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Abstract

How do young star-forming galaxies evolve with cosmic time? Exten-

sive work has been done over the past years on the discovery and

follow-up of numerous galaxies at the highest redshifts (look-back

times). However, most surveys aim for deep observations in small

volumes which often are not enough to detect the brightest (but also

rarer) sources. Comparing multiple studies/samples in an unbiased

way can also be challenging due to different selection methods. A

large volume program, which probes multiple look-back times using

the same method, would greatly contribute to our understanding of

how galaxies evolve in the distant Universe.

In this thesis, we use 12(+4) medium(+narrow) band images to iden-

tify ∼ 4000 z ∼ 2 − 6 Lyman-α emitters (LAEs) over 2 deg2 in

the COSMOS field, producing the SC4K (Slicing COSMOS with 4k

LAEs) sample. Lyman-α (Lyα) emission is typically associated with

young star-forming galaxies (but also active galactic nuclei, AGNs).

We use these ∼ 4000 LAEs to produce a 3D map of the early Uni-

verse, in 16 individual redshift slices, providing a unique sample to

explore galaxy evolution, with all sources being selected using the

same self-consistent selection method. We construct Lyα luminosity

functions (LFs) with our LAEs selected over a very wide co-moving

volume (108 Mpc3), complementing ultra-deep surveys. The Schechter

component of the Lyα LF reveals a ∼ 5× rise in L?Lyα and a ∼ 7×
decline in Φ?

Lyα from z ∼ 2 to 6. At z ∼ 2 − 3 we find an excess

in number densities at high luminosities (LLyα > 1043.3 erg s−1) which

is consistent with a higher AGN fraction at those luminosities. This

excess is not detected or falls below our detection limits at z > 4.



We measure a Lyα luminosity density increase by a factor of ∼ 2 from

z ∼ 2 to 3, which then remains constant to z ∼ 6, which contrasts

the ultraviolet (UV) luminosity density decrease at the same redshift

ranges. The Lyα/UV luminosity density ratio rises from 4% to 30%

from z ∼ 2.2 to 6.

We conduct aperture photometry for individual SC4K LAEs, us-

ing 34 bands of deep multi-wavelength data in the COSMOS field

from rest-frame UV to far-infrared (FIR), to measure their individ-

ual spectral energy distributions (SEDs). We find typical stellar

masses 109.3±0.6 M� and star formation rates (SFR) of SFRSED =

4.4+10.5
−2.4 M� yr−1 and SFRLyα = 5.9+6.3

−2.6 M� yr−1, combined with very

blue UV slopes of β = −2.1+0.5
−0.4, but with significant variations within

the population. Overall, we measure little to no evolution of the Lyα

EW0 and scale length parameter (w0) which are consistently high

(EW0 = 140+280
−70 Å, w0 = 129+11

−11 Å) from z ∼ 6 to z ∼ 2, although

w0 is anti-correlated with rest-frame UV luminosity (MUV) and stellar

mass. Our results imply that sources selected as LAEs have a high

Lyα escape fraction (fesc,Lyα) irrespective of cosmic time, but fesc,Lyα

is still higher for UV-fainter and lower mass LAEs. We also find that

the least massive LAEs are typically above the star formation “Main

Sequence” and thus undergoing intense star formation, which could

be explained by a bursty nature.

Furthermore, we measure the evolution from z ∼ 2 to z ∼ 6 of the

rest-frame UV luminosity function (LF) and the stellar mass function

(SMF) of the SC4K sample. We explore a range of 6 dex in MUV

and 5 dex in M?, which is unprecedented for such a large sample of

LAEs, covering such a redshift range. For both the LFs and SMFs,

we find that the Lyα luminosity limit significantly affects the shape

and Schechter parameters of the distributions. As such, to probe for

evolution in an unbiased way, we study a subset of the SC4K sample,

with LLyα > 1043.0 erg s−1, which is a luminosity regime probed at all

redshift ranges. For the UV LF of these LAEs, we find a characteristic



number density (Φ∗) increase from log10(Φ∗/Mpc−3) ∼ −5.2 at z =

2.5 to ∼ −4.6 at z ∼ 3, remaining constant up to z ∼ 5 − 6 and a

characteristic UV luminosity (M∗UV) brightening from -21.1 at z ∼ 3

to -22.0 at z ∼ 5 − 6. We find no significant evolution of the SMF

of these LAEs with redshift, with log10(Φ∗/Mpc−3) staying constant

at ∼ −5.5 from z ∼ 2.5 to z ∼ 6 and the characteristic stellar mass

staying constant at log10(M∗?/M�) ∼ 10.7 for the same redshift range.

We measure that the UV luminosity density (ρUV) changes from 1024.2

to 1025.0 erg s−1 Hz−1 Mpc−3 and the stellar mass density (ρM) remains

constant at ∼ 105.5 M�Mpc−3, with both always being smaller than

literature measurements from continuum-selected galaxies. Both ρUV

and ρM of LAEs converge to the measurements of continuum-selected

galaxies at z > 6, which suggests a key role of LAEs in the epoch of

reionisation.

Overall, our results show that LAEs are a unique subset of the star-

forming population, and that as we move to higher redshifts, LAEs

become more and more representative of the full population of galax-

ies.

The SC4K sample is made fully public, together with derived physical

properties, so the community can fully benefit from this work.
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Chapter 1

Introduction

The evolution of the Universe across cosmic time is one of the most complex topics

humanity has ever attempted to grasp. Over the past century, with great effort

and dedication from the astrophysics community, a picture of how the Universe

and its contents evolve with time has started to emerge. This chapter aims to

briefly portray our current understanding of the Universe, and outline how this

thesis contributes to that knowledge.

1.1 Theoretical framework: ΛCDM Universe

As we attempt to probe the physics behind galaxy formation and evolution, it is

fundamental to start by outlining the cosmological framework, as it models the

initial conditions and seeds necessary to form primordial galaxies, which evolve

into the galaxies we will study in this thesis.

The ΛCDM cosmological model (Λ Cold Dark Matter, with Λ being the cos-

mological constant), regarded as the “standard model” of the Universe, provides

predictions for the evolution of the Universe since its initial stage, the Big Bang.

As the Universe expands, and gradually becomes less dense and cools down, it

eventually reaches a stage where gravity can dominate at small scales and struc-

ture can form. ΛCDM is built on the cosmological principle, which states that at

large scales the Universe is homogeneous and isotropic, and thus an observer will
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not be favoured by their position or by the direction they observe. It provides

good explanations for observables such as the anisotropy of the Cosmic Microwave

Background (CMB, Penzias & Wilson, 1965; Planck Collaboration et al., 2018)

and the accelerated expansion of the Universe (Perlmutter et al., 1999; Riess

et al., 1998).

1.1.1 Cosmological parameters

According to the ΛCDM model, the energy density of the Universe can be divided

into four components: matter (ΩM), dark energy (ΩΛ, the term that drives the

expansion of the Universe), radiation (ΩR) and curvature (ΩK). These cosmolog-

ical parameters have been constrained by measuring the power spectrum of the

CMB (Planck Collaboration et al., 2018; Spergel et al., 2003), the distances of

type Ia supernovae (Perlmutter et al., 1999; Riess et al., 1998) and through weak

gravitational lensing (Abbott et al., 2018; Hildebrandt et al., 2017). Although

there is some tension between measurements, they point towards a non-zero ΩΛ

(and thus a non-zero cosmological constant Λ) that drives an accelerated expan-

sion of the Universe. The latest Planck Collaboration et al. (2018) results1 are

ΩM = 0.3111, ΩΛ = 0.6889, ΩR ∼ 0 and ΩK ∼ 0 (consistent with a spatially flat

ΩK = 0 Universe), with the latter two being negligible at the present day. ΛCDM

places the age of the Universe at 13.787 Gyr.

The matter component can be further divided into baryonic (Ωb = 0.0490)

and (cold) dark matter (Ωc = 0.2589). This means that the matter we can ob-

serve directly (baryonic) only constitutes 1/6 of the total mass and ∼ 5% of the

total energy density of the Universe. Dark matter particles have never been di-

rectly observed, however, the existence of a non-negligible amount of matter that

does not emit light but interacts gravitationally is necessary to explain multiple

observational evidence. Some examples include: the velocity of galaxies in the

Coma Cluster (Abell 1656) is too high for the cluster to remain bound together

with the observed mass (Zwicky, 1933); movement of companions around the

1All values stated in this section are obtained from Planck Collaboration et al. (2018), Table
2, last column. Ωb is computed from Ωbh

2, with h = H0/100 km s−1 Mpc−1 and H0 = 67.66 km
s−1 Mpc−1
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Milky Way requires massive haloes (Einasto et al., 1974); rotation speeds of stars

in the Milky Way is found to be significantly higher than the predicted estimates

for the observable mass (Rubin et al., 1980); spatial offset between the centre of

the total mass and the centre of the baryonic mass peaks on the Bullet Cluster

(Clowe et al., 2006; Markevitch et al., 2002); simulations have shown that primor-

dial galaxy formation in the early Universe requires dark matter haloes (Navarro

et al., 1997; Tormen et al., 1997, see Section 1.1.2 for a more detailed explanation

on primordial galaxy formation).

Throughout this thesis, for simplicity and direct comparison with the liter-

ature, we use a ΛCDM cosmology with H0 = 70 km s−1 Mpc−1, ΩM = 0.3 and

ΩΛ = 0.7.

1.1.2 Formation of primordial galaxies

A Universe that follows the cosmological principle with no fluctuations would

have stayed uniform and isotropic, and no structure would ever form. However,

this is evidently not the case. Guth (1981) proposed a rapid period of exponential

expansion right after the Big Bang, the inflation. This period allows density per-

turbations to originate from quantum fluctuations. These density perturbations,

made of baryonic and dark matter, would become the seeds for primordial galaxy

formation.

As the Universe expands and cools down, gravity can now dominate at small

scales. Higher density regions will attract more matter and become denser, while

voids will become emptier. White & Rees (1978) proposed a two-stage theory for

galaxy formation and clustering. (Cold) dark matter, which is collisionless and

will thus not heat up, will collapse and relax into so called dark matter haloes.

Baryonic mass will then fall into the potential wells created by the dark matter

haloes. As the gas is infalling, its gravity will dominate over the dark matter

halo, and it will collapse in clumps, originating stars. Dark matter haloes can

grow by merging with other dark matter haloes.

The formation of stars through gravitational collapse of gas is heavily influ-

enced by gas cooling. As the gas compresses, it heats, with radiative cooling

removing the excess energy. In this period of the Universe, only light elements
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(hydrogen, helium) are present, which are very inefficient at cooling, with the

main cooling mechanism being through H2 molecules (Palla et al., 1983; Silk,

1977). This leads to the first generation of stars (Population III, Pop III) being

very massive, with earlier works predicting masses up to 1000 M� (Nakamura &

Umemura, 2001) or even higher (Bond et al., 1984; Carr et al., 1984). The shape

of the Initial Mass Function (IMF)1 of Pop III stars and its boundaries2 is chal-

lenging to estimate, but significant progress has been made in constraining them

through simulations (Nakamura & Umemura, 2001). Due to their high mass, Pop

III stars are very bright and short-lived. After ∼ 100 Myr, 10-35 M� Pop III stars

explode into type II supernovae (Nakamura & Umemura, 2001), releasing heavy

elements into the IGM.

The first sources of light produce ioniosing photons which gradually turn a

then neutral Intergalactic Medium (IGM) into an ionised one (e.g. Couchman

& Rees, 1986; Fukugita & Kawasaki, 1994; Ostriker & Gnedin, 1996), with this

period being aptly named the epoch of reionisation (EoR). The reionisation of

the Universe was likely driven by two types of sources, quasars and star-forming

galaxies. The relative contribution of each and whether their contributions are

even enough to reionise the Universe remain big open questions which high red-

shift studies strive to answer (see e.g. Verhamme et al., 2017). Quasars do not

seem to be able to reionise the Universe by themselves (e.g. Cowie et al., 2009;

Fontanot et al., 2012), but a population of faint Active Galactic Nucleus (AGN)

recently reported by Giallongo et al. (2015) could provide the missing contribu-

tion assuming a 100% escape of ionising photons. Similarly, star-forming galaxies

could in principle reionise the Universe if enough ionising photons and thus Ly-

man Continuum radiation (LyC) escapes to the IGM. The escape fraction of LyC

photons and the escape fraction of Lyα photons is correlated (Dijkstra, 2017),

and Lyα has been shown to escape more easily from UV-faint galaxies (Dijk-

stra, 2017). This population of UV faint galaxies which have high escape of Lyα

photons (and LyC photons) could have the necessary conditions to reionise the

Universe, and the discovery of galaxies with these properties provides a better

understanding of reionisation.

1empirical function that quantifies the initial mass distribution of a stellar population
2lower and upper mass limits at which stars are allowed to form for a specific IMF
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Planck Collaboration et al. (2018) places the EoR at z = 7.82±0.71 (assuming

an instantaneous reionisation) but studies of the Lyman forest of quasars have

shown that it extends until z ∼ 6 (Fan et al., 2006). In fact, multiple studies

have proposed the EoR as being a patchy inhomogeneous period with preferred

locations (e.g. Matthee et al., 2015; Santos et al., 2016), with galaxies emitting

ionising radiation and carving ionised bubbles around them (e.g. Cen & Haiman,

2000; Hu et al., 2016; Mason & Gronke, 2020; Matthee & Sobral, 2020; Matthee

et al., 2018).

1.2 Observational tools to explore the z > 2 Uni-

verse

With the basic principles of primordial galaxy formation in a ΛCDM Universe now

laid out, we will cover the observational bases and tools necessary to directly (or

indirectly) find galaxies in the distant (z > 2) and young (< 2 Gyr) Universe, and

to measure their properties throughout cosmic time. During the past two decades,

giant leaps have been taken in our understanding of early galaxy evolution, mostly

due to the advent of a plethora of multi-wavelength data, with increasing depth

and resolution, from state-of-the-art facilities such as the Hubble Space Telescope

(HST), the Very Large Telescope (VLT) and the Atacama Large Millimeter Array

(ALMA), among many others.

1.2.1 Overview of the spectral energy distribution of a

galaxy

A galaxy consists mainly of stars, gas and dust gravitationally bound together in

a dark matter halo. Each star emits approximately as a black body, with the in-

tensity at some wavelength being a function of its temperature. Emitted radiation

will interact with the gas and recombine in the form of emission lines. Dust ab-

sorbs emission as a function of wavelength and re-emits in the mid- to far-infrared

5



1.2 Observational tools to explore the z > 2 Universe

(MIR, FIR). The total emission of a galaxy will be all these individual (but in-

terlinked) components summed together. Disentangling all this information to

obtain intrinsic properties of a galaxy such as its stellar mass can be a daunting

task. We show in Figure 1.1 a fiducial spectral energy distribution (SED) tem-

plate of observed emission from a z = 3 galaxy at different wavelengths, from

X-ray to radio, and the causes of emission.

The stellar component (emission from stars) directly contributes to the SED

from rest-frame ultraviolet (UV) to infrared (IR). Blueward of rest-frame 912 Å

(Lyman limit, with 912 Å being the photoionisation potential of the atomic hy-

drogen) there is a distinct characteristic break (Lyman break), where the flux

abruptly drops to zero. This is a consequence of radiation more energetic than

the Lyman limit being easily absorbed by neutral gas in star-forming regions. The

detection and position of this break has been extensively used in high redshift

searches (see Section 1.2.2.1). Nebular emission from gas that gets ionised from

e.g. photons from young stars will emit from optical to FIR, most significantly

in the form of emission lines, which have also been extensively used to select

and follow-up high redshift galaxies (see Section 1.2.2.2). Thermal emission from

dust happens when emission from e.g. stars gets absorbed by dust and re-emitted

approximately as a blackbody in the FIR.

Additionally, a galaxy can have very significant contribution from an AGN,

i.e. from the supermassive black hole in the centre of a galaxy in the process

of accreting matter, which when active can boost emission across the full wave-

length spectrum. AGN can have X-ray emission from inverse Compton effect

and Synchrotron radiation, UV-NIR emission from the disk and torus, and radio

Synchrotron emission from radio AGN. It is important to establish whether a

galaxy has an active AGN boosting its photometry before deriving physical prop-

erties from its spectral energy distribution. While the central supermassive black

hole is very small in size compared to the scale of a galaxy, it can dominate the

emission at certain wavelengths. Additionally, the supermassive black hole even

seems to regulate galaxy processes, with the peak of super massive black holes

activity coinciding with the peak of star-formation history (e.g. Aird et al., 2010;

Calhau et al., 2017; Delvecchio et al., 2014; Shankar et al., 2009).
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Figure 1.1: Overview of observed emission from a z = 3 star-forming galaxy with
an AGN, identifying the key mechanisms that originate emission at different wave-
lengths, from X-ray to radio. We show the contribution from the stellar component
(light blue line), nebular emission (including Lyα, black line) and thermal emission
from dust and PAHsa (red line). Shaded regions show the contribution from the
AGN disk (blue) and torus (red), and X-ray emission from inverse Compton effect
and Synchrotron radiation (green). The dark blue line is the contribution from X-
ray binaries. X-ray hard Synchrotron with no absorption (green dotted line, left)
and the radio Synchrotron emission from radio AGN and supernovae (green dashed
line). The telescopes Chandra, Herschel and VLA can follow up the template z = 3
galaxy in the X-ray, FIR and radio, respectively. The grey shaded regions mark
the Chandra and VLA filters for such a multi-wavelenght follow-up in Calhau et al.
(2020), credited for this figure.

aPAHs (polycyclic aromatic hydrocarbons) are associated with strong emission lines which
can dominate the MIR spectrum of star-forming galaxies (e.g. Cortzen et al., 2019).
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1.2.2 Observational strategies to hunt for distant galaxies

Multiple strategies have been deployed to search for young galaxies in the distant

Universe. Here, we focus on two main approaches: rest-frame UV continuum

searches and emission line searches.

1.2.2.1 Rest-frame UV continuum searches

UV searches have successfully used the Lyman break selection technique (Steidel

et al., 1996a) to select tens of thousands of galaxies at z ∼ 2− 10 (e.g. Bouwens

et al., 2015; Bunker et al., 2004; Finkelstein et al., 2015; Ono et al., 2018; Reddy

& Steidel, 2009; Steidel et al., 1999), by searching for a characteristic feature of

galaxy emission: the redshifted Lyman break (see Section 1.2.1). In Figure 1.2 we

provide an example of the photometric profiles of Lyman Break galaxies (LBGs),

showing the sharp break in photometry from stacked broad band imaging in 8

bands of 754 LBGs in the range z = 5− 6 (McLure et al., 2009).

Typical strategies to detect LBGs focus on obtaining extremely deep observa-

tions of small areas of the sky (e.g. Bouwens et al., 2010, 2015; Finkelstein et al.,

2015), targeting well-known patches of the sky such as the Hubble Ultra Deep

field. Sources selected this way are typically too faint for spectroscopic follow-up

and for multi-wavelength follow-up with e.g. ALMA. Multiple studies have also

resorted to targeting clusters to search for gravitationally lensed high redshift

galaxies (e.g. Atek et al., 2015; Bartelmann, 2010; Zitrin et al., 2015), which re-

veals even fainter populations that require amplification to be detected. Sources

selected this way are typically also difficult to follow up and require lensing mod-

elling to reconstruct the amplified image. Some other studies have targeted wider

areas (e.g. Bowler et al., 2017; Ono et al., 2018), which has led to the discovery of

brighter LBGs, pushing the observing limits of z = 4 LBGs from MUV ∼ −23 to

as bright as MUV ∼ −26. While a significant fraction of these extremely bright

MUV sources are AGN (Ono et al., 2018), they reveal an important population

which statistically can only be detected by probing large volumes (∼ 1 source per

108 Mpc3), which can be ∼ 2−3 orders of magnitude larger than volumes probed

by typical surveys.
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1.2 Observational tools to explore the z > 2 Universe

Figure 1.2: Stacked photometry in 8 broad bands of 754 galaxies at z = 5− 6. A
sharp break in colour, associated with the Lyman break, is visible in the top left
panels. Top row: BVRi’. Bottom row: z’JHK. Credit McLure et al. (2009).

1.2.2.2 Rest-frame optical emission line surveys

Alternatively, some studies have selected large samples of galaxies by searching for

their most prominent features: emission lines. Up to z ∼ 2.2, Hα (λrest = 6563 Å)

has been commonly used to select and study star-forming galaxies (SFGs). Hα is

a non-resonant line, requiring only a dust correction when converting luminosity

to star-formation rate (see Section 1.2.3, and see also Sobral et al. (2013) for SFR

measurements of Hα emitters at z = 0.40− 2.23). At higher redshifts, which we

aim to probe in this thesis, Hα gets redshifted into the MIR and can no longer be

observed from ground-based telescopes, with alternatives being necessary until

new generations of space telescopes are capable of conducting Hα surveys. Lyα

(λrest = 1216 Å), being intrinsically the brightest emission line in the UV-optical

range due to the abundance and nature of atomic hydrogen, is an option to explore

the z > 2 Universe. It has been very successful in selecting high redshift galaxies

(see Section 1.4), albeit its complex radiative transfer and resonant nature make

it challenging to interpret (for a review see Dijkstra, 2017). Constructing large

samples of galaxies with Lyα emission and studying their evolution across cosmic

time is the focus of this thesis.
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1.2.3 Quantifying galaxy activity: star-formation rates

As we seek to measure galaxy evolution, we introduce a key parameter which

quantifies how active a galaxy is: the star-formation rate (SFR), i.e. the mass of

stars formed per unit of time. While stellar formation occurs with the collapse of

clouds of gas in star-forming regions, resolving such regions individually within

a z > 2 galaxy is not possible with current instrumentation and techniques (al-

though there is significant progress in simulations to reach ∼10 pc resolutions,

e.g. Agertz & Kravtsov, 2015; Muratov et al., 2015; Shimizu et al., 2019). We

can thus only estimate the SFR of the entire galaxy system, and measurements

should be interpreted as the total SFR of the whole galaxy. As the only observ-

able is emission at different wavelengths, inferring the rates of stellar formation in

galaxies is thus a problem of measuring mass from light (for a review see Madau

& Dickinson, 2014).

The process of forming stars creates signatures, which we can use to trace and

measure the SFR. These tracers of star-formation are mostly associated with the

presence (or death in the form of supernovae) of very massive O and B stars, which

are short-lived and emit vast amounts of ionising photons. These include direct

tracers such as the UV light, which is directly emitted by these very massive stars,

or more indirect tracers such as nebular emission in the form of e.g. Hα and Lyα

(with the later being harder to translate directly into SFR due to the complex

radiative transfer associated with this line, see Section 1.3.3) and also infrared

emission due to dust absorbing UV radiation and re-emitting in the MIR-FIR.

All these calibrations are based on estimating the Lyman continuum emitted by

the most massive stars and inferring the contribution of the full stellar population

under some assumptions of the initial mass function (within a mass boundary)

and a prescription of stellar evolution.

• UV as a SFR tracer

UV light traces recent star-formation in the past 100 Myr (e.g. Boselli et al.,

2001; Salim et al., 2009), as very hot and massive stars that emit copious

UV radiation are short-lived, with their detection being evidence of a recent

episode of star-formation. Very massive stars dominate emission in UV,

around 1500 Å, and we can use this wavelength range to estimate the SFR.
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Assuming a Salpeter (1955) IMF with mass range 0.1-100 M�1, and the

prescription from Madau et al. (1998) we can estimate SFR directly from

the UV luminosity as (Kennicutt, 1998):

SFRUV [M� yr−1] = 1.4× 10−28Lν , (1.1)

with Lν being the UV luminosity in erg s−1 Hz−1, computed at rest-frame

1500 Å . It should be noted that UV radiation is very susceptible to dust

extinction, and these SFRs require a dust correction.

• FIR as a SFR tracer

Dust preferentially absorbs UV photons due to the high cross section of its

grains, and then radiates as a blackbody, with the intensity of the FIR emis-

sion scaling with the intensity of radiation that is absorbed. FIR can thus

be used as an indirect measurement of the UV light (if we can estimate how

much is absorbed) and it is thus an indirect tracer of star-formation. SFR

can be estimated from the FIR luminosity (LFIR) by applying the models of

Leitherer & Heckman (1995) for continuous bursts of age 10−100 Myr, and

adopting a Salpeter (1955) IMF, yielding the relation (Kennicutt, 1998):

SFRFIR [M� yr−1] = 4.5× 10−44LFIR, (1.2)

with LFIR in erg s−1. The FIR provides a window into obscured SFR.

• Nebular lines as SFR tracers

Very massive O and B stars ionise HII regions and originate nebular emis-

sion, in the form of lines such as Hα and Lyα. These nebular lines trace

star-formation activity of very massive stars and can be used to estimate the

SFR. For solar abundances and the same Salpeter (1955) IMF (0.1−100 M�)

that was used in deriving Equation 1.1, the calibrations of Kennicutt et al.

(1994) and Madau et al. (1998) yield (Kennicutt, 1998):

1An assumption of the IMF and its mass boundaries is necessary to estimate the total SFR,
so we can extrapolate the UV emission (traces mostly the contribution from the very massive
stars) to lower masses.
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1.2 Observational tools to explore the z > 2 Universe

SFRHα [M� yr−1] = 7.9× 10−42LHα, (1.3)

with LHα in erg s−1.

Due to Lyα’s resonant nature (see Section 1.3.3), converting Lyα luminosity

to SFR is much more challenging, as the percentage of Lyα photons that

can escape a galaxy can be very uncertain. However, it is possible to infer

Hα luminosity from Lyα luminosity if we can predict the escape fraction

(see Section 1.3 for full details) and assuming case-B recombination (Brock-

lehurst, 1971). For a Salpeter (Chabrier) IMF (0.1−100 M�) and assuming

fesc,LyC = 0, the SFR becomes (Sobral & Matthee, 2019, we provide a more

detailed explanation of the derivation of this equation in Section 1.3.3):

SFRLyα [M� yr−1] =
LLyα × 7.9(4.4)× 10−42

0.042 EW0

, (1.4)

with LLyα in erg s−1 and EW0 in Å.

1.2.4 Cosmic star-formation history

The measurement of the cosmic star-formation density (ρSFR), i.e. mass of stars

formed per unit of time per unit of volume at each epoch of the Universe, offers a

global overview of the evolution of the Universe. Multiple studies with indepen-

dent approaches have measured ρSFR over the past ∼ 12 Gyrs and we now have

a well-defined picture of how the star-formation history of the Universe evolves

with time. We show in Figure 1.3 ρSFR measurements from four distinct methods,

using continuum UV and FIR (see Madau & Dickinson (2014) for a review) or

emission lines Hα (Sobral et al., 2013), [Oii] and Hβ + [Oiii] (Khostovan et al.,

2015). The peak of ρSFR is found to occur at ∼ 2 − 3 (e.g. Karim et al., 2011;

Lilly et al., 1996; Madau et al., 1996), indicating galaxies were on average forming

more stars during this period (cosmic noon), with a subsequent decline for lower

(e.g. Sobral et al., 2013) and higher redshifts (e.g. Bunker et al., 2010; Khostovan

et al., 2015; Stanway et al., 2003). This results in about half of all stellar mass

already being formed by z = 1 (e.g. Bundy et al., 2005; Mortlock et al., 2011).
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1.2 Observational tools to explore the z > 2 Universe

Figure 1.3: Cosmic star-formation history estimated through different ap-
proaches: UV (top left, credit Madau & Dickinson (2014)), IR (bottom left, credit
Madau & Dickinson (2014)), Hα (top right, credit Sobral et al. (2013)), [Oii] and
Hβ + [Oiii] (bottom right, credit Khostovan et al. (2015)). The evolution of ρSFR

with redshift gives a global overview of galaxy evolution in the Universe, painting
a picture where galaxies were on average forming more stars at z ∼ 2− 3 and are
on average less active at both lower and higher redshifts.
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1.3 Lyman-α: a powerful tool to probe the high-

redshift Universe

Hydrogen is the most abundant element of the Universe, currently composing

∼ 75% of the total baryonic mass (Planck Collaboration et al., 2018). Radiative

transfers of this element are thus present everywhere, and become a powerful

tool to study galaxy formation and evolution. The presence of hydrogen lines has

indeed been shown to be ubiquitous in the early Universe:

‘ ‘Nearly 100% of the sky is covered by Lyman-α emission around high

redshift galaxies” - Wisotzki et al. (2018)

We show in Figure 1.4 the detection of the Lyman-α (Lyα; λ0 = 1215.67 Å)

transition of the hydrogen atom at z = 3 − 6, using data from the MUSE in-

strument. Lyα extended emission covers most of the sky when probing faint

enough surface brightnesses, highlighting its significance when studying the early

Universe.

Historically, Lyα was first predicted to be associated with young star-forming

galaxies by Partridge & Peebles (1967):

‘ ‘It seems possible that the Lyman-α line might be detected if it is a

strong feature of the spectra of young galaxies.” - Partridge & Peebles

(1967)

This rests on the assumption that very young, massive and short-lived O and

B stars emit large amounts of ionising photons which first ionise the gas, then

the electrons recombine into atoms in the vast clouds of hydrogen that surround

star-forming regions. The resulting recombination lines, including Lyα, would be

indicative of the existence of on-going star-formation activity and could thus be

used to find young star-forming galaxies. Ever since this prediction, Lyα (either

in emission or absorption) has become a very powerful and widely used tool to

explore the distant Universe. In addition to being used to select young star-

forming galaxies at z > 2 (e.g. Cowie & Hu, 1998; Malhotra & Rhoads, 2004;

Rhoads et al., 2000, 2003), it has been used to map the neutral state of the
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Figure 1.4: Distribution of the observed Lyα emission in the Hubble Ultra Deep
Field. The extended Lyα emission (shown in blue), obtained by the Integral Field
Unit MUSE, is the sum of the Lyα emission in the range 3 < z < 6. This is
superimposed over a colour composite image obtained by HST. Credit Wisotzki
et al. (2018).

Universe across cosmic time through absorption features known as the Lyα forest

(Fan et al., 2006). Lyα is intrinsically the brightest line in the UV-optical range,

making it a staple in high redshift studies of galaxy formation and evolution, for

both the selection (e.g. Cowie & Hu, 1998; Ouchi et al., 2008) and spectroscopic

confirmation (e.g. Caruana et al., 2014; Ono et al., 2012; Pentericci et al., 2011;

Stanway et al., 2004) of galaxies, with particular significance at z > 2 where it

can be observed from the ground.

However, Lyα radiative transfer is a very complex process and translating

observed measurements into intrinsic properties is a non-trivial task. In this

section, we will describe the main physics behind Lyα emission and radiative

transfer in galaxies.

1.3.1 The hydrogen atom and its transition lines

A hydrogen atom consists of one electron orbiting around one proton. The elec-

tron is described by two quantum numbers, n (n = 1, 2, ...) and l (l = 0, 1, .., n−1
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Figure 1.5: Transitions of the hydrogen atom. Cascades that result in the emis-
sion of a Lyα photon (2p − 1s) are shown in green and the ones that do not are
shown in red. Credit Dijkstra (2017).

or equivalent l = s, p, d, f..). At its ground state 1s (n = 1, l = 0) the electron has

an energy of −13.6 eV, which is the energy needed to strip the electron from the

atom. When hydrogen absorbs energy, the electron will move to a higher energy

state and then proceed to cascade down to the ground state, obeying ∆l=1 and

emitting a photon at a well defined wavelength for every transition. We show in

Figure 1.5 a diagram of transitions in the hydrogen atom.

When electrons cascade down from higher energy levels to the ground state,

there is a probability that it will end with a 2p − 1s transition (Lyα). There

are two main mechanisms that bring electrons to these higher excited states:

collisions and recombination. Collisions occur when a hydrogen atom interacts

with a free electron, with the free electron transferring some of its kinetic energy

to the hydrogen atom, which will reach a higher energy state. This process

will cool down the gas and is referred to as Lyα production via cooling. The

recombination of a free proton and a free electron will produce a hydrogen atom

with the electron at some quantum state (n, l). The electron will cascade down to

the ground state with a probability of ending with a Lyα transition. The higher

the temperature the lower the probability of producing Lyα.
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1.3.2 Sources of Lyα emission

The most significant sources of Lyα emission are Interstellar HII regions (regions

of atomic hydrogen that is ionised). These regions are powered by young, hot,

massive stars that produce ionising photons that ionise the interstellar medium

(ISM). Recombining protons and electrons will produce hydrogen in excited

states, leading to cascades which include Lyα transitions. We can estimate the

probability of a Lyα line being created, under a few assumptions.

The case-B approximation (Brocklehurst, 1971) assumes the gas is optically

thick to all Lyman series photons (in contrast with case-A where it is assumed

the gas is transparent to all Lyman series), and it is a viable approximation

in Astrophysics as gases efficiently re-absorb very energetic photons. This means

that any Lyman photon produced will get absorbed by a nearby neutral hydrogen

atom and immediately re-emitted, in a process known as resonant scattering.

With each scattering, there is a probability that the cascade will not end with a

Lyman transition but will instead produce other higher order radiative transfers.

Assuming case-B recombination, for a hydrogen cloud with temperature T, the

probability of a recombination event resulting in a Lyα transition is (Cantalupo

et al., 2008):

P(Lyα) = 0.686− 0.106 log10

(
T

104

)
− 0.009

(
T

104

)−0.44

(1.5)

For a temperature of T=104K, the probability is P(Lyα)=0.68, while for a

lower temperature of T=103K, it has a higher probably P(Lyα)=0.77. Other

recombination lines will be produced during the cascade, such as Hα which has a

probability P(Hα)=0.45 for T=104 K (Dijkstra, 2017). This non-resonant line can

be used to calibrate Lyα as the total ratio of fluxes Lyα/Hα is 8.7 (Brocklehurst,

1971).

Lyα emission can also originate from the circumgalactic and intergalactic

medium (CGM/IGM). Here, Lyα emission is triggered by sources external to

these regions, usually star-forming galaxies or AGN. Emission occurs when radi-

ation from these sources is absorbed by the CGM/IGM which, through recombi-

nation, goes through various radiative transfers which include the Lyα transition,
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in a process known as fluorescence. This emission is spatially extended and can

be observed as Lyα haloes around these star-forming galaxies or AGN. It is im-

portant to note that Lyα photons present in the CGM/IGM can be a combination

of the two aforementioned sources of Lyα emission.

1.3.3 Complex radiative transfer physics

The journey of Lyα photons from their emission until they reach the observer is

a difficult one, often shut down through resonant scattering and absorption by

dust. When looking at Lyα emission originated by on-going star-formation in a

star-forming galaxy, we need to consider that these photons have to escape the

(dusty) ISM into the CGM/IGM and then have to travel through the CGM/IGM,

which can be particularly difficult at higher redshifts where reionisation is still

on-going and the medium around galaxies is not completely ionised.

Dust plays a very significant role in whether Lyα photons can escape from the

ISM. Dust grains have sizes of the same order of magnitude as the wavelength

of UV photons. This means that the energetic photons will get easily scattered

and absorbed by dust. Thus, when a Lyα photon hits a grain of dust, it will get

absorbed and radiation will be re-emitted in the FIR. The resonant nature of Lyα

results in much longer path lengths, increasing the probability of Lyα photons

encountering and being absorbed by grains of dust. Other redder, less energetic

lines, such as Hα, will be less affected by dust, and we can use these lines to

estimate intrinsic properties of lines that get destroyed by dust, after correcting

for reddening.

Studies have tackled the complex problem of determining the amount of Lyα

photons that escape by estimating the intrinsic Lyα luminosity and comparing it

with the observed Lyα luminosity. This is quantified as the Lyα escape fraction

(fesc,Lyα), which by definition is the ratio:

fesc,Lyα ≡
LLyα,obs

LLyα,int

, (1.6)

where LLyα,obs is the observed Lyα luminosity and LLyα,int is the intrinsic Lyα

luminosity.
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As previously mentioned, making some assumptions (case-B recombination,

T=104K), the Hα and Lyα luminosity follow the ratios:

LHα =
LLyα,int

8.7
=

LLyα,obs

8.7× fesc,Lyα

, (1.7)

From the Hα luminosity we are able to calculate the SFR (see Section 1.2.3).

However, measuring fesc,Lyα is a difficult task. Hayes et al. (2011) have estimated

fesc,Lyα × ξion
1, where ξion is the ionising efficiency (number of produced ionising

photons per unit UV luminosity; e.g. Matthee et al., 2017a) in samples of galaxies

selected by their Lyα emission (compiling different searches at z ∼ 0 − 8) and

found a significant increase of fesc,Lyα × ξion with redshift, reporting ∼ 1 - 2% at

z ∼ 0.3, ∼ 5% at z ∼ 2 (both using direct measurements of Hα) and ∼ 30 - 50%

at z ∼ 6 (using dust corrected UV-continuum as Hα is no longer available at

these redshifts from the ground), with an abrupt decline at z > 6 which can be

attributed to reionisation. The most simple explanation for the increase in the

escape fraction with redshift is a decrease in the dust content of galaxies, which

would allow more Lyα photons to escape. Using a different approach, Wardlow

et al. (2014) estimated the fesc,Lyα of stacked z = 2.8, 3.1 and 4.5 Lyα emitters

as the ratio between the SFR derived from Lyα luminosity (assuming case-B

recombination) and the intrinsic (obscured+unobscured) SFR derived from SED

templates. They find fesc,Lyα > 10% at all redshifts. These lower limits are

consistent with the global evolution of fesc,Lyα from Hayes et al. (2011).

Sobral & Matthee (2019) propose a simple empirical way to estimate fesc,Lyα

of a galaxy, requiring only the measurement of a much more easy to determine

property, the Lyα equivalent width (EW). The EW is a measurement of strength

of an emission (or absorption) line and by definition the width of continuum

required to integrate in order to obtain the same area as the line (see Equation

2.6). The two properties follow the linear correlation:

1Computed from the ratio between the Lyα star-formation rate density and the UV star-
formation rate density. An evolution of this ratio has historically been interpreted as an evolu-
tion of fesc,Lyα. More recently, an evolving ξion was predicted and defined as an important factor
that would contribute to the ratio (e.g. Matthee et al., 2017a). So the fesc,Lyα measurement
from Hayes et al. (2011) should be interpreted as fesc,Lyα × ξion.
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fesc,Lyα = 0.0048× EW0, (1.8)

where EW0 (Å) is the rest-frame EW. Combining this correlation with Equations

1.3 and 1.7, we can obtain a SFR estimate using only the observed Lyα luminosity

and EW0 (Equation 1.4).

1.4 Searches for Lyα emitters

After describing the mechanics behind Lyα emission and transmission, we now

describe the strategies that have been commonly used to select galaxies with

Lyα emission: Lyα emitters (LAEs). Lyα emission can be observed from ground

based observatories at z > 2, so most Lyα studies are focused on higher redshifts.

At lower redshifts, Hα is more commonly used as its non-resonant nature makes

it easier to interpret. Nonetheless, some studies have searched for Lyα emitting

galaxies at low redshift, such as the Lyα imaging+spectroscopy survey LARS

(The Lyman-alpha reference sample Östlin et al., 2014) which used deep HST

images to provide a reference sample of 14 Lyα emitting galaxies. This refer-

ence sample can be used to establish direct comparisons with its high redshift

counterparts.

The search for high-redshift LAEs started with decades of unsuccessful at-

tempts, with earlier works only being able to produce upper limits (e.g. Lowenthal

et al., 1990; Pritchet & Hartwick, 1987; Thompson et al., 1995). The first LAEs

were discovered in the early 1990s, with the discovery of a z = 2.3 LAE near a

damped Lyα absorber (DLA) (e.g. Lowenthal et al., 1991), and three z = 2.81

candidate LAEs, also near a DLA (Møller & Warren, 1993). Additionally, the

analysis of LBG samples, revealed that only ∼ 50% of LBGs have Lyα emission,

with a significant portion even showing absorption (Shapley et al., 2003).

On the search for LAEs in the early/distant Universe, three main approaches

have been typically used: blind slit spectroscopy (e.g. Bayliss et al., 2010; Cassata

et al., 2011; Martin & Sawicki, 2004; Rauch et al., 2008; Sawicki et al., 2008; Stark

et al., 2007), Integral Field Unit observations (IFU, e.g. Adams et al., 2011; Bacon

et al., 2015; Blanc et al., 2011; Drake et al., 2017a,b; Karman et al., 2015; van
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Breukelen et al., 2005) and narrow (or medium) band surveys (e.g. Arrabal Haro

et al., 2018; Cowie & Hu, 1998; Hu et al., 2010; Iye et al., 2006; Kashikawa et al.,

2011; Konno et al., 2014; Malhotra & Rhoads, 2004; Matthee et al., 2014, 2015;

Murayama et al., 2007; Nilsson et al., 2007; Ouchi et al., 2008, 2010; Rhoads et al.,

2000, 2003; Santos et al., 2016; Shibuya et al., 2012, 2018; Shimasaku et al., 2006;

Sobral et al., 2009; Taniguchi et al., 2005; Westra et al., 2006).

• Narrow band surveys: historically the first approach applied specifically

to hunt for LAEs over large areas. In the late 1990s, Cowie & Hu (1998)

successfully selected a sample of LAEs by using a custom narrow band filter

centred at λ = 5390Å, sensitive to Lyα emission at z = 3.4. This approach

requires imaging observations with one narrow band and at least one broad

band at the wavelength of the narrow band to estimate the continuum of a

galaxy. Sources with significant excess in the narrow band (see Bunker et al.,

1995, and Section 2.3 for a more detailed explanation on the criteria for

sources to be classified as line-emitters) likely have an emission line boosting

the photometry at those wavelengths. Further colour-colour criteria, based

on the presence of the Lyman break is applied to identify Lyα emitters

from the full sample of line-emitters. Narrow band surveys are very efficient

at quickly and cheaply covering wide areas/volumes, to select samples of

thousands of candidate LAEs with little observing time. The wide volumes

covered allow the selection of the brightest (but more rare) sources, which

are prime targets for spectroscopic follow-up (e.g. Hu et al., 2016; Matthee

et al., 2017c; Sobral et al., 2015). Additionally, narrow band surveys could

in principle be conducted with medium bands, efficiently probing wider

redshift slices at the cost of only being sensitive to higher EWs. Being

based on purely photometric surveys, this approach often has an associated

non-negligible interloper fraction (see Section 2.3.5).

• Blind slit spectroscopy: blindly placing long slits in blank areas can be

an effective way to identify and obtain spectra of high-redshift galaxies,

including LAEs, in an unbiased (blind) way. However, placing narrow slits

in blind positions can lead to a significant loss of flux, particularly when

dealing with Lyα emission which can be very extended (see Section 1.5.3).
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Furthermore, the small areas/volumes and hard to estimate completeness

corrections can lead to bias in measurements, particularly when attempting

to probe brighter luminosities.

• Integral field unit observations: with the advent of new generations

of integral field units such as MUSE/VLT, it became possible to obtain

extremely deep data cubes in modest sized areas (∼ 1 arcmin2), with the

added benefit of having not only a photometric survey, but also a spectrum

per pixel. This allows the immediate spectroscopic analysis of LAEs, in-

cluding the study of spectral line profiles of Lyα and other emission lines.

The deep observations provide an excellent probe of very faint luminosities,

much fainter than the ones reached by e.g. narrow band surveys, allowing

the constraint of the faint end slope of the luminosity function. However,

the small volumes probed (when compared to narrow band surveys) are

not enough to analyse the brightest luminosity regimes, and also are more

subject to cosmic variance.

The different approaches (among others, e.g. slitless spectroscopy with HST)

are sensitive to different luminosity ranges. Understanding their scope and limi-

tations, and combining measurements from multiple surveys can provide a much

more clear picture of the full population of LAEs.

1.5 Properties of Lyα emitters

Here, we give a brief overview of the characteristic properties of galaxies selected

by the strength of their Lyα emission.

1.5.1 Nature of LAEs: star-forming galaxies vs AGN

We have discussed how Lyα emission is expected to be a strong feature of young

star-forming galaxies (Partridge & Peebles, 1967) but also in AGN. The nature

of LAEs can thus be very distinct, but observations can reveal the origin of Lyα

emission. Very broad emission lines in the spectra of galaxies is typically indica-

tive of AGN activity (e.g. Sobral et al., 2018b), with the broadening being caused
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Figure 1.6: UV luminosity dependence on Lyα luminosity for a sample of z ∼ 2−3
LAEs. There is a clear division between SFGs and AGNs, with the latter populating
the most luminous regimes, both in UV and Lyα. Credit Sobral et al. (2018b).

by a rotating accretion disk. Furthermore, line ratios can also shed some light

on the presence of an AGN, as AGNs typically have stronger metal lines. Aside

from the differences revealed by the spectra, there is also significant photomet-

ric differences between the SFG and AGN Lyα emitting populations. In Figure

1.6, we show the UV luminosity dependence on Lyα luminosity for a sample of

z ∼ 2− 3 LAEs (Sobral et al., 2018b). There is a clear distinction between SFGs

and AGNs, with the latter dominating the more luminous regime, both in UV and

Lyα. The transition from star-forming dominated to AGN dominated happens

at 2×L∗ (characteristic luminosity) and can be linked with a physical limit for

the maximum observed output of an unobscured starburst (Sobral et al., 2018b).

Additionally, emission in the X-ray and radio is indicative of AGN activity

(see Section 1.2.1). While X-ray and radio emission can be originated by star-

forming processes due to X-ray binaries (e.g. Lehmer et al., 2016) and relativistic

electrons accelerated by supernovae remnants (Condon, 1992), respectively, direct

detections in the X-ray or radio at z > 2 should be dominated by AGN activity.

In this work, LAEs are classified as candidate AGN if they are directly detected
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in X-ray or radio (see Calhau et al., 2020), although we note this only gives a

lower constrain on the total number of AGNs, as not all AGN have strong X-ray

or radio emission.

1.5.2 Ages and metallicities

The age and metallicity of a population of stars influences the Lyman contin-

uum output. As such, the strength of the Lyα emission will also be conditioned

by intrinsic properties of the population. Schaerer (2003) used stellar synthesis

models to show that high Lyα EW is associated with younger populations, lower

metallicities and/or top heavy IMFs. LAEs, which are by definition galaxies with

strong Lyα emission, will thus be typically associated with these properties. In

Figure 1.7, we show the Lyα EW dependence on age. For any fixed metallicity, a

higher Lyα EW0 translates into a younger age. By lowering the metallicity, this

dependence shifts to even higher Lyα EW0. These trends are qualitatively the

same for both a burst or constant star-formation history.

1.5.3 Size/morphology

The size or morphology of a galaxy reveal on-going physical processes. Lyα

photons suffer resonant scattering when escaping a galaxy, increasing the random

walks and the likelihood that a Lyα photon will get absorbed by dust, with the

escape fraction being constrained by the morphology of a galaxy (see discussion

in Paulino-Afonso et al., 2018). LAEs are found to be very compact in the UV

(Malhotra et al., 2012; Paulino-Afonso et al., 2018). This may suggest that a

compact morphology favours the escape of Lyα photons. In Figure 1.8, we show

the UV sizes at different redshifts of continuum-selected galaxies and LAEs. UV

sizes of continuum-selected galaxies are typically much larger but at z > 4 they

become very similar to the sizes of LAEs, which are always small. This suggests

that typical star-forming galaxies become LAE-like at high-redshift, possibly due

to a bigger overlap between the two populations.

On the other hand, Lyα emission is very extended. This is a consequence of the

resonant scattering that Lyα photons suffer in the gas that surrounds galaxies,
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Figure 1.7: Lyα EW0 dependence on age. For a fixed metallicity, younger popu-
lations have higher Lyα EWs. In addition, lower metallicities result in higher Lyα
EWs, for both burst and constant star-formation history (SFH). Credit Hashimoto
et al. (2017).

creating Lyα halos (e.g. Momose et al., 2014). In Figure 1.9, we show Lyα

emission, compared to Hα and UV-continuum emission in a sample of z = 2.23

Hα-selected galaxies (Matthee et al., 2016). Lyα emission is extended over much

larger scales than both UV continuum and the non-resonant line Hα.

1.5.4 Line profiles

The spectral profile of the Lyα emission line reveals the intrinsic conditions of

a galaxy and surrounding IGM/CGM, such that the escape of Lyα photons is

possible at the wavelengths given by the shape of the profile (see e.g. Hayes et al.,

2020). The Lyα profile is modulated by the kinematics of the HII region where it

is produced (Section 1.3.2), but also modulated by the resonant scattering that

occurs within such HII regions. The constant scattering will lead to a broadening

of the line and a subsequent wing scattering (Adams, 1972; Neufeld, 1990), which

combined with the higher optical depth at the line centre leads to a double peaked

profile. The separation of peaks will depend on the column density. Furthermore,
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Continuum-selected galaxies have much larger re than LAEs at z < 3 but become
smaller with increasing redshift and converge to the same re at z ∼ 5. Credit
Paulino-Afonso et al. (2018).

Figure 1.9: Lyα extended emission, compared to Hα and UV-continuum emission
for a sample of z = 2.23 Hα-selected galaxies. Credit Matthee et al. (2016).
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1.5 Properties of Lyα emitters

due to the preferred absorption at bluer wavelengths, the blue peak will often get

attenuated, leading to a typical Lyα line profile consisting of a single asymmetric

red peak. A strong blue peak is associated with a low gas column density, with

the detection of a blue peak becoming exceedingly rare at z > 6, when the IGM is

still mostly neutral. However, a detection of such a blue peak has been reported

at z = 6.6 (Hu et al., 2016; Matthee et al., 2018), which reveals the powerful

dynamics of LAEs which can carve ionising bubbles around them.

1.5.5 Luminosity functions

The luminosity function (LF), i.e. the number density of sources per luminosity

bin, of LAEs and its evolution with redshift provides direct insight in the LAE

population. Earlier works have obtained LFs of LAEs in individual redshift slices

between z = 3 and z = 6 (e.g. Malhotra & Rhoads, 2004; Murayama et al., 2007;

Ouchi et al., 2008), with Ouchi et al. (2008) reporting little redshift evolution at

z ∼ 3 − 6. On the other hand, the characteristic number density of the UV LF

of LBGs decreases with redshift (Bouwens et al., 2015; Finkelstein et al., 2015),

which in a first approach may not be expected since UV and Lyα are associated

with the same star-forming processes (both trace emission from very massive O

and B stars, see Section 1.2.3). Such distinct trends of evolution can however

be explained by an evolution of the escape fraction of Lyα photons, lower dust

content with increasing redshift, an evolution of the ionising efficiency and/or a

combination of all. It is also important to explore whether these trends hold for

larger volumes, which both reduce cosmic variance but also allow the probe of

the most luminous regimes.

