also present in our final catalogue (NB392, NB501, NB711 and NB8&16; typical
FWHM ~ 10 nm). Bottom: The 12 medium bands used in this study (typical
FWHM ~ 30 nm; see Table 2.1) which are sensitive to Ly« emission from z ~ 2.5
to z ~ 5.8. Note that some of the medium band filters overlap slightly, which can
result in some sources being detected as LAEs in two consecutive medium bands,
although we note that the overlapping volume is always relatively small.
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Table 2.1: The medium band filters (see Taniguchi et al., 2015a) and the depth
of the data obtained with them, measured directly (30; 50 can be obtained by
subtracting 0.55) in 2” apertures and by Muzzin et al. 2013 (M13, 2.1"). We also
transform our measured 3 o limiting magnitude (2”) into a flux limit (in units of
ergs~!em™2) in the case of the full flux within the 2” medium band aperture being
from an emission line.

Medium Lyaz Ae [FWHM] 30 Depth 30 Flux 50 (M13)
Band (A) (AB) (x107 T ergs™t ecm™2) (AB)
[A427 242 —2.59 4263.5 [207.3] 26.1 4.6 26.1
[A464 2.72—2.90 4635.1 [218.1] 26.0 4.5 25.8
[A484 2.89 —3.08 4849.2 [229.1] 26.1 3.9 26.1
[A505 3.07—3.26 5062.1 [231.5] 25.8 4.8 25.9
[A527  3.23 —3.43 5261.1 [242.7] 26.1 3.5 26.1
[A574  3.63 —3.85 5764.8 [272.8] 25.9 4.0 25.7
[A624  4.00 —4.25 6232.9 [299.9] 25.8 4.1 25.9
TAG7T9 444 —4.72 6781.1 [335.9] 25.7 4.3 25.6
[IA709 4.69 —4.95 7073.6 [316.3] 25.8 3.4 25.8
[A738 4.92—-5.19 7361.5 [323.8] 25.7 3.5 25.6
[A7T67  5.17 —5.47 7684.9 [365.0] 25.7 3.6 254
[A827 5.64 —5.92 8244.5 [342.8] 25.7 3.0

Table 2.2: The estimated depth of broad band data used in our analysis (30).
We measure these by placing 100,000 random 2" empty apertures, and computing
the standard deviation of the counts and converting it to magnitudes. The 2 ¢ and
4 ¢ limits can be obtained by adding 0.44 and subtracting 0.31, respectively.

+ + +
U3s B3O’ Véa 930 34 U35 ?3g

26.81 27.21 26.50 26.61 26.55 26.12 25.23
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(shallowest, TA767), measured in 2.1” apertures (50, see Muzzin et al., 2013). We
also obtain our own depth measurements by placing 100,000 empty /random 2"
apertures in each of the (native) images and determining the standard deviation.
The results are presented in Table 2.1. and, for reference, we also show the depths
measured in Muzzin et al. (2013), who used PSF-matched data (making a direct

comparison non-trivial).

2.2.2 Narrow band data

We complement our medium band data with four narrow band studies in the
COSMOS field: the CALYMHA survey at z = 2.2 (Sobral et al., 2017) and a
z = 3.1 survey (Matthee et al., 2017b) using the narrow band filters NB392 and
NBb501, respectively, both mounted on the 2.5 m Isaac Newton Telescope’s WFC.
The NB392 data (A, = 392 nm, A\ = 5.2 nm; Sobral et al. 2017) have a 50
depth of 23.7-24.5 AB magnitude and a typical PSF-FWHM of 1.8”. The NB501
data (A. = 501 nm, AX = 10 nm) were taken and reduced with a similar strategy
and data-quality as the NB501 data described in Matthee et al. (2017b) and
have a typical 50 depth of 24.0 AB magnitude with 1.6” PSF-FWHM. Limiting
magnitudes for NB392 and NB501 data were measured with 3" apertures.

In addition, we also use two narrow band surveys exploring S-Cam data:
z = 4.8 and z = 5.7 (Santos et al., 2016); these have used the narrow band
filters NB711 and NB816, respectively (see Figure 2.1). We note that all NB and
MB selected catalogues have been obtained in similar ways, which we describe in
Section 2.2.4.

2.2.3 Broad band data

We retrieve fully reduced archival broad band (BB) data from the COSMOS
archive. The public archival data consists of mosaics covering the full COSMOS
field, from rest-frame UV to NIR, in the BB filters v, B, g, V, r*,i", 27, Y, J,
H and K (Capak et al., 2007; McCracken et al., 2012; Taniguchi et al., 2007).
We provide the 3o limiting magnitudes in Table 2.2. All data were obtained with

the Suprime-Cam (S-Cam) instrument on the Subaru Telescope (Miyazaki et al.,
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2002). This BB data is necessary to apply our LAE selection criteria, as fully
detailed in Section 2.3.3.

2.2.4 Extraction of sources

To produce the narrow or medium band selected catalogues® (see e.g. Matthee
et al., 2017b), we follow Santos et al. (2016). Briefly, we start by registering the
u, B, g, V,r",i", 27, Y, J, H and K broad band data and all the medium band
(or narrow band) images to a common astrometric reference frame using SWARP
(Bertin et al., 2002). We extract sources with a primary 2” aperture? (but we
note we also extract them with multiple apertures, including MAG-AUTO, a proxy
of the total magnitude) using SEXTRACTOR (Bertin & Arnouts, 1996) in dual-
image mode, and with each of the medium band images as the detection image.
Therefore, for each medium band, we create a catalogue with all the detections on
that band, and with the broad band photometry extracted at the coordinates of
each detection. We thus note that our selection is purely based on the detection
of a source in a medium or narrow band, independently of its continuum strength.

Before creating our final catalogues, we investigate the need for any significant
masking to remove low quality regions and diffraction patterns around bright
stars. In addition to removing such regions, we also find that there is a small
area in the corner of the COSMOS field (~ 0.02 deg?®) for which there is no u-
band data. Given that we require blue photometry to select LAEs and reject
lower redshift sources (see Tables 2.2 and 2.3), we mask/exclude this region for
filters bluer than [IA574. After masking, the contiguous survey area is 1.94-
1.96 deg? for the medium band filters and 1.96 deg® for the NB711 and NB816
filters, while the area covered by the NB392 and NB501 data is 1.21 deg? and 0.85
deg?, respectively (Matthee et al., 2016; Sobral et al., 2017).

"'We conduct the full data analysis and photometry extraction for all the medium bands
(and broad bands), but the data reduction and selection of line-emitters/LAEs in narrow band
images was conducted in previous works (Matthee et al., 2017b; Santos et al., 2016; Sobral
et al., 2017). In this thesis, we combine the narrow band samples with the new medium band
samples, and build the SC4K sample of LAEs.

2Because the NB392 and NB501 data have a broader PSF, photometry has been done with
3" apertures.
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Figure 2.2: The colour-magnitude diagrams used for the selection of line-emitters
for the 12 medium bands. Each medium band magnitude is plotted versus the
excess colour, and we identify sources with a high enough EW (corresponding to a
rest-frame EW of > 50 A for LAEs) and with a significant excess (average ¥ > 3).
The selection criteria of LAEs are presented in Table 2.3. MB detections are shown
in black, candidate line-emitters (prior to individual visual checks) are shown in
green and candidate LAEs in red (after visually checking all of them). We assign
the broad band detection limit to sources with no broad band detection. It is
clear from the panels that, on average, the amount and fraction of LAEs greatly
decreases from the bluer (where almost all candidate line-emitters are LAEs) to
the redder filters (where only a small fraction is consistent with being a LAE). The
clustering of points at the top of each panel is an artificial effect of collapsing the
points with no broad band detection above 3o.
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2.3 Selection criteria: SC4K

2.3.1 Selection of candidate line-emitters

In order to identify sources with candidate emission lines out of all medium band
selected sources, it is necessary to estimate the continuum of each source. As
the central wavelengths of medium bands are typically offset (see Figure 2.1)
from the central wavelengths of their overlapping broad band, we need to in-
vestigate and apply a correction to the medium band photometry (MBy). This
step/correction assures that a measured medium band excess is not dependent
on the intrinsic slope of the continuum (estimated with two broad band magni-
tudes, BB — BBagjacent), similar to corrections applied for narrow band surveys
(e.g. Sobral et al., 2013; Vilella-Rojo et al., 2015). Without such correction,
sources with significant colours could mimic emission lines. In practice this re-
quires re-calibrating either MBj or BB photometry (or producing a new artificial
BB magnitude) to assure that, on average, sources without an emission-line will
have a zero colour excess (BB — MB & 0) regardless of their continuum colour
(BB — BBadjacent)- We do this by evaluating the colour dependence of BB — MB,

on BB — BBagjacent and parameterising it as (calculating m and b):
BB — MBy = m x (BB — BBagjacent) + b (2.1)
We then use coefficients m and b to finally obtain:
MB = MBy + (m x (BB — BBagjacent) + b) (2.2)

with the filters listed in Table 2.3. The coefficients m and b are provided in Table
A.2. We note that for some filter combinations both m and b are effectively zero.
For sources without BB — BB,gjacent (< 20 detection in either band) we compute
a median correction which we apply per medium band filter. Typical median
corrections are at the 0.1 mag level and in the 0.0-0.3 range (see Table A.2).

For the selection of line-emitters we follow the same methodology used for nar-
row band surveys (e.g. Matthee et al., 2017b; Sobral et al., 2013, 2017), based on

42



2.3 Selection criteria: SC4K

F (A U I LI BN B S BN R A BN I BN EAANE
3 1200;_ Lva =3 Candidate line-emitters ' v ' 1
£ 1000 Y& =3 candidate LAEs : L . e
3 F Sources with public z,.. x10 i L i 1
» 800k ]
e 3 ]
O 600 E
et F ]
© s ]
9 400F 4
g 200: ]
> - ]

0

E i S e e b e = L — - .- - = i i
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

Central rest-frame wavelength probed by MB filter (A, from photometric or spectroscopic redshift)

Figure 2.3: Distribution of the central rest-frame wavelengths probed by the
different medium band filters (based on photometric or spectroscopic redshifts) of
our continuum-bright (with accurate photometric redshifts) sample of line-emitters
(green histogram) and its subset containing only our final LAEs (red histogram).
The photometric redshifts used in this figure are taken from Laigle et al. (2016).
The black dashed lines are the rest-frame wavelengths of the main emission lines
probed. Our sample of continuum-bright line-emitters with photometric redshift is
predominantly composed by Ly« emitters, followed by a population of Ha emitters,
[O111]+Hf emitters, and finally [O11] emitters. We find that our Ly« selection
criteria is able to remove the vast majority of lower redshift contaminants whilst
maintaining the bulk of Lya photometric candidates (see Section 2.3.3).

two main parameters: the emission-line equivalent width (EW), and the emission-
line or excess significance (¥; e.g. Bunker et al., 1995). In a first approximation,
assuming no background noise in the images, we could define a line-emitter as

being any source which follows:

fMB — fBB > O, (23)

where fyp and fgg are the flux densities! measured for the two filters.
As the uncertainties in the background noise cannot be neglected, fyp-fgp
needs to be above some significance parameter. The parameter ¥ is thus intro-

duced into Equation 2.3.1:

fup — fgp > 2 X \/rmSQBB + rmsi g, (2.4)

where Y quantifies how significantly above the noise a given BB-MB colour excess

Note that as a consequence of the way we define/correct MB magnitudes, their flux den-
sities (F) need to be calculated with the same effective wavelength as the corresponding BB.
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is (a high excess can be explained by the presence of an emission line at the
MB wavelength), and rmsgp and rmsyp are the root mean square of the noise
measured in the BB and MB images, respectively.

By converting fluxes to magnitudes, > can be written as (Sobral et al., 2013):

1— 10—0.4(BB—MB)

| ()—04(zP—MB 2 2 "7
1004 )\/ rmss + rmsyp

(2.5)

where BB and MB are the broad and the medium band magnitudes and ZP is
the zero-point of the image. We estimate rmsyg and rmsgg by randomly placing
2" apertures in the appropriate images and determining the standard deviation
per image. This approach takes spatially correlated noise into account. We
apply an emission-line significance threshold of ¥ > 3, similarly to other studies
(e.g. Matthee et al., 2015). In addition to 3, we also measure the observed EW
(EWps) of potential lines as:

fMB - fBB
fBB - fMB(A)\MB/A)\BB> 7

EWops = Adus (2.6)
where AAyp and Algg are the FWHM of the medium (see Table 2.1) and broad
band filters (Capak et al., 2007; Taniguchi et al., 2015a). We show the selection
cuts in Figure 2.2.

Typical narrow band surveys apply a Lya rest-frame EW (EW,) cut of ~ 25 A
(e.g. Ouchi et al., 2008), mostly to avoid contamination from other line-emitters,
as Ly« is typically the line with the highest observed EW (but see also other
high EW contaminants in e.g. Sobral et al., 2017). Recent surveys also explored
lowering this cut, showing that a few extra real Ly« sources may be recovered in
those cases, which can populate the bright end (Sobral et al., 2017, see also VUDS,
e.g. Le Feévre et al. 2015), but also introduce many extra contaminants. Given
that we are using wider filters in comparison to the typical narrow band filters,
we are forced to use a higher observed EW cut to retrieve clean samples of line-
emitters. For our analysis, we find that setting an observed EW cut from 175 A
to 340 A from the bluest (narrowest) to the reddest and broader filters is able

to recover clean samples of line emitters and yields an homogeneous rest-frame
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Ly equivalent width cut of EW, > 50 A for all of our medium bands. Note that
our EWj cut (for LAEs) is about twice the typical used in narrow band surveys
(25 A; see e.g. Santos et al. 2016), implying we are likely less contaminated by
lower redshift line-emitters, but that we may be less complete. We take this into
account when deriving completeness corrections, but we note that, in practice,
the vast majority of LAEs at high redshift show EW, > 50 A: see e.g. Ouchi
et al. (2008). For an in-depth analysis of selecting LAEs with different EW, cuts
see Sobral et al. (2017).

The full selection procedure to search for candidate emission-line sources is
illustrated in Figure 2.2, which shows the medium band colour excess versus
medium band magnitude for each band. It can be seen that the EW threshold is
well above the scatter at bright magnitudes (< 23). In total, we identify 40,726
potential line-emitters, with each medium band contributing with roughly 2,000-
3,000 emitters to the sample. We note, nonetheless, that we expect our full sample
of &~ 40 k candidate line-emitters to still be contaminated by e.g. artefacts around
bright stars, cosmic rays, and due to other image defects. In order to fully address
this possibility, we visually inspect every single source in our final sample (see
Section 2.3.4), but we first filter out lower redshift emitters and isolate candidate
LAEs.

2.3.2 Photometric and spectroscopic redshifts

In order to test how robust our emission-line selection criteria are, we use a large
compilation of photometric and spectroscopic redshifts (e.g. Ilbert et al., 2009;
Laigle et al., 2016; Lilly et al., 2007). For each medium band, we look at the
distribution of publicly available photometric and spectroscopic redshifts of the
line-emitter sample. By converting each photometric redshift value to a rest-frame
wavelength assuming the source has an emission line at the central wavelength
of the corresponding medium band, we obtain Figure 2.3. We find evidence for
the presence of a large population of HS+[O111]5007 and Ha emitters, although
the sample is dominated by candidate LAEs. Excluding the dominating LAEs,
the most common remaining sources are Ha emitters, followed by [O1r1]+Hg.

[O11)3797 emitters represent a less frequent population among all the candidate
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Table 2.3: The selection of LAEs from the sample of all line-emitters, using an
observed EW threshold of EW > 50 x (1 4 z)A and ¥ > 3. The relevant LAE
colour selection is given in the table. Numbers of LAEs are given after visually
inspecting all candidate LAEs and rejecting interlopers. As described in the Sec-
tion 2.3.3, colour criteria are based on the Lyman break technique and removing
sources with very red colours red-wards of the emission-line (which indicates that
the potential Lyman break is actually a Balmer break and that the line is not
Lya). We note that we explicitly perturb these colour selections with Markov
chain Monte Carlo (MCMC) simulations and include the results in the errors when
we estimate luminosity functions. We remove 20 confirmed lower redshift line
emitters/contaminants, as described in Section 2.3.5 and we expect a ~ 10 — 20%
remaining contamination. Due to a small overlap of some of the medium filters
in their wings a small number (53; ~ 1%) of LAEs are detected as LAEs in two
adjacent MB filters; these are kept in each of the filters for the full analysis. The
excess filters are the two adjacent broad bands used to estimate the continuum (see
Section 2.3.1). The total number of LAEs (3908) is the sum of LAEs selected in
each filter, regardless of whether they are detected in more than one filter, as the
selection was done independently. 'EW, > 5 A; Sobral et al. (2017) 2EWg > 25 A;
Santos et al. (2016); Matthee et al. (2017b).

Selection Excess Lya redshift LAE colour selection # LAE
filter filter FWHM (Section 2.3.3) candidates
1A427 B (u) 2.42 —2.59 (u>us, Vu—B>04) & (B—r* <0.5) 741
IA464 B (V)  2.72-2.90 (u>usp Vu—B>05) & (B—rt<0.8) 311
1A484 B (V)  2.80 —3.08 (u>uzp Vu—B>05) & (B -1+ < 0.75) 711
IA505 V (B) 3.07 — 3.26 (u>uzy Vu—V >13) & (B—r*<0.5) 483
1A527  V (B)  3.23—343 (w>uze Vu—V >15) & (V —it < 1.0) 641
IA574  r* (V)  3.63—3.85 (u>uz) & (B> By V B -1+ >1.0) & (V — it <0.5) 98
1A624 7% (it)  4.00 — 4.25 (B> Bs,) & (V> Vay VV =1t >05) & (rt — it < 1.0) 142
IA679 o+ (it) 444 — 472 (B> Bsy) & (V> Vay VV — 1 > 0. 5) & (rt —it < 1.0) 79
IAT09 i (rt)  4.69—4.95 (B> By) & (V> Vi) & (" > rs Vot —it > 0.8) & (it — 2 < 1.0) 81
IA738 it (rt)  4.92-519 (B>DBs) & (V>V3) & (rt >rf, Vrt —it >05) & (it — 2t < 1.0) 79
[A767 4t (27)  517—547 (B> Bs,) & (V> V3,) & (rJr > 73 Vrt—it>05) & ( -2zt < 1.0) 33
[A827 4t (2%) 564-592 (B> BJU) & (V> Vs,) & (r™ oVt —it > 05) & (it — 2T < 1.0) 35

NB392'  w (B)  2.20-2.24 —K)>(B-2)V ohor = 798V Zapee = 2. 20 —224 159
NB5012 gt? 3.08 —3.16 (u>uge Vu—gt>1) & (¢7 —it < 1.5) 45
NB7112 4+ (27)  4.83 — 4.89 (B> Bay) & (V> Vao) & [(rt > 18, V (" <1, ArT — it > 1.0)] 78
NB8162 i+ (:*)  5.65—5.75 (B> Bay) & (V> Vo) & [(rF > 15, V (rF <15, Art — it > 1.0)] 192
Full SC4K sample (This study, 12 medium band + 4 narrow band) Total 3908

46
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line-emitters, and we also find evidence for some 4000 A and Lyman break sources
making it to the sample of potential line emitters. The relative proportion of
sources is not surprising, given the combination of volume and observed EW
distributions of all these lines (see e.g. Hayashi et al., 2018; Khostovan et al.,
2016; Sobral et al., 2014).

While Figure 2.3 shows that our sample of high EW candidate line-emitters
is dominated by LAE candidates, it also reveals that many other line-emitters
are expected to be in the sample. This is confirmed by spectroscopic redshifts of
the full sample and stresses the importance of excluding lower redshift emitters

in order to produce relatively clean and complete samples of LAEs.

2.3.3 Selection of LAEs at z~ 2.5 -6

In order to isolate LAEs from lower redshift line-emitters (see Figure 2.3), we
apply two criteria. First, we identify the presence of a colour break blue-ward of
the medium band excess emission and no significant emission bluer of that (see
Table 2.2). Secondly, we remove sources that have red colours (e.g. B —r > 0.5
for z ~ 2.5;i—2z > 1.0 for z ~ 5.5); see Table 2.3. The first step selects the Lyman
break, while the second criterion removes sources likely to be stars or red galaxies
with a strong Balmer break (at a rest-frame wavelength ~ 400 nm) that mimics
the Lyman break (see e.g. Matthee et al., 2014, 2017¢). Narrow band surveys for
LAEs typically apply the same/similar standard criteria (e.g. Bielby et al., 2016;
Matthee et al., 2015; Ouchi et al., 2008; Santos et al., 2016), with the difference
being how strict the criteria/flexible the cuts are and what bands are available to
trace/identify the Lyman break. Some surveys conducted in the blue bands rely
mostly on a high EW, cut (e.g. Ciardullo et al., 2014; Konno et al., 2016), but
as discussed in e.g. Sobral et al. (2017), even in the bluest bands it is crucial to
filter lower redshift contaminants out of the sample of line-emitters due to bright,
high EW lines such as Ci11] and Civ (see Stroe et al., 2017a,b), particularly in
wide-field surveys. We note that our colour criteria to exclude very red sources
only removes extreme red sources and is based on current spectroscopic samples
that show that essentially no real LAE will be removed by our cuts. However, it

is possible that a handful of even more extremely red LAEs (which are interesting
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on themselves; see e.g. Matthee et al., 2016; Ono et al., 2010; Taniguchi et al.,
2015b) may be rejected in this way.

We apply our LAE selection by taking full advantage of the deep available
broad band photometry (see Table 2.2), which covers the wavelengths of the
Lyman break and the Lyman continuum for our entire redshift range (see Figure
2.1). Our colour selection criteria (see Table 2.3) are defined such that a candidate
LAE is required to either have no detection blue-ward of the medium band (i.e.
being a drop-out galaxy), or, if the continuum is bright enough, to have a strong
colour break between the two broad bands adjacent to the Lya break expected
wavelength. By not applying too strict colour-criteria, we ensure that sources
with Lyman-Werner radiation or Lyman continuum leakage are not removed from
our sample, as long as they have a Lyman break. We note that such sources
are typically AGN, with high spectroscopic completeness in currently available
spectroscopic surveys in COSMOS (e.g. Lilly et al., 2007).

The exact values for each criterion are determined empirically using the large
compilation of spectroscopic and reliable photometric redshifts discussed in Sec-
tion 2.3.2, but we also perturb these in Section 3.1.4. When we apply our LAE
selection criteria to all line-emitters (before any visual inspection and regardless
of whether they have public photometric/spectroscopic redshifts), up to ~ 50 %
are selected as LAEs for the lower redshift slices (z ~ 2 — 3) but only ~ 2 — 5%
of line emitters as LAEs for the highest redshift slices (z ~ 5 — 6). This is a con-
sequence of the differences in luminosity depth in Lya, but even more so due to
the volumes and redshifts of the other main emission lines such as Ha, [O111]+Hf
and [O11] which become more prominent for redder filters. Our results show that
even with a high EW cut, we expect that about 50% of sources will not be Ly«
in the bluest bands, while about 95-97% of sources in the red bands will be lower
redshift line emitters' (see Figure 2.3). After the LAE selection, we retrieve a

total of 6,156 potential Lya emitters out of the full 40,726 potential line emitters
(15%).

Due to the Lyman break criteria, our survey (and all similar Ly surveys) is strongly
biased against galaxy-galaxy lensed LAEs, as any lower redshift galaxy lensing a distant LAE
will be classed as a lower-redshift interloper and the lensing system rejected.
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2.3.4 Visual inspection of all LAE candidates

In order to obtain a clean sample of LAE candidates, we visually inspect all
the candidates for spurious detections in their corresponding medium band. In
practice, we remove i) fake sources due to diffraction patterns, ii) fake sources
which are selected close to the borders of images where the local noise is higher,
iii) sources that are clear artefacts and iv) sources which are real but that clearly
have their fluxes boosted in the medium bands due to bright halos or diffraction
of nearby stars. This is the same approach taken in the large-area narrow band
surveys which we also explore, namely Santos et al. (2016) and Sobral et al.
(2017). From a total of 6,156 LAE candidates, we conservatively reject/exclude
2,703 sources, and end up with a sample of 3,453 LAEs. We note that due to
very different local noise properties, artefacts and image quality/depth, some
bands (e.g. TA574 and TA827) have very high spurious fractions of & 90 % in the
initial LAE candidate sample, while other bands such as 1A427 and IA679 have
lower spurious fractions of ~ 15 — 25%. It is worth noting that due to the strict
selection criteria in terms of non-detection in the optical in many bands, along
with the high excess observed in the medium bands, we easily select every single
spurious/artefact in the full COSMOS images/catalogue. We thus stress the
importance of visually checking all sources for such wide area surveys or, at least,
to visually check a representative sub-sample and apply statistical corrections.
We take into account the removal of spurious sources when computing the total
areas and volumes, but we note that these only remove up to ~ 0.03% of the

total area and thus they are completely negligible.

2.3.5 Spectroscopic completeness, contamination and the
final sample of LAEs

Figure 2.3 reveals that our sample of line-emitters (with available photometric
redshifts) is mostly composed of LAEs, and we expect that our photometric
selection will further remove contaminants. This can nonetheless be quanti-
fied /investigated by using a relatively large number of spectroscopic redshifts

of 1) the full set of line emitters and ii) our samples of LAEs. Ideally, a sample
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that is highly complete will show that essentially all spectroscopically confirmed
LAEs in i) will be contained in sample ii), while a highly clean sample will see
most of contaminants in i) not be selected for ii).

We compile a large sample of spectroscopic redshifts in the COSMOS field (e.g.
Cassata et al., 2015; Kriek et al., 2015; Le Fevre et al., 2015; Lilly et al., 2007;
Shioya et al., 2009) to find that 132 sources within our sample of LAE candidates
have a spectroscopic redshift. Out of the 132 sources, we confirm 112 as LAEs in
the appropriate band. This suggests a contamination of real line-emitters which
are incorrectly selected as LAEs of about 15%, well within the range of what
is typically found for large area Lya narrow band surveys at similar redshifts
(e.g. Harikane et al., 2018; Santos et al., 2016; Shibuya et al., 2018; Sobral et al.,
2017). We also investigate whether there is any significant dependence of this
contamination rate on redshift, Lya luminosity or EW,. We find that within
the Poissonian errors the contamination is found to be relatively constant and
to be between 10-20%, similar to those found for narrow band surveys of LAEs
(e.g. Bielby et al., 2016; Ouchi et al., 2008). In Appendix A.2 we provide further
evidence of low contamination in typical H — K colours of z ~ 3 LAEs. There are
only mild indications that the higher redshift and the highest luminosity samples
may be slightly more contaminated (similarly to what has been found/discussed
in e.g. Harikane et al., 2018; Matthee et al., 2015, 2017¢), but such trends require
further spectroscopic follow-up of our sample.

Reliable redshift identifications can also be obtained through the dual nar-
row band technique (e.g. Matthee et al., 2017b; Nakajima et al., 2012; Sobral
et al., 2012), where multiple unique combinations of strong emission lines can
be observed in specific combinations of narrow or medium band filters'. Within
the SC4K sample of LAEs, we have already identified 27 Lya-Cin] emitters at
z = 2.7—3.3, one Lya-C1v emitter at z = 4.3 (an X-Ray AGN) and 22 Lya-[O111]
emitters at z = 3.3 (three of these [O111] emitters are also CI11] emitters). One
dual-emitter already had a spectroscopic redshift. Hence, we obtain 51 additional

reliable redshifts confirming all these sources as LAEs.

Here we use line-emitters identified in NB711, NB816 (Santos et al., 2016), NB921 (Matthee
et al., 2015; Sobral et al., 2013), NBJ, NBH and NBK (Khostovan et al., 2015; Sobral et al.,
2013) to search for another line, in addition to Lya detected in our MBs.
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We also note that some of the contaminants are not easy to isolate by using
broad band colours. For example, SC4K-TA767-43371, with a redshift of z =
5.441, is selected as a LAE candidate in both TA767 and IA827. While this
source is a confirmed LAE (in TA767), the emission line in TA827 is Nv (1240 A).
As such, we remove this source from being a IA827 LAE. There are a further 19
LAE candidates which are lower redshift interlopers and thus are removed from
the final sample, either due to archival redshifts or from follow-up with AF2/WHT
(see Section 8.2 about future work, where more information about the on-going
WHT/AF2 data reduction and analysis is given). We find that the confirmed
interlopers/contaminants have a diverse nature. At lower redshift most are C1ii]
and C1v (Sobral et al., 2017; Stroe et al., 2017a), while at higher redshift there is a
mix of [O111]+Hf and [O11]. We stress that neither of these class of sources could
easily be removed by adjusting our selection criteria and certainly not without
compromising our completeness, which we currently estimate to be at the level of
~ 85 — 90 %. After removing the 19 spectroscopically confirmed interlopers, our

final sample of medium band selected sources contains 3434 candidate LAEs.

2.3.6 UV continuum properties of SC4K LAEs

In the process of selecting LAEs we find sources which have no continuum coun-
terpart in the COSMOS data. These are typically found in very deep narrow
band or IFU studies (e.g. Ouchi et al., 2008; Oyarzun et al., 2017; Wisotzki et al.,
2016), but here we also find them in shallower data. In our samples, ~ 10% of
LAEs have no continuum detection around the narrow or medium band. These
LAEs likely occupy the lower stellar mass range of our sample and may have
higher escape fractions due to their very high EWs (see e.g. Sobral et al., 2017;
Verhamme et al., 2017). We note that due to the fixed broad band depths,
the fraction of candidate LAEs without rest-frame UV detections becomes larger
with redshift, from just ~ 1 — 2% at 2 ~ 2.5 to ~ 10% at z ~ 5 and reach-
ing 30% for our highest redshift sources. For sources without a rest-frame UV
detection, we assume that the continuum flux is an upper limit based on the
measured rmsgg and derive lower limits for their EWs. We note that by stacking
our LAEs in the rest-frame UV (F814W, HST), Paulino-Afonso et al. (2018) find
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Figure 2.4: The 3D distribution of the SC4K sample presented in this work in the
full 2deg? COSMOS field (see Table A.1), showing all LAEs from the 16 different
redshift slices, colour coded by redshift (blue to red from lower to higher redshift).
The redshift is computed using the central wavelength of the medium or narrow
band filter. SC4K probes roughly 4,000 LAEs selected over a total volume close to
~ 108 Mpc? (see Table 3.1 for volumes probed per filter).

they have a typical rest-frame UV luminosity of Myy ~ —20, which ranges from
Myy = —19.2 + 0.2 for our lowest redshift sample (the deepest in Ly«) to up to
Myy ~ —21 at higher redshift (see Paulino-Afonso et al., 2018).

2.3.7 Final sample: SC4K

Our sample of medium band selected LAEs consists of 3434 sources (see Table
2.3), visually inspected for spurious detections. We complement our medium band
LAEs with four narrow band studies (Table 2.3) in the COSMOS field which
follow the same methodology as in this work. We add 159 LAEs at z ~ 2.23
(CALYMHA survey; Sobral et al., 2017) and 45 sources at z ~ 3.1 (Matthee
et al., 2017b), selected with narrow bands NB392 and NB501. In addition, we
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also include 78 LAEs at z ~ 4.8 and 192 LAEs at z ~ 5.7 (Santos et al., 2016),
selected with the narrow bands NB711 and NB816, respectively. Our final sample
of LAEs contains 3908 sources. We name this sample of ~ 4,000 (4k) LAEs,
obtained by “slicing” the COSMOS field (Figure 2.4), as SC4K. For an example
and description of the catalogue, see Table A.1. Our survey is roughly equivalent
to a very wide, low resolution (R ~ 20 —80) IFU Ly« survey covering all the way
from z ~ 2.2 to z ~ 6. A 3D view (showing the full COSMOS field and redshift
as a depth dimension) of SC4K is shown in Figure 2.4.

2.4 Summary

We have conducted a wide search for LAEs, using 12 medium bands and a com-
pilation of 4 narrow band filters, covering a wide redshift range (z ~ 2 — 6)
over the full ~ 2deg? COSMOS field. We use these data as an extremely wide,
low-resolution (R ~ 20 — 80) IFU survey to slice through the COSMOS field.

e We identify ~ 40, 000 potential line-emitters (before visual inspection), with
available photometric and spectroscopic redshifts being consistent with pop-
ulations of Lya, [Or11], [O111]+HfS and Ha emitters.

e We construct a new sample of ~ 4000 typical (2 Lf,,,) LAEs (Slicing COS-
MOS with 4K LAEs, SC4K) from z ~ 2 to z ~ 6 in 16 individual redshift

slices.

e We make the SC4K sample of LAEs publicly available! (see Table A.1) so

the community can fully benefit from this work.

This large sample of LAEs, selected with similar selection criteria over a wide
area, will allow unprecedented constrains of the evolution of the Lya LF with

redshift, as well as other properties such as stellar mass and star-formation rates.

Thttps://academic.oup.com/mnras/article/476/4/4725 /48583934 supplementary-data
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Chapter 3

The evolution of the Ly«
luminosity functions of SC4K

LAEs fromz~2toz~6
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Abstract

We present new Lya luminosity functions (LFs) covering a co-moving
volume of ~ 10® Mpc?. SC4K extensively complements ultra-deep sur-
veys, jointly covering over 4 dex in Lya luminosity, with the measure-
ments of all surveys being combined into a global (2.5 < z < 6) syn-
ergy LF. This synergy LF is best fit by a = —1.937013, log,, Pl =
—3.4570:33 Mpc™® and log,, L, = 42.93%0 7 ergs™!. The Schechter

component of the Lya LF reveals a factor ~ 5 rise in L, and a

*
Lya

tra power-law (or Schechter) component above Ly, ~ 10%3ergs™

~ T7x decline in ®} _ from z ~ 2 to z ~ 6. The data reveal an ex-
at z ~ 2.2 — 3.5 and we show that it is partially driven by X-ray
and radio AGN, as their Lya LF resembles the excess. The power-
law component vanishes and/or is below our detection limits above
z > 3.5, likely linked with the evolution of the AGN population.



3.1 Methods and corrections

We structure this Chapter as follows: we present the methods in Section
3.1, including all the steps and corrections in determining Lya LFs. Results are
presented in Section 3.2, including the evolution of the Lya LF with redshift,
comparisons with other surveys, the synergy LF (S-SC4K) and the evolution of

the Lya luminosity density. We present our conclusions in Section 3.3.

3.1 Methods and corrections

3.1.1 Lya luminosities and survey volumes

We compute Lya luminosities for each of our LAE candidates per filter/redshift
slice by using 1) their estimated Ly« fluxes in 2” apertures' (Flyq; see e.g. Sobral
et al. 2017) and ii) the luminosity distance (Dp) corresponding to Ly lines
detected at the central wavelength of each filter. Luminosity distances (Dy)
range from 20 x 103 Mpc at z ~ 2.5 to 55 x 103 Mpc at 2z ~ 5.8. Ly luminosities
are then calculated as Liy, = 47TFLyaD%. We find that our “formal” 3o limit

024 ergs—t at

MB detections correspond to Lya luminosity limits ranging from 1
z=2.5to 10%¥Yergs™! at 2 = 5.8 (see Table 3.1 for luminosity limits per filter).

Paulino-Afonso et al. (2018) measured the rest-frame UV sizes of our LAEs,
concluding they have half-light-radii in the range ~ 0.1 — 0.2” (~ 0.7 — 1.3 kpc),
and thus significantly smaller than our 2” apertures. However, due to the use
of ground-based imaging (with a larger PSF) and the fact that we are tracing
Lya and not the rest-frame UV, the 2" apertures may be missing some flux.
We thus study how the fluxes computed in 2” apertures compare with fluxes
derived from using an estimate of the full flux using e.g. MAG-AUTO. We find an
average ratio (FluXmag_auto]/Fluxjan) of ~ 1.03 4= 0.26 (median of 1.02). There
is no systematic difference in our sample as a whole nor any significant trend
with redshift. Therefore, in this study we do not apply any aperture correction
and base our measurements on our directly measured 2” aperture quantities (see
discussion in Drake et al., 2017b).

Lexcept for NB392 and NB501 where photometry has been done with 3” apertures (see
Matthee et al., 2017b; Sobral et al., 2017) due to broader PSF.
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3.1 Methods and corrections

Table 3.1: The Ly« survey co-moving volumes per redshift/filter slice assuming
top-hat filter profiles for medium and narrow band filters. We provide the filter
name and the Lya volume corresponding to the 50% transmission points in the
normalised filter profile. The two final columns on the right present the limit-
ing luminosity limit (log;q Lrya/ergs™!) for each slice, by using the formal flux
limits from Table 2.1 and the 30% completeness limit that we measure with our
methodology (see Section 3.1.2.1).

Filter Lya z Area Volume  Liyq 30 limit  Lyy, 30% limit

(deg?) (10°Mpc?) (log1o) (log1o)
[A427 242 -259 194 4.0 42.4 42.5
[A464 2.72-290 194 4.2 42.5 42.9
[A484 289 —-3.08 194 4.3 42.5 42.7
[IA505 3.07—-3.26 194 4.3 42.6 42.7
[A527 3.23-343 1.94 4.5 42.5 42.7
[A574 3.63—-3.85 1.96 4.9 42.7 43.0
[A624 4.00—-4.25 1.96 5.2 42.8 42.9
[IAG679 444 —472  1.96 5.5 43.0 43.1
[IA709 4.69—-4.95 1.96 5.1 42.9 43.1
[IA738 4.92-5.19 1.96 5.1 43.0 43.3
[A767 517 —5.47 1.96 5.5 43.0 43.4
[A827 5.64—-592 1.96 4.9 43.0 43.4
NB392 2.20-224 1.21 0.6 42.3 42.3
NB501 3.08-3.16 0.85 0.9 42.9 43.0
NB711 4.83—-4.89 1.96 1.2 42.6 42.9
NB816 5.65 —5.75  1.96 1.8 42.5 42.5
Total 2.20—-5.92 1.96 61.5 42.4 — 43 42.5 —43.4
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We compute the co-moving volumes probed by each of the medium bands by
approximating them to top-hat filters (using the measured FWHM; Table 2.1).
We find co-moving volumes within (4.0 — 5.5) x 10° Mpc® per medium band and
a total co-moving volume of 5.7 x 107 Mpc? over all 12 medium bands; see Table
3.1. The sum of all narrow band volumes contributes with a modest volume of
4.5 x 10 Mpc?, but allows us to probe fainter Lya luminosities (see Table 3.1).
The full Ly« survey volume in SC4K is therefore dominated by the medium band
filter survey and amounts to 6.2 x 10" Mpc®. We note that while our survey is
only sensitive to the more typical and bright Lya emitters, it provides a unique
opportunity to explore the bright end of the Lya luminosity function mostly for
the first time, being fully complementary to other previous surveys. For example,
we probe a volume ~ 50,000 times larger than MUSE (Drake et al., 2017a) and
~ 50 — 60 times the volumes of typical 1deg® narrow band surveys (Ouchi et al.,
2008) and still a factor of a ~ 2 — 3 larger than current ~ 10 — 20 deg? surveys
with Hyper-Suprimecam (e.g. Konno et al., 2018).