Matthee et al. (2015) and Santos et al. (2016) explored a large volume to

select LAEs at two individual redshift slices (z = 6.6 and z = 5.7, repectively)

and to probe the evolution of the LF near the epoch of reionisation. We show

in Figure 1.10 the Lyα LF at z = 5.7 and z = 6.6 (and beyond). Previous

works suggested that due to Lyα being easily shut down by neutral hydrogen,

the number densities of LAEs would very significantly drop at at z > 6. However,

using a very wide area approach, it was shown that even at z = 6.6 there are still

many extremely luminous LAEs e.g. CR7, MASOSA (Sobral et al., 2015), VR7
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Figure 1.10: Evolution of the Lyα LF from z = 5.7 to z = 6.6. There is a strong
decrease with increasing redshift in the number density of faint LAEs. However,
there is little evolution in the number densities of bright LAEs, which can be
explained by a preferential reionisation around the brightest sources, which can
ionise the IGM around them and be observed. Credit Santos et al. (2016).
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(Matthee et al., 2016) and Himiko (Ouchi et al., 2010), among others (Matthee

et al., 2017c). Such sources can only be observed at those redshift ranges if they

can carve ionised large bubbles around them, allowing Lyα to redshift out of the

resonance wavelength and escape. Santos et al. (2016) report that the number

densities of LAEs drops substantially for the faint end, but there is little evolution

on the bright end. This differential evolution of the LF of LAEs, together with

measurements of the extent of Lyα emission favour the line of thought that very

bright sources are capable of ionising their own bubbles, and allow the escape of

Lyα photons even at z = 6.6, while faint sources are not capable of doing it, and

will only be observed if they are inside the bubbles of other sources of if they are

clustered.

1.6 This Thesis

In this thesis, we aim to improve our current understanding of the evolution

of galaxies properties at z ∼ 2 − 6, particularly focusing on young star-forming

galaxies. We achieve this by constructing a large sample of Lyα emitting galaxies,

which we select with a compilation of narrow and medium bands over the 2 deg2

of the COSMOS field. We use this sample to measure the properties of these

galaxies, such as number densities, stellar masses and star formation rates and

estimate how they evolve with redshift.

This thesis can be summarised in the following key points:

• constructing a large sample of ∼ 4000 LAEs at 16 specific redshift slices

between z ∼ 2 and z ∼ 6, selected over large co-moving volumes with

similar selection methods (Chapter 2)

• building Lyα luminosity functions at z ∼ 2 to z ∼ 6 and measuring their

evolution with redshift (Chapter 3)

• estimating the evolution of the Lyα escape fraction from the integrated

luminosity functions (Chapter 4)
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• conducting aperture photometry in 34 individual filters from rest-frame UV

to FIR to measure the spectral energy distribution of our SC4K sample of

LAEs (Chapter 5)

• measuring how SED-derived properties (stellar mass, UV luminosity, UV

slopes) evolve with redshift (Chapter 6)

• building UV luminosity and stellar mass functions of LAEs at z ∼ 2 to

z ∼ 6 and measuring their evolution with redshift (Chapter 7)

We present our final conclusions in Chapter 8, and also discuss possible future

work and questions still unsolved.

Throughout this thesis we use a ΛCDM cosmology with H0 = 70 km s−1

Mpc−1, ΩM = 0.3 and ΩΛ = 0.7. All magnitudes are presented in the AB system

(Oke & Gunn, 1983). In Chapters 2-4 we use a Salpeter (Salpeter, 1955) initial

mass function (IMF), and in Chapters 5-7 we use a Chabrier (Chabrier, 2003)

IMF.
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Chapter 2

Slicing COSMOS with SC4K:

constructing a sample of z ∼ 2− 6

Lyα emitters
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Abstract

We present and explore deep narrow and medium band data obtained

with the Subaru and the Isaac Newton telescopes in the∼ 2 deg2 COS-

MOS field. We use these data as an extremely wide, low-resolution

(R ∼ 20 − 80) IFU survey to slice through the COSMOS field and

obtain a large sample of ∼ 4000 Lyα emitters (LAEs) from z ∼ 2

to z ∼ 6 in 16 redshift slices (SC4K). This unique sample of star-

forming galaxies (and AGNs), provides a unique opportunity to probe

for galaxy evolution in a sample selected by the same selection meth-

ods.



2.1 Introduction

2.1 Introduction

Understanding how galaxies form and evolve across cosmic time is a complex

challenge which requires identifying and studying the inter-dependencies of key

physical mechanisms over a range of environments (see e.g. Crain et al., 2015;

Henriques et al., 2015; Muldrew et al., 2018; Schaye et al., 2015), informed by a

variety of observations (e.g. Muzzin et al., 2013). It is now well established that

the star formation rate density (SFRD) of the Universe evolves with redshift,

peaking at z ∼ 2−3 (e.g. Karim et al., 2011; Lilly et al., 1996; Madau & Dickinson,

2014; Sobral et al., 2013) and declining at even higher redshift (e.g. Bouwens et al.,

2015; Khostovan et al., 2015), but several questions related to the physics of such

evolution remain unanswered.

In order to unveil the evolution of physical properties of galaxies and active

galactic nuclei (AGN) across time one requires self-consistent selection methods

which can be applied across redshift. The Lyman Break selection (e.g. Giavalisco

et al., 1996; Koo & Kron, 1980; Steidel & Hamilton, 1993) has been successfully

used to produce large samples of galaxies up to z ∼ 10 (e.g. Bielby et al., 2016;

Bouwens et al., 2014a,b; Ellis et al., 2013; Finkelstein, 2016; McLure et al., 2010)

through extremely deep optical to near-infrared (NIR) observations. However,

UV-continuum selected samples using the Hubble Space Telescope (HST) are

typically too faint (e.g. Atek et al., 2015) for extensive spectroscopic follow-up,

particularly when probing distant look-back times (but large area surveys can still

provide ideal follow-up targets e.g. Bowler et al., 2014, 2017). One alternative is

to select galaxies by their hydrogen nebular recombination lines, such as Hα in

the rest-frame optical (e.g. Colbert et al., 2013; Sobral et al., 2013) or Lyman-α

(Lyα; λ0 = 1215.67 Å) in the rest-frame UV.

Lyα is intrinsically the strongest emission line in the rest-frame optical and

UV (e.g. Partridge & Peebles, 1967; Pritchet, 1994) and it is routinely used to

select high redshift sources (z ∼ 2−7; see e.g. Malhotra & Rhoads 2004). Lyα is

expected to be emitted by young star-forming galaxies (e.g. Charlot & Fall, 1993;

Pritchet, 1994), but it is also observed around AGN (e.g. Miley & De Breuck,

2008). Searches for Lyα emitters (LAEs) have created samples of thousands of

galaxies/AGN, including sources that are too faint to be detected by continuum
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based searches (e.g. Bacon et al., 2015). The techniques used to detect LAEs

include narrow band surveys (e.g. Hu et al., 2010; Konno et al., 2018; Matthee

et al., 2015; Ouchi et al., 2008; Rhoads et al., 2000; Westra et al., 2006; Zheng

et al., 2017), Integral Field Unit (IFU) surveys (e.g. Bacon et al., 2015; Drake

et al., 2017a; van Breukelen et al., 2005) and blind slit spectroscopy (e.g. Cassata

et al., 2011, 2015; Martin & Sawicki, 2004; Rauch et al., 2008). Galaxies selected

through their Lyα emission allow for easy spectroscopic follow-up due to their

high EWs (e.g. Hashimoto et al., 2017) and typically probe low stellar masses

(see e.g. Gawiser et al., 2007; Hagen et al., 2016; Oyarzún et al., 2017). Narrow

band and/or IFU surveys have the added benefit of being truly blind, and thus

allow a good assessment of the volume and selection completeness.

Unfortunately, inferring intrinsic properties of galaxies from Lyα observations

alone can be challenging due to the highly complex resonant nature of this emis-

sion line (for a review on the physics of Lyα radiative transfer see e.g. Dijkstra,

2017, and see also Section 1.3.3). A significant fraction of Lyα photons is scattered

by the Inter-Stellar Medium (ISM), increasing the likelihood of being absorbed

by dust, and in the Circum-Galactic Medium (CGM) as evidenced by the pres-

ence of extended Lyα halos (e.g. Momose et al., 2014; Wisotzki et al., 2016).

Therefore, the Lyα escape fraction1 (fesc; see e.g. Atek et al., 2008, and see also

Section 1.3.3), the ratio between the observed and the intrinsically produced Lyα

luminosity from a galaxy, is still poorly understood quantitatively. New studies

are now directly measuring fesc of large samples of galaxies and over a range of

redshifts by obtaining Hα and Lyα observations simultaneously (see Harikane

et al., 2018; Matthee et al., 2016; Nakajima et al., 2012; Sobral et al., 2017). For

example, fesc is found to be anti-correlated with stellar mass (e.g. Matthee et al.,

2016; Oyarzún et al., 2017), dust attenuation (e.g. Hayes et al., 2011; Matthee

et al., 2016; Verhamme et al., 2008) and SFR (e.g. Matthee et al., 2016). In-

terestingly, the Lyα EW0 seems to be the simplest empirical predictor of fesc in

LAEs with a relation that shows no evolution from z ∼ 0 to z ∼ 2 (Sobral et al.,

2017) and that may remain the same all the way to z ∼ 5 (Harikane et al., 2018).

1Throughout this study we use fesc to quantify the escape fraction of Lyα photons, not
Lyman-continuum photons.
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“Typical” star-forming galaxies at z ∼ 2 have low fesc (∼ 1−5%; e.g. Cassata

et al. 2015; Oteo et al. 2015), likely because the dust present in their ISM easily

absorbs Lyα photons (e.g. Ciardullo et al., 2014; Oteo et al., 2015; Oyarzún et al.,

2017) and prevents most Lyα emission from escaping (see e.g. Song et al., 2014).

However, sources selected through their Lyα emission typically have ∼ 10 times

higher escape fractions (e.g. Sobral et al., 2017; Song et al., 2014), with Lyα

escaping over ≈ 2× larger radii than Hα (e.g. Sobral et al., 2017). Furthermore,

due to the sensitivity of fesc to neutral hydrogen, Lyα can be used as a proxy of

the ISM neutral gas (HI) content (Konno et al., 2016; Trainor et al., 2015) and

the dust content (Hayes et al., 2011).

Statistically, the number density of LAEs as a function of luminosity (the

luminosity function, LF), encodes valuable information on the global properties

of LAEs and Lyα emission. Observations have revealed that the Lyα LF remains

roughly constant at z ∼ 3− 6 (e.g. Drake et al., 2017a; Ouchi et al., 2008; Santos

et al., 2016). This is in principle unexpected, as the cosmic SFRD, as traced

by the UV LF, drops significantly at those redshifts (e.g. Bouwens et al., 2015;

Finkelstein et al., 2015) and implies that intrinsic properties of galaxies may

be evolving, on average, with redshift. Those may include lower dust content,

leading to a higher fesc which could compensate for a lower intrinsic production of

Lyα photons (e.g. Hayes et al., 2011; Konno et al., 2016). Another possibility is

that ξion, which measures the ratio between ionising (LyC) and UV flux density

increases with redshift (e.g. Duncan & Conselice, 2015; Khostovan et al., 2016;

Matthee et al., 2017a). In practice, a combined increase of both ξion and fesc is

also possible, which could tell us about an evolution of both the typical stellar

populations/burstiness but also on the evolving physics/ISM conditions) of the

escape of Lyα photons.

In this work, we use 16 different narrow and medium band filters (NB/MB)

over the COSMOS field to select a large sample of LAEs in a total co-moving

volume of 6.4× 107 Mpc3 and a wide redshift range of z ∼ 2− 6, addressing the

current shortcomings of deep, small area surveys. Our survey can be seen as a

very wide (≈ 2 deg2), low resolution IFU survey between 400-850 nm, probing

LAEs from the end of the epoch of re-ionisation at z ∼ 6 (e.g. Fan et al., 2006)

to the peak of star-formation history at z ∼ 2− 3.
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We structure this Chapter as follows: Section 2.2 presents the data and the

extraction of sources. Section 2.3 presents the selection of line emitters, the

criteria we applied to select LAE candidates at z ∼ 2 − 6 and the final SC4K

sample. We present a brief summary in Section 2.4.

2.2 Data and source extraction

The COSMOS field (Capak et al., 2007; Scoville et al., 2007) is one of the most

widely studied regions of extragalactic sky, with a plethora of publicly available

multi-wavelength coverage. Data in COSMOS include X-ray, UV, optical, NIR,

FIR and radio (see e.g. Civano et al., 2016; Ilbert et al., 2009; Laigle et al., 2016;

Smolčić et al., 2017). We explore a range of narrow and medium band data

(Capak et al., 2007; Matthee et al., 2017b; Santos et al., 2016; Sobral et al., 2017;

Taniguchi et al., 2007, 2015a) over roughly the full COSMOS field in order to 1)

create detection-catalogues for each band, 2) identify sources with strong excess

emission in those bands relative to their broad band counterparts and 3) obtain

dual-mode photometry on all other bands available in order to further constrain

the (photometric-)redshift of each source. In Figure 2.1 we show the filter profiles

of all the 12 medium bands (MBs) and the 4 narrow bands (NBs) used in this

work. These filters are capable of detecting various emission lines, particularly

redshifted Lyα spanning a wide redshift range, from z ∼ 2 to z ∼ 6.

2.2.1 Medium band data

We retrieve the publicly available fully reduced medium band data (see Table

2.1 and Figure 2.1) from the COSMOS archive (see Ilbert et al., 2009; Taniguchi

et al., 2015a). All data were obtained with the Suprime-Cam (S-Cam) instrument

on the Subaru Telescope (Miyazaki et al., 2002). The data were taken with

seeing conditions varying from 0.6 ′′ to 1.0 ′′, with an overall FWHM of 0.8 ±
0.1 ′′ (see also Muzzin et al., 2013; Taniguchi et al., 2015a). The images have a

roughly similar average depth (Muzzin et al., 2013) but with some exceptions (see

Table 2.1), varying from 26.2 mag (deepest: IA427, IA484 and IA527) to 25.4 mag
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Figure 2.1: Normalised filter profiles used in this work. The top axis indicates
the redshift of Lyα emission for the corresponding observed wavelength. Top: The
broad bands (u, B, g, V , r+, i+ and z+; typical FWHM ∼ 100 nm) which we use
to estimate the continuum for candidate line-emitters and four narrow bands which
we also present in our final catalogue (NB392, NB501, NB711 and NB816; typical
FWHM ∼ 10 nm). Bottom: The 12 medium bands used in this study (typical
FWHM ∼ 30 nm; see Table 2.1) which are sensitive to Lyα emission from z ∼ 2.5
to z ∼ 5.8. Note that some of the medium band filters overlap slightly, which can
result in some sources being detected as LAEs in two consecutive medium bands,
although we note that the overlapping volume is always relatively small.
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Table 2.1: The medium band filters (see Taniguchi et al., 2015a) and the depth
of the data obtained with them, measured directly (3σ; 5σ can be obtained by
subtracting 0.55) in 2′′ apertures and by Muzzin et al. 2013 (M13, 2.1 ′′). We also
transform our measured 3σ limiting magnitude (2 ′′) into a flux limit (in units of
erg s−1 cm−2) in the case of the full flux within the 2′′ medium band aperture being
from an emission line.

Medium Lyα z λc [FWHM] 3σ Depth 3σ Flux 5σ (M13)
Band (Å) (AB) (×10−17 erg s−1 cm−2) (AB)
IA427 2.42− 2.59 4263.5 [207.3] 26.1 4.6 26.1
IA464 2.72− 2.90 4635.1 [218.1] 26.0 4.5 25.8
IA484 2.89− 3.08 4849.2 [229.1] 26.1 3.9 26.1
IA505 3.07− 3.26 5062.1 [231.5] 25.8 4.8 25.9
IA527 3.23− 3.43 5261.1 [242.7] 26.1 3.5 26.1
IA574 3.63− 3.85 5764.8 [272.8] 25.9 4.0 25.7
IA624 4.00− 4.25 6232.9 [299.9] 25.8 4.1 25.9
IA679 4.44− 4.72 6781.1 [335.9] 25.7 4.3 25.6
IA709 4.69− 4.95 7073.6 [316.3] 25.8 3.4 25.8
IA738 4.92− 5.19 7361.5 [323.8] 25.7 3.5 25.6
IA767 5.17− 5.47 7684.9 [365.0] 25.7 3.6 25.4
IA827 5.64− 5.92 8244.5 [342.8] 25.7 3.0 25.4

Table 2.2: The estimated depth of broad band data used in our analysis (3σ).
We measure these by placing 100,000 random 2′′ empty apertures, and computing
the standard deviation of the counts and converting it to magnitudes. The 2σ and
4σ limits can be obtained by adding 0.44 and subtracting 0.31, respectively.

u3σ B3σ V3σ g3σ r+
3σ i+3σ z+

3σ

26.81 27.21 26.50 26.61 26.55 26.12 25.23
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(shallowest, IA767), measured in 2.1′′ apertures (5σ, see Muzzin et al., 2013). We

also obtain our own depth measurements by placing 100,000 empty/random 2′′

apertures in each of the (native) images and determining the standard deviation.

The results are presented in Table 2.1. and, for reference, we also show the depths

measured in Muzzin et al. (2013), who used PSF-matched data (making a direct

comparison non-trivial).

2.2.2 Narrow band data

We complement our medium band data with four narrow band studies in the

COSMOS field: the CALYMHA survey at z = 2.2 (Sobral et al., 2017) and a

z = 3.1 survey (Matthee et al., 2017b) using the narrow band filters NB392 and

NB501, respectively, both mounted on the 2.5 m Isaac Newton Telescope’s WFC.

The NB392 data (λc = 392 nm, ∆λ = 5.2 nm; Sobral et al. 2017) have a 5σ

depth of 23.7-24.5 AB magnitude and a typical PSF-FWHM of 1.8 ′′. The NB501

data (λc = 501 nm, ∆λ = 10 nm) were taken and reduced with a similar strategy

and data-quality as the NB501 data described in Matthee et al. (2017b) and

have a typical 5σ depth of 24.0 AB magnitude with 1.6′′ PSF-FWHM. Limiting

magnitudes for NB392 and NB501 data were measured with 3′′ apertures.

In addition, we also use two narrow band surveys exploring S-Cam data:

z = 4.8 and z = 5.7 (Santos et al., 2016); these have used the narrow band

filters NB711 and NB816, respectively (see Figure 2.1). We note that all NB and

MB selected catalogues have been obtained in similar ways, which we describe in

Section 2.2.4.

2.2.3 Broad band data

We retrieve fully reduced archival broad band (BB) data from the COSMOS

archive. The public archival data consists of mosaics covering the full COSMOS

field, from rest-frame UV to NIR, in the BB filters u, B, g, V , r+, i+, z+, Y , J ,

H and K (Capak et al., 2007; McCracken et al., 2012; Taniguchi et al., 2007).

We provide the 3σ limiting magnitudes in Table 2.2. All data were obtained with

the Suprime-Cam (S-Cam) instrument on the Subaru Telescope (Miyazaki et al.,
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2002). This BB data is necessary to apply our LAE selection criteria, as fully

detailed in Section 2.3.3.

2.2.4 Extraction of sources

To produce the narrow or medium band selected catalogues1 (see e.g. Matthee

et al., 2017b), we follow Santos et al. (2016). Briefly, we start by registering the

u, B, g, V , r+, i+, z+, Y , J , H and K broad band data and all the medium band

(or narrow band) images to a common astrometric reference frame using Swarp

(Bertin et al., 2002). We extract sources with a primary 2′′ aperture2 (but we

note we also extract them with multiple apertures, including mag-auto, a proxy

of the total magnitude) using SExtractor (Bertin & Arnouts, 1996) in dual-

image mode, and with each of the medium band images as the detection image.

Therefore, for each medium band, we create a catalogue with all the detections on

that band, and with the broad band photometry extracted at the coordinates of

each detection. We thus note that our selection is purely based on the detection

of a source in a medium or narrow band, independently of its continuum strength.

Before creating our final catalogues, we investigate the need for any significant

masking to remove low quality regions and diffraction patterns around bright

stars. In addition to removing such regions, we also find that there is a small

area in the corner of the COSMOS field (≈ 0.02 deg2) for which there is no u-

band data. Given that we require blue photometry to select LAEs and reject

lower redshift sources (see Tables 2.2 and 2.3), we mask/exclude this region for

filters bluer than IA574. After masking, the contiguous survey area is 1.94-

1.96 deg2 for the medium band filters and 1.96 deg2 for the NB711 and NB816

filters, while the area covered by the NB392 and NB501 data is 1.21 deg2 and 0.85

deg2, respectively (Matthee et al., 2016; Sobral et al., 2017).

1We conduct the full data analysis and photometry extraction for all the medium bands
(and broad bands), but the data reduction and selection of line-emitters/LAEs in narrow band
images was conducted in previous works (Matthee et al., 2017b; Santos et al., 2016; Sobral
et al., 2017). In this thesis, we combine the narrow band samples with the new medium band
samples, and build the SC4K sample of LAEs.

2Because the NB392 and NB501 data have a broader PSF, photometry has been done with
3′′ apertures.
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Figure 2.2: The colour-magnitude diagrams used for the selection of line-emitters
for the 12 medium bands. Each medium band magnitude is plotted versus the
excess colour, and we identify sources with a high enough EW (corresponding to a
rest-frame EW of > 50 Å for LAEs) and with a significant excess (average Σ > 3).
The selection criteria of LAEs are presented in Table 2.3. MB detections are shown
in black, candidate line-emitters (prior to individual visual checks) are shown in
green and candidate LAEs in red (after visually checking all of them). We assign
the broad band detection limit to sources with no broad band detection. It is
clear from the panels that, on average, the amount and fraction of LAEs greatly
decreases from the bluer (where almost all candidate line-emitters are LAEs) to
the redder filters (where only a small fraction is consistent with being a LAE). The
clustering of points at the top of each panel is an artificial effect of collapsing the
points with no broad band detection above 3σ.
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2.3 Selection criteria: SC4K

2.3.1 Selection of candidate line-emitters

In order to identify sources with candidate emission lines out of all medium band

selected sources, it is necessary to estimate the continuum of each source. As

the central wavelengths of medium bands are typically offset (see Figure 2.1)

from the central wavelengths of their overlapping broad band, we need to in-

vestigate and apply a correction to the medium band photometry (MB0). This

step/correction assures that a measured medium band excess is not dependent

on the intrinsic slope of the continuum (estimated with two broad band magni-

tudes, BB − BBadjacent), similar to corrections applied for narrow band surveys

(e.g. Sobral et al., 2013; Vilella-Rojo et al., 2015). Without such correction,

sources with significant colours could mimic emission lines. In practice this re-

quires re-calibrating either MB0 or BB photometry (or producing a new artificial

BB magnitude) to assure that, on average, sources without an emission-line will

have a zero colour excess (BB −MB ≈ 0) regardless of their continuum colour

(BB−BBadjacent). We do this by evaluating the colour dependence of BB−MB0

on BB− BBadjacent and parameterising it as (calculating m and b):

BB−MB0 = m× (BB− BBadjacent) + b (2.1)

We then use coefficients m and b to finally obtain:

MB = MB0 + (m× (BB− BBadjacent) + b) (2.2)

with the filters listed in Table 2.3. The coefficients m and b are provided in Table

A.2. We note that for some filter combinations both m and b are effectively zero.

For sources without BB−BBadjacent (< 2σ detection in either band) we compute

a median correction which we apply per medium band filter. Typical median

corrections are at the 0.1 mag level and in the 0.0-0.3 range (see Table A.2).

For the selection of line-emitters we follow the same methodology used for nar-

row band surveys (e.g. Matthee et al., 2017b; Sobral et al., 2013, 2017), based on
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Figure 2.3: Distribution of the central rest-frame wavelengths probed by the
different medium band filters (based on photometric or spectroscopic redshifts) of
our continuum-bright (with accurate photometric redshifts) sample of line-emitters
(green histogram) and its subset containing only our final LAEs (red histogram).
The photometric redshifts used in this figure are taken from Laigle et al. (2016).
The black dashed lines are the rest-frame wavelengths of the main emission lines
probed. Our sample of continuum-bright line-emitters with photometric redshift is
predominantly composed by Lyα emitters, followed by a population of Hα emitters,
[Oiii]+Hβ emitters, and finally [Oii] emitters. We find that our Lyα selection
criteria is able to remove the vast majority of lower redshift contaminants whilst
maintaining the bulk of Lyα photometric candidates (see Section 2.3.3).

two main parameters: the emission-line equivalent width (EW), and the emission-

line or excess significance (Σ; e.g. Bunker et al., 1995). In a first approximation,

assuming no background noise in the images, we could define a line-emitter as

being any source which follows:

fMB − fBB > 0, (2.3)

where fMB and fBB are the flux densities1 measured for the two filters.

As the uncertainties in the background noise cannot be neglected, fMB-fBB

needs to be above some significance parameter. The parameter Σ is thus intro-

duced into Equation 2.3.1:

fMB − fBB > Σ×
√

rms2
BB + rms2

MB, (2.4)

where Σ quantifies how significantly above the noise a given BB-MB colour excess

1Note that as a consequence of the way we define/correct MB magnitudes, their flux den-
sities (Fλ) need to be calculated with the same effective wavelength as the corresponding BB.
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is (a high excess can be explained by the presence of an emission line at the

MB wavelength), and rmsBB and rmsMB are the root mean square of the noise

measured in the BB and MB images, respectively.

By converting fluxes to magnitudes, Σ can be written as (Sobral et al., 2013):

Σ =
1− 10−0.4(BB−MB)

10−0.4(ZP−MB)
√

rms2
BB + rms2

MB

, (2.5)

where BB and MB are the broad and the medium band magnitudes and ZP is

the zero-point of the image. We estimate rmsMB and rmsBB by randomly placing

2′′ apertures in the appropriate images and determining the standard deviation

per image. This approach takes spatially correlated noise into account. We

apply an emission-line significance threshold of Σ > 3, similarly to other studies

(e.g. Matthee et al., 2015). In addition to Σ, we also measure the observed EW

(EWobs) of potential lines as:

EWobs = ∆λMB
fMB − fBB

fBB − fMB(∆λMB/∆λBB)
, (2.6)

where ∆λMB and ∆λBB are the FWHM of the medium (see Table 2.1) and broad

band filters (Capak et al., 2007; Taniguchi et al., 2015a). We show the selection

cuts in Figure 2.2.

Typical narrow band surveys apply a Lyα rest-frame EW (EW0) cut of ≈ 25 Å

(e.g. Ouchi et al., 2008), mostly to avoid contamination from other line-emitters,

as Lyα is typically the line with the highest observed EW (but see also other

high EW contaminants in e.g. Sobral et al., 2017). Recent surveys also explored

lowering this cut, showing that a few extra real Lyα sources may be recovered in

those cases, which can populate the bright end (Sobral et al., 2017, see also VUDS,

e.g. Le Fèvre et al. 2015), but also introduce many extra contaminants. Given

that we are using wider filters in comparison to the typical narrow band filters,

we are forced to use a higher observed EW cut to retrieve clean samples of line-

emitters. For our analysis, we find that setting an observed EW cut from 175 Å

to 340 Å from the bluest (narrowest) to the reddest and broader filters is able

to recover clean samples of line emitters and yields an homogeneous rest-frame
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Lyα equivalent width cut of EW0 > 50 Å for all of our medium bands. Note that

our EW0 cut (for LAEs) is about twice the typical used in narrow band surveys

(25 Å; see e.g. Santos et al. 2016), implying we are likely less contaminated by

lower redshift line-emitters, but that we may be less complete. We take this into

account when deriving completeness corrections, but we note that, in practice,

the vast majority of LAEs at high redshift show EW0 > 50 Å; see e.g. Ouchi

et al. (2008). For an in-depth analysis of selecting LAEs with different EW0 cuts

see Sobral et al. (2017).

The full selection procedure to search for candidate emission-line sources is

illustrated in Figure 2.2, which shows the medium band colour excess versus

medium band magnitude for each band. It can be seen that the EW threshold is

well above the scatter at bright magnitudes (. 23). In total, we identify 40,726

potential line-emitters, with each medium band contributing with roughly 2,000-

3,000 emitters to the sample. We note, nonetheless, that we expect our full sample

of ≈ 40 k candidate line-emitters to still be contaminated by e.g. artefacts around

bright stars, cosmic rays, and due to other image defects. In order to fully address

this possibility, we visually inspect every single source in our final sample (see

Section 2.3.4), but we first filter out lower redshift emitters and isolate candidate

LAEs.

2.3.2 Photometric and spectroscopic redshifts

In order to test how robust our emission-line selection criteria are, we use a large

compilation of photometric and spectroscopic redshifts (e.g. Ilbert et al., 2009;

Laigle et al., 2016; Lilly et al., 2007). For each medium band, we look at the

distribution of publicly available photometric and spectroscopic redshifts of the

line-emitter sample. By converting each photometric redshift value to a rest-frame

wavelength assuming the source has an emission line at the central wavelength

of the corresponding medium band, we obtain Figure 2.3. We find evidence for

the presence of a large population of Hβ+[Oiii]5007 and Hα emitters, although

the sample is dominated by candidate LAEs. Excluding the dominating LAEs,

the most common remaining sources are Hα emitters, followed by [Oiii]+Hβ.

[Oii]3727 emitters represent a less frequent population among all the candidate
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Table 2.3: The selection of LAEs from the sample of all line-emitters, using an
observed EW threshold of EW > 50 × (1 + z) Å and Σ > 3. The relevant LAE
colour selection is given in the table. Numbers of LAEs are given after visually
inspecting all candidate LAEs and rejecting interlopers. As described in the Sec-
tion 2.3.3, colour criteria are based on the Lyman break technique and removing
sources with very red colours red-wards of the emission-line (which indicates that
the potential Lyman break is actually a Balmer break and that the line is not
Lyα). We note that we explicitly perturb these colour selections with Markov
chain Monte Carlo (MCMC) simulations and include the results in the errors when
we estimate luminosity functions. We remove 20 confirmed lower redshift line
emitters/contaminants, as described in Section 2.3.5 and we expect a ≈ 10− 20%
remaining contamination. Due to a small overlap of some of the medium filters
in their wings a small number (53; ∼ 1%) of LAEs are detected as LAEs in two
adjacent MB filters; these are kept in each of the filters for the full analysis. The
excess filters are the two adjacent broad bands used to estimate the continuum (see
Section 2.3.1). The total number of LAEs (3908) is the sum of LAEs selected in
each filter, regardless of whether they are detected in more than one filter, as the
selection was done independently. 1EW0 > 5 Å; Sobral et al. (2017) 2EW0 > 25 Å;
Santos et al. (2016); Matthee et al. (2017b).

Selection Excess Lyα redshift LAE colour selection # LAE
filter filter FWHM (Section 2.3.3) candidates
IA427 B (u) 2.42− 2.59 (u > u3σ ∨ u−B > 0.4) & (B − r+ < 0.5) 741
IA464 B (V ) 2.72− 2.90 (u > u3σ ∨ u−B > 0.5) & (B − r+ < 0.8) 311
IA484 B (V ) 2.89− 3.08 (u > u3σ ∨ u−B > 0.5) & (B − r+ < 0.75) 711
IA505 V (B) 3.07− 3.26 (u > u3σ ∨ u− V > 1.3) & (B − r+ < 0.5) 483
IA527 V (B) 3.23− 3.43 (u > u3σ ∨ u− V > 1.5) & (V − i+ < 1.0) 641
IA574 r+ (V ) 3.63− 3.85 (u > u3σ) & (B > B3σ ∨ B − r+ > 1.0) & (V − i+ < 0.5) 98
IA624 r+ (i+) 4.00− 4.25 (B > B3σ) & (V > V3σ ∨ V − r+ > 0.5) & (r+ − i+ < 1.0) 142
IA679 r+ (i+) 4.44− 4.72 (B > B3σ) & (V > V3σ ∨ V − r+ > 0.5) & (r+ − i+ < 1.0) 79
IA709 i+ (r+) 4.69− 4.95 (B > B3σ) & (V > V3σ) & (r+ > r+

3σ ∨ r+ − i+ > 0.8) & (i+ − z+ < 1.0) 81
IA738 i+ (r+) 4.92− 5.19 (B > B3σ) & (V > V3σ) & (r+ > r+

3σ ∨ r+ − i+ > 0.5) & (i+ − z+ < 1.0) 79
IA767 i+ (z+) 5.17− 5.47 (B > B3σ) & (V > V3σ) & (r+ > r+

3σ ∨ r+ − i+ > 0.5) & (i+ − z+ < 1.0) 33
IA827 i+ (z+) 5.64− 5.92 (B > B3σ) & (V > V3σ) & (r+ > r+

3σ ∨ r+ − i+ > 0.5) & (i+ − z+ < 1.0) 35
NB3921 u (B) 2.20− 2.24 (z −K) > (B − z) ∨ zphot = 1.7− 2.8 ∨ zspec = 2.20− 2.24 159
NB5012 g+2 3.08− 3.16 (u > u3σ ∨ u− g+ > 1) & (g+ − i+ < 1.5) 45
NB7112 i+ (z+) 4.83− 4.89 (B > B2σ) & (V > V2σ) & [(r+ > r+

2σ ∨ (r+ < r+
2σ ∧ r+ − i+ > 1.0)] 78

NB8162 i+ (z+) 5.65− 5.75 (B > B2σ) & (V > V2σ) & [(r+ > r+
2σ ∨ (r+ < r+

2σ ∧ r+ − i+ > 1.0)] 192
Full SC4K sample (This study, 12 medium band + 4 narrow band) Total 3908
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line-emitters, and we also find evidence for some 4000 Å and Lyman break sources

making it to the sample of potential line emitters. The relative proportion of

sources is not surprising, given the combination of volume and observed EW

distributions of all these lines (see e.g. Hayashi et al., 2018; Khostovan et al.,

2016; Sobral et al., 2014).

While Figure 2.3 shows that our sample of high EW candidate line-emitters

is dominated by LAE candidates, it also reveals that many other line-emitters

are expected to be in the sample. This is confirmed by spectroscopic redshifts of

the full sample and stresses the importance of excluding lower redshift emitters

in order to produce relatively clean and complete samples of LAEs.

2.3.3 Selection of LAEs at z ∼ 2.5− 6

In order to isolate LAEs from lower redshift line-emitters (see Figure 2.3), we

apply two criteria. First, we identify the presence of a colour break blue-ward of

the medium band excess emission and no significant emission bluer of that (see

Table 2.2). Secondly, we remove sources that have red colours (e.g. B − r > 0.5

for z ∼ 2.5; i−z > 1.0 for z ∼ 5.5); see Table 2.3. The first step selects the Lyman

break, while the second criterion removes sources likely to be stars or red galaxies

with a strong Balmer break (at a rest-frame wavelength ∼ 400 nm) that mimics

the Lyman break (see e.g. Matthee et al., 2014, 2017c). Narrow band surveys for

LAEs typically apply the same/similar standard criteria (e.g. Bielby et al., 2016;

Matthee et al., 2015; Ouchi et al., 2008; Santos et al., 2016), with the difference

being how strict the criteria/flexible the cuts are and what bands are available to

trace/identify the Lyman break. Some surveys conducted in the blue bands rely

mostly on a high EW0 cut (e.g. Ciardullo et al., 2014; Konno et al., 2016), but

as discussed in e.g. Sobral et al. (2017), even in the bluest bands it is crucial to

filter lower redshift contaminants out of the sample of line-emitters due to bright,

high EW lines such as Ciii] and Civ (see Stroe et al., 2017a,b), particularly in

wide-field surveys. We note that our colour criteria to exclude very red sources

only removes extreme red sources and is based on current spectroscopic samples

that show that essentially no real LAE will be removed by our cuts. However, it

is possible that a handful of even more extremely red LAEs (which are interesting
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on themselves; see e.g. Matthee et al., 2016; Ono et al., 2010; Taniguchi et al.,

2015b) may be rejected in this way.

We apply our LAE selection by taking full advantage of the deep available

broad band photometry (see Table 2.2), which covers the wavelengths of the

Lyman break and the Lyman continuum for our entire redshift range (see Figure

2.1). Our colour selection criteria (see Table 2.3) are defined such that a candidate

LAE is required to either have no detection blue-ward of the medium band (i.e.

being a drop-out galaxy), or, if the continuum is bright enough, to have a strong

colour break between the two broad bands adjacent to the Lyα break expected

wavelength. By not applying too strict colour-criteria, we ensure that sources

with Lyman-Werner radiation or Lyman continuum leakage are not removed from

our sample, as long as they have a Lyman break. We note that such sources

are typically AGN, with high spectroscopic completeness in currently available

spectroscopic surveys in COSMOS (e.g. Lilly et al., 2007).

The exact values for each criterion are determined empirically using the large

compilation of spectroscopic and reliable photometric redshifts discussed in Sec-

tion 2.3.2, but we also perturb these in Section 3.1.4. When we apply our LAE

selection criteria to all line-emitters (before any visual inspection and regardless

of whether they have public photometric/spectroscopic redshifts), up to ∼ 50 %

are selected as LAEs for the lower redshift slices (z ∼ 2− 3) but only ∼ 2− 5%

of line emitters as LAEs for the highest redshift slices (z ∼ 5− 6). This is a con-

sequence of the differences in luminosity depth in Lyα, but even more so due to

the volumes and redshifts of the other main emission lines such as Hα, [Oiii]+Hβ

and [Oii] which become more prominent for redder filters. Our results show that

even with a high EW cut, we expect that about 50% of sources will not be Lyα

in the bluest bands, while about 95-97% of sources in the red bands will be lower

redshift line emitters1 (see Figure 2.3). After the LAE selection, we retrieve a

total of 6,156 potential Lyα emitters out of the full 40,726 potential line emitters

(15%).

1Due to the Lyman break criteria, our survey (and all similar Lyα surveys) is strongly
biased against galaxy-galaxy lensed LAEs, as any lower redshift galaxy lensing a distant LAE
will be classed as a lower-redshift interloper and the lensing system rejected.
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2.3.4 Visual inspection of all LAE candidates

In order to obtain a clean sample of LAE candidates, we visually inspect all

the candidates for spurious detections in their corresponding medium band. In

practice, we remove i) fake sources due to diffraction patterns, ii) fake sources

which are selected close to the borders of images where the local noise is higher,

iii) sources that are clear artefacts and iv) sources which are real but that clearly

have their fluxes boosted in the medium bands due to bright halos or diffraction

of nearby stars. This is the same approach taken in the large-area narrow band

surveys which we also explore, namely Santos et al. (2016) and Sobral et al.

(2017). From a total of 6,156 LAE candidates, we conservatively reject/exclude

2,703 sources, and end up with a sample of 3,453 LAEs. We note that due to

very different local noise properties, artefacts and image quality/depth, some

bands (e.g. IA574 and IA827) have very high spurious fractions of ≈ 90 % in the

initial LAE candidate sample, while other bands such as IA427 and IA679 have

lower spurious fractions of ∼ 15− 25%. It is worth noting that due to the strict

selection criteria in terms of non-detection in the optical in many bands, along

with the high excess observed in the medium bands, we easily select every single

spurious/artefact in the full COSMOS images/catalogue. We thus stress the

importance of visually checking all sources for such wide area surveys or, at least,

to visually check a representative sub-sample and apply statistical corrections.

We take into account the removal of spurious sources when computing the total

areas and volumes, but we note that these only remove up to ≈ 0.03% of the

total area and thus they are completely negligible.

2.3.5 Spectroscopic completeness, contamination and the

final sample of LAEs

Figure 2.3 reveals that our sample of line-emitters (with available photometric

redshifts) is mostly composed of LAEs, and we expect that our photometric

selection will further remove contaminants. This can nonetheless be quanti-

fied/investigated by using a relatively large number of spectroscopic redshifts

of i) the full set of line emitters and ii) our samples of LAEs. Ideally, a sample
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that is highly complete will show that essentially all spectroscopically confirmed

LAEs in i) will be contained in sample ii), while a highly clean sample will see

most of contaminants in i) not be selected for ii).

We compile a large sample of spectroscopic redshifts in the COSMOS field (e.g.

Cassata et al., 2015; Kriek et al., 2015; Le Fèvre et al., 2015; Lilly et al., 2007;

Shioya et al., 2009) to find that 132 sources within our sample of LAE candidates

have a spectroscopic redshift. Out of the 132 sources, we confirm 112 as LAEs in

the appropriate band. This suggests a contamination of real line-emitters which

are incorrectly selected as LAEs of about 15%, well within the range of what

is typically found for large area Lyα narrow band surveys at similar redshifts

(e.g. Harikane et al., 2018; Santos et al., 2016; Shibuya et al., 2018; Sobral et al.,

2017). We also investigate whether there is any significant dependence of this

contamination rate on redshift, Lyα luminosity or EW0. We find that within

the Poissonian errors the contamination is found to be relatively constant and

to be between 10-20%, similar to those found for narrow band surveys of LAEs

(e.g. Bielby et al., 2016; Ouchi et al., 2008). In Appendix A.2 we provide further

evidence of low contamination in typical H−Ks colours of z ∼ 3 LAEs. There are

only mild indications that the higher redshift and the highest luminosity samples

may be slightly more contaminated (similarly to what has been found/discussed

in e.g. Harikane et al., 2018; Matthee et al., 2015, 2017c), but such trends require

further spectroscopic follow-up of our sample.

Reliable redshift identifications can also be obtained through the dual nar-

row band technique (e.g. Matthee et al., 2017b; Nakajima et al., 2012; Sobral

et al., 2012), where multiple unique combinations of strong emission lines can

be observed in specific combinations of narrow or medium band filters1. Within

the SC4K sample of LAEs, we have already identified 27 Lyα-Ciii] emitters at

z = 2.7−3.3, one Lyα-Civ emitter at z = 4.3 (an X-Ray AGN) and 22 Lyα-[Oiii]

emitters at z = 3.3 (three of these [Oiii] emitters are also Ciii] emitters). One

dual-emitter already had a spectroscopic redshift. Hence, we obtain 51 additional

reliable redshifts confirming all these sources as LAEs.

1Here we use line-emitters identified in NB711, NB816 (Santos et al., 2016), NB921 (Matthee
et al., 2015; Sobral et al., 2013), NBJ, NBH and NBK (Khostovan et al., 2015; Sobral et al.,
2013) to search for another line, in addition to Lyα detected in our MBs.
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We also note that some of the contaminants are not easy to isolate by using

broad band colours. For example, SC4K-IA767-43371, with a redshift of z =

5.441, is selected as a LAE candidate in both IA767 and IA827. While this

source is a confirmed LAE (in IA767), the emission line in IA827 is Nv (1240 Å).

As such, we remove this source from being a IA827 LAE. There are a further 19

LAE candidates which are lower redshift interlopers and thus are removed from

the final sample, either due to archival redshifts or from follow-up with AF2/WHT

(see Section 8.2 about future work, where more information about the on-going

WHT/AF2 data reduction and analysis is given). We find that the confirmed

interlopers/contaminants have a diverse nature. At lower redshift most are Ciii]

and Civ (Sobral et al., 2017; Stroe et al., 2017a), while at higher redshift there is a

mix of [Oiii]+Hβ and [Oii]. We stress that neither of these class of sources could

easily be removed by adjusting our selection criteria and certainly not without

compromising our completeness, which we currently estimate to be at the level of

∼ 85− 90 %. After removing the 19 spectroscopically confirmed interlopers, our

final sample of medium band selected sources contains 3434 candidate LAEs.

2.3.6 UV continuum properties of SC4K LAEs

In the process of selecting LAEs we find sources which have no continuum coun-

terpart in the COSMOS data. These are typically found in very deep narrow

band or IFU studies (e.g. Ouchi et al., 2008; Oyarzún et al., 2017; Wisotzki et al.,

2016), but here we also find them in shallower data. In our samples, ≈ 10% of

LAEs have no continuum detection around the narrow or medium band. These

LAEs likely occupy the lower stellar mass range of our sample and may have

higher escape fractions due to their very high EWs (see e.g. Sobral et al., 2017;

Verhamme et al., 2017). We note that due to the fixed broad band depths,

the fraction of candidate LAEs without rest-frame UV detections becomes larger

with redshift, from just ∼ 1 − 2% at z ∼ 2.5 to ∼ 10 % at z ∼ 5 and reach-

ing 30% for our highest redshift sources. For sources without a rest-frame UV

detection, we assume that the continuum flux is an upper limit based on the

measured rmsBB and derive lower limits for their EWs. We note that by stacking

our LAEs in the rest-frame UV (F814W, HST), Paulino-Afonso et al. (2018) find
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Figure 2.4: The 3D distribution of the SC4K sample presented in this work in the
full 2 deg2 COSMOS field (see Table A.1), showing all LAEs from the 16 different
redshift slices, colour coded by redshift (blue to red from lower to higher redshift).
The redshift is computed using the central wavelength of the medium or narrow
band filter. SC4K probes roughly 4,000 LAEs selected over a total volume close to
∼ 108 Mpc3 (see Table 3.1 for volumes probed per filter).

they have a typical rest-frame UV luminosity of MUV ∼ −20, which ranges from

MUV = −19.2± 0.2 for our lowest redshift sample (the deepest in Lyα) to up to

MUV ∼ −21 at higher redshift (see Paulino-Afonso et al., 2018).

2.3.7 Final sample: SC4K

Our sample of medium band selected LAEs consists of 3434 sources (see Table

2.3), visually inspected for spurious detections. We complement our medium band

LAEs with four narrow band studies (Table 2.3) in the COSMOS field which

follow the same methodology as in this work. We add 159 LAEs at z ∼ 2.23

(CALYMHA survey; Sobral et al., 2017) and 45 sources at z ∼ 3.1 (Matthee

et al., 2017b), selected with narrow bands NB392 and NB501. In addition, we

52



2.4 Summary

also include 78 LAEs at z ∼ 4.8 and 192 LAEs at z ∼ 5.7 (Santos et al., 2016),

selected with the narrow bands NB711 and NB816, respectively. Our final sample

of LAEs contains 3908 sources. We name this sample of ∼ 4, 000 (4k) LAEs,

obtained by “slicing” the COSMOS field (Figure 2.4), as SC4K. For an example

and description of the catalogue, see Table A.1. Our survey is roughly equivalent

to a very wide, low resolution (R ∼ 20−80) IFU Lyα survey covering all the way

from z ∼ 2.2 to z ∼ 6. A 3D view (showing the full COSMOS field and redshift

as a depth dimension) of SC4K is shown in Figure 2.4.

2.4 Summary

We have conducted a wide search for LAEs, using 12 medium bands and a com-

pilation of 4 narrow band filters, covering a wide redshift range (z ∼ 2 − 6)

over the full ∼ 2 deg2 COSMOS field. We use these data as an extremely wide,

low-resolution (R ∼ 20− 80) IFU survey to slice through the COSMOS field.

• We identify ∼ 40, 000 potential line-emitters (before visual inspection), with

available photometric and spectroscopic redshifts being consistent with pop-

ulations of Lyα, [Oii], [Oiii]+Hβ and Hα emitters.

• We construct a new sample of ∼ 4000 typical (&L?Lyα) LAEs (Slicing COS-

MOS with 4K LAEs, SC4K) from z ∼ 2 to z ∼ 6 in 16 individual redshift

slices.

• We make the SC4K sample of LAEs publicly available1 (see Table A.1) so

the community can fully benefit from this work.

This large sample of LAEs, selected with similar selection criteria over a wide

area, will allow unprecedented constrains of the evolution of the Lyα LF with

redshift, as well as other properties such as stellar mass and star-formation rates.

1https://academic.oup.com/mnras/article/476/4/4725/4858393#supplementary-data
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Abstract

We present new Lyα luminosity functions (LFs) covering a co-moving

volume of∼ 108 Mpc3. SC4K extensively complements ultra-deep sur-

veys, jointly covering over 4 dex in Lyα luminosity, with the measure-

ments of all surveys being combined into a global (2.5 < z < 6) syn-

ergy LF. This synergy LF is best fit by α = −1.93+0.12
−0.12, log10 Φ∗Lyα =

−3.45+0.22
−0.29 Mpc−3 and log10 L∗Lyα = 42.93+0.15

−0.11 erg s−1. The Schechter

component of the Lyα LF reveals a factor ∼ 5 rise in L∗Lyα and a

∼ 7× decline in Φ∗Lyα from z ∼ 2 to z ∼ 6. The data reveal an ex-

tra power-law (or Schechter) component above LLyα ≈ 1043.3 erg s−1

at z ∼ 2.2 − 3.5 and we show that it is partially driven by X-ray

and radio AGN, as their Lyα LF resembles the excess. The power-

law component vanishes and/or is below our detection limits above

z > 3.5, likely linked with the evolution of the AGN population.



3.1 Methods and corrections

We structure this Chapter as follows: we present the methods in Section

3.1, including all the steps and corrections in determining Lyα LFs. Results are

presented in Section 3.2, including the evolution of the Lyα LF with redshift,

comparisons with other surveys, the synergy LF (S-SC4K) and the evolution of

the Lyα luminosity density. We present our conclusions in Section 3.3.

3.1 Methods and corrections

3.1.1 Lyα luminosities and survey volumes

We compute Lyα luminosities for each of our LAE candidates per filter/redshift

slice by using i) their estimated Lyα fluxes in 2′′ apertures1 (FLyα; see e.g. Sobral

et al. 2017) and ii) the luminosity distance (DL) corresponding to Lyα lines

detected at the central wavelength of each filter. Luminosity distances (DL)

range from 20× 103 Mpc at z ≈ 2.5 to 55× 103 Mpc at z ≈ 5.8. Lyα luminosities

are then calculated as LLyα = 4πFLyαD
2
L. We find that our “formal” 3σ limit

MB detections correspond to Lyα luminosity limits ranging from 1042.4 erg s−1 at

z = 2.5 to 1043.0 erg s−1 at z = 5.8 (see Table 3.1 for luminosity limits per filter).