3.1.2 Corrections to the Lya luminosity function

3.1.2.1 Completeness correction

Sources with weak emission lines or with low EWs may be missed by our selection
criteria, causing the measured number density of sources to be underestimated.
To estimate the line flux completeness we follow Sobral et al. (2013), adapted
for Ly studies by Matthee et al. (2015). Briefly, for each medium band we
obtain a sample of non-line-emitters at the redshift we intend to study from the
appropriate MB catalogue. To do so, we use the sources which are not classified
as line-emitters (we exclude the line-emitters) and, from these, we select sources
which are consistent with being at a redshift +0.2 of the Lya redshift for a
given filter. We do this by i) applying the same Lyman break selection as we
did for the sample of line-emitters and ii) by selecting sources with photometric
redshifts within £0.2 (Laigle et al., 2016) of the redshift window shown in Table
3.1. We check that our method leads to a distribution in MB magnitudes of non-
emitters in agreement with that of the LAEs, with a tail of ~ 2 — 5% brighter

o8



3.1 Methods and corrections

sources. Overall, our empirical approach leads to a sample of non-line emitters
that is slightly brighter than that of LAEs, and thus can be seen as a conservative
approach in estimating completeness corrections that does not require making any
assumptions to create fake/mock sources.

Our procedure results in samples of non-line-emitters per MB filter that are
at roughly the same redshift as our LAEs and allow us to estimate our line-flux
completeness with an empirical /data approach. To do so, we add emission line
flux to sources in steps of 1078 ergs™ cm ™2, which results in increasing the flux
of the medium and broad bands depending on the filter’s FWHM. For each step
in flux added, we apply our emission-line selection criteria and identify those
that, with the flux added, now make it into a new sample of line emitters and
compare those with the total sample that was flux-boosted. By determining
the fraction that we retrieve (after applying our ¥ and EW cuts; see Section
2.3.1) as a function of added line-flux in comparison with the full sample, we
obtain a completeness estimation for each flux, which we apply to our luminosity
functions. We only calculate the Lya luminosity function for luminosity bins in
which we find a completeness of 30% or higher at the lowest luminosity limit of
the bin; these are in the range Liy, = 105 %4 ergs™! (see Table 3.1). Our
lowest luminosity bin is the one affected by the largest incompleteness and thus
the one with the highest completeness correction being applied, which is typically
a factor of ~ 2. We find that the completeness functions strongly depend on line
flux, with an increase in completeness from 30% to 90% typically corresponding
to a &~ 0.4 — 0.5dex increase in Ly« luminosity, and reaching ~ 100% with a

further ~ 0.5 dex increase.

3.1.2.2 Filter profile effects and corrections

As discussed in detail in e.g. Sobral et al. (2013) and Matthee et al. (2015), due
to the non-top-hat shape of narrow band filters, sources can be observed at a
low transmission (almost no source is observed at full transmission when a filter
is well described by a Gaussian function), particularly once survey volumes are

large. As a result, assuming a top-hat filter will cause a complex underestimation
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Figure 3.1: The observed ratio between 10,000 observed Ly« luminosity func-
tions using the real filter profiles and a Schechter input simulated sample of LAEs
assuming tophat filters. Our results highlight the need to correct for filter profile
effects which pushes sources from intrinsically bright to observed fainter bins, and
highlights that the corrections are particularly important for narrow band surveys,
but are still relevant for medium band surveys.

of the flux, which is manifested in the luminosity function as a transfer of intrin-
sically bright sources towards observed fainter sources. For an intrinsic Schechter
distribution, and particularly for the exponential regime (bright end), this effect
results in an underestimation of the number density of the brightest emitters
(as they can only be detected as bright over a small redshift range correspond-
ing to the filter’'s peak transmission), and sometimes an overestimation of the
faintest sources (as brighter sources detected away from peak transmission will
look fainter). However, the necessary corrections depend on i) the filter profile,
ii) the intrinsic shape of the luminosity function and iii) the depth and survey
volumes.

While medium bands are broader than narrow bands and in general better
fitted by a top-hat, a full investigation of the role of the filter profiles is still
required. We estimate potential corrections for each filter by simulating ten
million sources with an input random redshift distribution! which is wide enough

to cover down to zero transmission by each filter on the blue and red wings. We

!Note that the output distribution is not random and follows closely the filter profile; this
is what is used to study the effect of the filter profile.
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3.1 Methods and corrections

generate these ten million sources with a luminosity distribution given by the
observed (completeness corrected) luminosity function, following Sobral et al.
(2013). By convolving the full population with i) the real filter profile and ii) the
top-hat approximation we can determine the number density ratio between i) and
ii) per luminosity and derive corrections based on the filter profile; an example for
[A827 and the NB816 (from HSC) filters is shown in Figure 3.1 (see also Figure
A2).

Our results show that the use of medium band filters results in smaller cor-
rections (see also Appendix A.3.1) than those derived for typical narrow band
filters (Figure 3.1). This is because fluxes are only significantly underestimated
at the wings of the medium band filters, which correspond to a much smaller
fractional volume than for narrow band filters. We also note that the input shape
of the luminosity function is crucial for the estimated filter profile effect: while an
observed Schechter function leads to a large correction in the exponential part,
a bright end which is observationally described by a much slower decline with
luminosity (e.g. a power-law with a shallow slope) results in smaller corrections
(see full discussion in Appendix A.3.1). Our results thus mean that while for
previous deep surveys mostly tracing the faint-end power-law component of the
Schechter function the corrections could be relatively small, for the bright end
(under a Schechter assumption) the corrections can be large, close to a factor of
2-3 for narrow band filters at the highest luminosities, while they can be a factor
of 1.2-1.3 for medium bands (see Figure A.2).

While the filter profile effects can be small for medium bands, we still take
them into account by applying a statistical correction to each luminosity bin. This
produces our final luminosity function (LF). We provide a more detailed analysis
and discussion of the effects, assumptions and corrections due to the various
filter profiles when contrasted to top-hat approximations in Appendix A.3.1. We
also note that indirect statistical tests for our corrections can be obtained when
comparing our results with e.g. MUSE (Drake et al., 2017b) and other IFU
surveys which are not affected by filter profile effects (see Section 3.2.1).
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3.1 Methods and corrections

3.1.3 Flux robustness and errors: random and systematic

Due to errors in the photometry, both in the MB and BB magnitudes, estimated
Lya fluxes will be subject to errors and, in some cases, also prone to potential
systematic effects. We study these errors and their potential role in the derivation
of the Lya LF. Briefly, we assume that each MB and BB magnitudes and their
uncertainties are described by normal distributions centred on the measured value
and with the width that is equal to its associated 1 ¢ error. We then perturb each
galaxy magnitude 10,000 times by randomly picking values from their individual
probability distributions. We use these perturbed magnitudes to compute the
Lya LF. We do not find any systematic difference, showing that the errors on
the MB and BB photometry have no systematic effect in our methodology. We
use the difference between the median value and the 16th and 84th percentiles
of the perturbed number density distribution as the lower and upper errors on
the number density for each luminosity bin. We find small variations due to
this effect, with a median error of ~ 0.03 error in log,;,(®). This is particularly
sub-dominant when compared to other sources of uncertainty, but we still add it
(0.03dex) at the end in quadrature (see Figure 3.2).

3.1.4 Completeness-contamination errors in the LAE se-
lection and final errors

While the flux and EW selection/limits can be taken into account for corrections
and accounted for in errors (see Section 3.1.2.1), there are other sources of un-
certainties that are linked with the photometric or colour-colour criteria applied
to select LAEs/filter lower redshift sources (Section 2.3.3). While no single cut
is perfect (even more so due to photometric errors), it is possible to perturb the
selection and conduct a Markov chain Monte Carlo (MCMC) analysis in order
to estimate the effects of varying the selection in the derivation of the Lya LF
and propagated quantities. Here we implement such an analysis. We perturb
the LAE selection criteria described in Table 2.3 in a i) £0.2 dex interval around
each colour-colour and photometric cut, independently and ii) by randomly vary-

ing by fg:i}l the 3 0 magnitudes (corresponding to varying non-detection limits in
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Figure 3.2: An example of the different error contributions to the Ly« luminosity
bins from different sources of uncertainty which are taken in series in our analysis.
We show bins with bin widths that increase with increasing Lya luminosity. These
include: Poissonian, perturbations to the selection criteria (from line emitters to
LAEs; see Table 2.3), line flux completeness, filter profile corrections and flux
errors. We find that selection perturbation errors are most important at the faintest
luminosities, but they still contribute to the brightest bins. The Poissonian errors
are relatively very large at the highest luminosities, where the number of sources
per bin is the lowest.

the range 2 — 40, from the least to the most conservative cuts) of bands trac-
ing bluer than the Lyman-limit, used to reject interlopers. We run a MCMC
simulation, with 10,000 iterations for each filter, randomly picking sets of values
inside the full explored range, assuming all have an equal probability (flat prior).
We then calculate the selection criteria errors as the difference between the me-
dian value and the 16th and 84th percentiles within each luminosity bin for all
realisations.

An example of the estimation of the full errors affecting log;o(®) can be found
in Figure 3.2 for z = 2.5 (IA427). We find that the perturbations result in
standard deviations of 0.03 to 0.1 dex per luminosity bin at z ~ 2.5, representing
up to 50% of the total error. The perturbation error is larger in absolute terms at
the brightest bins, but it becomes a much more significant fractional contribution
to the faintest bins where the Poissonian errors are very small (see Figure 3.2).
The errors from perturbing the selection criteria are roughly a factor of up to 2.5
the Poissonian error per bin at the bins probing the faintest luminosities (with the

largest number of sources), while they can be as low as 0.2-0.8 of the Poissonian
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3.1 Methods and corrections

errors if the bin is populated with only 5-10 sources (where the Poissonian error is
already large). We also find that perturbation errors are more important (larger)
at z ~ 2.5 — 2.8 and z > 4 than they are at z ~ 3 — 3.3. This roughly coincides
with jumps in the selection criteria and whenever different colours/bands are used
(see Table 2.3).

We add our estimated perturbation errors in quadrature to the Poissonian
errors, noting that they are particularly important for the faint end where the
Poissonian errors are an underestimation of the full uncertainties. We then scale
the errors by the line flux completeness correction and the filter profile correction,
which we assume we know with 30% accuracy (and thus add an extra 30% of such
corrections to the errors, taking a conservative approach). We note that we do
not add any errors due to cosmic variance, but that given the very large volumes
and the multiple redshift slices, we expect these to be just a small fraction of our
full errors that are much larger than the formal Poissonian errors. Finally, even
though our samples are expected to be contaminated by interlopers at the 10-15%
level, similarly to other narrow band surveys, our LAE selection-completeness
implies we may be missing 10-15% of real LAEs (when we transform the sample
of line emitters into candidate LAEs), and thus in our analysis we do not apply
any corrections for this contamination or completeness, as they should roughly

cancel out.

3.1.5 Redshift binning

Our multiple redshift slices allow to trace LAEs across well defined cosmic times
from z ~ 2 to z ~ 6. We can also combine the slices to produce a global Lya LF
or obtain slightly broader redshift slices which are populated by a much larger
number of sources, and that overcome even more cosmic variance. We bin all
our z ~ 2.5 — 6 slices (IA427 through to IA827) in order to produce a global
high redshift LF and compare it with similar measurement made with the MUSE
instrument (e.g Drake et al., 2017b) or with slit observations (e.g. Cassata et al.,

2011). We also split the sample into 5 different redshift bins in the following way:

o 2~ 22 (z=22240.02; NB392)
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o 2~ 25 (z=25=+0.1; IA427)

o z~3.1 (z=3.1+0.4; IA464, IA484, TA505, IA527)
o 2~ 3.9 (z=39+0.3; IA574, [A624)

o 2~ 4.7 (z=4.7+0.2; TA679, IA709)

o 2~ 54 (z=54+0.5; IA738, IAT67, IA827)

When producing redshift binned LFs, we only use the volumes associated
with a given medium band if that specific filter provides the necessary depth for

a completeness above 30%.

3.1.6 Schechter, power-law and combined fits

The Schechter function (Schechter, 1976) is a widely used parametrization of
the LF, defined by three parameters: the power-law slope «, the characteristic
number density ®* and the characteristic luminosity L*. Observations down to
extremely low luminosities are necessary to accurately constrain the power-law
slope « (e.g Drake et al., 2017b; Dressler et al., 2015). Our medium bands cover
“typical” luminosities and higher, thus not probing much fainter than L*, and
do not allow to measure « on their own. However, several studies have been
able to obtain good constraints on «a from z ~ 2 to z ~ 6 (e.g. Drake et al.,
2017b; Dressler et al., 2015; Konno et al., 2016; Santos et al., 2016), which has
been shown to be very steep (< —1.5) and potentially varying from a ~ —1.7 at
z = 2.2 (Konno et al., 2016; Sobral et al., 2017) to o & —2 (or even steeper; see
Drake et al. 2017b) by z ~ 6 (Drake et al., 2017b; Dressler et al., 2015; Santos
et al., 2016). We therefore fit Schechter functions by varying o between —1.6 and
—2.0, but we also explore fits with « fixed to —1.8 at all redshifts in order to

investigate the potential redshift evolution of Li _ and &7  at fixed o. Finally,

Ly« Lya

we also fit a explicitly by combining our results with ultra-deep observations.
In addition to fitting Schechter functions, we also fit power-laws of the form
logio® = A log, Liya + B to the full LFs and compare these with Schechter fits.

Finally, we also explore combinations of a Schechter for lower luminosities and a
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3.1 Methods and corrections

power-law at higher luminosities when a single function yields a very bad fit on its
own (see Section 3.2). For all LFs, we follow a MCMC approach for the fits, per-
turbing each bin independently within its asymmetric Gaussian error probability
distribution and re-fitting for 10,000 realisations per LF. We take the median of
all the best fits as the most likely combination of parameters and estimate the
errors by computing the 16th and 84th percentiles for all 10,000 realisations per
LF estimation. We note that due to degeneracies in the parameters, these errors
can sometimes exaggerate the errors on individual parameters (i.e., parameters
are linked and only allowed to vary within some specific relation and not inde-
pendently), but they are generally well constrained. For each best-fit we also
compute the corresponding 2, and use these to obtain the median x2; and the

16th and 84th percentiles of all realisations.

3.1.7 X-ray and radio properties: AGN candidates within
our LAEs

We explore Chandra X-ray (e.g. Civano et al., 2016) and VLA radio data (e.g.
Smoléi¢ et al., 2017) within COSMOS to identify AGN in our sample. Full details
are given in Calhau et al. (2020). Briefly, we use the publicly available Chandra
Cosmos Legacy survey (Civano et al., 2016; Elvis et al., 2009; Puccetti et al., 2009)
to select sources with X-ray counterparts, within the overlap region with SC4K
(1.86 deg?). Out of the full SC4K sample of 3908 LAEs presented in this work,
3707 have Chandra X-ray coverage. From those, we identify 109 sources with X-
ray emission in the Civano et al. (2016) catalogue, making them strong candidates
of being X-ray AGN (Lx > 10?5 ergs™!). Calhau et al. (2020) presents a detailed
analysis on the X-ray activity of our full sample of LAEs. We find a global X-
ray AGN fraction among our SC4K LAEs of 2.9 + 0.3% for z = 2 — 6. The
AGN fraction shows evidence for a decline with increasing redshift for typical to
bright LAESs, with this trend not being driven by X-ray luminosity limits (Calhau
et al., 2020). At z ~ 2.2 — 2.7 the X-ray AGN fraction is 3.9 + 0.6%, declining
to 3.5 £ 0.4% and 0.4 £ 0.2% for redshifts 2.7 < z < 3.5 and 3.5 < z < 6,

respectively. We also identify a clear relation between the X-ray AGN fraction
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Figure 3.3: The combined global Lya LF at 2.5 < z < 6. Our large samples
of luminous LAEs, obtained over a co-moving volume of 0.6 x 10® Mpc3 are able
to constrain the bright end of the Lya LF for the first time down to number
densities of ~ 107" Mpc™ and Lya luminosities of ~ 10%%ergs™. We find a
significant excess of bright LAEs at the highest luminosities when compared to
a single Shechter function and show that is likely driven by a population where
Lya is AGN-driven. We compute a proxy for the AGN Lya LF with X-ray and
radio AGN among our sample (1 and 20 contours shown for Schechter function
fits). We also compare our results with recent MUSE/VLT (Bina et al., 2016;
Drake et al., 2017a,b) and VIMOS/VLT observations (e.g. Cassata et al., 2011),
showing a very good agreement in the Liy ., Tange where all studies overlap. Deeper,
smaller volume studies from the literature allow to cover the sub—Liya luminosity
regime, being perfectly complementary to our approach. Overall, we show the
Lya LF determined over 4 orders of magnitude in Lya luminosity and 6 orders
of magnitude in number densities at z ~ 2.5 — 6 resulting in the ‘synergy’ Ly«
LF (S-SC4K; 2.5 < z < 6) and the 1, 2 and 30 confidence levels when fitting a
Schechter function up to 1043 ergs™' (we also show the power-law fit done for
higher luminosities). Results are provided in Table 3.2.
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and Lya luminosity of LAEs (see Calhau et al., 2020), qualitatively similar to
what has been found at lower redshift (Wold et al., 2014, 2017) and also found
and discussed in Ouchi et al. (2008) and Matthee et al. (2017b).

In the VLA radio data (1.4 GHz and 3 GHz; see Schinnerer et al., 2010; Smolci¢
et al., 2017) we identify 62 individual sources, with these being dominated by the
3 GHz detections (61; 25 detected in 1.4 GHz), and we class these as AGN. Out of
these, 30/62 are also X-ray sources. We therefore find a total of 141 AGN sources
among the SC4K sample of LAEs, yielding a total AGN fraction of 3.6 4 0.3%.
If we split the sample in three redshift ranges, we find that the AGN fraction
slowly declines from z ~ 2.2 — 2.7 (4.7+0.7%) to z ~ 2.7 — 3.5 (4.4 £ 0.4%) and
then drops significantly at z ~ 3.5—6 (1.2+£0.4%). Concentrating on radio AGN
within our sample of LAEs, we find that the (radio) AGN fraction is relatively
constant (1.94+0.4%) at z ~ 2.2—3.5 and then drops to 0.94+0.2% at z ~ 3.5—6.

3.2 Results

3.2.1 The global Lya LF at z~ 2.5 -6

In Figure 3.3 we present the global Ly« LF at z ~ 2.5 — 6, which we define as the
LF of our entire SC4K sample of 3908 LAEs, determined over a total volume of
close to ~ 10® Mpc? (not an average of individual LFs at multiple redshifts). Our
results probe Lya luminosities from ~ 10*2% ergs™! to ~ 10*5 ergs™!, covering 2
orders of magnitude in Lya luminosity with a single survey. Down to our obser-
vational limits, we find that the global Lya LF at z ~ 2.5 —6 resembles a single or
double power-law (or a double Schechter, but not a single Schechter function) and
extends to luminosities and number densities that reach into what is expected
from the quasar luminosity function (e.g. Richards et al., 2006) and follow-up
of quasars in Ly« (e.g. Borisova et al., 2016). Fitting the global SC4K Ly« LF
leads to a power-law of log;o(®) = —2.227098 log;o(Liya) + 91.7136 (see Table
3.2), which describes the data significantly better than a single Schechter function
(X2 /X3, ~ 8; see Table 3.2). If we exclude X-ray AGN and radio AGN, we find
that the global Lya LF becomes steeper at the bright end. We can also derive a
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Table 3.2: The global Lya LF at z ~ 2.5 — 6 from SC4K only, when combined
with the latest MUSE results (Drake et al., 2017b) and when using the derived
consensus global Lya LF, S-SC4K (SC4K and Bina et al., 2016; Cassata et al.,
2011; Drake et al., 2017a,b, see Section 3.2.4). We also show the results when
explicitly removing radio and X-ray AGN from the sample (see Section 3.1.7). The
corresponding pry. have been computed by integrating Schechter functions down
to 1.75 x 10 ergs™!, corresponding to 0.04 L*_; from Gronwall et al. (2007); see
Section 4.1. All errors are the 16th and 84th percentiles for all 10,000 realisations
per LF estimation which, due to degeneracies in the parameters, can sometimes
exaggerate the errors on individual parameters. We also provide a comparison
(ratio) between reduced x? for Schechter and power-law fits (x3.,/x5y,) fitted over
the same luminosity range for a fair comparison; values below 1 indicate that a
Schechter fit performs significantly better, while a large value indicates that a
simple power-law fit provides a relatively lower reduced x2. * Note that fits to the
full LF are given for completeness and comparison, but that they fail to fit the data
as a whole, as the combined faint and bright ends are not accurately described by
a single Schechter or power-law functions.

Global Lya sample a logig Liya logig iy PLya/10" Sch Power-law (PL)  x2../
(25 < 2<5.8) (ergs™)  (Mpc™®) (ergs™! Mpc™3) (Alog,, L+B) Xbr,
SC4K (logyo Ly < 43.3) —1.8+0.2 (fix) 42817007 —3.167013 0.98%0 72 —2.09%017. 8.1 0.6
SC4K+MUSE (log;g Ly < 43.3) —1.80751  42.7250T  —2.92701 1324033 —1.3670%2 55.1752 0.4
S-SC4K (log;y Liye < 43.3) —1.93*012 42 93+01> 3 451022 0.8875:0 —1.29700% 52.012¢ 0.8
SC4K* (All LAEs) —1.8+0.2 (fix) 43.59700¢ —4.537013 0.33750" —2.22F0% 017710 8.0
SCAK+MUSE* (All LAEs) —2557000  43.92701  —5.47702 1407017 —1.787000 79 720 7
S-SC4K* (All LAEs) —2.457008 43.87T010  —5.32703% 1.047073 —1.697905 68.6120 0.7
X-ray + radio AGN only —1.7703 513712 —11.0%0  0.027790% 075701 27178 13
SC4K* (w/o X-ray+radio) —1.84+0.2 (fix) 4356700 —4.567012 0.297000 —2.3870% 98.7F1T 8.2
SC4K+MUSE* (w/o X-ray+radio) ~ —2.6379%%  43.90%912 _5.59%92 1484073 —1.8675%2 76.2732 0.7
S-SC4K* (w/o X-ray-+radio) —2.52750T  43.8475 00 5407521 1.09%533 —1L.77H50 720122 0.7
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X-ray+radio AGN Lya LF, which we also present in Figure 3.3, together with the
range of Schechter fits encompassing 1 and 20 ranges of all realisations. We find
evidence for the AGN population being responsible for the ‘bump’ at high Ly«
luminosities, which can be parameterised by a Schechter function! with a higher
characteristic luminosity, a lower characteristic number density and potentially a
shallower slope than the global population (see Table 3.2). The full cross-over be-

1 although given that

tween the likely two populations happens at ~ 1043 erg s~
X-ray and radio only provide a partial view of all the AGN, this transition may
happen at slightly lower luminosities &~ 101327433 ergs™1 (see e.g. Sobral et al.,
2019). It is worth noting that the typical characteristic number density of the
AGN component of the Lya LF is close to ~ 1075 Mpc™3, similar to the number
densities of clusters in the Universe, and that may provide a natural link between
bright LAEs at z > 2.5 (typically seen as very extended and thus called Ly«
‘blobs™®) and the physical environments they inhabit (potential ‘proto-clusters’).

In Figure 3.3 we also show results obtained with much deeper surveys, in-
cluding MUSE (Bina et al., 2016; Drake et al., 2017a,b) and results from slit
spectroscopy using VIMOS/VLT (Cassata et al., 2011); see also Table A.4. We
find excellent agreement within the error bars with the MUSE results presented
by Drake et al. (2017a,b), although we note that the agreement is only possible to
be tested around Lj ,, where all studies overlap. Future results from the MUSE-
wide project (see Caruana et al., 2018; Herenz et al., 2017), or a compilation of
extra-galactic MUSE archival observations, may be able to extend the volume
covered by MUSE and further increase the overlap, allowing for more detailed
comparisons and to evaluate any systematics/differences. Extremely deep MUSE
data allow to not only blindly find faint LAEs, but even more importantly to
measure the full Lya luminosity of each source without effects from narrow band
filter profiles (see Drake et al., 2017b; Leclercq et al., 2017). The comparison thus
provides statistical evidence that our corrections are able to recover the full Lya
LF.

Tt can also be relatively well parameterised by a simpler power-law function, see Table 3.2.

2Morphological analysis of the SC4K sample reveals that SC4K LAEs are typically very
compact in the UV but more extended in Ly« emission (Paulino-Afonso et al., 2018, see also
Section 1.5.3).
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Comparing our results with Cassata et al. (2011), we find a very good agree-
ment with their 2 ~ 2—3 and 2z ~ 4.6 — 6.6 Lya LFs. The z ~ 3.0 — 4.6 LF from
Cassata et al. (2011) is slightly below ours in the small luminosity range overlap
(we can only use one of their bins to directly compare with ours), but we note
that their results are also below those from MUSE (see Drake et al., 2017a,b).
Apart from cosmic variance and the large differences in selection (our selection
is directly on Lyca, more similar to MUSE), there could also be some cosmic
evolution. Furthermore, we note that the use of slits and potential underestima-
tion of slit corrections may further explain the differences. Both narrow band
surveys and MUSE have established that Ly« emission is significantly extended
(e.g. Leclercq et al., 2017; Momose et al., 2014; Sobral et al., 2017; Wisotzki et al.,
2016), thus making slit spectroscopy hard to correct. Slit corrections can be par-
ticularly challenging as they are often based on the UV continuum, but there is
no simple relation between the Lya extent and the UV extent (see e.g. Leclercq
et al., 2017).

Lya surveys from deeper (necessarily smaller) volumes are needed to cover
the sub-Lf

Lya
highlighted in Figure 3.3. Overall, we can now determine the Lya LF over 4

luminosity regime (Bina et al., 2016; Drake et al., 2017a,b), as

orders of magnitude in Lya luminosity at z ~ 2.5 —6. Figure 3.3 also reveals how
complementary ultra-deep MUSE and slit observations are to very wide narrow
and medium band surveys (e.g. SC4K and Konno et al., 2018), allowing unique
synergies and providing the first combined view all the way from the faintest
Lya sources to the brightest. We fully explore the combined strength of deep
surveys' (to probe the faint end) and SC4K (to probe the bright end) and derive
a combined Lya LF (S-SC4K; see Section 3.2.4) presented in Figure 3.3 and
Table 3.2. We obtain two cases: when combining SC4K with the latest MUSE
results (Drake et al., 2017b) and when combining all studies with SC4K (Bina
et al., 2016; Cassata et al., 2011; Drake et al., 2017a,b). While we note that a
single Schechter function is simply not an appropriate fit to the full LF, we still

Tn order to account for potential systematic differences between surveys, cosmic variance
and due to the way we compute errors, we add errors of 7002 to data bins determined with
deeper observations/by other studies, as they are able to explain current differences between
surveys and methods. We note, nonetheless, that these errors are very uncertain in themselves

and depend on which surveys/methods are being compared.
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provide those for completeness and for comparison of parameters. Restricting
the fit to Lyy, < 10*?ergs™ allows to fit a single Schechter which is likely
tracing an overall population of SF-dominated galaxies, showing a steep slope,
a = —1.937013 (greatly improved when using MUSE only see Drake et al. 2017b),
with Ly, , = 104293701 erg s~ and Plya = 107345555 Mpe—3 (see Table 3.2).
Due to the different Lya luminosity limits, our global LF presented in Fig-
ure 3.3 is inevitably dominated by sources at different redshifts as a function
of luminosity, with the lower luminosity bins being dominated by the (deeper)
lower redshift data, while at higher luminosities all redshifts contribute roughly
equally. This is not a problem in the case of a slow or negligible evolution in the
Lya LF with redshift from z ~ 2.5 to z ~ 6 (e.g. Ouchi et al., 2008), but this has
not been fully established yet, particularly for the bright end (for the evolution
of the faint-end, see Drake et al., 2017b). Our large sample of typical to bright
LAEs is ideal to investigate whether that is the case and to quantify any potential

evolution with redshift.

3.2.2 The evolution of the Lya luminosity function from
z ~ 2 to z ~ 6 in 12 redshift slices

After presenting the global Lya LF for our full sample in Section 3.2.1, we now
explore the multiple redshift slices in SC4K (see Table A.5). In Figure 3.4 we
present the Lya LF per redshift slice all the way from z ~ 2.2 to z ~ 5.8 by
deriving them per filter/redshift. We find a mild but noticeable evolution of the
bright end of the Lya LF with redshift from z ~ 2.2 to z ~ 6. This evolution
seems to be mostly visible in terms of i) an evolution of the shape and ii) an
evolution in luminosity. At lower redshift (z ~ 2.2—3.3) there is a significant extra
component (in addition to a single Schechter) to the Lya LF above luminosities
of ~ 10*33ergs™!, while such a component seems to completely disappear by
z ~ 3.7 and to not show up in any of the Lya LFs towards higher redshift.
Interestingly, when considering only the major Schechter component of the Lya
LF, we find evidence for Li , to be evolving with redshift towards z ~ 6 (see
Table 3.3 and Figure 3.5).
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Figure 3.4: The evolution of the (bright end of the) Lya LF from z ~ 2.2 to
z ~ 6 in 13 (two in the first panel) redshift slices and comparison with a variety
of surveys at roughly the same redshift as each slice. Upper limits in the number
densities of our LAEs are shown as black arrows. Our results reveal a significant
evolution at the bright end, with the number counts falling down as a steepening
potential power-law at z ~ 2.2 — 3.3 which can be described as a single Schechter
function at z > 3.5. We show two bin realisations for visualisation of binning
effects, but also the much more representative range of Schechter and power-law
(percentiles, corresponding to 1, 20) fits from perturbing the data. In addition, we
also show the fits and uncertainties when exploring synergies with deeper surveys
(S-SC4K), which greatly reduces the uncertainties (darker contours). Note that we
show both the original Konno et al. (2016) z = 2.2 LF in small points, and after

correcting for potential contamination (see Sobral et al.,

2017). At z ~ 5.8 we

compare our measurement with NB surveys (e.g. Konno et al., 2018; Ouchi et al.,
2008) corrected for filter profile effects as in Santos et al. (2016).

73



3.2 Results

In order to quantify the potential redshift evolution and its significance, we
use our best-fits of single power-laws, single Schechter functions and combinations
of both and compare the resulting reduced x? (24, see Table A.5). We find that
a single Schechter function is a particularly bad fit when including the bright end
of the Lya LF (x24 ~ 10 — 30) from z = 2.5 to z = 3.3. A single power-law fits
better (x%4 ~ 3—7), while a combination of a Schechter at lower luminosities and

043.3

a power-law at higher luminosities with a transition around 1 ergs~! provides

the best fits (see Figure 3.4). The combined fit are similar to the ones applied in
recent large volume Ly studies at a variety of redshifts (e.g. Konno et al., 2016;
Matthee et al., 2017b; Sobral et al., 2017; Wold et al., 2017). Interestingly, the

Schechter component of the Lya LF shows little evolution in L _ from z ~ 2.5

Lya
*

Iya €volution from z ~ 2.5 to z ~ 3.3 (see

to z ~ 3.1, but reveals an important ®
Figure 3.5), which may be consistent with an ‘extended’ period of peak activity
in the Universe (Madau & Dickinson, 2014). For z > 3.5, a single Schechter
fit provides very good fits, although a single power-law could in principle also
describe the bright end of the Lya LF. From z ~ 2.2 to z ~ 3.3 the Lya LF

reveals a rise in ®F

Iya Dy a factor & 4, along with a potential steepening of the

power-law component at the bright end of the LF. For z > 3.5, where the power-
law component is not seen anymore, our results reveal a fall of &7 _ and a rise of
Li o up to z ~ 5.8 (see also Table A.5).

Using the redshift bins defined in Section 3.1.5 we show the overall redshift
evolution of the Lya LF in Figure 3.5 (see Table 3.3). We also use other/different

filter combinations to obtain different redshift bins, and find that the results

*
Lya

are all consistent within the error-bars, and thus not dependent on the choice of
binning. The increased statistical sample from the redshift bins provides stronger
constraints on the Lya LF, and further reinforces the results already mentioned
when looking at each of the individual 12 redshift slices, including the presence
of a potential power-law (or extra Schechter) component at high luminosities at
z ~ 2 — 3.5, which seems to disappear or be at too low number densities for even
our survey to detect beyond z ~ 3.5. Focusing on the Schechter components

043.3

(fitting a Schechter only up to 1 ergs~ ! at z < 3.3 where a clear excess at the

bright end is found), and for a fixed a = —1.8, we find that L, may evolve in a

. . 19+0.05 -~ 2 q=10.12 _
relatively continuous way from 10%2:%9-001 ergs™ at z ~ 3.1 to 10**3%-01i ergs~!
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3.2 Results

Table 3.3: The results of fitting different Lya LFs with a Schechter function at
the appropriate luminosity range. For SC4K only we do not fit «, but instead fix it
from —1.6 to —2.0 in steps of 0.05 with a uniform prior; the +0.2 shown therefore
reflects the variation we impose on «, and not an uncertainty in fitting o. For S-
SC4K we explicitly fit all three parameters. For each fit we also integrate the Ly«
LF to obtain pryq, derived for different redshift bins, down to 0.04L*. All errors
are the 16 and 84 percentiles of all the fits, derived from our 10,000 realisations
per LF. We also convert pry, to a star formation rate density by using Equation
6.4 (Kennicutt, 1998) assuming a Salpeter IMF between 0.1 — 100 M, and affected
by fesc (note that any correction for dust extinction will also be included in the fes.

term).
Redshift bin el logyy Li,, logyo @, Prya [ 10% SFRDpyq X fesc/ 1072 Reference(s)
(SC4K only) (ergs™)  (Mpc™®) (ergs™' Mpc™®) (Mg yr~! Mpc—?) (Table A.4)
2=2240.1 (L<10%3%) —1.8+02 (ix) 42.697017 -3.3370% 0.4870 01 0.44705% 12
2=25+01(L<10%%) 18402 (fix) 4276700 —3.23701 0.73%074 0.67%015 SC4K
z2=31403 (L <10%%) 18402 (fix) 42.69%00; —2.73%7 1.90%055 1.73705% SC4K
2=39+02 —1.8+0.2 (fix) 4289751 —3.717930 0.3470%3 0.317017 SC4K
z2=47+01 —1.840.2 (fix) 43.107013 —3.82703 0.4815-32 0.43+5:3 SC4K
2=54+04 —1.840.2 (fix) 43.357012 —4.18705 0.41702 0.37+018 SC4K
S-SC4K: synergy Lya LF
z=22401 (L < 10%3) —2.0079% 428270 359702 0.5270% 0.47700% 21,61, 12
z=2540.1 (L < 10%3) —1.72%012 4271500 —3.10705 0.7410:03 0.67+0:07 2.1, 5.1
2=31403 (L <10%3)  —1.63701¢ 42774082 —3.06702 0.867 059 0.787058 2.1,5.1
2=3.9402 —2.26%018 42931013 366703 1115910 1.00791% 2.2, 5.1, 5.2
2=4740.1 —2.35%019 43287030 —4.2510% 1167030 1.057058 2.3,3,5.2, 10
z2=54+04 —1.98701  43.08%008  _3.83+0:2] 1114921 1.017510 53,94, 11
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3.2 Results

at z ~ 5.4, which would imply a factor ~ 4 — 5 increase in the typical luminosity.
This is accompanied by a strong decline of @7, of ~ 10 — 30 times from z ~ 3.1
to z ~ 5.4 (see Table 3.3 and Figure 3.5).

*
Lya»

*
Lya

increase with an increasing redshift) may be linked to an evolution of the nature of

The apparent decline in ¢ accompanied by a positive L evolution (L}

Lya
the sources or changes in the conditions of the ISM and CGM, but potentially also
with an evolution of the AGN population. We discuss possible explanations in
Chapter 4. We note that by excluding X-ray and radio AGN we find a reduction of
the number densities of LAEs at the highest luminosities, lowering and steepening
the potential power-law component, but without removing it. This means that if
the power-law component is fully AGN driven (Sobral et al., 2018a; Wold et al.,
2017) there is still a significant component of the AGN population that is simply
not detectable in the X-rays or radio (see Section 4.5), potentially because these
AGN are very young and/or of very low black hole mass, but highly efficient in
the production of Ly« photons which might easily escape, or due to the timescales
involved in the AGN turning on and off. Our results thus highlight two potentially
important /different physical mechanisms contributing to the Lya LF at z ~ 2—6.

3.2.3 Comparison with other studies at z ~ 2 — 6

A wide range of Ly« surveys using narrow bands, slits or [FUs have derived Ly«
LFs at z ~ 2 — 6, mostly probing at and below Lj_, (e.g. Cassata et al., 2011;
Dawson et al., 2007; Drake et al., 2017b; Gronwall et al., 2007; Murayama et al.,
2007; Ouchi et al., 2008; Rauch et al., 2008; Shimasaku et al., 2006; Shioya et al.,
2009; Westra et al., 2006); see Table A.4. These are both perfect comparisons to
our results and useful extensions to fainter luminosities.

A comparison between the Ly« LFs from this work and other studies at similar
redshifts from the literature is shown in Figure 3.4. We find that the z = 2.2 Ly«
LF from Sobral et al. (2017) is in good agreement with our z = 2.5 measurements
at the bright end, but the comparison reveals a positive 7  evolution from
z ~2.2to z ~ 2.5 (see also Figure 3.5). The z ~ 2.2 Lya LF presented by Konno
et al. (2016) is in reasonable agreement with ours, and also implies evolution

from z = 2.2 to z ~ 2.5, but implies higher number densities of bright sources
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(see discussion on the importance of filtering out lower redshift interlopers and
how they can easily account for 50% of high EW sources in the bright end at
z ~ 2; see Sobral et al., 2017). We also show the Konno et al. (2016) results
when removing likely contaminants in Figure 3.4 as in Sobral et al. (2017), which
results in an even better agreement with our results at the bright end. The z = 2.4
LF from Matthee et al. (2017b) is also in good agreement with our measurement
at z ~ 2.5. We note that the number densities observed for the brightest bin
in Matthee et al. (2017b) are marginally higher than ours (Figure 3.4), and that
those high luminosity sources have now all been spectroscopically confirmed (see
Sobral et al., 2018b), and thus contamination is not able to explain the small
discrepancy. The observed lower number densities for our results based on the
medium bands when compared with Matthee et al. (2017b) may be explained by
some of the brightest sources having lower EWs and thus being missed by our
relatively high EW cut, even after applying our completeness corrections (see full
discussion in Sobral et al., 2017). Cosmic variance is another possibility. We also
compare our results to Cassata et al. (2011) and find a good agreement.

The ‘mild’ increase from z ~ 2 up to z ~ 3.3 — 3.7 of the number density
of LAEs (factor of ~ 4) across the entire luminosity range is consistent with
measurements from several studies, where a similar rise of the Schechter function
is seen by comparing e.g. Sobral et al. (2017) at z ~ 2.2 with Ouchi et al. (2008)
at z ~ 3.1 and z ~ 3.7 (Figure 3.4). In fact, at z = 3.7, Ouchi et al. (2008)
finds higher number densities at all luminosities than ours, although by z = 4.1
our measurements agree very well with Ouchi et al. (2008). At z = 4.8, SC4K
provides a unique opportunity to directly compare results from a MB and NB at
roughly the same central wavelength, and we find a very good agreement at all
luminosities probed by both bands, with the NB data allowing us to go deeper,
while the MB allows to probe a wider volume.

As we move to even higher redshifts (z ~ 5 — 6), there is tentative evidence
for a ‘boost’ in luminosity (accompanied by a decline in number density and a
potential steepening of the Ly« LF; Drake et al. 2017b), which agrees with results
from Santos et al. (2016), and with those at z ~ 5.7 from Ouchi et al. (2008)
when corrected in the same way as our results (see discussion in e.g. Matthee
et al., 2015; Santos et al., 2016, and also Section 3.1.2.2). Recent results from
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Figure 3.5: Left: The evolution of the Lya LF with redshift from z ~ 2 to
z ~ 6 from this study, exploring our synergy approach (S-SC4K), showing the
16th and 84th percentiles of all realisations/fits. We find a mild Lj,, rise with
increasing redshift, at the same time that @iya declines. This leads to a mild
evolution in the Schechter-like component with redshift. We find that the extra
power-law /Schechter component at Lyyo > 1033 ergs™! declines with increasing
redshift, mostly by becoming steeper and with a lower normalisation, which may be
linked with the decline in the AGN population. By z ~ 3.9 the extra component is
no longer seen at the current observational limits. Right: The Ly -®7 , contours
for the Schechter fits by fixing @ = —1.8 (without any perturbation) by using the
SC4K MBs only. The lines are the 1o, 20 and 30 contours for Lfya and @Eya for
each redshift bin. This shows the mild but significant evolution of both Liya and

@Eya with redshift.
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HSC (Konno et al., 2018) reach volumes similar to ours at z = 5.7 and hint for an
overall lower number density of sources than those found by Ouchi et al. (2008)
or Santos et al. (2016). This difference is mitigated when we apply the filter
profile corrections (see e.g. Figure 3.4), but still suggests an overall lower number

density of sources or systematic differences in estimating/measuring fluxes.

3.2.4 S-SC4K: the synergy Lya LF(z)

Overall, our results show very good agreement with the literature for the range
of luminosities where surveys can be directly compared. Our results also extend
previous surveys not only to higher luminosities, but also to a much higher number
of redshift slices, allowing us to investigate the fine redshift evolution of the Ly«
LF in terms of the apparent shape change in the bright end and its positive
luminosity evolution (of the main Schechter component) by a factor of about
~ b from z ~ 3 to z ~ 6 and a decline in the number density of sources by
a factor ~ 10 or more. Interestingly, recent results from MUSE (Drake et al.,
2017b) provide strong evidence for a being steep and tentative evidence for it
steepening with increasing redshift. However, ultra-deep MUSE data on their
own still suffer from an important short-coming: the uncertainty in determining

the characteristic luminosity and/or number density of sources (e.g. errors on «

+1.4
—00

et al., 2017b). Our SC4K survey is exactly what is needed (see Figure 3.3) to

provide the extra constraints on the bright end and break the degeneracies.

up to at z ~ 3 — 6.6 due to poor constraints on the bright end; see Drake

We combine our SC4K results with other surveys probing to fainter lumi-
nosities than SC4K, to derive a synergy/consensus Lya LF (S-SC4K) from the
peak of star-formation into the end of re-ionisation. We present the results in
Figures 3.3, 3.4, 3.5 and Tables 3.2 and 3.3. We find evidence for a steepening
of the faint-end slope (see Table A.5) from z ~ 2.5 (¢ = —=1.7+£0.2) to 2 ~ 5
(o = —=2.540.2). Most importantly, we find that « is always very steep and close
to o = —2 at all redshifts probed. The synergy LF (S-SC4K; Figure 3.5) also

*

Iya DY a factor of & 3 — 4 from z = 2.5

shows a roughly continuous increase in L
to z ~ 5 — 6 (for the main Schechter component; note that at z < 3.3 the Ly«

LF requires an extra bright component to be properly modelled). In addition,
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we also find evidence of a decline in the typical number density at Li ,, with
®f o continuously reducing by a factor of ~ 5. Overall, we show that there is
evolution in the Lya LF from z ~ 2.5 to z ~ 6, driven by an apparent steepen-
ing of the faint end slope, together with both a decline in number density and a
positive luminosity evolution (factors of ~ 3 —5). It is also worth highlighting
that a single Schechter function is not capable of encompassing the full evolution
of the Lya LF at z ~ 2 — 3.3, due to the significant power-law or extra brighter
Schechter component. We also note that it is possible that the extra population
of likely AGN dominating the bright end at lower redshift (see Figure 3.5) may
still contribute at higher redshift and may in principle be partially responsible for
the luminosity evolution. However, as Section 4.1 shows, due the very steep faint
end slope of the Lya LF, the Lya luminosity density is dominated by the faintest
sources and thus the evolution of the bright end by itself does not dominate the
luminosity budget, though it may be very important to understand the physics
of sources contributing to it. We also stress that while the bright sources are not
the dominant sources of Ly« luminosity density in the Universe, only the com-
bination of ultra-deep and large volume surveys can provide the full constraints
necessary to fully measure the evolution of the Lya LF and the population of

sources that contributes to it.

3.3 Conclusions

We use our large sample of ~ 4000 LAEs to construct Lya LFs for the different
redshift slices and investigate the evolution across cosmic time. We also combine
SC4K with results from the literature to obtain a powerful consensus/synergy
Lya survey (S-SC4K) that spans over 4 orders of magnitude in Ly« luminosity

across z ~ 2 — 6. Our main results are:

e SC4K extensively complements ultra-deep surveys, jointly covering over

4dex in Lya luminosity and revealing a global (2.5 < z < 6) synergy LF

with a steep faint end slope a = —1.93%013, a characteristic luminosity
of logyy L, = 42.93"0 P ergs™! and a characteristic number density of
lOglO (I)Ityoa - _3451_833 Mpci3'
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3.3 Conclusions

e The Schechter component of the Lya LF shows a factor ~ 5 rise in L
1

*
Lya»

from ~ 10%27ergs™ at z ~ 2 to ~ 103 ergs™ at 2z ~ 6 and a ~ Tx

decline in ®f__ from 2z ~ 2 to 2 ~ 6. We also find evidence for the faint-end

Lya
slope to steepen from @ = —1.7+ 0.2 at z ~ 2.5 to a = —2.5 £ 0.2 at
z ~ 5. Most importantly, « is always very steep and close to a = —2 at all

redshifts probed.

e A Schechter function provides a good fit to the LF up to luminosities of
~ 10%3 ergs™, but we find a significant extra power-law (or Schechter)

! We show that the extra component

component above Ly, = 1043 ergs™
is partially driven by X-ray and radio AGN, as their Lya LF resembles the
excess. This extra component is found to decline (steepen) significantly
with redshift and/or becomes mixed with the main Schechter component
beyond z ~ 3.5, likely linked with the evolution of the AGN population.
This means that above z ~ 3.5 a single Schechter function becomes a good
description of the Lya luminosity function from the lowest to the highest

Lya luminosities.
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Chapter 4

LAEs in the wider picture and
the escape of Lya photons
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Abstract

We use our best measurements of the Lya luminosity function at
multiple redshift intervals between z ~ 2 and z ~ 6 to probe for
evolution of the Lya luminosity density. The Lya luminosity density
rises by a factor ~ 2 from z ~ 2 to z ~ 3 but is then found to be
roughly constant (1.1753 x 10* ergs™ Mpc~) to z ~ 6, despite the
~ 0.7dex drop in UV luminosity density. The Lya/UV luminosity
density ratio rises from 4 +1% to 30 6% from z ~ 2.2 to z ~ 6. Our
results imply a rise of a factor of & 2 in the global ionisation efficiency
(&on) and a factor ~ 4 + 1 in the Lya escape fraction from z ~ 2 to
z ~ 6, hinting for evolution in both the typical burstiness/stellar
populations and even more so in the typical ISM conditions allowing

Lya photons to escape.



4.1 The redshift evolution of pry,

We structure this Chapter as follows: we measure the Lya luminosity density
(pLya) and discuss how fes. and &op likely evolve with redshift in Sections 4.1 to
4.3. We discuss the nature of LAEs in a broader context in Sections 4.4 to 4.6.

We provide some final remarks and conclusions in Section 4.7.

4.1 The redshift evolution of pry,

We explore SC4K and S-SC4K to measure the evolution of the Ly« luminosity
density (prya) from z ~ 2.2 to z ~ 6, in multiple redshift slices, with unprece-
dented detail. We compute pry, by integrating the LF' down to different limits.
For a direct comparison with Hayes et al. (2011), we integrate LFs down to
1.75 x 10* ergs™!, corresponding to 0.04 L*_;' from Gronwall et al. (2007). For
each LF, we calculate 10,000 integrals, each perturbing individual data-points
within their asymmetric Gaussian distributions, fitting the LF and computing
the integral. For SC4K-only LFs we vary a with a uniform probability distribu-
tion between —1.6 and —2.0 for a more conservative error estimation (errors are
the 16 and 84 percentiles of all the integrals). The results are shown in Figure
4.1 and Tables 3.2 and 3.3.

We find evidence for pry, to increase with redshift, with a rise from z ~ 2 to
z ~ 3 and then a tentative decline at z ~ 4 and remaining constant at z ~ 4 — 6
(Figure 4.1). These results are clear using both the individual redshift slices
and also the redshift bins. We note that the decline in pry, seen from z ~ 3
to z ~ 4 with SC4K coincides with the disappearance of the bright-end excess
of the Lya LF, although we note that the potential power-law component at
the highest luminosities, by itself, only represents ~ 1 — 5% of the Schechter
luminosity density?. The evolution from z ~ 3.3 to z ~ 4 may be linked with a
significant evolution in the nature of Ly« emitters.

When using S-SC4K, we obtain far superior constraints on pyy, (much better
than e.g. MUSE or SC4K on their own; see Figure 4.1). We still find that ppy,

increases from z ~ 2.2 to z ~ 3 — 4 by a factor of ~ 2, and clear evidence for

!This corresponds to integrating down to ~ 0.16 M, yr—! for a Salpeter IMF and fo. = 1.0;
see Section 4.3.
2Tn our analysis we do not include the integral of the power-law component.
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Figure 4.1: Top: The evolution of the Lya luminosity density (pryo). We show
the measurements using SC4K only, including per filter and also redshift stacks.
We find a relatively constant pry, across redshift, with the MB filters on their
own suggesting a slight decline in pryo from z ~ 3 to z ~ 4 — 6. Combining
SC4K with deep surveys (S-SC4K) reveals the importance of probing both the
faint and bright ends. The combined constraints show that pry, rises from z ~ 2
to z ~ 3.5 and then stays constant with redshift all the way to z ~ 6. Bottom:
We compare our results with surveys measuring the UV (Bouwens et al., 2015;
Finkelstein et al., 2015; Hayes et al., 2011) and Ha (Sobral et al., 2013) luminosity
densities transformed to SFRDs. While the global star formation rate density (UV
luminosity density) of the Universe is falling sharply from z ~ 2 to z ~ 6 by a
factor of =~ 5, the contribution from Ly« selected sources is rising, particularly due
to the steepening of the Lya LF, accompanied by a higher typical luminosity and
despite the lower typical number density.
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4.1 The redshift evolution of pry,

PLya to be relatively constant with redshift from z ~ 4 to z ~ 6. Our results thus
show that despite the clear evolution of the Lya LF from z ~ 4 to z ~ 6, its
integral remains roughly constant. Interestingly, we note that the global SC4K
LF on its own (2.5 < z < 6, pink diamond in Figure 4.1) yields a value of pry,
which is actually representative of the majority of the individual measurements at
z ~ 3—6 (green circles in Figure 4.1). We find that the relative constancy of pryq

with increasing redshift is driven by a steepening of the faint-end slope o with

*

Iyas Which counter-balances

increasing redshift, together with an increase in L
the significant reduction in ®f , with increasing redshift. Therefore, our results
show that whilst pry, stays relatively constant with redshift, there is a strong
shift towards fainter LAEs becoming more and more dominant in the global pyy,
towards re-ionisation.

We compare our results with the literature (see e.g. Drake et al., 2017b; Hayes
et al., 2011; Matthee et al., 2015; Ouchi et al., 2008; Santos et al., 2016; Zheng
et al., 2017, and references therein) and find good agreement with our measure-
ments within the errors. The scatter of individual measurements and previous
studies done on single fields and /or just probing either the bright or faint regimes
is also very clear in Figure 4.1. For example, MUSE data on their own sug-
gest a potential increase in pryo, while SC4K on its own would suggest a reduc-
tion. Our results highlight the importance of combining the strengths of each
approach/instrument/measurement in order to truly reveal the behaviour of pry,
with redshift.

On the bottom panel of Figure 4.1 we convert pry, to a star-formation rate
density (SFRDypy,') so we can more directly compare it with the UV luminosity
density also converted to SFRD (SFRDyy; e.g. Bouwens et al., 2015; Finkelstein
et al., 2015). Our results reveal the striking difference between the evolution of
the UV and Lya SFRDs with increasing redshift. While the SFRD traced by
Lyman break galaxies (and Ho emitters at z = 2.2) is strongly declining (by
a factor of about 5 from z ~ 2.2 to z ~ 6), the Lyaw SFRD is increasing to

lcomputed by directly converting Liya to Lia = Liya/8.7, and then computing the SFR
using Equation 1.3; a likely difference between this SFRD and the one derived from LBG samples
will thus be driven by fesc 1y and the ionising efficiency; see full assumptions in Section 4.3.
The SFR is computed assuming a Salpeter IMF, and thus can be converted to a Chabrier IMF
by multiplying it by a scaling factor of 0.63.
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z ~ 3 — 4 and then remaining constant all the way to the end of the epoch of
re-ionisation at z ~ 6. Therefore, our results re-enforce the increasing importance
of LAEs at higher redshift in the global SFRD, and hint for global evolution in
the properties of galaxies for this to happen, including the Ly« escape fraction
(which would result in a higher Lya luminosity density for a fixed UV luminosity
density) and/or the typical ionisation efficiency (which can also lead to a higher
production of Ly« photons). Furthermore, the Ly« escape fraction is sensitive
to a number of galaxy properties such as the dust content (e.g. Atek et al., 2008;
Hayes et al., 2010b; Matthee et al., 2016; Oyarzin et al., 2017; Shibuya et al.,
2014) and covering fraction of neutral hydrogen (Henry et al., 2015), and thus
any of these may be evolving. The production efficiency of ionising photons is
related to the nature of stellar populations, such as the metallicity and initial
mass function (e.g. Erb et al., 2014; Reddy et al., 2018; Schaerer, 2003). In

Section 4.3 we explore these possibilities in detail.

4.2 The evolution of the cosmic Lya/UYV ratio

Based on our results, pry, rises by a factor of about ~ 2 from z ~ 2.2 to z ~ 3
and is then relatively constant up to z ~ 6. However, as shown in Figure 4.1,
the UV luminosity density! decreases by a factor ~ 5 over the same redshift
range (e.g. Bouwens et al., 2015; Finkelstein et al., 2015; Reddy & Steidel, 2009).
Figure 4.2 shows that the cosmic SFRDy,,/SFRDyy increases significantly with
redshift by a factor of ~ 7 — 8 from z ~ 2 to z ~ 6, driven by the mild positive
evolution of pry, with redshift and the sharp decline in pyy (Figure 4.1). Our
measurements follow a similar trend estimated by Hayes et al. (2011), but provide
significantly better sampling in terms of redshift and further constraining both
the bright (SC4K) and faint ends (S-SC4K); see Figure 4.2.

Observationally, our results mean that from z ~ 2 to z ~ 6 there is a system-
atic increase in the luminosity density of Lya photons in the Universe relative
to 1500 A UV photons. Such increase should be vastly dominated by the large

UV luminosity densities are integrated down to 0.04 L{v 4=3 following Hayes et al. (2011);
see also discussions in Hayes et al. (2011) and e.g. Sobral et al. (2017) on integration limits.
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Figure 4.2: The evolution of SFRDyy0/SFRDuv (= &ion,N X fesc, Equation 4.7)
from z = 2.2 to z ~ 6 with S-SC4K. We find the ratio to increase from ~ 4% at
z = 2.2 to ~ 30% at z ~ 6, implying a very high Lya to UV luminosity density
ratio in the early Universe. We parameterise the rise with redshift as a power-law
and find o (1+z:)3'0t8:g (we show the 1, 2 and 3 o range of all fits), a slightly steeper
relation than in Hayes et al. 2011 (we also include more recent measurements from
the literature). Furthermore, by modelling the rise of & as o< (142) (see Equation
10 from Matthee et al., 2017a), we infer that fes. is rising as (1 + z)mtgé. Our
results suggest a significant evolution in the typical burstiness/stellar populations
(&on) by a factor of &~ 2 and an even stronger evolution in the typical ISM conditions
leading to an inferred fes. increase of a factor ~ 4 from z ~ 2.2 to z ~ 6.
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number of faint LAEs that likely become more dominant towards higher redshift,
but there is also independent evidence for a higher Lya/UV ratio for fixed UV
luminosities towards z ~ 6, including at high UV luminosities (see Curtis-Lake
et al., 2012a; Schenker et al., 2014; Stark et al., 2017, and references therein). We
explore and discuss potential explanations and interpretations for the rise of the

cosmic Lya/UV ratio in Section 4.3.

4.3 The redshift evolution of f.. and &,

The prya/puv ratio is a tracer for the relative strength of Ly to the UV. In
Figure 4.2 we show that SFRDy./SFRDuyy (~ prya/puv) rises with redshift
significantly. In order to fully interpret and discuss the redshift evolution of the
PLya/ puv ratio, it is necessary to derive how it depends on the Lya escape fraction
and production efficiency of ionising photons. We follow Bouwens et al. (2016)
and Matthee et al. (2017a), and define &, (see discussions in Shivaei et al., 2018),
the production efficiency of hydrogen ionising photons (Lyman continuum, LyC),
as:
Qion

éion - LUV X (1 - fesc,LyC) (HZ erg_l), (41>

where Lyy is the dust-corrected UV luminosity in ergs™ Hz ™!

at a wavelength
of 1500 A, and assuming a ~ 0% escape fraction of LyC photons (fese.Lyc)- Qion,
the number of emitted ionising (LyC) photons per second, is related to the dust-

corrected Ha luminosity (Ly,) as:

Qion = Lro (Sil)a (42)

CHa

where cg, = 1.37x 10712 erg (e.g. Kennicutt, 1998; Schaerer, 2003) is the recombi-
nation coefficient. Under the assumption of case B recombination, a temperature
of 10*K, an electron density 350 cm™3 and a 0% escape fraction of ionising LyC
photons, the Ha luminosity is related to Lya (with fe. being the Lya escape

fraction) as:

LHa -

Liya _
S;fy (ergs™). (4.3)
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With our assumptions so far, we can use Ly, to estimate the SFR!, following
Kennicutt (1998) for a Salpeter IMF (0.1 — 100 Mg):

SFRua = 7.9 X 107 Lygq (Mg yr™ ). (4.4)

We combine these equations to derive an expression for the relation between

the Lya and UV luminosities:

LLya

0 (Hzerg™). 4.5
ST Loy zere ) (4.5)

gion X fesc =

Quantitatively, both UV and Ly« luminosities are related to the SFR. The
(dust-corrected) UV luminosity through direct continuum emission from young
stars, and Lya luminosity through the recombination radiation in HII regions

from LyC photons originating from young stars. Following Kennicutt (1998), &on
is related to the Ha and UV SFR as:

€mn:1;3x10%§§gf%(Hzag—ﬂ. (4.6)
In this equation, the constant 1.3 x 10%° Hzerg™! is dependent on the IMF and
stellar spectral synthesis models. The ratio between the Ha and UV SFRs is
a measure of burstiness of SF (see also Smit et al., 2016) and is equal to 1 if
there is a continuous SF history for the last 100 Myr. Therefore, an increasing
&on could trace both the nature of stellar populations (i.e. the hardness of the
ionising spectrum) and/or the burstiness of star formation. This degeneracy can
be resolved with photo-ionisation modelling when multiple emission-lines with a
range of ionisation energies are observed (for example using the Helium Balmer

lines). If we define &onn = &ion/ (1.3 X 10% Hzerg™!), we can write:

SFRiya
SFRuy '

gion,N X fesc -

(4.7)

allowing us to more directly interpret the ratio between SFRiy, and SFRyv.

'For continuous SF over 10 Myr timescales.

90



4.4 The compact nature of LAEs and relation to the global increase in feg

Matthee et al. (2017a) discusses how &, correlates with Hoe EW, and how the
widely agreed rise of typical Ho EWs! with redshift (e.g. Faisst, 2016; Fumagalli
et al., 2012; Sobral et al., 2014) suggests that &, rises by a factor of about ~ 2
from z ~ 2 to z ~ 6 as «x (1 + 2), in agreement with e.g. Nakajima et al. (2016)
and Harikane et al. (2018). Assuming &onn &~ 1 at z = 2.2 (see Matthee et al.,
2017a; Shivaei et al., 2018), we can then measure f.. directly for 2 < z < 6 by
using:
3.2 SFRiy.

fesc - 2 . 4.
(112 SFRyy 2<7<0) (48)

We check with Sobral et al. (2017) that the above approach is able to roughly
recover fe. at z = 2.2 measured directly with Ha (4% with the integration limits
we use and without using the power-law component of the Lya LF). By comparing
with our observations in Figure 4.2, we infer an evolution of fy of a factor ~
4 (from ~ 3.8% at z ~ 2.2 to = 15% at z ~ 6), with an increase roughly
proportional to (1 4 2)%0%03 for f.. (see Figure 4.2). Our results thus suggest
that the strong evolution in the SFRDyy,/SFRDyy ratio with redshift is driven
by an increase in &, (tracing high burstiness and/or an average change in stellar
populations) by a factor of ~ 2, rising as 1 + 2z and fe. by a factor of ~ 4 —5
from z ~ 2 to z ~ 6, rising as (z + 1)2. Overall, this explains the rise of
SFRD1y,/SFRDyy as (1+2)3%%%3. Our results thus imply evolution in both ISM
conditions and on the burstiness/nature of the stellar populations with increasing
redshift.

4.4 'The compact nature of LAEs and relation

to the global increase in f..

Paulino-Afonso et al. (2018) presents the full visual and automated morphological
and structural analysis in the rest-frame UV of the SC4K sample presented in
this work. They find that LAEs are systematically smaller in the rest-frame UV

than the global population of star-forming galaxies, presenting sizes which are

1See also results showing a rise in typical EWs of other rest-frame optical lines such as [O111]
in Khostovan et al. (2016).
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4.4 The compact nature of LAEs and relation to the global increase in feg

roughly constant with redshift of ~ 1kpc (see also Bond et al., 2011; Guaita
et al., 2015; Malhotra et al., 2012). Paulino-Afonso et al. (2018) also points out
that while “typical” star-forming galaxies at z < 2 are ~ 2—4x larger than LAEs
(Paulino-Afonso et al., 2017; Ribeiro et al., 2016; van der Wel et al., 2014), the
differences in typical sizes become smaller with increasing redshift. By z ~ 6, the
general population of SFGs presents basically the same morphological properties
as LAEs have across all redshifts.

Furthermore, Paulino-Afonso et al. (2018) also discusses how the sizes and
compactness of LAEs depend on rest-frame Lya EW,. The EW, of the Lya
line has recently been shown to be the simplest/most robust empirical predictor
of fes. (Sobral et al., 2017), with the relation between EWj and f.. showing
no significant evolution at z ~ 0 — 5, (see Harikane et al., 2018; Sobral et al.,
2017). Paulino-Afonso et al. (2018) find that LAEs with the highest EWs are
the smallest and most compact at all redshifts. This suggests a relation between
compactness and/or size and fe., and may be one of the physical reasons why
we find that globally f.. seems to rise with increasing redshift. In this case, it
would be because the general population of galaxies are, as a whole, compact
and small enough, for Lya photons to more easily escape. However, we note that
smaller and more compact galaxies will typically be also less evolved, potentially
more bursty and with lower metallicity stellar populations, which can also lead to
boosting Lya through a higher &,,,. The potentially higher f.,. at higher redshift
could also be caused more directly by e.g. lower dust content and/or a more
porous CGM due to strong stellar winds (e.g. Geach et al., 2014) produced in
compact and highly star-forming regions, which would allow the escape of more
Lya photons.

The morphological information may be important to potentially explain the
increase in fo,. with redshift, but in principle it does not tell us anything about the
burstiness or the stellar populations and/or AGN activity that may be happening
within LAEs across cosmic time. This is important to understand the potential
evolution in &, (Matthee et al., 2017a), even more so as our results provide
evidence that both &, and fe. evolve with redshift. Further physical insight
may be obtained by studying local analogues like ‘green peas’ or ‘blueberry’

galaxies (e.g. Izotov et al., 2017; Yang et al., 2017a,b). Such analogue galaxies
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allow for detailed studies to be performed to make crucial measurements and test
hypothesis/modelling results (e.g. Izotov et al., 2016; Verhamme et al., 2006, 2015;
Yang et al., 2017a) regarding the connection between fe. and the Lya emission
line peak separation, width and other properties (see e.g. Verhamme et al., 2017).
Furthermore, these low redshift sources, showing essentially the same properties
as SC4K galaxies at higher redshift, are ideal to further explore and test the link
between LyC and Lya photon escape (e.g. Dijkstra et al., 2016; Izotov et al.,
2018; Verhamme et al., 2015, 2017) and their relation with size/compactness and
other physical properties.

4.5 The bright end of the Lya LF: AGN?

Previous studies (e.g. Konno et al., 2016; Matthee et al., 2017b; Sobral et al.,
2017; Wold et al., 2017) have found evidence for a relation between the potential
power-law component of the bright end of the Lya LF and the AGN nature of
sources populating it. Such evidence has been primarily driven by the detection
of many of those sources in the X-rays (e.g. Konno et al., 2016; Sobral et al.,
2017). With the availability of deep Chandra and VLA data, we have identified
that 3.6 & 0.3% of all our sources are likely AGN, with 109 (2.9 £+ 0.3%) being
X-ray AGN, 62 (1.7 £ 0.2%) being radio AGN and 30 (0.8 £ 0.1%) being both.
While these are a very small fraction overall, as shown in Calhau et al. (2020) and
Sobral et al. (2018a), AGN LAEs become more significant at the brightest Ly«
luminosities, a consequence of their relatively flat Lya LF which we have found,
with a potential high Ly ,. Calhau et al. (2020) finds a significant correlation
between the X-ray AGN fraction of LAEs and the Lya luminosity; this fraction is
consistent with 0.7 £ 0.3% below Lj_,, but it grows towards 100% at the highest
Lya luminosities (see also Matthee et al., 2017b; Sobral et al., 2018a). We thus
find that removing the X-ray and radio AGN leads to removing sources from the
bright-end of the LF, but an excess relative to a Schechter persists at z ~ 2—3 even
after removing X-ray and radio sources. We argue that there is still a significant
population of AGN sources that is undetected in the radio and X-rays, even after

stacking. X-ray or radio-detected AGN only provide a lower constraint on the
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4.5 The bright end of the Lya LF: AGN?

total number of AGN, as not all AGN have strong X-ray or radio emission. As
shown in Sobral et al. (2018a), virtually all the spectroscopically confirmed LAEs
at 2z ~ 2 — 3 with > 10*2 ergs=! are AGN. Such AGN are revealed by deep rest-
frame UV spectroscopy, even though the majority does not show any detectable
X-ray or radio emission. These results indicate that the most luminous LAEs at
z ~ 2—3 are powerful AGN that emit copious amounts of Ly« photons, boosting
the bright end of the Lya LF. Further evidence comes from the relation between
X-ray and Lya luminosities which suggests that Ly« is tracing the accretion rate
for those sources, and not SF processes. AGN LAEs have X-ray luminosities in

= 1(0*34-451 1. implying high black hole accretion rates of

the range Lix_;ay
0.1-4 Mg yr~t. AGN LAEs have radio luminosities of ~ 10%*7 ergs~! Hz ™!, but

little relation with Lyca, probing down to lower Lya luminosities, and potentially

ergs~

indicating ‘bursty’ AGN accretion.

Calhau et al. (2020) discusses how the relation between AGN fraction and Ly«
luminosity evolves with redshift, consistent with a decline in the normalisation
or an evolution towards much higher Lya luminosities. For 3.5 < z < 6 (where
we fail to detect the power-law component), the X-ray+radio AGN fraction of
LAEs remains relatively low for the entire luminosity range, although it still
rises with Lya luminosity from 0.9 + 0.4% at the lowest Lya luminosities to
11 +£ 7% at ~ 10*ergs™. These results are consistent with those from Wold
et al. (2014, 2017) at z ~ 0 — 1, but provide evidence for the AGN fraction
evolving (declining) with redshift. The different X-ray and radio observational
limits at different redshifts are not sufficient to explain the evolution of the AGN
fraction of LAEs (Calhau et al., 2020). While we find no convincing evidence of a
significant population of AGN LAEs beyond z > 3.5, and no detectable power-law
component in the LF, it is possible that it continues to exist at z > 3.5, but just
with number densities below our surveyed volumes and/or with a LF that is more
similar to the fainter population of LAEs, thus making it indistinguishable from
those. If these sources occupy the faint-end of the quasar luminosity function,
one would potentially expect number densities of 1072 — 1071 Mpc—3 (McGreer
et al., 2013) for the most luminous z = 5 quasars, which would be easily below
our detection limit. It is also possible that the bright end still contains AGN

sources even towards z ~ 6, but that they are just not X-ray or radio luminous
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enough to be detected either individually or by stacking (see Calhau et al., 2020).
Such potential “hidden” AGN activity in luminous LAEs at higher redshift could

*

still be driving the apparent Ly,

rise towards z ~ 6 and might be tentatively
showing up in deep spectroscopic observations of some of the most luminous LAEs
at z ~ 6 — 7 with potential detections of Hell and/or Nv (e.g. Laporte et al.,
2017; Sobral et al., 2019). In addition, we also note that while high accretion
rates and relatively high black hole masses in fainter LAEs are excluded, faint
LAEs may still contain young, low mass AGN that would make them currently

undetectable in the X-rays and radio.

4.6 The nature and evolution of faint to bright
LAEs across z ~ 2 —6: progenitors of sub-L*

galaxies to proto-cluster tracers

Clustering analysis (Khostovan et al., 2018) of the SC4K sample shows a clear de-
pendence of the clustering length and the inferred dark matter halo mass on both
the Lya luminosity and the UV luminosity or SFR. At the highest Ly« luminosi-
ties, LAEs are likely hosted by quite massive dark matter haloes of 1013714 M,
where one expects AGN activity to be prominent. These observational results are
in good agreement with modelling from e.g. Garel et al. (2016) who finds that
the brightest LAEs at high redshift should reside in more massive dark matter
haloes and be the progenitors of more massive haloes today, while the super faint
LAEs now being found by MUSE (Drake et al., 2017b) are likely the progenitors
of sub-L* galaxies today. Khostovan et al. (2018) finds similar results, with the
dark matter haloes and the clustering strength of the faintest LAEs from the
narrow band selected surveys being closer to ~ 10 M, similar to results from
e.g. Ouchi et al. (2010) and other clustering studies focusing on very faint LAEs
(e.g. Kusakabe et al., 2018). The high number densities of faint LAEs at high
redshift, driven by the steep (o ~ —2) faint-end slope of the Lya LF (S-SC4K
and e.g. Drake et al., 2017b; Dressler et al., 2015) reveal that a very large number

of sources are emitting Lya photons that can escape in the early Universe. These
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numerous LAEs (this study and e.g. Drake et al., 2017b) with high Ly« escape
fractions and high EWs (e.g. Hashimoto et al., 2017; Sobral et al., 2017), highly
ionising (Nakajima et al., 2016), compact/small sources (Malhotra et al., 2012;
Paulino-Afonso et al., 2018) may play a crucial role in the early Universe. For
example, our results imply that by z ~ 6, LAEs are likely key contributors to
the global LyC photons produced in the Universe (see also the discussion about
sources that can reionise the Universe in Section 1.1.2).

Overall, LAEs have low UV luminosities (which can easily make them un-
detected even in very deep continuum surveys), but high production of LyC
photons (expressed as a high ionisation efficiency; Harikane et al. 2018; Matthee
et al. 2017a; Nakajima et al. 2016). Thus, our results strongly add to current
observations by pointing towards LAEs being exactly the sources that ultra-deep
continuum surveys strive to detect using gravitational lensing (e.g. Atek et al.,
2015). Due to the strength and high EWs of the Lya emission line at high redshift,
LAE surveys are simply much more efficient at picking the numerous, UV-faint,
compact and highly ionising sources in spite of their ultra-faint UV magnitudes.
Examples of such faint, strongly Lya emitting galaxies have recently been found
in e.g. Vanzella et al. (2016). Furthermore, recent results of local galaxies show-
ing the same properties as SC4K sources (including Myy, Lya EWs and sizes e.g.
Izotov et al., 2016, 2018) provide even more evidence for the importance of LAEs
in the early Universe in terms of their contribution to both the SFRD and as
sources that can help reionise the Universe. While the Lya emission that we de-
tect is mostly powered by ionising photons which are absorbed and reprocessed
by neutral gas around galaxies, it has been shown that the escape fraction of
LyC and the escape fraction of Lya photons are correlated (Dijkstra, 2017). The
detection of these mostly UV-faint Lya emitting galaxies which are capable of
releasing ionising photons provides a look at the type of galaxies that have the
conditions to contribute to the reionisation of the Universe.

SC4K is also able to find some of the rarest, brightest LAEs across cosmic
time which are likely powered by AGN. Most importantly, the brightest LAEs
seem to be highly clustered, and there is convincing evidence that they trace, on
average, some of the densest regions of the Universe usually classed as ‘proto-
clusters’ (e.g. Franck & McGaugh, 2016). This is because the brightest LAEs
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within SC4K across the COSMOS field are hosted by dark matter haloes of
~ 108" Mg at z > 2.5 (Khostovan et al., 2018), which will easily result in
massive clusters of ~ 10471 M, in the local Universe when extrapolating to the
present day using halo mass accretion growth. The number densities of these
sources also agrees with our findings, being below 1076 Mpc=3. The results thus
bring further context into the findings of bright LAEs in or around some of the
most over-dense regions in the Universe at z ~ 2 — 6 (Venemans et al., 2007;
Yamada et al., 2012), including e.g. Ly« ‘blobs’ (e.g. Kubo et al., 2013; Matsuda
et al., 2004) and point towards large volume Ly« surveys as ideal ways to find
these extremely over-dense regions. Given the high fraction of AGN among the
population of these very high luminosity LAEs, it is not surprising that many
studies also find those sources (e.g. X-ray or radio detected; see e.g. Venemans
et al. 2007) to be good tracers of over-densities throughout the Universe (see
Kubo et al., 2013; Lehmer et al., 2009; Matsuda et al., 2011; Overzier, 2016, and

references therein).

4.7 Conclusions

We use the Lya LFs which we derive by combining our large SC4K sample of
LAEs with results from the literature (synergy Ly« survey, S-SC4K) to measure
the evolution of the Ly« luminosity density and Ly« fo. from z ~ 2 to z ~ 6.
We also discuss LAEs in a broader context, in their nature and as progenitors of
a wide range of galaxies which multiple surveys seek to target. Our main results

are:

e The Lya luminosity density rises by a factor ~ 2 from z ~ 2 to z ~ 3 but is
then found to be roughly constant (1.1753 x 10* ergs™ Mpc~3) to z ~ 6,
despite the ~ 0.7dex drop in UV luminosity density. As a consequence,
the SFRDyy,/SFRDyy ratio rises from 4 £ 1% to 30 & 6% from z ~ 2.2 to
z ~ 6. LAEs become increasingly important as SFRD contributors into the

epoch of re-ionisation, and not simply a relatively minor/rare population.

e Our results are consistent with a rise of a factor of =~ 2 in the cosmic

ionisation efficiency (&on) and imply a factor &~ 4 + 1 increase in the cosmic
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fose from z ~ 2 to z ~ 6. We find that an increase of f.,. with redshift as
(14 2)%9%£03 and a further increase of &on as (1+ z) can successfully model
the global increase of SFRDyy,/SFRDyy as (1 + z)30%03,

Our results hint for evolution in both the typical burstiness/stellar popu-
lations and even more so in the typical ISM conditions for Lya photons
to escape more efficiently at higher redshift. These trends may well be
connected with the typically younger and more metal-poor galaxies becom-
ing more dominant — explaining the higher typical &, — and also typically
smaller /more compact morphologies, likely linked with the rise of fos.. SCAK
LAEs are ideal follow-up candidates for these scenarios to be tested with

current state-of-the-art and upcoming instruments/telescopes.
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Aperture photometry and
spectral energy distribution of

z~2—6 SC4K LAEs
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Abstract

We extend our follow-up of the SC4K sample (Chapter 2) of ~ 4000
z ~ 2 — 6 Lyman-a (Lya) emitters (LAEs) by exploring deep rest-
frame UV to FIR data in the COSMOS field. We measure aperture
photometry of individual LAEs in 304 bands to compute their spec-
tral energy distributions (SED).



5.1 Introduction

5.1 Introduction

The Lyman-a (Lya, Aovacuum = 1215.67 A) emission line has been predicted to
be associated with young star-forming galaxies (SFGs, e.g. Partridge & Peebles,
1967) but it can also be emitted by active galaxy nuclei (AGN; e.g. Miley &
De Breuck, 2008; Sobral et al., 2018b). Typical Ly« emitters (LAEs) selected
with deep surveys have been found to have low stellar mass (M, < 109 M), low
dust content and high specific star formation rates (e.g. Gawiser et al., 2006,
2007), but LAEs can span a wide range in different properties (e.g. Hagen et al.,
2016; Matthee et al., 2016). Observationally, the transition between the dominant

043 1 roughly two times the

powering source in LAEs seems to occur at ~ 1
) at z ~ 2 — 3 (see Sobral et al., 2018b).

Searches using the Lya emission line have been extremely successful at select-

ergs”
characteristic Lya luminosity (Ly,
ing young SFGs through narrow band searches (e.g. Arrabal Haro et al., 2018;
Harikane et al., 2018; Hu et al., 2004; Matthee et al., 2015; Ouchi et al., 2008;
Santos et al., 2016; Sobral et al., 2017) and spectroscopically confirming bright
LAEs (e.g. Hu et al., 2016; Matthee et al., 2017c; Shibuya et al., 2018; Sobral
et al., 2015, 2018b) due to the bright Ly« feature. Other studies have successfully
selected samples of LAEs using integral field spectroscopy observations (e.g. Ba-
con et al., 2015; Blanc et al., 2011; Drake et al., 2017a; van Breukelen et al., 2005)
and blind spectroscopy (e.g. Cassata et al., 2011; Le Fevre et al., 2015; Martin &
Sawicki, 2004; Rauch et al., 2008). LAEs typically have faint continua, and thus
the study of properties of individual sources has typically only been done for ex-
treme LAEs with L2 Lf , (e.g. Ouchi et al., 2013; Sobral et al., 2015). For <Lt ,
LAEs, studies have typically resorted to stacking of sources (e.g. Kusakabe et al.,
2018; Momose et al., 2014). More commonly, large samples of high-redshift SFGs
have been selected by searching for the presence of a Lyman Break (e.g. Madau
et al., 1996; Steidel et al., 1996b, 1999). Currently, there are > 10, 000s of known
galaxies at z ~ 2 — 10 (see e.g. Bouwens et al., 2014a, 2015), mostly consisting
of faint sub-Lj;y galaxies found through deep small area searches, typically too
faint to follow-up with current spectroscopic instrumentation.