Paulino-Afonso et al. (2018) measured the rest-frame UV sizes of our LAEs,

concluding they have half-light-radii in the range ≈ 0.1− 0.2′′ (≈ 0.7− 1.3 kpc),

and thus significantly smaller than our 2′′ apertures. However, due to the use

of ground-based imaging (with a larger PSF) and the fact that we are tracing

Lyα and not the rest-frame UV, the 2′′ apertures may be missing some flux.

We thus study how the fluxes computed in 2 ′′ apertures compare with fluxes

derived from using an estimate of the full flux using e.g. mag-auto. We find an

average ratio (Flux[mag−auto]/Flux[2′′]) of ≈ 1.03 ± 0.26 (median of 1.02). There

is no systematic difference in our sample as a whole nor any significant trend

with redshift. Therefore, in this study we do not apply any aperture correction

and base our measurements on our directly measured 2′′ aperture quantities (see

discussion in Drake et al., 2017b).

1except for NB392 and NB501 where photometry has been done with 3′′ apertures (see
Matthee et al., 2017b; Sobral et al., 2017) due to broader PSF.
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3.1 Methods and corrections

Table 3.1: The Lyα survey co-moving volumes per redshift/filter slice assuming
top-hat filter profiles for medium and narrow band filters. We provide the filter
name and the Lyα volume corresponding to the 50% transmission points in the
normalised filter profile. The two final columns on the right present the limit-
ing luminosity limit (log10 LLyα/erg s−1) for each slice, by using the formal flux
limits from Table 2.1 and the 30% completeness limit that we measure with our
methodology (see Section 3.1.2.1).

Filter Lyα z Area Volume LLyα,3σ limit LLyα 30% limit
(deg2) (106 Mpc3) (log10) (log10)

IA427 2.42− 2.59 1.94 4.0 42.4 42.5
IA464 2.72− 2.90 1.94 4.2 42.5 42.9
IA484 2.89− 3.08 1.94 4.3 42.5 42.7
IA505 3.07− 3.26 1.94 4.3 42.6 42.7
IA527 3.23− 3.43 1.94 4.5 42.5 42.7
IA574 3.63− 3.85 1.96 4.9 42.7 43.0
IA624 4.00− 4.25 1.96 5.2 42.8 42.9
IA679 4.44− 4.72 1.96 5.5 43.0 43.1
IA709 4.69− 4.95 1.96 5.1 42.9 43.1
IA738 4.92− 5.19 1.96 5.1 43.0 43.3
IA767 5.17− 5.47 1.96 5.5 43.0 43.4
IA827 5.64− 5.92 1.96 4.9 43.0 43.4
NB392 2.20− 2.24 1.21 0.6 42.3 42.3
NB501 3.08− 3.16 0.85 0.9 42.9 43.0
NB711 4.83− 4.89 1.96 1.2 42.6 42.9
NB816 5.65− 5.75 1.96 1.8 42.5 42.5
Total 2.20− 5.92 1.96 61.5 42.4− 43 42.5− 43.4
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3.1 Methods and corrections

We compute the co-moving volumes probed by each of the medium bands by

approximating them to top-hat filters (using the measured FWHM; Table 2.1).

We find co-moving volumes within (4.0− 5.5)× 106 Mpc3 per medium band and

a total co-moving volume of 5.7× 107 Mpc3 over all 12 medium bands; see Table

3.1. The sum of all narrow band volumes contributes with a modest volume of

4.5 × 106 Mpc3, but allows us to probe fainter Lyα luminosities (see Table 3.1).

The full Lyα survey volume in SC4K is therefore dominated by the medium band

filter survey and amounts to 6.2 × 107 Mpc3. We note that while our survey is

only sensitive to the more typical and bright Lyα emitters, it provides a unique

opportunity to explore the bright end of the Lyα luminosity function mostly for

the first time, being fully complementary to other previous surveys. For example,

we probe a volume ≈ 50,000 times larger than MUSE (Drake et al., 2017a) and

≈ 50− 60 times the volumes of typical 1 deg2 narrow band surveys (Ouchi et al.,

2008) and still a factor of a ∼ 2 − 3 larger than current ∼ 10 − 20 deg2 surveys

with Hyper-Suprimecam (e.g. Konno et al., 2018).

3.1.2 Corrections to the Lyα luminosity function

3.1.2.1 Completeness correction

Sources with weak emission lines or with low EWs may be missed by our selection

criteria, causing the measured number density of sources to be underestimated.

To estimate the line flux completeness we follow Sobral et al. (2013), adapted

for Lyα studies by Matthee et al. (2015). Briefly, for each medium band we

obtain a sample of non-line-emitters at the redshift we intend to study from the

appropriate MB catalogue. To do so, we use the sources which are not classified

as line-emitters (we exclude the line-emitters) and, from these, we select sources

which are consistent with being at a redshift ±0.2 of the Lyα redshift for a

given filter. We do this by i) applying the same Lyman break selection as we

did for the sample of line-emitters and ii) by selecting sources with photometric

redshifts within ±0.2 (Laigle et al., 2016) of the redshift window shown in Table

3.1. We check that our method leads to a distribution in MB magnitudes of non-

emitters in agreement with that of the LAEs, with a tail of ∼ 2 − 5% brighter
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3.1 Methods and corrections

sources. Overall, our empirical approach leads to a sample of non-line emitters

that is slightly brighter than that of LAEs, and thus can be seen as a conservative

approach in estimating completeness corrections that does not require making any

assumptions to create fake/mock sources.

Our procedure results in samples of non-line-emitters per MB filter that are

at roughly the same redshift as our LAEs and allow us to estimate our line-flux

completeness with an empirical/data approach. To do so, we add emission line

flux to sources in steps of 10−18 erg s−1 cm−2, which results in increasing the flux

of the medium and broad bands depending on the filter’s FWHM. For each step

in flux added, we apply our emission-line selection criteria and identify those

that, with the flux added, now make it into a new sample of line emitters and

compare those with the total sample that was flux-boosted. By determining

the fraction that we retrieve (after applying our Σ and EW cuts; see Section

2.3.1) as a function of added line-flux in comparison with the full sample, we

obtain a completeness estimation for each flux, which we apply to our luminosity

functions. We only calculate the Lyα luminosity function for luminosity bins in

which we find a completeness of 30% or higher at the lowest luminosity limit of

the bin; these are in the range LLyα = 1042.5−43.4 erg s−1 (see Table 3.1). Our

lowest luminosity bin is the one affected by the largest incompleteness and thus

the one with the highest completeness correction being applied, which is typically

a factor of ≈ 2. We find that the completeness functions strongly depend on line

flux, with an increase in completeness from 30% to 90% typically corresponding

to a ≈ 0.4 − 0.5 dex increase in Lyα luminosity, and reaching ≈ 100% with a

further ∼ 0.5 dex increase.

3.1.2.2 Filter profile effects and corrections

As discussed in detail in e.g. Sobral et al. (2013) and Matthee et al. (2015), due

to the non-top-hat shape of narrow band filters, sources can be observed at a

low transmission (almost no source is observed at full transmission when a filter

is well described by a Gaussian function), particularly once survey volumes are

large. As a result, assuming a top-hat filter will cause a complex underestimation
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Figure 3.1: The observed ratio between 10,000 observed Lyα luminosity func-
tions using the real filter profiles and a Schechter input simulated sample of LAEs
assuming tophat filters. Our results highlight the need to correct for filter profile
effects which pushes sources from intrinsically bright to observed fainter bins, and
highlights that the corrections are particularly important for narrow band surveys,
but are still relevant for medium band surveys.

of the flux, which is manifested in the luminosity function as a transfer of intrin-

sically bright sources towards observed fainter sources. For an intrinsic Schechter

distribution, and particularly for the exponential regime (bright end), this effect

results in an underestimation of the number density of the brightest emitters

(as they can only be detected as bright over a small redshift range correspond-

ing to the filter’s peak transmission), and sometimes an overestimation of the

faintest sources (as brighter sources detected away from peak transmission will

look fainter). However, the necessary corrections depend on i) the filter profile,

ii) the intrinsic shape of the luminosity function and iii) the depth and survey

volumes.

While medium bands are broader than narrow bands and in general better

fitted by a top-hat, a full investigation of the role of the filter profiles is still

required. We estimate potential corrections for each filter by simulating ten

million sources with an input random redshift distribution1 which is wide enough

to cover down to zero transmission by each filter on the blue and red wings. We

1Note that the output distribution is not random and follows closely the filter profile; this
is what is used to study the effect of the filter profile.
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3.1 Methods and corrections

generate these ten million sources with a luminosity distribution given by the

observed (completeness corrected) luminosity function, following Sobral et al.

(2013). By convolving the full population with i) the real filter profile and ii) the

top-hat approximation we can determine the number density ratio between i) and

ii) per luminosity and derive corrections based on the filter profile; an example for

IA827 and the NB816 (from HSC) filters is shown in Figure 3.1 (see also Figure

A.2).

Our results show that the use of medium band filters results in smaller cor-

rections (see also Appendix A.3.1) than those derived for typical narrow band

filters (Figure 3.1). This is because fluxes are only significantly underestimated

at the wings of the medium band filters, which correspond to a much smaller

fractional volume than for narrow band filters. We also note that the input shape

of the luminosity function is crucial for the estimated filter profile effect: while an

observed Schechter function leads to a large correction in the exponential part,

a bright end which is observationally described by a much slower decline with

luminosity (e.g. a power-law with a shallow slope) results in smaller corrections

(see full discussion in Appendix A.3.1). Our results thus mean that while for

previous deep surveys mostly tracing the faint-end power-law component of the

Schechter function the corrections could be relatively small, for the bright end

(under a Schechter assumption) the corrections can be large, close to a factor of

2-3 for narrow band filters at the highest luminosities, while they can be a factor

of 1.2-1.3 for medium bands (see Figure A.2).

While the filter profile effects can be small for medium bands, we still take

them into account by applying a statistical correction to each luminosity bin. This

produces our final luminosity function (LF). We provide a more detailed analysis

and discussion of the effects, assumptions and corrections due to the various

filter profiles when contrasted to top-hat approximations in Appendix A.3.1. We

also note that indirect statistical tests for our corrections can be obtained when

comparing our results with e.g. MUSE (Drake et al., 2017b) and other IFU

surveys which are not affected by filter profile effects (see Section 3.2.1).
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3.1 Methods and corrections

3.1.3 Flux robustness and errors: random and systematic

Due to errors in the photometry, both in the MB and BB magnitudes, estimated

Lyα fluxes will be subject to errors and, in some cases, also prone to potential

systematic effects. We study these errors and their potential role in the derivation

of the Lyα LF. Briefly, we assume that each MB and BB magnitudes and their

uncertainties are described by normal distributions centred on the measured value

and with the width that is equal to its associated 1σ error. We then perturb each

galaxy magnitude 10,000 times by randomly picking values from their individual

probability distributions. We use these perturbed magnitudes to compute the

Lyα LF. We do not find any systematic difference, showing that the errors on

the MB and BB photometry have no systematic effect in our methodology. We

use the difference between the median value and the 16th and 84th percentiles

of the perturbed number density distribution as the lower and upper errors on

the number density for each luminosity bin. We find small variations due to

this effect, with a median error of ≈ 0.03 error in log10(Φ). This is particularly

sub-dominant when compared to other sources of uncertainty, but we still add it

(0.03 dex) at the end in quadrature (see Figure 3.2).

3.1.4 Completeness-contamination errors in the LAE se-

lection and final errors

While the flux and EW selection/limits can be taken into account for corrections

and accounted for in errors (see Section 3.1.2.1), there are other sources of un-

certainties that are linked with the photometric or colour-colour criteria applied

to select LAEs/filter lower redshift sources (Section 2.3.3). While no single cut

is perfect (even more so due to photometric errors), it is possible to perturb the

selection and conduct a Markov chain Monte Carlo (MCMC) analysis in order

to estimate the effects of varying the selection in the derivation of the Lyα LF

and propagated quantities. Here we implement such an analysis. We perturb

the LAE selection criteria described in Table 2.3 in a i) ±0.2 dex interval around

each colour-colour and photometric cut, independently and ii) by randomly vary-

ing by +0.31
−0.44 the 3σ magnitudes (corresponding to varying non-detection limits in
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Figure 3.2: An example of the different error contributions to the Lyα luminosity
bins from different sources of uncertainty which are taken in series in our analysis.
We show bins with bin widths that increase with increasing Lyα luminosity. These
include: Poissonian, perturbations to the selection criteria (from line emitters to
LAEs; see Table 2.3), line flux completeness, filter profile corrections and flux
errors. We find that selection perturbation errors are most important at the faintest
luminosities, but they still contribute to the brightest bins. The Poissonian errors
are relatively very large at the highest luminosities, where the number of sources
per bin is the lowest.

the range 2 − 4σ, from the least to the most conservative cuts) of bands trac-

ing bluer than the Lyman-limit, used to reject interlopers. We run a MCMC

simulation, with 10,000 iterations for each filter, randomly picking sets of values

inside the full explored range, assuming all have an equal probability (flat prior).

We then calculate the selection criteria errors as the difference between the me-

dian value and the 16th and 84th percentiles within each luminosity bin for all

realisations.

An example of the estimation of the full errors affecting log10(Φ) can be found

in Figure 3.2 for z = 2.5 (IA427). We find that the perturbations result in

standard deviations of 0.03 to 0.1 dex per luminosity bin at z ∼ 2.5, representing

up to 50% of the total error. The perturbation error is larger in absolute terms at

the brightest bins, but it becomes a much more significant fractional contribution

to the faintest bins where the Poissonian errors are very small (see Figure 3.2).

The errors from perturbing the selection criteria are roughly a factor of up to 2.5

the Poissonian error per bin at the bins probing the faintest luminosities (with the

largest number of sources), while they can be as low as 0.2-0.8 of the Poissonian
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3.1 Methods and corrections

errors if the bin is populated with only 5-10 sources (where the Poissonian error is

already large). We also find that perturbation errors are more important (larger)

at z ∼ 2.5− 2.8 and z > 4 than they are at z ∼ 3− 3.3. This roughly coincides

with jumps in the selection criteria and whenever different colours/bands are used

(see Table 2.3).

We add our estimated perturbation errors in quadrature to the Poissonian

errors, noting that they are particularly important for the faint end where the

Poissonian errors are an underestimation of the full uncertainties. We then scale

the errors by the line flux completeness correction and the filter profile correction,

which we assume we know with 30% accuracy (and thus add an extra 30% of such

corrections to the errors, taking a conservative approach). We note that we do

not add any errors due to cosmic variance, but that given the very large volumes

and the multiple redshift slices, we expect these to be just a small fraction of our

full errors that are much larger than the formal Poissonian errors. Finally, even

though our samples are expected to be contaminated by interlopers at the 10-15%

level, similarly to other narrow band surveys, our LAE selection-completeness

implies we may be missing 10-15% of real LAEs (when we transform the sample

of line emitters into candidate LAEs), and thus in our analysis we do not apply

any corrections for this contamination or completeness, as they should roughly

cancel out.

3.1.5 Redshift binning

Our multiple redshift slices allow to trace LAEs across well defined cosmic times

from z ∼ 2 to z ∼ 6. We can also combine the slices to produce a global Lyα LF

or obtain slightly broader redshift slices which are populated by a much larger

number of sources, and that overcome even more cosmic variance. We bin all

our z ∼ 2.5 − 6 slices (IA427 through to IA827) in order to produce a global

high redshift LF and compare it with similar measurement made with the MUSE

instrument (e.g Drake et al., 2017b) or with slit observations (e.g. Cassata et al.,

2011). We also split the sample into 5 different redshift bins in the following way:

• z ∼ 2.2 (z = 2.22± 0.02; NB392)
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• z ∼ 2.5 (z = 2.5± 0.1; IA427)

• z ∼ 3.1 (z = 3.1± 0.4; IA464, IA484, IA505, IA527)

• z ∼ 3.9 (z = 3.9± 0.3; IA574, IA624)

• z ∼ 4.7 (z = 4.7± 0.2; IA679, IA709)

• z ∼ 5.4 (z = 5.4± 0.5; IA738, IA767, IA827)

When producing redshift binned LFs, we only use the volumes associated

with a given medium band if that specific filter provides the necessary depth for

a completeness above 30%.

3.1.6 Schechter, power-law and combined fits

The Schechter function (Schechter, 1976) is a widely used parametrization of

the LF, defined by three parameters: the power-law slope α, the characteristic

number density Φ? and the characteristic luminosity L?. Observations down to

extremely low luminosities are necessary to accurately constrain the power-law

slope α (e.g Drake et al., 2017b; Dressler et al., 2015). Our medium bands cover

“typical” luminosities and higher, thus not probing much fainter than L?, and

do not allow to measure α on their own. However, several studies have been

able to obtain good constraints on α from z ∼ 2 to z ∼ 6 (e.g. Drake et al.,

2017b; Dressler et al., 2015; Konno et al., 2016; Santos et al., 2016), which has

been shown to be very steep (< −1.5) and potentially varying from α ≈ −1.7 at

z = 2.2 (Konno et al., 2016; Sobral et al., 2017) to α ≈ −2 (or even steeper; see

Drake et al. 2017b) by z ∼ 6 (Drake et al., 2017b; Dressler et al., 2015; Santos

et al., 2016). We therefore fit Schechter functions by varying α between −1.6 and

−2.0, but we also explore fits with α fixed to −1.8 at all redshifts in order to

investigate the potential redshift evolution of L?Lyα and Φ∗Lyα at fixed α. Finally,

we also fit α explicitly by combining our results with ultra-deep observations.

In addition to fitting Schechter functions, we also fit power-laws of the form

log10Φ = A log10 LLyα +B to the full LFs and compare these with Schechter fits.

Finally, we also explore combinations of a Schechter for lower luminosities and a
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power-law at higher luminosities when a single function yields a very bad fit on its

own (see Section 3.2). For all LFs, we follow a MCMC approach for the fits, per-

turbing each bin independently within its asymmetric Gaussian error probability

distribution and re-fitting for 10,000 realisations per LF. We take the median of

all the best fits as the most likely combination of parameters and estimate the

errors by computing the 16th and 84th percentiles for all 10,000 realisations per

LF estimation. We note that due to degeneracies in the parameters, these errors

can sometimes exaggerate the errors on individual parameters (i.e., parameters

are linked and only allowed to vary within some specific relation and not inde-

pendently), but they are generally well constrained. For each best-fit we also

compute the corresponding χ2
red and use these to obtain the median χ2

red and the

16th and 84th percentiles of all realisations.

3.1.7 X-ray and radio properties: AGN candidates within

our LAEs

We explore Chandra X-ray (e.g. Civano et al., 2016) and VLA radio data (e.g.

Smolčić et al., 2017) within COSMOS to identify AGN in our sample. Full details

are given in Calhau et al. (2020). Briefly, we use the publicly available Chandra

Cosmos Legacy survey (Civano et al., 2016; Elvis et al., 2009; Puccetti et al., 2009)

to select sources with X-ray counterparts, within the overlap region with SC4K

(1.86 deg2). Out of the full SC4K sample of 3908 LAEs presented in this work,

3707 have Chandra X-ray coverage. From those, we identify 109 sources with X-

ray emission in the Civano et al. (2016) catalogue, making them strong candidates

of being X-ray AGN (LX > 1042.5 erg s−1). Calhau et al. (2020) presents a detailed

analysis on the X-ray activity of our full sample of LAEs. We find a global X-

ray AGN fraction among our SC4K LAEs of 2.9 ± 0.3% for z = 2 − 6. The

AGN fraction shows evidence for a decline with increasing redshift for typical to

bright LAEs, with this trend not being driven by X-ray luminosity limits (Calhau

et al., 2020). At z ∼ 2.2 − 2.7 the X-ray AGN fraction is 3.9 ± 0.6%, declining

to 3.5 ± 0.4% and 0.4 ± 0.2% for redshifts 2.7 < z < 3.5 and 3.5 < z < 6,

respectively. We also identify a clear relation between the X-ray AGN fraction
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Figure 3.3: The combined global Lyα LF at 2.5 < z < 6. Our large samples
of luminous LAEs, obtained over a co-moving volume of 0.6 × 108 Mpc3 are able
to constrain the bright end of the Lyα LF for the first time down to number
densities of ∼ 10−7 Mpc−3 and Lyα luminosities of ∼ 1044.5 erg s−1. We find a
significant excess of bright LAEs at the highest luminosities when compared to
a single Shechter function and show that is likely driven by a population where
Lyα is AGN-driven. We compute a proxy for the AGN Lyα LF with X-ray and
radio AGN among our sample (1 and 2σ contours shown for Schechter function
fits). We also compare our results with recent MUSE/VLT (Bina et al., 2016;
Drake et al., 2017a,b) and VIMOS/VLT observations (e.g. Cassata et al., 2011),
showing a very good agreement in the L∗Lyα range where all studies overlap. Deeper,
smaller volume studies from the literature allow to cover the sub-L?Lyα luminosity
regime, being perfectly complementary to our approach. Overall, we show the
Lyα LF determined over 4 orders of magnitude in Lyα luminosity and 6 orders
of magnitude in number densities at z ∼ 2.5 − 6 resulting in the ‘synergy’ Lyα
LF (S-SC4K; 2.5 < z < 6) and the 1, 2 and 3σ confidence levels when fitting a
Schechter function up to 1043.3 erg s−1 (we also show the power-law fit done for
higher luminosities). Results are provided in Table 3.2.
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and Lyα luminosity of LAEs (see Calhau et al., 2020), qualitatively similar to

what has been found at lower redshift (Wold et al., 2014, 2017) and also found

and discussed in Ouchi et al. (2008) and Matthee et al. (2017b).

In the VLA radio data (1.4 GHz and 3 GHz; see Schinnerer et al., 2010; Smolčić

et al., 2017) we identify 62 individual sources, with these being dominated by the

3 GHz detections (61; 25 detected in 1.4 GHz), and we class these as AGN. Out of

these, 30/62 are also X-ray sources. We therefore find a total of 141 AGN sources

among the SC4K sample of LAEs, yielding a total AGN fraction of 3.6 ± 0.3%.

If we split the sample in three redshift ranges, we find that the AGN fraction

slowly declines from z ∼ 2.2− 2.7 (4.7± 0.7%) to z ∼ 2.7− 3.5 (4.4± 0.4%) and

then drops significantly at z ∼ 3.5−6 (1.2±0.4%). Concentrating on radio AGN

within our sample of LAEs, we find that the (radio) AGN fraction is relatively

constant (1.9±0.4%) at z ∼ 2.2−3.5 and then drops to 0.9±0.2% at z ∼ 3.5−6.

3.2 Results

3.2.1 The global Lyα LF at z ∼ 2.5− 6

In Figure 3.3 we present the global Lyα LF at z ∼ 2.5−6, which we define as the

LF of our entire SC4K sample of 3908 LAEs, determined over a total volume of

close to ∼ 108 Mpc3 (not an average of individual LFs at multiple redshifts). Our

results probe Lyα luminosities from ∼ 1042.5 erg s−1 to ∼ 1044.5 erg s−1, covering 2

orders of magnitude in Lyα luminosity with a single survey. Down to our obser-

vational limits, we find that the global Lyα LF at z ∼ 2.5−6 resembles a single or

double power-law (or a double Schechter, but not a single Schechter function) and

extends to luminosities and number densities that reach into what is expected

from the quasar luminosity function (e.g. Richards et al., 2006) and follow-up

of quasars in Lyα (e.g. Borisova et al., 2016). Fitting the global SC4K Lyα LF

leads to a power-law of log10(Φ) = −2.22+0.08
−0.10 log10(LLyα) + 91.7+4.1

−3.6 (see Table

3.2), which describes the data significantly better than a single Schechter function

(χ2
Sch/χ

2
PL ≈ 8; see Table 3.2). If we exclude X-ray AGN and radio AGN, we find

that the global Lyα LF becomes steeper at the bright end. We can also derive a
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Table 3.2: The global Lyα LF at z ∼ 2.5 − 6 from SC4K only, when combined
with the latest MUSE results (Drake et al., 2017b) and when using the derived
consensus global Lyα LF, S-SC4K (SC4K and Bina et al., 2016; Cassata et al.,
2011; Drake et al., 2017a,b, see Section 3.2.4). We also show the results when
explicitly removing radio and X-ray AGN from the sample (see Section 3.1.7). The
corresponding ρLyα have been computed by integrating Schechter functions down
to 1.75× 1041 erg s−1, corresponding to 0.04L?z=3 from Gronwall et al. (2007); see
Section 4.1. All errors are the 16th and 84th percentiles for all 10,000 realisations
per LF estimation which, due to degeneracies in the parameters, can sometimes
exaggerate the errors on individual parameters. We also provide a comparison
(ratio) between reduced χ2 for Schechter and power-law fits (χ2

Sch/χ
2
PL) fitted over

the same luminosity range for a fair comparison; values below 1 indicate that a
Schechter fit performs significantly better, while a large value indicates that a
simple power-law fit provides a relatively lower reduced χ2. * Note that fits to the
full LF are given for completeness and comparison, but that they fail to fit the data
as a whole, as the combined faint and bright ends are not accurately described by
a single Schechter or power-law functions.

Global Lyα sample α log10 L∗Lyα log10 Φ∗Lyα ρLyα/1040 Sch Power-law (PL) χ2
Sch/

(2.5 < z < 5.8) (erg s−1) (Mpc−3) (erg s−1 Mpc−3) (A log10 L+B) χ2
PL

SC4K (log10 LLyα < 43.3) −1.8± 0.2 (fix) 42.81+0.07
−0.06 −3.16+0.13

−0.14 0.98+0.22
−0.17 −2.09+0.17

−0.17, 86.1+7.3
−7.1 0.6

SC4K+MUSE (log10 LLyα < 43.3) −1.80+0.11
−0.11 42.72+0.07

−0.06 −2.92+0.14
−0.16 1.32+0.12

−0.12 −1.36+0.05
−0.05, 55.1+2.2

−2.4 0.4
S-SC4K (log10 LLyα < 43.3) −1.93+0.12

−0.12 42.93+0.15
−0.11 −3.45+0.22

−0.29 0.88+0.09
−0.09 −1.29+0.06

−0.06, 52.0+2.6
−2.7 0.8

SC4K∗ (All LAEs) −1.8± 0.2 (fix) 43.59+0.06
−0.06 −4.53+0.13

−0.16 0.33+0.07
−0.05 −2.22+0.08

−0.10, 91.7+4.1
−3.6 8.0

SC4K+MUSE∗ (All LAEs) −2.55+0.06
−0.06 43.92+0.12

−0.11 −5.47+0.24
−0.26 1.40+0.17

−0.15 −1.78+0.04
−0.05, 72.7+2.0

−1.9 0.7
S-SC4K∗ (All LAEs) −2.45+0.06

−0.06 43.87+0.10
−0.10 −5.32+0.21

−0.23 1.04+0.12
−0.12 −1.69+0.05

−0.05, 68.6+2.0
−2.0 0.7

X-ray + radio AGN only −1.7+0.3
−0.2 51.3+1.2

−7.3 −11.0+5.0
−2.6 0.027+0.013

−0.013 −0.75+0.17
−0.17, 27.1+7.3

−7.2 1.3
SC4K∗ (w/o X-ray+radio) −1.8± 0.2 (fix) 43.56+0.06

−0.05 −4.56+0.12
−0.14 0.29+0.06

−0.05 −2.38+0.09
−0.10, 98.7+4.4

−4.1 8.2
SC4K+MUSE∗ (w/o X-ray+radio) −2.63+0.06

−0.06 43.90+0.12
−0.10 −5.59+0.25

−0.28 1.48+0.18
−0.17 −1.86+0.05

−0.05, 76.2+2.2
−2.1 0.7

S-SC4K∗ (w/o X-ray+radio) −2.52+0.07
−0.07 43.84+0.11

−0.09 −5.40+0.21
−0.25 1.09+0.14

−0.13 −1.77+0.05
−0.05, 72.0+2.2

−2.1 0.7
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X-ray+radio AGN Lyα LF, which we also present in Figure 3.3, together with the

range of Schechter fits encompassing 1 and 2σ ranges of all realisations. We find

evidence for the AGN population being responsible for the ‘bump’ at high Lyα

luminosities, which can be parameterised by a Schechter function1 with a higher

characteristic luminosity, a lower characteristic number density and potentially a

shallower slope than the global population (see Table 3.2). The full cross-over be-

tween the likely two populations happens at ≈ 1043.5 erg s−1, although given that

X-ray and radio only provide a partial view of all the AGN, this transition may

happen at slightly lower luminosities ≈ 1043.2−43.3 erg s−1 (see e.g. Sobral et al.,

2019). It is worth noting that the typical characteristic number density of the

AGN component of the Lyα LF is close to ≈ 10−6 Mpc−3, similar to the number

densities of clusters in the Universe, and that may provide a natural link between

bright LAEs at z > 2.5 (typically seen as very extended and thus called Lyα

‘blobs’2) and the physical environments they inhabit (potential ‘proto-clusters’).

In Figure 3.3 we also show results obtained with much deeper surveys, in-

cluding MUSE (Bina et al., 2016; Drake et al., 2017a,b) and results from slit

spectroscopy using VIMOS/VLT (Cassata et al., 2011); see also Table A.4. We

find excellent agreement within the error bars with the MUSE results presented

by Drake et al. (2017a,b), although we note that the agreement is only possible to

be tested around L∗Lyα, where all studies overlap. Future results from the MUSE-

wide project (see Caruana et al., 2018; Herenz et al., 2017), or a compilation of

extra-galactic MUSE archival observations, may be able to extend the volume

covered by MUSE and further increase the overlap, allowing for more detailed

comparisons and to evaluate any systematics/differences. Extremely deep MUSE

data allow to not only blindly find faint LAEs, but even more importantly to

measure the full Lyα luminosity of each source without effects from narrow band

filter profiles (see Drake et al., 2017b; Leclercq et al., 2017). The comparison thus

provides statistical evidence that our corrections are able to recover the full Lyα

LF.

1It can also be relatively well parameterised by a simpler power-law function, see Table 3.2.
2Morphological analysis of the SC4K sample reveals that SC4K LAEs are typically very

compact in the UV but more extended in Lyα emission (Paulino-Afonso et al., 2018, see also
Section 1.5.3).
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Comparing our results with Cassata et al. (2011), we find a very good agree-

ment with their z ∼ 2− 3 and z ∼ 4.6− 6.6 Lyα LFs. The z ∼ 3.0− 4.6 LF from

Cassata et al. (2011) is slightly below ours in the small luminosity range overlap

(we can only use one of their bins to directly compare with ours), but we note

that their results are also below those from MUSE (see Drake et al., 2017a,b).

Apart from cosmic variance and the large differences in selection (our selection

is directly on Lyα, more similar to MUSE), there could also be some cosmic

evolution. Furthermore, we note that the use of slits and potential underestima-

tion of slit corrections may further explain the differences. Both narrow band

surveys and MUSE have established that Lyα emission is significantly extended

(e.g. Leclercq et al., 2017; Momose et al., 2014; Sobral et al., 2017; Wisotzki et al.,

2016), thus making slit spectroscopy hard to correct. Slit corrections can be par-

ticularly challenging as they are often based on the UV continuum, but there is

no simple relation between the Lyα extent and the UV extent (see e.g. Leclercq

et al., 2017).

Lyα surveys from deeper (necessarily smaller) volumes are needed to cover

the sub-L?Lyα luminosity regime (Bina et al., 2016; Drake et al., 2017a,b), as

highlighted in Figure 3.3. Overall, we can now determine the Lyα LF over 4

orders of magnitude in Lyα luminosity at z ∼ 2.5−6. Figure 3.3 also reveals how

complementary ultra-deep MUSE and slit observations are to very wide narrow

and medium band surveys (e.g. SC4K and Konno et al., 2018), allowing unique

synergies and providing the first combined view all the way from the faintest

Lyα sources to the brightest. We fully explore the combined strength of deep

surveys1 (to probe the faint end) and SC4K (to probe the bright end) and derive

a combined Lyα LF (S-SC4K; see Section 3.2.4) presented in Figure 3.3 and

Table 3.2. We obtain two cases: when combining SC4K with the latest MUSE

results (Drake et al., 2017b) and when combining all studies with SC4K (Bina

et al., 2016; Cassata et al., 2011; Drake et al., 2017a,b). While we note that a

single Schechter function is simply not an appropriate fit to the full LF, we still

1In order to account for potential systematic differences between surveys, cosmic variance
and due to the way we compute errors, we add errors of +0.05

−0.08 to data bins determined with
deeper observations/by other studies, as they are able to explain current differences between
surveys and methods. We note, nonetheless, that these errors are very uncertain in themselves
and depend on which surveys/methods are being compared.
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provide those for completeness and for comparison of parameters. Restricting

the fit to LLyα < 1043.3 erg s−1 allows to fit a single Schechter which is likely

tracing an overall population of SF-dominated galaxies, showing a steep slope,

α = −1.93+0.12
−0.12 (greatly improved when using MUSE only see Drake et al. 2017b),

with L∗Lyα = 1042.93+0.15
−0.11 erg s−1 and Φ∗Lyα = 10−3.45+0.22

−0.29 Mpc−3 (see Table 3.2).

Due to the different Lyα luminosity limits, our global LF presented in Fig-

ure 3.3 is inevitably dominated by sources at different redshifts as a function

of luminosity, with the lower luminosity bins being dominated by the (deeper)

lower redshift data, while at higher luminosities all redshifts contribute roughly

equally. This is not a problem in the case of a slow or negligible evolution in the

Lyα LF with redshift from z ∼ 2.5 to z ∼ 6 (e.g. Ouchi et al., 2008), but this has

not been fully established yet, particularly for the bright end (for the evolution

of the faint-end, see Drake et al., 2017b). Our large sample of typical to bright

LAEs is ideal to investigate whether that is the case and to quantify any potential

evolution with redshift.

3.2.2 The evolution of the Lyα luminosity function from

z ∼ 2 to z ∼ 6 in 12 redshift slices

After presenting the global Lyα LF for our full sample in Section 3.2.1, we now

explore the multiple redshift slices in SC4K (see Table A.5). In Figure 3.4 we

present the Lyα LF per redshift slice all the way from z ∼ 2.2 to z ∼ 5.8 by

deriving them per filter/redshift. We find a mild but noticeable evolution of the

bright end of the Lyα LF with redshift from z ∼ 2.2 to z ∼ 6. This evolution

seems to be mostly visible in terms of i) an evolution of the shape and ii) an

evolution in luminosity. At lower redshift (z ∼ 2.2−3.3) there is a significant extra

component (in addition to a single Schechter) to the Lyα LF above luminosities

of ≈ 1043.3 erg s−1, while such a component seems to completely disappear by

z ∼ 3.7 and to not show up in any of the Lyα LFs towards higher redshift.

Interestingly, when considering only the major Schechter component of the Lyα

LF, we find evidence for L∗Lyα to be evolving with redshift towards z ∼ 6 (see

Table 3.3 and Figure 3.5).

72



3.2 Results

-7.0
-6.5
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
-3.0
-2.5

lo
g 1

0
(�

/M
pc
�

3 )
dl

og
L�

1

z = 2.2

z = 2.5
(IA427)

z = 2.2 (Konno+16)

z = 2.2 (Konno+16CC)
z = 2.2 (Sobral+17)
z = 2.4 (Matthee+17)
z ⇠ 2.5 (Cassata+11)

This study

z = 2.8
(IA464)

z ⇠ 2.5 (Cassata+11)
z = 3.1 (Matthee+17)
z = 3.1 (Ouchi+08)

This study

z = 3.0
(IA484)

z ⇠ 2.5 (Cassata+11)
z = 3.1 (Ouchi+08)
z = 3.1 (Matthee+17)
z ⇠ 3.5 (Drake+17b)

This study

-7.0
-6.5
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
-3.0
-2.5

lo
g 1

0
(�

/M
pc
�

3 )
dl

og
L�

1

z = 3.2
(IA505)

z ⇠ 2.5 (Cassata+11)
z = 3.1 (Ouchi+08)
z = 3.1 (Matthee+17)
z ⇠ 3.5 (Drake+17b)

This study

z = 3.3
(IA527)

z ⇠ 2.5 (Cassata+11)
z = 3.1 (Ouchi+08)
z = 3.1 (Matthee+17)
z ⇠ 3.5 (Drake+17b)

This study

z = 3.7
(IA574)

z ⇠ 3.5 (Drake+17b)
z = 3.7 (Ouchi+08)
z ⇠ 3.8 (Cassata+11)

This study

-7.0
-6.5
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
-3.0
-2.5

lo
g 1

0
(�

/M
pc
�

3 )
dl

og
L�

1

z = 4.1
(IA624)

z ⇠ 3.5 (Drake+17b)
z = 3.7 (Ouchi+08)
z ⇠ 3.8 (Cassata+11)

This study

z = 4.6
(IA679)

z ⇠ 4.5 (Drake+17b)
z = 4.5 (Dawson+07)
z = 4.8 (Perez+)
z ⇠ 5 (Cassata+11)

This study

z = 4.8
(IA709)

z ⇠ 4.5 (Drake+17b)
z = 4.5 (Dawson+07)
z = 4.8 (Perez+)
z ⇠ 5 (Cassata+11)

This study

42.5 43.0 43.5 44.0 44.5
log10 (LLy↵/erg s�1)

-7.0
-6.5
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
-3.0
-2.5

lo
g 1

0
(�

/M
pc
�

3 )
dl

og
L�

1

z = 5.0
(IA738)

z ⇠ 4.5 (Drake+17b)
z = 4.5 (Dawson+07)
z = 4.8 (Perez+)
z ⇠ 5 (Cassata+11)

This study

42.5 43.0 43.5 44.0 44.5
log10 (LLy↵/erg s�1)

z = 5.2
(IA767)

z = 5.7 (Santos+16)

z = 5.7 (Konno+17FPC)

z = 5.7 (Ouchi+08FPC)
z ⇠ 5.8 (Drake+17b)

This study

42.5 43.0 43.5 44.0 44.5
log10 (LLy↵/erg s�1)

z = 5.8
(IA827)

z = 5.7 (Santos+16)

z = 5.7 (Konno+17FPC)

z = 5.7 (Ouchi+08FPC)
z ⇠ 5.8 (Drake+17b)

This study

Figure 3.4: The evolution of the (bright end of the) Lyα LF from z ∼ 2.2 to
z ∼ 6 in 13 (two in the first panel) redshift slices and comparison with a variety
of surveys at roughly the same redshift as each slice. Upper limits in the number
densities of our LAEs are shown as black arrows. Our results reveal a significant
evolution at the bright end, with the number counts falling down as a steepening
potential power-law at z ∼ 2.2− 3.3 which can be described as a single Schechter
function at z > 3.5. We show two bin realisations for visualisation of binning
effects, but also the much more representative range of Schechter and power-law
(percentiles, corresponding to 1, 2σ) fits from perturbing the data. In addition, we
also show the fits and uncertainties when exploring synergies with deeper surveys
(S-SC4K), which greatly reduces the uncertainties (darker contours). Note that we
show both the original Konno et al. (2016) z = 2.2 LF in small points, and after
correcting for potential contamination (see Sobral et al., 2017). At z ∼ 5.8 we
compare our measurement with NB surveys (e.g. Konno et al., 2018; Ouchi et al.,
2008) corrected for filter profile effects as in Santos et al. (2016).
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In order to quantify the potential redshift evolution and its significance, we

use our best-fits of single power-laws, single Schechter functions and combinations

of both and compare the resulting reduced χ2 (χ2
red, see Table A.5). We find that

a single Schechter function is a particularly bad fit when including the bright end

of the Lyα LF (χ2
red ∼ 10− 30) from z = 2.5 to z = 3.3. A single power-law fits

better (χ2
red ∼ 3−7), while a combination of a Schechter at lower luminosities and

a power-law at higher luminosities with a transition around 1043.3 erg s−1 provides

the best fits (see Figure 3.4). The combined fit are similar to the ones applied in

recent large volume Lyα studies at a variety of redshifts (e.g. Konno et al., 2016;

Matthee et al., 2017b; Sobral et al., 2017; Wold et al., 2017). Interestingly, the

Schechter component of the Lyα LF shows little evolution in L∗Lyα from z ∼ 2.5

to z ∼ 3.1, but reveals an important Φ∗Lyα evolution from z ∼ 2.5 to z ∼ 3.3 (see

Figure 3.5), which may be consistent with an ‘extended’ period of peak activity

in the Universe (Madau & Dickinson, 2014). For z > 3.5, a single Schechter

fit provides very good fits, although a single power-law could in principle also

describe the bright end of the Lyα LF. From z ∼ 2.2 to z ∼ 3.3 the Lyα LF

reveals a rise in Φ∗Lyα by a factor ≈ 4, along with a potential steepening of the

power-law component at the bright end of the LF. For z > 3.5, where the power-

law component is not seen anymore, our results reveal a fall of Φ∗Lyα and a rise of

L∗Lyα up to z ≈ 5.8 (see also Table A.5).

Using the redshift bins defined in Section 3.1.5 we show the overall redshift

evolution of the Lyα LF in Figure 3.5 (see Table 3.3). We also use other/different

filter combinations to obtain different redshift bins, and find that the results

are all consistent within the error-bars, and thus not dependent on the choice of

binning. The increased statistical sample from the redshift bins provides stronger

constraints on the Lyα LF, and further reinforces the results already mentioned

when looking at each of the individual 12 redshift slices, including the presence

of a potential power-law (or extra Schechter) component at high luminosities at

z ∼ 2− 3.5, which seems to disappear or be at too low number densities for even

our survey to detect beyond z ∼ 3.5. Focusing on the Schechter components

(fitting a Schechter only up to 1043.3 erg s−1 at z < 3.3 where a clear excess at the

bright end is found), and for a fixed α = −1.8, we find that L∗Lyα may evolve in a

relatively continuous way from 1042.69+0.05
−0.04 erg s−1 at z ∼ 3.1 to 1043.35+0.12

−0.11 erg s−1
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Table 3.3: The results of fitting different Lyα LFs with a Schechter function at
the appropriate luminosity range. For SC4K only we do not fit α, but instead fix it
from −1.6 to −2.0 in steps of 0.05 with a uniform prior; the ±0.2 shown therefore
reflects the variation we impose on α, and not an uncertainty in fitting α. For S-
SC4K we explicitly fit all three parameters. For each fit we also integrate the Lyα
LF to obtain ρLyα, derived for different redshift bins, down to 0.04L?. All errors
are the 16 and 84 percentiles of all the fits, derived from our 10,000 realisations
per LF. We also convert ρLyα to a star formation rate density by using Equation
6.4 (Kennicutt, 1998) assuming a Salpeter IMF between 0.1− 100 M� and affected
by fesc (note that any correction for dust extinction will also be included in the fesc

term).

Redshift bin α log10 L∗Lyα log10 Φ∗Lyα ρLyα / 1040 SFRDLyα × fesc/ 10−2 Reference(s)
(SC4K only) (erg s−1) (Mpc−3) (erg s−1 Mpc−3) (M� yr−1 Mpc−3) (Table A.4)

z = 2.2± 0.1 (L < 1043.3) −1.8± 0.2 (fix) 42.69+0.14
−0.11 −3.33+0.21

−0.26 0.48+0.04
−0.04 0.44+0.04

−0.04 12
z = 2.5± 0.1 (L < 1043.3) −1.8± 0.2 (fix) 42.76+0.08

−0.07 −3.23+0.15
−0.15 0.73+0.18

−0.14 0.67+0.16
−0.13 SC4K

z = 3.1± 0.3 (L < 1043.3) −1.8± 0.2 (fix) 42.69+0.05
−0.04 −2.73+0.11

−0.12 1.90+0.56
−0.39 1.73+0.51

−0.36 SC4K
z = 3.9± 0.2 −1.8± 0.2 (fix) 42.89+0.11

−0.10 −3.71+0.30
−0.28 0.34+0.21

−0.12 0.31+0.19
−0.11 SC4K

z = 4.7± 0.1 −1.8± 0.2 (fix) 43.10+0.13
−0.12 −3.82+0.33

−0.32 0.48+0.33
−0.18 0.43+0.30

−0.16 SC4K
z = 5.4± 0.4 −1.8± 0.2 (fix) 43.35+0.12

−0.11 −4.18+0.31
−0.30 0.41+0.28

−0.16 0.37+0.26
−0.15 SC4K

S-SC4K: synergy Lyα LF
z = 2.2± 0.1 (L < 1043.3) −2.00+0.15

−0.14 42.82+0.13
−0.10 −3.59+0.22

−0.28 0.52+0.05
−0.05 0.47+0.04

−0.04 2.1, 6.1, 12
z = 2.5± 0.1 (L < 1043.3) −1.72+0.15

−0.15 42.71+0.09
−0.08 −3.10+0.17

−0.21 0.74+0.08
−0.07 0.67+0.07

−0.07 2.1, 5.1
z = 3.1± 0.3 (L < 1043.3) −1.63+0.17

−0.16 42.77+0.12
−0.09 −3.06+0.21

−0.26 0.86+0.10
−0.09 0.78+0.09

−0.08 2.1, 5.1
z = 3.9± 0.2 −2.26+0.18

−0.17 42.93+0.13
−0.11 −3.66+0.30

−0.35 1.11+0.19
−0.16 1.00+0.17

−0.14 2.2, 5.1, 5.2
z = 4.7± 0.1 −2.35+0.19

−0.19 43.28+0.20
−0.14 −4.25+0.34

−0.49 1.16+0.40
−0.27 1.05+0.36

−0.25 2.3, 3, 5.2, 10
z = 5.4± 0.4 −1.98+0.14

−0.14 43.28+0.09
−0.09 −3.83+0.21

−0.22 1.11+0.21
−0.17 1.01+0.19

−0.16 5.3, 9.4, 11
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at z ∼ 5.4, which would imply a factor ∼ 4− 5 increase in the typical luminosity.

This is accompanied by a strong decline of Φ∗Lyα of ∼ 10− 30 times from z ∼ 3.1

to z ∼ 5.4 (see Table 3.3 and Figure 3.5).

The apparent decline in Φ∗Lyα, accompanied by a positive L∗Lyα evolution (L∗Lyα

increase with an increasing redshift) may be linked to an evolution of the nature of

the sources or changes in the conditions of the ISM and CGM, but potentially also

with an evolution of the AGN population. We discuss possible explanations in

Chapter 4. We note that by excluding X-ray and radio AGN we find a reduction of

the number densities of LAEs at the highest luminosities, lowering and steepening

the potential power-law component, but without removing it. This means that if

the power-law component is fully AGN driven (Sobral et al., 2018a; Wold et al.,

2017) there is still a significant component of the AGN population that is simply

not detectable in the X-rays or radio (see Section 4.5), potentially because these

AGN are very young and/or of very low black hole mass, but highly efficient in

the production of Lyα photons which might easily escape, or due to the timescales

involved in the AGN turning on and off. Our results thus highlight two potentially

important/different physical mechanisms contributing to the Lyα LF at z ∼ 2−6.

3.2.3 Comparison with other studies at z ∼ 2− 6

A wide range of Lyα surveys using narrow bands, slits or IFUs have derived Lyα

LFs at z ∼ 2 − 6, mostly probing at and below L∗Lyα (e.g. Cassata et al., 2011;

Dawson et al., 2007; Drake et al., 2017b; Gronwall et al., 2007; Murayama et al.,

2007; Ouchi et al., 2008; Rauch et al., 2008; Shimasaku et al., 2006; Shioya et al.,

2009; Westra et al., 2006); see Table A.4. These are both perfect comparisons to

our results and useful extensions to fainter luminosities.

A comparison between the Lyα LFs from this work and other studies at similar

redshifts from the literature is shown in Figure 3.4. We find that the z = 2.2 Lyα

LF from Sobral et al. (2017) is in good agreement with our z = 2.5 measurements

at the bright end, but the comparison reveals a positive Φ∗Lyα evolution from

z ∼ 2.2 to z ∼ 2.5 (see also Figure 3.5). The z ∼ 2.2 Lyα LF presented by Konno

et al. (2016) is in reasonable agreement with ours, and also implies evolution

from z = 2.2 to z ∼ 2.5, but implies higher number densities of bright sources
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(see discussion on the importance of filtering out lower redshift interlopers and

how they can easily account for 50% of high EW sources in the bright end at

z ∼ 2; see Sobral et al., 2017). We also show the Konno et al. (2016) results

when removing likely contaminants in Figure 3.4 as in Sobral et al. (2017), which

results in an even better agreement with our results at the bright end. The z = 2.4

LF from Matthee et al. (2017b) is also in good agreement with our measurement

at z ∼ 2.5. We note that the number densities observed for the brightest bin

in Matthee et al. (2017b) are marginally higher than ours (Figure 3.4), and that

those high luminosity sources have now all been spectroscopically confirmed (see

Sobral et al., 2018b), and thus contamination is not able to explain the small

discrepancy. The observed lower number densities for our results based on the

medium bands when compared with Matthee et al. (2017b) may be explained by

some of the brightest sources having lower EWs and thus being missed by our

relatively high EW cut, even after applying our completeness corrections (see full

discussion in Sobral et al., 2017). Cosmic variance is another possibility. We also

compare our results to Cassata et al. (2011) and find a good agreement.

The ‘mild’ increase from z ∼ 2 up to z ∼ 3.3 − 3.7 of the number density

of LAEs (factor of ≈ 4) across the entire luminosity range is consistent with

measurements from several studies, where a similar rise of the Schechter function

is seen by comparing e.g. Sobral et al. (2017) at z ∼ 2.2 with Ouchi et al. (2008)

at z ∼ 3.1 and z ∼ 3.7 (Figure 3.4). In fact, at z = 3.7, Ouchi et al. (2008)

finds higher number densities at all luminosities than ours, although by z = 4.1

our measurements agree very well with Ouchi et al. (2008). At z = 4.8, SC4K

provides a unique opportunity to directly compare results from a MB and NB at

roughly the same central wavelength, and we find a very good agreement at all

luminosities probed by both bands, with the NB data allowing us to go deeper,

while the MB allows to probe a wider volume.

As we move to even higher redshifts (z ∼ 5 − 6), there is tentative evidence

for a ‘boost’ in luminosity (accompanied by a decline in number density and a

potential steepening of the Lyα LF; Drake et al. 2017b), which agrees with results

from Santos et al. (2016), and with those at z ∼ 5.7 from Ouchi et al. (2008)

when corrected in the same way as our results (see discussion in e.g. Matthee

et al., 2015; Santos et al., 2016, and also Section 3.1.2.2). Recent results from
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Figure 3.5: Left: The evolution of the Lyα LF with redshift from z ∼ 2 to
z ∼ 6 from this study, exploring our synergy approach (S-SC4K), showing the
16th and 84th percentiles of all realisations/fits. We find a mild L∗Lyα rise with
increasing redshift, at the same time that Φ∗Lyα declines. This leads to a mild
evolution in the Schechter-like component with redshift. We find that the extra
power-law/Schechter component at LLyα > 1043.3 erg s−1 declines with increasing
redshift, mostly by becoming steeper and with a lower normalisation, which may be
linked with the decline in the AGN population. By z ∼ 3.9 the extra component is
no longer seen at the current observational limits. Right: The L∗Lyα-Φ∗Lyα contours
for the Schechter fits by fixing α = −1.8 (without any perturbation) by using the
SC4K MBs only. The lines are the 1σ, 2σ and 3σ contours for L?Lyα and Φ?

Lyα for
each redshift bin. This shows the mild but significant evolution of both L?Lyα and
Φ?

Lyα with redshift.
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HSC (Konno et al., 2018) reach volumes similar to ours at z = 5.7 and hint for an

overall lower number density of sources than those found by Ouchi et al. (2008)

or Santos et al. (2016). This difference is mitigated when we apply the filter

profile corrections (see e.g. Figure 3.4), but still suggests an overall lower number

density of sources or systematic differences in estimating/measuring fluxes.

3.2.4 S-SC4K: the synergy Lyα LF(z)

Overall, our results show very good agreement with the literature for the range

of luminosities where surveys can be directly compared. Our results also extend

previous surveys not only to higher luminosities, but also to a much higher number

of redshift slices, allowing us to investigate the fine redshift evolution of the Lyα

LF in terms of the apparent shape change in the bright end and its positive

luminosity evolution (of the main Schechter component) by a factor of about

≈ 5 from z ∼ 3 to z ∼ 6 and a decline in the number density of sources by

a factor ≈ 10 or more. Interestingly, recent results from MUSE (Drake et al.,

2017b) provide strong evidence for α being steep and tentative evidence for it

steepening with increasing redshift. However, ultra-deep MUSE data on their

own still suffer from an important short-coming: the uncertainty in determining

the characteristic luminosity and/or number density of sources (e.g. errors on α

up to +1.4
−∞ at z ∼ 3 − 6.6 due to poor constraints on the bright end; see Drake

et al., 2017b). Our SC4K survey is exactly what is needed (see Figure 3.3) to

provide the extra constraints on the bright end and break the degeneracies.

We combine our SC4K results with other surveys probing to fainter lumi-

nosities than SC4K, to derive a synergy/consensus Lyα LF (S-SC4K) from the

peak of star-formation into the end of re-ionisation. We present the results in

Figures 3.3, 3.4, 3.5 and Tables 3.2 and 3.3. We find evidence for a steepening

of the faint-end slope (see Table A.5) from z ∼ 2.5 (α = −1.7 ± 0.2) to z ∼ 5

(α = −2.5±0.2). Most importantly, we find that α is always very steep and close

to α = −2 at all redshifts probed. The synergy LF (S-SC4K; Figure 3.5) also

shows a roughly continuous increase in L∗Lyα by a factor of ≈ 3− 4 from z = 2.5

to z ∼ 5 − 6 (for the main Schechter component; note that at z < 3.3 the Lyα

LF requires an extra bright component to be properly modelled). In addition,
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we also find evidence of a decline in the typical number density at L∗Lyα, with

Φ∗Lyα continuously reducing by a factor of ≈ 5. Overall, we show that there is

evolution in the Lyα LF from z ∼ 2.5 to z ∼ 6, driven by an apparent steepen-

ing of the faint end slope, together with both a decline in number density and a

positive luminosity evolution (factors of ∼ 3 − 5). It is also worth highlighting

that a single Schechter function is not capable of encompassing the full evolution

of the Lyα LF at z ∼ 2− 3.3, due to the significant power-law or extra brighter

Schechter component. We also note that it is possible that the extra population

of likely AGN dominating the bright end at lower redshift (see Figure 3.5) may

still contribute at higher redshift and may in principle be partially responsible for

the luminosity evolution. However, as Section 4.1 shows, due the very steep faint

end slope of the Lyα LF, the Lyα luminosity density is dominated by the faintest

sources and thus the evolution of the bright end by itself does not dominate the

luminosity budget, though it may be very important to understand the physics

of sources contributing to it. We also stress that while the bright sources are not

the dominant sources of Lyα luminosity density in the Universe, only the com-

bination of ultra-deep and large volume surveys can provide the full constraints

necessary to fully measure the evolution of the Lyα LF and the population of

sources that contributes to it.

3.3 Conclusions

We use our large sample of ∼ 4000 LAEs to construct Lyα LFs for the different

redshift slices and investigate the evolution across cosmic time. We also combine

SC4K with results from the literature to obtain a powerful consensus/synergy

Lyα survey (S-SC4K) that spans over 4 orders of magnitude in Lyα luminosity

across z ∼ 2− 6. Our main results are:

• SC4K extensively complements ultra-deep surveys, jointly covering over

4 dex in Lyα luminosity and revealing a global (2.5 < z < 6) synergy LF

with a steep faint end slope α = −1.93+0.12
−0.12, a characteristic luminosity

of log10 L∗Lyα = 42.93+0.15
−0.11 erg s−1 and a characteristic number density of

log10 Φ∗Lyα = −3.45+0.22
−0.29 Mpc−3.
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• The Schechter component of the Lyα LF shows a factor ∼ 5 rise in L∗Lyα,

from ≈ 1042.7 erg s−1 at z ∼ 2 to ≈ 1043.35 erg s−1 at z ∼ 6 and a ∼ 7×
decline in Φ∗Lyα from z ∼ 2 to z ∼ 6. We also find evidence for the faint-end

slope to steepen from α = −1.7 ± 0.2 at z ∼ 2.5 to α = −2.5 ± 0.2 at

z ∼ 5. Most importantly, α is always very steep and close to α = −2 at all

redshifts probed.

• A Schechter function provides a good fit to the LF up to luminosities of

∼ 1043.3 erg s−1, but we find a significant extra power-law (or Schechter)

component above LLyα = 1043.3 erg s−1. We show that the extra component

is partially driven by X-ray and radio AGN, as their Lyα LF resembles the

excess. This extra component is found to decline (steepen) significantly

with redshift and/or becomes mixed with the main Schechter component

beyond z ∼ 3.5, likely linked with the evolution of the AGN population.

This means that above z ∼ 3.5 a single Schechter function becomes a good

description of the Lyα luminosity function from the lowest to the highest

Lyα luminosities.
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Chapter 4

LAEs in the wider picture and

the escape of Lyα photons
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Abstract

We use our best measurements of the Lyα luminosity function at

multiple redshift intervals between z ∼ 2 and z ∼ 6 to probe for

evolution of the Lyα luminosity density. The Lyα luminosity density

rises by a factor ∼ 2 from z ∼ 2 to z ∼ 3 but is then found to be

roughly constant (1.1+0.2
−0.2 × 1040 erg s−1 Mpc−3) to z ∼ 6, despite the

∼ 0.7 dex drop in UV luminosity density. The Lyα/UV luminosity

density ratio rises from 4±1% to 30±6% from z ∼ 2.2 to z ∼ 6. Our

results imply a rise of a factor of ≈ 2 in the global ionisation efficiency

(ξion) and a factor ≈ 4 ± 1 in the Lyα escape fraction from z ∼ 2 to

z ∼ 6, hinting for evolution in both the typical burstiness/stellar

populations and even more so in the typical ISM conditions allowing

Lyα photons to escape.



4.1 The redshift evolution of ρLyα

We structure this Chapter as follows: we measure the Lyα luminosity density

(ρLyα) and discuss how fesc and ξion likely evolve with redshift in Sections 4.1 to

4.3. We discuss the nature of LAEs in a broader context in Sections 4.4 to 4.6.

We provide some final remarks and conclusions in Section 4.7.

4.1 The redshift evolution of ρLyα

We explore SC4K and S-SC4K to measure the evolution of the Lyα luminosity

density (ρLyα) from z ≈ 2.2 to z ∼ 6, in multiple redshift slices, with unprece-

dented detail. We compute ρLyα by integrating the LF down to different limits.

For a direct comparison with Hayes et al. (2011), we integrate LFs down to

1.75× 1041 erg s−1, corresponding to 0.04L?z=3
1 from Gronwall et al. (2007). For

each LF, we calculate 10,000 integrals, each perturbing individual data-points

within their asymmetric Gaussian distributions, fitting the LF and computing

the integral. For SC4K-only LFs we vary α with a uniform probability distribu-

tion between −1.6 and −2.0 for a more conservative error estimation (errors are

the 16 and 84 percentiles of all the integrals). The results are shown in Figure

4.1 and Tables 3.2 and 3.3.

We find evidence for ρLyα to increase with redshift, with a rise from z ∼ 2 to

z ∼ 3 and then a tentative decline at z ∼ 4 and remaining constant at z ∼ 4− 6

(Figure 4.1). These results are clear using both the individual redshift slices

and also the redshift bins. We note that the decline in ρLyα seen from z ∼ 3

to z ∼ 4 with SC4K coincides with the disappearance of the bright-end excess

of the Lyα LF, although we note that the potential power-law component at

the highest luminosities, by itself, only represents ∼ 1 − 5% of the Schechter

luminosity density2. The evolution from z ∼ 3.3 to z ∼ 4 may be linked with a

significant evolution in the nature of Lyα emitters.

When using S-SC4K, we obtain far superior constraints on ρLyα (much better

than e.g. MUSE or SC4K on their own; see Figure 4.1). We still find that ρLyα

increases from z ∼ 2.2 to z ∼ 3 − 4 by a factor of ≈ 2, and clear evidence for

1This corresponds to integrating down to ≈ 0.16 M� yr−1 for a Salpeter IMF and fesc = 1.0;
see Section 4.3.

2In our analysis we do not include the integral of the power-law component.
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Figure 4.1: Top: The evolution of the Lyα luminosity density (ρLyα). We show
the measurements using SC4K only, including per filter and also redshift stacks.
We find a relatively constant ρLyα across redshift, with the MB filters on their
own suggesting a slight decline in ρLyα from z ∼ 3 to z ∼ 4 − 6. Combining
SC4K with deep surveys (S-SC4K) reveals the importance of probing both the
faint and bright ends. The combined constraints show that ρLyα rises from z ∼ 2
to z ∼ 3.5 and then stays constant with redshift all the way to z ∼ 6. Bottom:
We compare our results with surveys measuring the UV (Bouwens et al., 2015;
Finkelstein et al., 2015; Hayes et al., 2011) and Hα (Sobral et al., 2013) luminosity
densities transformed to SFRDs. While the global star formation rate density (UV
luminosity density) of the Universe is falling sharply from z ∼ 2 to z ∼ 6 by a
factor of ≈ 5, the contribution from Lyα selected sources is rising, particularly due
to the steepening of the Lyα LF, accompanied by a higher typical luminosity and
despite the lower typical number density.
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ρLyα to be relatively constant with redshift from z ∼ 4 to z ∼ 6. Our results thus

show that despite the clear evolution of the Lyα LF from z ∼ 4 to z ∼ 6, its

integral remains roughly constant. Interestingly, we note that the global SC4K

LF on its own (2.5 < z < 6, pink diamond in Figure 4.1) yields a value of ρLyα

which is actually representative of the majority of the individual measurements at

z ∼ 3−6 (green circles in Figure 4.1). We find that the relative constancy of ρLyα

with increasing redshift is driven by a steepening of the faint-end slope α with

increasing redshift, together with an increase in L∗Lyα, which counter-balances

the significant reduction in Φ∗Lyα with increasing redshift. Therefore, our results

show that whilst ρLyα stays relatively constant with redshift, there is a strong

shift towards fainter LAEs becoming more and more dominant in the global ρLyα

towards re-ionisation.

We compare our results with the literature (see e.g. Drake et al., 2017b; Hayes

et al., 2011; Matthee et al., 2015; Ouchi et al., 2008; Santos et al., 2016; Zheng

et al., 2017, and references therein) and find good agreement with our measure-

ments within the errors. The scatter of individual measurements and previous

studies done on single fields and/or just probing either the bright or faint regimes

is also very clear in Figure 4.1. For example, MUSE data on their own sug-

gest a potential increase in ρLyα, while SC4K on its own would suggest a reduc-

tion. Our results highlight the importance of combining the strengths of each

approach/instrument/measurement in order to truly reveal the behaviour of ρLyα

with redshift.

On the bottom panel of Figure 4.1 we convert ρLyα to a star-formation rate

density (SFRDLyα
1) so we can more directly compare it with the UV luminosity

density also converted to SFRD (SFRDUV; e.g. Bouwens et al., 2015; Finkelstein

et al., 2015). Our results reveal the striking difference between the evolution of

the UV and Lyα SFRDs with increasing redshift. While the SFRD traced by

Lyman break galaxies (and Hα emitters at z = 2.2) is strongly declining (by

a factor of about 5 from z ∼ 2.2 to z ∼ 6), the Lyα SFRD is increasing to

1computed by directly converting LLyα to LHα = LLyα/8.7, and then computing the SFR
using Equation 1.3; a likely difference between this SFRD and the one derived from LBG samples
will thus be driven by fesc,Lyα and the ionising efficiency; see full assumptions in Section 4.3.
The SFR is computed assuming a Salpeter IMF, and thus can be converted to a Chabrier IMF
by multiplying it by a scaling factor of 0.63.
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z ∼ 3 − 4 and then remaining constant all the way to the end of the epoch of

re-ionisation at z ∼ 6. Therefore, our results re-enforce the increasing importance

of LAEs at higher redshift in the global SFRD, and hint for global evolution in

the properties of galaxies for this to happen, including the Lyα escape fraction

(which would result in a higher Lyα luminosity density for a fixed UV luminosity

density) and/or the typical ionisation efficiency (which can also lead to a higher

production of Lyα photons). Furthermore, the Lyα escape fraction is sensitive

to a number of galaxy properties such as the dust content (e.g. Atek et al., 2008;

Hayes et al., 2010b; Matthee et al., 2016; Oyarzún et al., 2017; Shibuya et al.,

2014) and covering fraction of neutral hydrogen (Henry et al., 2015), and thus

any of these may be evolving. The production efficiency of ionising photons is

related to the nature of stellar populations, such as the metallicity and initial

mass function (e.g. Erb et al., 2014; Reddy et al., 2018; Schaerer, 2003). In

Section 4.3 we explore these possibilities in detail.

4.2 The evolution of the cosmic Lyα/UV ratio

Based on our results, ρLyα rises by a factor of about ∼ 2 from z ∼ 2.2 to z ∼ 3

and is then relatively constant up to z ∼ 6. However, as shown in Figure 4.1,

the UV luminosity density1 decreases by a factor ≈ 5 over the same redshift

range (e.g. Bouwens et al., 2015; Finkelstein et al., 2015; Reddy & Steidel, 2009).

Figure 4.2 shows that the cosmic SFRDLyα/SFRDUV increases significantly with

redshift by a factor of ∼ 7 − 8 from z ∼ 2 to z ∼ 6, driven by the mild positive

evolution of ρLyα with redshift and the sharp decline in ρUV (Figure 4.1). Our

measurements follow a similar trend estimated by Hayes et al. (2011), but provide

significantly better sampling in terms of redshift and further constraining both

the bright (SC4K) and faint ends (S-SC4K); see Figure 4.2.

Observationally, our results mean that from z ∼ 2 to z ∼ 6 there is a system-

atic increase in the luminosity density of Lyα photons in the Universe relative

to 1500 Å UV photons. Such increase should be vastly dominated by the large

1UV luminosity densities are integrated down to 0.04 L?UV,z=3 following Hayes et al. (2011);
see also discussions in Hayes et al. (2011) and e.g. Sobral et al. (2017) on integration limits.
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Figure 4.2: The evolution of SFRDLyα/SFRDUV (= ξion,N × fesc, Equation 4.7)
from z = 2.2 to z ∼ 6 with S-SC4K. We find the ratio to increase from ≈ 4% at
z = 2.2 to ≈ 30% at z ∼ 6, implying a very high Lyα to UV luminosity density
ratio in the early Universe. We parameterise the rise with redshift as a power-law

and find ∝ (1+z)3.0+0.4
−0.3 (we show the 1, 2 and 3σ range of all fits), a slightly steeper

relation than in Hayes et al. 2011 (we also include more recent measurements from
the literature). Furthermore, by modelling the rise of ξion as ∝ (1+z) (see Equation

10 from Matthee et al., 2017a), we infer that fesc is rising as (1 + z)2.0+0.4
−0.3 . Our

results suggest a significant evolution in the typical burstiness/stellar populations
(ξion) by a factor of≈ 2 and an even stronger evolution in the typical ISM conditions
leading to an inferred fesc increase of a factor ≈ 4 from z ∼ 2.2 to z ∼ 6.
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number of faint LAEs that likely become more dominant towards higher redshift,

but there is also independent evidence for a higher Lyα/UV ratio for fixed UV

luminosities towards z ∼ 6, including at high UV luminosities (see Curtis-Lake

et al., 2012a; Schenker et al., 2014; Stark et al., 2017, and references therein). We

explore and discuss potential explanations and interpretations for the rise of the

cosmic Lyα/UV ratio in Section 4.3.

4.3 The redshift evolution of fesc and ξion

The ρLyα/ρUV ratio is a tracer for the relative strength of Lyα to the UV. In

Figure 4.2 we show that SFRDLyα/SFRDUV (∼ ρLyα/ρUV) rises with redshift

significantly. In order to fully interpret and discuss the redshift evolution of the

ρLyα/ρUV ratio, it is necessary to derive how it depends on the Lyα escape fraction

and production efficiency of ionising photons. We follow Bouwens et al. (2016)

and Matthee et al. (2017a), and define ξion (see discussions in Shivaei et al., 2018),

the production efficiency of hydrogen ionising photons (Lyman continuum, LyC),

as:

ξion =
Qion

LUV

× (1− fesc,LyC) (Hz erg−1), (4.1)

where LUV is the dust-corrected UV luminosity in erg s−1 Hz−1 at a wavelength

of 1500 Å, and assuming a ≈ 0 % escape fraction of LyC photons (fesc,LyC). Qion,

the number of emitted ionising (LyC) photons per second, is related to the dust-

corrected Hα luminosity (LHα) as:

Qion =
LHα

cHα

(s−1), (4.2)

where cHα = 1.37×10−12 erg (e.g. Kennicutt, 1998; Schaerer, 2003) is the recombi-

nation coefficient. Under the assumption of case B recombination, a temperature

of 104 K, an electron density 350 cm−3 and a 0% escape fraction of ionising LyC

photons, the Hα luminosity is related to Lyα (with fesc being the Lyα escape

fraction) as:

LHα =
LLyα

8.7fesc

(erg s−1). (4.3)
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With our assumptions so far, we can use LHα to estimate the SFR1, following

Kennicutt (1998) for a Salpeter IMF (0.1− 100 M�):

SFRHα = 7.9× 10−42 LHα (M� yr−1). (4.4)

We combine these equations to derive an expression for the relation between

the Lyα and UV luminosities:

ξion × fesc =
LLyα

8.7cHαLUV

(Hz erg−1). (4.5)

Quantitatively, both UV and Lyα luminosities are related to the SFR. The

(dust-corrected) UV luminosity through direct continuum emission from young

stars, and Lyα luminosity through the recombination radiation in Hii regions

from LyC photons originating from young stars. Following Kennicutt (1998), ξion

is related to the Hα and UV SFR as:

ξion = 1.3× 1025 SFRHα

SFRUV

(Hz erg−1). (4.6)

In this equation, the constant 1.3 × 1025 Hz erg−1 is dependent on the IMF and

stellar spectral synthesis models. The ratio between the Hα and UV SFRs is

a measure of burstiness of SF (see also Smit et al., 2016) and is equal to 1 if

there is a continuous SF history for the last 100 Myr. Therefore, an increasing

ξion could trace both the nature of stellar populations (i.e. the hardness of the

ionising spectrum) and/or the burstiness of star formation. This degeneracy can

be resolved with photo-ionisation modelling when multiple emission-lines with a

range of ionisation energies are observed (for example using the Helium Balmer

lines). If we define ξion,N = ξion/(1.3× 1025 Hz erg−1), we can write:

ξion,N × fesc =
SFRLyα

SFRUV

, (4.7)

allowing us to more directly interpret the ratio between SFRLyα and SFRUV.

1For continuous SF over 10 Myr timescales.
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Matthee et al. (2017a) discusses how ξion correlates with Hα EW, and how the

widely agreed rise of typical Hα EWs1 with redshift (e.g. Faisst, 2016; Fumagalli

et al., 2012; Sobral et al., 2014) suggests that ξion rises by a factor of about ∼ 2

from z ∼ 2 to z ∼ 6 as ∝ (1 + z), in agreement with e.g. Nakajima et al. (2016)

and Harikane et al. (2018). Assuming ξion,N ≈ 1 at z = 2.2 (see Matthee et al.,

2017a; Shivaei et al., 2018), we can then measure fesc directly for 2 < z < 6 by

using:

fesc =
3.2

(1 + z )

SFRLyα

SFRUV

(2 < z < 6). (4.8)

We check with Sobral et al. (2017) that the above approach is able to roughly

recover fesc at z = 2.2 measured directly with Hα (4% with the integration limits

we use and without using the power-law component of the Lyα LF). By comparing

with our observations in Figure 4.2, we infer an evolution of fesc of a factor ≈
4 (from ≈ 3.8% at z ∼ 2.2 to ≈ 15% at z ∼ 6), with an increase roughly

proportional to (1 + z)2.0±0.3 for fesc (see Figure 4.2). Our results thus suggest

that the strong evolution in the SFRDLyα/SFRDUV ratio with redshift is driven

by an increase in ξion (tracing high burstiness and/or an average change in stellar

populations) by a factor of ∼ 2, rising as 1 + z and fesc by a factor of ≈ 4 − 5

from z ∼ 2 to z ∼ 6, rising as (z + 1)2. Overall, this explains the rise of

SFRDLyα/SFRDUV as (1+z)3.0±0.3. Our results thus imply evolution in both ISM

conditions and on the burstiness/nature of the stellar populations with increasing

redshift.

4.4 The compact nature of LAEs and relation

to the global increase in fesc

Paulino-Afonso et al. (2018) presents the full visual and automated morphological

and structural analysis in the rest-frame UV of the SC4K sample presented in

this work. They find that LAEs are systematically smaller in the rest-frame UV

than the global population of star-forming galaxies, presenting sizes which are

1See also results showing a rise in typical EWs of other rest-frame optical lines such as [Oiii]
in Khostovan et al. (2016).
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roughly constant with redshift of ≈ 1 kpc (see also Bond et al., 2011; Guaita

et al., 2015; Malhotra et al., 2012). Paulino-Afonso et al. (2018) also points out

that while “typical” star-forming galaxies at z < 2 are ∼ 2−4× larger than LAEs

(Paulino-Afonso et al., 2017; Ribeiro et al., 2016; van der Wel et al., 2014), the

differences in typical sizes become smaller with increasing redshift. By z ∼ 6, the

general population of SFGs presents basically the same morphological properties

as LAEs have across all redshifts.

Furthermore, Paulino-Afonso et al. (2018) also discusses how the sizes and

compactness of LAEs depend on rest-frame Lyα EW0. The EW0 of the Lyα

line has recently been shown to be the simplest/most robust empirical predictor

of fesc (Sobral et al., 2017), with the relation between EW0 and fesc showing

no significant evolution at z ∼ 0 − 5, (see Harikane et al., 2018; Sobral et al.,

2017). Paulino-Afonso et al. (2018) find that LAEs with the highest EWs are

the smallest and most compact at all redshifts. This suggests a relation between

compactness and/or size and fesc, and may be one of the physical reasons why

we find that globally fesc seems to rise with increasing redshift. In this case, it

would be because the general population of galaxies are, as a whole, compact

and small enough, for Lyα photons to more easily escape. However, we note that

smaller and more compact galaxies will typically be also less evolved, potentially

more bursty and with lower metallicity stellar populations, which can also lead to

boosting Lyα through a higher ξion. The potentially higher fesc at higher redshift

could also be caused more directly by e.g. lower dust content and/or a more

porous CGM due to strong stellar winds (e.g. Geach et al., 2014) produced in

compact and highly star-forming regions, which would allow the escape of more

Lyα photons.

The morphological information may be important to potentially explain the

increase in fesc with redshift, but in principle it does not tell us anything about the

burstiness or the stellar populations and/or AGN activity that may be happening

within LAEs across cosmic time. This is important to understand the potential

evolution in ξion (Matthee et al., 2017a), even more so as our results provide

evidence that both ξion and fesc evolve with redshift. Further physical insight

may be obtained by studying local analogues like ‘green peas’ or ‘blueberry’

galaxies (e.g. Izotov et al., 2017; Yang et al., 2017a,b). Such analogue galaxies
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allow for detailed studies to be performed to make crucial measurements and test

hypothesis/modelling results (e.g. Izotov et al., 2016; Verhamme et al., 2006, 2015;

Yang et al., 2017a) regarding the connection between fesc and the Lyα emission

line peak separation, width and other properties (see e.g. Verhamme et al., 2017).

Furthermore, these low redshift sources, showing essentially the same properties

as SC4K galaxies at higher redshift, are ideal to further explore and test the link

between LyC and Lyα photon escape (e.g. Dijkstra et al., 2016; Izotov et al.,

2018; Verhamme et al., 2015, 2017) and their relation with size/compactness and

other physical properties.

4.5 The bright end of the Lyα LF: AGN?

Previous studies (e.g. Konno et al., 2016; Matthee et al., 2017b; Sobral et al.,

2017; Wold et al., 2017) have found evidence for a relation between the potential

power-law component of the bright end of the Lyα LF and the AGN nature of

sources populating it. Such evidence has been primarily driven by the detection

of many of those sources in the X-rays (e.g. Konno et al., 2016; Sobral et al.,

2017). With the availability of deep Chandra and VLA data, we have identified

that 3.6 ± 0.3% of all our sources are likely AGN, with 109 (2.9 ± 0.3%) being

X-ray AGN, 62 (1.7 ± 0.2%) being radio AGN and 30 (0.8 ± 0.1%) being both.

While these are a very small fraction overall, as shown in Calhau et al. (2020) and

Sobral et al. (2018a), AGN LAEs become more significant at the brightest Lyα

luminosities, a consequence of their relatively flat Lyα LF which we have found,

with a potential high L∗Lyα. Calhau et al. (2020) finds a significant correlation

between the X-ray AGN fraction of LAEs and the Lyα luminosity; this fraction is

consistent with 0.7± 0.3% below L∗Lyα, but it grows towards 100% at the highest

Lyα luminosities (see also Matthee et al., 2017b; Sobral et al., 2018a). We thus

find that removing the X-ray and radio AGN leads to removing sources from the

bright-end of the LF, but an excess relative to a Schechter persists at z ∼ 2−3 even

after removing X-ray and radio sources. We argue that there is still a significant

population of AGN sources that is undetected in the radio and X-rays, even after

stacking. X-ray or radio-detected AGN only provide a lower constraint on the
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total number of AGN, as not all AGN have strong X-ray or radio emission. As

shown in Sobral et al. (2018a), virtually all the spectroscopically confirmed LAEs

at z ∼ 2− 3 with > 1043.2 erg s−1 are AGN. Such AGN are revealed by deep rest-

frame UV spectroscopy, even though the majority does not show any detectable

X-ray or radio emission. These results indicate that the most luminous LAEs at

z ∼ 2−3 are powerful AGN that emit copious amounts of Lyα photons, boosting

the bright end of the Lyα LF. Further evidence comes from the relation between

X-ray and Lyα luminosities which suggests that Lyα is tracing the accretion rate

for those sources, and not SF processes. AGN LAEs have X-ray luminosities in

the range LX−ray = 1043.4−45.1 erg s−1, implying high black hole accretion rates of

0.1-4 M� yr−1. AGN LAEs have radio luminosities of ≈ 1030.7 erg s−1 Hz−1, but

little relation with Lyα, probing down to lower Lyα luminosities, and potentially

indicating ‘bursty’ AGN accretion.

Calhau et al. (2020) discusses how the relation between AGN fraction and Lyα

luminosity evolves with redshift, consistent with a decline in the normalisation

or an evolution towards much higher Lyα luminosities. For 3.5 < z < 6 (where

we fail to detect the power-law component), the X-ray+radio AGN fraction of

LAEs remains relatively low for the entire luminosity range, although it still

rises with Lyα luminosity from 0.9 ± 0.4% at the lowest Lyα luminosities to

11 ± 7% at ≈ 1044 erg s−1. These results are consistent with those from Wold

et al. (2014, 2017) at z ∼ 0 − 1, but provide evidence for the AGN fraction

evolving (declining) with redshift. The different X-ray and radio observational

limits at different redshifts are not sufficient to explain the evolution of the AGN

fraction of LAEs (Calhau et al., 2020). While we find no convincing evidence of a

significant population of AGN LAEs beyond z > 3.5, and no detectable power-law

component in the LF, it is possible that it continues to exist at z > 3.5, but just

with number densities below our surveyed volumes and/or with a LF that is more

similar to the fainter population of LAEs, thus making it indistinguishable from

those. If these sources occupy the faint-end of the quasar luminosity function,

one would potentially expect number densities of 10−9 − 10−10 Mpc−3 (McGreer

et al., 2013) for the most luminous z = 5 quasars, which would be easily below

our detection limit. It is also possible that the bright end still contains AGN

sources even towards z ∼ 6, but that they are just not X-ray or radio luminous
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enough to be detected either individually or by stacking (see Calhau et al., 2020).

Such potential “hidden” AGN activity in luminous LAEs at higher redshift could

still be driving the apparent L∗Lyα rise towards z ∼ 6 and might be tentatively

showing up in deep spectroscopic observations of some of the most luminous LAEs

at z ∼ 6 − 7 with potential detections of Heii and/or Nv (e.g. Laporte et al.,

2017; Sobral et al., 2019). In addition, we also note that while high accretion

rates and relatively high black hole masses in fainter LAEs are excluded, faint

LAEs may still contain young, low mass AGN that would make them currently

undetectable in the X-rays and radio.

4.6 The nature and evolution of faint to bright

LAEs across z ∼ 2−6: progenitors of sub-L∗

galaxies to proto-cluster tracers

Clustering analysis (Khostovan et al., 2018) of the SC4K sample shows a clear de-

pendence of the clustering length and the inferred dark matter halo mass on both

the Lyα luminosity and the UV luminosity or SFR. At the highest Lyα luminosi-

ties, LAEs are likely hosted by quite massive dark matter haloes of 1013−14 M�,

where one expects AGN activity to be prominent. These observational results are

in good agreement with modelling from e.g. Garel et al. (2016) who finds that

the brightest LAEs at high redshift should reside in more massive dark matter

haloes and be the progenitors of more massive haloes today, while the super faint

LAEs now being found by MUSE (Drake et al., 2017b) are likely the progenitors

of sub-L∗ galaxies today. Khostovan et al. (2018) finds similar results, with the

dark matter haloes and the clustering strength of the faintest LAEs from the

narrow band selected surveys being closer to ∼ 1011 M�, similar to results from

e.g. Ouchi et al. (2010) and other clustering studies focusing on very faint LAEs

(e.g. Kusakabe et al., 2018). The high number densities of faint LAEs at high

redshift, driven by the steep (α ≈ −2) faint-end slope of the Lyα LF (S-SC4K

and e.g. Drake et al., 2017b; Dressler et al., 2015) reveal that a very large number

of sources are emitting Lyα photons that can escape in the early Universe. These
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numerous LAEs (this study and e.g. Drake et al., 2017b) with high Lyα escape

fractions and high EWs (e.g. Hashimoto et al., 2017; Sobral et al., 2017), highly

ionising (Nakajima et al., 2016), compact/small sources (Malhotra et al., 2012;

Paulino-Afonso et al., 2018) may play a crucial role in the early Universe. For

example, our results imply that by z ∼ 6, LAEs are likely key contributors to

the global LyC photons produced in the Universe (see also the discussion about

sources that can reionise the Universe in Section 1.1.2).

Overall, LAEs have low UV luminosities (which can easily make them un-

detected even in very deep continuum surveys), but high production of LyC

photons (expressed as a high ionisation efficiency; Harikane et al. 2018; Matthee

et al. 2017a; Nakajima et al. 2016). Thus, our results strongly add to current

observations by pointing towards LAEs being exactly the sources that ultra-deep

continuum surveys strive to detect using gravitational lensing (e.g. Atek et al.,

2015). Due to the strength and high EWs of the Lyα emission line at high redshift,

LAE surveys are simply much more efficient at picking the numerous, UV-faint,

compact and highly ionising sources in spite of their ultra-faint UV magnitudes.

Examples of such faint, strongly Lyα emitting galaxies have recently been found

in e.g. Vanzella et al. (2016). Furthermore, recent results of local galaxies show-

ing the same properties as SC4K sources (including MUV, Lyα EWs and sizes e.g.

Izotov et al., 2016, 2018) provide even more evidence for the importance of LAEs

in the early Universe in terms of their contribution to both the SFRD and as

sources that can help reionise the Universe. While the Lyα emission that we de-

tect is mostly powered by ionising photons which are absorbed and reprocessed

by neutral gas around galaxies, it has been shown that the escape fraction of

LyC and the escape fraction of Lyα photons are correlated (Dijkstra, 2017). The

detection of these mostly UV-faint Lyα emitting galaxies which are capable of

releasing ionising photons provides a look at the type of galaxies that have the

conditions to contribute to the reionisation of the Universe.

SC4K is also able to find some of the rarest, brightest LAEs across cosmic

time which are likely powered by AGN. Most importantly, the brightest LAEs

seem to be highly clustered, and there is convincing evidence that they trace, on

average, some of the densest regions of the Universe usually classed as ‘proto-

clusters’ (e.g. Franck & McGaugh, 2016). This is because the brightest LAEs
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within SC4K across the COSMOS field are hosted by dark matter haloes of

∼ 1013−14 M� at z > 2.5 (Khostovan et al., 2018), which will easily result in

massive clusters of ∼ 1014−15 M� in the local Universe when extrapolating to the

present day using halo mass accretion growth. The number densities of these

sources also agrees with our findings, being below 10−6 Mpc−3. The results thus

bring further context into the findings of bright LAEs in or around some of the

most over-dense regions in the Universe at z ∼ 2 − 6 (Venemans et al., 2007;

Yamada et al., 2012), including e.g. Lyα ‘blobs’ (e.g. Kubo et al., 2013; Matsuda

et al., 2004) and point towards large volume Lyα surveys as ideal ways to find

these extremely over-dense regions. Given the high fraction of AGN among the

population of these very high luminosity LAEs, it is not surprising that many

studies also find those sources (e.g. X-ray or radio detected; see e.g. Venemans

et al. 2007) to be good tracers of over-densities throughout the Universe (see

Kubo et al., 2013; Lehmer et al., 2009; Matsuda et al., 2011; Overzier, 2016, and

references therein).

4.7 Conclusions

We use the Lyα LFs which we derive by combining our large SC4K sample of

LAEs with results from the literature (synergy Lyα survey, S-SC4K) to measure

the evolution of the Lyα luminosity density and Lyα fesc from z ∼ 2 to z ∼ 6.

We also discuss LAEs in a broader context, in their nature and as progenitors of

a wide range of galaxies which multiple surveys seek to target. Our main results

are:

• The Lyα luminosity density rises by a factor ∼ 2 from z ∼ 2 to z ∼ 3 but is

then found to be roughly constant (1.1+0.2
−0.2 × 1040 erg s−1 Mpc−3) to z ∼ 6,

despite the ∼ 0.7 dex drop in UV luminosity density. As a consequence,

the SFRDLyα/SFRDUV ratio rises from 4± 1% to 30± 6% from z ∼ 2.2 to

z ∼ 6. LAEs become increasingly important as SFRD contributors into the

epoch of re-ionisation, and not simply a relatively minor/rare population.

• Our results are consistent with a rise of a factor of ≈ 2 in the cosmic

ionisation efficiency (ξion) and imply a factor ≈ 4± 1 increase in the cosmic
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fesc from z ∼ 2 to z ∼ 6. We find that an increase of fesc with redshift as

(1 + z)2.0±0.3 and a further increase of ξion as (1 + z) can successfully model

the global increase of SFRDLyα/SFRDUV as (1 + z)3.0±0.3.

• Our results hint for evolution in both the typical burstiness/stellar popu-

lations and even more so in the typical ISM conditions for Lyα photons

to escape more efficiently at higher redshift. These trends may well be

connected with the typically younger and more metal-poor galaxies becom-

ing more dominant – explaining the higher typical ξion – and also typically

smaller/more compact morphologies, likely linked with the rise of fesc. SC4K

LAEs are ideal follow-up candidates for these scenarios to be tested with

current state-of-the-art and upcoming instruments/telescopes.
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Chapter 5

Aperture photometry and

spectral energy distribution of

z ∼ 2− 6 SC4K LAEs
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Abstract

We extend our follow-up of the SC4K sample (Chapter 2) of ∼ 4000

z ∼ 2 − 6 Lyman-α (Lyα) emitters (LAEs) by exploring deep rest-

frame UV to FIR data in the COSMOS field. We measure aperture

photometry of individual LAEs in 30+ bands to compute their spec-

tral energy distributions (SED).



5.1 Introduction

5.1 Introduction

The Lyman-α (Lyα, λ0,vacuum = 1215.67 Å) emission line has been predicted to

be associated with young star-forming galaxies (SFGs, e.g. Partridge & Peebles,

1967) but it can also be emitted by active galaxy nuclei (AGN; e.g. Miley &

De Breuck, 2008; Sobral et al., 2018b). Typical Lyα emitters (LAEs) selected

with deep surveys have been found to have low stellar mass (M? . 109 M�), low

dust content and high specific star formation rates (e.g. Gawiser et al., 2006,

2007), but LAEs can span a wide range in different properties (e.g. Hagen et al.,

2016; Matthee et al., 2016). Observationally, the transition between the dominant

powering source in LAEs seems to occur at ∼ 1043 erg s−1, roughly two times the

characteristic Lyα luminosity (L?Lyα) at z ∼ 2− 3 (see Sobral et al., 2018b).

Searches using the Lyα emission line have been extremely successful at select-

ing young SFGs through narrow band searches (e.g. Arrabal Haro et al., 2018;

Harikane et al., 2018; Hu et al., 2004; Matthee et al., 2015; Ouchi et al., 2008;

Santos et al., 2016; Sobral et al., 2017) and spectroscopically confirming bright

LAEs (e.g. Hu et al., 2016; Matthee et al., 2017c; Shibuya et al., 2018; Sobral

et al., 2015, 2018b) due to the bright Lyα feature. Other studies have successfully

selected samples of LAEs using integral field spectroscopy observations (e.g. Ba-

con et al., 2015; Blanc et al., 2011; Drake et al., 2017a; van Breukelen et al., 2005)

and blind spectroscopy (e.g. Cassata et al., 2011; Le Fèvre et al., 2015; Martin &

Sawicki, 2004; Rauch et al., 2008). LAEs typically have faint continua, and thus

the study of properties of individual sources has typically only been done for ex-

treme LAEs with L&L?Lyα (e.g. Ouchi et al., 2013; Sobral et al., 2015). For .L?Lyα

LAEs, studies have typically resorted to stacking of sources (e.g. Kusakabe et al.,

2018; Momose et al., 2014). More commonly, large samples of high-redshift SFGs

have been selected by searching for the presence of a Lyman Break (e.g. Madau

et al., 1996; Steidel et al., 1996b, 1999). Currently, there are > 10, 000s of known

galaxies at z ∼ 2 − 10 (see e.g. Bouwens et al., 2014a, 2015), mostly consisting

of faint sub-L?UV galaxies found through deep small area searches, typically too

faint to follow-up with current spectroscopic instrumentation.

While Lyα surveys are efficient at selecting galaxies, inferring intrinsic prop-

erties of a galaxy directly from its Lyα emission is challenging due to the complex
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nature of Lyα radiative transfer. Lyα photons suffer resonant scattering from gas

in the Interstellar/Circumgalactic Medium (ISM/CGM) and get easily absorbed

by dust (for a review on the process of Lyα radiative transfer see Dijkstra, 2017)

which can suppress Lyα emission even in young SFGs. The complex physics

of Lyα radiative transfer means that the Lyα escape fraction (fesc,Lyα - the ra-

tio between observed and intrinsic Lyα luminosity, Equation 1.6; see Section

1.3.3) is difficult to predict. Multiple studies have taken different approaches to

this problem. Observationally, fesc,Lyα has been measured by comparing Lyα to

dust-corrected Hα luminosities (Matthee et al., 2016; Oteo et al., 2015; Sobral

et al., 2017). Some studies estimate fesc,Lyα by computing the ratio between star

formation rate (SFR) derived from Lyα (assuming case B recombination) and

SFR derived from alternative methods such as from spectral energy distributions

(SEDs, Cassata et al., 2015) or the far-infrared (FIR, Wardlow et al., 2014).

Others measure the ratio between the observed Lyα luminosity density and the

dust-corrected Hα luminosity density (Sobral et al., 2017). Alternatively, studies

have measured the ratio between Lyα SFR density (SFRD) and UV SFRD by in-

tegrating the respective luminosity functions (Sobral et al., 2018a). Typical SFGs

at z ∼ 2− 3 are found to have very low fesc,Lyα (< 5%, e.g. Cassata et al., 2015;

Hayes et al., 2010a; Matthee et al., 2016; Oteo et al., 2015). However, sources

selected due to their Lyα emission have much higher fesc,Lyα (as high as ∼ 40%

at z = 2.2, Sobral et al., 2017).

Despite the complexity of the Lyα radiative transfer, properties of the Lyα

line such as its equivalent width (EW) have been shown to hold important in-

formation. Sources selected by their Lyα emission have high rest-frame Lyα EW

(EW0)1 ∼ 50 − 150 Å at z ∼ 0.3 − 6 (see e.g. Gronwall et al., 2007; Hashimoto

et al., 2017; Wold et al., 2017) which can be explained by young stellar ages, low

metallicities and/or top-heavy initial mass functions (Raiter et al., 2010; Schaerer,

2003) or complex radiative transfer effects (Neufeld, 1991). The high Lyα EW0

measured for LAEs even at low redshift (z ∼ 0.3, Wold et al., 2017) contrasts with

1This is in part due to selection, as LAEs selected by narrow/medium band searches are
selected to be above some Lyα EW threshold, and thus are, by definition, sources with high
Lyα EW. Nevertheless, some narrow band searches have successfully selected LAEs down to
∼ 5 Å (e.g. Arrabal Haro et al., 2018; Sobral et al., 2017).
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rest-frame EW measurements from other emission lines for galaxies at similar red-

shifts (e.g. Hα, [Oii] and Hβ + [Oiii] EW0) which are measured to be ≤ 25 Å at

z ∼ 0.3, (e.g. SDSS: Thomas et al. 2013; HETDEX: Adams et al. 2011). Sobral

& Matthee (2019) derived a simple empirical relation that estimates fesc,Lyα from

EW0: fesc,Lyα = 0.0048×EW0 (Equation 1.8). This relation implies a connection

between the intrinsic EW and the dust attenuation. A non-evolution of typical

EW0 with redshift could thus imply a non-evolution of fesc,Lyα in Lyα-selected

samples. A constant typical EW0 = 80 Å across redshift would result in a typical

fesc,Lyα ∼ 40% for LAEs.

With the measurement of fesc,Lyα from EW0, it is possible to derive the SFR

of LAEs by translating Lyα flux into dust-corrected Hα flux with simple assump-

tions. This provides a SFR computation which is independent of SED fitting and

provides a comparison with SED-derived SFRs for LAEs even before observations

with James Webb Space Telescope. Exploring how LAEs, which are typically low

stellar mass galaxies, fit in the star formation “Main Sequence” (Brinchmann

et al., 2004; Daddi et al., 2007; Noeske et al., 2007; Schreiber et al., 2015) can

shed light in a stellar mass range of the SFR-M? relation which is still widely

unconstrained at z > 2. Previous studies have found that LAEs occupy the low

stellar mass end of the Main Sequence at z = 2.5 (e.g. Shimakawa et al., 2017)

but are also measured to be significantly above the Main Sequence extrapolation

(Whitaker et al., 2014) for low stellar masses at z ∼ 2 (e.g. Hagen et al., 2016;

Kusakabe et al., 2018) and even at z = 4.9 (Harikane et al., 2018). This suggests

that LAEs are experiencing more intense star formation than the general popu-

lation of galaxies of similar mass at similar redshifts, which may be explained by

a burstier nature of star formation. We intend to expand these studies using a

large sample of LAEs at z ∼ 2− 6.

In this work, we use a uniformly selected sample of ∼ 4000 LAEs (SC4K, So-

bral et al., 2018a, see 2) to measure rest-frame UV properties and their evolution

from the end of reionisation at z ∼ 6 until the peak of star formation history at

z ∼ 2. For our sample of galaxies, we measure EW0, SFR, M?, UV luminosity

(MUV) and UV continuum slope (β) for individual LAEs, using photometry mea-

surements which we conduct ourselves, including data from UltraVISTA DR4,
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and by modelling SEDs using MAGPHYS (da Cunha et al., 2008, 2015). Addi-

tionally, we discuss different approaches to measure SFR and how they influence

our findings and we provide all our measurements in a public catalogue.

We structure this Chapter as follows: in Section 5.2 we give a brief summary

of the SC4K sample (see also Chapter 2). We describe our multi-wavelength

data in Section 5.3. In Sections 5.4 and 5.5 we detail how we conduct aperture

photometry for each individual SC4K LAE. We describe how we obtain SEDs

and SED fits for each individual SC4K LAE in Section 5.6. We provide a small

summary in Section 5.7.

5.2 The sample: SC4K

We use the public SC4K sample of LAEs (Slicing COSMOS with 4k LAEs, So-

bral et al., 2018a, see Chapter 2), which contains 3908 sources selected due to

their high Lyα EW at z ∼ 2− 6. These LAEs were selected with wide field sur-

veys conducted with Subaru and the Isaac Newton telescopes, using 16 (12+4)

medium+narrow bands (MB+NB) over 2 deg2 in the COSMOS field (Capak et al.,

2007; Scoville et al., 2007; Taniguchi et al., 2015a), covering a full comoving vol-

ume of ∼ 108 Mpc3. For full details on the selection of the sample see Chapter 2.