While Lya surveys are efficient at selecting galaxies, inferring intrinsic prop-

erties of a galaxy directly from its Ly« emission is challenging due to the complex
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5.1 Introduction

nature of Ly« radiative transfer. Lya photons suffer resonant scattering from gas
in the Interstellar/Circumgalactic Medium (ISM/CGM) and get easily absorbed
by dust (for a review on the process of Ly« radiative transfer see Dijkstra, 2017)
which can suppress Lya emission even in young SFGs. The complex physics
of Lya radiative transfer means that the Ly escape fraction (fescrya - the ra-
tio between observed and intrinsic Lya luminosity, Equation 1.6; see Section
1.3.3) is difficult to predict. Multiple studies have taken different approaches to
this problem. Observationally, fes 1y has been measured by comparing Lya to
dust-corrected Ha luminosities (Matthee et al., 2016; Oteo et al., 2015; Sobral
et al., 2017). Some studies estimate fe 190 by computing the ratio between star
formation rate (SFR) derived from Lya (assuming case B recombination) and
SFR derived from alternative methods such as from spectral energy distributions
(SEDs, Cassata et al., 2015) or the far-infrared (FIR, Wardlow et al., 2014).
Others measure the ratio between the observed Ly« luminosity density and the
dust-corrected Ha luminosity density (Sobral et al., 2017). Alternatively, studies
have measured the ratio between Lya SFR density (SFRD) and UV SFRD by in-
tegrating the respective luminosity functions (Sobral et al., 2018a). Typical SFGs
at z ~ 2 — 3 are found to have very low fee1ya (< 5%, e.g. Cassata et al., 2015;
Hayes et al., 2010a; Matthee et al., 2016; Oteo et al., 2015). However, sources
selected due to their Ly emission have much higher fe 1y (as high as ~ 40%
at z = 2.2, Sobral et al., 2017).

Despite the complexity of the Lya radiative transfer, properties of the Ly«
line such as its equivalent width (EW) have been shown to hold important in-
formation. Sources selected by their Lya emission have high rest-frame Lya EW
(EWo)' ~ 50 — 150 A at z ~ 0.3 — 6 (see e.g. Gronwall et al., 2007; Hashimoto
et al., 2017; Wold et al., 2017) which can be explained by young stellar ages, low
metallicities and /or top-heavy initial mass functions (Raiter et al., 2010; Schaerer,
2003) or complex radiative transfer effects (Neufeld, 1991). The high Lya EW,
measured for LAEs even at low redshift (z ~ 0.3, Wold et al., 2017) contrasts with

IThis is in part due to selection, as LAEs selected by narrow/medium band searches are
selected to be above some Lya EW threshold, and thus are, by definition, sources with high
Lya EW. Nevertheless, some narrow band searches have successfully selected LAEs down to
~ 5A (e.g. Arrabal Haro et al., 2018; Sobral et al., 2017).
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rest-frame EW measurements from other emission lines for galaxies at similar red-
shifts (e.g. He, [O11] and HB 4 [O111] EW() which are measured to be < 25 A at
z ~ 0.3, (e.g. SDSS: Thomas et al. 2013; HETDEX: Adams et al. 2011). Sobral
& Matthee (2019) derived a simple empirical relation that estimates fesc 1yo from
EW: fese nya = 0.0048xEW, (Equation 1.8). This relation implies a connection
between the intrinsic EW and the dust attenuation. A non-evolution of typical
EW, with redshift could thus imply a non-evolution of fes 1y in Lya-selected
samples. A constant typical EW, = 80 A across redshift would result in a typical
fese,Lya ~ 40% for LAEs.

With the measurement of fe 1y from EWy, it is possible to derive the SFR
of LAEs by translating Lya flux into dust-corrected Ha flux with simple assump-
tions. This provides a SFR computation which is independent of SED fitting and
provides a comparison with SED-derived SFRs for LAEs even before observations
with James Webb Space Telescope. Exploring how LAEs, which are typically low
stellar mass galaxies, fit in the star formation “Main Sequence” (Brinchmann
et al., 2004; Daddi et al., 2007; Noeske et al., 2007; Schreiber et al., 2015) can
shed light in a stellar mass range of the SFR-M, relation which is still widely
unconstrained at z > 2. Previous studies have found that LAEs occupy the low
stellar mass end of the Main Sequence at z = 2.5 (e.g. Shimakawa et al., 2017)
but are also measured to be significantly above the Main Sequence extrapolation
(Whitaker et al., 2014) for low stellar masses at z ~ 2 (e.g. Hagen et al., 2016;
Kusakabe et al., 2018) and even at z = 4.9 (Harikane et al., 2018). This suggests
that LAEs are experiencing more intense star formation than the general popu-
lation of galaxies of similar mass at similar redshifts, which may be explained by
a burstier nature of star formation. We intend to expand these studies using a
large sample of LAEs at z ~ 2 — 6.

In this work, we use a uniformly selected sample of ~ 4000 LAEs (SC4K, So-
bral et al., 2018a, see 2) to measure rest-frame UV properties and their evolution
from the end of reionisation at z ~ 6 until the peak of star formation history at
z ~ 2. For our sample of galaxies, we measure EW,, SFR, M,, UV luminosity
(Myy) and UV continuum slope (3) for individual LAEs, using photometry mea-

surements which we conduct ourselves, including data from UltraVISTA DR4,

103
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and by modelling SEDs using MAGPHYS (da Cunha et al., 2008, 2015). Addi-
tionally, we discuss different approaches to measure SFR and how they influence
our findings and we provide all our measurements in a public catalogue.

We structure this Chapter as follows: in Section 5.2 we give a brief summary
of the SC4K sample (see also Chapter 2). We describe our multi-wavelength
data in Section 5.3. In Sections 5.4 and 5.5 we detail how we conduct aperture
photometry for each individual SC4K LAE. We describe how we obtain SEDs
and SED fits for each individual SC4K LAE in Section 5.6. We provide a small

summary in Section 5.7.

5.2 The sample: SC4K

We use the public SC4K sample of LAEs (Slicing COSMOS with 4k LAEs, So-
bral et al., 2018a, see Chapter 2), which contains 3908 sources selected due to
their high Lya EW at z ~ 2 — 6. These LAEs were selected with wide field sur-
veys conducted with Subaru and the Isaac Newton telescopes, using 16 (12+4)
medium+narrow bands (MB+NB) over 2 deg? in the COSMOS field (Capak et al.,
2007; Scoville et al., 2007; Taniguchi et al., 2015a), covering a full comoving vol-
ume of ~ 108 Mpc?. For full details on the selection of the sample see Chapter 2.
Briefly, the selection criteria applied were i) EWq cut of 50 A for MBs, 25 A for
NBs and 5 A for the NB at z = 2.23: see Sobral et al. 2017); ii) significant excess
emission in the selection medium/narrow band, ¥ > 3 (see Bunker et al., 1995;
Sobral et al., 2013); iii) colour break blueward of the detected Ly« emission, due
to the expected presence of a Lyman Break; iv) removal of sources with strong red
colours which are typically lower redshift contaminants where the Balmer break
mimics a Lyman break; v) visual inspection of all candidates to remove spurious

sources and star artefacts.
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Table 5.1: Overview of the SC4K sample of LAEs. We present the median of all measurements for each galaxy property,
with the errors being the 16th and 84th percentile of the distribution. (1) LAE selection filter (see Section 2.2); (2) Mean
redshift of the sample based on Lya within the filter FWHM; (3) Number of LAEs (Number of LAEs after removing
sources with AGN signatures, see Section 5.2.1); (4) Number of non-AGN LAEs with SEDs (percentage, see Section
5.6.1); (5) Ly luminosity; (6) Lyo rest-frame EW; (7) SFR derived directly from Lry, and EW( (Sobral & Matthee,
2019, see Section 6.1.6.1); (8) Best likelihood SFR, parameter from SED fitting; (9) Best likelihood stellar mass parameter
from SED fitting; (10) UV magnitude computed by integrating the SED at A\g = 1500 A, see Section 6.1.3; (11) slope of
the UV continuum measured from the SED fits, see Section 6.1.4

S0T

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Filter | Lyaz | #LAEs | #SEDs |logioLiya | EWo | SFRiya | SFRsep | M, | Muv | B
(no AGN) (ergs™") (A) Moyr") (Meyr") (logio(M,/Me))  (AB)
NB392 2.2 159 (137) 129 (94%) 42557012 7975 47759 5.5 30 9.5702 -19.6700 —1.8702
1A427 2.5 741 (686) 673 (98%) 42.647037 128720 4.0 2.9762 9.2+0 -19.775¢ —2.010
1A464 2.8 311 (284) 283 (100%) 42.88%0% 12177  6.8%50 4.0174 9.170¢ -20.2%02  —2.1103
TA484 3.0 711(636) 625 (98%) 42.83*018 q7t30  50t10 3148 9.0t0% ~20.010%  —2.4705
NB501 | 3.1 45 (38) 31 (82%) 42.92t019 170t229  g6tTo  goflh2 9.6704 —2047 L —o3tll
TA505 3.2 483 (437) 433 (99%) 42.89701% 142721 63752 4.5%50 9.410 —20.2700 21104
TA527 3.3 641 (593) 573 (97%) 42847015 14972P 5752 41458 9.4108 —-20.2750  —2.0103
TA574 3.7 98 (88) 87 (99%)  42.98T05  97rIZ  10.97%3 6775 9.3+07 -20.8707  —2.410%
1A624 41 142 (139) 116 (83%) 43.0270%; 1867000 6.770% 6.175% 9.240:2 —20.5%0%  —1.970¢
TA679 4.6 79 (75) 69 (92%)  43.25T50s 1867207 11.673%%  9.375%° 9.510% —21.270%  —2.41038
TA709 4.8 81 (77) 73 (95%)  43.167915 124720 13.2132 9.113%8 9.410 —21.1705  —2.0103
NB711 4.8 78 (74) 56 (76%)  42.747075% 80755 7837 1447510 9.710:¢ —-20.9%0% -1.970%
TA738 5.1 79 (75) 65 (87%)  43.257017 120732 157t 16.073%1 9.6101 —21.3701  —1.8%)2
TA767 5.3 33 (30) 29 (97%) 43371000 134710 187710 20.6703 9.7t0% 216103 —2.07
NB816 57 192 (186) 108 (58%) 42.8210% 2357047 52154 28.57507 9.9704 —-21.4%0%  —1.8%01
1A827 5.8 35 (35) 2T (TT%)  43.447019 3954003 99 (4175 95 34801 9.9709 —22,0708  _1.8+07
Full SCAK | 4.1 3908 (3590) 3377 (94%) 42.8470%¢ 1387251 59753 447005 9.370°% —20.2707 —2.170%

MPOS erdures oy, ¢°G



5.2 The sample: SC4K

We show an overview of the properties of the SC4K LAESs, split by selection
bands, in Table 5.1. For each selection band, we provide the median of each
property and the 16th (84th) percentiles of its distribution as lower (upper) un-
certainties. Additionally, in Figure 5.1 we show a histogram distribution of Ly«
luminosity (Liye), EW( (see Section 6.1.1) and SFR using the Sobral & Matthee
(2019) calibration (see Section 6.1.6). The differences in the lower end distribu-
tion of Ly, are driven by an increasing luminosity distance and a roughly similar
flux limit. The evolution of the Lya luminosity function is presented in Chapter
3.

We note that extensive analysis of the SC4K public sample have already been
conducted in previous works. For example, Paulino-Afonso et al. (2018) studied
the UV morphologies of the sample and found that UV sizes of LAEs are constant
from z ~ 2 to z ~ 6 with effective radii sizes of r. ~ 1.0+ 0.1 kpc. Shibuya et al.
(2019) analysed the radial surface brightness profiles of ~ 9000 LAEs (including
SC4K) and found that LAEs typically have small sizes, similar to those presented
by Paulino-Afonso et al. (2018). This means SC4K LAEs are unresolved in the
continuum in ground-based data. Khostovan et al. (2019) derived clustering
properties of the sample and measured typical halo masses of ~ 10'* My, in NB-
selected LAEs and ~ 10! —10'2 M, in MB-selected LAEs, showing the clustering
and typical dark matter halo masses that host LAEs is strongly dependent on
Liya. They find more luminous LAEs reside in more massive dark matter haloes.
Calhau et al. (2020) study the X-ray and radio properties of the SC4K sample,
estimating black hole accretion rates which can reach ~ 3 Mg yr~! in the most
extreme sources. They also find that the overall AGN fraction of LAEs is low (<
10%) but dependent on Lyy,, significantly increasing with increasing luminosity

and approaching 100% at Ly, > 10** erg s7*.

5.2.1 X-ray and radio AGN in SC4K

In total we have 3908 LAEs in our sample, with 254 detected in X-ray and 120
detected in radio (56 in both), resulting in 318 AGN candidates (Calhau et al.,
2020). LAEs which are detected in the X-ray and/or radio are classified as AGN
as star-forming processes would require SFR > 1000 M, yr—! to be detected
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Figure 5.1: Distributions of parameters derived directly from photometry. Ly«
luminosity (left panel), EWy (middle panel) and SFR derived directly from Lyyq
and EW( (Sobral & Matthee, 2019, see Section 6.1.6.1; right panel). MB (NB)
data are shown as filled (dashed) lines. For each parameter, top panels show the
z < 3.1 sample and bottom panels show the higher redshift LAEs. The EW( peak
at z = 3.1 (NB) is artificial and it is the upper limit of the EWy, obtained from
the flux upper limit. AGN have been removed.

above the flux limit at such wavelengths and redshifts (see discussion in Calhau
et al., 2020). The number of AGNs reported in this work constitutes an extra 177
sources compared to the ones originally reported in Sobral et al. (2018a), with the
additional sources being identified by reaching lower S/N with deep Chandra data
(COSMOS Chandra Legacy, Civano et al., 2016) and VLA radio data at 1.4 GHz
(VLA-COSMOS Survey, Bondi et al., 2008; Schinnerer et al., 2004, 2007, 2010)
and by including 3 GHz radio data (Smolci¢ et al., 2017). We note, however,
that due to available coverage, Calhau et al. (2020) only probe 3705 SC4K LAEs
with X-Ray and radio data. Throughout this work, SC4K AGNs may be shown
in figures (clearly highlighted as such) but are removed from any fitting/binning
and median values in tables unless stated otherwise as we focus on the properties
of the star-forming population. The catalogue that is provided in this work has

a flag for sources detected in X-Ray and radio (see Section 6.1.7).
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5.3 Multi-wavelength data

5.2.2 Redshift binning

To improve the S/N in certain redshift ranges and for clearer visualisation of re-
sults, we frequently group multiple MB filters in specific redshift bins throughout
this work, following the same grouping scheme as Section 3.1.5: z = 2.5 + 0.1
(TA427), z = 3.1 £+ 0.4 (IA464, 1A484, TA505, TA527); =z = 3.9 £ 0.3 (IA574,
[AG24); z = 4.7 £ 0.2 (IA679, TA709); z = 5.4 + 0.5 (IA738, TA767, 1A827).
We generally study the NBs separately as there are some relevant distinctions
between MBs and NBs, most significantly the flux limit and EW, cut. Addition-
ally, analysing the two separately provides independent results and allows checks

for systematics.

5.3 Multi-wavelength data

We use the extensive archive of publicly available multi-wavelength data in the
COSMOS field to conduct accurate photometric measurements in the UV, optical,
near-infrared (NIR), mid-infrared (MIR) and FIR wavelengths for each SC4K
LAE, individually. A summary of the filters used, effective wavelength, width
and limiting magnitude is provided in Table 5.2. We use optical broad band (B,
V, g, 7, it, 21), medium band (TA427, TA464, TA484, TA505, TA527, TA574,
TA624, TA679, TA709, TA738, TA767, TA827) and narrow band (NB711, NB816)
data taken with the Subaru/SuprimeCam (Capak et al., 2007; Taniguchi et al.,
2007), retrieved from the COSMOS Archive'. Additionally, we use the u band
from CFHT /MegaCam. We use deep NIR data (Y, J, H, Ks) from UltraVISTA
DR4 (McCracken et al., 2012), taken with VISTA/VIRCAM (Sutherland et al.,
2015). Data used have a 0.15” pix ™! pixel scale and are calibrated to a zero-point
of 31.4 mag (30 mag for UltraVISTA and u images). For MIR coverage, we
use data from Spitzer/IRAC, channels 1 (3.6um) and 2 (4.5um) from SPLASH
(Steinhardt et al., 2014) and channels 3 (5.6um) and 4 (8.0um) from S-COSMOS
(Sanders et al., 2007). IRAC data have a zero-point of 21.5814 mag and a pixel

-1

scale of 0.6” pix~! (after drizzling; the native scale is 1.2” pix~!).

thttps://irsa.ipac.caltech.edu/data/COSMOS /images/
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For the FIR coverage, we use 100um and 160um data (PEP, Lutz et al.,
2011) taken with Herschel/PACS (Pilbratt et al., 2010) and 250um, 350um
and 500pum data (HerMES, Griffin et al., 2010; Oliver et al., 2012) taken with
Herschel/SPIRE. The five listed FIR images have a pixel scale of 1.2” pix~1,
2.4” pix~t, 6”7 pix~ !, 8.3 pix~! and 12”7 pix~!, respectively. FIR images are cali-

brated to provide fluxes in Jansky and thus have a zero-point of 8.9 mag.

5.4 Multi-wavelength photometry

Accurate photometric measurements are essential to obtain robust SEDs and
derive accurate galaxy properties, particularly for sources that are faint in the
continuum. While there is a plethora of publicly available catalogues for the
COSMOS field (e.g. Ilbert et al., 2009; Laigle et al., 2015), such catalogues are
typically broad band selected and thus miss a significant number of line-emitters,
especially faint, high EW sources. For example, 9% of our LAEs are not de-
tected in the ¢ band-selected catalogue from Ilbert et al. (2009) with 1”7 radius
matching and 29% of SC4K LAEs are not detected in the NIR-selected catalogue
from Laigle et al. (2015). Continuum faint sources with very blue UV continuum
slopes have low fluxes in the observed optical and will fall below the detection
thresholds of NIR selected catalogues (e.g. Laigle et al., 2015), particularly if they
have low stellar masses. Therefore, to obtain consistent, controllable and uniform
measurements for the entire sample of LAEs, we conduct our own aperture pho-
tometry and estimate errors locally using empty apertures. We also compare our
photometry with measurements from the COSMOS catalogues and find a very
good agreement. Furthermore, because we have measured the sizes in the rest-
frame UV and found SC4K LAEs to be very compact (point-like for the data
we use; T, = 1.0 kpc corresponds to 0.13” at z = 3), we opt to conduct PSF
photometry, as fully explained in Section 5.5.
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Table 5.2: Overview of the photometric filters used in this work ranked from the
lowest to highest wavelengths. (1) Photometric filter; (2) Effective wavelength; (3)
Filter FWHM; (4) 3 0 magnitude depth measured in a fixed 2” aperture (except
for Herschel measurements, see Section 5.5.5); (5) Correction term summed to the
measured magnitudes to correct for systematic offsets (*includes an additional offset
to correct the systematic uncertainties Section 5.5.6; Tdenotes values obtained from
the deblended FIR catalogue presented by Jin et al. 2018); (6) Filter dependent
galactic extinction correction that is subtracted from the measured magnitudes;
(7) Instrument and telescope used for the observations; (8) Source of the data.

Filter )\§ff ‘ FWHM ‘ Depth ‘ sf ‘ Ay ‘ Instrument, Telescope ‘ Source ‘
(A) (A (B0, 2)

1) 2) 3) 4) (5) (6) (M) ®)

u 3911.0 538.0 27.8 0.054 0.0878  MegaCam, CFHT Capak et al. (2007)
TA427 4256.3 206.5 27.0 0.037 0.0816 Suprime-Cam, Subaru Capak et al. (2007)

B 4439.6 806.7 28.3 -0.242 0.0784 Suprime-Cam, Subaru Capak et al. (2007)
1A464 4633.3 218.0 26.9 0.013  0.0750 Suprime-Cam, Subaru Capak et al. (2007)

g+ 4728.3 1162.9 27.6 0.024 0.0733 Suprime-Cam, Subaru Capak et al. (2007)
TA484 4845.9 228.5 27.0 0.000 0.0713 Suprime-Cam, Subaru Capak et al. (2007)
1A505 5060.7 230.5 26.8 -0.002 0.0678 Suprime-Cam, Subaru Capak et al. (2007)
T1A527 5258.9 242.0 27.1 0.026  0.0646 Suprime-Cam, Subaru Capak et al. (2007)

% 5448.9 934.8 27.6 0.046* 0.0616 Suprime-Cam, Subaru Capak et al. (2007)
1A574 5762.1 271.5 26.8 0.078 0.0570 Suprime-Cam, Subaru Capak et al. (2007)
1A624 6230.0 300.5 26.8 0.002 0.0506 Suprime-Cam, Subaru Capak et al. (2007)

rt 6231.8 1348.8 27.7 0.003 0.0506 Suprime-Cam, Subaru Capak et al. (2007)
TAG679 6778.8 336.0 26.7 0.039* 0.0442 Suprime-Cam, Subaru Capak et al. (2007)
TA709 7070.7 315.5 26.8 -0.024 0.0411 Suprime-Cam, Subaru Capak et al. (2007)
NB711 7119.6 72.5 25.9 0.014 0.0406 Suprime-Cam, Subaru Capak et al. (2007)
TAT38 7358.7 323.5 26.5 0.017 0.0383 Suprime-Cam, Subaru Capak et al. (2007)

it 7629.1 1489.4 27.2 0.019  0.0360 Suprime-Cam, Subaru Capak et al. (2007)
TA767 7681.2 364.0 26.5 0.041 0.0356 Suprime-Cam, Subaru Capak et al. (2007)
NB816 8149.0 119.5 26.6 0.068 0.0320 Suprime-Cam, Subaru Capak et al. (2007)
TA827 8240.9 343.5 26.5 -0.019 0.0313 Suprime-Cam, Subaru Capak et al. (2007)

7zt 9086.6 955.3 26.8  -0.037 0.0265 Suprime-Cam, Subaru Capak et al. (2007)

Y 102112 930.0 262 00 00211  VIRCAM, VISTA  McCracken et al. (2012) (DR4)

J 12540.9 172.0 25.8 0.0 00144  VIRCAM, VISTA  McCracken et al. (2012) (DR4)

H 164637 2910 26.1 0.0  0.0088  VIRCAM, VISTA  McCracken et al. (2012) (DR4)

Ks 21487.7 3090 25.8 0.0 0.0053 VIRCAM, VISTA McCracken et al. (2012) (DR4)
IRAC1 | 35262.5 7412 25.6 0.002  0.0021 IRAC, Spitzer Steinhardt et al. (2014)
IRAC2 | 44606.7 10113 25.5 0.000 0.0014 IRAC, Spitzer Steinhardt et al. (2014)
IRAC3 | 56764.4 13499 22.6 0.013  0.0010 IRAC, Spitzer Sanders et al. (2007)
IRAC4 | 77030.1 28397 22.5 -0.171  0.0007 IRAC, Spitzer Sanders et al. (2007)
100pm | 979036.1 356866 15.4 0.20"  0.0000 PACS, Herschel Lutz et al. (2011)
160pm | 1539451.3 749540 14.3 -0.06"  0.0000 PACS, Herschel Lutz et al. (2011)
250pm | 2471245.1 658930 10.9 -0.49"  0.0000 SPIRE, Herschel Oliver et al. (2012)
350pum | 3467180.4 937200 10.6 -0.15"  0.0000 SPIRE, Herschel Oliver et al. (2012)
500pm | 4961067.7 1848042 10.6 0.03"  0.0000 SPIRE, Herschel Oliver et al. (2012)
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5.5 Aperture photometry of SC4K LAEs

5.5.1 Overview of our aperture photometry

In order to obtain accurate aperture photometry for individual LAEs, for each

band, we estimate the total magnitude by following the steps:
e conducting photometry in fixed apertures (Section 5.5.2);

e applying aperture corrections based on PSF stars around each LAE (Section

5.5.3);
e applying reddening corrections for galactic extinction (Section 5.5.4);

e introducing systematic offset corrections based on known offsets and COS-
MOS catalogues (Section 5.5.6);

Magnitudes per source and per band are computed as:
mag = magg + apereo + 55 — Ay, (5.1)

where mag is the magnitude calculated by converting the flux obtained in fixed
apertures (typically 2”7 diameter for most of the data) to the AB magnitude sys-
tem before any correction is applied, apere,, is the aperture correction derived
per band and per source, based on PSF stars around each LAE, s the system-
atic offset correction for the filter and A, the reddening correction for galactic
extinction computed for the effective wavelength of the filter. The error in the
final magnitude is obtained by propagating the error in flux, scaling the error
with the correction that was applied to the flux and then adding 30% of the total

1

correction to the error in flux'. Aperture photometry in the FIR is discussed

separately in Section 5.5.5.

'We note that we use 30% as a conservative approach to add unknown systematic errors.
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5.5 Aperture photometry of SC4K LAEs

5.5.2 Aperture photometry in fixed apertures

We conduct aperture photometry centred on the position of each SC4K LAE
(Sobral et al., 2018a) over all the filters listed in Table 5.2. We do this by creating
200x200 pixel (307 x30” for a 0.15” pix ! pixel scale) cutouts, where we conduct
the photometry!. For optical to MIR images, we use 2” diameter apertures. We
estimate the background by placing 2000 2” apertures in random positions of the
field where there are no detections above 2 o (given by the segmentation maps per
filter produced by SExtractor; Bertin & Arnouts 1996) and subtract it from the
counts of the aperture placed on the LAE. Upper and lower errors are measured as
the 84th and 16th percentiles of all random apertures. We repeat this procedure

per band per source.

5.5.3 Aperture correction

The original point-spread function (PSF) was kept across all images as we have
opted for correcting the photometry with PSF stars, instead of PSF matching
the data, in order to avoid modifying the data and confuse nearby sources. Fixed
aperture photometry in non-PSF matched images requires correction of the PSF
effect on photometry so we can obtain total fluxes and total magnitudes for
point-like sources. To do this, we measure the magnitude of stars® in 2”7 aper-
tures and with MAG_AUTO (Bertin & Arnouts, 1996)®. We define the correction
factor (aperc, in Equation 5.1) as the difference between MAG_AUTO and mag-
nitudes measured in 2”7 apertures. This correction is valid for point-like sources,
an assumption that should be valid for our LAEs given the rest-frame UV sizes
as measured by Paulino-Afonso et al. (2018) using high-resolution HST/ACS
images. The correction term is measured for each filter, and it is the median
correction of stars within a 0.3 degree radius around each LAE, accounting for
spatial variations of the PSF per band. The aperture corrections are typically

small, averaging ~ —0.1 to ~ —0.3.

1'We use PSF stars beyond this region.

2Selected from Ilbert et al. (2009): photoz=0.0; stellaricity=1; detected in the point-source
catalogue 2MASS Skrutskie et al. (2006); visually checked to remove binary systems or close
projections.

3aperco: = MAG_AUTO—magy, where magy is the magnitude before corrections are applied.
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5.5 Aperture photometry of SC4K LAEs

5.5.4 Galactic extinction correction

We correct for dust attenuation along the line-of-sight due to our Galaxy. For
the COSMOS field, the median galactic extinction is measured to be E(B—V) =
0.0195 4+ 0.006 (Capak et al., 2007). The slope of the extinction curve with
wavelength is parametrised by the factor R(V):

AV)

BY)=Em—vy

(5.2)
where A(V) is the total extinction at the V band. For the diffuse interstellar
medium, the median value of R(V) is estimated to be 3.1 (e.g. Fitzpatrick, 1999)
and it is the value used in this work. We use the model from Fitzpatrick & Massa

(2007) where the attenuation at a wavelength (A) becomes:

k
AA=AV) 1+ —= 5.3
v=40) (14 505 ). (5.3
where k is a polynomial expansion of A™! (Equation 2 from Fitzpatrick & Massa
2007) with a linear component for UV wavelengths, a curvature term for the
far-UV and a Lorentzian-like bump at 2175 A. We determine A, for the effective

wavelength of each filter and show its value for each filter in Table 5.2.

5.5.5 FIR photometry

For FIR data, due to the large PSF of 7.27 127 18.15”, 25.15” and 36.30”
(100pm, 160pm, 250pm, 350pm and 500um, respectively), the usage of 2”7 diam-
eter aperture photometry is not viable. We conduct aperture photometry using
apertures which are the size of the PSF: radius of 6, 5, 3, 3 and 3 pixels (7.2”,
127, 18”7, 24.9” and 36”), respectively (retrieving 67% of the total flux), with
the same random empty aperture procedure to estimate background. This allows
us to then apply aperture corrections of 1/0.67 to get full fluxes for point-like
sources. For 100um (160um), we multiply the flux by the filter correction factor
1.1 (1.2) as described in the PEP public data release notes (see Lutz et al., 2011).
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Figure 5.2: Left: SED of SC4K-1A427-134461 (at z = 2.5), for observed UV-
IR wavelengths as we only obtain upper limits in the FIR. Red circles show the
luminosity (in solar units) measured at the corresponding observed wavelength
and green arrows show the upper limits for non-detections, where the flux is < 3 0.
Unfilled circles are the luminosity at the NB/MB where the LAE was selected, and
we note that this filter was not used to derive the SED fit. The black line is the
best-fit SED to the observed photometry and the blue dashed line the intrinsic
(dust-free) SED. This is an example of a very blue (8 = —2.0) and low stellar
mass (M, = 102 M) LAE. Right: Same as left panel but for SC4K-TA427-10601
(at z = 2.5) and at a wider wavelength range, showing FIR wavelengths as this
LAE is detected in 250pm and 350pum due to the presence of dust. This LAE is
redder (8 = —0.3) and more massive (M, = 10'°°Mg). Note that this LAE is
not representative of the SC4K sample as only ~ 3% (2%) non-AGN LAEs are as
massive (as red).
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5.6 Spectral Energy Distributions of SC4K LAEs

However, the blending of sources is still a serious issue, as the large pixel scale
makes it difficult to establish if a detection is produced by one of our LAEs or
by a neighbouring source. To solve this, we use the FIR measurements from the
publicly available deblended COSMOS catalogue (Jin et al., 2018), where FIR
emission is deblended to match optical-NIR coordinates. With a 17 match to
the deblended catalogue, there are 14, 11, 29, 19 and 12 SC4K LAEs with 3¢
detections in 100pum, 160um, 250um, 350um and 500um, respectively. Whenever
a source is undetected in the FIR, we assign the local estimate of the background
as an upper limit, which we measure with 2000 empty apertures the size of the
PSF. We ensure our own flux measurements are consistent with Jin et al. (2018)
(see Section 5.5.6).

5.5.6 Systematic offsets

We correct for systematic offsets (sy) in the photometry by applying the correc-
tions derived by Ilbert et al. (2009) (we present these values in Table 5.2). After
applying the systematic offsets and all previous correction terms, we compare our
total magnitudes with measurements from Ilbert et al. (2009) and Laigle et al.
(2015). We find no statistically significant difference with our measurements ex-
cept for two filters (IA679, V) which have systematic offsets of ~ 0.5 mag. We
apply a further correction (included in the sy, Table 5.2) to our magnitudes, so
the median of the magnitude difference becomes zero. For FIR magnitudes, we
estimate the systematic correction term from the FIR deblended catalogue (Jin
et al., 2018), also presented in Table 5.2.

5.6 Spectral Energy Distributions of SC4K LAEs

Having conducted photometry in the 34 filters listed in Table 5.2, we can now
explore the SED of each individual LAE, observed from UV to FIR. We use
the publicly available SED-fitting code MAGPHYS! (da Cunha et al., 2008,
2012) with the high-redshift extension (see da Cunha et al., 2015), to obtain SED

Yhttp://www.iap.fr/magphys/
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5.6 Spectral Energy Distributions of SC4K LAEs

fits for each individual galaxy, using our rest-frame UV, optical and NIR-FIR
photometric measurements. If a LAE is not detected in a specific filter above the
estimated background noise, we define it as an upper limit.

MAGPHYS is based on dust attenuation models from Charlot & Fall (2000)
and uses the stellar population synthesis model from Bruzual & Charlot (2003)
with a Chabrier (2003) IMF (range 0.1 — 100 M) to compute the emission of
simple stellar populations (SSPs, populations of coeval stars with similar proper-
ties). We use the prescription of Madau (1995) to model the Intergalactic Medium
(IGM). The software generates a library of model SEDs for galaxies at the mean
redshift of the NB/MB filter (see Table 5.1) and for the given photometric bands.
The modelled SED of a galaxy is composed by the weighted sum of SSPs, with the
star formation history (SFH) being a continuously delayed exponential function
with an early rise followed by a decay. Instantanecous bursts of star formation
of random duration (lasting 30-300 Myr) and amplitude (forming mass between
0.1-100 times the mass formed by the continuous SFH) are superimposed. A
Bayesian approach is then used to compare model SEDs with observed photom-
etry, creating a parameter likelihood distribution for several galaxy properties
such as stellar mass, SFR and dust attenuation.

As the models are purely stellar (no nebular line fitting), we do not fit pho-
tometry from filters where we expect strong nebular emission, namely Ly« at the
selection NB or MB filters, as it is by definition significant in our Lya-selected
sample. While we do not remove photometry from filters which may have contri-
bution from other emission lines such as Ha (IRAC filters at z ~ 4 — 6) or [O111]
(H-K bands at z ~ 2 — 3), by removing the Lya-contaminated filter, combined
with the large number of filters used, we do not expect an overestimation of masses
due to nebular line contamination. We explore this by rerunning MAGPHY'S for
the entire z = 2.5 sample (IA427) after removing the H and K bands, which may
be contaminated from [O111] and Ha emission, respectively, and compare the dif-
ference of estimated stellar masses. We find that when removing both H and K,
the median difference of stellar masses is log; (M, nonk /Mg ) —log;o(M,/Mg) = 0,
with no dependence on mass, and the average difference -0.07. Removing H and

K makes the estimation of stellar mass more uncertain as the rest-frame optical
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5.6 Spectral Energy Distributions of SC4K LAEs

becomes more poorly constrained. Additionally, we test the effect of only remov-
ing H, with the IR still being constrained by the other bands. We also find no
significant difference in stellar masses, with the median of the difference being
logo(My nori/Mg) — log,o(M,/Mg) = 0 and the average -0.08. Overall, we find
that not removing photometric bands outside Lya does not lead to a significant
overestimation of stellar masses for our sources. However, including nebular lines
may still be important, particularly if we look at other parameters (e.g. ages),
as there may be some systematics, particularly for the faintest sources with the
highest EWs. This will be addressed in a forthcoming work with an SED-fitting
code that models nebular emission (CIGALE, Boquien et al., 2019; Noll et al.,
2009).

For our z ~ 2 — 6 LAEs, the optical bands are essential to fit the rest-frame
UV continuum, IRAC filters can constrain fluxes redward of Dygoo and the FIR
measurements provide upper constraints in the dust emission, which can improve
the SFR estimates. We note that, as explained in Section 5.2.1, while we exclude
sources with evidence of AGN activity when computing median properties of the
sample, we still obtain SED fits (without using any AGN SED model) for those
sources.

In Figure 5.2, we show observed and intrinsic SED fits and photometric mea-
surements/upper limits for two LAEs. The SEDs were purposely chosen to show
two very distinct galaxies within the SC4K sample: one with a very blue and
steep UV continuum slope, with low stellar mass that dominate the sample and
one with a more red continuum, more massive and with higher dust extinction
which is much more rare in the sample of LAEs. While the latter is not well rep-
resentative of a typical LAE, it is still important to show that LAEs can span a
large variety of physical properties. This LAE is detected in two Herschel bands,
which shows that FIR can be important to constrain the SED fits and derive
properties of high redshift LAEs.

5.6.1 Number of derived SEDs

Although all LAEs are by definition detected in the MB/NB where they were

selected (Chapter 2), a small fraction of our LAEs have few to no detections
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in other photometric bands. For such cases, SED-fitting may fail. Out of the
3590 non-AGN LAEs, we obtain reliable SEDs for 3377 (94%, see Table 5.1).
The catalogue that we release with this work (see Section 6.1.7) has an SED flag
which marks unreliable SEDs. The AGN flag indicates AGN LAEs (Section 5.2.1,
Calhau et al. 2020), and we reiterate that while we compute parameters for these
sources, the SED-derived parameters are not reliable and are not included in any

median property estimation done in this work.

5.7 Summary

We conducted PSF photometry over 34 bands from rest-frame UV to FIR and
derived the best-fit SEDs using MAGPHYS for each source in the large SC4K
sample of ~ 4000 z ~ 2 — 6 LAEs. Out of the 3590 non-AGN LAEs, we obtain
reliable SEDs for 3377 (94%, see Table 5.1). The evolution of derived properties
such as Myy, Lyae EWs and the SFR-stellar mass relation will be discussed in

the following chapter.
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Chapter 6

The evolution of rest-frame UV
properties, Lya EWs, and the
SFR-stellar mass relation at

z~2—06 for SC4K LAEs
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Abstract

For our sample of z ~ 2 — 6 LAEs, we find typical stellar masses of
10%3+96 M and star formation rates (SFR) of SFRggp = 4.413%° M,
yr~ !t and SFRyy, = 5.9753 My yr~!, combined with very blue UV
slopes of B = —2.1103, but with significant variations within the
population. Myy and § are correlated in a similar way to UV-selected
sources, but LAEs are consistently bluer. This suggests that LAEs
are the youngest and/or most dust-poor subset of the UV-selected
population. We also study the Ly« rest-frame equivalent width (EW)
and find 45 “extreme” LAEs with EW, > 240 A (3¢), implying a low
number density of (74+1) x 1077 Mpc~3. Overall, we measure little to
no evolution of the Lyae EWj and scale length parameter (wg) which
are consistently high (EW, = 1407250 A 1wy = 129711 A) from 2 ~ 6 to
z ~ 2 and below. However, wy is anti-correlated with Myy and stellar
mass. Our results imply that sources selected as LAEs have a high
Lya escape fraction (fesc,ya) irrespective of cosmic time, but fes rya
is still higher for UV-fainter and lower mass LAEs. The least massive
LAEs (< 10%° Mg) are typically located above the star formation
“Main Sequence” (MS), but the offset from the MS decreases towards
2 ~ 6 and towards 10'° M. Our results imply a lack of evolution in
the properties of LAEs across time and reveals the increasing overlap
in properties of LAEs and UV-continuum selected galaxies as typical

star-forming galaxies at high redshift effectively become LAEs.



6.1 The properties of LAEs

We structure this Chapter as follows: we present the properties of LAEs in
Section 6.1, where we show the methodology we use to derive EW,, SFR, Myy
and . We present our results in Section 6.2, looking into the Myy-3 and SFR-M,
relations and the potential evolution of EW( with redshift, along with physical

interpretations. Finally, we present our conclusions in Section 6.3.

6.1 The properties of LAEs

In this section, we present our methodology and computations to derive galaxy

properties for individual LAEs, using our full photometric measurements and
SED fits from MAGPHYS. EWj and Ly, of all LAEs in the SC4K sample have
been derived and published in Sobral et al. (2018a) (shown in Chapters 2 and 3).

6.1.1 Lya luminosity (Liy,)

Liya is calculated from the Ly line flux (fiya):

Liyalergs™] = 4nf,o D7 (2) (6.1)

where Dp,(2) is the luminosity distance at the redshift of each source, computed
from the redshifted Ly« at the effective wavelength of the detection NB/MB. In
Figure 5.1 (left) we show the Ly, distribution of our LAEs, spanning a wide

— 1042744

range of luminosities Ly erg s~ L.

6.1.2 Lya rest-frame equivalent width (EW,)

The observed EW (EW,},5) of an emission line is the ratio between the flux of the

line and the continuum flux density and can be calculated as:

Ji—fe
fo = fo(AN1 /ANg)
where A); is the FWHM of the NB or MB, A)\y the FWHM of the broad band
filter (Table 2.3), f; is the flux density measured in the NB or MB and f; is the

EWns[A] = AN (6.2)
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flux density computed from two adjacent BB filters, which avoids assumptions of
the slope of the continuum (for details see Sobral et al., 2018a). The rest-frame
EW (EW,) is calculated as:

EWo[A] = -, (63

where z is the redshift of Ly« at the effective wavelength of the NB or MB (Sobral
et al., 2018a). We provide the median EWj for different redshifts and for the full
SC4K sample in Table 5.1.