Briefly, the selection criteria applied were i) EW0 cut of 50 Å for MBs, 25 Å for

NBs and 5 Å for the NB at z = 2.23: see Sobral et al. 2017); ii) significant excess

emission in the selection medium/narrow band, Σ > 3 (see Bunker et al., 1995;

Sobral et al., 2013); iii) colour break blueward of the detected Lyα emission, due

to the expected presence of a Lyman Break; iv) removal of sources with strong red

colours which are typically lower redshift contaminants where the Balmer break

mimics a Lyman break; v) visual inspection of all candidates to remove spurious

sources and star artefacts.
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Table 5.1: Overview of the SC4K sample of LAEs. We present the median of all measurements for each galaxy property,
with the errors being the 16th and 84th percentile of the distribution. (1) LAE selection filter (see Section 2.2); (2) Mean
redshift of the sample based on Lyα within the filter FWHM; (3) Number of LAEs (Number of LAEs after removing
sources with AGN signatures, see Section 5.2.1); (4) Number of non-AGN LAEs with SEDs (percentage, see Section
5.6.1); (5) Lyα luminosity; (6) Lyα rest-frame EW; (7) SFR derived directly from LLyα and EW0 (Sobral & Matthee,
2019, see Section 6.1.6.1); (8) Best likelihood SFR parameter from SED fitting; (9) Best likelihood stellar mass parameter
from SED fitting; (10) UV magnitude computed by integrating the SED at λ0 = 1500 Å, see Section 6.1.3; (11) slope of
the UV continuum measured from the SED fits, see Section 6.1.4

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Filter Lyα z # LAEs # SEDs log10 LLyα EW0 SFRLyα SFRSED M? MUV β

(no AGN) (erg s−1) (Å) (M� yr−1) (M� yr−1) (log10 (M?/M�)) (AB)

NB392 2.2 159 (137) 129 (94%) 42.55+0.15
−0.15 79+52

−44 4.7+4.9
−2.2 5.5+20.5

−3.6 9.5+0.5
−0.6 −19.6+1.0

−0.6 −1.8+0.9
−0.5

IA427 2.5 741 (686) 673 (98%) 42.64+0.22
−0.14 128+220

−62 4.0+3.1
−1.8 2.9+6.9

−1.5 9.2+0.5
−0.5 −19.7+0.6

−0.6 −2.0+0.3
−0.4

IA464 2.8 311 (284) 283 (100%) 42.88+0.22
−0.15 121+152

−52 6.8+4.6
−2.4 4.0+9.1

−1.6 9.1+0.6
−0.3 −20.2+0.5

−0.5 −2.1+0.5
−0.3

IA484 3.0 711 (636) 625 (98%) 42.83+0.18
−0.11 176+340

−95 5.0+4.5
−2.0 3.1+5.8

−1.4 9.0+0.7
−0.3 −20.0+0.6

−0.7 −2.4+0.6
−0.0

NB501 3.1 45 (38) 31 (82%) 42.92+0.19
−0.13 170+2259

−99 6.6+7.5
−3.2 6.2+15.2

−3.1 9.6+0.4
−0.5 −20.4+1.1

−0.8 −2.3+1.1
−0.2

IA505 3.2 483 (437) 433 (99%) 42.89+0.19
−0.13 142+351

−71 6.3+4.9
−2.5 4.5+6.5

−2.0 9.4+0.5
−0.5 −20.2+0.6

−0.6 −2.1+0.4
−0.4

IA527 3.3 641 (593) 573 (97%) 42.84+0.19
−0.10 149+245

−74 5.7+5.1
−2.3 4.1+5.7

−1.9 9.4+0.6
−0.6 −20.2+0.5

−0.6 −2.0+0.3
−0.5

IA574 3.7 98 (88) 87 (99%) 42.98+0.14
−0.13 97+72

−39 10.9+6.4
−4.9 6.7+6.9

−2.7 9.3+0.7
−0.2 −20.8+0.5

−0.4 −2.4+0.8
−0.0

IA624 4.1 142 (139) 116 (83%) 43.02+0.18
−0.06 186+666

−99 6.7+8.2
−1.8 6.1+9.1

−2.8 9.2+0.5
−0.5 −20.5+0.5

−0.6 −1.9+0.3
−0.5

IA679 4.6 79 (75) 69 (92%) 43.25+0.15
−0.05 186+267

−89 11.6+12.2
−2.8 9.3+18.6

−4.0 9.5+0.8
−0.3 −21.2+0.6

−0.5 −2.4+0.8
−0.0

IA709 4.8 81 (77) 73 (95%) 43.16+0.13
−0.10 124+200

−56 13.2+9.9
−5.5 9.1+15.8

−3.8 9.4+0.5
−0.3 −21.1+0.5

−0.4 −2.0+0.3
−0.5

NB711 4.8 78 (74) 56 (76%) 42.74+0.28
−0.16 80+64

−42 7.8+11.2
−3.6 14.4+61.0

−9.5 9.7+0.6
−0.6 −20.9+0.5

−0.8 −1.9+0.8
−0.5

IA738 5.1 79 (75) 65 (87%) 43.25+0.17
−0.14 120+222

−47 15.7+15.5
−7.6 16.0+32.4

−9.2 9.6+0.7
−0.3 −21.3+0.4

−0.7 −1.8+0.2
−0.6

IA767 5.3 33 (30) 29 (97%) 43.37+0.20
−0.07 134+169

−48 18.7+15.0
−7.4 20.6+50.5

−10.8 9.7+0.3
−0.4 −21.6+0.4

−0.5 −2.0+0.3
−0.4

NB816 5.7 192 (186) 108 (58%) 42.82+0.27
−0.11 235+547

−169 5.2+6.4
−2.4 28.5+83.7

−20.8 9.9+0.4
−0.5 −21.4+0.6

−0.6 −1.8+0.7
−0.6

IA827 5.8 35 (35) 27 (77%) 43.44+0.19
−0.11 325+963

−266 22.0+47.5
−8.4 25.3+80.1

−16.1 9.9+0.6
−0.4 −22.0+0.8

−1.0 −1.8+0.7
−0.6

Full SC4K 4.1 3908 (3590) 3377 (94%) 42.84+0.27
−0.17 138+281

−70 5.9+6.3
−2.6 4.4+10.5

−2.4 9.3+0.6
−0.5 −20.2+0.7

−0.8 −2.1+0.5
−0.4
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We show an overview of the properties of the SC4K LAEs, split by selection

bands, in Table 5.1. For each selection band, we provide the median of each

property and the 16th (84th) percentiles of its distribution as lower (upper) un-

certainties. Additionally, in Figure 5.1 we show a histogram distribution of Lyα

luminosity (LLyα), EW0 (see Section 6.1.1) and SFR using the Sobral & Matthee

(2019) calibration (see Section 6.1.6). The differences in the lower end distribu-

tion of LLyα are driven by an increasing luminosity distance and a roughly similar

flux limit. The evolution of the Lyα luminosity function is presented in Chapter

3.

We note that extensive analysis of the SC4K public sample have already been

conducted in previous works. For example, Paulino-Afonso et al. (2018) studied

the UV morphologies of the sample and found that UV sizes of LAEs are constant

from z ∼ 2 to z ∼ 6 with effective radii sizes of re ∼ 1.0± 0.1 kpc. Shibuya et al.

(2019) analysed the radial surface brightness profiles of ∼ 9000 LAEs (including

SC4K) and found that LAEs typically have small sizes, similar to those presented

by Paulino-Afonso et al. (2018). This means SC4K LAEs are unresolved in the

continuum in ground-based data. Khostovan et al. (2019) derived clustering

properties of the sample and measured typical halo masses of ∼ 1011 M� in NB-

selected LAEs and ∼ 1011−1012 M� in MB-selected LAEs, showing the clustering

and typical dark matter halo masses that host LAEs is strongly dependent on

LLyα. They find more luminous LAEs reside in more massive dark matter haloes.

Calhau et al. (2020) study the X-ray and radio properties of the SC4K sample,

estimating black hole accretion rates which can reach ∼ 3 M� yr−1 in the most

extreme sources. They also find that the overall AGN fraction of LAEs is low (<

10%) but dependent on LLyα, significantly increasing with increasing luminosity

and approaching 100% at LLyα > 1044 erg s−1.

5.2.1 X-ray and radio AGN in SC4K

In total we have 3908 LAEs in our sample, with 254 detected in X-ray and 120

detected in radio (56 in both), resulting in 318 AGN candidates (Calhau et al.,

2020). LAEs which are detected in the X-ray and/or radio are classified as AGN

as star-forming processes would require SFR & 1000 M� yr−1 to be detected
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Figure 5.1: Distributions of parameters derived directly from photometry. Lyα
luminosity (left panel), EW0 (middle panel) and SFR derived directly from LLyα

and EW0 (Sobral & Matthee, 2019, see Section 6.1.6.1; right panel). MB (NB)
data are shown as filled (dashed) lines. For each parameter, top panels show the
z ≤ 3.1 sample and bottom panels show the higher redshift LAEs. The EW0 peak
at z = 3.1 (NB) is artificial and it is the upper limit of the EW0, obtained from
the flux upper limit. AGN have been removed.

above the flux limit at such wavelengths and redshifts (see discussion in Calhau

et al., 2020). The number of AGNs reported in this work constitutes an extra 177

sources compared to the ones originally reported in Sobral et al. (2018a), with the

additional sources being identified by reaching lower S/N with deep Chandra data

(COSMOS Chandra Legacy, Civano et al., 2016) and VLA radio data at 1.4 GHz

(VLA-COSMOS Survey, Bondi et al., 2008; Schinnerer et al., 2004, 2007, 2010)

and by including 3 GHz radio data (Smolčić et al., 2017). We note, however,

that due to available coverage, Calhau et al. (2020) only probe 3705 SC4K LAEs

with X-Ray and radio data. Throughout this work, SC4K AGNs may be shown

in figures (clearly highlighted as such) but are removed from any fitting/binning

and median values in tables unless stated otherwise as we focus on the properties

of the star-forming population. The catalogue that is provided in this work has

a flag for sources detected in X-Ray and radio (see Section 6.1.7).
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5.2.2 Redshift binning

To improve the S/N in certain redshift ranges and for clearer visualisation of re-

sults, we frequently group multiple MB filters in specific redshift bins throughout

this work, following the same grouping scheme as Section 3.1.5: z = 2.5 ± 0.1

(IA427), z = 3.1 ± 0.4 (IA464, IA484, IA505, IA527); z = 3.9 ± 0.3 (IA574,

IA624); z = 4.7 ± 0.2 (IA679, IA709); z = 5.4 ± 0.5 (IA738, IA767, IA827).

We generally study the NBs separately as there are some relevant distinctions

between MBs and NBs, most significantly the flux limit and EW0 cut. Addition-

ally, analysing the two separately provides independent results and allows checks

for systematics.

5.3 Multi-wavelength data

We use the extensive archive of publicly available multi-wavelength data in the

COSMOS field to conduct accurate photometric measurements in the UV, optical,

near-infrared (NIR), mid-infrared (MIR) and FIR wavelengths for each SC4K

LAE, individually. A summary of the filters used, effective wavelength, width

and limiting magnitude is provided in Table 5.2. We use optical broad band (B,

V, g+, r+, i+, z++), medium band (IA427, IA464, IA484, IA505, IA527, IA574,

IA624, IA679, IA709, IA738, IA767, IA827) and narrow band (NB711, NB816)

data taken with the Subaru/SuprimeCam (Capak et al., 2007; Taniguchi et al.,

2007), retrieved from the COSMOS Archive1. Additionally, we use the u band

from CFHT/MegaCam. We use deep NIR data (Y, J, H, Ks) from UltraVISTA

DR4 (McCracken et al., 2012), taken with VISTA/VIRCAM (Sutherland et al.,

2015). Data used have a 0.15” pix−1 pixel scale and are calibrated to a zero-point

of 31.4 mag (30 mag for UltraVISTA and u images). For MIR coverage, we

use data from Spitzer/IRAC, channels 1 (3.6µm) and 2 (4.5µm) from SPLASH

(Steinhardt et al., 2014) and channels 3 (5.6µm) and 4 (8.0µm) from S-COSMOS

(Sanders et al., 2007). IRAC data have a zero-point of 21.5814 mag and a pixel

scale of 0.6” pix−1 (after drizzling; the native scale is 1.2” pix−1).

1https://irsa.ipac.caltech.edu/data/COSMOS/images/
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For the FIR coverage, we use 100µm and 160µm data (PEP, Lutz et al.,

2011) taken with Herschel/PACS (Pilbratt et al., 2010) and 250µm, 350µm

and 500µm data (HerMES, Griffin et al., 2010; Oliver et al., 2012) taken with

Herschel/SPIRE. The five listed FIR images have a pixel scale of 1.2” pix−1,

2.4” pix−1, 6” pix−1, 8.3” pix−1 and 12” pix−1, respectively. FIR images are cali-

brated to provide fluxes in Jansky and thus have a zero-point of 8.9 mag.

5.4 Multi-wavelength photometry

Accurate photometric measurements are essential to obtain robust SEDs and

derive accurate galaxy properties, particularly for sources that are faint in the

continuum. While there is a plethora of publicly available catalogues for the

COSMOS field (e.g. Ilbert et al., 2009; Laigle et al., 2015), such catalogues are

typically broad band selected and thus miss a significant number of line-emitters,

especially faint, high EW sources. For example, 9% of our LAEs are not de-

tected in the i band-selected catalogue from Ilbert et al. (2009) with 1” radius

matching and 29% of SC4K LAEs are not detected in the NIR-selected catalogue

from Laigle et al. (2015). Continuum faint sources with very blue UV continuum

slopes have low fluxes in the observed optical and will fall below the detection

thresholds of NIR selected catalogues (e.g. Laigle et al., 2015), particularly if they

have low stellar masses. Therefore, to obtain consistent, controllable and uniform

measurements for the entire sample of LAEs, we conduct our own aperture pho-

tometry and estimate errors locally using empty apertures. We also compare our

photometry with measurements from the COSMOS catalogues and find a very

good agreement. Furthermore, because we have measured the sizes in the rest-

frame UV and found SC4K LAEs to be very compact (point-like for the data

we use; re = 1.0 kpc corresponds to 0.13” at z = 3), we opt to conduct PSF

photometry, as fully explained in Section 5.5.
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Table 5.2: Overview of the photometric filters used in this work ranked from the
lowest to highest wavelengths. (1) Photometric filter; (2) Effective wavelength; (3)
Filter FWHM; (4) 3σ magnitude depth measured in a fixed 2” aperture (except
for Herschel measurements, see Section 5.5.5); (5) Correction term summed to the
measured magnitudes to correct for systematic offsets (?includes an additional offset
to correct the systematic uncertainties Section 5.5.6; †denotes values obtained from
the deblended FIR catalogue presented by Jin et al. 2018); (6) Filter dependent
galactic extinction correction that is subtracted from the measured magnitudes;
(7) Instrument and telescope used for the observations; (8) Source of the data.

Filter λeff FWHM Depth sf Aλ Instrument, Telescope Source
(Å) (Å) (3σ, 2”)

(1) (2) (3) (4) (5) (6) (7) (8)
u 3911.0 538.0 27.8 0.054 0.0878 MegaCam, CFHT Capak et al. (2007)

IA427 4256.3 206.5 27.0 0.037 0.0816 Suprime-Cam, Subaru Capak et al. (2007)
B 4439.6 806.7 28.3 -0.242 0.0784 Suprime-Cam, Subaru Capak et al. (2007)

IA464 4633.3 218.0 26.9 0.013 0.0750 Suprime-Cam, Subaru Capak et al. (2007)
g+ 4728.3 1162.9 27.6 0.024 0.0733 Suprime-Cam, Subaru Capak et al. (2007)

IA484 4845.9 228.5 27.0 0.000 0.0713 Suprime-Cam, Subaru Capak et al. (2007)
IA505 5060.7 230.5 26.8 -0.002 0.0678 Suprime-Cam, Subaru Capak et al. (2007)
IA527 5258.9 242.0 27.1 0.026 0.0646 Suprime-Cam, Subaru Capak et al. (2007)
V 5448.9 934.8 27.6 0.046? 0.0616 Suprime-Cam, Subaru Capak et al. (2007)

IA574 5762.1 271.5 26.8 0.078 0.0570 Suprime-Cam, Subaru Capak et al. (2007)
IA624 6230.0 300.5 26.8 0.002 0.0506 Suprime-Cam, Subaru Capak et al. (2007)
r+ 6231.8 1348.8 27.7 0.003 0.0506 Suprime-Cam, Subaru Capak et al. (2007)

IA679 6778.8 336.0 26.7 0.039? 0.0442 Suprime-Cam, Subaru Capak et al. (2007)
IA709 7070.7 315.5 26.8 -0.024 0.0411 Suprime-Cam, Subaru Capak et al. (2007)
NB711 7119.6 72.5 25.9 0.014 0.0406 Suprime-Cam, Subaru Capak et al. (2007)
IA738 7358.7 323.5 26.5 0.017 0.0383 Suprime-Cam, Subaru Capak et al. (2007)

i+ 7629.1 1489.4 27.2 0.019 0.0360 Suprime-Cam, Subaru Capak et al. (2007)
IA767 7681.2 364.0 26.5 0.041 0.0356 Suprime-Cam, Subaru Capak et al. (2007)
NB816 8149.0 119.5 26.6 0.068 0.0320 Suprime-Cam, Subaru Capak et al. (2007)
IA827 8240.9 343.5 26.5 -0.019 0.0313 Suprime-Cam, Subaru Capak et al. (2007)
z++ 9086.6 955.3 26.8 -0.037 0.0265 Suprime-Cam, Subaru Capak et al. (2007)
Y 10211.2 930.0 26.2 0.0 0.0211 VIRCAM, VISTA McCracken et al. (2012) (DR4)
J 12540.9 172.0 25.8 0.0 0.0144 VIRCAM, VISTA McCracken et al. (2012) (DR4)
H 16463.7 2910 26.1 0.0 0.0088 VIRCAM, VISTA McCracken et al. (2012) (DR4)
Ks 21487.7 3090 25.8 0.0 0.0053 VIRCAM, VISTA McCracken et al. (2012) (DR4)

IRAC1 35262.5 7412 25.6 0.002 0.0021 IRAC, Spitzer Steinhardt et al. (2014)
IRAC2 44606.7 10113 25.5 0.000 0.0014 IRAC, Spitzer Steinhardt et al. (2014)
IRAC3 56764.4 13499 22.6 0.013 0.0010 IRAC, Spitzer Sanders et al. (2007)
IRAC4 77030.1 28397 22.5 -0.171 0.0007 IRAC, Spitzer Sanders et al. (2007)
100µm 979036.1 356866 15.4 0.20† 0.0000 PACS, Herschel Lutz et al. (2011)
160µm 1539451.3 749540 14.3 -0.06† 0.0000 PACS, Herschel Lutz et al. (2011)
250µm 2471245.1 658930 10.9 -0.49† 0.0000 SPIRE, Herschel Oliver et al. (2012)
350µm 3467180.4 937200 10.6 -0.15† 0.0000 SPIRE, Herschel Oliver et al. (2012)
500µm 4961067.7 1848042 10.6 0.03† 0.0000 SPIRE, Herschel Oliver et al. (2012)
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5.5 Aperture photometry of SC4K LAEs

5.5.1 Overview of our aperture photometry

In order to obtain accurate aperture photometry for individual LAEs, for each

band, we estimate the total magnitude by following the steps:

• conducting photometry in fixed apertures (Section 5.5.2);

• applying aperture corrections based on PSF stars around each LAE (Section

5.5.3);

• applying reddening corrections for galactic extinction (Section 5.5.4);

• introducing systematic offset corrections based on known offsets and COS-

MOS catalogues (Section 5.5.6);

Magnitudes per source and per band are computed as:

mag = mag0 + apercor + sf − Aλ, (5.1)

where mag0 is the magnitude calculated by converting the flux obtained in fixed

apertures (typically 2” diameter for most of the data) to the AB magnitude sys-

tem before any correction is applied, apercor is the aperture correction derived

per band and per source, based on PSF stars around each LAE, sf the system-

atic offset correction for the filter and Aλ the reddening correction for galactic

extinction computed for the effective wavelength of the filter. The error in the

final magnitude is obtained by propagating the error in flux, scaling the error

with the correction that was applied to the flux and then adding 30% of the total

correction to the error in flux1. Aperture photometry in the FIR is discussed

separately in Section 5.5.5.

1We note that we use 30% as a conservative approach to add unknown systematic errors.
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5.5.2 Aperture photometry in fixed apertures

We conduct aperture photometry centred on the position of each SC4K LAE

(Sobral et al., 2018a) over all the filters listed in Table 5.2. We do this by creating

200x200 pixel (30”×30” for a 0.15” pix−1 pixel scale) cutouts, where we conduct

the photometry1. For optical to MIR images, we use 2” diameter apertures. We

estimate the background by placing 2000 2” apertures in random positions of the

field where there are no detections above 2σ (given by the segmentation maps per

filter produced by SExtractor; Bertin & Arnouts 1996) and subtract it from the

counts of the aperture placed on the LAE. Upper and lower errors are measured as

the 84th and 16th percentiles of all random apertures. We repeat this procedure

per band per source.

5.5.3 Aperture correction

The original point-spread function (PSF) was kept across all images as we have

opted for correcting the photometry with PSF stars, instead of PSF matching

the data, in order to avoid modifying the data and confuse nearby sources. Fixed

aperture photometry in non-PSF matched images requires correction of the PSF

effect on photometry so we can obtain total fluxes and total magnitudes for

point-like sources. To do this, we measure the magnitude of stars2 in 2” aper-

tures and with mag auto (Bertin & Arnouts, 1996)3. We define the correction

factor (apercor in Equation 5.1) as the difference between mag auto and mag-

nitudes measured in 2” apertures. This correction is valid for point-like sources,

an assumption that should be valid for our LAEs given the rest-frame UV sizes

as measured by Paulino-Afonso et al. (2018) using high-resolution HST/ACS

images. The correction term is measured for each filter, and it is the median

correction of stars within a 0.3 degree radius around each LAE, accounting for

spatial variations of the PSF per band. The aperture corrections are typically

small, averaging ∼ −0.1 to ∼ −0.3.

1We use PSF stars beyond this region.
2Selected from Ilbert et al. (2009): photoz=0.0; stellaricity=1; detected in the point-source

catalogue 2MASS Skrutskie et al. (2006); visually checked to remove binary systems or close
projections.

3apercor = mag auto−mag0, where mag0 is the magnitude before corrections are applied.
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5.5.4 Galactic extinction correction

We correct for dust attenuation along the line-of-sight due to our Galaxy. For

the COSMOS field, the median galactic extinction is measured to be E(B−V ) =

0.0195 ± 0.006 (Capak et al., 2007). The slope of the extinction curve with

wavelength is parametrised by the factor R(V ):

R(V ) ≡ A(V )

E(B − V )
, (5.2)

where A(V ) is the total extinction at the V band. For the diffuse interstellar

medium, the median value of R(V ) is estimated to be 3.1 (e.g. Fitzpatrick, 1999)

and it is the value used in this work. We use the model from Fitzpatrick & Massa

(2007) where the attenuation at a wavelength (λ) becomes:

Aλ = A(V )

(
1 +

k

R(V )

)
, (5.3)

where k is a polynomial expansion of λ−1 (Equation 2 from Fitzpatrick & Massa

2007) with a linear component for UV wavelengths, a curvature term for the

far-UV and a Lorentzian-like bump at 2175 Å. We determine Aλ for the effective

wavelength of each filter and show its value for each filter in Table 5.2.

5.5.5 FIR photometry

For FIR data, due to the large PSF of 7.2”, 12”, 18.15”, 25.15” and 36.30”

(100µm, 160µm, 250µm, 350µm and 500µm, respectively), the usage of 2” diam-

eter aperture photometry is not viable. We conduct aperture photometry using

apertures which are the size of the PSF: radius of 6, 5, 3, 3 and 3 pixels (7.2”,

12”, 18”, 24.9” and 36”), respectively (retrieving 67% of the total flux), with

the same random empty aperture procedure to estimate background. This allows

us to then apply aperture corrections of 1/0.67 to get full fluxes for point-like

sources. For 100µm (160µm), we multiply the flux by the filter correction factor

1.1 (1.2) as described in the PEP public data release notes (see Lutz et al., 2011).
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Figure 5.2: Left: SED of SC4K-IA427-134461 (at z = 2.5), for observed UV-
IR wavelengths as we only obtain upper limits in the FIR. Red circles show the
luminosity (in solar units) measured at the corresponding observed wavelength
and green arrows show the upper limits for non-detections, where the flux is < 3σ.
Unfilled circles are the luminosity at the NB/MB where the LAE was selected, and
we note that this filter was not used to derive the SED fit. The black line is the
best-fit SED to the observed photometry and the blue dashed line the intrinsic
(dust-free) SED. This is an example of a very blue (β = −2.0) and low stellar
mass (M? = 109.2 M�) LAE. Right: Same as left panel but for SC4K-IA427-10601
(at z = 2.5) and at a wider wavelength range, showing FIR wavelengths as this
LAE is detected in 250µm and 350µm due to the presence of dust. This LAE is
redder (β = −0.3) and more massive (M? = 1010.5 M�). Note that this LAE is
not representative of the SC4K sample as only ∼ 3% (2%) non-AGN LAEs are as
massive (as red).
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5.6 Spectral Energy Distributions of SC4K LAEs

However, the blending of sources is still a serious issue, as the large pixel scale

makes it difficult to establish if a detection is produced by one of our LAEs or

by a neighbouring source. To solve this, we use the FIR measurements from the

publicly available deblended COSMOS catalogue (Jin et al., 2018), where FIR

emission is deblended to match optical-NIR coordinates. With a 1” match to

the deblended catalogue, there are 14, 11, 29, 19 and 12 SC4K LAEs with 3σ

detections in 100µm, 160µm, 250µm, 350µm and 500µm, respectively. Whenever

a source is undetected in the FIR, we assign the local estimate of the background

as an upper limit, which we measure with 2000 empty apertures the size of the

PSF. We ensure our own flux measurements are consistent with Jin et al. (2018)

(see Section 5.5.6).

5.5.6 Systematic offsets

We correct for systematic offsets (sf ) in the photometry by applying the correc-

tions derived by Ilbert et al. (2009) (we present these values in Table 5.2). After

applying the systematic offsets and all previous correction terms, we compare our

total magnitudes with measurements from Ilbert et al. (2009) and Laigle et al.

(2015). We find no statistically significant difference with our measurements ex-

cept for two filters (IA679, V) which have systematic offsets of ∼ 0.5 mag. We

apply a further correction (included in the sf , Table 5.2) to our magnitudes, so

the median of the magnitude difference becomes zero. For FIR magnitudes, we

estimate the systematic correction term from the FIR deblended catalogue (Jin

et al., 2018), also presented in Table 5.2.

5.6 Spectral Energy Distributions of SC4K LAEs

Having conducted photometry in the 34 filters listed in Table 5.2, we can now

explore the SED of each individual LAE, observed from UV to FIR. We use

the publicly available SED-fitting code MAGPHYS1 (da Cunha et al., 2008,

2012) with the high-redshift extension (see da Cunha et al., 2015), to obtain SED

1http://www.iap.fr/magphys/
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fits for each individual galaxy, using our rest-frame UV, optical and NIR-FIR

photometric measurements. If a LAE is not detected in a specific filter above the

estimated background noise, we define it as an upper limit.

MAGPHYS is based on dust attenuation models from Charlot & Fall (2000)

and uses the stellar population synthesis model from Bruzual & Charlot (2003)

with a Chabrier (2003) IMF (range 0.1 − 100 M�) to compute the emission of

simple stellar populations (SSPs, populations of coeval stars with similar proper-

ties). We use the prescription of Madau (1995) to model the Intergalactic Medium

(IGM). The software generates a library of model SEDs for galaxies at the mean

redshift of the NB/MB filter (see Table 5.1) and for the given photometric bands.

The modelled SED of a galaxy is composed by the weighted sum of SSPs, with the

star formation history (SFH) being a continuously delayed exponential function

with an early rise followed by a decay. Instantaneous bursts of star formation

of random duration (lasting 30-300 Myr) and amplitude (forming mass between

0.1-100 times the mass formed by the continuous SFH) are superimposed. A

Bayesian approach is then used to compare model SEDs with observed photom-

etry, creating a parameter likelihood distribution for several galaxy properties

such as stellar mass, SFR and dust attenuation.

As the models are purely stellar (no nebular line fitting), we do not fit pho-

tometry from filters where we expect strong nebular emission, namely Lyα at the

selection NB or MB filters, as it is by definition significant in our Lyα-selected

sample. While we do not remove photometry from filters which may have contri-

bution from other emission lines such as Hα (IRAC filters at z ∼ 4− 6) or [Oiii]

(H-K bands at z ∼ 2 − 3), by removing the Lyα-contaminated filter, combined

with the large number of filters used, we do not expect an overestimation of masses

due to nebular line contamination. We explore this by rerunning MAGPHYS for

the entire z = 2.5 sample (IA427) after removing the H and K bands, which may

be contaminated from [Oiii] and Hα emission, respectively, and compare the dif-

ference of estimated stellar masses. We find that when removing both H and K,

the median difference of stellar masses is log10(M?,no HK/M�)−log10(M?/M�) = 0,

with no dependence on mass, and the average difference -0.07. Removing H and

K makes the estimation of stellar mass more uncertain as the rest-frame optical
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becomes more poorly constrained. Additionally, we test the effect of only remov-

ing H, with the IR still being constrained by the other bands. We also find no

significant difference in stellar masses, with the median of the difference being

log10(M?,no H/M�) − log10(M?/M�) = 0 and the average -0.08. Overall, we find

that not removing photometric bands outside Lyα does not lead to a significant

overestimation of stellar masses for our sources. However, including nebular lines

may still be important, particularly if we look at other parameters (e.g. ages),

as there may be some systematics, particularly for the faintest sources with the

highest EWs. This will be addressed in a forthcoming work with an SED-fitting

code that models nebular emission (CIGALE, Boquien et al., 2019; Noll et al.,

2009).

For our z ∼ 2 − 6 LAEs, the optical bands are essential to fit the rest-frame

UV continuum, IRAC filters can constrain fluxes redward of D4000 and the FIR

measurements provide upper constraints in the dust emission, which can improve

the SFR estimates. We note that, as explained in Section 5.2.1, while we exclude

sources with evidence of AGN activity when computing median properties of the

sample, we still obtain SED fits (without using any AGN SED model) for those

sources.

In Figure 5.2, we show observed and intrinsic SED fits and photometric mea-

surements/upper limits for two LAEs. The SEDs were purposely chosen to show

two very distinct galaxies within the SC4K sample: one with a very blue and

steep UV continuum slope, with low stellar mass that dominate the sample and

one with a more red continuum, more massive and with higher dust extinction

which is much more rare in the sample of LAEs. While the latter is not well rep-

resentative of a typical LAE, it is still important to show that LAEs can span a

large variety of physical properties. This LAE is detected in two Herschel bands,

which shows that FIR can be important to constrain the SED fits and derive

properties of high redshift LAEs.

5.6.1 Number of derived SEDs

Although all LAEs are by definition detected in the MB/NB where they were

selected (Chapter 2), a small fraction of our LAEs have few to no detections
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in other photometric bands. For such cases, SED-fitting may fail. Out of the

3590 non-AGN LAEs, we obtain reliable SEDs for 3377 (94%, see Table 5.1).

The catalogue that we release with this work (see Section 6.1.7) has an SED flag

which marks unreliable SEDs. The AGN flag indicates AGN LAEs (Section 5.2.1,

Calhau et al. 2020), and we reiterate that while we compute parameters for these

sources, the SED-derived parameters are not reliable and are not included in any

median property estimation done in this work.

5.7 Summary

We conducted PSF photometry over 34 bands from rest-frame UV to FIR and

derived the best-fit SEDs using MAGPHYS for each source in the large SC4K

sample of ∼ 4000 z ∼ 2 − 6 LAEs. Out of the 3590 non-AGN LAEs, we obtain

reliable SEDs for 3377 (94%, see Table 5.1). The evolution of derived properties

such as MUV, Lyα EWs and the SFR-stellar mass relation will be discussed in

the following chapter.
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Chapter 6

The evolution of rest-frame UV

properties, Lyα EWs, and the

SFR-stellar mass relation at

z ∼ 2− 6 for SC4K LAEs
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Abstract

For our sample of z ∼ 2 − 6 LAEs, we find typical stellar masses of

109.3±0.6 M� and star formation rates (SFR) of SFRSED = 4.4+10.5
−2.4 M�

yr−1 and SFRLyα = 5.9+6.3
−2.6 M� yr−1, combined with very blue UV

slopes of β = −2.1+0.5
−0.4, but with significant variations within the

population. MUV and β are correlated in a similar way to UV-selected

sources, but LAEs are consistently bluer. This suggests that LAEs

are the youngest and/or most dust-poor subset of the UV-selected

population. We also study the Lyα rest-frame equivalent width (EW0)

and find 45 “extreme” LAEs with EW0 > 240 Å (3σ), implying a low

number density of (7±1)×10−7 Mpc−3. Overall, we measure little to

no evolution of the Lyα EW0 and scale length parameter (w0) which

are consistently high (EW0 = 140+280
−70 Å, w0 = 129+11

−11 Å) from z ∼ 6 to

z ∼ 2 and below. However, w0 is anti-correlated with MUV and stellar

mass. Our results imply that sources selected as LAEs have a high

Lyα escape fraction (fesc,Lyα) irrespective of cosmic time, but fesc,Lyα

is still higher for UV-fainter and lower mass LAEs. The least massive

LAEs (< 109.5 M�) are typically located above the star formation

“Main Sequence” (MS), but the offset from the MS decreases towards

z ∼ 6 and towards 1010 M�. Our results imply a lack of evolution in

the properties of LAEs across time and reveals the increasing overlap

in properties of LAEs and UV-continuum selected galaxies as typical

star-forming galaxies at high redshift effectively become LAEs.



6.1 The properties of LAEs

We structure this Chapter as follows: we present the properties of LAEs in

Section 6.1, where we show the methodology we use to derive EW0, SFR, MUV

and β. We present our results in Section 6.2, looking into the MUV-β and SFR-M?

relations and the potential evolution of EW0 with redshift, along with physical

interpretations. Finally, we present our conclusions in Section 6.3.

6.1 The properties of LAEs

In this section, we present our methodology and computations to derive galaxy

properties for individual LAEs, using our full photometric measurements and

SED fits from MAGPHYS. EW0 and LLyα of all LAEs in the SC4K sample have

been derived and published in Sobral et al. (2018a) (shown in Chapters 2 and 3).

6.1.1 Lyα luminosity (LLyα)

LLyα is calculated from the Lyα line flux (fLyα):

LLyα[erg s−1] = 4πfLyαD2
L(z ) (6.1)

where DL(z) is the luminosity distance at the redshift of each source, computed

from the redshifted Lyα at the effective wavelength of the detection NB/MB. In

Figure 5.1 (left) we show the LLyα distribution of our LAEs, spanning a wide

range of luminosities LLyα = 1042−44 erg s−1.

6.1.2 Lyα rest-frame equivalent width (EW0)

The observed EW (EWobs) of an emission line is the ratio between the flux of the

line and the continuum flux density and can be calculated as:

EWobs[Å] = ∆λ1
f1 − f2

f2 − f2 (∆λ1/∆λ2 )
, (6.2)

where ∆λ1 is the FWHM of the NB or MB, ∆λ2 the FWHM of the broad band

filter (Table 2.3), f1 is the flux density measured in the NB or MB and f2 is the
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6.1 The properties of LAEs

flux density computed from two adjacent BB filters, which avoids assumptions of

the slope of the continuum (for details see Sobral et al., 2018a). The rest-frame

EW (EW0) is calculated as:

EW0[Å] =
EWobs

1 + z
, (6.3)

where z is the redshift of Lyα at the effective wavelength of the NB or MB (Sobral

et al., 2018a). We provide the median EW0 for different redshifts and for the full

SC4K sample in Table 5.1.

6.1.2.1 EW0 scale length (w0)

An exponential fit of the form N = N0 exp(-EW0/w0) has been widely used to

describe Lyα EW0 distributions (e.g. Gronwall et al., 2007; Hashimoto et al.,

2017; Wold et al., 2017), with the rate of decay being determined by the scale

length parameter w0. With our sample of LAEs, we analyse EW0 distributions in

multiple well defined redshift ranges between z ∼ 2 and z ∼ 6. To estimate w0, we

define bins of 20 Å and fit the exponential function to the observed distribution

(see Figure 6.1), taking into account Poissonian errors. Bins with less than two

sources are excluded from the fits. To account for bin width choice, we add

10 Å (half the bin width) in quadrature to the errors of w0. We also explore

how an EW0 upper cut affects w0 as it removes sources with extreme (and more

uncertain) EWs. We apply a cut of EW0 = 240 Å, the theoretical limit of EW0

powered by Population II star formation (e.g. Charlot & Fall, 1993) and the value

which has been extensively used in Lyα emission studies to identify “extreme”

EW galaxies (e.g. Cantalupo et al., 2012; Marino et al., 2018). We compute χ2
red

by comparing the best exponential fit to the histogram of observed counts and

their associated Poisson errors.

Additionally, we fully explore how the errors on EW0 influence the measure-

ment of w0 by using an MCMC approach. For each iteration, we perturb the

EW0 of each LAE in that specific sample within their asymmetric error bars (as-

suming a double normal probability distribution function centred at each EW0

and with FWHM equal to the errors derived from photometry; Chapter 2). We

122



6.1 The properties of LAEs

0 200 400 600 800 1000

EW0/Å
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Figure 6.1: Left: EW0 distribution of the full SC4K sample of LAEs. We fit an
exponential function of the form N = N0 exp(-EW0/w0), and derive the parameter
w0. Fit derived with the distribution of EW0 (EW0 < 240 Å) is shown in red (blue).
Right: Same but for an individual filter (IA427) with LAEs at z = 2.5.

impose a hard lower limit equal to the detection threshold (50 Å for MBs, 25 Å

for NBs except for NB392 which has a lower limit of 5 Å; see Chapter 5) and an

upper limit of 1000 Å, with any source outside these values not being included in

a specific realisation. With the perturbed EW0, we construct the histogram of

the current iteration, using bins of 20 Å. We fit an exponential to the generated

histogram bins, taking into account the associated Poissonian error (
√
N) of each

bin. We iterate this process 200 times, and the final w0 is the median value of all

fits with error up (down) being the 84th (16th) percentile of all fits. In addition,

to account for the uncertainty introduced by the bin width choice, we also add

10 Å in quadrature to the errors of w0. We also apply the MCMC approach with

a cut of EW0 = 240 Å. For the MCMC approach, where EW0 are perturbed, χ2
red

is computed by comparing the best fit to the median histogram of all iterations

and its Poisson errors.

In Table A.6, we show the inferred w0 values (including perturbed estimates)

for different redshift ranges and filter combinations.

Furthermore, it is important to establish how the EW0 distribution depends

on MUV and M?. To understand this dependence, we measure w0 in three MUV

and M? ranges and show our measurements in Table A.6. For the faintest and

the lowest mass ranges, we are significantly incomplete to the low EW0 end of the
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EW distribution, resulting in a peak at ∼ 100 Å. Thus, we only fit EW0 > 100 Å

to accurately estimate the exponential decay of the distribution for these two

cases.

6.1.3 Rest-frame UV luminosity (MUV)

The UV luminosity of a galaxy is associated with continuum emission from mas-

sive stars and traces SFR in the past 100 Myr (e.g. Boselli et al., 2001; Salim

et al., 2009). A priori, sources selected by their strong Lyα emission could be

expected to have strong MUV as both trace recent star formation (neglecting

AGN contribution), although Lyα can trace slightly more recent star formation

because stars dominating the ionising photon budget have lifetimes of ∼ 10 Myr.

However, as shown by e.g. Matthee et al. (2017c) and Sobral et al. (2018a) more

factors come into play as Lyα and MUV do not necessarily correlate with each

other, due to e.g. highly ISM dependent fesc,Lyα (which can result in most Lyα

emission being absorbed by dust particles or scattered off neutral hydrogen) or

an ionising efficiency which is evolving with redshift.

We compute MUV by integrating the best-fit SEDs at rest-frame λ0 = 1400−
1600 Å. We show the MUV histogram distribution in Figure 6.2 (centre). Due to

the magnitude limits, at higher redshift we are only sensitive to more luminous

MUV sources. We detect SC4K LAEs as bright as MUV = −23 and as faint as

MUV = −17.

6.1.4 UV continuum slope (β)

The slope of the UV continuum can be parametrised in the form fλ ∝ λβ (e.g.

Meurer et al., 1999). The slope β is sensitive to the age, metallicity and dust

content of a galaxy. Bruzual & Charlot (2003) models used by MAGPHYS have

a hard limit to how negative (blue) β can be (β = −2.44), a natural consequence

of an upper limit in the IMF. While β may be intrinsically even bluer for more

“extreme” stellar populations, in this study, we do not explore those.

We measure β directly from the best-fit as the slope of the continuum at rest-

frame λ0 = 1300 − 2100 Å. We apply a conservative approach and only use β
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Figure 6.2: Distribution of properties derived from the SED fitting (MAGPHYS,
see Section 5.6). We show the stellar mass, M? (left), rest-frame UV luminosity,
MUV (middle) and rest-frame UV slope, β (right). Top panels show the z ≤ 3.1
sample and the bottom panels show the higher redshift LAEs. AGNs have been
removed.

measurements from sources with at least two detections in this wavelength range.

This ensures the β slope is directly constrained and not a direct consequence of

assumed SED templates. As expected, due to an increasing luminosity distance,

combined with rest-frame λ0 = 1300− 2100 Å moving into IR wavelengths, there

are fewer β measurements at higher redshift. In addition, we also compute β

by fitting a power-law (βpl) to the photometric measurements (similar to e.g.

Bouwens et al., 2014a), with no SED fitting assumptions. We fit βpl in the range

λ0 = 1400 − 2100 Å, which is smaller than the range used to compute β from

the SED fit to avoid broad band filters at ∼ 1300 Å, which can be contaminated

by the Lyα break. Only sources with at least three 3σ detections in that range

are considered for the power-law measurement. For the full SC4K, we measure

a median βpl = −1.8+0.8
−0.7, which is redder (+0.3) than β from the SED fit (0.2

when only considering sources with βpl measurements), but still within the error

bars. Overall, β is better constrained through SED fitting as it uses a prior -

the SED models included in MAGPHYS. Furthermore, the SED models take

into account ∼ 30 filters over the full UV-FIR wavelength range, preventing it

from being as sensitive to individual filter measurements in the smaller λ0 =
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1400 − 2100 Å range. Thus, throughout this work, we use β computed from the

SED fits.

We show the histogram distributions of β in Figure 6.2 (right). LAEs tend

to be very blue across all redshift ranges (median β = −2.1+0.5
−0.4, Table 5.1).

LAEs at z = 2.2 are found to have the reddest β slopes, albeit still very blue and

comparable to the Lyman Break Galaxy (LBG) population (see further discussion

in 6.2.1). We note, nonetheless, that the z = 2.2 sample has some key differences

compared to other LAEs in SC4K sample, as it selects LAEs down to 5 Å EW0

in addition to reaching the faintest LLyα. This allows redder sources to be picked

up, while the much higher EW0 LAEs tend to have much bluer β slopes.

6.1.5 Stellar Mass (M?)

The total mass of stars in a galaxy (stellar mass, M?) is a fundamental galaxy

property which is a reflection of its star formation history. We use M? derived

from the likelihood parameter distribution from MAGPHYS modelling.

We show the histogram distribution of M? in our sample in Figure 6.2 (left).

Most LAEs (88%) have stellar masses < 1010 M�, although it is important to

stress there are some more massive galaxies, which shows a significant diversity.

We observe a slight shift to higher masses as we move to higher redshifts (see also

Table 5.1) but this is a natural consequence of only being sensitive to intrinsically

more luminous galaxies at higher redshift. We find that typical LAEs are low

stellar mass galaxies, with the median of the SC4K sample of LAEs being M? =

109.3+0.6
−0.5 M�.

6.1.6 Star Formation Rates (SFRs)

6.1.6.1 Emission line-based SFRs with Lyα

We estimate the SFR directly from LLyα and EW0, using the recipe from Sobral

& Matthee (2019) which has calibrated EW0 as a good empirical indicator of

fesc,Lyα (see Section 1.3.3). With a measurement of fesc,Lyα, LLyα can be converted

to dust-corrected Hα luminosity assuming case-B recombination (Brocklehurst,
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Figure 6.3: Emission line-based SFR vs SED-fitting SFR for the full sample of
LAEs at different stellar masses. Blue circles are the median bin (excluding AGN)
and individual points are plotted as scatter in the background. The black line is
the 1-to-1 ratio. There is a small systematic offset at M? = 108−9 M� yr−1 and for
SFRSED = 1 − 10 M� yr−1 for all stellar mass ranges. For higher stellar masses
and SFRs, there is a more significant difference between the two methods, with the
emission line-based approach predicting lower SFRs. This is a likely consequence
of Lyα not being sensitive to obscured regions in very massive galaxies, thus not
being sensitive to their full contribution. Additionally, we plot AGN LAEs with
black stars (purely stellar+dust SED-fitting with no AGN models) to show they
are typically measured as having high stellar masses when blindly running SED
codes with no AGN models in AGN samples.

1971) and transformed into SFR following Kennicutt (1998). For a Chabrier IMF

(0.1−100 M�) and assuming fesc,LyC = 0, LLyα in erg s−1 and EW0 in Å, the SFR

thus becomes Sobral & Matthee (2019):

SFRLyα [M� yr−1] =
LLyα × 4.4× 10−42

0.042 EW0

, (6.4)

For EW0 > 210 Å, following Sobral & Matthee (2019), we set fesc,Lyα = 1

which corresponds to SFR [M� yr−1] = 4.98× 10−43× LLyα, with LLyα in erg s−1.

This SFR is calibrated with dust-corrected Hα luminosities and thus should be

interpreted as dust-corrected SFR. We show the SFR distribution in Figure 5.1

(right). As the SFR is derived from LLyα, it is limited by the same detection

limits, which causes a shift to higher SFR with increasing redshift. We measure

SFRs in the range ∼ 1 − 300 M� yr−1, and measure a median SFRLyα = 5.9+6.3
−2.6

for SC4K LAEs (see Table 5.1).
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6.1.6.2 SED-derived SFRs

As previously stated, MAGPHYS uses a bayesian approach to estimate the best

likehood SFR, comparing model SEDs (generated using some assumptions, see

Section 5.6) with observed photometry. Due to our FIR measurements being

mostly upper limits for > 99% of SC4K LAEs, it is not possible to directly

measure the amount of SFR that is obscured by dust and the optical thickness of

dust from IR-FIR. As such, the amount of dust and SFR is inferred from the UV-

optical slope. We measure SFRs in the range ∼ 0.1− 3000 M� yr−1, and measure

a median SFRSED = 4.4+10.5
−2.4 M� yr−1 for SC4K LAEs (Table 5.1). For the small

subsample of 46 FIR-detected LAEs, Calhau et al. (2020) obtained stacks in the

FIR which reveal an average (median) SFR of 340+290
−260 M�yr−1 (200+430

−110 M�yr−1).

6.1.6.3 SFRLyα vs SFRSED

In this work, we estimate SFRs of individual LAEs using two approaches: emis-

sion line-based with Lyα (SFRLyα, Section 6.1.6.1) and from SED-fitting (SFRSED,

Section 6.1.6.2). These two approaches are independent as SFRLyα is derived di-

rectly from two properties of the Lyα emission-line (luminosity and EW0), while

SFRSED is obtained with MAGPHYS by removing the filter contaminated by

Lyα and using up to ≈ 30 photometric data-points from the rest-frame UV to

the rest-frame FIR.

In Figure 6.3 we show a comparison between SFRLyα and SFRSED at differ-

ent mass ranges. We measure a small systematic offset at M? = 108−9 M� and

SFRSED = 1 − 10 M� yr−1 for all stellar mass ranges, with the emission line-

based approach predicting slightly higher SFRs. As Lyα traces more recent star-

formation than the UV-continuum, the higher predicted SFRs could be explained

by on-going bursts of star-formation, which lead to slightly higher SFRLyα. Only

for SFRs which are measured to be high from SED (SFRSED > 10 M� yr−1) there

is a significant difference, with SFRLyα being lower and its median maxing at

≈ 10 M� yr−1. Such SFR ranges are typically only seen in more massive ranges

(M? = 109−11 M�), which are thus more susceptible to have underestimated SFRs

from Lyα. This is in line with what could be expected for very massive galaxies

as Lyα will only be able to measure the contribution in regions of the galaxy
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which are actively star-forming and unobscured, leading to underestimated SFRs

in these regimes. Nevertheless, it is remarkable that two largely independent

methods obtain such similar results. For the global populations of SC4K LAEs,

these two methods also retrieve very similar SFRs of 5.9+6.3
−2.6 and 4.4+10.5

−2.4 M� yr−1

for the emission line-based and SED-based, respectively. Additionally, in the

Appendix (Figure A.3), we show SFRLyα vs SFRSED at different redshift ranges.

Both approaches predict very similar SFRs at all redshifts, outside the afore-

mentioned ranges (SFRSED & 10 M� yr−1) as the emission line-based approach

becomes saturated at high SFRs.

Furthermore, in a recent study by Calhau et al. (2020), the SFR of the SC4K

sample is derived through the stacking of radio imaging in the 3GHz band. For

the stacking procedure, individual sources with direct detections are removed as

these are likely AGN. They find median SFRradio = 5.1+1.3
−1.2 M� yr−1 from the

z ∼ 2 − 6 stack, which is in very good agreement with emission line-based and

SED-based SFR estimates of the sample.

6.1.7 Catalogue of SC4K LAE properties

We make public a catalogue with multiple measurements for individual LAEs

in the SC4K sample. For each LAE we provide R.A., Dec, LLyα, EW0, X-ray

and radio Flags (as given by Sobral et al. 2018a) and updated X-ray and radio

Flags (as given by Calhau et al. 2020), M?, β, MUV, SFRLyα and SFRSED, with

associated errors. We also provide our photometric measurements in Jansky for

the 34 filters used in this work and a boolean SED flag which indicates unreliable

SEDs. For LAEs in the unreliable SED subset, we do not derive SED-derived

properties and thus set them to -99 in the public catalogues. We provide the

catalogue of SC4K LAEs in electronic format in Appendix A.4.
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Figure 6.4: UV-continuum slope β (measured from SED fitting, see Section 6.1.4)
vs UV luminosity MUV (derived by integrating the SED fits at ∼1500 Å, see Section
6.1.3). Each panel contains LAEs from different redshift intervals (from left to right
z = 2.2, 2.5, 3.1, 3.9, 4.7, 5.4). The median β of each MUV bin of LAEs selected
through medium (narrow) band filters is shown as filled coloured circles (squares)
with the individual points being plotted as scatter in the background. Unfilled
markers are likely biased bins, as discussed in Section 6.2.1. The clustering of
points at β = −2.44 is a physically imposed model limitation as β can not become
bluer without increasing the upper mass of the IMF to unreasonable values. For
comparison we add measurements from LAEs at z ∼ 2 − 3 (Sobral et al., 2018b)
and UV-continuum selected samples at z ∼ 2− 2.5 (Hathi et al., 2016) and z ∼ 4,
z ∼ 5 and z ∼ 6 (Bouwens et al., 2014a). The black arrow is the size in β of
AUV = 0.5 (AUV = 4.43 + 1.99β, Meurer et al. 1999). We find the median β in
LAEs to be as blue or bluer than UV-selected samples at the same MUV for all
redshifts.
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Figure 6.5: The evolution of the MUV-β relation for LAEs. Shaded regions are
the 1σ intervals obtained by bootstrapping the individual measurements for which
we are not significantly biased (see Section 6.2.1). β increases with MUV and this
relation shifts down to smaller β as we move to higher redshifts. Most of this trend
seems to be captured by a decrease in the normalisation of the relation.

6.2 Results and Discussion

6.2.1 MUV − β relation for LAEs and its evolution

The UV rest-frame luminosity (MUV) and the UV β slope follow a tight correlation

in UV-continuum selected samples (e.g. Bouwens et al., 2014a), with faint MUV

galaxies being typically bluer (more negative β). We measure how these two

parameters are correlated for LAEs, whether they follow a similar MUV-β relation

as UV-continuum selected samples, and whether the relation evolves.

In Figure 6.4, we show the relation between MUV (Section 6.1.3) and β (Section

6.1.4) for 6 redshift intervals (z = 2.2, 2.5, 3.1, 3.9, 4.7, 5.4). We note that at very

faint MUV we are biased towards redder sources. This is a consequence of redder

sources being easier to detect in the optical filters, while sources with a very

steep continuum slope will fall below our detection limits, particularly faint MUV

sources. As such, in Figure 6.4, we show the faintest MUV bin as unfilled.

LAEs are found to be consistently bluer than UV-selected samples (Bouwens

et al., 2014a; Hathi et al., 2016) at similar redshifts (up to ∼ 1 dex bluer),
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regardless of being NB or MB-selected, at all redshifts studied (see also Hashimoto

et al., 2017). Our results are consistent with z ∼ 2− 3 LAEs measurements from

Sobral et al. (2018b). Additionally, we measure an increase of β with MUV (∼ 0.5

dex per ∆MUV = 2), indicating that bright MUV LAEs are redder than fainter

LAEs at all redshift ranges, even though LAEs are typically bluer than LBGs.