6.1.2.1 EW, scale length (wy)

An exponential fit of the form N = Ny exp(-EWq/wy) has been widely used to
describe Lya EW, distributions (e.g. Gronwall et al., 2007; Hashimoto et al.,
2017; Wold et al., 2017), with the rate of decay being determined by the scale
length parameter wy. With our sample of LAEs, we analyse EW, distributions in
multiple well defined redshift ranges between z ~ 2 and z ~ 6. To estimate wg, we
define bins of 20 A and fit the exponential function to the observed distribution
(see Figure 6.1), taking into account Poissonian errors. Bins with less than two
sources are excluded from the fits. To account for bin width choice, we add
10 A (half the bin width) in quadrature to the errors of wy. We also explore
how an EWq upper cut affects wy as it removes sources with extreme (and more
uncertain) EWs. We apply a cut of EW, = 240 A, the theoretical limit of EW,
powered by Population II star formation (e.g. Charlot & Fall, 1993) and the value
which has been extensively used in Lya emission studies to identify “extreme”
EW galaxies (e.g. Cantalupo et al., 2012; Marino et al., 2018). We compute x2,
by comparing the best exponential fit to the histogram of observed counts and
their associated Poisson errors.

Additionally, we fully explore how the errors on EWj influence the measure-
ment of wy by using an MCMC approach. For each iteration, we perturb the
EWj of each LAE in that specific sample within their asymmetric error bars (as-
suming a double normal probability distribution function centred at each EW
and with FWHM equal to the errors derived from photometry; Chapter 2). We
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Figure 6.1: Left: EWq distribution of the full SC4K sample of LAEs. We fit an
exponential function of the form N = Ny exp(-EW(/wy), and derive the parameter
wy. Fit derived with the distribution of EWq (EW( < 240 A) is shown in red (blue).
Right: Same but for an individual filter (IA427) with LAEs at z = 2.5.

impose a hard lower limit equal to the detection threshold (5OA for MBs, 25 A
for NBs except for NB392 which has a lower limit of 5 A; see Chapter 5) and an
upper limit of 1000 A, with any source outside these values not being included in
a specific realisation. With the perturbed EWj, we construct the histogram of
the current iteration, using bins of 20 A. We fit an exponential to the generated
histogram bins, taking into account the associated Poissonian error (v/N) of each
bin. We iterate this process 200 times, and the final wy is the median value of all
fits with error up (down) being the 84th (16th) percentile of all fits. In addition,
to account for the uncertainty introduced by the bin width choice, we also add
10 A in quadrature to the errors of wy. We also apply the MCMC approach with
a cut of EWy = 240 A. For the MCMC approach, where EW,, are perturbed, X2q
is computed by comparing the best fit to the median histogram of all iterations
and its Poisson errors.

In Table A.6, we show the inferred wy values (including perturbed estimates)
for different redshift ranges and filter combinations.

Furthermore, it is important to establish how the EW, distribution depends
on Myy and M,. To understand this dependence, we measure wy in three Myy
and M, ranges and show our measurements in Table A.6. For the faintest and

the lowest mass ranges, we are significantly incomplete to the low EWq end of the
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EW distribution, resulting in a peak at ~ 100 A. Thus, we only fit EW, > 100 A
to accurately estimate the exponential decay of the distribution for these two

cases.

6.1.3 Rest-frame UV luminosity (Myy)

The UV luminosity of a galaxy is associated with continuum emission from mas-
sive stars and traces SFR in the past 100 Myr (e.g. Boselli et al., 2001; Salim
et al., 2009). A priori, sources selected by their strong Ly« emission could be
expected to have strong Myy as both trace recent star formation (neglecting
AGN contribution), although Ly« can trace slightly more recent star formation
because stars dominating the ionising photon budget have lifetimes of ~ 10 Myr.
However, as shown by e.g. Matthee et al. (2017c) and Sobral et al. (2018a) more
factors come into play as Lya and Myy do not necessarily correlate with each
other, due to e.g. highly ISM dependent fe1yo (Which can result in most Ly«
emission being absorbed by dust particles or scattered off neutral hydrogen) or
an ionising efficiency which is evolving with redshift.

We compute Myy by integrating the best-fit SEDs at rest-frame A\g = 1400 —
1600 A. We show the Myy histogram distribution in Figure 6.2 (centre). Due to
the magnitude limits, at higher redshift we are only sensitive to more luminous
Myv sources. We detect SC4K LAEs as bright as Myy = —23 and as faint as
Myy = —1T7.

6.1.4 UV continuum slope ()

The slope of the UV continuum can be parametrised in the form fy oc A\ (e.g.
Meurer et al., 1999). The slope f is sensitive to the age, metallicity and dust
content of a galaxy. Bruzual & Charlot (2003) models used by MAGPHY'S have
a hard limit to how negative (blue) § can be (f = —2.44), a natural consequence
of an upper limit in the IMF. While g may be intrinsically even bluer for more
“extreme” stellar populations, in this study, we do not explore those.

We measure (3 directly from the best-fit as the slope of the continuum at rest-

frame Ay = 1300 — 2100 A. We apply a conservative approach and only use 3
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Figure 6.2: Distribution of properties derived from the SED fitting (MAGPHY'S,
see Section 5.6). We show the stellar mass, M, (left), rest-frame UV luminosity,
Myv (middle) and rest-frame UV slope, § (right). Top panels show the z < 3.1
sample and the bottom panels show the higher redshift LAEs. AGNs have been
removed.

measurements from sources with at least two detections in this wavelength range.
This ensures the 3 slope is directly constrained and not a direct consequence of
assumed SED templates. As expected, due to an increasing luminosity distance,
combined with rest-frame Ay = 1300 — 2100 A moving into IR wavelengths, there
are fewer [ measurements at higher redshift. In addition, we also compute S
by fitting a power-law () to the photometric measurements (similar to e.g.
Bouwens et al., 2014a), with no SED fitting assumptions. We fit 3, in the range
Ao = 1400 — 2100 A, which is smaller than the range used to compute S from
the SED fit to avoid broad band filters at ~ 1300 A, which can be contaminated
by the Lya break. Only sources with at least three 30 detections in that range
are considered for the power-law measurement. For the full SC4K, we measure
a median 3, = —1.8*0% which is redder (+0.3) than 3 from the SED fit (0.2
when only considering sources with f, measurements), but still within the error
bars. Overall, 8 is better constrained through SED fitting as it uses a prior -
the SED models included in MAGPHYS. Furthermore, the SED models take
into account ~ 30 filters over the full UV-FIR wavelength range, preventing it

from being as sensitive to individual filter measurements in the smaller Ay =
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1400 — 2100 A range. Thus, throughout this work, we use § computed from the
SED fits.

We show the histogram distributions of 8 in Figure 6.2 (right). LAEs tend
to be very blue across all redshift ranges (median 8 = —2.17073, Table 5.1).
LAEs at z = 2.2 are found to have the reddest S slopes, albeit still very blue and
comparable to the Lyman Break Galaxy (LBG) population (see further discussion
in 6.2.1). We note, nonetheless, that the z = 2.2 sample has some key differences
compared to other LAEs in SC4K sample, as it selects LAEs down to 5A EW,
in addition to reaching the faintest Lyy,. This allows redder sources to be picked
up, while the much higher EWy LAEs tend to have much bluer 3 slopes.

6.1.5 Stellar Mass (M,)

The total mass of stars in a galaxy (stellar mass, M,) is a fundamental galaxy
property which is a reflection of its star formation history. We use M, derived
from the likelihood parameter distribution from MAGPHY'S modelling.

We show the histogram distribution of M, in our sample in Figure 6.2 (left).
Most LAEs (88%) have stellar masses < 10' Mg, although it is important to
stress there are some more massive galaxies, which shows a significant diversity.
We observe a slight shift to higher masses as we move to higher redshifts (see also
Table 5.1) but this is a natural consequence of only being sensitive to intrinsically
more luminous galaxies at higher redshift. We find that typical LAEs are low
stellar mass galaxies, with the median of the SC4K sample of LAEs being M, =
1093565 M.

6.1.6 Star Formation Rates (SFRs)

6.1.6.1 Emission line-based SFRs with Ly«

We estimate the SFR directly from Ly, and EWy, using the recipe from Sobral
& Matthee (2019) which has calibrated EW( as a good empirical indicator of
fese Lya (See Section 1.3.3). With a measurement of fes 1y, Liya can be converted

to dust-corrected Ha luminosity assuming case-B recombination (Brocklehurst,
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Figure 6.3: Emission line-based SFR vs SED-fitting SFR for the full sample of
LAEs at different stellar masses. Blue circles are the median bin (excluding AGN)
and individual points are plotted as scatter in the background. The black line is
the 1-to-1 ratio. There is a small systematic offset at M, = 10879 Mg yr~! and for
SFRsgp = 1 — 10Mg yr~! for all stellar mass ranges. For higher stellar masses
and SFRs, there is a more significant difference between the two methods, with the
emission line-based approach predicting lower SFRs. This is a likely consequence
of Lya not being sensitive to obscured regions in very massive galaxies, thus not
being sensitive to their full contribution. Additionally, we plot AGN LAEs with
black stars (purely stellar+dust SED-fitting with no AGN models) to show they
are typically measured as having high stellar masses when blindly running SED
codes with no AGN models in AGN samples.

1971) and transformed into SFR following Kennicutt (1998). For a Chabrier IMF
(0.1 —100 Mg) and assuming fese 1yc = 0, Liyo in erg s~! and EWj in A, the SFR
thus becomes Sobral & Matthee (2019):

_ Lpya x44x107%

SFRya Mo yr™!] = 0012 EW, , (6.4)

For EW, > 210A, following Sobral & Matthee (2019), we set feselya = 1
which corresponds to SFR [Mg yr™!] = 4.98 x 107*3 X Ly, with Ly, in erg s™*.
This SFR is calibrated with dust-corrected Ha luminosities and thus should be
interpreted as dust-corrected SFR. We show the SFR distribution in Figure 5.1
(right). As the SFR is derived from Ly, it is limited by the same detection
limits, which causes a shift to higher SFR with increasing redshift. We measure

+6.3

SFRs in the range ~ 1 — 300 Mg yr~!, and measure a median SFRy, = 5.975¢
for SC4K LAEs (see Table 5.1).
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6.1 The properties of LAEs

6.1.6.2 SED-derived SFRs

As previously stated, MAGPHY'S uses a bayesian approach to estimate the best
likehood SFR, comparing model SEDs (generated using some assumptions, see
Section 5.6) with observed photometry. Due to our FIR measurements being
mostly upper limits for > 99% of SC4K LAEs, it is not possible to directly
measure the amount of SFR that is obscured by dust and the optical thickness of
dust from IR-FIR. As such, the amount of dust and SFR is inferred from the UV-
optical slope. We measure SFRs in the range ~ 0.1 — 3000 Mg yr~!, and measure
a median SFRggp = 4.475%° My yr! for SC4K LAEs (Table 5.1). For the small
subsample of 46 FIR-detected LAEs, Calhau et al. (2020) obtained stacks in the
FIR which reveal an average (median) SFR of 3407555 Moyr=! (20017350 Moyr=1).

6.1.6.3 SFRp,, vs SFRgpp

In this work, we estimate SFRs of individual LAEs using two approaches: emis-
sion line-based with Lya (SFRyyq, Section 6.1.6.1) and from SED-fitting (SFRsgp,
Section 6.1.6.2). These two approaches are independent as SFRy, is derived di-
rectly from two properties of the Ly« emission-line (luminosity and EWj), while
SFRggp is obtained with MAGPHY'S by removing the filter contaminated by
Lya and using up to ~ 30 photometric data-points from the rest-frame UV to
the rest-frame FIR.

In Figure 6.3 we show a comparison between SFRpy, and SFRggp at differ-
ent mass ranges. We measure a small systematic offset at M, = 10372 My, and
SFRsgp = 1 — 10M,, yr~! for all stellar mass ranges, with the emission line-
based approach predicting slightly higher SFRs. As Ly« traces more recent star-
formation than the UV-continuum, the higher predicted SFRs could be explained
by on-going bursts of star-formation, which lead to slightly higher SFRy,. Only
for SFRs which are measured to be high from SED (SFRggp > 10 M, yr!) there
is a significant difference, with SFRp, being lower and its median maxing at
~ 10Mg yr~!. Such SFR ranges are typically only seen in more massive ranges
(M, = 107 M), which are thus more susceptible to have underestimated SFRs
from Lya. This is in line with what could be expected for very massive galaxies

as Lya will only be able to measure the contribution in regions of the galaxy
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6.1 The properties of LAEs

which are actively star-forming and unobscured, leading to underestimated SFRs
in these regimes. Nevertheless, it is remarkable that two largely independent
methods obtain such similar results. For the global populations of SC4K LAEsS,

these two methods also retrieve very similar SFRs of 5.9753 and 4.473%° M, yr~

1
for the emission line-based and SED-based, respectively. Additionally, in the
Appendix (Figure A.3), we show SFRyy, vs SFRggp at different redshift ranges.
Both approaches predict very similar SFRs at all redshifts, outside the afore-

mentioned ranges (SFRggp = 10 My yr~!) as the emission line-based approach

~Y

becomes saturated at high SFRs.

Furthermore, in a recent study by Calhau et al. (2020), the SFR of the SC4K
sample is derived through the stacking of radio imaging in the 3GHz band. For
the stacking procedure, individual sources with direct detections are removed as
these are likely AGN. They find median SFRy.qo = 5.1715 Mg yr—! from the
z ~ 2 — 6 stack, which is in very good agreement with emission line-based and

SED-based SFR estimates of the sample.

6.1.7 Catalogue of SC4K LAE properties

We make public a catalogue with multiple measurements for individual LAEs
in the SC4K sample. For each LAE we provide R.A., Dec, Liy., EW(, X-ray
and radio Flags (as given by Sobral et al. 2018a) and updated X-ray and radio
Flags (as given by Calhau et al. 2020), M,, 8, Myy, SFRyy, and SFRggp, with
associated errors. We also provide our photometric measurements in Jansky for
the 34 filters used in this work and a boolean SED flag which indicates unreliable
SEDs. For LAEs in the unreliable SED subset, we do not derive SED-derived
properties and thus set them to -99 in the public catalogues. We provide the
catalogue of SC4K LAEs in electronic format in Appendix A.4.
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Figure 6.4: UV-continuum slope 8 (measured from SED fitting, see Section 6.1.4)
vs UV luminosity Myy (derived by integrating the SED fits at ~1500 A, see Section
6.1.3). Each panel contains LAEs from different redshift intervals (from left to right
z = 2.2,25,3.1,3.9,4.7,5.4). The median 3 of each Myy bin of LAEs selected
through medium (narrow) band filters is shown as filled coloured circles (squares)
with the individual points being plotted as scatter in the background. Unfilled
markers are likely biased bins, as discussed in Section 6.2.1. The clustering of
points at 8 = —2.44 is a physically imposed model limitation as 8 can not become
bluer without increasing the upper mass of the IMF to unreasonable values. For
comparison we add measurements from LAEs at z ~ 2 — 3 (Sobral et al., 2018b)
and UV-continuum selected samples at z ~ 2 — 2.5 (Hathi et al., 2016) and z ~ 4,
z ~ 5 and z ~ 6 (Bouwens et al., 2014a). The black arrow is the size in 8 of
Ayy = 0.5 (Auyv = 4.43 + 1.998, Meurer et al. 1999). We find the median (3 in
LAEs to be as blue or bluer than UV-selected samples at the same Myy for all
redshifts.
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Figure 6.5: The evolution of the Myy-S relation for LAEs. Shaded regions are
the 1 o intervals obtained by bootstrapping the individual measurements for which
we are not significantly biased (see Section 6.2.1). § increases with Myy and this
relation shifts down to smaller 5 as we move to higher redshifts. Most of this trend
seems to be captured by a decrease in the normalisation of the relation.

6.2 Results and Discussion

6.2.1 Myy — § relation for LAEs and its evolution

The UV rest-frame luminosity (Myy) and the UV 3 slope follow a tight correlation
in UV-continuum selected samples (e.g. Bouwens et al., 2014a), with faint Myy
galaxies being typically bluer (more negative ). We measure how these two
parameters are correlated for LAEs, whether they follow a similar Myy-£ relation
as UV-continuum selected samples, and whether the relation evolves.

In Figure 6.4, we show the relation between Myy (Section 6.1.3) and 5 (Section
6.1.4) for 6 redshift intervals (z = 2.2,2.5,3.1,3.9,4.7,5.4). We note that at very
faint Myy we are biased towards redder sources. This is a consequence of redder
sources being easier to detect in the optical filters, while sources with a very
steep continuum slope will fall below our detection limits, particularly faint Myy
sources. As such, in Figure 6.4, we show the faintest Myy bin as unfilled.

LAEs are found to be consistently bluer than UV-selected samples (Bouwens
et al., 2014a; Hathi et al., 2016) at similar redshifts (up to ~ 1 dex bluer),
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regardless of being NB or MB-selected, at all redshifts studied (see also Hashimoto
et al., 2017). Our results are consistent with z ~ 2 — 3 LAEs measurements from
Sobral et al. (2018b). Additionally, we measure an increase of § with Myy (~ 0.5
dex per AMyy = 2), indicating that bright Myy LAEs are redder than fainter
LAEs at all redshift ranges, even though LAEs are typically bluer than LBGs.
This tight correlation between Myy and S is very similar to the one observed in
LBG populations, implying an important overlap between the populations and
also an important diversity within the LAE population.

In Figure 6.5, we show the 1o contours for the Myy vs § distribution. We
compute the 1 o contours by bootstrapping our individual data points. We choose
a random subset of 50% of the data points, determine the best fit, iterate the
process 1000 times and define the 1o contours as the 16th and 84th percentiles
of all fits. As previously mentioned, faint Myy bins will be biased towards redder
sources, which are easier to detect in the continuum. As such, we apply a Myy
cut to our fits, equal to the lower limit of the faintest filled Myy bin (Figure 6.4).

Overall we find a Myy-f relation for LAEs, which is qualitatively very similar
to the one observed in UV-selected samples. As can be seen in Figure 6.5, the
normalisation of the Myy-f relation slowly moves to bluer 8 with increasing
redshift for LAEs. This might be explained due to a consistent average decrease

in dust content and metallicity even within LAEs from low to high redshift.

6.2.2 Implications of Myy — S relation for LAEs

The UV continuum S slope can be an indicator of the dust attenuation of a
galaxy as well as the age and metallicity of its stellar population, but because it
is sensitive to all these effects, it can also be very complicated to interpret (see
e.g. Popping et al., 2017). As shown by Bouwens et al. (2012) (see Figure 13
therein), a negative offset of ~ 0.5 — 1 in f should be dominated by a change
in dust, albeit age and metallicity can also significantly steepen 3, with a hotter
population of stars. This suggests that LAEs are a subset of the SFG population
which is very young and likely more metal-poor, with significant contribution

from O and B stars which make the UV continuum steeper.

132



6.2 Results and Discussion

1000 1o contour wy @ wo
lo contour wy (EWy < 240A) @ wy (EW, < 240A)
500 - ¢  wo compilation

Ha

2507

Full SC4K

Hal7

| [ To)
100_ Lya Wold / *D ’
Wol7 ’ ’ Blll’ $Gr07
4

Ci12

50 1 == 7= f 75— -~ S SuRGLEC LT P LTl

wo (A)

) Sy 3 i St
0.0 05 1.0 1.5 20 25 3.0 35 40 45 50 55 6.0
Redshift

Figure 6.6: Global Lya wq evolution with redshift. Best wg estimates are shown
as blue circles (squares) for the full range of EWy (EWy < 240 A). Blue contours
are estimated by perturbing the wg bins within error bars (see Section 6.1.2.1 for
details). We find evidence for little to no evolution of wy. The white points show
Lya wg of the full SC4K sample. We present a compilation of Lya wg from z = 0.3
to z ~ 6 (Blanc et al., 2011; Ciardullo et al., 2012; Gronwall et al., 2007; Guaita
et al., 2010; Hashimoto et al., 2017; Nilsson et al., 2009; Wold et al., 2014, 2017). In
addition, we show the [O11] (HS + [O111]) rest-frame equivalent widths of emitters
selected by these lines (Khostovan et al., 2016) as purple (green) fits and Haw EW
(Faisst et al., 2016; Matthee et al., 2017a) as red. Overall, the consensus of all
data points is that there is no significant Lya wg evolution with redshift despite
the strong increase in the typical EW of non-resonant lines for a wider population
of SFGs.

133



6.2 Results and Discussion

In LBGs, g has been shown to depend on the UV luminosity, with a similar
slope independent of redshift (e.g. Bouwens et al., 2012, 2014a). The normali-
sation of the relation is shifted to bluer # as we move to higher redshifts which
can be explained by a lower dust content/lower dust extinction in galaxies at
higher redshift (e.g. Finkelstein et al., 2012). As shown in Figure 6.5, LAEs have
a very similar behaviour to LBG galaxies: [ is tightly correlated with Myy, with
brighter Myy galaxies being redder and the normalisation of this slope shifting
to lower § with increasing redshift, which can be explained by a lower dust con-
tent at higher redshift even for LAEs. Similar observations of the Myy-f3 trend
and the 8 evolution with redshift have been shown by Hashimoto et al. (2017).
The work presented by Hashimoto et al. (2017) reaches fainter Myy than the
work presented here and thus provides a consistent view of UV properties in
LAEs from a complementary work using a different selection method (integral
field spectroscopy with MUSE).

6.2.3 Lya EW, and wj: evolution for LAEs?

EWj is an indicator of the strength of an emission line relatively to the continuum.
As such, it holds important information about a galaxy, with high EW{ being
associated with young stellar ages, low metallicities and top-heavy IMF's (Raiter
et al., 2010; Schaerer, 2003). We use our sample of LAEs at well-defined redshift
ranges to probe for redshift evolution of EW,.

We find the median Lya EW, of SC4K LAEs to remain constant at ~ 140 A
with redshift, both in MB and NB-selected samples (median EW, = 138234 A),
We show the little to no evolution of median EWj in Figure A.4. For individual
filters, we detect a tentative higher than average EW, at z ~ 5.7—5.8, which could
be caused by the small sample size or higher contamination fraction, although we
highlight the large error bars.

The calculated median Lya EW( can be very sensitive to selection effects, and
it is possible that the non-evolution we measure is a consequence of the relatively
high EW, > 50 A cut applied in SC4K. In order to further tackle this, we also
investigate the evolution of the scale parameter wy (Section 6.1.2.1). wy has been

extensively probed in the literature (see e.g. Ciardullo et al., 2012; Hashimoto
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Figure 6.7: The Lya wg dependence on M, and Myy. Best wg estimates are
shown as blue circles (squares) for the full range of EWy (EWq < 240 A). A label
with fese Lya (= 0.048wp; Sobral & Matthee 2019) is added for a potential physical
interpretation of results. Left: Lya wq is anti-correlated with stellar mass, such
that the most massive LAEs have the lowest wo and likely the lowest fesc Lya-
Right: Lya wq is also anti-correlated with UV luminosity, with the faintest UV
LAEs having the highest Lya wy.

et al., 2017), particularly because the exponential decay of the EWj distribution
should be less affected by observational EW cuts.

Our results are presented in Figure 6.6. We find no statistically significant
evolution of the Lya wy with redshift. Generally, wy is slightly higher when
computed for the full sample of LAEs, and lower when we impose a restriction
on the Lya EW; (< 240A), but no significant evolution is seen when using
a single self-consistent method. We therefore conclude that both the observed
median Lya EWq and the distributions of Lya wy for LAEs are not changing
significantly from z ~ 2 to z ~ 6. A non-evolution of wy suggests there is
no significant evolution in the typical or average properties of sources selected
as LAEs across cosmic time. These include their typical metallicities and dust
properties, but also perhaps more importantly their Lya escape fraction, fes rya-
As shown by Sobral & Matthee (2019), the observed Lya EWq can be used to
estimate feserya. The non-evolution of Lyar EW( and wy across time implies
non-evolving feserya for LAEs. For SC4K LAEs, we infer a constant fescrya of
~ 0.6 — 0.7 across cosmic time (= 0.5 — 0.6 when applying the EW, > 240 A

cut). These median fe 1y, values are consistent with those derived using radio
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SFRs for SC4K Lya emitters (0.7 & 0.2, see Calhau et al., 2020).

However, it should be noted that different redshifts do not necessarily probe
the same Myy ranges (Figure 6.2, middle panel), which should be considered
when discussing wy evolution with redshift, particularly as wy depends on Myy
(see Section 6.2.3.2). We attempt to explore potential bias effects by computing
wo with a consistent Myy cut. For the full SC4K sample, we compute wq for
—22 < Myy < —19 which is a Myy range probed by all redshifts (see middle
panel of Figure 6.2). For this cut, a flat relation (non-evolution) is still observed
within 0.9 o for EW, < 240 A and 1.8 ¢ for the full EW, range. The different Myy
ranges probed by different selection filters/redshifts do not seem to be sufficient
to explain the non-evolution of wy with redshift, which is likely a characteristic
of the LAE population itself.

6.2.3.1 Comparison with other studies

In order to compare our results with other studies across different redshifts, in
Figure 6.6 we show a compilation of Lya wg in samples of LAEs, from z ~ 0 to
z ~ 6 (Blanc et al., 2011; Ciardullo et al., 2012; Gronwall et al., 2007; Guaita
et al., 2010; Hashimoto et al., 2017; Nilsson et al., 2009; Wold et al., 2014, 2017).
Our results agree well with Hashimoto et al. (2017), Guaita et al. (2010) and Blanc
et al. (2011). Furthermore, our extrapolation of wy to low redshift is consistent
with the results from Wold et al. (2014, 2017).

Our measurements reveal higher values than those by Nilsson et al. (2009),
Gronwall et al. (2007) and Ciardullo et al. (2012), all at intermediate redshifts
(z = 2.25 — 3.1) and with selections that go to much lower EWs. We note
however that the wy measured by Nilsson et al. (2009) is below our MB detection
threshold and that our blind selection of LAEs is not sensitive to the lowest EW,,
as highlighted in Figure 6.6. Our LAE selection of high EW LAEs is much more
similar to blind surveys done with MUSE (Hashimoto et al., 2017), but SC4K
allows the selection and study of much higher luminosity LAEs. Furthermore, we
note that our wy measurements shift to smaller values when the EW, < 240 A cut
is applied, becoming even more similar to the measurements reported in the

literature.
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While there are observed variations due to different sample selections which
contribute to the scatter (Figure 6.6), overall we conclude that there is no clear
evolution of the Lya EW, and wy for LAEs when taking into account all mea-
surements. Such parameters remaining constant for LAEs contrasts with mea-
surements from other non-resonant emission lines for the general star-forming
population, which are found to increase significantly with redshift. In order to
provide a rough comparison, in Figure 6.6 we also show the redshift evolution
of the rest-frame EW of line-emitters, including [O11] and HS + [O111] emitters
(Khostovan et al., 2016) and Hoe EW,, (Sobral et al., 2014). While at z ~ 0 those
non-resonant rest-frame optical emission lines have typical EW, < 25 A, by z ~ 2
they already exceed Lya EWq. This reveals a very significant evolution of the
typical stellar populations of the general population of SFGs, while those selected
to be LAEs have high Lya EWj at all cosmic times. Since LAEs have typically
high EWs in their rest-frame optical lines, it is very likely that we are seeing star-
forming galaxies becoming, on average, LAEs, towards z ~ 6. Such possibility
would easily explain the rise in the global Lya/UV luminosity densities (see full

discussion and implications in Sobral et al., 2018a).

6.2.3.2 The wy and f. 1y, dependence on M, and Myy

LAEs seem to show no evolution in their typical Lya wy across cosmic time.
However, one could expect that LAEs with different physical properties may
show different wy, particularly as a consequence of different Lya escape fractions
(see e.g. Matthee et al., 2016; Oyarzin et al., 2017; Sobral & Matthee, 2019).
We start by investigating how Lya wy may depend on the stellar mass of
LAEs. The results are presented on the left panel of Figure 6.7, where we show the
results when restricting the measurements to EW, < 240 A and when using full
samples. We find an anti-correlation between Lya wy and stellar mass, with the
least massive LAEs having wy ~ 180 A and the most massive having wy =~ 70 A.
By using Sobral & Matthee (2019), this could be seen as a significant difference
in the typical fescya Which would decline from ~ 90% for M ~ 10%° Mg LAEs
t0 fesenya ~ 30% for M ~ 10'%° Mg, LAEs. This trend is very similar to those
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found by Matthee et al. (2016) for a general population of Ha emitters with much
higher SFRs and lower fu. 1yo than our LAEs and by Oyarzin et al. (2017).

In Figure 6.7 (right panel) we also show how Ly« wy is clearly anti-correlated
with Myy. Our results show that UV luminous LAEs in our sample (Myy =
—21.5) have Lya wy ~ 50 A, which rises with declining UV luminosity to wy ~
180 A for Myy ~ —19.5 LAEs. This implies that the UV faintest sources have
the highest fo rya (Sobral & Matthee, 2019) of around ~ 85%, while the most
UV luminous LAEs have fesc 1yo &~ 20 — 30%. Our results are in good agreement
with Oyarzin et al. (2017) and reveal that even though LAEs have high Ly wy
across cosmic time, the population still shows important trends with stellar mass

and rest-frame UV luminosity.

6.2.3.3 LAEs with extreme EW|,

The nature of LAEs with extremely high EW, and the processes behind the cre-
ation of such extreme lines are still a relatively unexplored topic despite a range of
discoveries (e.g. Cantalupo et al., 2012; Hashimoto et al., 2017; Kashikawa et al.,
2012; Maseda et al., 2018). Typical internal star formation processes should not
be enough to power EWy > 240 A in Lya (Raiter et al., 2010; Schaerer, 2003),
but studies like Cantalupo et al. (2012) suggest that such extreme objects which
have been found could be explained by fluorescent “illumination” from e.g. a
nearby quasar (see also Rosdahl & Blaizot, 2012; Yajima et al., 2012). Addition-
ally, an extreme z = 6.5 LAE with EW, = 436 A is reported in Kashikawa et al.
(2012), with the authors arguing that such a high EW, requires a very young,
massive and metal-poor stellar population, or even Population III stars.

The large volume covered by SC4K (~ 10 Mpc?) and the sensitivity to the
highest EWs provides a unique opportunity to identify and quantify the number
density of extremely high EW LAEs. In order to do so in a conservative way,
rather than simply selecting sources with Lyas EW, higher than 240 A, we take
the photometric errors fully into account, and we use the 3¢ errors. In practice,
we look for LAEs within SC4K which satisfy EW, > 240A at a 3¢ level !
and for which we have no evidence of AGN activity. We find a total of 45

IEW, — 3AEW, > 240 A
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“extreme” non-AGN LAEs in ~ 61.5 x 10 Mpc? and we investigate how these
are distributed across redshift. The results are shown in Table 6.1, where we use
Poisson errors. Most of the extreme LAEs are found at z ~ 2 — 3. Furthermore,
by taking into account the volumes surveyed, we find that the number density
of extreme LAEs within SC4K rises, from (0.12 £ 0.08) x 107 Mpc™ at z ~ 5.4
to (1.50 + 0.61) x 1075Mpc™ at z ~ 2.5, although such increase should be
treated with caution, as the higher redshift sample does not reach very faint Myy
(> —20) ranges. Overall, we find a number density of (0.7340.11)x107¢ Mpc 2 at
z ~ 2 — 6, revealing that these sources are exceptionally rare. At 1o confidence
level, we find 318 LAEs with EW, > 240 A, resulting in a number density of
(5.17 £ 0.29) x 1075 Mpc=3. Spectroscopic follow-up observations are required
to further understand their nature. We find our 45 “extreme” sources to be a
diverse population, as they are found at all Lya luminosities and stellar masses,
but preferentially at faint UV luminosities which is a consequence of high EW
+ no dependence on Lya luminosity. They typically have blue UV 3 slopes but
some reach redder values (f ~ —1.2). We do not observe a spatial correlation
between “extreme” LAEs and AGN, which we would expect if the high EWs in
this sample of LAEs were generated by fluorescent “illumination”.

Through a narrow band filter search, Cantalupo et al. (2012) targeted a field
centred in a hyper luminous quasar and identified 18 LAEs at z = 2.4 in a
comoving volume of 5500 Mpc3. Stacking of these sources results in Lya EW, >
800 A (1), which cannot be explained by typical star-formation processes. This
implies a higher number density of extreme LAEs than the conservative number
density we report in this work, although this can be easily explained by Cantalupo
et al. (2012) specifically targeting a quasar field.

In a more comparable blank search, using deep MUSE data, Hashimoto et al.
(2017) selected 6 LAEs with EW, > 240 A at a 10 level (zero at 3¢) in 9.31 x
10* Mpc? (Drake et al., 2017a) at z ~ 2 — 6. This results in a number density of
~ 6 x 107° Mpc~3, suggesting these “extreme” LAEs may be even more common

at fainter luminosities than those in the SC4K sample.
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Figure 6.8: SFR (derived from Ly« and derived from SED fits, see Section 6.1.6)

vs M, (derived from SED fits, see Section 5.6).
different redshift intervals (from left to right z = 2.2,2.5,3.1,3.9,4.7,5.4).

Each panel contains LAEs from
The

median SFRyy, of each M, bin for LAE selected through medium (narrow) band
filters is shown as filled coloured circles (squares) with the individual SFRyy, being
plotted as scatter in the background. The median SFRggp of each M, bin for LAE
selected through medium (narrow) band filters is shown as open circles (squares).
The M, bins of the two methods are defined with a 0.25 dex offset for better
visibility. The dotted horizontal line is the average SFR depth, computed from the
flux depth and average EWq of the sample. The continuous black lines are the best-
fit relations from Schreiber et al. (2015) computed for the redshift of each panel

and converted from Salpeter to Chabrier.

These relations are shown as dashed

lines for the mass ranges where they were extrapolated.
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Table 6.1: Number count and number density of LAEs with EWy > 240A at a
30 level, for different redshift intervals, using comoving volumes from Table 3.1.
Errors are Poissonian. We find very low number densities of extreme LAEs, but
these increase with decreasing redshift.

Redshift interval N | P
(# LAEs) (107%Mpc3)
MB, z =2.54+0.1 6 (+2) 1.50 £ 0.61
MB, z=314+04| 15 (+4) 0.82+0.21
MB, 2=39+£0.3 4 (+2) 0.40 + 0.20
MB, 2 =47+02| 2 (1)  017+0.12
MB, z=5.440.5 2 (£1) 0.12 £0.08
Full sample 45 (£7) 0.73£0.11

B MB LAEs, z =2.5+0.1
1001 © MBLAEs, » =3.1404
BN MB LAEs, 2 =3.9+03

I MB LAEs, z = 2.5 £0.1
1001 # MBLAEs, z=3.1404
B MB LAEs, z =3.9£0.3

= MB LAEs, = 4.7+ 0.2 ,-T MB LAEs, = = 4.7+ 0.2
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Figure 6.9: Left: Running average of SFR (derived from Lya and EWj, see
Section 6.1.6) vs M, (derived from SED fits, see Section 5.6). Right: Same but with
SFR derived from MAGPHYS (see Section 6.1.6). The SFR-M, slopes derived
from the two methods are different, with the SED-derived slope being steeper.
The difference is likely a consequence of SFRyy, not being able to reach very low
(< 1Mg yr~!) and very high SFRs (> 20 — 30 My, yr~!), but we provide further
discussion in Section 6.1.6.3. For comparison, we show the Main Sequence line for
UV-continuum selected sources from Schreiber et al. (2015), where the dashed lines
show the extrapolated values.
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6.2.4 SFR-M, relation and evolution

We test the dependence of SFR on M, in our sample of LAEs and its potential
evolution with redshift. In Figure 6.8 we show SFR derived from the SEDs and
SFR derived from Lya (see Section 6.1.6) vs M, (derived from SEDs, Section
6.1.5) for our sample of LAEs and compare with SFRs derived from SED fitting.
We compare our measurements with the Main Sequence relation as derived in
Schreiber et al. (2015) (converted from Salpeter to Chabrier IMF, extrapolated
to low mass ranges when required) and a few studies at different redshifts.

We find that in general there is a relation between SFR and M, at all redshifts
for LAEs. The relation is relatively shallow when using Lya SFRs and steeper
when using SED SFRs, as can be seen in Figure 6.8. The relation between SFR
and M, seems to steepen with increasing redshift for LAEs when using SED SFRs,
as can also be seen in Figure 6.9 (right panel). This steepening with increasing
redshift also seems to make the SFR-M, relation much more in line with the
extrapolated relations found for UV-continuum selected sources (e.g. Schreiber
et al., 2015).

At z < 4, we find that LAEs are typically above the Main Sequence relation
at their corresponding redshift. This is particularly evident for low stellar masses
(M, < 10%° M) although we find that more massive LAEs tend to be within the
Main Sequence or even below it, a consequence of the slope of the relation being
shallower. At higher redshifts, we find that even at low stellar masses (109079
M) LAEs are closer to the Main Sequence or that the Main Sequence becomes
closer to the relation valid for LAEs, as SFGs may become more LAE-like. Our
results therefore suggest that at higher redshifts there is a wider overlap between
LAEs and more “normal” populations of galaxies, as UV-continuum selected
galaxies become LAE-like. This could explain the agreement between high-z
LAEs and the results of Salmon et al. (2015). It is nonetheless important to
point out (as shown in Figure 6.8) that the flux limit in Lya corresponds to a
rough cut in SFR and therefore a bias towards higher SFRs at the lowest masses.
Similar flux cuts also affect continuum-selected samples, placing them well above

the Main Sequence (see e.g. Tasca et al., 2015).
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Our results are in good agreement with measurements from Lya-selected sam-
ples from Kusakabe et al. (2018) at z = 2 within error bars. We also compare our
results with those presented by Harikane et al. (2018). While we do not reach
such low masses, our results are consistent with LAEs being above the Main
Sequence at low stellar masses. With our SC4K sample of LAEs, we can now
analyse the evolution of the SFR-M, in wide mass ranges at different redshifts,
no longer being constrained by single bins or having to stack sources to SED fit
the stacked photometry, being able to probe the evolution of the relation within

the same sample.

As previously discussed in Section 6.1.6.3, there are limitations to different
SFR methods, which are important to highlight when comparing the SFR-M,
relation. SFRpy, consistently predicts higher SFR than SFRggp for low stellar
masses and lower SFR for very high stellar masses. In fact, individual mea-
surements of SFRyy, seem to fully saturate at ~ 100 Mg yr~! with the medians
typically not going above ~ 20 — 30 My yr~! (see Sobral et al., 2018b). SFRyy,
also implies higher SFRs at lower masses, possibly due to tracing more recent
star-formation which would be higher than the one measured from the contin-
uum if LAEs are going through bursts of star-formation. This can be clearly
seen with NB LAEs measurements at z = 5.7, where the low luminosity sample
predicts SFRs~ 10 M, yr~!. SFRggp may be better suited for such conditions,
and as seen in Figure 6.8, it points towards a relation similar to the Schreiber
et al. (2015) extrapolations for the entire mass range we can probe. Nevertheless,
we find that the SFRs derived from the two approaches to be consistent, with
the same trends being observed from both. In Figure 6.9 we show the running
averages for M, vs SFR. We find the normalisation of the relation to increase
with redshift (left panel) but, as previously discussed, this is mostly driven by

1

detection limits, as we are only capable of reaching down to SFR < 5 Mg yr™ at

z~ 2.
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6.2.5 LAEs: are they “Main Sequence” galaxies?

The stellar mass of a galaxy and its star formation rate are correlated in typical
galaxies, creating a trend known as the “Main Sequence”! of SFGs (Brinchmann
et al., 2004; Noeske et al., 2007). A priori, we can naively expect this correlation
to occur as the stellar mass of a galaxy is the integral of SFR across time, so the
total amount of stars produced will be proportional to the current SFR, assuming
a continuous SFR. This dependence can lead to “tracks” in SED-fitting derived
values which lead to a more stringent correlation between SFR and M,. Galaxies
going through periods of intensive star formation, which may be a consequence of
bursty star formation, will occupy a region above the Main Sequence. In typical
galaxies, SFR and M, are in tight correlation and the normalisation of the relation
increases with redshift (e.g. Schreiber et al., 2015). Understanding whether the
Main Sequence trend holds for LAEs provides important insight into how star
formation occurs and how it is driven in this population of predominantly early,
primeval galaxies. In principle, we do not expect a Lya-selected sample to span
uniformly around the Main Sequence, because we select on emission line strength
which at fixed stellar mass always gives high sSSFR=SFR/M,. We therefore do
not expect to use LAEs to measure the Main Sequence in an unbiased way, but
we can use the comparison to the Main Sequence to determine how LAEs fit in
the general galaxy population. Several measurements at z > 2 have measured
the Main Sequence relation by probing M, > 10'° M., with the low mass limit
typically rising to M, > 10" Mg at z > 3.5 (Schreiber et al., 2015), but some
recent studies have measured the SFR-M, slope and scatter down to M, = 10° M,
(Salmon et al., 2015). Our sample of high redshift, typically low M, SFGs reaches
a region still widely uncharted at these redshift ranges.

Our results point towards an intensive star formation nature for low mass
LAEs at z < 4, which places them significantly above the extrapolation of the
Main Sequence to the lowest masses. A more bursty star-forming nature could
explain these SFRs above the Main Sequence. However, we cannot directly infer

burstiness from our measurements. More massive LAEs seem to fall within the

!Note that galaxies do not evolve along the Main Sequence trend and it is therefore not an
evolutionary sequence, see e.g. Matthee & Schaye (2019).
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Main Sequence. At higher redshifts, SFRggp-M, measurements for LAEs start to
resemble more the Main Sequence at all mass ranges. We also find SFRyy.-M,
to follow a Main Sequence-like relation at z > 4, except for M, > 10°° when
SFR1ya seems to saturate, likely due to dust, and is not able to reach SFRs as
high as SFRggp. This can easily be explained by more massive galaxies showing
much higher dust extinction (see e.g. Garn & Best, 2010; Sobral et al., 2012;
Whitaker et al., 2017), which at some point might completely absorb Lya and
UV photons in high SFR regions (Sobral et al., 2018b), making it impossible for
them to be observed. In such cases, the FIR and some visible and NIR light can
still escape, leading to a large discrepancy between SFRgpp and SFRpy,. We
note that SFRyy, contains an empirical correction for dust extinction (see Sobral
& Matthee, 2019), but this was calibrated for typical LAEs where only moderate
to low levels of dust extinction are present leading to Lya and UV photons being
attenuated, but not fully destroyed. At the highest masses, we are likely seeing
LAEs with several star-forming regions that may be completely invisible in the
UV and Lya but where at least one region has a hole or a porous ISM (see also
Popping et al., 2017).

Overall, we find that the SFR-M,, relation for LAEs steepens with redshift and
that its normalisation also rises with look-back time (see Figure 6.9). As a con-
sequence, by z ~ 5 —6, LAEs and the general UV-continuum selected population
essentially become indistinguishable. This increasing overlap of populations with
increasing redshift is also observed in the morphologies and sizes of SFGs, which
become LAE-like (compact, r. ~ 1kpc) towards high redshift (Paulino-Afonso
et al., 2018) and diverge towards lower redshift as LAEs remain compact at all
redshifts. Our results are also fully consistent with the rapid rise of the cosmic
average Lya/UV luminosity density ratio with increasing redshift (Chapter 4)
which imply that a higher fraction of star-forming galaxies share the properties
associated with LAEs, leading to a rise of the cosmic averaged Ly« escape frac-
tion and the cosmic averaged ionisation efficiency, &.,. Such results are also in
agreement with other studies showing a rise of the LAE fraction in UV-selected
sources towards z ~ 6 (Curtis-Lake et al., 2012b; Schenker et al., 2014; Stark
et al., 2017), and globally imply that by z ~ 6 LAEs become representative of

the majority of the star-forming population.
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6.3 Conclusions

In this Chapter, we determined and explored key properties of a large sample of
LAEs from the publicly available SC4K survey (~4000 LAEs at z ~ 2 — 6 in the
COSMOS field; Sobral et al. 2018a). We computed SFRs, Myy, 8 and M, for
each individual LAE and we provide a full catalogue of SC4K LAEs with all the

photometric measurements and derived properties. Our main results are:

+0.6

o SC4K LAEs are typically low stellar mass sources (median M,=10%3-0s M),
very blue in the rest-frame UV (8=-2.1 1)) and have low SFRs (SFRyyq:
59753 My yr—!; SFRggp: 4.473%° My, yrt).

e We observe a tight correlation between 3 and Myy, qualitatively similar to
the one observed in UV-selected samples. The normalisation of this corre-
lation shifts to more negative S (bluer) with increasing redshift, which is
consistent with a decreasing dust content with increasing redshift in galaxies
even for LAEs.

e Our LAEs are as blue or bluer than UV-selected Lyman Break Galaxies
(LBGs) at similar redshifts (up to ~1 in the redshift range z ~ 2 — 6),
suggesting they always constitute the youngest, most metal-poor and/or

most dust-poor subset of the UV-selected sources.

e We find evidence for little to no evolution in the typical Lya EW{ and the
scale parameter wy with redshift, suggesting the median fes. 1y in LAEs is

always high and not evolving strongly with redshift.

e We find that the Lya wy (and thus fesc 1y0) for LAEs declines with increasing
stellar mass, implying that fe 1y is highest for the lowest stellar mass LAEs
and lowest for the most massive LAEs. A similar trend is found with rest-
frame UV luminosity, where the faintest LAEs have the highest typical EWs
and the highest o 1ya-

e We explore extreme EW( measurements in our large sample of LAEs and
find 45 non-AGN LAEs with EW, > 240 A at a 3¢ level, resulting in a

number density (74+1) x 1077 Mpc~3. These extreme emitters are incredibly
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rare but can provide insight into extreme Ly« emission that is neither purely

from typical star-formation or AGN.

e By using Ly EWj to infer fe 1y0 (Sobral & Matthee, 2019) we compute
Lya SFRs which are independent of SED fitting measurements and we com-
pare both. Lya and SED-fitting based SFRs show a remarkable agreement
for M, = 10971 M, and SFRggp = 1 — 10 Mg, yr'. SFRy, predicts lower
SFRs at more massive regimes, likely due to not being sensitive to heavily

obscured parts of very massive galaxies.

e LAEs show a relation between stellar mass and SFR at all redshifts, but this
is typically shallower than the relation found for the general star-forming

population. We also find that the relation steepens and rises with increasing
redshift for LAEs.

e LAEs are typically above the “Main Sequence” at z < 4 and M, < 10%° M,
indicating LAEs are experiencing more intense star formation than the gen-
eral population of galaxies of similar mass at similar redshifts, with one
possible explanation being a bursty star-formation nature of LAEs. For
higher masses and redshifts, this offset decreases, implying a larger overlap

between LAEs and more “normal” SFGs.

Overall, we find that LAEs are typically very young, low mass galaxies, albeit
they still span an important range of properties, and within the LAE population
there are important trends with stellar mass and UV luminosity. Typical prop-
erties of LAEs seem to have little evolution between z = 2 and z = 6, although
they still become bluer and the relation between SFR and stellar mass steepens
and rises slightly. By z 2 4, the overlap between LAEs and the more general
UV-selected population becomes significant and by z ~ 6 they seem to become
indistinguishable, as typical SFGs essentially become LAE-like. Our results re-
veal how galaxies selected as LAEs constitute mostly the youngest, most primeval
galaxies at any redshift, and also that LAEs are ideal sources to study the dom-
inant population of SFGs towards z 2 6 and therefore also likely a population
that significantly contributed to reionising the Universe (see also discussions in
Sections 1.1.2 and 4.6).
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Chapter 7

The UV luminosity function and

galaxy stellar mass function of

z~2—06 LAEs with SC4K
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Abstract

We measure the evolution of the rest-frame UV luminosity function
(LF) and the stellar mass function (SMF) of Lyman-a (Ly«) emitters
(LAEs) from z ~ 2 to z ~ 6 by exploring ~ 4000 LAEs from the
SC4K sample (see Chapter 2). We find a correlation between Lya
luminosity (Liy,) and rest-frame UV (Myy), with best-fit Myy =
—1.6%03 x logyo(Liya/ergs™) + 47773 and a shallower relation be-
tween Lpy, and stellar mass (M,), with best-fit log,q(M,/My) =
0.9101 % logyo(Liya/ergs™) — 28%39. As a consequence of these de-
pendences, an increasing Ly, cut predominantly lowers the number
density of faint Myy LAESs, but the decrease is more uniform over the
full M, range. We estimate a proxy for the full UV LFs and SMF's of
LAEs with simple assumptions of the faint end slope. To reduce selec-
tion bias, we analyse the same luminosity range (log,,(Lrya/ergs™) >
43.0) at all redshifts. For the UV LF of LAEs, we find a character-
istic number density (®*) increase from log,,(®*/Mpc™3) ~ —5.6 at
z = 2.5 to ~ —4.6 at z ~ 3, remaining constant up to z ~ 5 — 6
and no clear evolution of the characteristic UV luminosity (M;y).
We find no significant evolution of the SMF of LAEs with redshift,
with log,,(®*/Mpc~3) staying constant at ~ —5.5 from z ~ 2.5
to z ~ 6 and the characteristic stellar mass staying constant at
logo(M:/Mg) ~ 11 for the same redshift range. For log;y(Lyya/ergs™)
> 43.0 LAEs, pyy increases from 10243 to 10%>° erg st Hz~! Mpc~3
and py remains constant at ~ 10°° Mg Mpc~2, being always lower
than the total luminosity and stellar mass densities of more typical
galaxies but approaching it with increasing redshift. Both pyy and

pm of LAEs are extrapolated to converge to the measurements of



continuum-selected galaxies at z > 6, which suggests a key role of

LAEs in the epoch of reionisation.
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7.1 Introduction

Multiple studies have used the Lyman-a (Lya, Aovacuum = 1215.67 A) emission
line to successfully select large samples of galaxies at z > 2 (e.g. Cowie & Hu,
1998; Drake et al., 2017a; Konno et al., 2018; Malhotra & Rhoads, 2004; Matthee
et al., 2015; Ouchi et al., 2008; Rauch et al., 2008; Santos et al., 2016; Sobral
et al., 2018a; Taylor et al., 2020; van Breukelen et al., 2005). Ly« emission is
typically associated with young star-forming galaxies (SFGs, e.g. Partridge &
Peebles, 1967) but can also be emitted from active galaxy nuclei (AGN; e.g.
Calhau et al., 2020; Miley & De Breuck, 2008; Sobral et al., 2018b).

LAEs are typically young/primeval, low mass, low dust extinction sources
(e.g. Gawiser et al., 2006, 2007; Lai et al., 2008; Pentericci et al., 2007), but a
significant diversity of properties within the Lya population has been reported in
the literature (e.g. Acquaviva et al., 2012; Finkelstein et al., 2009; Hagen et al.,
2016; Lai et al., 2008; Matthee et al., 2016; Oyarzin et al., 2017; Santos et al.,
2020). Sources with high Ly« equivalent width (EW) typically have young stellar
ages, low metallicities and top-heavy initial mass functions (e.g. Hashimoto et al.,
2017; Raiter et al., 2010; Schaerer, 2003). LAEs have been shown to be very
compact in the UV (e.g. Malhotra et al., 2012; Paulino-Afonso et al., 2018), with
the compact morphology possibly being favourable to the escape of Ly« photons.
Additionally, studies have shown that high-redshift LAEs may be progenitors of
a wide range of galaxies, from present-day galaxies (e.g. Gawiser et al., 2007;
Guaita et al., 2010; Yajima et al., 2012) to bright cluster galaxies (BCGs; e.g.
Khostovan et al., 2019), highlighting the significance of LAEs in galaxy evolution
studies.

Studies of UV-continuum selected galaxies have found that the Lya fraction
(XLya, Dercentage of galaxies with Lya emission) increases with redshift up to
z ~ 6 (e.g. Caruana et al., 2018; Cassata et al., 2015; De Barros et al., 2017;
Kusakabe et al., 2020; Pentericci et al., 2011; Stark et al., 2010). This might
be explained by an average lower dust content in higher redshift galaxies (e.g.
Bouwens et al., 2006; Stanway et al., 2005), increasing the Ly« escape fraction
(fese,Lya, ratio between observed and intrinsic Lya photons in a galaxy; e.g. Hayes

et al., 2011) and/or increasing the ionising efficiency (&, number of produced
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ionising photons per unit UV luminosity; e.g. Matthee et al., 2017a). Xrya is
typically computed with large spectroscopic samples, with x1y being the ratio
between the number of galaxies with Lya emission detected above some Lya EW
threshold and the total number of probed galaxies (see e.g. Stark et al., 2010).
XLya is found to be higher for galaxies fainter in the rest-frame UV (Myy, e.g.
Pentericci et al., 2011), implying such galaxies have higher escape fraction of Ly«
photons and/or have a higher &, (e.g Maseda et al., 2020). This can also be
linked with faint Myy galaxies having higher Ly EW (see e.g. Kusakabe et al.,
2018; Shimizu et al., 2011) and thus being more susceptible to being picked as
LAESs, although such trend could also be a consequence of selection effects or
survey limits (see e.g. Ando et al., 2006; Hashimoto et al., 2017; Nilsson et al.,
2009; Zheng et al., 2014). Some studies report no strong correlation between
XLya and Myy (Kusakabe et al., 2020) and attribute the typical high xpye of
faint Myy galaxies to selection biases in Lyman break galaxy (LBG) samples,
which are biased towards selecting sources with high Lya EW, as strong Ly«
emission will boost the photometry and enhance the Lyman break, making such
sources easier to detect.

Alternatively, xiyo could in principle be inferred from the ratio between lumi-
nosity functions (LF, number density per luminosity bin vs luminosity) of Lya-
selected and UV continuum-selected samples. The UV LF of continuum-selected
galaxies has been extensively constrained in multiple studies up to z ~ 10 (e.g.
Alavi et al., 2016; Arnouts et al., 2005; Bouwens et al., 2015; Finkelstein et al.,
2015; Mehta et al., 2017; Ono et al., 2018; Sawicki & Thompson, 2006; Steidel
et al., 1999). The characteristic number density (®*) is found to decrease with
an increasing redshift, from log,,(®*/Mpc™2) ~ —2.5 at 2z ~ 2 (Reddy & Steidel,
2009) to ~ —3.5 at z ~ 6 (Bouwens et al., 2015; Ono et al., 2018), with no
characteristic luminosity evolution (L*), although other studies have discussed a
possible L* instead of the ®* evolution. The UV LF of LAEs has also been probed
by multiple studies (see e.g. Hu et al., 2004; Ouchi et al., 2008; Shimasaku et al.,
2006), targeting volumes of up to ~ 106 Mpc?. Ouchi et al. (2008) found no evo-
lution of the UV LF of LAEs at z ~ 3 — 4, but an increase of UV bright LAEs at
z = 5.7. It is important to establish whether such evolutionary trends hold for

much larger volumes (~ 108 Mpc?) and larger samples of LAEs.
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Furthermore, it is important to establish how LAEs contribute to the to-
tal mass budget of galaxies. LAEs are typically low stellar mass galaxies, but
can span a wide range of stellar masses, with some LAEs being very massive
(> 10" Mg, e.g. Finkelstein et al., 2009). The stellar mass function (SMF)
of continuum-selected galaxies has been well studied up to z ~ 4 (see e.g. Il-
bert et al., 2013; Mortlock et al., 2011; Muzzin et al., 2013; Pozzetti et al.,
2010; Santini et al., 2012). The SMF of continuum-selected galaxies is found
to shift to lower number densities (®* decrease) with increasing redshift, from
logo(®*/Mpc™3) ~ =33 at 2 =2 —25to ~ —5.0 at 2 = 3 — 4 (Muzzin et al.,
2013). For LAEs, our understanding of the SMF is very limited as most studies
are only able to determine stellar masses of stacks of the population (e.g. Kusak-
abe et al., 2018). Estimating stellar masses of high-redshift LAEs is challenging
due to near-infrared (NIR) coverage typically not being deep enough. Recent pro-
grams such as UltraVISTA (McCracken et al., 2012) DR4 provide ultra-deep NIR
imaging which can be used to better constrain the spectral energy distribution of
high-redshift galaxies. Measurements of the stellar mass of individual galaxies in
large samples spanning wide redshift ranges can significantly improve our view on
the evolution of LAEs and how they compare with more typical galaxy samples.

In this work, we use a uniformly selected sample of ~ 4000 LAEs (SC4K, see
Chapter 2) to compute UV LFs and SMF's in the wide redshift range z ~ 2 — 6.
We use the publicly available catalogues from Calhau et al. (2020) which identify
AGN candidates in the SC4K sample using X-ray and radio measurements and
the publicly available catalogues from Chapters 2 and 6 which have measure-
ments of the UV luminosity and stellar mass of LAEs in the SC4K sample. By
comparing the luminosity and stellar mass density of LAEs with measurements
of continuum-selected galaxies, we can infer how representative LAEs are of the
overall population of galaxies at different redshifts.

This Chapter is structured as follows: in Section 7.2, we give a brief summary
of the SC4K sample of LAEs, together with some galaxy properties derived in
previous Chapters. We present our methodology to derive UV LFs and SMFs
in Section 7.3. We present and discuss our results in Section 7.4, probing the

evolution of the UV LF and SMF parameters across time, as well as estimating
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the evolution of ®pap/Pree (proxy of Xrye) and the luminosity and stellar mass

densities. We present our conclusions in Section 7.5.

7.2 Sample and properties

7.2.1 SC4K sample of LAEs

The public SC4K sample of LAEs (Slicing COSMOS with 4k LAEs, Chapter
2) consists of 3908 LAEs selected with 1244 medium-+narrow band (MB+NB)
filters (see Table 7.1 for an overview) over the 2 deg? of the COSMOS field (Capak
et al., 2007; Scoville et al., 2007; Taniguchi et al., 2015a). For full details on the
selection criteria applied, we refer the reader to Section 2.3. Briefly, LAEs are
selected based on 1) Lya EW, > 50 A (25 A for NBs and 5A for NB392); 2)
significant excess emission (¥ > 3; see Bunker et al., 1995); 3) colour break
blueward of the Lya emission; 4) exclusion of sources with strong red colours
(prevents lower redshift interlopers with strong Balmer breaks); 5) full visual

inspection to remove spurious detections.

Multiple studies have used the SC4K sample to derive properties of LAEs.
Paulino-Afonso et al. (2018) and Shibuya et al. (2019) find small UV sizes with
little evolution from z ~ 2 to z ~ 6. Clustering analysis reveals dark matter halo
masses strongly depend on the Lya luminosity (Lpy,, Khostovan et al., 2019).
Calhau et al. (2020) analysed X-ray and radio data on the COSMOS field and
measured a low (< 10%) overall AGN fraction, dependent on Ly, significantly
increasing with increasing luminosity and approaching 100% at Ly, > 10* erg
s71. SED fitting from Chapter 5 shows that SC4K LAEs are typically very
blue (3 = —2.1), low mass (M, = 103 M), and above the star-forming Main
Sequence at z < 4 and M, < 10°°My. SC4K sources are also the prime focus
of follow-up spectroscopic observations focusing on studying primeval galaxies

(Amorin et al., 2017).

154



7.2 Sample and properties

Table 7.1: Overview of the SC4K sample of LAEs used in this study (summary
table of Tables 2.3 and 5.1). Given values are the median of all measurements for
each galaxy property, with the errors being the 16th and 84th percentile of the
distribution. (1) LAE selection filter (see Table 2.3); (2) Redshift range the filter is
sensitive to Lya emission, based on the filler FWHM; (3) Number of LAEs; (4) Co-
moving volume probed by each filter; (5) Median-likelihood stellar mass parameter
from SED fitting, see Section 7.2.2.2; (6) UV magnitude computed by integrating
the SED at \g = 1500 A, see Section 7.2.2.1.

(1) (2) (3) (4) (5) (6)
Filter Lyaz |# LAEs|Volume| M, | Myy |
(X 106 (logm (AB)
Mpc?) (M./Mg))

NB392 [2.20 —224 159 0.6 95707 —19.6707
1A427 [2.42—259 741 4.0 92702 —19.7%98
1A464 [2.72-2.90 311 4.2 9.119%  —20.2752
1A484 [2.89 —3.08 711 43 9.000%  —20.000%
NB501 [3.08—3.16 45 0.9 96751 —2047%
IA505 [3.07—3.26 483 43 94707 —20.2708
IA527 |3.23—3.43 641 45 94708 —20.2%00
IA574 [3.63—3.85 98 49 93757 —20.870%
1A624 |4.00 —4.25 142 52 92702 —20.570%
IAGT9 |4.44 —4.72 79 55 95705 —21.270¢

IA709 |4.69 —4.95 81 5.1 9.4%0%  —21.1753
NB711 |4.83—-4.89 78 1.2 9.7+0¢  _20.9703
TA738 14.92—-519 79 5.1 9.6107 —21.3704
IA767 |5.17—547 33 5.5 9.7t0%  —21.6704
NB816 |5.65—5.75 192 1.8 9.970:1 27,4708
IA827 |5.64—5.92 35 4.9 9.9%0¢ 22 0t08

Full SC4K| 2.20-5.92 3908  62.0  9.370% —20.2707
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Figure 7.1: Left:

Myy dependence on Ly, within our sample of LAEs. Individual measurements
are plotted as scatter in the background. We calculate the median Myy per Ly,
bin (blue circles), with the error bars being the 16th and 84th percentile of the
Myy distribution divided by v/N, with N being the number of sources inside the
bin. Bins are defined with 0.2 bin width, starting at log;(Liya/ergs™") = 42.5,
which corresponds to the 30 Ly, limit for the MB at z = 2.5. The blue shaded
contour is the 16th and 84th percentiles of 1000 iterations of fits, obtained by
perturbing the median bins within their asymmetric error bars. We find Myy and
Liya to be well correlated (best-fit Myy = —1.6703 log;o(Lrya/ergs™) + 47717)
in our sample of LAEs, with bright Myy typically corresponding to bright Ly,
but with an important scatter. There is a clear and gradual median brightening
at logo(Liya/ergs™) = 42.5 — 43.5, from -19.8 to -21.4. The higher number
of sources above logy(Lyya/ergs™') & 42.7 (also observed in the right panel) is
a consequence of flux limit differences between narrow and medium bands. For
reference, we show the 30 Ly, limits for the IA427 (MB, z = 2.5), IA574 (MB,
z = 3.7), IA827 (MB, z = 5.7) and NB816 (NB, z = 5.7) samples. Right: Same
but for stellar mass (M, ). We also find a correlation between M, and Ly, (best-
fit log;o(M,/Mg) = 0.9707 log;o(Liya/ergs™) — 28739), which is shallower than
the correlation found for Myy, revealing how a stellar mass selection and a Ly«
selection can differ. The median evolution is less evident than in the left panel,
with the median log,,(M,/Mg) only increasing by 0.2 in the luminosity range
logo(Liya/ergs™) = 42.5 — 43.0.
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7.2 Sample and properties

7.2.1.1 X-ray and radio AGN in SC4K

The SC4K sample includes 254 LAEs detected in X-ray and 120 detected in radio
(56 in both), resulting in 318 AGN candidates (Calhau et al., 2020) out of 3705
SC4K LAEs with X-ray or radio coverage. Following the same methodology as in
Section 5.2.1, we classify these sources as AGNs since pure star-forming processes
would require extremely high SFRs (2 1000 Mg yr~') to be detectable at such
wavelengths and redshifts. Throughout this work, SC4K AGNs are removed from
any fitting/binning and median values in tables, except in Figures 7.3 and 7.5
(left panel), where we show the number densities of AGN LAEs.

7.2.1.2 Redshift binning

In addition to analysing the properties of LAEs from specific selection filters, we
group filters with similar central wavelengths to analyse specific redshift bins in
a more statistically robust way. We use a grouping scheme similar to Sections
3.1.5 and 5.2.2:

o z=25+0.1 (IA427);

e z=3.140.4 (IA464, IA484, NB501, IA505, IA527);
o z=23.9+0.3 (IA574, IA624);

o z=4.740.2 (IA679, IAT09, NB711);

e »=154+05 (IA738, IA767, NB816, IA827).

Here, we include NBs in the redshift bins (even though they typically reach
fainter Ly« luminosities) as we perform Lya luminosity cuts to ensure the samples

are directly comparable (see Section 7.4.3 and Section 7.4.6).

7.2.2 Spectral energy distribution and properties of SC4K
LAEs

Spectral energy distribution (SED) fitting of the full SC4K sample is presented in
Section 5.6. Briefly, SED-fitting is done using the publicly available SED-fitting
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Figure 7.2: Left: The rest-frame UV LF of the z = 2.5 (IA427) sample of LAEs.
We show the luminosity values before (dark blue diamonds) and after (blue circles)
applying the completeness correction. The completeness correction is based on
Lya flux (selection criteria). Since Myy and Ly, typically correlate (see Figure
7.1, left panel), the completeness corrections are larger for the faintest Myy bins.
Right: Same but for the SMF. As the correlation between Ly, and M, is shallower
(see Figure 7.1, right panel), completeness corrections are not a strong function of
stellar mass for a specific Ly« cut.

code MAGPHYS! (da Cunha et al., 2008, 2012) with the high-redshift extension
(see da Cunha et al., 2015), which models stellar and dust emission from galax-
ies. We obtain photometric measurements from publicly available imaging, taken
with 34 rest-frame UV-FIR filters in the COSMOS field (Capak et al., 2007; Lutz
et al., 2011; McCracken et al., 2012; Oliver et al., 2012; Sanders et al., 2007;
Steinhardt et al., 2014). As the SED-fitting code does not include nebular emis-
sion, we exclude the NB or MB with observed Lya emission from the SED-fitting.
Derived parameters are the median-likelihood parameters obtained by comparing
modelled SEDs with libraries of galaxies at similar redshift. MAGPHYS uses dust
attenuation models from Charlot & Fall (2000) and the stellar population syn-
thesis model from Bruzual & Charlot (2003) with a Chabrier (2003) IMF (range
0.1-100 M,). The prescription of Madau (1995) is used to model the intergalactic
medium (IGM).

In this work, we will focus on two SED-derived properties: rest-frame UV lu-

minosity (Myy) and stellar mass (M, ). We use the public catalogues provided by

Yhttp://www.iap.fr/magphys/
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Santos et al. (2020) (see Appendix A.4), which contain coordinates, photometry
and derived galaxy properties for the full SC4K sample of LAEs.

7.2.2.1 Rest-frame UV luminosity (Myy)

The UV luminosity of a galaxy (Myy) can be used as a tracer of recent star-
formation on ~ 100 Myr timescales (e.g. Boselli et al., 2001; Salim et al., 2009).
Myy is computed in Section 6.1.3 by integrating the best-fit SEDs at rest-frame
Ao = 1400 — 1600 A. The median of the SC4K sample is Myy = —20.2737 (Table
7.1), which corresponds to 0.09xL%_, (Steidel et al., 1999).

Similarly but for shorter timescales, Lya emission also traces recent star-
formation, due to being a tracer of Lyman-Continuum (e.g. Sobral & Matthee,
2019) like Ha (Kennicutt, 1998). As the massive young stars responsible for pro-
ducing the UV continuum also produce the ionising photons that lead to Ly«
emission, we can expect these two properties to be related. For our sample of
LAEs, we observe that these two properties are typically correlated (see Figure
7.1, left panel), with the median Myy significantly brightening from -19.8 to -21.4
in the luminosity range log,o(Lyya/ergs™') = 42.5 — 43.5. We compute a best-
fit of Myy = —1.6703 log,o(Lrya/ergs™!) + 47717 from the median distribution.
However, Lya luminosity (Lyy,) does not necessarily translate to Myy and vice-
versa (see the scatter around Myy = —20 and see discussion in Matthee et al.
2017c and Sobral et al. 2018b). This is also made evident from LBG samples,
where there are bright Myy sources with no significant Lya detection, as shown
by the Ly« fraction (e.g. Arrabal Haro et al., 2018; Kusakabe et al., 2020; Pen-
tericci et al., 2011; Stark et al., 2010). Furthermore, earlier works (e.g. Shapley
et al., 2003) show that LBGs only have Ly« emission ~ 50% of the time, with a
significant number of LBGs even showing Lya absorption (e.g. DLAs).

7.2.2.2 Stellar Mass (M,)

The shape and normalisation of an SED is a reflection of the content of stars
in a galaxy, thus its total mass of stars (stellar mass, M,) can be derived by
fitting and modelling the SED. LAEs typically have low M, but there is an
important diversity within the population. The median of the SC4K sample
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of LAEs is computed in Section 6.1.5 using MAGPHYS: logo (M, /Mg) = 9.3709
(Table 7.1), which corresponds to 0.006x M _; , (Muzzin et al., 2013). We
find the median M, and Ly, to be correlated (see Figure 7.1, right panel), with
best-fit log;o(M,/Mg) = 0.970 logo(Lrya/ergs™1) —2873%, but with a significant
scatter of individual detections. This relation is shallower than the one measured
between Myy and Lyy,, with a more modest increase: the median log;,(M,/Mg)
only increases by 0.2 in the luminosity range log;,(Liye/ergs™) = 42.5 — 43.0.
We note that the SED-fitting used to derive M, does not include nebular emission,
so the two properties are independently derived. Additionally, there is an anti-
correlation between M, and Lya EWj, and thus Ly« escape fraction of LAEs
(Section 6.2.3.2).

7.3 Luminosity and stellar mass functions

In this section, we present our methodology and computations to derive UV
LFs and SMFs for our sample of ~ 4000 LAEs at well-defined redshift intervals

between z ~ 2 and z ~ 6.

7.3.1 Determining the luminosity /mass functions

We measure the number densities of well-defined Myy and M, bins which we use
to construct the UV LF and SMF. We choose bin widths depending on Myy and
M., as the most (and least) luminous and massive bins have fewer sources. We
define bins with width 0.5 dex in the range —22 < Myy < —20 (Myy > —22.5
for the deeper NB816) and 7 < log,,(M,/Mg) < 10.5 and 1 dex outside these
ranges, where the number densities are the lowest. We use Poissonian errors for
any individual LF realisation.

We define the number density of a luminosity bin as:

1 N,
10?510(%‘) = logy, (mﬁ) ) (7.1)
1
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where ¢; is the number density of a bin j, INV; is the number of sources within
dlog,,L of j, and V is the volume probed by the NBs or MBs for that specific
bin (see Table 7.1), which is computed from the redshift range that each filter is

sensitive to Lya emission.

7.3.2 Completeness correction

Faint sources and those with low Lyae EW may be missed by our selection criteria,
leading to an underestimation of number densities. We estimate completeness
corrections based on Ly« line flux (same corrections used for the Lya LFs in
Section 3.1.2.1) and apply them to the UV LFs and the SMF's of our sample of
LAEs. Briefly, for each NB or MB, we obtain a sample of high-redshift non-line-
emitters by applying the same colour break we used to target the Lyman break
in our LAEs and by selecting sources with photometric redshifts (obtained from
Laigle et al., 2016) £0.2 the redshift range given in Table 7.1. For each non-
line-emitter sample, flux is incrementally added to the NB or MB and BB (see
Table 2.3). By reapplying our selection criteria after each step, we determine the
fraction of galaxies which are picked as emitters per Lya luminosity value. We
only consider sources with > 30% completeness.

We apply completeness corrections to each LAE individually, based on their
observed Ly« flux, and not their Myy or M,. In Figure 7.2, we show Myy and
M, number densities for z = 2.5 (IA427) LAEs, before and after completeness
corrections. We note that the completeness correction is based on Lya flux and
thus larger for fainter LAEs but not necessarily correlated with other properties.
Since Myy and Ly, typically correlate (see Figure 7.1, left panel), the corrections
will typically be smaller for LAEs which are brighter in Myy (see Figure 7.2, left
panel). Since the correlation between M, and Ly, is weak (see Figure 7.1, right
panel), the corrections will be similar for the entire mass range (see Figure 7.2,
right panel).

Including the completeness correction, applied to each source, Equation 7.1

becomes:
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N;
C;

1
1 =1 - — 2
Og10(¢]> Og dloglo L Zl: V ) (7 )

where ¢; is the completeness correction for a source .

For the luminosity or stellar mass bins with zero counts, we compute the
upper limit as one source at the volume probed by the NB or MB, with the
completeness correction equal to the total completeness correction applied to the

previous luminosity or stellar mass bin.

7.3.3 Fitting the UV luminosity function

In order to compare our results with previous studies, we adopt the common pa-
rameterisation of Schechter (1976) function, which consists of a power-law with a
slope « for faint luminosities and a declining exponential for brighter luminosities.
The transition between the two regimes is given by a characteristic luminosity
(L*) and a characteristic number density (®*). The Schechter equation has the

following form:

(L) = % (%)aexp (—LE) | (7.3)

Equation 7.3.3 can be rewritten for absolute magnitudes by using the substi-

tution @(L)dL = (I)(MU\/)dMth

In 10
(Mpy) = 2_5 &+ 1004 D)AMUY oy (_1070.4AMUV) : (7.4)
where AMUV = MUV - M%V
The observed UV luminosity distribution of LAEs shows the same behaviour

at all redshifts: there is a peak number density at an intermediate UV luminosity,
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Figure 7.3: The rest-frame UV LF (blue circles) for each of the 16 individual
selection filters in this study, without any Ly« flux cut and excluding AGNs (see
Section 7.2.1.1). Luminosity bins brighter than the peak of number densities are
marked with a purple edge colour. The blue contours are the 16th and 84th per-
centile of multiple iterations of fits to the luminosity bins, obtained by perturbing
the luminosity bins within their error bars (see Section 7.3.5) for the full UV lumi-
nosity range. The purple contours represent the same but only fitting the points
above the number density peak. We compare our results with those of Ouchi et al.
(2008) at z ~ 3,4,5.7, finding a good agreement, with the offset at z = 5.8 being
easily explained by differences in Ly« flux limits (see Section 7.4.3). We show the
number densities of AGNs (pink stars), which predominantly dominate the bright
Muyy regime (< —22) at z < 4, often having higher number densities than non-
AGN LAEs. At z > 4 there are significantly less AGN LAEs, composing only a
small fraction of LAEs at all Myy ranges.
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with a subsequent decline in number density for both brighter and fainter UV
luminosities (see Figure 7.3). While such a distribution does not resemble the
Schechter function with a steep faint end which is typically measured in LBG
samples (e.g. Bouwens et al., 2015; Finkelstein et al., 2015), we argue that such
observed distribution of UV luminosities can be expected for a sample which is
selected by Ly« line flux above some threshold (corresponding to a vertical cut in
Figure 7.1), causing an incomplete sampling of Myy. This incomplete sampling is
most significant at the faint UV luminosities, which is shown in Figure 7.5 (right
panel) where an increasing Ly, limit will cause a preferential decline of number
densities at faint UV luminosities and hence the observed turn-over. Thus, in
order to conduct a detailed analysis of the UV luminosity distribution of LAEs,

we explore two separate scenarios:

e fit to the full UV luminosity range (blue in Figure 7.3): the entire observable
UV luminosity range is considered, including the turn-over at faint UV
luminosities. While the low number densities at faint UV luminosities may
be driven by our Liy, limits, this approach provides the best-fit to the

directly observed number densities.

e fit to the UV luminosity range brighter than the number density peak (pur-
ple in Figure 7.3): the bins fainter than the number density peak (dominated
by an incomplete sampling) are thus not included in the fitting, and the
faint UV luminosity regime becomes unconstrained. The peak in number
density is different for different filters (see Figure 7.3) and different Ly,
limits (see Figure 7.5, right panel). With the simple assumptions of a steep
faint end slope (as measured in UV luminosity-selected samples) and by not
including the bins below of the turn-over (which are heavily dominated by

our Ly, limits), we obtain a proxy of the full distribution of LAEs.

We provide the Schechter parameters of the best-fits to both cases in Table
7.2. For the fit to the full UV luminosity range, we find the set of parameters («,
Mj,, ®*) which minimises the reduced x? (x%,) in log-space. Alternatively, fit-
ting can also be performed in linear-space, where x? is less sensitive to bins with

low number densities. A fit in log-space thus tends to favour slightly brighter
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Table 7.2: Best-fit Schechter parameters for the UV LF of LAEs from z = 2 to
z = 6, for each of the individual selection filters and for different redshift bins (see
Section 7.2.1.2). The number of sources provided here is the number of sources
included in the luminosity functions, i.e. non-AGN LAEs with available SEDs and
with completeness > 30%. We provide best fits for the two cases considered in
this study: fit to the full UV luminosity range (blue in Figure 7.3) and fit to the
bins brighter than the number density peak (purple in Figure 7.3). We provide the
best set of parameters (o, Mj;, and ®*) which minimise x2 4, with o being fixed
for the latter case as it cannot be directly constrained. When X?ed is very large,
the errors should be interpreted with caution as the best parameters found still do
not provide a good model. Additionally, My is also fixed for the individual filters
with less than three luminosity bins (although we perturb these parameters when
exploring the uncertainties of the bins/fits, see Section 7.3.5). For the redshift bins
we also show the Schechter parameters when applying a log;o(Lyya/ergs™1) > 43.0
cut.