This tight correlation between MUV and β is very similar to the one observed in

LBG populations, implying an important overlap between the populations and

also an important diversity within the LAE population.

In Figure 6.5, we show the 1σ contours for the MUV vs β distribution. We

compute the 1σ contours by bootstrapping our individual data points. We choose

a random subset of 50% of the data points, determine the best fit, iterate the

process 1000 times and define the 1σ contours as the 16th and 84th percentiles

of all fits. As previously mentioned, faint MUV bins will be biased towards redder

sources, which are easier to detect in the continuum. As such, we apply a MUV

cut to our fits, equal to the lower limit of the faintest filled MUV bin (Figure 6.4).

Overall we find a MUV-β relation for LAEs, which is qualitatively very similar

to the one observed in UV-selected samples. As can be seen in Figure 6.5, the

normalisation of the MUV-β relation slowly moves to bluer β with increasing

redshift for LAEs. This might be explained due to a consistent average decrease

in dust content and metallicity even within LAEs from low to high redshift.

6.2.2 Implications of MUV − β relation for LAEs

The UV continuum β slope can be an indicator of the dust attenuation of a

galaxy as well as the age and metallicity of its stellar population, but because it

is sensitive to all these effects, it can also be very complicated to interpret (see

e.g. Popping et al., 2017). As shown by Bouwens et al. (2012) (see Figure 13

therein), a negative offset of ∼ 0.5 − 1 in β should be dominated by a change

in dust, albeit age and metallicity can also significantly steepen β, with a hotter

population of stars. This suggests that LAEs are a subset of the SFG population

which is very young and likely more metal-poor, with significant contribution

from O and B stars which make the UV continuum steeper.
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Figure 6.6: Global Lyα w0 evolution with redshift. Best w0 estimates are shown
as blue circles (squares) for the full range of EW0 (EW0 < 240 Å). Blue contours
are estimated by perturbing the w0 bins within error bars (see Section 6.1.2.1 for
details). We find evidence for little to no evolution of w0. The white points show
Lyα w0 of the full SC4K sample. We present a compilation of Lyα w0 from z = 0.3
to z ∼ 6 (Blanc et al., 2011; Ciardullo et al., 2012; Gronwall et al., 2007; Guaita
et al., 2010; Hashimoto et al., 2017; Nilsson et al., 2009; Wold et al., 2014, 2017). In
addition, we show the [Oii] (Hβ + [Oiii]) rest-frame equivalent widths of emitters
selected by these lines (Khostovan et al., 2016) as purple (green) fits and Hα EW0

(Faisst et al., 2016; Matthee et al., 2017a) as red. Overall, the consensus of all
data points is that there is no significant Lyα w0 evolution with redshift despite
the strong increase in the typical EW0 of non-resonant lines for a wider population
of SFGs.
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In LBGs, β has been shown to depend on the UV luminosity, with a similar

slope independent of redshift (e.g. Bouwens et al., 2012, 2014a). The normali-

sation of the relation is shifted to bluer β as we move to higher redshifts which

can be explained by a lower dust content/lower dust extinction in galaxies at

higher redshift (e.g. Finkelstein et al., 2012). As shown in Figure 6.5, LAEs have

a very similar behaviour to LBG galaxies: β is tightly correlated with MUV, with

brighter MUV galaxies being redder and the normalisation of this slope shifting

to lower β with increasing redshift, which can be explained by a lower dust con-

tent at higher redshift even for LAEs. Similar observations of the MUV-β trend

and the β evolution with redshift have been shown by Hashimoto et al. (2017).

The work presented by Hashimoto et al. (2017) reaches fainter MUV than the

work presented here and thus provides a consistent view of UV properties in

LAEs from a complementary work using a different selection method (integral

field spectroscopy with MUSE).

6.2.3 Lyα EW0 and w0: evolution for LAEs?

EW0 is an indicator of the strength of an emission line relatively to the continuum.

As such, it holds important information about a galaxy, with high EW0 being

associated with young stellar ages, low metallicities and top-heavy IMFs (Raiter

et al., 2010; Schaerer, 2003). We use our sample of LAEs at well-defined redshift

ranges to probe for redshift evolution of EW0.

We find the median Lyα EW0 of SC4K LAEs to remain constant at ∼ 140 Å

with redshift, both in MB and NB-selected samples (median EW0 = 138+284
−70 Å).

We show the little to no evolution of median EW0 in Figure A.4. For individual

filters, we detect a tentative higher than average EW0 at z ∼ 5.7−5.8, which could

be caused by the small sample size or higher contamination fraction, although we

highlight the large error bars.

The calculated median Lyα EW0 can be very sensitive to selection effects, and

it is possible that the non-evolution we measure is a consequence of the relatively

high EW0 > 50 Å cut applied in SC4K. In order to further tackle this, we also

investigate the evolution of the scale parameter w0 (Section 6.1.2.1). w0 has been

extensively probed in the literature (see e.g. Ciardullo et al., 2012; Hashimoto
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Figure 6.7: The Lyα w0 dependence on M? and MUV. Best w0 estimates are
shown as blue circles (squares) for the full range of EW0 (EW0 < 240 Å). A label
with fesc,Lyα (= 0.048w0; Sobral & Matthee 2019) is added for a potential physical
interpretation of results. Left: Lyα w0 is anti-correlated with stellar mass, such
that the most massive LAEs have the lowest w0 and likely the lowest fesc,Lyα.
Right: Lyα w0 is also anti-correlated with UV luminosity, with the faintest UV
LAEs having the highest Lyα w0.

et al., 2017), particularly because the exponential decay of the EW0 distribution

should be less affected by observational EW0 cuts.

Our results are presented in Figure 6.6. We find no statistically significant

evolution of the Lyα w0 with redshift. Generally, w0 is slightly higher when

computed for the full sample of LAEs, and lower when we impose a restriction

on the Lyα EW0 (< 240 Å ), but no significant evolution is seen when using

a single self-consistent method. We therefore conclude that both the observed

median Lyα EW0 and the distributions of Lyα w0 for LAEs are not changing

significantly from z ∼ 2 to z ∼ 6. A non-evolution of w0 suggests there is

no significant evolution in the typical or average properties of sources selected

as LAEs across cosmic time. These include their typical metallicities and dust

properties, but also perhaps more importantly their Lyα escape fraction, fesc,Lyα.

As shown by Sobral & Matthee (2019), the observed Lyα EW0 can be used to

estimate fesc,Lyα. The non-evolution of Lyα EW0 and w0 across time implies

non-evolving fesc,Lyα for LAEs. For SC4K LAEs, we infer a constant fesc,Lyα of

≈ 0.6 − 0.7 across cosmic time (≈ 0.5 − 0.6 when applying the EW0 > 240 Å

cut). These median fesc,Lyα values are consistent with those derived using radio
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SFRs for SC4K Lyα emitters (0.7± 0.2, see Calhau et al., 2020).

However, it should be noted that different redshifts do not necessarily probe

the same MUV ranges (Figure 6.2, middle panel), which should be considered

when discussing w0 evolution with redshift, particularly as w0 depends on MUV

(see Section 6.2.3.2). We attempt to explore potential bias effects by computing

w0 with a consistent MUV cut. For the full SC4K sample, we compute w0 for

−22 < MUV < −19 which is a MUV range probed by all redshifts (see middle

panel of Figure 6.2). For this cut, a flat relation (non-evolution) is still observed

within 0.9σ for EW0 < 240 Å and 1.8σ for the full EW0 range. The different MUV

ranges probed by different selection filters/redshifts do not seem to be sufficient

to explain the non-evolution of w0 with redshift, which is likely a characteristic

of the LAE population itself.

6.2.3.1 Comparison with other studies

In order to compare our results with other studies across different redshifts, in

Figure 6.6 we show a compilation of Lyα w0 in samples of LAEs, from z ∼ 0 to

z ∼ 6 (Blanc et al., 2011; Ciardullo et al., 2012; Gronwall et al., 2007; Guaita

et al., 2010; Hashimoto et al., 2017; Nilsson et al., 2009; Wold et al., 2014, 2017).

Our results agree well with Hashimoto et al. (2017), Guaita et al. (2010) and Blanc

et al. (2011). Furthermore, our extrapolation of w0 to low redshift is consistent

with the results from Wold et al. (2014, 2017).

Our measurements reveal higher values than those by Nilsson et al. (2009),

Gronwall et al. (2007) and Ciardullo et al. (2012), all at intermediate redshifts

(z = 2.25 − 3.1) and with selections that go to much lower EWs. We note

however that the w0 measured by Nilsson et al. (2009) is below our MB detection

threshold and that our blind selection of LAEs is not sensitive to the lowest EW0,

as highlighted in Figure 6.6. Our LAE selection of high EW LAEs is much more

similar to blind surveys done with MUSE (Hashimoto et al., 2017), but SC4K

allows the selection and study of much higher luminosity LAEs. Furthermore, we

note that our w0 measurements shift to smaller values when the EW0 < 240 Å cut

is applied, becoming even more similar to the measurements reported in the

literature.
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While there are observed variations due to different sample selections which

contribute to the scatter (Figure 6.6), overall we conclude that there is no clear

evolution of the Lyα EW0 and w0 for LAEs when taking into account all mea-

surements. Such parameters remaining constant for LAEs contrasts with mea-

surements from other non-resonant emission lines for the general star-forming

population, which are found to increase significantly with redshift. In order to

provide a rough comparison, in Figure 6.6 we also show the redshift evolution

of the rest-frame EW of line-emitters, including [Oii] and Hβ + [Oiii] emitters

(Khostovan et al., 2016) and Hα EW0 (Sobral et al., 2014). While at z ∼ 0 those

non-resonant rest-frame optical emission lines have typical EW0 < 25 Å, by z ∼ 2

they already exceed Lyα EW0. This reveals a very significant evolution of the

typical stellar populations of the general population of SFGs, while those selected

to be LAEs have high Lyα EW0 at all cosmic times. Since LAEs have typically

high EWs in their rest-frame optical lines, it is very likely that we are seeing star-

forming galaxies becoming, on average, LAEs, towards z ∼ 6. Such possibility

would easily explain the rise in the global Lyα/UV luminosity densities (see full

discussion and implications in Sobral et al., 2018a).

6.2.3.2 The w0 and fesc,Lyα dependence on M? and MUV

LAEs seem to show no evolution in their typical Lyα w0 across cosmic time.

However, one could expect that LAEs with different physical properties may

show different w0, particularly as a consequence of different Lyα escape fractions

(see e.g. Matthee et al., 2016; Oyarzún et al., 2017; Sobral & Matthee, 2019).

We start by investigating how Lyα w0 may depend on the stellar mass of

LAEs. The results are presented on the left panel of Figure 6.7, where we show the

results when restricting the measurements to EW0 < 240 Å and when using full

samples. We find an anti-correlation between Lyα w0 and stellar mass, with the

least massive LAEs having w0 ≈ 180 Å and the most massive having w0 ≈ 70 Å.

By using Sobral & Matthee (2019), this could be seen as a significant difference

in the typical fesc,Lyα which would decline from ≈ 90% for M ∼ 108.5 M� LAEs

to fesc,Lyα ≈ 30% for M ∼ 1010.5 M� LAEs. This trend is very similar to those
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found by Matthee et al. (2016) for a general population of Hα emitters with much

higher SFRs and lower fesc,Lyα than our LAEs and by Oyarzún et al. (2017).

In Figure 6.7 (right panel) we also show how Lyα w0 is clearly anti-correlated

with MUV. Our results show that UV luminous LAEs in our sample (MUV ≈
−21.5) have Lyα w0 ≈ 50 Å, which rises with declining UV luminosity to w0 ≈
180 Å for MUV ≈ −19.5 LAEs. This implies that the UV faintest sources have

the highest fesc,Lyα (Sobral & Matthee, 2019) of around ≈ 85%, while the most

UV luminous LAEs have fesc,Lyα ≈ 20− 30%. Our results are in good agreement

with Oyarzún et al. (2017) and reveal that even though LAEs have high Lyα w0

across cosmic time, the population still shows important trends with stellar mass

and rest-frame UV luminosity.

6.2.3.3 LAEs with extreme EW0

The nature of LAEs with extremely high EW0 and the processes behind the cre-

ation of such extreme lines are still a relatively unexplored topic despite a range of

discoveries (e.g. Cantalupo et al., 2012; Hashimoto et al., 2017; Kashikawa et al.,

2012; Maseda et al., 2018). Typical internal star formation processes should not

be enough to power EW0 > 240 Å in Lyα (Raiter et al., 2010; Schaerer, 2003),

but studies like Cantalupo et al. (2012) suggest that such extreme objects which

have been found could be explained by fluorescent “illumination” from e.g. a

nearby quasar (see also Rosdahl & Blaizot, 2012; Yajima et al., 2012). Addition-

ally, an extreme z = 6.5 LAE with EW0 = 436 Å is reported in Kashikawa et al.

(2012), with the authors arguing that such a high EW0 requires a very young,

massive and metal-poor stellar population, or even Population III stars.

The large volume covered by SC4K (∼ 108 Mpc3) and the sensitivity to the

highest EWs provides a unique opportunity to identify and quantify the number

density of extremely high EW LAEs. In order to do so in a conservative way,

rather than simply selecting sources with Lyα EW0 higher than 240 Å, we take

the photometric errors fully into account, and we use the 3σ errors. In practice,

we look for LAEs within SC4K which satisfy EW0 > 240 Å at a 3σ level 1

and for which we have no evidence of AGN activity. We find a total of 45

1EW0 − 3∆EW0 > 240 Å
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“extreme” non-AGN LAEs in ∼ 61.5 × 106 Mpc3 and we investigate how these

are distributed across redshift. The results are shown in Table 6.1, where we use

Poisson errors. Most of the extreme LAEs are found at z ∼ 2− 3. Furthermore,

by taking into account the volumes surveyed, we find that the number density

of extreme LAEs within SC4K rises, from (0.12± 0.08)× 10−6 Mpc−3 at z ∼ 5.4

to (1.50 ± 0.61) × 10−6 Mpc−3 at z ∼ 2.5, although such increase should be

treated with caution, as the higher redshift sample does not reach very faint MUV

(> −20) ranges. Overall, we find a number density of (0.73±0.11)×10−6 Mpc−3 at

z ∼ 2− 6, revealing that these sources are exceptionally rare. At 1σ confidence

level, we find 318 LAEs with EW0 > 240 Å, resulting in a number density of

(5.17 ± 0.29) × 10−6 Mpc−3. Spectroscopic follow-up observations are required

to further understand their nature. We find our 45 “extreme” sources to be a

diverse population, as they are found at all Lyα luminosities and stellar masses,

but preferentially at faint UV luminosities which is a consequence of high EW

+ no dependence on Lyα luminosity. They typically have blue UV β slopes but

some reach redder values (β ∼ −1.2). We do not observe a spatial correlation

between “extreme” LAEs and AGN, which we would expect if the high EWs in

this sample of LAEs were generated by fluorescent “illumination”.

Through a narrow band filter search, Cantalupo et al. (2012) targeted a field

centred in a hyper luminous quasar and identified 18 LAEs at z = 2.4 in a

comoving volume of 5500 Mpc3. Stacking of these sources results in Lyα EW0 >

800 Å (1σ), which cannot be explained by typical star-formation processes. This

implies a higher number density of extreme LAEs than the conservative number

density we report in this work, although this can be easily explained by Cantalupo

et al. (2012) specifically targeting a quasar field.

In a more comparable blank search, using deep MUSE data, Hashimoto et al.

(2017) selected 6 LAEs with EW0 > 240 Å at a 1σ level (zero at 3σ) in 9.31 ×
104 Mpc3 (Drake et al., 2017a) at z ∼ 2− 6. This results in a number density of

∼ 6× 10−5 Mpc−3, suggesting these “extreme” LAEs may be even more common

at fainter luminosities than those in the SC4K sample.
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Figure 6.8: SFR (derived from Lyα and derived from SED fits, see Section 6.1.6)
vs M? (derived from SED fits, see Section 5.6). Each panel contains LAEs from
different redshift intervals (from left to right z = 2.2, 2.5, 3.1, 3.9, 4.7, 5.4). The
median SFRLyα of each M? bin for LAE selected through medium (narrow) band
filters is shown as filled coloured circles (squares) with the individual SFRLyα being
plotted as scatter in the background. The median SFRSED of each M? bin for LAE
selected through medium (narrow) band filters is shown as open circles (squares).
The M? bins of the two methods are defined with a 0.25 dex offset for better
visibility. The dotted horizontal line is the average SFR depth, computed from the
flux depth and average EW0 of the sample. The continuous black lines are the best-
fit relations from Schreiber et al. (2015) computed for the redshift of each panel
and converted from Salpeter to Chabrier. These relations are shown as dashed
lines for the mass ranges where they were extrapolated.
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Table 6.1: Number count and number density of LAEs with EW0 > 240 Å at a
3σ level, for different redshift intervals, using comoving volumes from Table 3.1.
Errors are Poissonian. We find very low number densities of extreme LAEs, but
these increase with decreasing redshift.

Redshift interval N Φ
(# LAEs) (10−6 Mpc−3)

MB, z = 2.5± 0.1 6 (±2) 1.50± 0.61
MB, z = 3.1± 0.4 15 (±4) 0.82± 0.21
MB, z = 3.9± 0.3 4 (±2) 0.40± 0.20
MB, z = 4.7± 0.2 2 (±1) 0.17± 0.12
MB, z = 5.4± 0.5 2 (±1) 0.12± 0.08

Full sample 45 (±7) 0.73± 0.11
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Figure 6.9: Left: Running average of SFR (derived from Lyα and EW0, see
Section 6.1.6) vs M? (derived from SED fits, see Section 5.6). Right: Same but with
SFR derived from MAGPHYS (see Section 6.1.6). The SFR-M? slopes derived
from the two methods are different, with the SED-derived slope being steeper.
The difference is likely a consequence of SFRLyα not being able to reach very low
(< 1 M� yr−1) and very high SFRs (> 20 − 30 M� yr−1), but we provide further
discussion in Section 6.1.6.3. For comparison, we show the Main Sequence line for
UV-continuum selected sources from Schreiber et al. (2015), where the dashed lines
show the extrapolated values.
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6.2.4 SFR-M? relation and evolution

We test the dependence of SFR on M? in our sample of LAEs and its potential

evolution with redshift. In Figure 6.8 we show SFR derived from the SEDs and

SFR derived from Lyα (see Section 6.1.6) vs M? (derived from SEDs, Section

6.1.5) for our sample of LAEs and compare with SFRs derived from SED fitting.

We compare our measurements with the Main Sequence relation as derived in

Schreiber et al. (2015) (converted from Salpeter to Chabrier IMF, extrapolated

to low mass ranges when required) and a few studies at different redshifts.

We find that in general there is a relation between SFR and M? at all redshifts

for LAEs. The relation is relatively shallow when using Lyα SFRs and steeper

when using SED SFRs, as can be seen in Figure 6.8. The relation between SFR

and M? seems to steepen with increasing redshift for LAEs when using SED SFRs,

as can also be seen in Figure 6.9 (right panel). This steepening with increasing

redshift also seems to make the SFR-M? relation much more in line with the

extrapolated relations found for UV-continuum selected sources (e.g. Schreiber

et al., 2015).

At z < 4, we find that LAEs are typically above the Main Sequence relation

at their corresponding redshift. This is particularly evident for low stellar masses

(M? < 109.5 M�) although we find that more massive LAEs tend to be within the

Main Sequence or even below it, a consequence of the slope of the relation being

shallower. At higher redshifts, we find that even at low stellar masses (109.0−9.5

M�) LAEs are closer to the Main Sequence or that the Main Sequence becomes

closer to the relation valid for LAEs, as SFGs may become more LAE-like. Our

results therefore suggest that at higher redshifts there is a wider overlap between

LAEs and more “normal” populations of galaxies, as UV-continuum selected

galaxies become LAE-like. This could explain the agreement between high-z

LAEs and the results of Salmon et al. (2015). It is nonetheless important to

point out (as shown in Figure 6.8) that the flux limit in Lyα corresponds to a

rough cut in SFR and therefore a bias towards higher SFRs at the lowest masses.

Similar flux cuts also affect continuum-selected samples, placing them well above

the Main Sequence (see e.g. Tasca et al., 2015).
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Our results are in good agreement with measurements from Lyα-selected sam-

ples from Kusakabe et al. (2018) at z = 2 within error bars. We also compare our

results with those presented by Harikane et al. (2018). While we do not reach

such low masses, our results are consistent with LAEs being above the Main

Sequence at low stellar masses. With our SC4K sample of LAEs, we can now

analyse the evolution of the SFR-M? in wide mass ranges at different redshifts,

no longer being constrained by single bins or having to stack sources to SED fit

the stacked photometry, being able to probe the evolution of the relation within

the same sample.

As previously discussed in Section 6.1.6.3, there are limitations to different

SFR methods, which are important to highlight when comparing the SFR-M?

relation. SFRLyα consistently predicts higher SFR than SFRSED for low stellar

masses and lower SFR for very high stellar masses. In fact, individual mea-

surements of SFRLyα seem to fully saturate at ∼ 100 M� yr−1 with the medians

typically not going above ∼ 20 − 30 M� yr−1 (see Sobral et al., 2018b). SFRLyα

also implies higher SFRs at lower masses, possibly due to tracing more recent

star-formation which would be higher than the one measured from the contin-

uum if LAEs are going through bursts of star-formation. This can be clearly

seen with NB LAEs measurements at z = 5.7, where the low luminosity sample

predicts SFRs≈ 10 M� yr−1. SFRSED may be better suited for such conditions,

and as seen in Figure 6.8, it points towards a relation similar to the Schreiber

et al. (2015) extrapolations for the entire mass range we can probe. Nevertheless,

we find that the SFRs derived from the two approaches to be consistent, with

the same trends being observed from both. In Figure 6.9 we show the running

averages for M? vs SFR. We find the normalisation of the relation to increase

with redshift (left panel) but, as previously discussed, this is mostly driven by

detection limits, as we are only capable of reaching down to SFR < 5 M� yr−1 at

z ∼ 2.
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6.2.5 LAEs: are they “Main Sequence” galaxies?

The stellar mass of a galaxy and its star formation rate are correlated in typical

galaxies, creating a trend known as the “Main Sequence”1 of SFGs (Brinchmann

et al., 2004; Noeske et al., 2007). A priori, we can naively expect this correlation

to occur as the stellar mass of a galaxy is the integral of SFR across time, so the

total amount of stars produced will be proportional to the current SFR, assuming

a continuous SFR. This dependence can lead to “tracks” in SED-fitting derived

values which lead to a more stringent correlation between SFR and M?. Galaxies

going through periods of intensive star formation, which may be a consequence of

bursty star formation, will occupy a region above the Main Sequence. In typical

galaxies, SFR and M? are in tight correlation and the normalisation of the relation

increases with redshift (e.g. Schreiber et al., 2015). Understanding whether the

Main Sequence trend holds for LAEs provides important insight into how star

formation occurs and how it is driven in this population of predominantly early,

primeval galaxies. In principle, we do not expect a Lyα-selected sample to span

uniformly around the Main Sequence, because we select on emission line strength

which at fixed stellar mass always gives high sSFR≡ SFR/M?. We therefore do

not expect to use LAEs to measure the Main Sequence in an unbiased way, but

we can use the comparison to the Main Sequence to determine how LAEs fit in

the general galaxy population. Several measurements at z > 2 have measured

the Main Sequence relation by probing M? > 1010 M�, with the low mass limit

typically rising to M? > 1011 M� at z > 3.5 (Schreiber et al., 2015), but some

recent studies have measured the SFR-M? slope and scatter down to M? = 109 M�

(Salmon et al., 2015). Our sample of high redshift, typically low M? SFGs reaches

a region still widely uncharted at these redshift ranges.

Our results point towards an intensive star formation nature for low mass

LAEs at z < 4, which places them significantly above the extrapolation of the

Main Sequence to the lowest masses. A more bursty star-forming nature could

explain these SFRs above the Main Sequence. However, we cannot directly infer

burstiness from our measurements. More massive LAEs seem to fall within the

1Note that galaxies do not evolve along the Main Sequence trend and it is therefore not an
evolutionary sequence, see e.g. Matthee & Schaye (2019).
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Main Sequence. At higher redshifts, SFRSED-M? measurements for LAEs start to

resemble more the Main Sequence at all mass ranges. We also find SFRLyα-M?

to follow a Main Sequence-like relation at z > 4, except for M? & 1010.5, when

SFRLyα seems to saturate, likely due to dust, and is not able to reach SFRs as

high as SFRSED. This can easily be explained by more massive galaxies showing

much higher dust extinction (see e.g. Garn & Best, 2010; Sobral et al., 2012;

Whitaker et al., 2017), which at some point might completely absorb Lyα and

UV photons in high SFR regions (Sobral et al., 2018b), making it impossible for

them to be observed. In such cases, the FIR and some visible and NIR light can

still escape, leading to a large discrepancy between SFRSED and SFRLyα. We

note that SFRLyα contains an empirical correction for dust extinction (see Sobral

& Matthee, 2019), but this was calibrated for typical LAEs where only moderate

to low levels of dust extinction are present leading to Lyα and UV photons being

attenuated, but not fully destroyed. At the highest masses, we are likely seeing

LAEs with several star-forming regions that may be completely invisible in the

UV and Lyα but where at least one region has a hole or a porous ISM (see also

Popping et al., 2017).

Overall, we find that the SFR-M? relation for LAEs steepens with redshift and

that its normalisation also rises with look-back time (see Figure 6.9). As a con-

sequence, by z ∼ 5−6, LAEs and the general UV-continuum selected population

essentially become indistinguishable. This increasing overlap of populations with

increasing redshift is also observed in the morphologies and sizes of SFGs, which

become LAE-like (compact, re ∼ 1 kpc) towards high redshift (Paulino-Afonso

et al., 2018) and diverge towards lower redshift as LAEs remain compact at all

redshifts. Our results are also fully consistent with the rapid rise of the cosmic

average Lyα/UV luminosity density ratio with increasing redshift (Chapter 4)

which imply that a higher fraction of star-forming galaxies share the properties

associated with LAEs, leading to a rise of the cosmic averaged Lyα escape frac-

tion and the cosmic averaged ionisation efficiency, ξion. Such results are also in

agreement with other studies showing a rise of the LAE fraction in UV-selected

sources towards z ∼ 6 (Curtis-Lake et al., 2012b; Schenker et al., 2014; Stark

et al., 2017), and globally imply that by z ∼ 6 LAEs become representative of

the majority of the star-forming population.
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6.3 Conclusions

In this Chapter, we determined and explored key properties of a large sample of

LAEs from the publicly available SC4K survey (∼4000 LAEs at z ∼ 2− 6 in the

COSMOS field; Sobral et al. 2018a). We computed SFRs, MUV, β and M? for

each individual LAE and we provide a full catalogue of SC4K LAEs with all the

photometric measurements and derived properties. Our main results are:

• SC4K LAEs are typically low stellar mass sources (median M?=109.3+0.6
−0.5 M�),

very blue in the rest-frame UV (β=-2.1 +0.5
−0.4) and have low SFRs (SFRLyα:

5.9+6.3
−2.6 M� yr−1; SFRSED: 4.4+10.5

−2.4 M� yr−1).

• We observe a tight correlation between β and MUV, qualitatively similar to

the one observed in UV-selected samples. The normalisation of this corre-

lation shifts to more negative β (bluer) with increasing redshift, which is

consistent with a decreasing dust content with increasing redshift in galaxies

even for LAEs.

• Our LAEs are as blue or bluer than UV-selected Lyman Break Galaxies

(LBGs) at similar redshifts (up to ∼1 in the redshift range z ∼ 2 − 6),

suggesting they always constitute the youngest, most metal-poor and/or

most dust-poor subset of the UV-selected sources.

• We find evidence for little to no evolution in the typical Lyα EW0 and the

scale parameter w0 with redshift, suggesting the median fesc,Lyα in LAEs is

always high and not evolving strongly with redshift.

• We find that the Lyα w0 (and thus fesc,Lyα) for LAEs declines with increasing

stellar mass, implying that fesc,Lyα is highest for the lowest stellar mass LAEs

and lowest for the most massive LAEs. A similar trend is found with rest-

frame UV luminosity, where the faintest LAEs have the highest typical EWs

and the highest fesc,Lyα.

• We explore extreme EW0 measurements in our large sample of LAEs and

find 45 non-AGN LAEs with EW0 > 240 Å at a 3σ level, resulting in a

number density (7±1)×10−7 Mpc−3. These extreme emitters are incredibly
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rare but can provide insight into extreme Lyα emission that is neither purely

from typical star-formation or AGN.

• By using Lyα EW0 to infer fesc,Lyα (Sobral & Matthee, 2019) we compute

Lyα SFRs which are independent of SED fitting measurements and we com-

pare both. Lyα and SED-fitting based SFRs show a remarkable agreement

for M? = 109−10 M� and SFRSED = 1− 10 M� yr−1. SFRLyα predicts lower

SFRs at more massive regimes, likely due to not being sensitive to heavily

obscured parts of very massive galaxies.

• LAEs show a relation between stellar mass and SFR at all redshifts, but this

is typically shallower than the relation found for the general star-forming

population. We also find that the relation steepens and rises with increasing

redshift for LAEs.

• LAEs are typically above the “Main Sequence” at z < 4 and M? < 109.5 M�,

indicating LAEs are experiencing more intense star formation than the gen-

eral population of galaxies of similar mass at similar redshifts, with one

possible explanation being a bursty star-formation nature of LAEs. For

higher masses and redshifts, this offset decreases, implying a larger overlap

between LAEs and more “normal” SFGs.

Overall, we find that LAEs are typically very young, low mass galaxies, albeit

they still span an important range of properties, and within the LAE population

there are important trends with stellar mass and UV luminosity. Typical prop-

erties of LAEs seem to have little evolution between z = 2 and z = 6, although

they still become bluer and the relation between SFR and stellar mass steepens

and rises slightly. By z & 4, the overlap between LAEs and the more general

UV-selected population becomes significant and by z ∼ 6 they seem to become

indistinguishable, as typical SFGs essentially become LAE-like. Our results re-

veal how galaxies selected as LAEs constitute mostly the youngest, most primeval

galaxies at any redshift, and also that LAEs are ideal sources to study the dom-

inant population of SFGs towards z & 6 and therefore also likely a population

that significantly contributed to reionising the Universe (see also discussions in

Sections 1.1.2 and 4.6).
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The UV luminosity function and

galaxy stellar mass function of

z ∼ 2− 6 LAEs with SC4K

148



Abstract

We measure the evolution of the rest-frame UV luminosity function

(LF) and the stellar mass function (SMF) of Lyman-α (Lyα) emitters

(LAEs) from z ∼ 2 to z ∼ 6 by exploring ∼ 4000 LAEs from the

SC4K sample (see Chapter 2). We find a correlation between Lyα

luminosity (LLyα) and rest-frame UV (MUV), with best-fit MUV =

−1.6+0.2
−0.3 × log10(LLyα/erg s−1) + 47+12

−11 and a shallower relation be-

tween LLyα and stellar mass (M?), with best-fit log10(M?/M�) =

0.9+0.1
−0.1 × log10(LLyα/erg s−1) − 28+4.0

−3.8. As a consequence of these de-

pendences, an increasing LLyα cut predominantly lowers the number

density of faint MUV LAEs, but the decrease is more uniform over the

full M? range. We estimate a proxy for the full UV LFs and SMFs of

LAEs with simple assumptions of the faint end slope. To reduce selec-

tion bias, we analyse the same luminosity range (log10(LLyα/erg s−1) ≥
43.0) at all redshifts. For the UV LF of LAEs, we find a character-

istic number density (Φ∗) increase from log10(Φ∗/Mpc−3) ∼ −5.6 at

z = 2.5 to ∼ −4.6 at z ∼ 3, remaining constant up to z ∼ 5 − 6

and no clear evolution of the characteristic UV luminosity (M∗UV).

We find no significant evolution of the SMF of LAEs with redshift,

with log10(Φ∗/Mpc−3) staying constant at ∼ −5.5 from z ∼ 2.5

to z ∼ 6 and the characteristic stellar mass staying constant at

log10(M∗?/M�) ∼ 11 for the same redshift range. For log10(LLyα/erg s−1)

≥ 43.0 LAEs, ρUV increases from 1024.3 to 1025.0 erg s−1 Hz−1 Mpc−3

and ρM remains constant at ∼ 105.5 M�Mpc−3, being always lower

than the total luminosity and stellar mass densities of more typical

galaxies but approaching it with increasing redshift. Both ρUV and

ρM of LAEs are extrapolated to converge to the measurements of



continuum-selected galaxies at z > 6, which suggests a key role of

LAEs in the epoch of reionisation.



7.1 Introduction

7.1 Introduction

Multiple studies have used the Lyman-α (Lyα, λ0,vacuum = 1215.67 Å) emission

line to successfully select large samples of galaxies at z > 2 (e.g. Cowie & Hu,

1998; Drake et al., 2017a; Konno et al., 2018; Malhotra & Rhoads, 2004; Matthee

et al., 2015; Ouchi et al., 2008; Rauch et al., 2008; Santos et al., 2016; Sobral

et al., 2018a; Taylor et al., 2020; van Breukelen et al., 2005). Lyα emission is

typically associated with young star-forming galaxies (SFGs, e.g. Partridge &

Peebles, 1967) but can also be emitted from active galaxy nuclei (AGN; e.g.

Calhau et al., 2020; Miley & De Breuck, 2008; Sobral et al., 2018b).

LAEs are typically young/primeval, low mass, low dust extinction sources

(e.g. Gawiser et al., 2006, 2007; Lai et al., 2008; Pentericci et al., 2007), but a

significant diversity of properties within the Lyα population has been reported in

the literature (e.g. Acquaviva et al., 2012; Finkelstein et al., 2009; Hagen et al.,

2016; Lai et al., 2008; Matthee et al., 2016; Oyarzún et al., 2017; Santos et al.,

2020). Sources with high Lyα equivalent width (EW) typically have young stellar

ages, low metallicities and top-heavy initial mass functions (e.g. Hashimoto et al.,

2017; Raiter et al., 2010; Schaerer, 2003). LAEs have been shown to be very

compact in the UV (e.g. Malhotra et al., 2012; Paulino-Afonso et al., 2018), with

the compact morphology possibly being favourable to the escape of Lyα photons.

Additionally, studies have shown that high-redshift LAEs may be progenitors of

a wide range of galaxies, from present-day galaxies (e.g. Gawiser et al., 2007;

Guaita et al., 2010; Yajima et al., 2012) to bright cluster galaxies (BCGs; e.g.

Khostovan et al., 2019), highlighting the significance of LAEs in galaxy evolution

studies.

Studies of UV-continuum selected galaxies have found that the Lyα fraction

(χLyα, percentage of galaxies with Lyα emission) increases with redshift up to

z ∼ 6 (e.g. Caruana et al., 2018; Cassata et al., 2015; De Barros et al., 2017;

Kusakabe et al., 2020; Pentericci et al., 2011; Stark et al., 2010). This might

be explained by an average lower dust content in higher redshift galaxies (e.g.

Bouwens et al., 2006; Stanway et al., 2005), increasing the Lyα escape fraction

(fesc,Lyα, ratio between observed and intrinsic Lyα photons in a galaxy; e.g. Hayes

et al., 2011) and/or increasing the ionising efficiency (ξion, number of produced
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ionising photons per unit UV luminosity; e.g. Matthee et al., 2017a). χLyα is

typically computed with large spectroscopic samples, with χLyα being the ratio

between the number of galaxies with Lyα emission detected above some Lyα EW

threshold and the total number of probed galaxies (see e.g. Stark et al., 2010).

χLyα is found to be higher for galaxies fainter in the rest-frame UV (MUV, e.g.

Pentericci et al., 2011), implying such galaxies have higher escape fraction of Lyα

photons and/or have a higher ξion (e.g Maseda et al., 2020). This can also be

linked with faint MUV galaxies having higher Lyα EW (see e.g. Kusakabe et al.,

2018; Shimizu et al., 2011) and thus being more susceptible to being picked as

LAEs, although such trend could also be a consequence of selection effects or

survey limits (see e.g. Ando et al., 2006; Hashimoto et al., 2017; Nilsson et al.,

2009; Zheng et al., 2014). Some studies report no strong correlation between

χLyα and MUV (Kusakabe et al., 2020) and attribute the typical high χLyα of

faint MUV galaxies to selection biases in Lyman break galaxy (LBG) samples,

which are biased towards selecting sources with high Lyα EW, as strong Lyα

emission will boost the photometry and enhance the Lyman break, making such

sources easier to detect.

Alternatively, χLyα could in principle be inferred from the ratio between lumi-

nosity functions (LF, number density per luminosity bin vs luminosity) of Lyα-

selected and UV continuum-selected samples. The UV LF of continuum-selected

galaxies has been extensively constrained in multiple studies up to z ∼ 10 (e.g.

Alavi et al., 2016; Arnouts et al., 2005; Bouwens et al., 2015; Finkelstein et al.,

2015; Mehta et al., 2017; Ono et al., 2018; Sawicki & Thompson, 2006; Steidel

et al., 1999). The characteristic number density (Φ∗) is found to decrease with

an increasing redshift, from log10(Φ∗/Mpc−3) ∼ −2.5 at z ∼ 2 (Reddy & Steidel,

2009) to ∼ −3.5 at z ∼ 6 (Bouwens et al., 2015; Ono et al., 2018), with no

characteristic luminosity evolution (L∗), although other studies have discussed a

possible L∗ instead of the Φ∗ evolution. The UV LF of LAEs has also been probed

by multiple studies (see e.g. Hu et al., 2004; Ouchi et al., 2008; Shimasaku et al.,

2006), targeting volumes of up to ∼ 106 Mpc3. Ouchi et al. (2008) found no evo-

lution of the UV LF of LAEs at z ∼ 3− 4, but an increase of UV bright LAEs at

z = 5.7. It is important to establish whether such evolutionary trends hold for

much larger volumes (∼ 108 Mpc3) and larger samples of LAEs.
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Furthermore, it is important to establish how LAEs contribute to the to-

tal mass budget of galaxies. LAEs are typically low stellar mass galaxies, but

can span a wide range of stellar masses, with some LAEs being very massive

(> 1010 M�, e.g. Finkelstein et al., 2009). The stellar mass function (SMF)

of continuum-selected galaxies has been well studied up to z ∼ 4 (see e.g. Il-

bert et al., 2013; Mortlock et al., 2011; Muzzin et al., 2013; Pozzetti et al.,

2010; Santini et al., 2012). The SMF of continuum-selected galaxies is found

to shift to lower number densities (Φ∗ decrease) with increasing redshift, from

log10(Φ∗/Mpc−3) ∼ −3.3 at z = 2 − 2.5 to ∼ −5.0 at z = 3 − 4 (Muzzin et al.,

2013). For LAEs, our understanding of the SMF is very limited as most studies

are only able to determine stellar masses of stacks of the population (e.g. Kusak-

abe et al., 2018). Estimating stellar masses of high-redshift LAEs is challenging

due to near-infrared (NIR) coverage typically not being deep enough. Recent pro-

grams such as UltraVISTA (McCracken et al., 2012) DR4 provide ultra-deep NIR

imaging which can be used to better constrain the spectral energy distribution of

high-redshift galaxies. Measurements of the stellar mass of individual galaxies in

large samples spanning wide redshift ranges can significantly improve our view on

the evolution of LAEs and how they compare with more typical galaxy samples.

In this work, we use a uniformly selected sample of ∼ 4000 LAEs (SC4K, see

Chapter 2) to compute UV LFs and SMFs in the wide redshift range z ∼ 2− 6.

We use the publicly available catalogues from Calhau et al. (2020) which identify

AGN candidates in the SC4K sample using X-ray and radio measurements and

the publicly available catalogues from Chapters 2 and 6 which have measure-

ments of the UV luminosity and stellar mass of LAEs in the SC4K sample. By

comparing the luminosity and stellar mass density of LAEs with measurements

of continuum-selected galaxies, we can infer how representative LAEs are of the

overall population of galaxies at different redshifts.

This Chapter is structured as follows: in Section 7.2, we give a brief summary

of the SC4K sample of LAEs, together with some galaxy properties derived in

previous Chapters. We present our methodology to derive UV LFs and SMFs

in Section 7.3. We present and discuss our results in Section 7.4, probing the

evolution of the UV LF and SMF parameters across time, as well as estimating
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the evolution of ΦLAE/ΦLBG (proxy of χLyα) and the luminosity and stellar mass

densities. We present our conclusions in Section 7.5.

7.2 Sample and properties

7.2.1 SC4K sample of LAEs

The public SC4K sample of LAEs (Slicing COSMOS with 4k LAEs, Chapter

2) consists of 3908 LAEs selected with 12+4 medium+narrow band (MB+NB)

filters (see Table 7.1 for an overview) over the 2 deg2 of the COSMOS field (Capak

et al., 2007; Scoville et al., 2007; Taniguchi et al., 2015a). For full details on the

selection criteria applied, we refer the reader to Section 2.3. Briefly, LAEs are

selected based on 1) Lyα EW0 > 50 Å (25 Å for NBs and 5 Å for NB392); 2)

significant excess emission (Σ > 3; see Bunker et al., 1995); 3) colour break

blueward of the Lyα emission; 4) exclusion of sources with strong red colours

(prevents lower redshift interlopers with strong Balmer breaks); 5) full visual

inspection to remove spurious detections.

Multiple studies have used the SC4K sample to derive properties of LAEs.

Paulino-Afonso et al. (2018) and Shibuya et al. (2019) find small UV sizes with

little evolution from z ∼ 2 to z ∼ 6. Clustering analysis reveals dark matter halo

masses strongly depend on the Lyα luminosity (LLyα, Khostovan et al., 2019).

Calhau et al. (2020) analysed X-ray and radio data on the COSMOS field and

measured a low (< 10%) overall AGN fraction, dependent on LLyα, significantly

increasing with increasing luminosity and approaching 100% at LLyα > 1044 erg

s−1. SED fitting from Chapter 5 shows that SC4K LAEs are typically very

blue (β = −2.1), low mass (M? = 109.3 M�), and above the star-forming Main

Sequence at z < 4 and M? < 109.5 M�. SC4K sources are also the prime focus

of follow-up spectroscopic observations focusing on studying primeval galaxies

(Amoŕın et al., 2017).
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Table 7.1: Overview of the SC4K sample of LAEs used in this study (summary
table of Tables 2.3 and 5.1). Given values are the median of all measurements for
each galaxy property, with the errors being the 16th and 84th percentile of the
distribution. (1) LAE selection filter (see Table 2.3); (2) Redshift range the filter is
sensitive to Lyα emission, based on the filter FWHM; (3) Number of LAEs; (4) Co-
moving volume probed by each filter; (5) Median-likelihood stellar mass parameter
from SED fitting, see Section 7.2.2.2; (6) UV magnitude computed by integrating
the SED at λ0 = 1500 Å, see Section 7.2.2.1.

(1) (2) (3) (4) (5) (6)
Filter Lyα z # LAEs Volume M? MUV

(×106 (log10 (AB)
Mpc3) (M?/M�))

NB392 2.20− 2.24 159 0.6 9.5+0.5
−0.6 −19.6+1.0

−0.6

IA427 2.42− 2.59 741 4.0 9.2+0.5
−0.5 −19.7+0.6

−0.6

IA464 2.72− 2.90 311 4.2 9.1+0.6
−0.3 −20.2+0.5

−0.5

IA484 2.89− 3.08 711 4.3 9.0+0.7
−0.3 −20.0+0.6

−0.7

NB501 3.08− 3.16 45 0.9 9.6+0.4
−0.5 −20.4+1.1

−0.8

IA505 3.07− 3.26 483 4.3 9.4+0.5
−0.5 −20.2+0.6

−0.6

IA527 3.23− 3.43 641 4.5 9.4+0.6
−0.6 −20.2+0.5

−0.6

IA574 3.63− 3.85 98 4.9 9.3+0.7
−0.2 −20.8+0.5

−0.4

IA624 4.00− 4.25 142 5.2 9.2+0.5
−0.5 −20.5+0.5

−0.6

IA679 4.44− 4.72 79 5.5 9.5+0.8
−0.3 −21.2+0.6

−0.5

IA709 4.69− 4.95 81 5.1 9.4+0.5
−0.3 −21.1+0.5

−0.4

NB711 4.83− 4.89 78 1.2 9.7+0.6
−0.6 −20.9+0.5

−0.8

IA738 4.92− 5.19 79 5.1 9.6+0.7
−0.3 −21.3+0.4

−0.7

IA767 5.17− 5.47 33 5.5 9.7+0.3
−0.4 −21.6+0.4

−0.5

NB816 5.65− 5.75 192 1.8 9.9+0.4
−0.5 −21.4+0.6

−0.6

IA827 5.64− 5.92 35 4.9 9.9+0.6
−0.4 −22.0+0.8

−1.0

Full SC4K 2.20-5.92 3908 62.0 9.3+0.6
−0.5 −20.2+0.7

−0.8
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Figure 7.1: Left:

MUV dependence on LLyα within our sample of LAEs. Individual measurements
are plotted as scatter in the background. We calculate the median MUV per LLyα

bin (blue circles), with the error bars being the 16th and 84th percentile of the
MUV distribution divided by

√
N, with N being the number of sources inside the

bin. Bins are defined with 0.2 bin width, starting at log10(LLyα/erg s−1) = 42.5,
which corresponds to the 3σ LLyα limit for the MB at z = 2.5. The blue shaded
contour is the 16th and 84th percentiles of 1000 iterations of fits, obtained by
perturbing the median bins within their asymmetric error bars. We find MUV and
LLyα to be well correlated (best-fit MUV = −1.6+0.2

−0.3 log10(LLyα/erg s−1) + 47+12
−11)

in our sample of LAEs, with bright MUV typically corresponding to bright LLyα,
but with an important scatter. There is a clear and gradual median brightening
at log10(LLyα/erg s−1) = 42.5 − 43.5, from -19.8 to -21.4. The higher number
of sources above log10(LLyα/erg s−1) ≈ 42.7 (also observed in the right panel) is
a consequence of flux limit differences between narrow and medium bands. For
reference, we show the 3σ LLyα limits for the IA427 (MB, z = 2.5), IA574 (MB,
z = 3.7), IA827 (MB, z = 5.7) and NB816 (NB, z = 5.7) samples. Right: Same
but for stellar mass (M?). We also find a correlation between M? and LLyα (best-
fit log10(M?/M�) = 0.9+0.1

−0.1 log10(LLyα/erg s−1)− 28+4.0
−3.8), which is shallower than

the correlation found for MUV, revealing how a stellar mass selection and a Lyα
selection can differ. The median evolution is less evident than in the left panel,
with the median log10(M?/M�) only increasing by 0.2 in the luminosity range
log10(LLyα/erg s−1) = 42.5− 43.0.
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7.2.1.1 X-ray and radio AGN in SC4K

The SC4K sample includes 254 LAEs detected in X-ray and 120 detected in radio

(56 in both), resulting in 318 AGN candidates (Calhau et al., 2020) out of 3705

SC4K LAEs with X-ray or radio coverage. Following the same methodology as in

Section 5.2.1, we classify these sources as AGNs since pure star-forming processes

would require extremely high SFRs (& 1000 M� yr−1) to be detectable at such

wavelengths and redshifts. Throughout this work, SC4K AGNs are removed from

any fitting/binning and median values in tables, except in Figures 7.3 and 7.5

(left panel), where we show the number densities of AGN LAEs.

7.2.1.2 Redshift binning

In addition to analysing the properties of LAEs from specific selection filters, we

group filters with similar central wavelengths to analyse specific redshift bins in

a more statistically robust way. We use a grouping scheme similar to Sections

3.1.5 and 5.2.2:

• z = 2.5± 0.1 (IA427);

• z = 3.1± 0.4 (IA464, IA484, NB501, IA505, IA527);

• z = 3.9± 0.3 (IA574, IA624);

• z = 4.7± 0.2 (IA679, IA709, NB711);

• z = 5.4± 0.5 (IA738, IA767, NB816, IA827).

Here, we include NBs in the redshift bins (even though they typically reach

fainter Lyα luminosities) as we perform Lyα luminosity cuts to ensure the samples

are directly comparable (see Section 7.4.3 and Section 7.4.6).

7.2.2 Spectral energy distribution and properties of SC4K

LAEs

Spectral energy distribution (SED) fitting of the full SC4K sample is presented in

Section 5.6. Briefly, SED-fitting is done using the publicly available SED-fitting
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Figure 7.2: Left: The rest-frame UV LF of the z = 2.5 (IA427) sample of LAEs.
We show the luminosity values before (dark blue diamonds) and after (blue circles)
applying the completeness correction. The completeness correction is based on
Lyα flux (selection criteria). Since MUV and LLyα typically correlate (see Figure
7.1, left panel), the completeness corrections are larger for the faintest MUV bins.
Right: Same but for the SMF. As the correlation between LLyα and M? is shallower
(see Figure 7.1, right panel), completeness corrections are not a strong function of
stellar mass for a specific Lyα cut.

code magphys1 (da Cunha et al., 2008, 2012) with the high-redshift extension

(see da Cunha et al., 2015), which models stellar and dust emission from galax-

ies. We obtain photometric measurements from publicly available imaging, taken

with 34 rest-frame UV-FIR filters in the COSMOS field (Capak et al., 2007; Lutz

et al., 2011; McCracken et al., 2012; Oliver et al., 2012; Sanders et al., 2007;

Steinhardt et al., 2014). As the SED-fitting code does not include nebular emis-

sion, we exclude the NB or MB with observed Lyα emission from the SED-fitting.

Derived parameters are the median-likelihood parameters obtained by comparing

modelled SEDs with libraries of galaxies at similar redshift. magphys uses dust

attenuation models from Charlot & Fall (2000) and the stellar population syn-

thesis model from Bruzual & Charlot (2003) with a Chabrier (2003) IMF (range

0.1-100 M�). The prescription of Madau (1995) is used to model the intergalactic

medium (IGM).

In this work, we will focus on two SED-derived properties: rest-frame UV lu-

minosity (MUV) and stellar mass (M?). We use the public catalogues provided by

1http://www.iap.fr/magphys/
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Santos et al. (2020) (see Appendix A.4), which contain coordinates, photometry

and derived galaxy properties for the full SC4K sample of LAEs.