Full UV range UV brighter than the peak
(aﬁX:—1.5)
Redshift  # Filters # Sources | log;, ®* Mgy a Xred | 1081 ®* Mgy Xred
(Mpc) (AB) (Mpc?) (AB)
2.2+0.1 1 129 | =3.570007 —19.78701%5 —0.7700 2.5 [ —4.16701 —21.15707 0.9
2.5+0.1 1 519 —3.48%001  —19.46750; —0.9700 33.9 | —3.86100¢ —20.65701% 14.0
2.840.1 1 139 —4.04700% —20.02130¢ —1.5%00 9.4 | —4.19%30 —20.95701% 1.0
3.0£0.1 1 565 —3.43700, —19.611008 —1.4%00 36.8 | —3.43700% —20.37007 3.6
32401 1 31 —4.117580 —21.097%30 —0.3%01 1.2 | =3.65700; —20.37(fix) 1.7
3.240.1 1 413 —3.59%001 —19.82700%  —0.7400 29.2 | —3.5870%°  —20.58700% 13.6
3.340.1 1 565 —3.47H00L —19.77F008 —0.9100  36.4 | —3.49750°  —20.541(05 12.3
37401 1 53 —4.45750% —20.5140% 13401 85 | —4.45%01 —21.17518 3.2
41401 1 116 —4.33%005  —20.107507 —0.8%0Y 134 | —4.50701% —21.071035 2.9
4.6+0.1 1 69 —4.64100% 208470 —1.3750 2.6 | —4.8510% —21.901%31 04
48401 1 50 —4.42700%  —20.631008 —0.9%01 6.3 | —4.26700% —21.227095 0.5
48401 1 41 —4.043050 —21.30703 —0.7707 8.4 | —4.44T515 —22.107035 2.2
5.040.1 1 29 —4.743001 —21.331008  —0.4101 3.0 | —4.027007 —21.22(fix) 7.0
5.2+0.1 1 17 —4.914008 —21.197033  0.0751 2.9 | —4.257000 —21.22(fix) 3.0
5.7+0.1 1 107 —3.98759%  _921.09%0% —1.0%0) 3.9 | —3.84%0% 2167701 0.1
5.840.1 1 14 —5.27T0 4 —22.43%0% —0.5%01 0.7 | —5.8570. —23.56707 0.0
25+0.1 1 519 —3.487T000 —19.467007 —0.9707 33.9 | —3.86700 —20.65701% 14.0
31404 5 1713 | =3.60700 —19.771005 —1.1%00 86.8 | —3.597007 —20.50%00s 17.6
3.940.3 2 169 —4.324005 2010759 —0.8705 3.3 | —4.30700 —20.87F01; 24
4.74+0.2 3 160 —4.447002  —20.73%00% —0.9%05 11.6 | —4.62700 —21.737005 2.5
54405 4 167 —4.69100%  —21.267007 —0.9%00 85 | —4.627008 —21.927007 0.0
Full SC4K 16 2857 | —3.9870:00 —20.45700) —1.1709 191.3 | —4.397007 —21.367007 14.6
logo(Liya) > 43.0ergs™"

2.5+0.1 1 47 —4.7975% —21.03793% —0.1737 1.2 [-5.607030 —22.94708F 0.8
31404 5 411 —4.43700% —20.321000 04100 13.5 | —4.847008 —21.70701° 5.5
3.940.3 2 107 —4.701008  —20.40%000 04700 5.1 | —4.7150) —21.12%02 0.5
47402 3 132 —4.543002 —20.757008 04709 8.8 | —4.6175% —21.60100%5 1.4
54405 4 91 —4.887001 21334000 040 53 | —4.85%00¢ 2203709 0.1
Full SC4K 16 789 —4.657502 —20.79%00% 04100 27.8 | —5.03%05 —21.95790T 7.7
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characteristic luminosities which provide a better fit to the very bright luminosi-
ties. We find that the observed distribution is best fit by shallow faint end slopes
(v > —1), which are able to represent the turn-over at the faintest luminosities,
with a even being positive at some redshift ranges.

When constraining only the UV luminosities brighter than the number density
peak, we are not able to directly constrain the « slope of the power-law, and thus
fix o to -1.5 (similar to the UV LF of LAEs from e.g. Ouchi et al., 2008), but we
still perturb this parameter to quantify uncertainties (see Section 7.3.5). Here, we
make the assumption that a does not evolve with redshift, which is a necessary
caveat due to not being able to directly constrain it. We measure the UV LF
of LAEs selected in each MB or NB by determining the pair (M{j,,, ®*) which
minimises y2, in log-space of the Myy luminosity bins with associated Poissonian
error bars. In Figure 7.3, we show the luminosity bins and luminosity functions
of LAEs from the 16 selection filters. For the filters with only two luminosity
bins brighter than the number density peak, we can only fit one free parameter,
so we fix M{y to a similar nearby filter (NB501 uses My ja505 = —20.37 and
TAT38+TAT67 use My ja709 = —21.22). We provide the Schechter parameters of
the best fits in Table 7.2.

7.3.4 Fitting the stellar mass function

Following a similar logic to what was done in Section 7.3.3, Equation 7.3.3 can

be rewritten in log M space:

®(M,) = In10 @* 10TV exp (—102M) | (7.5)

where AM = log,, M, —log;, M;. At z < 1, a double Schechter function has been
commonly used (see e.g. Ilbert et al., 2013; Pozzetti et al., 2010), with two « and
two ®*, which are capable of reproducing a bimodal population, which includes
quiescent galaxies. In this work, we restrain ourselves to a single Schechter as the
quiescent population should not contribute to our Lya-selected sample, particu-

larly at the redshift range that we probe.
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Similarly to the observed UV LF, the observed number density distribution
of the stellar mass peaks at an intermediate stellar mass, and declines for both
lower and higher stellar masses (see Figure 7.4). While a Schechter distribution
with a steep slope could be expected for a mass-selected sample, as our LAEs
are selected by being above some Ly« line flux (corresponding to a vertical cut
in Figure 7.1) determined by observational constrains, there is a turn-over at
low stellar masses. The preferential decline of low stellar masses with increasing
Lya line flux is shown in Figure 7.8 (right panel), and we further discuss how to
interpret the shape of the SMF in Section 7.4.1.

Following the same reasons listed for the UV LF, we conduct our fitting pro-
cedure in two stellar mass ranges: full stellar mass range (blue in Figure 7.4)
and stellar mass range above the turn-over, with an assumption of the « slope
(blue in Figure 7.4). The former provides a fit to the directly observed number
densities and the later provides a proxy SMF of the full distribution of LAEs. We
provide the best Schechter fits to both cases in Table 7.3. For the fit of the full
stellar mass range, we find the set of parameters (o, M*, ®*) which minimises x2,
in log-space. The observed distribution with a turn-over for the smallest stellar
masses, results in shallow faint end slopes (o > —1).

When constraining only the stellar masses bigger than the number density
peak, we are not able to directly constrain the « slope of the power-law. We fix «
to -1.3, but we vary all parameters, including « in Section 7.3.5. Similarly to the
UV LF, we introduce the caveat that o does not evolve with redshift, which is a
necessary assumption due to us not being able to directly constrain it. In Figure
7.4, we show the stellar mass bins and SMFs of LAEs from the 16 selection filters.
For the filters with only two stellar mass bins, we can only fit one free parameter,
so we fix M} to a similar nearby filter (NB7114+TA767 use M 15755 = 10"%% M),
We provide the Schechter parameters of in best fits in Table 7.3.

7.3.5 Perturbing the luminosity and mass functions

We explore the uncertainties in our UV LFs and SMFs by perturbing the lumi-

nosity or mass bins within their Poissonian error bars. For each iteration, we
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Figure 7.4: The SMF for each of the 16 individual selection filters. Stellar mass
bins are shown as blue circles. Stellar mass bins more massive than the peak of
number densities are marked with a purple edge colour. The blue contours are
the 16th and 84th percentile of multiple iterations of fits to the stellar mass bins,
obtained by perturbing the stellar mass bins within their error bars (see Section
7.3.5) for the full stellar mass range. The purple contours represent the same
but only fitting the points above the number density peak. Candidate AGN are
removed from the analysis here (see Section 7.2.1.1)
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Table 7.3: Best-fit Schechter parameters for the SMF of LAEs from z = 2 to z = 6,
for each of the individual selection filters and for different redshift bins (see Section
7.2.1.2). The number of sources provided here is the number of sources included
in the stellar mass functions, i.e. non-AGN LAEs with available SEDs and with
completeness corrections > 30%. We provide best fits for the two cases considered
in this study: fit to the full stellar mass range (blue in Figure 7.4) and fit to the bins
more massive than the number density peak (purple in Figure 7.4). We provide
the best set of parameters (o, M} and ®*) which minimise Xfed, with a being fixed
for the latter case as it cannot be directly constrained. When Xfed is very large,
the errors should be interpreted with caution as the best parameters found still do
not provide a good model. Additionally, M} is also fixed for the individual filters
with less than three luminosity bins (although we perturb these parameters when
exploring the uncertainties of the bins/fits, see Section 7.3.5). For the redshift bins
we also show the Schechter parameters when applying a log;o(Lyya/ergs™) > 43.0

cut.
Full M, range M, above the peak
(Oéﬁx = —13)
Redshift  # Filters # Sources | log;, ®* M: ot X2g | logy @ M: Xt
(Mpc™) (AB) (Mpc~?) (AB)
2240.1 1 129 —3.9470% 10417008  —0.700¢ 7.8 | —4.44700 10.69T002 7.7
2.5+0.1 1 519 —4.147001 10401700 —0.9700 76.2 | —4.667005 10.67T00; 13.4
2.8+0.1 1 139 —5.9070%0 1141707 —1.5700 17.6 | —5.33700: 11.107055  14.1
3.040.1 1 565 74.79t8;8§ 10.73%005 14700 67.9 | —4.57700]  10.61%503 154
3.240.1 1 31 —4.25509)  10.05%00  —0.3%01 3.6 | —4.687000 10.31%007 3.1
3.240.1 1 413 —4.035000  10.337005  —0.7100  39.4 | —4.627007  10.66700; 12.8
3.3%0.1 1 565 4197001 10767005 —0.9700  58.0 | —4.60T005  10.93%00;  29.7
3.7+0.1 1 53 —5.502056 10.72i8;}§ —1.3701 286 | —5.407507  10.66700: 9.9
41+0.1 1 116 —4.86100%% 1037755  —0.8%39 19.0 | —5.38700; 10.631007 8.4
4.6+0.1 1 69 —5.65004  10.747010  —1.3%00 3.7 | —5.647000 10.74%008 0.4
48+0.1 1 50 —5.04700% 10497000 —0.9701 158 | —5.477008  10.737000 1.9
4.8+0.1 1 41 —4.53%00% 10517000 —0.7708 0.3 | —4.79700;  10.68 (fix) 0.1
5.0=+0.1 1 29 —4.96700%  10.327000  —0.4701 4.6 | —5.52700:  10.68T00s 0.2
524 0.1 1 17 5102005 983006 0.0%07 34 | 575500, 10.68(fix) 0.2
5.740.1 1 107 —4.807010  11.38%0¢s  —1.0005 11.8 | —5.18%008 11.54%002 7.3
58+0.1 1 14 —5.35%000 1034708 —0.5101 14 | —5.8670%  10.6610L7 0.1
25+0.1 1 519 —4.14700r 10405005 09700 76.2 | 4667003 10.677 o0,  13.4
31404 5 1713 | —4.57750;  10.86100s —1.1759 193.2| —4.90100; 11.02%305  55.2
39403 2 169 —4.8070:07  10.40%002  —0.8700 47.8 | —5.397003  10.641005 18.9
47402 3 160 —5.07199% 10537553 —0.9%0% 25.7 | —5.527557  10.81F007 0.0
54405 4 167 —5.310000  11.19%007  —0.9705 26.9 | —5.78T007  11.371007  14.2
Full SC4K 16 2857 | —4.93708Y  10.94%00r 11700 3724 | —5.197000  11.057001  95.2
logyy(Liya) > 43.0ergs™
25+0.1 1 47 74.79£§;§§ 721.0323;;2% 7046£§;§ 1.2 75.60%%‘2 722.94%;95 0.8
31404 5 411 —4.43%002 _90.324000 12700 135 | —4.8470%5 —21.70%018 55
39403 2 107 | =470 —20.40%007 —0.8700 51 | 4715018 21124038 0.5
47402 3 132 —4.547005  —20.75%008 —1.0000 8.8 | —4.61700s —21.60%0% 1.4
54405 4 91 —4.88%005 —21.3310%% —0.9700 5.3 | —4.85700F —22.03%0%) 0.1
Full SC4K 16 789 —4.65%007 —20.79%007 —1.1700 27.8 | —5.03%00; —21.95%00% 7.7
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perturb each bin within their error bars (assuming a normal probability distri-
bution function centred at each bin and with FWHM equal to the error) and
determine the value for the current realisation. We compute the best Schechter
fit to the bins of the current realisation and iterate the process 1000 times. We
obtain the 16th and 84th percentile of all fits, which we plot as contours in all
figures. For each iteration, we also perturb the fixed Schechter parameters (a
for all redshifts and M} or Mj, for the filters with only two bins) by picking a
random value in a £0.2 dex range centred in the fixed values (same method used
in Chapter 3).

7.3.6 Obtaining UV and stellar mass densities

We integrate UV LFs and SMF's to obtain the luminosity density (pyy) and the
stellar mass density (pm), respectively. In order to fully take into account the
uncertainties in our luminosities/stellar masses, we perturb our measurements
within their errors and fit and integrate each of the 1000 realisations (see Section
7.3.5). The computed pyy and py are the median of all integrals, with the errors
being the 16th and 84th percentile of the distribution of all realisations. To obtain
puv, we compute the integral of the UV LFs in the range —23 < Myy < —17
(similar to e.g. Bouwens et al., 2015; Finkelstein et al., 2015). To obtain py;, we
compute the integral of the SMFs in the range 103713 M, (similar to e.g. Davidzon
et al., 2017). All py measurements in this study assume a Chabrier IMF, and
values from the literature are converted to a Chabrier IMF if another IMF was

used.

7.4 Results and Discussion

7.4.1 Interpreting the observed UV LF and SMF

As detailed in the previous sections, the observed distribution of both the UV LF
and SMF of LAEs has a turn-over at the faintest UV luminosities and smallest

stellar masses, respectively (see Figure 7.3 and 7.4). While such a turn-over has
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not been observed in UV-selected or mass-selected samples, it is an expected dis-
tribution of a Lya-selected sample, where Lya correlates with both Myy and M,
but with significant scatter (see Figure 7.1), as there will be incomplete sampling
of Myy and M,, particularly at the faint UV luminosity and low stellar mass
regimes. As shown in Figure 7.5 (right panel), an increasing Ly, cut will prefer-
entially decreases the number densities of the faintest UV luminosities, creating
the turn-over which is a consequence of selection and not an intrinsic property of
the UV LF of LAEs. A similar dependence is measured for the SMF in Figure
7.8 (right panel), albeit the dependence is not as strong. We make the assump-
tion that the incomplete sampling will introduce only small contributions above
the turn-over, which is supported by our measurements (Figure 7.5, right panel):
when extending the luminosity cut from log;y(Lrya/ergs™") = 42.5 to 42.7 (and
even further into 42.9 and 43.1), the number densities always have a very signif-
icant drop below the turn-over but remain roughly constant above it. By only
fitting the regime above the turn-over and by fixing « as a steep slope, we are
able to measure a distribution which is not dominated by incomplete sampling,
and compute a proxy for the full UV LFs and SMFs.

We provide in Table 7.2 and 7.3 the best Schechter parameters of the distri-
bution of 1) the full UV luminosity (or stellar mass) ranges (see the blue contours
in Figure 7.3 and 7.4) and 2) the UV luminosity (or stellar mass) range above the
turn-over, with a fixed steep « slope (see the purple contours in Figure 7.3 and
7.4). As we aim to understand the full LAE population, in the analysis conducted
in the following sections we use the second fitting procedure, which gives a proxy
of the full distribution of LAEs. We note nonetheless that the Liy, limits can
have some influence on the number densities even above the turn-over, so when
probing redshift evolution we extend the analysis to always use the same Ly,

cut and ensure the samples are comparable (see discussion in Section 7.4.3).

7.4.2 The global UV LF of LAEs at 2 ~2—6

We start by measuring the UV LF of the full sample of SC4K LAESs, exploring a
large volume of ~ 10® Mpc? at z ~ 2—6. With our large sample of ~ 4000 LAEs,

we are capable of probing extremely bright UV luminosities, down to Myy =
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Figure 7.5: Left: UV LF of the full SC4K sample of LAEs: including AGN
(green), no AGN (blue; what we use throughout this work) and AGN only (pink).
AGN LAEs dominate the bright end (—24 < Myy < —23) of the UV LF of LAEs.
The contours are the 16th and 84th percentiles, which we obtain by perturbing
the bins within their Poissonian error bars and iterating the fitting 1000 times (see
Section 7.3.5). For reference, we show UV LFs of LBGs at z ~ 4, from Bouwens
et al. (2015) (orange diamonds) and Ono et al. (2018) (purple squares). The number
density of Myy = —20 LAEs is ~ 1.5 dex lower than LBGs, but they converge to
the same number densities at Myy < —23. Right: UV LF of the full SC4K sample
at different Ly, cuts. We show the best Schechter fits to the full UV luminosity
range as dashed lines, and to the number densities above the turn-over as filled
lines (see Section 7.3.3). The increasing Liy, cuts reduce the number densities,
predominantly for fainter Myy, which can be linked with Liy, and Myy being
typically correlated (see Figure 7.1, left panel). However, note that the UV LF of
more luminous LAEs yields a declining ®* but a brightening in Mfy;.
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—24, which even in UV-continuum searches has typically only been reached in
very wide area ground-based surveys (e.g. Bowler et al., 2017; Ono et al., 2018).
Additionally, we have a statistically robust sample up to Myy = —20, providing
a robust probe in a range of 4 magnitudes in Myy, with individual LAEs as faint
as Myy = —17.

We show in Figure 7.5 (left panel) the UV LF for three subsets of SC4K
LAEs: 1) All LAEs; 2) All LAEs after removing AGN (this is the subset we use
throughout this work; see Section 7.2.1.1); 3) AGN LAEs only. We show the best
Schechter fits to each case as 1o contours, which we obtain by perturbing the
luminosity bins within their Poissonian errors and fitting 1000 realisations of the
perturbed bins (see Section 7.3.5). We find that the UV LF of all LAEs resembles
a Schechter distribution, although there is an excess at Myy < —23, where the
UV LF starts deviating from a Schechter function. A single power-law with best-
fit log,o(®/Mpc™3) = 0.7170 095 Muy +10.26 7511 is also a very good fit (X2 juceq =
4.01). When excluding AGNs, the number density significantly drops by 0.7
dex at the bright end (—24 <Myy < —23), and the LF becomes steeper, with
the single power law, with best-fit log;o(®/Mpc=3) = 0.917555Myy + 14.491912)
becoming less preferable (X2 ,cq = 60.63). We observe that AGN LAEs clearly
dominate the bright end (—24 <Myy < —23) of the UV LF, with only minor
contributions to the faint end (—22 <Myy < —20). This trend is qualitatively
similar to the one found in Chapter 3 for the Lya LF of LAEs. Such a similar
behaviour between the UV LF and Lya LF is a consequence of Liy, and Myy
being typically correlated (see Figure 7.1, left panel), although the complicated

radiative transfer physics behind Ly emission should be noted (see Section 1.3.3).

7.4.3 UV LF with varying Ly, cuts

Due to an increasing luminosity distance with redshift, we are only capable of

05 ergs™) at z ~ 2.5, or at

reaching the faintest Lya luminosities (down to 1
higher redshifts with NBs. We aim to ensure that when comparing UV LFs at
different redshifts, results are not driven by differences in depth. As such, we
need to estimate how different Lya luminosity limits affect the UV LF of LAEs.

We show in Figure 7.5 (right panel) the UV LF of the full SC4K sample with
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varying Liy, cuts, from 10*2% to 10*35 ergs™. As expected from the dependence
of Myy and Liy,, an increasing Ly, cut predominantly decreases the number
densities of fainter Myy LAEs. For the full SC4K sample, between 10*2® and
10133 ergs™!, log;, ® decreases by 2.0 dex at Myy = —20.25 but only decreases
by 0.3 dex at Myy = —22.5. This trend is qualitatively the same at all redshifts.

It is thus clear that a varying Ly« flux limit will significantly affect the UV LF
as a whole, both in shape and characteristic parameters, with number densities
being significantly more affected for fainter Myy. To compare UV LFs at different
redshifts and interpret any evolution, it is therefore necessary to ensure we use
the same luminosity ranges, otherwise a potential evolution in the UV LF of
LAEs may not be intrinsic but instead could be a consequence of the different
Lya luminosity limits. As such, when comparing LFs, we not only compare the
full samples, but also compare a homogeneous subset, defined by a single Lya
luminosity cut of log,o(Liya/ergs™) > 43.0, which we will apply to all redshifts.
We choose this value as it excludes the lower Liy, regime which can only be
reached at lower redshift or by the deep NBs, and covers a luminosity regime
which is probed at all redshifts, ensuring we are comparing similar samples of
LAEs. While this cut will only remove a small fraction of LAEs from MBs at
z > 3.5, it will significantly reduce the number of sources at the lower redshifts,

with only 10% of non-AGN LAEs at z = 2.5 being above this Lya cut.

7.4.3.1 The log,y(LLya/ergs ') > 43.0 population of LAEs

In order to probe evolution in the same luminosity ranges, we have defined a sub-
sample of the SC4K sample of LAEs, with log;o(Liya/ergs™") > 43.0 at all red-
shifts. In comparison, the characteristic Ly, is measured to be log; (L, /erg s71)
42.937010 (Chapter 3), so these sources are extremely bright LAESs, rare dust-free
starbursts. Amorin et al. (2017) has shown that such sources (galaxies in that

study are also selected as LAEs in the SC4K sample) are analogues of high-z

primeval galaxies.
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7.4.4 Redshift evolution of the UV LF from z~2to z~6

We will now use our sample of LAEs, selected with 16 unique NBs and MBs in
16 well defined redshift slices, to probe the evolution of the UV LF of LAEs from
2z~ 2to z ~ 6. We have shown in Figure 7.3 the UV LF for LAEs selected from
each of the 16 individual NB and MB filters, together with best-fit Schechter and
lo countours. We provide all the Schechter parameter estimates in Table 7.2.
All samples are well represented by Schechter distributions. Our measurements
agree well with Ouchi et al. (2008) at z ~ 3, z ~ 4 and z ~ 5.7, but we report
lower number densities at z = 5.8, particularly for fainter Myy. This discrepancy
can be explained by differences in Lya flux limits, as the MB that we use is only
sensitive to log;(Liyae/ergs™) > 43.0. We also note that our Myy measurements
are estimated from SED fitting with 30+ bands, including the recent ultra-deep
NIR data from UltraVISTA DR4, instead of directly from adjacent photometric
bands.

For a statistically robust study of the evolution of UV LFs of LAEs with
redshift, we group LAEs from multiple filters that probe similar redshifts to
explore five different bins of redshift (z = 2.5, z = 3.1, z = 3.9, z = 4.7 and
z = 5.4; see Section 7.2.1.2), as well as the full SC4K sample. The completeness
corrections are applied to LAEs individually, based on their Lya luminosity (see
7.3.2) and the volume per redshift bin is the sum of the volume of individual
redshift slices included in the redshift bin (see Table 7.1).

We show in Figure 7.6 (left panel) the UV LF at different redshifts (z = 2.5,
z =31 2=39, 2 =47 and z = 5.4), without any Ly, cut. We also show in
Figure 7.6 (right panel) the 1o, 20 and 30 contours of ®*—Mj;,,. We observe a
brightening (Mj;,, becomes more negative) of the UV LF with increasing redshift,
from ~ —20.5 at z = 2.5 to ~ —22 at z = 5.4, and a log;o(®*/Mpc—2) decrease
from ~ —3.5 to ~ —4.5 for the same redshifts. While in UV-continuum studies
(e.g. Bouwens et al., 2015; Finkelstein et al., 2015) ®* of the UV LF is also
measured to decrease with increasing redshift, My is found to become fainter
(increase), which is the opposite of what we measure in our sample of LAEs

(before applying any luminosity cut).
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Figure 7.6: Left: Evolution of the UV LF with redshift, with no Ly, cut. The
shaded contours are the 16th and 84th percentiles of all iterations obtained by
perturbing the luminosity bins (see Section 7.3.5) Right: ®*—Mjy, 1o, 20 and 30
contours. We observe an My, increase from ~ —20.5 at z ~ 2.5 to ~ —22 at
z ~5—6, and a log;y(®*/Mpc~3) decrease from ~ —3.5 to ~ —4.5 for the same
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Figure 7.7: Left: Evolution of the UV LF with redshift, with a luminosity cut
of log;o(Lrya/ergs™) > 43.0. Right: ®*—Mj;y, 1o, 20 and 30 contours. With a
uniform cut for the entire sample, we note no clear evolutionary trend in My, while
log;o(®*/Mpc—3) remains roughly constant at -4.7 at z ~ 3—6. The constraints at
z = 2.5 are worse likely due to only ~ 10% of the original sample remaining above

the luminosity cut.
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However, as previously discussed (Section 7.4.3), different Lya luminosity
limits play a very significant role on the shape and characteristic parameters of
the UV LF. We thus conduct the same analysis for a subset of our sample of
LAEs, obtained by applying the luminosity cut of log,,(Lyya/ergs™') > 43.0.
By using a uniform cut at all redshifts (see Figure 7.7), we are able to probe
evolution in comparable Ly« luminosity regimes, and reduce the effects of the
Lya flux limit bias. We now observe an increase of ®* with increasing redshift,
from pmblog;(®*/Mpc™3) ~ —5.5 at z = 2.5 to —4.5 at z ~ 3 — 6,, which
contrasts with the decrease (becomes fainter) observed in UV-continuum selected
samples. We do not observe a clear evolution in My, which also contrasts the

increase in My observed in UV-continuum selected samples.

7.4.5 The global SMF of LAEs at 2 ~2—6

Following the same methodology that we use for the UV LF, we now analyse the
global SMF of ~ 4000 LAEs at 2z ~ 2 — 6. The study of the SMF of such a
large sample of LAEs over such a wide volume is unprecedented at these redshift
ranges. We have a robust sample of LAEs at 10%° — 10'2% M, with individual
measurements down to ~ 107° M. Studies that have estimated stellar masses
of z > 2 galaxies, typically only probe > 10 M, galaxies (e.g. Schreiber et al.,
2015) but with our population of LAEs, we are capable of reaching galaxies with
very low stellar masses, while still having detections of very massive systems
(> 10" My,).

We show in Figure 7.8 (left panel) the SMF of the full SC4K sample of z ~ 2—6
LAEs after removing AGN (which is what we use throughout this work, see
Section 7.2.1.1). Unlike the UV LF, we do not explore how AGNs influence the
SMF since we are not able to accurately estimate the stellar mass of AGNs with
our stellar+dust SED-fitting code which does not use AGN models. We show the
Schechter fit to the SMF and the 1o contour which we estimate by perturbing the
stellar mass bins within their Poissonian errors and fitting 1000 realisations of the
perturbed bins (see Section 7.3.5). The SMF resembles a Schechter distribution,

but with an excess in number densities at 102 M.
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Figure 7.8: Left: Stellar mass function of the full SC4K sample after removing
AGN (blue points, what we use throughout this study). The AGN sample is not
shown here as we cannot obtain accurate mass estimations for AGNs using the
stellar+dust SED-fitting we use in this study. The contours are the 16th and 84th
percentiles, which we obtain by perturbing the bins within their Poissonian error
bars and iterating the fitting 1000 times (see Section 7.3.5). Right: SMF of the full
SC4K sample at different Lyy, cuts. We show the best Schechter fits to the full
stellar mass range as dashed lines, and to the number densities above the turn-over
as filled lines (see §7.3.4). The increasing Lyyo cuts reduce the number densities at
all mass ranges. The decay of the number density is much more uniform across the
entire mass range compared to the UV LF (Figure 7.5, right panel), which can be
explained by Liy, and M, having a shallower correlation with significant scatter
(see Figure 7.1, right panel).
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7.4.6 SMF with varying L1y, cuts

Here, we explore how different Lya luminosity limits affect the SMF. For the UV
LF of LAEs, we have observed that an increasing Ly, cut significantly affects the
shape and characteristic parameters of the distribution, with a more significant
effect on the number density of fainter UV luminosities, which are typically linked
with lower Ly« luminosities. Such a trend is not necessarily expected for the SMF,
as the relation between M, and Ly, is very shallow, if even present (see Figure
7.1, right panel).

We show in Figure 7.8 (right panel) the SMF of the full SC4K sample with
varying Liy, cuts, from 105 to 10%*® ergs™'. As the stellar mass and Ly, have
a shallow relation, an increasing Ly, limit produces a much more uniform decay
of the number densities over the entire stellar mass range. Between 10%2® and
10133 ergs™! log;o(®*/Mpc~3) decreases by 1.6 dex at log;, (M, /Mg) = 9.25 and
by 1.0 dex at log;, (M,/Mg) = 11.0, which is much more modest than the large
difference observed for the UV LF.

As such, when comparing SMFs at different redshifts, we will not only look at
the full samples, but we will also make use of a luminosity cut log;o(Lrya/ergs™) >
43.0, for the same reasons that we do for the UV LF (Section 7.4.6). This pro-
duces a luminosity range which all filters can target and is consistent with our

approach to compare UV LFs.

7.4.7 Redshift evolution of the SMF of LAEs from 2z ~ 2
toz~6

We probe the evolution of the SMF with redshift, using ~ 4000 LAEs selected
in 16 well defined redshift slices from z ~ 2 to z ~ 6. We showed the SMF of
LAEs selected from individual filters in Figure 7.4, together with 1o Schechter
contours. All redshift slices resemble a Schechter distribution and we provide the
best-fit parameters in Table 7.3.

In order to obtain statistically robust comparisons of the evolution of the SMF

of LAEs with redshift, we follow the same grouping scheme that we use for the
UV LFs. We define five redshift intervals (z = 2.5, 2 = 3.1, 2 = 3.9, z = 4.7 and
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Figure 7.9: Left: Evolution of the SMF with redshift, with no Ly, cut. The
shaded contours are the 16th and 84th percentiles of all iterations obtained by
perturbing the luminosity bins (see Section 7.3.5) Right: ®*—MZ 1o, 20 and 30
contours. We observe a log;o(®*/Mpc—3) decrease from —4.5 at z = 2.5 to —5.5
at z =5 — 6 and log;y (Mf/Mg) stays constant at ~ 10.7, although we measure a
small increase at z = 5.4.
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Figure 7.10: Left: Evolution of the SMF with redshift, with a luminosity cut
of log;o(Lrya/ergs™) > 43.0. Right: ®*—M? 1o, 20 and 30 contours. With a
uniform cut for the entire sample, we do not observe clear evidence of evolution
with redshift of the SMF of LAEs. We find little M and ®* evolution with redshift,
remaining constant at logq (M%/Mg) ~ 11 and log;y(®*/Mpc=3) ~ 5.8.
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z = 5.4; see Section 7.2.1.2) and also use the global SMF of the full z ~ 2 —6
sample. The completeness corrections are applied to LAEs individually, based on
their Lya luminosity (see 7.3.2) and the volume per redshift bin is the sum of the
volume of individual redshift slices included in the redshift bin (see Table 7.1).
We show in Figure 7.9 (left panel) the SMF at different redshifts (z = 2.5, z = 3.1,
2 =39, 2=4.7 and z = 5.4), without any Ly, cut. We also show in Figure 7.9
(right panel) the 1o, 20 and 30 contours of ®*—M?*. We observe a clear evolution
of the SMF with redshift (before applying any Lya luminosity restriction), with
the low mass end shifting down by 1 dex from z = 2.5 to z = 5.4. This is reflected
as a gradual log;,(®*/Mpc~3) decrease with redshift from —4.6 at 2 = 2.5 to —5.8
at z = 5.4. The shift down to lower ®* with increasing redshift is also observed
in the SMF of more typical galaxies (e.g. Muzzin et al., 2013), which suggests the
observed trends are qualitatively the same, however, an analysis using the same
luminosity regime is still required.

As previously discussed in Section 7.4.6, different Lya luminosity limits play
a very significant role on the shape and characteristic parameters of the SMF.
We thus conduct the same analysis for a subset of our sample of LAEs, obtained
by applying the luminosity cut of log;o(Lrya/ergs™') > 43.0. By using a uniform
cut at all redshifts (see Figure 7.10), we are able to probe evolution in comparable
Lya luminosity regimes, and reduce the effects of the Lya flux limit bias. While
there is a clear evolution in the observed Schechter fits of the full samples, we find
no evidence of such evolution when comparing samples of LAEs within the same
Lya regime. We find little M} and ®* evolution with redshift, remaining constant
at log;y (M*/Mg) ~ 11 and log,,(®*/Mpc—3) ~ —5.8. The evolution that we find
when looking at the same luminosity regimes is thus not qualitatively the same
that is observed in more typical galaxies. Analysis of the evolution of the stellar

mass density, will provide more insight into this.

7.4.8 Evolution of the Lya fraction

We attempt to infer the Lya fraction (xrye) dependence on redshift and Myy.
We compute the ratio between the observed UV number densities in our sample
of LAEs and the UV number densities of LBGs from the literature: ®pag/Prpa,
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Figure 7.11: ®pap/Prpc ratio (interpreted as xiryo) dependence on Myy for
different redshifts. ®ap/P1pg measurements are shown when applying a uniform
log(Lrya/ergs™!) > 43.0 cut (blue circles), and when applying no cut (unfilled
diamonds). The ratio is computed from a compilation of UV LF's from UV-selected
galaxies at z = 2.3, z = 3.05 (Reddy & Steidel, 2009), 2z =4, z =5 and z = 6
(Ono et al., 2018). We show simple extrapolations to log;o(Lrya/ergs™) > 42.0
(orange stars) and logio(Lrya/ergs™!) > 41.0 (red stars), computed from z = 2.5
and applied to all redshift intervals. For better visualisation, the ratio is collapsed
to ®pap/PrLee = 1 when it surpasses that value.

which can be interpreted as the fraction of LBGs that are LAEs (above some Ly«
detection limit), or xpy.. To compute this fraction, we use a UV LF compilation
consisting of: z = 2.3, z = 3.05 (Reddy & Steidel, 2009), z =4, z=5and z =6
(Ono et al., 2018) (which we use for the redshifts z = 2.5, z = 3.1, z = 3.9,
z = 4.7 and z = 5.4, respectively). For the full SC4K sample (median z = 4.1)
we use the z = 4 literature measurements from Ono et al. (2018), which being a
very wide area LBG survey, provides a fair comparison with our wide area LAE
survey. To prevent any biases from fitting, the ratio is computed directly from the
luminosity bins in this study and the literature, with the latter being interpolated

to the Myy values used in this study.
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As clearly seen for the full sample in Figure 7.5 (left panel), the number
density of faint Myy LBGs is multiple times higher than the number density of
faint Myy LAEs. The number densities of Myy = —20 LAEs is ~ 1.5 dex lower
than LBGs, but they converge to the same number densities for Myy brighter
than -23. We note, however, that this should not be interpreted as all Myy
bright LBGs being strong LAEs, which is evidently not the case (e.g. Shapley
et al., 2003). We show the ratio of the two number densities in Figure 7.11 for
five redshift intervals (and the full SC4K sample), before and after applying a
Liyq cut. The z = 2.5 panel shows that as we probe fainter Ly luminosities, we
get closer to unity in the @ ap/Prpq fraction, and that the effect of the Ly« cut
depends on Myy, as shown in Section 7.4.3. For very bright Myy (< —23), we are
always able to retrieve most galaxies, as Myy bright are typically also Lya bright
(see Figure 7.1, left panel) and the & ap/Prpg will always be close to unity. This
holds true for all redshifts, with the ratio always tending to unity at the brightest
UV luminosities. When comparing ®par/Prpg at different redshifts, for the
comparable log;,(Lyya/ergs™') > 43.0 subsample, we observe that ®pap/Prpg is
typically higher at z > 4 than for the lower redshift samples. This may imply
that LAEs become a bigger subset of LBGs with increasing redshift (same trend
found in e.g. Arrabal Haro et al., 2020), but we explore this further by measuring
the UV luminosity density., but we explore this further by measuring the UV
luminosity density.

We make a direct extrapolation of the measurements of log,,(Lyya/ergs™) >
43.0 and > 42.5 z = 2.5 LAEs to lower Ly, cuts by scaling the increment in ®p,5g.
The extrapolated values for log;(Liya/ergs™) > 42.0 and > 41.0 are shown in
Figure 7.11. We find that for Myy = —20 at z = 2.5, we would approach unity if
we could reach logo(Lya/ergs ') = 41.0. We make the simple assumption that
the extrapolation we predict for z = 2.5 is valid for all redshifts, as the higher flux
limits of the other redshifts are not capable of reaching log;o(Lrya/ergs™") > 42.5
and thus do not allow a direct extrapolation. We find that for z 2 3 the ratio
approaches unity even for Myy = —21 to —22. We note that for z > 4 and
for the full SC4K sample, the extrapolation at Myy = —22.5 can be below the

measurement without applying any Ly« cut, which is a consequence of applying
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the z = 2.5 extrapolation estimation, which has a null increment for that Myy
value.

Furthermore, the ®pap/Prpg ratio can be interpreted as a way to constrain
the duty cycle — the fractional time that a galaxy spends above some SFR thresh-
old, making it observable (e.g. Jaacks et al., 2012). When the ratio is high, it
implies that galaxies at that specific UV luminosity are typically going through
a Lya-bright phase. It should also be noted that while all galaxies going through
a UV-bright phase can also potentially emit strongly in Lya, the morphological
analysis of LAEs shows that LAEs are typically compact (Paulino-Afonso et al.,
2018). This suggests that more compact galaxies have better conditions for the

Lya photons to escape, and thus be observable (strong Ly« emission).

7.4.9 Redshift evolution of the UV luminosity density of
z~2—6 LAEs

We measure the UV luminosity density (pyy) at the aforementioned redshift
intervals in our sample of LAEs and explore its evolution. We detail how the
integration is conducted in Section 7.3.6, with « being fixed to -1.5 but perturbed
within £0.2 dex. We show our pyy measurements in Figure 7.12 and compare
them with measurements from LBG samples from the literature from z ~ 2 to
z ~ 8 (Bouwens et al., 2015; Finkelstein et al., 2015; Reddy & Steidel, 2009).
When applying no luminosity restriction, we measure that log,,(puv/ergs™?
Hz~! Mpc™3) is anti-correlated with redshift, decreasing from 25.3 at z = 2.5 to
25.0 at z ~ 5—6. When applying the luminosity cut of log;(Liyas/ergs™) > 43.0,
logo(puv/ergs™ Hz=t Mpc™3) of LAEs changes from 24.3 to 25.0. In compari-
son, log,,(puv/ergs ' Hz=! Mpc~3) of LBGs is always higher and decreases with
redshift, from 26.5 at z = 2.5 to 26.0 at z = 6. We extrapolate the ratio between
the luminosity densities of log;o(Lrya/ergs™') > 43.0 LAEs and LBGs and de-
termine it tends to unity at z = 9. Overall, our measurements of pyy suggest
that at z ~ 2 LAEs constitute a much smaller subset of LBGs and that with
increasing redshift, both populations converge to the same values of pyy. This is

qualitatively similar to the trends found in Chapter 4 by integrating Ly« LFs.
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Evolution of the UV luminosity density (puy) with redshift.
We show the pyy measurements of our LAEs when applying a consistent
logyo(Lrya/ergs™!) > 43.0 cut (blue circles) and with no Ly, cut (black circles).
puv of the full SC4K sample is shown as stars, using the same colour scheme.
The shaded contours are the 16th and 84th percentiles of the fits, obtained by
perturbing the Myy bins at each redshift (see Section 7.3.5). We find no evidence
for pm evolution with redshift when applying a consistent Ly, cut. We compare
our results with measurements from the literature, from continuum-selected LBG
populations: z = 2.3, z = 3.05 (Reddy & Steidel, 2009), z = 3.8, 2 =4.9, 2 = 5.9,
z = 6.8, z = 7.9 (Bouwens et al., 2015), z =4, 2 =5, 2 =6, 2 =7, z = 8
(Finkelstein et al., 2015).
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7.4.10 Redshift evolution of the stellar mass density of
z~2—6 LAEs

Using our best-derived fits (Table 7.3), we estimate the stellar mass density (pm)
of our LAEs at different redshifts, by integrating the SMFs in the range. We
obtain py; using the procedure described in Section 7.3.6. In Figure 7.13, we
show our py measurements and compare them with measurements from the lit-
erature. The observed py; (without applying any luminosity cuts) changes from
log;o(pv/Me Mpe™2) ~ 6.3 at 2 ~ 2.5 to ~ 5.5 at z ~ 5 — 6. By applying the
consistent log;y(Lrya/ergs™") > 43.0 cut, the estimated py of our LAE sample
remains roughly constant with redshift at log;,(pn/Me Mpe™3) ~ 5.5.