7.2.2.1 Rest-frame UV luminosity (MUV)

The UV luminosity of a galaxy (MUV) can be used as a tracer of recent star-

formation on ∼ 100 Myr timescales (e.g. Boselli et al., 2001; Salim et al., 2009).

MUV is computed in Section 6.1.3 by integrating the best-fit SEDs at rest-frame

λ0 = 1400− 1600 Å. The median of the SC4K sample is MUV = −20.2+0.7
−0.8 (Table

7.1), which corresponds to 0.09×L∗z=3 (Steidel et al., 1999).

Similarly but for shorter timescales, Lyα emission also traces recent star-

formation, due to being a tracer of Lyman-Continuum (e.g. Sobral & Matthee,

2019) like Hα (Kennicutt, 1998). As the massive young stars responsible for pro-

ducing the UV continuum also produce the ionising photons that lead to Lyα

emission, we can expect these two properties to be related. For our sample of

LAEs, we observe that these two properties are typically correlated (see Figure

7.1, left panel), with the median MUV significantly brightening from -19.8 to -21.4

in the luminosity range log10(LLyα/erg s−1) = 42.5 − 43.5. We compute a best-

fit of MUV = −1.6+0.2
−0.3 log10(LLyα/erg s−1) + 47+12

−11 from the median distribution.

However, Lyα luminosity (LLyα) does not necessarily translate to MUV and vice-

versa (see the scatter around MUV = −20 and see discussion in Matthee et al.

2017c and Sobral et al. 2018b). This is also made evident from LBG samples,

where there are bright MUV sources with no significant Lyα detection, as shown

by the Lyα fraction (e.g. Arrabal Haro et al., 2018; Kusakabe et al., 2020; Pen-

tericci et al., 2011; Stark et al., 2010). Furthermore, earlier works (e.g. Shapley

et al., 2003) show that LBGs only have Lyα emission ∼ 50% of the time, with a

significant number of LBGs even showing Lyα absorption (e.g. DLAs).

7.2.2.2 Stellar Mass (M?)

The shape and normalisation of an SED is a reflection of the content of stars

in a galaxy, thus its total mass of stars (stellar mass, M?) can be derived by

fitting and modelling the SED. LAEs typically have low M? but there is an

important diversity within the population. The median of the SC4K sample
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of LAEs is computed in Section 6.1.5 using magphys: log10 (M?/M�) = 9.3+0.6
−0.5

(Table 7.1), which corresponds to 0.006×M∗?,z=3−4 (Muzzin et al., 2013). We

find the median M? and LLyα to be correlated (see Figure 7.1, right panel), with

best-fit log10(M?/M�) = 0.9+0.1
−0.1 log10(LLyα/erg s−1)−28+4.0

−3.8, but with a significant

scatter of individual detections. This relation is shallower than the one measured

between MUV and LLyα, with a more modest increase: the median log10(M?/M�)

only increases by 0.2 in the luminosity range log10(LLyα/erg s−1) = 42.5 − 43.0.

We note that the SED-fitting used to derive M? does not include nebular emission,

so the two properties are independently derived. Additionally, there is an anti-

correlation between M? and Lyα EW0, and thus Lyα escape fraction of LAEs

(Section 6.2.3.2).

7.3 Luminosity and stellar mass functions

In this section, we present our methodology and computations to derive UV

LFs and SMFs for our sample of ∼ 4000 LAEs at well-defined redshift intervals

between z ∼ 2 and z ∼ 6.

7.3.1 Determining the luminosity/mass functions

We measure the number densities of well-defined MUV and M? bins which we use

to construct the UV LF and SMF. We choose bin widths depending on MUV and

M?, as the most (and least) luminous and massive bins have fewer sources. We

define bins with width 0.5 dex in the range −22 < MUV < −20 (MUV > −22.5

for the deeper NB816) and 7 < log10(M?/M�) < 10.5 and 1 dex outside these

ranges, where the number densities are the lowest. We use Poissonian errors for

any individual LF realisation.

We define the number density of a luminosity bin as:

log10(φj) = log10

(
1

d log10 L

Nj

V

)
, (7.1)
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where φj is the number density of a bin j, Nj is the number of sources within

dlog10L of j, and V is the volume probed by the NBs or MBs for that specific

bin (see Table 7.1), which is computed from the redshift range that each filter is

sensitive to Lyα emission.

7.3.2 Completeness correction

Faint sources and those with low Lyα EW may be missed by our selection criteria,

leading to an underestimation of number densities. We estimate completeness

corrections based on Lyα line flux (same corrections used for the Lyα LFs in

Section 3.1.2.1) and apply them to the UV LFs and the SMFs of our sample of

LAEs. Briefly, for each NB or MB, we obtain a sample of high-redshift non-line-

emitters by applying the same colour break we used to target the Lyman break

in our LAEs and by selecting sources with photometric redshifts (obtained from

Laigle et al., 2016) ±0.2 the redshift range given in Table 7.1. For each non-

line-emitter sample, flux is incrementally added to the NB or MB and BB (see

Table 2.3). By reapplying our selection criteria after each step, we determine the

fraction of galaxies which are picked as emitters per Lyα luminosity value. We

only consider sources with > 30% completeness.

We apply completeness corrections to each LAE individually, based on their

observed Lyα flux, and not their MUV or M?. In Figure 7.2, we show MUV and

M? number densities for z = 2.5 (IA427) LAEs, before and after completeness

corrections. We note that the completeness correction is based on Lyα flux and

thus larger for fainter LAEs but not necessarily correlated with other properties.

Since MUV and LLyα typically correlate (see Figure 7.1, left panel), the corrections

will typically be smaller for LAEs which are brighter in MUV (see Figure 7.2, left

panel). Since the correlation between M? and LLyα is weak (see Figure 7.1, right

panel), the corrections will be similar for the entire mass range (see Figure 7.2,

right panel).

Including the completeness correction, applied to each source, Equation 7.1

becomes:
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log10(φj) = log


 1

d log10 L

Nj∑

i

ci
V


 , (7.2)

where ci is the completeness correction for a source i.

For the luminosity or stellar mass bins with zero counts, we compute the

upper limit as one source at the volume probed by the NB or MB, with the

completeness correction equal to the total completeness correction applied to the

previous luminosity or stellar mass bin.

7.3.3 Fitting the UV luminosity function

In order to compare our results with previous studies, we adopt the common pa-

rameterisation of Schechter (1976) function, which consists of a power-law with a

slope α for faint luminosities and a declining exponential for brighter luminosities.

The transition between the two regimes is given by a characteristic luminosity

(L∗) and a characteristic number density (Φ∗). The Schechter equation has the

following form:

Φ(L) =
Φ∗

L∗

(
L

L∗

)α
exp

(
− L

L∗

)
, (7.3)

Equation 7.3.3 can be rewritten for absolute magnitudes by using the substi-

tution Φ(L)dL = Φ(MUV)dMUV:

Φ(MUV) =
ln 10

2.5
Φ∗ 10−0.4(α+1)∆MUV exp

(
−10−0.4∆MUV

)
, (7.4)

where ∆MUV = MUV −M∗UV.

The observed UV luminosity distribution of LAEs shows the same behaviour

at all redshifts: there is a peak number density at an intermediate UV luminosity,
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Figure 7.3: The rest-frame UV LF (blue circles) for each of the 16 individual
selection filters in this study, without any Lyα flux cut and excluding AGNs (see
Section 7.2.1.1). Luminosity bins brighter than the peak of number densities are
marked with a purple edge colour. The blue contours are the 16th and 84th per-
centile of multiple iterations of fits to the luminosity bins, obtained by perturbing
the luminosity bins within their error bars (see Section 7.3.5) for the full UV lumi-
nosity range. The purple contours represent the same but only fitting the points
above the number density peak. We compare our results with those of Ouchi et al.
(2008) at z ∼ 3, 4, 5.7, finding a good agreement, with the offset at z = 5.8 being
easily explained by differences in Lyα flux limits (see Section 7.4.3). We show the
number densities of AGNs (pink stars), which predominantly dominate the bright
MUV regime (< −22) at z < 4, often having higher number densities than non-
AGN LAEs. At z > 4 there are significantly less AGN LAEs, composing only a
small fraction of LAEs at all MUV ranges.
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with a subsequent decline in number density for both brighter and fainter UV

luminosities (see Figure 7.3). While such a distribution does not resemble the

Schechter function with a steep faint end which is typically measured in LBG

samples (e.g. Bouwens et al., 2015; Finkelstein et al., 2015), we argue that such

observed distribution of UV luminosities can be expected for a sample which is

selected by Lyα line flux above some threshold (corresponding to a vertical cut in

Figure 7.1), causing an incomplete sampling of MUV. This incomplete sampling is

most significant at the faint UV luminosities, which is shown in Figure 7.5 (right

panel) where an increasing LLyα limit will cause a preferential decline of number

densities at faint UV luminosities and hence the observed turn-over. Thus, in

order to conduct a detailed analysis of the UV luminosity distribution of LAEs,

we explore two separate scenarios:

• fit to the full UV luminosity range (blue in Figure 7.3): the entire observable

UV luminosity range is considered, including the turn-over at faint UV

luminosities. While the low number densities at faint UV luminosities may

be driven by our LLyα limits, this approach provides the best-fit to the

directly observed number densities.

• fit to the UV luminosity range brighter than the number density peak (pur-

ple in Figure 7.3): the bins fainter than the number density peak (dominated

by an incomplete sampling) are thus not included in the fitting, and the

faint UV luminosity regime becomes unconstrained. The peak in number

density is different for different filters (see Figure 7.3) and different LLyα

limits (see Figure 7.5, right panel). With the simple assumptions of a steep

faint end slope (as measured in UV luminosity-selected samples) and by not

including the bins below of the turn-over (which are heavily dominated by

our LLyα limits), we obtain a proxy of the full distribution of LAEs.

We provide the Schechter parameters of the best-fits to both cases in Table

7.2. For the fit to the full UV luminosity range, we find the set of parameters (α,

M∗UV, Φ∗) which minimises the reduced χ2 (χ2
red) in log-space. Alternatively, fit-

ting can also be performed in linear-space, where χ2 is less sensitive to bins with

low number densities. A fit in log-space thus tends to favour slightly brighter
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Table 7.2: Best-fit Schechter parameters for the UV LF of LAEs from z = 2 to
z = 6, for each of the individual selection filters and for different redshift bins (see
Section 7.2.1.2). The number of sources provided here is the number of sources
included in the luminosity functions, i.e. non-AGN LAEs with available SEDs and
with completeness > 30%. We provide best fits for the two cases considered in
this study: fit to the full UV luminosity range (blue in Figure 7.3) and fit to the
bins brighter than the number density peak (purple in Figure 7.3). We provide the
best set of parameters (α, M∗UV and Φ∗) which minimise χ2

red, with α being fixed
for the latter case as it cannot be directly constrained. When χ2

red is very large,
the errors should be interpreted with caution as the best parameters found still do
not provide a good model. Additionally, M∗UV is also fixed for the individual filters
with less than three luminosity bins (although we perturb these parameters when
exploring the uncertainties of the bins/fits, see Section 7.3.5). For the redshift bins
we also show the Schechter parameters when applying a log10(LLyα/erg s−1) ≥ 43.0
cut.

Full UV range UV brighter than the peak
(αfix = −1.5)

Redshift # Filters # Sources log10 Φ∗ M∗UV α χ2
red log10 Φ∗ M∗UV χ2

red

(Mpc−3) (AB) (Mpc−3) (AB)
2.2± 0.1 1 129 −3.57+0.03

−0.04 −19.78+0.16
−0.17 −0.7+0.1

−0.0 2.5 −4.16+0.11
−0.15 −21.15+0.26

−0.51 0.9
2.5± 0.1 1 519 −3.48+0.01

−0.01 −19.46+0.03
−0.04 −0.9+0.0

−0.0 33.9 −3.86+0.05
−0.06 −20.65+0.11

−0.15 14.0
2.8± 0.1 1 139 −4.04+0.03

−0.02 −20.02+0.06
−0.06 −1.5+0.0

−0.0 9.4 −4.19+0.09
−0.09 −20.95+0.15

−0.18 1.0
3.0± 0.1 1 565 −3.43+0.01

−0.02 −19.61+0.03
−0.03 −1.4+0.0

−0.0 36.8 −3.43+0.06
−0.06 −20.37+0.07

−0.09 3.6
3.2± 0.1 1 31 −4.11+0.61

−0.09 −21.09+0.49
−3.20 −0.3+0.1

−0.1 1.2 −3.65+0.04
−0.04 −20.37 (fix) 1.7

3.2± 0.1 1 413 −3.59+0.01
−0.01 −19.82+0.03

−0.03 −0.7+0.0
−0.0 29.2 −3.58+0.05

−0.05 −20.58+0.08
−0.10 13.6

3.3± 0.1 1 565 −3.47+0.01
−0.01 −19.77+0.03

−0.03 −0.9+0.0
−0.0 36.4 −3.49+0.06

−0.05 −20.54+0.08
−0.09 12.3

3.7± 0.1 1 53 −4.45+0.03
−0.03 −20.51+0.09

−0.12 −1.3+0.1
−0.1 8.5 −4.45+0.11

−0.12 −21.17+0.16
−0.23 3.2

4.1± 0.1 1 116 −4.33+0.03
−0.02 −20.10+0.07

−0.08 −0.8+0.0
−0.1 13.4 −4.50+0.10

−0.12 −21.07+0.18
−0.27 2.9

4.6± 0.1 1 69 −4.64+0.03
−0.03 −20.84+0.06

−0.15 −1.3+0.0
−0.1 2.6 −4.85+0.09

−0.11 −21.90+0.14
−0.21 0.4

4.8± 0.1 1 50 −4.42+0.03
−0.03 −20.63+0.06

−0.08 −0.9+0.1
−0.1 6.3 −4.26+0.08

−0.08 −21.22+0.09
−0.12 0.5

4.8± 0.1 1 41 −4.04+0.07
−0.35 −21.30+0.31

−0.72 −0.7+0.1
−0.0 8.4 −4.44+0.10

−0.12 −22.10+0.20
−0.33 2.2

5.0± 0.1 1 29 −4.74+0.04
−0.04 −21.33+0.12

−0.20 −0.4+0.1
−0.1 3.0 −4.02+0.03

−0.03 −21.22 (fix) 7.0
5.2± 0.1 1 17 −4.91+0.06

−0.05 −21.19+0.13
−0.24 0.0+0.1

−0.1 2.9 −4.25+0.04
−0.05 −21.22 (fix) 3.0

5.7± 0.1 1 107 −3.98+0.03
−0.04 −21.09+0.09

−0.12 −1.0+0.1
−0.0 3.9 −3.84+0.08

−0.10 −21.67+0.10
−0.13 0.1

5.8± 0.1 1 14 −5.27+0.14
−0.82 −22.43+0.46

−2.53 −0.5+0.1
−0.1 0.7 −5.85+0.18

−0.25 −23.56+0.45
−0.72 0.0

2.5± 0.1 1 519 −3.48+0.01
−0.01 −19.46+0.03

−0.04 −0.9+0.0
−0.0 33.9 −3.86+0.05

−0.06 −20.65+0.11
−0.15 14.0

3.1± 0.4 5 1713 −3.60+0.01
−0.00 −19.77+0.02

−0.02 −1.1+0.0
−0.0 86.8 −3.59+0.03

−0.04 −20.50+0.04
−0.06 17.6

3.9± 0.3 2 169 −4.32+0.03
−0.02 −20.10+0.04

−0.11 −0.8+0.0
−0.0 3.3 −4.30+0.09

−0.08 −20.87+0.11
−0.13 2.4

4.7± 0.2 3 160 −4.44+0.02
−0.02 −20.73+0.03

−0.06 −0.9+0.1
−0.0 11.6 −4.62+0.05

−0.05 −21.73+0.08
−0.09 2.5

5.4± 0.5 4 167 −4.69+0.03
−0.03 −21.26+0.07

−0.07 −0.9+0.1
−0.0 8.5 −4.62+0.05

−0.06 −21.92+0.07
−0.09 0.0

Full SC4K 16 2857 −3.98+0.00
−0.01 −20.45+0.01

−0.04 −1.1+0.0
−0.0 191.3 −4.39+0.02

−0.02 −21.36+0.03
−0.04 14.6

log10(LLyα) ≥ 43.0 erg s−1

2.5± 0.1 1 47 −4.79+0.09
−0.20 −21.03+0.36

−1.98 −0.1+0.0
−0.1 1.2 −5.60+0.30

−0.31 −22.94+0.83
−1.03 0.8

3.1± 0.4 5 411 −4.43+0.02
−0.02 −20.32+0.05

−0.06 0.4+0.0
−0.1 13.5 −4.84+0.08

−0.09 −21.70+0.18
−0.25 5.5

3.9± 0.3 2 107 −4.70+0.03
−0.03 −20.40+0.07

−0.09 0.4+0.0
−0.1 5.1 −4.71+0.10

−0.11 −21.12+0.14
−0.20 0.5

4.7± 0.2 3 132 −4.54+0.02
−0.02 −20.75+0.04

−0.05 0.4+0.0
−0.1 8.8 −4.61+0.05

−0.06 −21.60+0.08
−0.10 1.4

5.4± 0.5 4 91 −4.88+0.04
−0.03 −21.33+0.08

−0.11 0.4+0.0
−0.1 5.3 −4.85+0.06

−0.07 −22.03+0.09
−0.11 0.1

Full SC4K 16 789 −4.65+0.02
−0.01 −20.79+0.03

−0.04 0.4+0.0
−0.1 27.8 −5.03+0.03

−0.04 −21.95+0.07
−0.08 7.7
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characteristic luminosities which provide a better fit to the very bright luminosi-

ties. We find that the observed distribution is best fit by shallow faint end slopes

(α > −1), which are able to represent the turn-over at the faintest luminosities,

with α even being positive at some redshift ranges.

When constraining only the UV luminosities brighter than the number density

peak, we are not able to directly constrain the α slope of the power-law, and thus

fix α to -1.5 (similar to the UV LF of LAEs from e.g. Ouchi et al., 2008), but we

still perturb this parameter to quantify uncertainties (see Section 7.3.5). Here, we

make the assumption that α does not evolve with redshift, which is a necessary

caveat due to not being able to directly constrain it. We measure the UV LF

of LAEs selected in each MB or NB by determining the pair (M∗UV, Φ∗) which

minimises χ2
red in log-space of the MUV luminosity bins with associated Poissonian

error bars. In Figure 7.3, we show the luminosity bins and luminosity functions

of LAEs from the 16 selection filters. For the filters with only two luminosity

bins brighter than the number density peak, we can only fit one free parameter,

so we fix M∗UV to a similar nearby filter (NB501 uses M∗UV,IA505 = −20.37 and

IA738+IA767 use M∗UV,IA709 = −21.22). We provide the Schechter parameters of

the best fits in Table 7.2.

7.3.4 Fitting the stellar mass function

Following a similar logic to what was done in Section 7.3.3, Equation 7.3.3 can

be rewritten in log M space:

Φ(M?) = ln 10 Φ∗ 10(α+1)∆M exp
(
−10∆M

)
, (7.5)

where ∆M = log10 M?− log10 M∗?. At z < 1, a double Schechter function has been

commonly used (see e.g. Ilbert et al., 2013; Pozzetti et al., 2010), with two α and

two Φ∗, which are capable of reproducing a bimodal population, which includes

quiescent galaxies. In this work, we restrain ourselves to a single Schechter as the

quiescent population should not contribute to our Lyα-selected sample, particu-

larly at the redshift range that we probe.
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7.3 Luminosity and stellar mass functions

Similarly to the observed UV LF, the observed number density distribution

of the stellar mass peaks at an intermediate stellar mass, and declines for both

lower and higher stellar masses (see Figure 7.4). While a Schechter distribution

with a steep slope could be expected for a mass-selected sample, as our LAEs

are selected by being above some Lyα line flux (corresponding to a vertical cut

in Figure 7.1) determined by observational constrains, there is a turn-over at

low stellar masses. The preferential decline of low stellar masses with increasing

Lyα line flux is shown in Figure 7.8 (right panel), and we further discuss how to

interpret the shape of the SMF in Section 7.4.1.

Following the same reasons listed for the UV LF, we conduct our fitting pro-

cedure in two stellar mass ranges: full stellar mass range (blue in Figure 7.4)

and stellar mass range above the turn-over, with an assumption of the α slope

(blue in Figure 7.4). The former provides a fit to the directly observed number

densities and the later provides a proxy SMF of the full distribution of LAEs. We

provide the best Schechter fits to both cases in Table 7.3. For the fit of the full

stellar mass range, we find the set of parameters (α, M∗?, Φ∗) which minimises χ2
red

in log-space. The observed distribution with a turn-over for the smallest stellar

masses, results in shallow faint end slopes (α > −1).

When constraining only the stellar masses bigger than the number density

peak, we are not able to directly constrain the α slope of the power-law. We fix α

to -1.3, but we vary all parameters, including α in Section 7.3.5. Similarly to the

UV LF, we introduce the caveat that α does not evolve with redshift, which is a

necessary assumption due to us not being able to directly constrain it. In Figure

7.4, we show the stellar mass bins and SMFs of LAEs from the 16 selection filters.

For the filters with only two stellar mass bins, we can only fit one free parameter,

so we fix M∗? to a similar nearby filter (NB711+IA767 use M∗?,IA738 = 1010.68 M�).

We provide the Schechter parameters of in best fits in Table 7.3.

7.3.5 Perturbing the luminosity and mass functions

We explore the uncertainties in our UV LFs and SMFs by perturbing the lumi-

nosity or mass bins within their Poissonian error bars. For each iteration, we
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Figure 7.4: The SMF for each of the 16 individual selection filters. Stellar mass
bins are shown as blue circles. Stellar mass bins more massive than the peak of
number densities are marked with a purple edge colour. The blue contours are
the 16th and 84th percentile of multiple iterations of fits to the stellar mass bins,
obtained by perturbing the stellar mass bins within their error bars (see Section
7.3.5) for the full stellar mass range. The purple contours represent the same
but only fitting the points above the number density peak. Candidate AGN are
removed from the analysis here (see Section 7.2.1.1)
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Table 7.3: Best-fit Schechter parameters for the SMF of LAEs from z = 2 to z = 6,
for each of the individual selection filters and for different redshift bins (see Section
7.2.1.2). The number of sources provided here is the number of sources included
in the stellar mass functions, i.e. non-AGN LAEs with available SEDs and with
completeness corrections > 30%. We provide best fits for the two cases considered
in this study: fit to the full stellar mass range (blue in Figure 7.4) and fit to the bins
more massive than the number density peak (purple in Figure 7.4). We provide
the best set of parameters (α, M∗? and Φ∗) which minimise χ2

red, with α being fixed
for the latter case as it cannot be directly constrained. When χ2

red is very large,
the errors should be interpreted with caution as the best parameters found still do
not provide a good model. Additionally, M∗? is also fixed for the individual filters
with less than three luminosity bins (although we perturb these parameters when
exploring the uncertainties of the bins/fits, see Section 7.3.5). For the redshift bins
we also show the Schechter parameters when applying a log10(LLyα/erg s−1) ≥ 43.0
cut.

Full M? range M? above the peak
(αfix = −1.3)

Redshift # Filters # Sources log10 Φ∗ M∗? α∗ χ2
red log10 Φ∗ M∗? χ2

red

(Mpc−3) (AB) (Mpc−3) (AB)
2.2± 0.1 1 129 −3.94+0.08

−0.07 10.41+0.06
−0.06 −0.7+0.1

−0.0 7.8 −4.44+0.04
−0.03 10.69+0.05

−0.05 7.7
2.5± 0.1 1 519 −4.14+0.01

−0.01 10.40+0.02
−0.02 −0.9+0.0

−0.0 76.2 −4.66+0.02
−0.02 10.67+0.04

−0.03 13.4
2.8± 0.1 1 139 −5.90+0.20

−0.40 11.41+0.79
−0.19 −1.5+0.0

−0.0 17.6 −5.33+0.04
−0.05 11.10+0.12

−0.08 14.1
3.0± 0.1 1 565 −4.79+0.02

−0.03 10.73+0.05
−0.03 −1.4+0.0

−0.0 67.9 −4.57+0.02
−0.01 10.61+0.02

−0.03 15.4
3.2± 0.1 1 31 −4.25+0.09

−0.11 10.05+0.15
−0.09 −0.3+0.1

−0.1 3.6 −4.68+0.07
−0.08 10.31+0.12

−0.07 3.1
3.2± 0.1 1 413 −4.03+0.01

−0.05 10.33+0.03
−0.02 −0.7+0.0

−0.0 39.4 −4.62+0.02
−0.01 10.66+0.02

−0.03 12.8
3.3± 0.1 1 565 −4.19+0.01

−0.01 10.76+0.03
−0.03 −0.9+0.0

−0.0 58.0 −4.60+0.02
−0.02 10.93+0.04

−0.03 29.7
3.7± 0.1 1 53 −5.50+0.16

−0.24 10.72+0.19
−0.10 −1.3+0.1

−0.1 28.6 −5.40+0.04
−0.04 10.66+0.07

−0.06 9.9
4.1± 0.1 1 116 −4.86+0.03

−0.09 10.37+0.09
−0.04 −0.8+0.0

−0.1 19.0 −5.38+0.04
−0.04 10.63+0.07

−0.05 8.4
4.6± 0.1 1 69 −5.65+0.11

−0.34 10.74+0.40
−0.10 −1.3+0.0

−0.1 3.7 −5.64+0.05
−0.06 10.74+0.11

−0.08 0.4
4.8± 0.1 1 50 −5.04+0.07

−0.13 10.49+0.10
−0.05 −0.9+0.1

−0.1 15.8 −5.47+0.04
−0.05 10.73+0.10

−0.06 1.9
4.8± 0.1 1 41 −4.53+0.07

−0.08 10.51+0.10
−0.06 −0.7+0.1

−0.0 0.3 −4.79+0.05
−0.04 10.68 (fix) 0.1

5.0± 0.1 1 29 −4.96+0.07
−0.08 10.32+0.07

−0.05 −0.4+0.1
−0.1 4.6 −5.52+0.05

−0.05 10.68+0.08
−0.06 0.2

5.2± 0.1 1 17 −5.10+0.04
−0.06 9.83+0.11

−0.06 0.0+0.1
−0.1 3.4 −5.75+0.04

−0.04 10.68 (fix) 0.2
5.7± 0.1 1 107 −4.80+0.16

−0.10 11.38+0.11
−0.09 −1.0+0.1

−0.0 11.8 −5.18+0.04
−0.05 11.54+0.12

−0.07 7.3
5.8± 0.1 1 14 −5.35+0.11

−0.13 10.34+0.14
−0.09 −0.5+0.1

−0.1 1.4 −5.86+0.08
−0.10 10.66+0.17

−0.09 0.1
2.5± 0.1 1 519 −4.14+0.01

−0.01 10.40+0.02
−0.02 −0.9+0.0

−0.0 76.2 −4.66+0.02
−0.02 10.67+0.04

−0.03 13.4
3.1± 0.4 5 1713 −4.57+0.01

−0.01 10.86+0.02
−0.02 −1.1+0.0

−0.0 193.2 −4.90+0.01
−0.01 11.02+0.03

−0.03 55.2
3.9± 0.3 2 169 −4.89+0.07

−0.02 10.40+0.03
−0.05 −0.8+0.0

−0.0 47.8 −5.39+0.02
−0.03 10.64+0.05

−0.03 18.9
4.7± 0.2 3 160 −5.07+0.06

−0.02 10.53+0.03
−0.05 −0.9+0.1

−0.0 25.7 −5.52+0.02
−0.04 10.81+0.07

−0.05 0.0
5.4± 0.5 4 167 −5.31+0.07

−0.09 11.19+0.07
−0.05 −0.9+0.1

−0.0 26.9 −5.78+0.03
−0.04 11.37+0.07

−0.05 14.2
Full SC4K 16 2857 −4.93+0.00
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perturb each bin within their error bars (assuming a normal probability distri-

bution function centred at each bin and with FWHM equal to the error) and

determine the value for the current realisation. We compute the best Schechter

fit to the bins of the current realisation and iterate the process 1000 times. We

obtain the 16th and 84th percentile of all fits, which we plot as contours in all

figures. For each iteration, we also perturb the fixed Schechter parameters (α

for all redshifts and M∗? or M∗UV for the filters with only two bins) by picking a

random value in a ±0.2 dex range centred in the fixed values (same method used

in Chapter 3).

7.3.6 Obtaining UV and stellar mass densities

We integrate UV LFs and SMFs to obtain the luminosity density (ρUV) and the

stellar mass density (ρM), respectively. In order to fully take into account the

uncertainties in our luminosities/stellar masses, we perturb our measurements

within their errors and fit and integrate each of the 1000 realisations (see Section

7.3.5). The computed ρUV and ρM are the median of all integrals, with the errors

being the 16th and 84th percentile of the distribution of all realisations. To obtain

ρUV, we compute the integral of the UV LFs in the range −23 < MUV < −17

(similar to e.g. Bouwens et al., 2015; Finkelstein et al., 2015). To obtain ρM, we

compute the integral of the SMFs in the range 108−13 M� (similar to e.g. Davidzon

et al., 2017). All ρM measurements in this study assume a Chabrier IMF, and

values from the literature are converted to a Chabrier IMF if another IMF was

used.

7.4 Results and Discussion

7.4.1 Interpreting the observed UV LF and SMF

As detailed in the previous sections, the observed distribution of both the UV LF

and SMF of LAEs has a turn-over at the faintest UV luminosities and smallest

stellar masses, respectively (see Figure 7.3 and 7.4). While such a turn-over has
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not been observed in UV-selected or mass-selected samples, it is an expected dis-

tribution of a Lyα-selected sample, where Lyα correlates with both MUV and M?

but with significant scatter (see Figure 7.1), as there will be incomplete sampling

of MUV and M?, particularly at the faint UV luminosity and low stellar mass

regimes. As shown in Figure 7.5 (right panel), an increasing LLyα cut will prefer-

entially decreases the number densities of the faintest UV luminosities, creating

the turn-over which is a consequence of selection and not an intrinsic property of

the UV LF of LAEs. A similar dependence is measured for the SMF in Figure

7.8 (right panel), albeit the dependence is not as strong. We make the assump-

tion that the incomplete sampling will introduce only small contributions above

the turn-over, which is supported by our measurements (Figure 7.5, right panel):

when extending the luminosity cut from log10(LLyα/erg s−1) = 42.5 to 42.7 (and

even further into 42.9 and 43.1), the number densities always have a very signif-

icant drop below the turn-over but remain roughly constant above it. By only

fitting the regime above the turn-over and by fixing α as a steep slope, we are

able to measure a distribution which is not dominated by incomplete sampling,

and compute a proxy for the full UV LFs and SMFs.

We provide in Table 7.2 and 7.3 the best Schechter parameters of the distri-

bution of 1) the full UV luminosity (or stellar mass) ranges (see the blue contours

in Figure 7.3 and 7.4) and 2) the UV luminosity (or stellar mass) range above the

turn-over, with a fixed steep α slope (see the purple contours in Figure 7.3 and

7.4). As we aim to understand the full LAE population, in the analysis conducted

in the following sections we use the second fitting procedure, which gives a proxy

of the full distribution of LAEs. We note nonetheless that the LLyα limits can

have some influence on the number densities even above the turn-over, so when

probing redshift evolution we extend the analysis to always use the same LLyα

cut and ensure the samples are comparable (see discussion in Section 7.4.3).

7.4.2 The global UV LF of LAEs at z ∼ 2− 6

We start by measuring the UV LF of the full sample of SC4K LAEs, exploring a

large volume of ∼ 108 Mpc3 at z ∼ 2−6. With our large sample of ∼ 4000 LAEs,

we are capable of probing extremely bright UV luminosities, down to MUV =
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Figure 7.5: Left: UV LF of the full SC4K sample of LAEs: including AGN
(green), no AGN (blue; what we use throughout this work) and AGN only (pink).
AGN LAEs dominate the bright end (−24 <MUV < −23) of the UV LF of LAEs.
The contours are the 16th and 84th percentiles, which we obtain by perturbing
the bins within their Poissonian error bars and iterating the fitting 1000 times (see
Section 7.3.5). For reference, we show UV LFs of LBGs at z ∼ 4, from Bouwens
et al. (2015) (orange diamonds) and Ono et al. (2018) (purple squares). The number
density of MUV = −20 LAEs is ∼ 1.5 dex lower than LBGs, but they converge to
the same number densities at MUV < −23. Right: UV LF of the full SC4K sample
at different LLyα cuts. We show the best Schechter fits to the full UV luminosity
range as dashed lines, and to the number densities above the turn-over as filled
lines (see Section 7.3.3). The increasing LLyα cuts reduce the number densities,
predominantly for fainter MUV, which can be linked with LLyα and MUV being
typically correlated (see Figure 7.1, left panel). However, note that the UV LF of
more luminous LAEs yields a declining Φ∗ but a brightening in M∗UV.
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−24, which even in UV-continuum searches has typically only been reached in

very wide area ground-based surveys (e.g. Bowler et al., 2017; Ono et al., 2018).

Additionally, we have a statistically robust sample up to MUV = −20, providing

a robust probe in a range of 4 magnitudes in MUV, with individual LAEs as faint

as MUV = −17.

We show in Figure 7.5 (left panel) the UV LF for three subsets of SC4K

LAEs: 1) All LAEs; 2) All LAEs after removing AGN (this is the subset we use

throughout this work; see Section 7.2.1.1); 3) AGN LAEs only. We show the best

Schechter fits to each case as 1σ contours, which we obtain by perturbing the

luminosity bins within their Poissonian errors and fitting 1000 realisations of the

perturbed bins (see Section 7.3.5). We find that the UV LF of all LAEs resembles

a Schechter distribution, although there is an excess at MUV < −23, where the

UV LF starts deviating from a Schechter function. A single power-law with best-

fit log10(Φ/Mpc−3) = 0.71+0.005
−0.005MUV +10.26+0.11

−0.11 is also a very good fit (χ2
reduced =

4.01). When excluding AGNs, the number density significantly drops by 0.7

dex at the bright end (−24 <MUV < −23), and the LF becomes steeper, with

the single power law, with best-fit log10(Φ/Mpc−3) = 0.91+0.005
−0.005MUV + 14.49+0.12

−0.11,

becoming less preferable (χ2
reduced = 60.63). We observe that AGN LAEs clearly

dominate the bright end (−24 <MUV < −23) of the UV LF, with only minor

contributions to the faint end (−22 <MUV < −20). This trend is qualitatively

similar to the one found in Chapter 3 for the Lyα LF of LAEs. Such a similar

behaviour between the UV LF and Lyα LF is a consequence of LLyα and MUV

being typically correlated (see Figure 7.1, left panel), although the complicated

radiative transfer physics behind Lyα emission should be noted (see Section 1.3.3).

7.4.3 UV LF with varying LLyα cuts

Due to an increasing luminosity distance with redshift, we are only capable of

reaching the faintest Lyα luminosities (down to 1042.5 erg s−1) at z ∼ 2.5, or at

higher redshifts with NBs. We aim to ensure that when comparing UV LFs at

different redshifts, results are not driven by differences in depth. As such, we

need to estimate how different Lyα luminosity limits affect the UV LF of LAEs.

We show in Figure 7.5 (right panel) the UV LF of the full SC4K sample with
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varying LLyα cuts, from 1042.5 to 1043.5 erg s−1. As expected from the dependence

of MUV and LLyα, an increasing LLyα cut predominantly decreases the number

densities of fainter MUV LAEs. For the full SC4K sample, between 1042.5 and

1043.3 erg s−1, log10 Φ decreases by 2.0 dex at MUV = −20.25 but only decreases

by 0.3 dex at MUV = −22.5. This trend is qualitatively the same at all redshifts.

It is thus clear that a varying Lyα flux limit will significantly affect the UV LF

as a whole, both in shape and characteristic parameters, with number densities

being significantly more affected for fainter MUV. To compare UV LFs at different

redshifts and interpret any evolution, it is therefore necessary to ensure we use

the same luminosity ranges, otherwise a potential evolution in the UV LF of

LAEs may not be intrinsic but instead could be a consequence of the different

Lyα luminosity limits. As such, when comparing LFs, we not only compare the

full samples, but also compare a homogeneous subset, defined by a single Lyα

luminosity cut of log10(LLyα/erg s−1) ≥ 43.0, which we will apply to all redshifts.

We choose this value as it excludes the lower LLyα regime which can only be

reached at lower redshift or by the deep NBs, and covers a luminosity regime

which is probed at all redshifts, ensuring we are comparing similar samples of

LAEs. While this cut will only remove a small fraction of LAEs from MBs at

z > 3.5, it will significantly reduce the number of sources at the lower redshifts,

with only 10% of non-AGN LAEs at z = 2.5 being above this Lyα cut.

7.4.3.1 The log10(LLyα/erg s−1) ≥ 43.0 population of LAEs

In order to probe evolution in the same luminosity ranges, we have defined a sub-

sample of the SC4K sample of LAEs, with log10(LLyα/erg s−1) ≥ 43.0 at all red-

shifts. In comparison, the characteristic LLyα is measured to be log10(L∗Lyα/erg s−1) =

42.93+0.15
−0.11 (Chapter 3), so these sources are extremely bright LAEs, rare dust-free

starbursts. Amoŕın et al. (2017) has shown that such sources (galaxies in that

study are also selected as LAEs in the SC4K sample) are analogues of high-z

primeval galaxies.
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7.4.4 Redshift evolution of the UV LF from z ∼ 2 to z ∼ 6

We will now use our sample of LAEs, selected with 16 unique NBs and MBs in

16 well defined redshift slices, to probe the evolution of the UV LF of LAEs from

z ∼ 2 to z ∼ 6. We have shown in Figure 7.3 the UV LF for LAEs selected from

each of the 16 individual NB and MB filters, together with best-fit Schechter and

1σ countours. We provide all the Schechter parameter estimates in Table 7.2.

All samples are well represented by Schechter distributions. Our measurements

agree well with Ouchi et al. (2008) at z ∼ 3, z ∼ 4 and z ∼ 5.7, but we report

lower number densities at z = 5.8, particularly for fainter MUV. This discrepancy

can be explained by differences in Lyα flux limits, as the MB that we use is only

sensitive to log10(LLyα/erg s−1) ≥ 43.0. We also note that our MUV measurements

are estimated from SED fitting with 30+ bands, including the recent ultra-deep

NIR data from UltraVISTA DR4, instead of directly from adjacent photometric

bands.

For a statistically robust study of the evolution of UV LFs of LAEs with

redshift, we group LAEs from multiple filters that probe similar redshifts to

explore five different bins of redshift (z = 2.5, z = 3.1, z = 3.9, z = 4.7 and

z = 5.4; see Section 7.2.1.2), as well as the full SC4K sample. The completeness

corrections are applied to LAEs individually, based on their Lyα luminosity (see

7.3.2) and the volume per redshift bin is the sum of the volume of individual

redshift slices included in the redshift bin (see Table 7.1).

We show in Figure 7.6 (left panel) the UV LF at different redshifts (z = 2.5,

z = 3.1, z = 3.9, z = 4.7 and z = 5.4), without any LLyα cut. We also show in

Figure 7.6 (right panel) the 1σ, 2σ and 3σ contours of Φ∗−M∗UV. We observe a

brightening (M∗UV becomes more negative) of the UV LF with increasing redshift,

from ∼ −20.5 at z = 2.5 to ∼ −22 at z = 5.4, and a log10(Φ∗/Mpc−3) decrease

from ∼ −3.5 to ∼ −4.5 for the same redshifts. While in UV-continuum studies

(e.g. Bouwens et al., 2015; Finkelstein et al., 2015) Φ∗ of the UV LF is also

measured to decrease with increasing redshift, M∗UV is found to become fainter

(increase), which is the opposite of what we measure in our sample of LAEs

(before applying any luminosity cut).
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Figure 7.6: Left: Evolution of the UV LF with redshift, with no LLyα cut. The
shaded contours are the 16th and 84th percentiles of all iterations obtained by
perturbing the luminosity bins (see Section 7.3.5) Right: Φ∗−M∗UV 1σ, 2σ and 3σ
contours. We observe an M∗UV increase from ∼ −20.5 at z ∼ 2.5 to ∼ −22 at
z ∼ 5 − 6, and a log10(Φ∗/Mpc−3) decrease from ∼ −3.5 to ∼ −4.5 for the same
redshifts.
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Figure 7.7: Left: Evolution of the UV LF with redshift, with a luminosity cut
of log10(LLyα/erg s−1) ≥ 43.0. Right: Φ∗−M∗UV 1σ, 2σ and 3σ contours. With a
uniform cut for the entire sample, we note no clear evolutionary trend in M∗UV, while
log10(Φ∗/Mpc−3) remains roughly constant at -4.7 at z ∼ 3−6. The constraints at
z = 2.5 are worse likely due to only ∼ 10% of the original sample remaining above
the luminosity cut.
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However, as previously discussed (Section 7.4.3), different Lyα luminosity

limits play a very significant role on the shape and characteristic parameters of

the UV LF. We thus conduct the same analysis for a subset of our sample of

LAEs, obtained by applying the luminosity cut of log10(LLyα/erg s−1) ≥ 43.0.

By using a uniform cut at all redshifts (see Figure 7.7), we are able to probe

evolution in comparable Lyα luminosity regimes, and reduce the effects of the

Lyα flux limit bias. We now observe an increase of Φ∗ with increasing redshift,

from pmblog10(Φ∗/Mpc−3) ∼ −5.5 at z = 2.5 to −4.5 at z ∼ 3 − 6,, which

contrasts with the decrease (becomes fainter) observed in UV-continuum selected

samples. We do not observe a clear evolution in M∗UV, which also contrasts the

increase in M∗UV observed in UV-continuum selected samples.

7.4.5 The global SMF of LAEs at z ∼ 2− 6

Following the same methodology that we use for the UV LF, we now analyse the

global SMF of ∼ 4000 LAEs at z ∼ 2 − 6. The study of the SMF of such a

large sample of LAEs over such a wide volume is unprecedented at these redshift

ranges. We have a robust sample of LAEs at 109.0 − 1012.5 M�, with individual

measurements down to ∼ 107.5 M�. Studies that have estimated stellar masses

of z > 2 galaxies, typically only probe > 1010 M� galaxies (e.g. Schreiber et al.,

2015) but with our population of LAEs, we are capable of reaching galaxies with

very low stellar masses, while still having detections of very massive systems

(> 1011 M�).

We show in Figure 7.8 (left panel) the SMF of the full SC4K sample of z ∼ 2−6

LAEs after removing AGN (which is what we use throughout this work, see

Section 7.2.1.1). Unlike the UV LF, we do not explore how AGNs influence the

SMF since we are not able to accurately estimate the stellar mass of AGNs with

our stellar+dust SED-fitting code which does not use AGN models. We show the

Schechter fit to the SMF and the 1σ contour which we estimate by perturbing the

stellar mass bins within their Poissonian errors and fitting 1000 realisations of the

perturbed bins (see Section 7.3.5). The SMF resembles a Schechter distribution,

but with an excess in number densities at 1012 M�.
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Figure 7.8: Left: Stellar mass function of the full SC4K sample after removing
AGN (blue points, what we use throughout this study). The AGN sample is not
shown here as we cannot obtain accurate mass estimations for AGNs using the
stellar+dust SED-fitting we use in this study. The contours are the 16th and 84th
percentiles, which we obtain by perturbing the bins within their Poissonian error
bars and iterating the fitting 1000 times (see Section 7.3.5). Right: SMF of the full
SC4K sample at different LLyα cuts. We show the best Schechter fits to the full
stellar mass range as dashed lines, and to the number densities above the turn-over
as filled lines (see §7.3.4). The increasing LLyα cuts reduce the number densities at
all mass ranges. The decay of the number density is much more uniform across the
entire mass range compared to the UV LF (Figure 7.5, right panel), which can be
explained by LLyα and M? having a shallower correlation with significant scatter
(see Figure 7.1, right panel).
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7.4.6 SMF with varying LLyα cuts

Here, we explore how different Lyα luminosity limits affect the SMF. For the UV

LF of LAEs, we have observed that an increasing LLyα cut significantly affects the

shape and characteristic parameters of the distribution, with a more significant

effect on the number density of fainter UV luminosities, which are typically linked

with lower Lyα luminosities. Such a trend is not necessarily expected for the SMF,

as the relation between M? and LLyα is very shallow, if even present (see Figure

7.1, right panel).

We show in Figure 7.8 (right panel) the SMF of the full SC4K sample with

varying LLyα cuts, from 1042.5 to 1043.5 erg s−1. As the stellar mass and LLyα have

a shallow relation, an increasing LLyα limit produces a much more uniform decay

of the number densities over the entire stellar mass range. Between 1042.5 and

1043.3 erg s−1, log10(Φ∗/Mpc−3) decreases by 1.6 dex at log10 (M?/M�) = 9.25 and

by 1.0 dex at log10 (M?/M�) = 11.0, which is much more modest than the large

difference observed for the UV LF.

As such, when comparing SMFs at different redshifts, we will not only look at

the full samples, but we will also make use of a luminosity cut log10(LLyα/erg s−1) ≥
43.0, for the same reasons that we do for the UV LF (Section 7.4.6). This pro-

duces a luminosity range which all filters can target and is consistent with our

approach to compare UV LFs.

7.4.7 Redshift evolution of the SMF of LAEs from z ∼ 2

to z ∼ 6

We probe the evolution of the SMF with redshift, using ∼ 4000 LAEs selected

in 16 well defined redshift slices from z ∼ 2 to z ∼ 6. We showed the SMF of

LAEs selected from individual filters in Figure 7.4, together with 1σ Schechter

contours. All redshift slices resemble a Schechter distribution and we provide the

best-fit parameters in Table 7.3.

In order to obtain statistically robust comparisons of the evolution of the SMF

of LAEs with redshift, we follow the same grouping scheme that we use for the

UV LFs. We define five redshift intervals (z = 2.5, z = 3.1, z = 3.9, z = 4.7 and
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Figure 7.9: Left: Evolution of the SMF with redshift, with no LLyα cut. The
shaded contours are the 16th and 84th percentiles of all iterations obtained by
perturbing the luminosity bins (see Section 7.3.5) Right: Φ∗−M∗? 1σ, 2σ and 3σ
contours. We observe a log10(Φ∗/Mpc−3) decrease from −4.5 at z = 2.5 to −5.5
at z = 5− 6 and log10 (M∗?/M�) stays constant at ∼ 10.7, although we measure a
small increase at z = 5.4.
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Figure 7.10: Left: Evolution of the SMF with redshift, with a luminosity cut
of log10(LLyα/erg s−1) ≥ 43.0. Right: Φ∗−M∗? 1σ, 2σ and 3σ contours. With a
uniform cut for the entire sample, we do not observe clear evidence of evolution
with redshift of the SMF of LAEs. We find little M∗? and Φ∗ evolution with redshift,
remaining constant at log10 (M∗?/M�) ∼ 11 and log10(Φ∗/Mpc−3) ∼ 5.8.
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z = 5.4; see Section 7.2.1.2) and also use the global SMF of the full z ∼ 2 − 6

sample. The completeness corrections are applied to LAEs individually, based on

their Lyα luminosity (see 7.3.2) and the volume per redshift bin is the sum of the

volume of individual redshift slices included in the redshift bin (see Table 7.1).

We show in Figure 7.9 (left panel) the SMF at different redshifts (z = 2.5, z = 3.1,

z = 3.9, z = 4.7 and z = 5.4), without any LLyα cut. We also show in Figure 7.9

(right panel) the 1σ, 2σ and 3σ contours of Φ∗−M∗?. We observe a clear evolution

of the SMF with redshift (before applying any Lyα luminosity restriction), with

the low mass end shifting down by 1 dex from z = 2.5 to z = 5.4. This is reflected

as a gradual log10(Φ∗/Mpc−3) decrease with redshift from −4.6 at z = 2.5 to −5.8

at z = 5.4. The shift down to lower Φ∗ with increasing redshift is also observed

in the SMF of more typical galaxies (e.g. Muzzin et al., 2013), which suggests the

observed trends are qualitatively the same, however, an analysis using the same

luminosity regime is still required.

As previously discussed in Section 7.4.6, different Lyα luminosity limits play

a very significant role on the shape and characteristic parameters of the SMF.

We thus conduct the same analysis for a subset of our sample of LAEs, obtained

by applying the luminosity cut of log10(LLyα/erg s−1) ≥ 43.0. By using a uniform

cut at all redshifts (see Figure 7.10), we are able to probe evolution in comparable

Lyα luminosity regimes, and reduce the effects of the Lyα flux limit bias. While

there is a clear evolution in the observed Schechter fits of the full samples, we find

no evidence of such evolution when comparing samples of LAEs within the same

Lyα regime. We find little M∗? and Φ∗ evolution with redshift, remaining constant

at log10 (M∗?/M�) ∼ 11 and log10(Φ∗/Mpc−3) ∼ −5.8. The evolution that we find

when looking at the same luminosity regimes is thus not qualitatively the same

that is observed in more typical galaxies. Analysis of the evolution of the stellar

mass density, will provide more insight into this.

7.4.8 Evolution of the Lyα fraction

We attempt to infer the Lyα fraction (χLyα) dependence on redshift and MUV.