We compare our results with measurements from the literature, from continuum-
selected populations: Davidzon et al. (2017), Caputi et al. (2011), Caputi et al.
(2015), Duncan et al. 2014, Gonzélez et al. (2011), Grazian et al. (2015), Ilbert
et al. (2013), Mortlock et al. (2011), Mortlock et al. (2015), Muzzin et al. (2013),
Reddy et al. (2012), Santini et al. (2012), Song et al. (2016), and Tomczak et al.
(2014). The py measurements of typical populations of galaxies from the liter-
ature indicate a decrease from log;y(pm/Me Mpc™) ~ 7.5 at z ~ 2.5 to ~ 6.5
at z ~ 5 — 6. This implies that galaxies selected as LAEs always have low stel-
lar mass densities, and as we move to higher redshifts, their properties become
similar to the ones derived from more typical populations of galaxies, suggest-
ing that with an increasing redshift more galaxies become LAE-like. The ratio
between the stellar mass densities for the log;o(Lyya/ergs™) > 43.0 population
and the values from the literature decreases from ~ 0.005 at z ~ 2.5 to ~ 0.05
at z ~ 5 — 6. We extrapolate the ratio between the stellar mass densities of
log1o(LLya/ergs™) > 43.0 LAEs and LBGs and determine it tends to unity at
z = 10. This implies that these bright LAEs, contribute very significantly to
the total stellar mass density during the epoch of reionisation, highlighting the

importance of LAEs to the evolution of primeval galaxies in the early Universe.
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Figure 7.13: Evolution of the stellar mass density (py) with redshift. We show the
pum measurements of our LAEs when applying a consistent log(Lrya/ergs™) >
43.0 cut (blue unfilled circles) and with no Lyy, cut (black unfilled circles). py of
the full SC4K sample is shown as stars, using the same colour scheme. The shaded
contours are the 16th and 84th percentiles of the fits, obtained by perturbing the
stellar mass bins at each redshift (see Section 7.3.5). We find no evidence for py
evolution with redshift when applying a consistent Ly, cut. We compare our re-
sults with measurements from the literature, from continuum-selected populations:
Davidzon et al. 2017 (Da+17), Caputi et al. 2011 (Ca+11), Caputi et al. 2015
(Ca+15), Duncan et al. 2014 (Du+14), Gonzilez et al. 2011 (Go+11), Grazian
et al. 2015 (Gr+15), Ilbert et al. 2013 (I14+13), Mortlock et al. 2011 (Mo+11),
Mortlock et al. 2015 (Mo+15), Muzzin et al. 2013 (Mu+13), Reddy et al. 2012
(Re+12), Santini et al. 2012 (Sa+12), Song et al. 2016 (So+16), and Tomczak
et al. 2014 (To+14). All py were converted to Chabrier, when another IMF was
used. We show the best fit to this compilation as a green line. The ratio be-
tween the py from the literature and py from log;o(Liya/ergs™) > 43.0 LAEs
(top panel) decreases from ~ 300 at z ~ 2.5 to ~ 30 at z ~ 5 — 6, suggesting an
increasing overlap between populations with increasing redshift.
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7.5 Conclusions

In this Chapter, we determine the UV luminosity functions (LFs) and stellar mass
functions (SMFs) of ~ 4000 LAEs from the SC4K sample at z ~ 2—6. Our main

results are:

e Myy and Ly, are typically correlated (Myy = —1.6703 log;(Lrya/ergs™)+

47117) in our sample of LAEs. The relation between M, and Ly, is shal-
lower (log;o(M,/Mg) = 0.9%5:1 logo(Liya/ergs™") — 28737%).

o Different Ly, limits significantly affect the shape and normalisation of the
UV LF and SMF of LAEs. An increasing Ly, cut predominantly reduces
the number density of lower stellar masses and faint UV luminosities, more
significantly for the UV LF. We estimate a proxy for the full UV LF and
SMF of LAEs, making simple assumptions of fitting range and faint end
slope. We further address the issues of incomplete sampling by applying a
uniform luminosity cut of log(Liya/ergs™) > 43.0 to our entire sample,

producing a subsample of rare bright primeval galaxies.

e For the UV LF of LAEs, we find a characteristic number density (®*)
increase from log,,(®*/Mpc™3) ~ —5.6 at z = 2.5 to ~ —4.8 at z ~ 3, with
no evolution up to z ~ 5 — 6, and no clear evolution of the characteristic
UV luminosity (M)

e For the SMF of LAEs, we find no significant evolution with redshift, with
log,o(®*/Mpc?) staying constant at ~ —5.5 from z ~ 2.5 to z ~ 6 and the
characteristic stellar mass staying constant at log,,(M*/Mg) ~ 11 for the

same redshift range.

e We compute ®pap/Prpa (proxy of X1ye) which tends to unity with increas-
ing Myy at all redshifts, as bright LAEs are typically also bright in Myy.
For fainter LAEs, the ratio tends to one as we reach fainter Ly« fluxes, with
a simple extrapolation implying that by reaching log,(Lyya/ergs™) = 41.0

we would approach unit for Myy = —20 galaxies at z = 2.5.
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e From z = 2.5 to 2z ~ 5—6, the luminosity density (pyy) increases from 10243

to 10%>0 erg s7* Hz~! Mpc~3. For the same redshift range, the stellar mass
density (py) shows little evolution, remaining constant at ~ 10°5 Mg Mpc?,
and being always lower than the total luminosity and stellar densities of
continuum-selected galaxies but approaching it with increasing redshift.
Overall, we find that the stellar and luminosity density of bright LAEs
are extrapolated to converge to the measurements of continuum-selected
galaxies at z ~ 9 — 10, pointing to the very significant role of LAEs in the

epoch of reionisation.
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Chapter 8

Conclusions and Future Work

In this thesis, we contribute to the understanding of the nature, typical properties
and evolution of galaxies with Lya emission, between the end of the epoch of
reionisation at z ~ 6 and the peak of cosmic SFH at z ~ 2. Here, we summarise
the main results of the thesis, give some final remarks and discuss future lines of

research.

8.1 Conclusions

We present a new large sample of Ly« emitters (LAEs) - SC4K (Slicing COSMOS
with 4k LAESs) - and study the evolution with redshift of physical properties
of galaxies in this sample. The catalogues with the SC4K sample and derived
properties are made fully public (see Appendices A.1 and A.4) so the community
can fully benefit from the work presented in this thesis. Multiple studies have
already been conducted using such catalogues (e.g. Calhau et al., 2020; Khostovan
et al., 2019; Marques-Chaves et al., 2020; Paulino-Afonso et al., 2018; Shibuya
et al., 2019).

SC4K: sample and luminosity functions
(Chapters 2, 3 and 4)

Most studies of Ly« emitting galaxies focus on a single redshift slice and/or

are limited by very small areas/volumes. Inferring potential evolution of galaxy

190



8.1 Conclusions

properties by comparing multiple different surveys is challenging with hard to
quantify biases. With this study, we aimed to develop a single self-consistent
survey to construct a large sample of LAEs, obtained using the same data re-
duction methods, same (wide) areas, similar filters and similar selection criteria.
This is done in an effort to build a sample where comparison of redshifts can be
done with as little bias as possible. The SC4K survey fully shows the capabilities
of narrow/medium band surveys in efficiently probing a large area of the sky to
efficiently build large samples of young star-forming galaxies (and AGNs). Our
sample consists of 3908 LAEs, 318 of which have AGN signatures (Calhau et al.,
2020). The Lya LFs reveal an AGN component which dominates the brightest
luminosities at z < 4, but disappears at higher redshifts.

Furthermore, by combining our measurements with results from the literature,
including IFU and blind spectroscopy surveys, we are able to obtain a much more
complete view of the Lya emitting population, which would not be possible from
any single selection method. Our results indicate a brightening with redshift of
the characteristic Lya luminosity. We find an increase by a factor of ~ 2 of the
Ly« luminosity density from z = 2 to z = 3 but no evolution at z ~ 3 — 6, which
results in an increase of SFRDyy/SFRDyy, from 4% at z = 2.2 to 30% at z = 6.
This can be translated into a factor of ~ 2 increase in the ionising efficiency and

a &~ 4 increase in the Lya escape fraction, from z ~ 2 to z ~ 6.

SC4K: properties and evolution
(Chapters 5 and 6)

In these chapters, we conduct PSF photometry for each individual source in
the SC4K sample of LAEs, using 34 bands from rest-frame UV to FIR, which we
use to measure the SEDs with the stellar+dust SED fitting code MAGPHYS.
The large number and wide wavelength coverage of filters used allow a very accu-
rate constraints of SEDs and parameters. This is further enhanced by very recent
programs such as UltraVISTA DR4 which improves the accuracy of the SEDs of
our high redshift galaxies with ultra-deep NIR imaging. Overall, we find that
while (as expected) LAEs are typically very young, very blue and low mass, there
is a significant diversity in the properties of LAEs. We also find that the typi-
cal properties of LAEs show little evolution with redshift, implying that galaxies
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that are selected as LAEs always have the same properties. When compared with

continuum-selected galaxies, we find that they become LAE-like at z > 5.

SC4K: UV luminosity and stellar mass functions
(Chapter 7)

We estimate the UV LF and the SMF of z ~ 2 — 6 LAEs, both still widely
unconstrained up to this point. For the UV LF, we find an increase in the
characteristic number density, with increasing redshift. Such an evolutionary
trend is qualitatively very different from the UV LF of LBGs (e.g. Bouwens
et al., 2015; Finkelstein et al., 2015), which has a decreasing characteristic number
density with increasing redshift. Additionally, our measurements of the SMF are
unprecedented, as no other survey has been able to derive stellar masses for such
a large sample of LAEs over such a wide redshift range. Our measurements
of the UV luminosity and stellar mass densities of LAEs are always below the
measurements of continuum-selected galaxies but are extrapolated to converge to

the same values at z ~ 8 — 10.

Overall the analysis of multiple properties of SC4K: the evolution of UV sizes,
Ly« escape fraction, SFR-M, relation, pyy and py, all build a picture where as
we move to higher redshifts, the properties of continuum-selected galaxies and
LAEs become increasingly similar, implying that by z > 5 star-forming galaxies
are LAE-like. Furthermore, this also suggests the important role that LAEs play

in the epoch of reionisation and their importance in galaxy evolution.

8.2 Future work

While we now have a better understanding of the properties of LAEs and their
evolution with redshift, there are still many open questions. Here we discuss

possible research paths and the questions they may answer:

e spectroscopic follow-up of SC4K LAEs: extensive spectroscopic follow
up will fully reveal the interloper fraction of our sample of LAEs (estimated
10-15%, see §2.3.5). Public COSMOS data spectroscopically confirms 119
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SC4K LAEs (see §2.3.5), in addition to the 10 “primeval galaxies” also
detected in the VUDS program (Amorin et al., 2017). We have already
conducted observations of 514 SC4K LAEs using the multi-fibre spectro-
graph AF2 at the William Herschel Telescope. I have developed a PYTHON
pipeline to reduce and analyse this AF2 data, with the results to be pub-
lished at a later date. X-SHOOTER observations are being planned, as the
deep and high-resolution spectra will show the Ly« line profiles and reveal
valuable information about the escape of Lya photons and the HI column

densities.

multi-wavelength follow-up of SC4K LAEs: with e.g. ALMA would
reveal the dust content properties of typical LAEs (see e.g. Matthee et al.,
2017d, 2019) and their evolution from z ~ 2 to z ~ 6.

extend the redshift range probed by SC4K: we have used the SC4K
sample to get a consistent view of the evolution of LAEs from z ~ 2 to
z ~ 6. For higher redshifts, we have conducted observations with the
HAWK-i instrument at the VLT using NB1061 to select LAEs at z = 8.8
(to be presented in Wade et al. in prep). For z < 2, Lya cannot be detected
from the ground, so a space telescope with an imaging instrument capable
of observing with narrow bands in the UV would be required (but see Ostlin
et al., 2014, who constructed the Lya reference sample at z = 0.028 — 0.19,
LARS, using a combination of GALEX, SDSS and HST observations).

extend the volumes probed by SC4K: larger volumes would allow us to

0* ergs~! sources, which are ideal

find more extremely luminous Liy, > 1
candidates for spectroscopic and multi-wavelength follow-up. Such as study
would improve the constrains on the number densities and properties of
the brightest populations, which require us to probe extremely low number
densities. This would allow us to determine if the excess in number densities
of bright LAEs, driven by AGN, which we observe at z ~ 2 — 3 but not at
z > 4, intrinsically disappears or if it just falls below our current detection

limits.
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e conduct the same z ~ 2 — 6 search with a non-resonant line: while
we have shown how useful Lya emission can be in probing galaxy evolution,
the fact remains that Lya’s resonant nature makes it a challenging line to
interpret. A z > 2.5 study with e.g. Ha would offer a more direct view
of star-formation, although it cannot be conducted from the ground and
no current space telescope can conduct such survey until the launch of the

James Webb Space Telescope in the nearby future.
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Appendix A

Appendices

A.1 Catalogue of Lyman-a emitters (SC4K)

We publicly release the full SC4K catalogue of 3,908 LAEs at z ~ 2 — 6 derived
and used in this work, based on data obtained with 16 different medium- and
narrow-band filters over the full COSMOS field. We show 5 example entries of
the catalogue in Table A.1. The full electronic version of the catalogue is available
with the refereed paper in a FITS table!. Table A.2 presents the colour terms used

to correct medium-band magnitudes and to compute emission line fluxes.

A.2 [OIII]4+Hp excess in the K, band at z ~ 3

A diagnostic that provides information on the validity of the sample of LAEs, and
simultaneously provides insight into their nature is the evolution of the H — K
colours with redshift. The flux in these filters may be boosted by strong Ha
and [O111]+Hf emission lines (e.g. Faisst et al., 2016), depending on the redshift,
affecting the H — K colours (see also Forrest et al. 2017). If our sample had
significant number of redshift interlopers, such effects on the colours would not

be seen, as interlopers will not show them.

Thttps://academic.oup.com/mnras/article/476/4/4725 /48583934 supplementary-data
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A.2 [OIII]+Hp excess in the K band at z ~ 3
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Figure A.1: H — K colours as a function of redshift for our sample of LAEs
at z ~ 2.5 — 4. The grey region shows the 16-84 percentile range of the colours
of the general galaxy population (Laigle et al., 2016), while the blue boxes show
the percentiles for the SC4K LAEs. We use photometric-redshifts for the general
galaxy sample, but assign the redshift where Ly« falls in the MB for the SC4K
emitters (points are randomly shifted for visualisation purposes). The green and
red boxes indicate the redshifts where the strong Ha and [O111] lines fall in the
H and K filters and can affect the colours. The LAEs at z = 3.1 — 3.4 have
systematically redder H — K colours compared to the general galaxy population,
indicative of strong [O111] emission in the K filter.
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A.3 Lya Luminosity functions

Table A.1: Our full SC4K catalogue of candidate LAEs which we release with this
work. The SC4K catalogue contains the samples obtained with the 12 COSMOS
medium-bands, together with 4 narrow-band samples from Santos et al. (2016),
Sobral et al. (2017), Matthee et al. (2017b) and Perez et al. (in prep.). We provide
five example entries. The full catalogue is available in electronic format (FITS
table). Errors on EWy, Flux and Ly, are computed by independently perturbing
the MB and BB magnitudes along their Gaussian uncertainties 10,000 times per
source and computing the 16th and 84th percentiles of each computed quantity.
Note that for faint sources EWs are affected by large uncertainties; see e.g. 1A427-
141. The AGN flag in the catalogue provides information on the matches with
public X-ray (including coverage) and radio catalogues (see Section 3.1.7): 0 — no
match/no coverage; 1 — X-ray detected; 2 — radio detected.

1D R.A. Dec. MB or NB BB EWq Flux/107'"  logy Lrya AGN flag
(SC4K-) (J2000) (J2000) (AB) (AB) (A) (ergs™tem™2)  (ergs™!) (X-ray or radio)
TA427-141 100320.01 +021338.8 24.83+0.06 26.47 +0.28 20007250 13.4707 42.83700 0
1A427-446  100238.96 +021416.3 24.87+0.07 25.97+0.18 289737 10.619 42.737008 0
1A427-865 100217.97 +021503.2 24.844+0.07 25.8240.15 20575° 10.2418 42,7150 0
[A427-1169 100310.85 +021537.6 24.28+0.04 25.254+0.09 193+ 16.8735  42.927008 0
TA427-1559 100213.65 +021628.9 24.9040.07 254640.11 6575, 6.510¢ 42,5150 0

Figure A.1 shows the median H — K colours of the general galaxy population
in the COSMOS field (Laigle et al., 2016) and of the SC4K sample of LAEs from
z ~ 2 to z ~ 4. Several interesting trends can be seen. The sample of LAEs at
z & 2.5 has systematically bluer H — K colours than the general galaxy sample,
which indicates that the H band is significantly boosted by strong [Om]+Hg
emission, while the majority of the sample does not have Ha falling in the K
filter. The LAEs at z = 3.1 — 3.4 have systematically redder H — K colours than
typical galaxies. This indicates LAEs have relatively strong [O111]+Hf emission,
which is similar to the spectroscopic results from Nakajima et al. (2016). As no
strong lines affect the H — K colours at z = 2.7 — 3.0 and z > 3.6, the colours

of LAEs at these redshifts are similar to the colours of the general population.
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A.3 Lya Luminosity functions

Table A.2: The colour coefficients for each medium-band, used to correct the
observed medium-band magnitudes (MBy) into MB, as defined in Equation 2.2:
MB = MBj — (m x (BB — BBagjacent) + b). For sources without a colour determi-
nation (BB — BB,gjacent) We add the median correction listed in the table. Note
that we use the MB magnitudes (and not MBg) for our SC4K catalogue (see Table
A.1) and all derived quantities.

MB BB — BBagjacent =~ ™M b Median

correction
1A427 B-U 0.33 -0.11 0.01
1A464 B-V 0.0 0.0 0.0
T1A484 B-V 0.0 0.0 0.0
IA505 V-B 0.0 0.0 0.0
TA527 V-B 0.0 0.0 0.0
IA574 rt—V 0.0 0.0 0.0
1A624 rt —4t 0.0 0.0 0.0
IA679 rt —qt -0.30 -0.18 0.31
IA709 rt —qt -0.31 0.0 -0.13
IAT38 rt —qt -0.14 0.08 -0.14
IA7T67 it —2 0.0 0.25 -0.25
IA827 it — 2 -0.49 0.34 -0.20
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Figure A.2: The ratio between the observed Lya luminosity function through the
real filter profiles and input simulated sample of LAEs. We shift the bins by +0.08
for visibility. For each filter, we distribute simulated sources over a large redshift
range (wider than what the filter can detect), with a number density distribution
given by the first pass/observed Ly« luminosity function. This includes both a
Schechter component and a power-law component at the highest luminosities, for
2.2 < z < 3.5, and a Schechter component only for 3.5 < z < 6. Points are offset in
luminosity for visibility. We find that the bright end of the Schechter component
of the LF leads to a significant observed underestimation of the LF, while the
power-law component is more easily recovered (see Section A.3.1 for full details).
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A.3 Lya Luminosity functions

A.3.1 Filter profile corrections

In order to evaluate the necessary potential corrections to the Lya LF due to
the use of different real filters in comparison to idealized top-hat versions of
them, we follow the procedure fully described in Section 3.1.2.2 (see also Sobral
et al., 2012). Here we provide the full results of our simulations, presented in
Figure A.2 (see also Figure 3.1) and discuss them. We find that the number
density of sources recovered by folding through a population of LAEs with a
luminosity function described by a Schechter function is always underestimated,
and strongly underestimated for the highest luminosities. This is a relatively
easy effect to understand, and becomes particularly important for the state-of-
the-art large volume surveys that can now probe significantly above L*, where the
number counts may drop exponentially (contrarily to the behavior of the sub-L*
component of the luminosity function, which behaves like a power-law).

Our results are a consequence of observed fluxes being the convolution between
real input fluxes and the filter profile transmission. On average, this always results
in a drop of flux except at the very peak of filter profile transmission. For medium-
band filters there is still considerable volume under these conditions, while for
narrow-bands such fraction is lower. For the evaluation of the luminosity function,
this means that the observed number densities of sources at some luminosity L are
always lower than reality, as most sources of that luminosity actually contribute
to bins of fainter luminosities (they are observed to be fainter). The effect is
not always extreme because it is partially compensated by sources at even higher
luminosities that count towards a bin at luminosity L; this is why the intrinsic
shape is crucial. The global result is that such corrections depend on the shape
of the intrinsic luminosity function and how steep number density counts drop
as a function of luminosity. This means that while for some shallow faint-end
slopes the ratio of the number of sources scattering in from higher luminosities
and those scattering out from a given bin is close to 1 (meaning the recovered
number density is close to the input one), for steeper functions (and even more

so for exponential declines), the effect starts to become very strong, as sources
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move to lower luminosity bins and almost no other sources come from brighter
bins to compensate (because they are simply too rare). The effect is therefore the
strongest beyond L* for an intrinsic Schechter LF distribution of sources being
observed through any filter profile that is not a perfect top-hat.

Overall, our results show that for any reasonable Schechter function prior
(the observed LF is a good prior which does not require any assumptions), the
bright end of the Lya LF must be corrected more than the faint end, and that
such corrections are much larger with narrow-band filters than with medium
band filters (see Figure 3.1). Moreover, once corrections are applied, narrow-
and medium-band independent estimates agree. Our results also show that the
exponential decline part of the LF becomes more and more underestimated the
more Gaussian and the narrower a filter is (compared to assuming a top-hat
transmission for the flux and volume). We note that another way to correct for the
filter profile effects is to shift the luminosity function by some constant (to correct
for the fact that a fraction of sources are not measured at full transmission). This
is a relatively good way to do this in the case of a self-similar LF and/or when one
is only measuring the power-law component of the Schechter function and when
such a component is not tremendously steep. However, for large volumes that can
trace the exponential decline, the corrections are simply not the same: for the
power-law (faint) component there are sources coming in from higher luminosities
and scattering to fainter luminosities, but in the exponential part there is much
more migration away from the bin to lower L than there is migration into the bin
from brighter sources.

We also find that if the decline of the number densities at high L is described
by a relatively shallow power-law (such as the cases found at z ~ 2 — 3), then
the corrections (Figure A.2) are close to unity (again, due to the same effect:
there are brighter sources which are still numerous enough to make it into the
bin and roughly compensate for sources that are observed to be fainter). Over-
all, our results show the importance of correcting for this effect specifically for
Schechter-like functions, and less so for the case of a shallow power-law decline

with increasing luminosity.
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A.3.2 Luminosity functions: this study and the S-SC4K
compilation /comparison

We provide the derived Lya LFs (one example realisation; Table A.3), including
the observed number of sources and number densities obtained after completeness
and filter profile corrections (see Table A.3) and the full error propagation steps
(see Section 3.1.2). Table A.4 presents the full S-SC4K compilation which we use
to compare our results and to derive our synergy LF (S-SC4K). We also present
the results from the 10,000 fits to each perturbed LF in Table A.5.
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Table A.3: The global Lya LF and for each of the medium-band filters in SC4K /this study (full LFs provided as a FITS
catalogue). Here we present the first LF (global) with the first 13 entries in the table. We show the sample/filter name,
followed by the Ly« luminosity bin. We also present the number of observed sources in each bin and the volume densities
with the chain following the steps described in the work: observed, observed + perturbing selection, completeness
corrected and filter profile corrected (final). In addition, we also show the full sequential error calculation/propagation
(see full details in Section 3.1.2). We note that we set the error to 1.0 whenever it is not defined in log space (for the
odd bins which are just populated by one source); for these bins the error propagation is not conducted.

Sample loglo LLya Sources (I)observed Aq)obs+pert (I)comp.corr (I)ﬁnal ACI)ﬁnal

(ergs™) (#) (Mpc™®) ~ (Mpc™®)  (Mpc™®)  (Mpc®)  (Mpc?)
SC4K All MBs  42.60 £0.05 156 +12 —3.41700%  T007  —3.0270% —2.9370% 00
SC4K Al MBs  42.70 £0.05 134+11 —347H001 000 —3.23%000 —3.127000 1000
SC4K All MBs 42.80+0.05 607 +24 —3.457502 003 399400 3057001 +000
SC4K All MBs  42.90 £0.05 463+21 —3.68700; 100y  —3471007 —3.377001  Toos
SC4K All MBs 43.00 £0.05 405+20 —3.897992  +0.00 3707595 3,600 006
SC4K All MBs 43.10£0.05 220414 —4.227903 o —4.127000  —4.001992 0
SC4K All MBs 4320 +£0.05 188413 —4.35700  *0.00 —4.227510 4 11018 A0
SC4K All MBs 43.30+0.05 113+10 —4.57759; 01 4484010 437012 4002
SC4K All MBs 43.40+0.05 57+7 —4.92700 000 —4.807019 —4.68T011  fo1i
SC4K All MBs 4350 +0.05 50+7 —5.06700: 013 —4.93%0% —4.827000 1008
SC4K All MBs 43.60 £0.05 35+5 —521%90r  +01¢ —5.147538  —5.027040 008
SC4K Al MBs  43.75+£0.05 14+3 —561701 015 —5587012 —5477010 05
SC4K All MBs 44.00+0.15 24+4 —586700%  *0U ~5.85101,  —579t012 A4z
SC4K All MBs 44.304+0.15 542  —6.541018 AT —6.541008 6467000 FO07
SC4K All MBs  44.60 +£0.15 175, —7.24703%0 030 7947930 7047030 1030
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Table A.4: A compilation of Lya LFs used or compared with in this study, by alphabetical order. We provide references
to the original papers and also references for LFs generated to make them more comparable with those we present in this
work when appropriate (e.g. by correcting for potential contamination or by applying consistent filter profile corrections
for comparison). We provide all these LFs as a FITS format catalogue. The redshifts are the average when studies have
used redshift bins with the 4+ representing the maximum and minimum redshifts in the studies, and not the standard
deviation. Note that for NB surveys this is given/rounded to 0.1, but typically the redshift range is smaller than that.
The minimum and maximum luminosity bins probed by each study are given in log;o(LLya/ergs™!). CC: correction for
potential contamination by lower redshift emitters (see Sobral et al., 2017); FPC: correction for filter profile effects (see

this study and Matthee et al., 2015; Santos et al., 2016).

Study # Reference(s) Technique/ Redshift Liyamin Liyamax
(This compilation) (Original or w/ correction) Instrument (2) (logip)  (logio)

1 Bina et al. (2016) IFU MUSE-Al z=48+18 413 42.2
2.1 Cassata et al. (2011) Slit VIMOS-bin z=25+05 413 42.9
2.2 Cassata et al. (2011) Slit VIMOS-bin z=38=+£038 41.8 42.8
2.3 Cassata et al. (2011) Slit VIMOS-bin z=55+£10 421 43.3
3 Dawson et al. (2007) NB Mosaic-CCD MT  z=45£0.1 422 43.4
4 Drake et al. (2017a) IFU MUSE-Al z=48+18 419 42.9
5 Drake et al. (2017b) IFU MUSE-All 2=47+19 412 42.8
5.1 Drake et al. (2017b) IFU MUSE-Bin z=35+£05 41.6 42.8
5.2 Drake et al. (2017b) IFU MUSE-Bin z2=45+0.5 41.6 43.3
5.3 Drake et al. (2017b) IFU MUSE-Bin z=058=%038 41.6 43.2
6 Konno et al. (2016) NB S-cam Subaru z=22+01 417 44.4
6.1 Konno et al. (2016); Sobral et al. (2017) NB S-cam Subaru CC  z=22+0.1  41.7 44.4
7 Konno et al. (2018) NB HSC Subaru z=57+£01 43.0 43.8
7.1 Konno et al. (2018); Santos et al. (2016) NB HSC Subaru FPC  z=5.7+£0.1  43.0 43.8
8.1 Matthee et al. (2017b) NB WFC INT z=22=%01 42.8 43.5
8.2 Matthee et al. (2017b) NB WFC INT z=24+0.1 43.4 44.7
8.3 Matthee et al. (2017b) NB WFC INT z=31+£0.1 43.0 43.6
9.1 Ouchi et al. (2008) NB S-cam Subaru z=31£01 422 43.6
9.2 Ouchi et al. (2008) NB S-cam Subaru z=37+£01 427 43.5
9.3 Ouchi et al. (2008) NB S-cam Subaru z=57+£01 425 43.5
9.4 Ouchi et al. (2008); Santos et al. (2016) NB S-cam Subaru FPC 2z =5.7+£0.1 425 43.5
10 (Perez et al. in prep.) NB S-cam Subaru z=48+01 431 43.5
11 Santos et al. (2016) NB S-cam Subaru z=57+£01 425 43.7
12 Sobral et al. (2017) NB WFC INT z2=22=£0.1 42.3 43.5
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A .4 The full SC4K catalogue with PSF photometry and all derived quantities

A.4 The full SC4K catalogue with PSF photom-

etry and all derived quantities

We provide the full catalogue of SC4K LAEs in electronic format (FITS format)!
with PSF photometry and photometric errors in all bands, along with all the

properties obtained in this work.

A.5 Additional plots and tables

In Figure A.3 we show SFRy, vs SFRggp in 6 independent redshift intervals (see
Section 6.1.6.3 for discussion). In Figure A.4 we show the evolution of median
EW, with redshift. We provide the full measurements of wy for different ranges

of redshifts and galaxy properties (M, and Myy) in Table A.6.

Thttps://academic.oup.com/mnras/article/493/1/141/5704403#supplementary-data
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A.5 Additional plots and tables

Table A.5: The results of fitting different Lya LFs 10,000 times with a Schechter
function (and a single power-law, for comparison) at the appropriate luminosity
range (* fitting only up to 10*33ergs™!), when using SC4K only and when com-
bining SC4K with deeper surveys (S-SC4K). As part of each fit we also integrate
our Lya LFs to obtain pry, (integral of the Schechter component, Sch), derived
for different redshift bins, down to 1.75 x 104! ergs™!, corresponding to 0.04 L;_,
from Gronwall et al. (2007); see Section 4.1. All errors are the 16th and 84th per-
centiles for all 10,000 realisations per LF estimation which, due to degeneracies in
the parameters, can sometimes exaggerate the errors on individual parameters, so
these can be seen as conservative. We also provide a comparison (ratio) between
reduced x? for Schechter and power-law fits (x2, /X% ); values below 1 indicate
that a Schechter fit performs better, while a large value indicates that a simple
power-law fit provides a lower reduced 2.

Redshift slice a logig Liga 10819 ®fye  PLya/10%0 (Sch) Power-law (PL) X3./ Reference(s)
(S-)SC4K (ergs™!)  (Mpc™®) (ergs™! Mpc™®) (Alog,, L+B) X3,  (Table A.4)
2=22+01" —18+02 (fix) 42.6970F —3.33702 0.48%0 04 —1.247308 49373 0.3 2.1
2=25+01" —18402 (fix) 42767097 —3.237511 0.73%015 —2.347030,96.975% 2.3 SC4K only
2=28+01* —1.8402 (fix) 42.83%9% 32793 0.84*012 —2.667193 11077434 1.0 SC4K only
2=30£01* —1.8402 (fix) 4264799 —2.54791¢ 2.5470%8 —3.17H025 132.97125 1.1 SC4K only
z=32+01" -18402 (fix) 4280700 —3.017015 1.357035 —2.417922 100.0055 0.6 SC4K only
z=33+01" —18402 (fix) 42687307 —2.70751° 1.9570%% —2.9850%, 1247555 1.5 SC4K only
2=37+£01 —1.8+02 (fix) 43.03701% —4.0970% 0.21+5.87 —3.1870%8, 133.01307 24 SC4K only
z=41£01 —1.8+0.2 (fix) 4283701 —3.49707% 0.497039 —3.117000, 129.8%56% 0.8 SC4K only
2=46+01 -18402 (fix) 43.15701% —3.92707 0.42+032 —2.98700% 124.61225 1.5  SC4K only
z=48+01 —1.8+02 (fix) 4298717 —36279% 0.56755 —3.991059 16817835 14 SC4K only
z=514£01 —1.8402 (fix) 43.3079% —4.36792 0.24*53 —3.88+19 163.87%>7 2.0  SC4K only
z=53+01 -18402 (fix) 43.30703 —4.22707 0.33%07% —3.88774r, 164.277032 0.8 SC4K only
z=58+401 —18402 (fix) 43.3570% —4.1975%° 0.39705 —3.55%1 40, 149.77505 0.9 SCAK only
z=22+£01"  —200%07 4282707 —3.5970%2 0.5270 0% —1.547007 621750 0.6 2.1,6.1, 12
2=25+01" —L725p12 42701000 —3.10%05 0.7410.0% —1.33%007, 53.6750 0.6 2.1, 5.1
z=28+01" 173102 42.787015  —3.18705 0.77+000 —1.28%008, 51.37552 0.8 2.1, 5.1
z=30+£01  —158%047 42757088 —3.00703% 0.881080 —1.15%997 46.0739 0.6 2.1,5.1
2=32+01"  —L70%07 42857077 —3.20%0% 0.84*5% —115%000, 45.9750 0.7 2.1, 5.1
z=33+£01  —1.62%077 42767015 —3.0570% 0.85500 —1L17H07 46.9%55 0.6 2.1, 5.1
2=3.740.1 —2.57+02 43.23%037  —4.54105 1.01+920 —2.01%013, 82.2737 0.8 2.2, 5.1
z=41+0.1 —2.23+0:3¢ 42,9607 —3.79%000 0.87101% 1931013, 7881 0.9 2.2, 5.1
2=4.6=+0.1 -2.38T0%0  43.32%p%  —4.3450% 1.197050 —1.8010:10, 73.6511 0.9 2.3,3,5.2,10
2=48+0.1 —2.28702 43.14%019  —3.98404¢ 1.124937 —1.924015, 78,5152 0.8 2.3,3,5.2, 10
2=51+0.1 —2467022 4341402 —4.58+0%7 1.277058 —2.007013, 821783 0.7 2.3,3,5.2,10
z=53+0.1 —1.924022  4321*01 3704030 1.08%92 —1.807012 73.6%%2 0.2 53,94, 11
z=58=+0.1 —1.95%020  43.26%013 3784028 1.10%92 —1.74%033, 71.0%25 0.2 53,94, 11
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Figure A.3: Emission line-based SFR vs SED-fitting SFR for the full sample of
LAEs at different redshift ranges. Coloured circles (squares) are the median bin
for MBs (NBs) and individual points are plotted as scatter in the background.
The black line is the 1-to-1 ratio. While the two approaches roughly follow the
1-to-1 ratio, there are some key differences. Similar to what is observed in Figure
6.3, median SFRpy. is slightly higher than SFRsgp for SFRsgp < 10 Mg yr L,

However, SFRyy, seems to saturate at median SFRyy, ~ 10 — 30 Mg yr— L.
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1000 -
500 -
OQ::\ 250 - i ¥
\c: *.. i.',. eIl I
= ® il == : *I'! ﬁ‘—
W 1001 | =TT s
* W
sl * EWoNB)
+ EW, (MB), individual EW, = 50A (MB)
- @ EW, (MB), binned EW, = 25A (NB)

) o S e e e

257
20 25 30 35 40 45 50 55 60

Figure A.4: Global median EWq evolution with redshift. The median EW
values for medium (narrow) bands are shown as blue circles (green stars). Blue
stars are the measurements for individual MBs. The thin (thick) error bars are
the 16th and 84th percentiles of the EW( distribution (divided by the Poissonian
error v/N). The median and errors of EWy can be found in Table 5.1. Blue
(green) shaded region is the 10 contour obtained by perturbing the EW( within
the thick error bars for medium (narrow) band selected LAE. We find evidence of
little EW evolution with redshift for the global sample of LAEs, with the median
EW, remaining roughly constant at ~ 140 A, although there is a tentative higher
EWj at z = 5.7, albeit with large error bars.
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A.5 Additional plots and tables

Table A.6: EWj scale length (wg) for different redshift bins, derived as fully
detailed in Section 6.1.2.1. (1) Subset of SC4K; (2) Filter type (MB/NB) and
whether this measurement is for LAEs selected from an individual filter or from
multiple filters binned together; (3) wg derived directly from observed counts; (4)
x2.q of (3); (5) wo derived directly from observed counts [EWq < 240 A]; (6) x2,4 of
(5); (7) wo derived by perturbing EWo; (8) x24 of (7); (9) wo derived by perturbing
EW, [EW, < 240 AJ; (10) X2 of (9); *Not enough sources to constrain wq (less
than 3 bins with 5 sources). 'Fit done for EWy > 100 A as discussed in Section
6.1.2.1 as we are significantly incomplete for low EWy, so we only fit exponential
decay after the distribution peak at ~ 100 A.

(1) (2) B @ (5) © M B (9) (10)
Subset Filters ‘ Wo Xoed ‘ Wo,[EW <2404 ‘ Xred Wo,p ‘ Xred Wo,p,[EW <240A] ‘ Xoed ‘
(A) (A) (A)

Z=25+0.1 MB, single 10471 231 797 277 11772 0.73 9472 0.12
2=28+0.1 MB, single ~ 98*12  0.59 88712 0.37 108%3 0.15 100137 0.28
2=3.0%0.1 MB, single 172714 104  120*2 174 17071 0.72 126122 0.37
2=32+0.1 MB, single 10914 1.77 97110 117 1281 0.34 11142 0.18
z=33+0.1 MB, single  113*13 176 11871 121 139*1 0.40 113418 0.42
2=37+0.1 MB, single  83%3;  1.64 7213 1.93  90%35 0.20 80771 0.12
2=4140.1 MB, single 25774 066  216%100 091 25175 0.31 17154°  0.08
2=4.6+0.1 MB, single 486713 0.65  318*12 130 600733 044 4131800 0.08
2=48+0.1 MB, single ~ 93*17 0.42 82711 0.18 11973 0.21 9475 0.12
2=50=+0.1 MB, single ~ 108%3%  0.75 85721 0.75 143%5  0.40 103559 0.19

z=>53+0.1* MB, single - - - - - - - -

z=>58+0.1* MB, single - - - - - - - -
2=22+0.1 NB, single  174T9: 4.95 17479 495 1437% 0.52 1317% 0.62

z=31+0.1* NB, single - - - - - - - -
z=48+0.1 NB, single 862 1.05 8621 1.05 1517%  0.48 10173 0.32
2=5740.1 NB, single 355771 0.93  188%2  0.70 477Tlt 0.45 12437 0.14
z=25=+0.1 MB, bin 104715 231 7971 2.77 117735 0.73 94713 0.12
2=31+04 MB, bin 134%}] 2,00 109713  0.85 1497 2.26 116%13 1.04
2=39+03 MB, bin 118%1% 129 9012 1.69 1201 0.20 103134 0.15
2=4.7402 MB, bin 11973 117 9319 0.83 158731 0.18 114753 0.14
2=25+0.1 MB, bin 9572 1.66 7072 1.97 125750 0.24 90122 0.21
Full sample MB, bin 130F;; 357 1007 1.5 14370 4.01 11071 0.99
Full sample NB, bin 109%13 153 10277 098 15173 0.45 102715 0.15
Full sample MB+NB, bin  129*11 419 99711 1.22 1477 4.46 10941 0.96
8<log,y (M,/Mg < 9F | MB+NB, bin 175717 1.62 17975,  2.77 264775 0.55 530755 1.42
9< log,y (M,/Mg < 10 | MB4+NB, bin 85711 2.87 74t 1.75 101+ 2.03 89+ 0.96
10< log;o (M, /Mg, < 11 | MB4+NB, bin 77713 2.14 60713 232 89713 081 68112 0.66
-20<Myy < —197 MB+NB, bin 182713 1.35  2537[0%  1.29 26373 0.50 4707902 0.97
-21<Mypy < —20 MB+NB, bin ~ 77+10 1,52 1 1.00 931 1.09 9017 1.27
-22<Myy < —21 MB+NB, bin 55+ 178 50711 191 631 0.39 58710 0.07
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