We compute the ratio between the observed UV number densities in our sample

of LAEs and the UV number densities of LBGs from the literature: ΦLAE/ΦLBG,
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Figure 7.11: ΦLAE/ΦLBG ratio (interpreted as χLyα) dependence on MUV for
different redshifts. ΦLAE/ΦLBG measurements are shown when applying a uniform
log10(LLyα/erg s−1) ≥ 43.0 cut (blue circles), and when applying no cut (unfilled
diamonds). The ratio is computed from a compilation of UV LFs from UV-selected
galaxies at z = 2.3, z = 3.05 (Reddy & Steidel, 2009), z = 4 , z = 5 and z = 6
(Ono et al., 2018). We show simple extrapolations to log10(LLyα/erg s−1) ≥ 42.0
(orange stars) and log10(LLyα/erg s−1) ≥ 41.0 (red stars), computed from z = 2.5
and applied to all redshift intervals. For better visualisation, the ratio is collapsed
to ΦLAE/ΦLBG = 1 when it surpasses that value.

which can be interpreted as the fraction of LBGs that are LAEs (above some Lyα

detection limit), or χLyα. To compute this fraction, we use a UV LF compilation

consisting of: z = 2.3, z = 3.05 (Reddy & Steidel, 2009), z = 4, z = 5 and z = 6

(Ono et al., 2018) (which we use for the redshifts z = 2.5, z = 3.1, z = 3.9,

z = 4.7 and z = 5.4, respectively). For the full SC4K sample (median z = 4.1)

we use the z = 4 literature measurements from Ono et al. (2018), which being a

very wide area LBG survey, provides a fair comparison with our wide area LAE

survey. To prevent any biases from fitting, the ratio is computed directly from the

luminosity bins in this study and the literature, with the latter being interpolated

to the MUV values used in this study.
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As clearly seen for the full sample in Figure 7.5 (left panel), the number

density of faint MUV LBGs is multiple times higher than the number density of

faint MUV LAEs. The number densities of MUV = −20 LAEs is ∼ 1.5 dex lower

than LBGs, but they converge to the same number densities for MUV brighter

than -23. We note, however, that this should not be interpreted as all MUV

bright LBGs being strong LAEs, which is evidently not the case (e.g. Shapley

et al., 2003). We show the ratio of the two number densities in Figure 7.11 for

five redshift intervals (and the full SC4K sample), before and after applying a

LLyα cut. The z = 2.5 panel shows that as we probe fainter Lyα luminosities, we

get closer to unity in the ΦLAE/ΦLBG fraction, and that the effect of the Lyα cut

depends on MUV, as shown in Section 7.4.3. For very bright MUV (< −23), we are

always able to retrieve most galaxies, as MUV bright are typically also Lyα bright

(see Figure 7.1, left panel) and the ΦLAE/ΦLBG will always be close to unity. This

holds true for all redshifts, with the ratio always tending to unity at the brightest

UV luminosities. When comparing ΦLAE/ΦLBG at different redshifts, for the

comparable log10(LLyα/erg s−1) ≥ 43.0 subsample, we observe that ΦLAE/ΦLBG is

typically higher at z > 4 than for the lower redshift samples. This may imply

that LAEs become a bigger subset of LBGs with increasing redshift (same trend

found in e.g. Arrabal Haro et al., 2020), but we explore this further by measuring

the UV luminosity density., but we explore this further by measuring the UV

luminosity density.

We make a direct extrapolation of the measurements of log10(LLyα/erg s−1) ≥
43.0 and≥ 42.5 z = 2.5 LAEs to lower LLyα cuts by scaling the increment in ΦLAE.

The extrapolated values for log10(LLyα/erg s−1) ≥ 42.0 and ≥ 41.0 are shown in

Figure 7.11. We find that for MUV = −20 at z = 2.5, we would approach unity if

we could reach log10(LLyα/erg s−1) = 41.0. We make the simple assumption that

the extrapolation we predict for z = 2.5 is valid for all redshifts, as the higher flux

limits of the other redshifts are not capable of reaching log10(LLyα/erg s−1) ≥ 42.5

and thus do not allow a direct extrapolation. We find that for z & 3 the ratio

approaches unity even for MUV = −21 to −22. We note that for z > 4 and

for the full SC4K sample, the extrapolation at MUV = −22.5 can be below the

measurement without applying any Lyα cut, which is a consequence of applying
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the z = 2.5 extrapolation estimation, which has a null increment for that MUV

value.

Furthermore, the ΦLAE/ΦLBG ratio can be interpreted as a way to constrain

the duty cycle – the fractional time that a galaxy spends above some SFR thresh-

old, making it observable (e.g. Jaacks et al., 2012). When the ratio is high, it

implies that galaxies at that specific UV luminosity are typically going through

a Lyα-bright phase. It should also be noted that while all galaxies going through

a UV-bright phase can also potentially emit strongly in Lyα, the morphological

analysis of LAEs shows that LAEs are typically compact (Paulino-Afonso et al.,

2018). This suggests that more compact galaxies have better conditions for the

Lyα photons to escape, and thus be observable (strong Lyα emission).

7.4.9 Redshift evolution of the UV luminosity density of

z ∼ 2− 6 LAEs

We measure the UV luminosity density (ρUV) at the aforementioned redshift

intervals in our sample of LAEs and explore its evolution. We detail how the

integration is conducted in Section 7.3.6, with α being fixed to -1.5 but perturbed

within ±0.2 dex. We show our ρUV measurements in Figure 7.12 and compare

them with measurements from LBG samples from the literature from z ∼ 2 to

z ∼ 8 (Bouwens et al., 2015; Finkelstein et al., 2015; Reddy & Steidel, 2009).

When applying no luminosity restriction, we measure that log10(ρUV/erg s−1

Hz−1 Mpc−3) is anti-correlated with redshift, decreasing from 25.3 at z = 2.5 to

25.0 at z ∼ 5−6. When applying the luminosity cut of log10(LLyα/erg s−1) ≥ 43.0,

log10(ρUV/erg s−1 Hz−1 Mpc−3) of LAEs changes from 24.3 to 25.0. In compari-

son, log10(ρUV/erg s−1 Hz−1 Mpc−3) of LBGs is always higher and decreases with

redshift, from 26.5 at z = 2.5 to 26.0 at z = 6. We extrapolate the ratio between

the luminosity densities of log10(LLyα/erg s−1) ≥ 43.0 LAEs and LBGs and de-

termine it tends to unity at z = 9. Overall, our measurements of ρUV suggest

that at z ∼ 2 LAEs constitute a much smaller subset of LBGs and that with

increasing redshift, both populations converge to the same values of ρUV. This is

qualitatively similar to the trends found in Chapter 4 by integrating Lyα LFs.
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Figure 7.12: Evolution of the UV luminosity density (ρUV) with redshift.
We show the ρUV measurements of our LAEs when applying a consistent
log10(LLyα/erg s−1) ≥ 43.0 cut (blue circles) and with no LLyα cut (black circles).
ρUV of the full SC4K sample is shown as stars, using the same colour scheme.
The shaded contours are the 16th and 84th percentiles of the fits, obtained by
perturbing the MUV bins at each redshift (see Section 7.3.5). We find no evidence
for ρM evolution with redshift when applying a consistent LLyα cut. We compare
our results with measurements from the literature, from continuum-selected LBG
populations: z = 2.3, z = 3.05 (Reddy & Steidel, 2009), z = 3.8 , z = 4.9, z = 5.9,
z = 6.8, z = 7.9 (Bouwens et al., 2015), z = 4, z = 5, z = 6, z = 7, z = 8
(Finkelstein et al., 2015).
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7.4.10 Redshift evolution of the stellar mass density of

z ∼ 2− 6 LAEs

Using our best-derived fits (Table 7.3), we estimate the stellar mass density (ρM)

of our LAEs at different redshifts, by integrating the SMFs in the range. We

obtain ρM using the procedure described in Section 7.3.6. In Figure 7.13, we

show our ρM measurements and compare them with measurements from the lit-

erature. The observed ρM (without applying any luminosity cuts) changes from

log10(ρM/M�Mpc−3) ∼ 6.3 at z ∼ 2.5 to ∼ 5.5 at z ∼ 5 − 6. By applying the

consistent log10(LLyα/erg s−1) ≥ 43.0 cut, the estimated ρM of our LAE sample

remains roughly constant with redshift at log10(ρM/M�Mpc−3) ∼ 5.5.

We compare our results with measurements from the literature, from continuum-

selected populations: Davidzon et al. (2017), Caputi et al. (2011), Caputi et al.

(2015), Duncan et al. 2014, González et al. (2011), Grazian et al. (2015), Ilbert

et al. (2013), Mortlock et al. (2011), Mortlock et al. (2015), Muzzin et al. (2013),

Reddy et al. (2012), Santini et al. (2012), Song et al. (2016), and Tomczak et al.

(2014). The ρM measurements of typical populations of galaxies from the liter-

ature indicate a decrease from log10(ρM/M�Mpc−3) ∼ 7.5 at z ∼ 2.5 to ∼ 6.5

at z ∼ 5 − 6. This implies that galaxies selected as LAEs always have low stel-

lar mass densities, and as we move to higher redshifts, their properties become

similar to the ones derived from more typical populations of galaxies, suggest-

ing that with an increasing redshift more galaxies become LAE-like. The ratio

between the stellar mass densities for the log10(LLyα/erg s−1) ≥ 43.0 population

and the values from the literature decreases from ∼ 0.005 at z ∼ 2.5 to ∼ 0.05

at z ∼ 5 − 6. We extrapolate the ratio between the stellar mass densities of

log10(LLyα/erg s−1) ≥ 43.0 LAEs and LBGs and determine it tends to unity at

z = 10. This implies that these bright LAEs, contribute very significantly to

the total stellar mass density during the epoch of reionisation, highlighting the

importance of LAEs to the evolution of primeval galaxies in the early Universe.
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Figure 7.13: Evolution of the stellar mass density (ρM) with redshift. We show the
ρM measurements of our LAEs when applying a consistent log10(LLyα/erg s−1) ≥
43.0 cut (blue unfilled circles) and with no LLyα cut (black unfilled circles). ρM of
the full SC4K sample is shown as stars, using the same colour scheme. The shaded
contours are the 16th and 84th percentiles of the fits, obtained by perturbing the
stellar mass bins at each redshift (see Section 7.3.5). We find no evidence for ρM

evolution with redshift when applying a consistent LLyα cut. We compare our re-
sults with measurements from the literature, from continuum-selected populations:
Davidzon et al. 2017 (Da+17), Caputi et al. 2011 (Ca+11), Caputi et al. 2015
(Ca+15), Duncan et al. 2014 (Du+14), González et al. 2011 (Go+11), Grazian
et al. 2015 (Gr+15), Ilbert et al. 2013 (Il+13), Mortlock et al. 2011 (Mo+11),
Mortlock et al. 2015 (Mo+15), Muzzin et al. 2013 (Mu+13), Reddy et al. 2012
(Re+12), Santini et al. 2012 (Sa+12), Song et al. 2016 (So+16), and Tomczak
et al. 2014 (To+14). All ρM were converted to Chabrier, when another IMF was
used. We show the best fit to this compilation as a green line. The ratio be-
tween the ρM from the literature and ρM from log10(LLyα/erg s−1) ≥ 43.0 LAEs
(top panel) decreases from ∼ 300 at z ∼ 2.5 to ∼ 30 at z ∼ 5 − 6, suggesting an
increasing overlap between populations with increasing redshift.
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7.5 Conclusions

In this Chapter, we determine the UV luminosity functions (LFs) and stellar mass

functions (SMFs) of ∼ 4000 LAEs from the SC4K sample at z ∼ 2−6. Our main

results are:

• MUV and LLyα are typically correlated (MUV = −1.6+0.2
−0.3 log10(LLyα/erg s−1)+

47+12
−11) in our sample of LAEs. The relation between M? and LLyα is shal-

lower (log10(M?/M�) = 0.9+0.1
−0.1 log10(LLyα/erg s−1)− 28+4.0

−3.8).

• Different LLyα limits significantly affect the shape and normalisation of the

UV LF and SMF of LAEs. An increasing LLyα cut predominantly reduces

the number density of lower stellar masses and faint UV luminosities, more

significantly for the UV LF. We estimate a proxy for the full UV LF and

SMF of LAEs, making simple assumptions of fitting range and faint end

slope. We further address the issues of incomplete sampling by applying a

uniform luminosity cut of log10(LLyα/erg s−1) ≥ 43.0 to our entire sample,

producing a subsample of rare bright primeval galaxies.

• For the UV LF of LAEs, we find a characteristic number density (Φ∗)

increase from log10(Φ∗/Mpc−3) ∼ −5.6 at z = 2.5 to ∼ −4.8 at z ∼ 3, with

no evolution up to z ∼ 5 − 6, and no clear evolution of the characteristic

UV luminosity (M∗UV).

• For the SMF of LAEs, we find no significant evolution with redshift, with

log10(Φ∗/Mpc−3) staying constant at ∼ −5.5 from z ∼ 2.5 to z ∼ 6 and the

characteristic stellar mass staying constant at log10(M∗?/M�) ∼ 11 for the

same redshift range.

• We compute ΦLAE/ΦLBG (proxy of χLyα) which tends to unity with increas-

ing MUV at all redshifts, as bright LAEs are typically also bright in MUV.

For fainter LAEs, the ratio tends to one as we reach fainter Lyα fluxes, with

a simple extrapolation implying that by reaching log10(LLyα/erg s−1) = 41.0

we would approach unit for MUV = −20 galaxies at z = 2.5.
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• From z = 2.5 to z ∼ 5−6, the luminosity density (ρUV) increases from 1024.3

to 1025.0 erg s−1 Hz−1 Mpc−3. For the same redshift range, the stellar mass

density (ρM) shows little evolution, remaining constant at ∼ 105.5 M�Mpc3,

and being always lower than the total luminosity and stellar densities of

continuum-selected galaxies but approaching it with increasing redshift.

Overall, we find that the stellar and luminosity density of bright LAEs

are extrapolated to converge to the measurements of continuum-selected

galaxies at z ∼ 9− 10, pointing to the very significant role of LAEs in the

epoch of reionisation.
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Chapter 8

Conclusions and Future Work

In this thesis, we contribute to the understanding of the nature, typical properties

and evolution of galaxies with Lyα emission, between the end of the epoch of

reionisation at z ∼ 6 and the peak of cosmic SFH at z ∼ 2. Here, we summarise

the main results of the thesis, give some final remarks and discuss future lines of

research.

8.1 Conclusions

We present a new large sample of Lyα emitters (LAEs) - SC4K (Slicing COSMOS

with 4k LAEs) - and study the evolution with redshift of physical properties

of galaxies in this sample. The catalogues with the SC4K sample and derived

properties are made fully public (see Appendices A.1 and A.4) so the community

can fully benefit from the work presented in this thesis. Multiple studies have

already been conducted using such catalogues (e.g. Calhau et al., 2020; Khostovan

et al., 2019; Marques-Chaves et al., 2020; Paulino-Afonso et al., 2018; Shibuya

et al., 2019).

SC4K: sample and luminosity functions
(Chapters 2, 3 and 4)

Most studies of Lyα emitting galaxies focus on a single redshift slice and/or

are limited by very small areas/volumes. Inferring potential evolution of galaxy
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properties by comparing multiple different surveys is challenging with hard to

quantify biases. With this study, we aimed to develop a single self-consistent

survey to construct a large sample of LAEs, obtained using the same data re-

duction methods, same (wide) areas, similar filters and similar selection criteria.

This is done in an effort to build a sample where comparison of redshifts can be

done with as little bias as possible. The SC4K survey fully shows the capabilities

of narrow/medium band surveys in efficiently probing a large area of the sky to

efficiently build large samples of young star-forming galaxies (and AGNs). Our

sample consists of 3908 LAEs, 318 of which have AGN signatures (Calhau et al.,

2020). The Lyα LFs reveal an AGN component which dominates the brightest

luminosities at z < 4, but disappears at higher redshifts.

Furthermore, by combining our measurements with results from the literature,

including IFU and blind spectroscopy surveys, we are able to obtain a much more

complete view of the Lyα emitting population, which would not be possible from

any single selection method. Our results indicate a brightening with redshift of

the characteristic Lyα luminosity. We find an increase by a factor of ≈ 2 of the

Lyα luminosity density from z = 2 to z = 3 but no evolution at z ∼ 3− 6, which

results in an increase of SFRDUV/SFRDLyα from 4% at z = 2.2 to 30% at z = 6.

This can be translated into a factor of ≈ 2 increase in the ionising efficiency and

a ≈ 4 increase in the Lyα escape fraction, from z ∼ 2 to z ∼ 6.

SC4K: properties and evolution

(Chapters 5 and 6)

In these chapters, we conduct PSF photometry for each individual source in

the SC4K sample of LAEs, using 34 bands from rest-frame UV to FIR, which we

use to measure the SEDs with the stellar+dust SED fitting code MAGPHYS.

The large number and wide wavelength coverage of filters used allow a very accu-

rate constraints of SEDs and parameters. This is further enhanced by very recent

programs such as UltraVISTA DR4 which improves the accuracy of the SEDs of

our high redshift galaxies with ultra-deep NIR imaging. Overall, we find that

while (as expected) LAEs are typically very young, very blue and low mass, there

is a significant diversity in the properties of LAEs. We also find that the typi-

cal properties of LAEs show little evolution with redshift, implying that galaxies
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that are selected as LAEs always have the same properties. When compared with

continuum-selected galaxies, we find that they become LAE-like at z > 5.

SC4K: UV luminosity and stellar mass functions

(Chapter 7)

We estimate the UV LF and the SMF of z ∼ 2 − 6 LAEs, both still widely

unconstrained up to this point. For the UV LF, we find an increase in the

characteristic number density, with increasing redshift. Such an evolutionary

trend is qualitatively very different from the UV LF of LBGs (e.g. Bouwens

et al., 2015; Finkelstein et al., 2015), which has a decreasing characteristic number

density with increasing redshift. Additionally, our measurements of the SMF are

unprecedented, as no other survey has been able to derive stellar masses for such

a large sample of LAEs over such a wide redshift range. Our measurements

of the UV luminosity and stellar mass densities of LAEs are always below the

measurements of continuum-selected galaxies but are extrapolated to converge to

the same values at z ∼ 8− 10.

Overall the analysis of multiple properties of SC4K: the evolution of UV sizes,

Lyα escape fraction, SFR-M? relation, ρUV and ρM, all build a picture where as

we move to higher redshifts, the properties of continuum-selected galaxies and

LAEs become increasingly similar, implying that by z > 5 star-forming galaxies

are LAE-like. Furthermore, this also suggests the important role that LAEs play

in the epoch of reionisation and their importance in galaxy evolution.

8.2 Future work

While we now have a better understanding of the properties of LAEs and their

evolution with redshift, there are still many open questions. Here we discuss

possible research paths and the questions they may answer:

• spectroscopic follow-up of SC4K LAEs: extensive spectroscopic follow

up will fully reveal the interloper fraction of our sample of LAEs (estimated

10-15%, see §2.3.5). Public COSMOS data spectroscopically confirms 119
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SC4K LAEs (see §2.3.5), in addition to the 10 “primeval galaxies” also

detected in the VUDS program (Amoŕın et al., 2017). We have already

conducted observations of 514 SC4K LAEs using the multi-fibre spectro-

graph AF2 at the William Herschel Telescope. I have developed a python

pipeline to reduce and analyse this AF2 data, with the results to be pub-

lished at a later date. X-SHOOTER observations are being planned, as the

deep and high-resolution spectra will show the Lyα line profiles and reveal

valuable information about the escape of Lyα photons and the HI column

densities.

• multi-wavelength follow-up of SC4K LAEs: with e.g. ALMA would

reveal the dust content properties of typical LAEs (see e.g. Matthee et al.,

2017d, 2019) and their evolution from z ∼ 2 to z ∼ 6.

• extend the redshift range probed by SC4K: we have used the SC4K

sample to get a consistent view of the evolution of LAEs from z ∼ 2 to

z ∼ 6. For higher redshifts, we have conducted observations with the

HAWK-i instrument at the VLT using NB1061 to select LAEs at z = 8.8

(to be presented in Wade et al. in prep). For z < 2, Lyα cannot be detected

from the ground, so a space telescope with an imaging instrument capable

of observing with narrow bands in the UV would be required (but see Östlin

et al., 2014, who constructed the Lyα reference sample at z = 0.028− 0.19,

LARS, using a combination of GALEX, SDSS and HST observations).

• extend the volumes probed by SC4K: larger volumes would allow us to

find more extremely luminous LLyα > 1044 erg s−1 sources, which are ideal

candidates for spectroscopic and multi-wavelength follow-up. Such as study

would improve the constrains on the number densities and properties of

the brightest populations, which require us to probe extremely low number

densities. This would allow us to determine if the excess in number densities

of bright LAEs, driven by AGN, which we observe at z ∼ 2− 3 but not at

z > 4, intrinsically disappears or if it just falls below our current detection

limits.
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8.2 Future work

• conduct the same z ∼ 2− 6 search with a non-resonant line: while

we have shown how useful Lyα emission can be in probing galaxy evolution,

the fact remains that Lyα’s resonant nature makes it a challenging line to

interpret. A z > 2.5 study with e.g. Hα would offer a more direct view

of star-formation, although it cannot be conducted from the ground and

no current space telescope can conduct such survey until the launch of the

James Webb Space Telescope in the nearby future.
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Appendix A

Appendices

A.1 Catalogue of Lyman-α emitters (SC4K)

We publicly release the full SC4K catalogue of 3,908 LAEs at z ∼ 2− 6 derived

and used in this work, based on data obtained with 16 different medium- and

narrow-band filters over the full COSMOS field. We show 5 example entries of

the catalogue in Table A.1. The full electronic version of the catalogue is available

with the refereed paper in a fits table1. Table A.2 presents the colour terms used

to correct medium-band magnitudes and to compute emission line fluxes.

A.2 [OIII]+Hβ excess in the Ks band at z ≈ 3

A diagnostic that provides information on the validity of the sample of LAEs, and

simultaneously provides insight into their nature is the evolution of the H −Ks

colours with redshift. The flux in these filters may be boosted by strong Hα

and [Oiii]+Hβ emission lines (e.g. Faisst et al., 2016), depending on the redshift,

affecting the H − Ks colours (see also Forrest et al. 2017). If our sample had

significant number of redshift interlopers, such effects on the colours would not

be seen, as interlopers will not show them.

1https://academic.oup.com/mnras/article/476/4/4725/4858393#supplementary-data
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A.2 [OIII]+Hβ excess in the Ks band at z ≈ 3
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Figure A.1: H − Ks colours as a function of redshift for our sample of LAEs
at z ∼ 2.5 − 4. The grey region shows the 16-84 percentile range of the colours
of the general galaxy population (Laigle et al., 2016), while the blue boxes show
the percentiles for the SC4K LAEs. We use photometric-redshifts for the general
galaxy sample, but assign the redshift where Lyα falls in the MB for the SC4K
emitters (points are randomly shifted for visualisation purposes). The green and
red boxes indicate the redshifts where the strong Hα and [Oiii] lines fall in the
H and Ks filters and can affect the colours. The LAEs at z ≈ 3.1 − 3.4 have
systematically redder H −Ks colours compared to the general galaxy population,
indicative of strong [Oiii] emission in the Ks filter.
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A.3 Lyα Luminosity functions

Table A.1: Our full SC4K catalogue of candidate LAEs which we release with this
work. The SC4K catalogue contains the samples obtained with the 12 COSMOS
medium-bands, together with 4 narrow-band samples from Santos et al. (2016),
Sobral et al. (2017), Matthee et al. (2017b) and Perez et al. (in prep.). We provide
five example entries. The full catalogue is available in electronic format (fits
table). Errors on EW0, Flux and LLyα are computed by independently perturbing
the MB and BB magnitudes along their Gaussian uncertainties 10,000 times per
source and computing the 16th and 84th percentiles of each computed quantity.
Note that for faint sources EWs are affected by large uncertainties; see e.g. IA427-
141. The AGN flag in the catalogue provides information on the matches with
public X-ray (including coverage) and radio catalogues (see Section 3.1.7): 0 – no
match/no coverage; 1 – X-ray detected; 2 – radio detected.

ID R.A. Dec. MB or NB BB EW0 Flux/10−17 log10 LLyα AGN flag
(SC4K-) (J2000) (J2000) (AB) (AB) (Å) (erg s−1 cm−2) (erg s−1) (X-ray or radio)

IA427-141 10 03 20.01 +02 13 38.8 24.83± 0.06 26.47± 0.28 2000+2000
−1400 13.4+0.7

−0.7 42.83+0.02
−0.02 0

IA427-446 10 02 38.96 +02 14 16.3 24.87± 0.07 25.97± 0.18 289+270
−124 10.6+0.9

−1.0 42.73+0.03
−0.04 0

IA427-865 10 02 17.97 +02 15 03.2 24.84± 0.07 25.82± 0.15 205+136
−98 10.2+1.0

−1.8 42.71+0.04
−0.08 0

IA427-1169 10 03 10.85 +02 15 37.6 24.28± 0.04 25.25± 0.09 193+126
−38 16.8+2.4

−1.0 42.92+0.06
−0.03 0

IA427-1559 10 02 13.65 +02 16 28.9 24.90± 0.07 25.46± 0.11 65+7
−21 6.5+0.3

−1.6 42.51+0.02
−0.13 0

Figure A.1 shows the median H−Ks colours of the general galaxy population

in the COSMOS field (Laigle et al., 2016) and of the SC4K sample of LAEs from

z ∼ 2 to z ∼ 4. Several interesting trends can be seen. The sample of LAEs at

z ≈ 2.5 has systematically bluer H −Ks colours than the general galaxy sample,

which indicates that the H band is significantly boosted by strong [Oiii]+Hβ

emission, while the majority of the sample does not have Hα falling in the Ks

filter. The LAEs at z = 3.1−3.4 have systematically redder H−Ks colours than

typical galaxies. This indicates LAEs have relatively strong [Oiii]+Hβ emission,

which is similar to the spectroscopic results from Nakajima et al. (2016). As no

strong lines affect the H −Ks colours at z ≈ 2.7 − 3.0 and z > 3.6, the colours

of LAEs at these redshifts are similar to the colours of the general population.
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A.3 Lyα Luminosity functions

Table A.2: The colour coefficients for each medium-band, used to correct the
observed medium-band magnitudes (MB0) into MB, as defined in Equation 2.2:
MB = MB0 − (m× (BB− BBadjacent) + b). For sources without a colour determi-
nation (BB − BBadjacent) we add the median correction listed in the table. Note
that we use the MB magnitudes (and not MB0) for our SC4K catalogue (see Table
A.1) and all derived quantities.

MB BB− BBadjacent m b Median
correction

IA427 B − U 0.33 -0.11 0.01
IA464 B − V 0.0 0.0 0.0
IA484 B − V 0.0 0.0 0.0
IA505 V −B 0.0 0.0 0.0
IA527 V −B 0.0 0.0 0.0
IA574 r+ − V 0.0 0.0 0.0
IA624 r+ − i+ 0.0 0.0 0.0
IA679 r+ − i+ -0.30 -0.18 0.31
IA709 r+ − i+ -0.31 0.0 -0.13
IA738 r+ − i+ -0.14 0.08 -0.14
IA767 i+ − z 0.0 0.25 -0.25
IA827 i+ − z -0.49 0.34 -0.20
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A.3 Lyα Luminosity functions
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Figure A.2: The ratio between the observed Lyα luminosity function through the
real filter profiles and input simulated sample of LAEs. We shift the bins by ±0.08
for visibility. For each filter, we distribute simulated sources over a large redshift
range (wider than what the filter can detect), with a number density distribution
given by the first pass/observed Lyα luminosity function. This includes both a
Schechter component and a power-law component at the highest luminosities, for
2.2 < z < 3.5, and a Schechter component only for 3.5 < z < 6. Points are offset in
luminosity for visibility. We find that the bright end of the Schechter component
of the LF leads to a significant observed underestimation of the LF, while the
power-law component is more easily recovered (see Section A.3.1 for full details).
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A.3 Lyα Luminosity functions

A.3 Lyα Luminosity functions

A.3.1 Filter profile corrections

In order to evaluate the necessary potential corrections to the Lyα LF due to

the use of different real filters in comparison to idealized top-hat versions of

them, we follow the procedure fully described in Section 3.1.2.2 (see also Sobral

et al., 2012). Here we provide the full results of our simulations, presented in

Figure A.2 (see also Figure 3.1) and discuss them. We find that the number

density of sources recovered by folding through a population of LAEs with a

luminosity function described by a Schechter function is always underestimated,

and strongly underestimated for the highest luminosities. This is a relatively

easy effect to understand, and becomes particularly important for the state-of-

the-art large volume surveys that can now probe significantly above L?, where the

number counts may drop exponentially (contrarily to the behavior of the sub-L?

component of the luminosity function, which behaves like a power-law).

Our results are a consequence of observed fluxes being the convolution between

real input fluxes and the filter profile transmission. On average, this always results

in a drop of flux except at the very peak of filter profile transmission. For medium-

band filters there is still considerable volume under these conditions, while for

narrow-bands such fraction is lower. For the evaluation of the luminosity function,

this means that the observed number densities of sources at some luminosity L are

always lower than reality, as most sources of that luminosity actually contribute

to bins of fainter luminosities (they are observed to be fainter). The effect is

not always extreme because it is partially compensated by sources at even higher

luminosities that count towards a bin at luminosity L; this is why the intrinsic

shape is crucial. The global result is that such corrections depend on the shape

of the intrinsic luminosity function and how steep number density counts drop

as a function of luminosity. This means that while for some shallow faint-end

slopes the ratio of the number of sources scattering in from higher luminosities

and those scattering out from a given bin is close to 1 (meaning the recovered

number density is close to the input one), for steeper functions (and even more

so for exponential declines), the effect starts to become very strong, as sources
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A.3 Lyα Luminosity functions

move to lower luminosity bins and almost no other sources come from brighter

bins to compensate (because they are simply too rare). The effect is therefore the

strongest beyond L? for an intrinsic Schechter LF distribution of sources being

observed through any filter profile that is not a perfect top-hat.

Overall, our results show that for any reasonable Schechter function prior

(the observed LF is a good prior which does not require any assumptions), the

bright end of the Lyα LF must be corrected more than the faint end, and that

such corrections are much larger with narrow-band filters than with medium

band filters (see Figure 3.1). Moreover, once corrections are applied, narrow-

and medium-band independent estimates agree. Our results also show that the

exponential decline part of the LF becomes more and more underestimated the

more Gaussian and the narrower a filter is (compared to assuming a top-hat

transmission for the flux and volume). We note that another way to correct for the

filter profile effects is to shift the luminosity function by some constant (to correct

for the fact that a fraction of sources are not measured at full transmission). This

is a relatively good way to do this in the case of a self-similar LF and/or when one

is only measuring the power-law component of the Schechter function and when

such a component is not tremendously steep. However, for large volumes that can

trace the exponential decline, the corrections are simply not the same: for the

power-law (faint) component there are sources coming in from higher luminosities

and scattering to fainter luminosities, but in the exponential part there is much

more migration away from the bin to lower L than there is migration into the bin

from brighter sources.

We also find that if the decline of the number densities at high L is described

by a relatively shallow power-law (such as the cases found at z ∼ 2 − 3), then

the corrections (Figure A.2) are close to unity (again, due to the same effect:

there are brighter sources which are still numerous enough to make it into the

bin and roughly compensate for sources that are observed to be fainter). Over-

all, our results show the importance of correcting for this effect specifically for

Schechter-like functions, and less so for the case of a shallow power-law decline

with increasing luminosity.
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A.3 Lyα Luminosity functions

A.3.2 Luminosity functions: this study and the S-SC4K

compilation/comparison

We provide the derived Lyα LFs (one example realisation; Table A.3), including

the observed number of sources and number densities obtained after completeness

and filter profile corrections (see Table A.3) and the full error propagation steps

(see Section 3.1.2). Table A.4 presents the full S-SC4K compilation which we use

to compare our results and to derive our synergy LF (S-SC4K). We also present

the results from the 10,000 fits to each perturbed LF in Table A.5.
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Table A.3: The global Lyα LF and for each of the medium-band filters in SC4K/this study (full LFs provided as a fits
catalogue). Here we present the first LF (global) with the first 13 entries in the table. We show the sample/filter name,
followed by the Lyα luminosity bin. We also present the number of observed sources in each bin and the volume densities
with the chain following the steps described in the work: observed, observed + perturbing selection, completeness
corrected and filter profile corrected (final). In addition, we also show the full sequential error calculation/propagation
(see full details in Section 3.1.2). We note that we set the error to 1.0 whenever it is not defined in log space (for the
odd bins which are just populated by one source); for these bins the error propagation is not conducted.

Sample log10 LLyα Sources Φobserved ∆Φobs+pert Φcomp.corr Φfinal ∆Φfinal

(erg s−1) (#) (Mpc−3) (Mpc−3) (Mpc−3) (Mpc−3) (Mpc−3)
SC4K All MBs 42.60± 0.05 156± 12 −3.41+0.03

−0.04
+0.07
−0.07 −3.02+0.08

−0.10 −2.93+0.08
−0.11

+0.09
−0.11

SC4K All MBs 42.70± 0.05 134± 11 −3.47+0.04
−0.04

+0.06
−0.06 −3.23+0.06

−0.08 −3.12+0.07
−0.09

+0.07
−0.09

SC4K All MBs 42.80± 0.05 607± 24 −3.45+0.02
−0.02

+0.03
−0.03 −3.12+0.04

−0.04 −3.05+0.04
−0.04

+0.05
−0.05

SC4K All MBs 42.90± 0.05 463± 21 −3.68+0.02
−0.02

+0.03
−0.03 −3.47+0.04

−0.04 −3.37+0.04
−0.04

+0.05
−0.05

SC4K All MBs 43.00± 0.05 405± 20 −3.89+0.02
−0.02

+0.05
−0.05 −3.70+0.05

−0.06 −3.60+0.05
−0.06

+0.06
−0.07

SC4K All MBs 43.10± 0.05 220± 14 −4.22+0.03
−0.03

+0.05
−0.05 −4.12+0.06

−0.06 −4.00+0.06
−0.07

+0.07
−0.07

SC4K All MBs 43.20± 0.05 188± 13 −4.35+0.03
−0.03

+0.09
−0.09 −4.22+0.10

−0.11 −4.11+0.10
−0.12

+0.11
−0.12

SC4K All MBs 43.30± 0.05 113± 10 −4.57+0.04
−0.04

+0.11
−0.11 −4.48+0.11

−0.13 −4.37+0.12
−0.14

+0.12
−0.15

SC4K All MBs 43.40± 0.05 57± 7 −4.92+0.05
−0.06

+0.10
−0.10 −4.80+0.10

−0.13 −4.68+0.11
−0.14

+0.11
−0.14

SC4K All MBs 43.50± 0.05 50± 7 −5.06+0.06
−0.07

+0.13
−0.13 −4.93+0.14

−0.20 −4.82+0.15
−0.21

+0.15
−0.22

SC4K All MBs 43.60± 0.05 35± 5 −5.21+0.07
−0.08

+0.16
−0.16 −5.14+0.16

−0.25 −5.02+0.17
−0.27

+0.18
−0.27

SC4K All MBs 43.75± 0.05 14± 3 −5.61+0.10
−0.14

+0.12
−0.12 −5.58+0.12

−0.17 −5.47+0.13
−0.19

+0.13
−0.19

SC4K All MBs 44.00± 0.15 24± 4 −5.86+0.08
−0.10

+0.11
−0.11 −5.85+0.11

−0.14 −5.79+0.12
−0.15

+0.12
−0.15

SC4K All MBs 44.30± 0.15 5± 2 −6.54+0.16
−0.26

+0.16
−0.16 −6.54+0.16

−0.27 −6.46+0.17
−0.28

+0.17
−0.29

SC4K All MBs 44.60± 0.15 1+1
−0.8 −7.24+0.30

−1.00
+0.30
−0.30 −7.24+0.30

−1.00 −7.24+0.30
−1.00

+0.30
−1.00
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Table A.4: A compilation of Lyα LFs used or compared with in this study, by alphabetical order. We provide references
to the original papers and also references for LFs generated to make them more comparable with those we present in this
work when appropriate (e.g. by correcting for potential contamination or by applying consistent filter profile corrections
for comparison). We provide all these LFs as a fits format catalogue. The redshifts are the average when studies have
used redshift bins with the ± representing the maximum and minimum redshifts in the studies, and not the standard
deviation. Note that for NB surveys this is given/rounded to 0.1, but typically the redshift range is smaller than that.
The minimum and maximum luminosity bins probed by each study are given in log10(LLyα/erg s−1). CC: correction for
potential contamination by lower redshift emitters (see Sobral et al., 2017); FPC: correction for filter profile effects (see
this study and Matthee et al., 2015; Santos et al., 2016).

Study # Reference(s) Technique/ Redshift LLyα,min LLyα,max

(This compilation) (Original or w/ correction) Instrument (z) (log10) (log10)
1 Bina et al. (2016) IFU MUSE-All z = 4.8± 1.8 41.3 42.2

2.1 Cassata et al. (2011) Slit VIMOS-bin z = 2.5± 0.5 41.3 42.9
2.2 Cassata et al. (2011) Slit VIMOS-bin z = 3.8± 0.8 41.8 42.8
2.3 Cassata et al. (2011) Slit VIMOS-bin z = 5.5± 1.0 42.1 43.3
3 Dawson et al. (2007) NB Mosaic-CCD MT z = 4.5± 0.1 42.2 43.4
4 Drake et al. (2017a) IFU MUSE-All z = 4.8± 1.8 41.9 42.9
5 Drake et al. (2017b) IFU MUSE-All z = 4.7± 1.9 41.2 42.8

5.1 Drake et al. (2017b) IFU MUSE-Bin z = 3.5± 0.5 41.6 42.8
5.2 Drake et al. (2017b) IFU MUSE-Bin z = 4.5± 0.5 41.6 43.3
5.3 Drake et al. (2017b) IFU MUSE-Bin z = 5.8± 0.8 41.6 43.2
6 Konno et al. (2016) NB S-cam Subaru z = 2.2± 0.1 41.7 44.4

6.1 Konno et al. (2016); Sobral et al. (2017) NB S-cam Subaru CC z = 2.2± 0.1 41.7 44.4
7 Konno et al. (2018) NB HSC Subaru z = 5.7± 0.1 43.0 43.8

7.1 Konno et al. (2018); Santos et al. (2016) NB HSC Subaru FPC z = 5.7± 0.1 43.0 43.8
8.1 Matthee et al. (2017b) NB WFC INT z = 2.2± 0.1 42.8 43.5
8.2 Matthee et al. (2017b) NB WFC INT z = 2.4± 0.1 43.4 44.7
8.3 Matthee et al. (2017b) NB WFC INT z = 3.1± 0.1 43.0 43.6
9.1 Ouchi et al. (2008) NB S-cam Subaru z = 3.1± 0.1 42.2 43.6
9.2 Ouchi et al. (2008) NB S-cam Subaru z = 3.7± 0.1 42.7 43.5
9.3 Ouchi et al. (2008) NB S-cam Subaru z = 5.7± 0.1 42.5 43.5
9.4 Ouchi et al. (2008); Santos et al. (2016) NB S-cam Subaru FPC z = 5.7± 0.1 42.5 43.5
10 (Perez et al. in prep.) NB S-cam Subaru z = 4.8± 0.1 43.1 43.5
11 Santos et al. (2016) NB S-cam Subaru z = 5.7± 0.1 42.5 43.7
12 Sobral et al. (2017) NB WFC INT z = 2.2± 0.1 42.3 43.5
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A.4 The full SC4K catalogue with PSF photom-

etry and all derived quantities

We provide the full catalogue of SC4K LAEs in electronic format (fits format)1

with PSF photometry and photometric errors in all bands, along with all the

properties obtained in this work.

A.5 Additional plots and tables

In Figure A.3 we show SFRLyα vs SFRSED in 6 independent redshift intervals (see

Section 6.1.6.3 for discussion). In Figure A.4 we show the evolution of median

EW0 with redshift. We provide the full measurements of w0 for different ranges

of redshifts and galaxy properties (M? and MUV) in Table A.6.

1https://academic.oup.com/mnras/article/493/1/141/5704403#supplementary-data
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A.5 Additional plots and tables

Table A.5: The results of fitting different Lyα LFs 10,000 times with a Schechter
function (and a single power-law, for comparison) at the appropriate luminosity
range (∗ fitting only up to 1043.3 erg s−1), when using SC4K only and when com-
bining SC4K with deeper surveys (S-SC4K). As part of each fit we also integrate
our Lyα LFs to obtain ρLyα (integral of the Schechter component, Sch), derived
for different redshift bins, down to 1.75 × 1041 erg s−1, corresponding to 0.04L?z=3

from Gronwall et al. (2007); see Section 4.1. All errors are the 16th and 84th per-
centiles for all 10,000 realisations per LF estimation which, due to degeneracies in
the parameters, can sometimes exaggerate the errors on individual parameters, so
these can be seen as conservative. We also provide a comparison (ratio) between
reduced χ2 for Schechter and power-law fits (χ2

Sch/χ
2
PL); values below 1 indicate

that a Schechter fit performs better, while a large value indicates that a simple
power-law fit provides a lower reduced χ2.

Redshift slice α log10 L∗Lyα log10 Φ∗Lyα ρLyα/1040 (Sch) Power-law (PL) χ2
Sch/ Reference(s)

(S-)SC4K (erg s−1) (Mpc−3) (erg s−1 Mpc−3) (A log10 L+B) χ2
PL (Table A.4)

z = 2.2± 0.1∗ −1.8± 0.2 (fix) 42.69+0.13
−0.11 −3.33+0.21

−0.26 0.48+0.04
−0.04 −1.24+0.08

−0.09, 49.3+3.6
−3.6 0.3 2.1

z = 2.5± 0.1∗ −1.8± 0.2 (fix) 42.76+0.07
−0.07 −3.23+0.14

−0.15 0.73+0.18
−0.13 −2.34+0.19

−0.20, 96.9+8.5
−8.1 2.3 SC4K only

z = 2.8± 0.1∗ −1.8± 0.2 (fix) 42.83+0.36
−0.19 −3.27+0.58

−0.75 0.84+1.12
−0.41 −2.66+1.03

−1.01, 110.7+43.4
−44.2 1.0 SC4K only

z = 3.0± 0.1∗ −1.8± 0.2 (fix) 42.64+0.06
−0.05 −2.54+0.16

−0.16 2.54+0.87
−0.62 −3.17+0.28

−0.29, 132.9+12.3
−12.2 1.1 SC4K only

z = 3.2± 0.1∗ −1.8± 0.2 (fix) 42.80+0.09
−0.07 −3.01+0.16

−0.19 1.35+0.41
−0.29 −2.41+0.25

−0.27, 100.0+11.4
−10.6 0.6 SC4K only

z = 3.3± 0.1∗ −1.8± 0.2 (fix) 42.68+0.07
−0.06 −2.70+0.16

−0.16 1.95+0.64
−0.44 −2.98+0.25

−0.26, 124.7+11.3
−10.6 1.5 SC4K only

z = 3.7± 0.1 −1.8± 0.2 (fix) 43.03+0.18
−0.15 −4.09+0.41

−0.40 0.21+0.17
−0.09 −3.18+0.68

−0.85, 133.0+36.7
−29.3 2.4 SC4K only

z = 4.1± 0.1 −1.8± 0.2 (fix) 42.83+0.17
−0.15 −3.49+0.46

−0.43 0.49+0.49
−0.19 −3.11+0.71

−0.85, 129.8+36.8
−30.7 0.8 SC4K only

z = 4.6± 0.1 −1.8± 0.2 (fix) 43.15+0.16
−0.15 −3.92+0.37

−0.38 0.42+0.32
−0.16 −2.98+0.62

−0.68, 124.6+29.6
−27.0 1.5 SC4K only

z = 4.8± 0.1 −1.8± 0.2 (fix) 42.98+0.17
−0.14 −3.62+0.48

−0.46 0.56+0.65
−0.28 −3.99+0.89

−1.01, 168.1+43.9
−38.5 1.4 SC4K only

z = 5.1± 0.1 −1.8± 0.2 (fix) 43.30+0.23
−0.19 −4.36+0.59

−0.54 0.24+0.33
−0.13 −3.88+1.09

−1.51, 163.8+65.7
−47.4 2.0 SC4K only

z = 5.3± 0.1 −1.8± 0.2 (fix) 43.30+0.28
−0.20 −4.22+0.71

−0.73 0.33+0.75
−0.21 −3.88+1.47

−1.68, 164.2+73.2
−64.0 0.8 SC4K only

z = 5.8± 0.1 −1.8± 0.2 (fix) 43.35+0.24
−0.19 −4.19+0.66

−0.67 0.39+0.83
−0.25 −3.55+1.15

−1.49, 149.7+65.3
−50.2 0.9 SC4K only

z = 2.2± 0.1∗ −2.00+0.15
−0.15 42.82+0.13

−0.11 −3.59+0.22
−0.28 0.52+0.05

−0.05 −1.54+0.07
−0.07, 62.1+3.1

−3.0 0.6 2.1, 6.1, 12
z = 2.5± 0.1∗ −1.72+0.15

−0.15 42.70+0.09
−0.08 −3.10+0.17

−0.20 0.74+0.08
−0.07 −1.33+0.07

−0.07, 53.6+2.9
−3.0 0.6 2.1, 5.1

z = 2.8± 0.1∗ −1.73+0.20
−0.21 42.78+0.16

−0.12 −3.18+0.27
−0.35 0.77+0.10

−0.09 −1.28+0.08
−0.08, 51.3+3.5

−3.5 0.8 2.1, 5.1
z = 3.0± 0.1∗ −1.58+0.17

−0.17 42.75+0.12
−0.09 −3.00+0.21

−0.25 0.88+0.10
−0.09 −1.15+0.07

−0.07, 46.0+3.0
−2.8 0.6 2.1, 5.1

z = 3.2± 0.1∗ −1.70+0.17
−0.17 42.85+0.15

−0.11 −3.20+0.24
−0.31 0.84+0.09

−0.09 −1.15+0.07
−0.07, 45.9+2.9

−3.0 0.7 2.1, 5.1
z = 3.3± 0.1∗ −1.62+0.17

−0.17 42.76+0.12
−0.10 −3.05+0.22

−0.26 0.85+0.10
−0.09 −1.17+0.07

−0.07, 46.9+3.0
−2.9 0.6 2.1, 5.1

z = 3.7± 0.1 −2.57+0.23
−0.21 43.23+0.37

−0.23 −4.54+0.61
−0.91 1.01+0.20

−0.16 −2.01+0.12
−0.14, 82.2+5.7

−5.2 0.8 2.2, 5.1
z = 4.1± 0.1 −2.23+0.30

−0.24 42.96+0.28
−0.22 −3.79+0.53

−0.66 0.87+0.15
−0.11 −1.93+0.12

−0.14, 78.8+6.1
−5.2 0.9 2.2, 5.1

z = 4.6± 0.1 −2.38+0.20
−0.19 43.32+0.24

−0.16 −4.34+0.39
−0.57 1.19+0.40

−0.30 −1.80+0.10
−0.10, 73.6+4.1

−4.1 0.9 2.3, 3, 5.2, 10
z = 4.8± 0.1 −2.28+0.22

−0.22 43.14+0.19
−0.15 −3.98+0.36

−0.46 1.12+0.37
−0.27 −1.92+0.12

−0.12, 78.5+5.2
−4.9 0.8 2.3, 3, 5.2, 10

z = 5.1± 0.1 −2.46+0.22
−0.20 43.41+0.28

−0.21 −4.58+0.54
−0.67 1.27+0.48

−0.32 −2.00+0.13
−0.15, 82.1+6.3

−5.8 0.7 2.3, 3, 5.2, 10
z = 5.3± 0.1 −1.92+0.22

−0.19 43.21+0.14
−0.13 −3.70+0.30

−0.32 1.08+0.21
−0.16 −1.80+0.13

−0.14, 73.6+6.2
−5.3 0.2 5.3, 9.4, 11

z = 5.8± 0.1 −1.95+0.20
−0.18 43.26+0.13

−0.13 −3.78+0.29
−0.30 1.10+0.21

−0.16 −1.74+0.12
−0.13, 71.0+5.4

−5.0 0.2 5.3, 9.4, 11
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Figure A.3: Emission line-based SFR vs SED-fitting SFR for the full sample of
LAEs at different redshift ranges. Coloured circles (squares) are the median bin
for MBs (NBs) and individual points are plotted as scatter in the background.
The black line is the 1-to-1 ratio. While the two approaches roughly follow the
1-to-1 ratio, there are some key differences. Similar to what is observed in Figure
6.3, median SFRLyα is slightly higher than SFRSED for SFRSED < 10 M� yr−1.
However, SFRLyα seems to saturate at median SFRLyα ≈ 10− 30 M� yr−1.
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Figure A.4: Global median EW0 evolution with redshift. The median EW0

values for medium (narrow) bands are shown as blue circles (green stars). Blue
stars are the measurements for individual MBs. The thin (thick) error bars are
the 16th and 84th percentiles of the EW0 distribution (divided by the Poissonian
error

√
N). The median and errors of EW0 can be found in Table 5.1. Blue

(green) shaded region is the 1σ contour obtained by perturbing the EW0 within
the thick error bars for medium (narrow) band selected LAE. We find evidence of
little EW0 evolution with redshift for the global sample of LAEs, with the median
EW0 remaining roughly constant at ∼ 140 Å, although there is a tentative higher
EW0 at z = 5.7, albeit with large error bars.
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Table A.6: EW0 scale length (w0) for different redshift bins, derived as fully
detailed in Section 6.1.2.1. (1) Subset of SC4K; (2) Filter type (MB/NB) and
whether this measurement is for LAEs selected from an individual filter or from
multiple filters binned together; (3) w0 derived directly from observed counts; (4)
χ2

red of (3); (5) w0 derived directly from observed counts [EW0 < 240 Å]; (6) χ2
red of

(5); (7) w0 derived by perturbing EW0; (8) χ2
red of (7); (9) w0 derived by perturbing

EW0 [EW0 < 240 Å]; (10) χ2
red of (9); ?Not enough sources to constrain w0 (less

than 3 bins with 5 sources). †Fit done for EW0 > 100 Å as discussed in Section
6.1.2.1 as we are significantly incomplete for low EW0, so we only fit exponential
decay after the distribution peak at ∼ 100 Å.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Subset Filters w0 χ2

red w0,[EW<240Å] χ2
red w0,p χ2

red w0,p,[EW<240Å] χ2
red

(Å) (Å) (Å) (Å)
z = 2.5± 0.1 MB, single 104+13

−13 2.31 79+15
−15 2.77 117+12

−12 0.73 94+12
−12 0.12

z = 2.8± 0.1 MB, single 98+12
−12 0.59 88+12

−12 0.37 108+12
−13 0.15 100+17

−15 0.28
z = 3.0± 0.1 MB, single 172+14

−14 1.04 120+22
−22 1.74 170+16

−16 0.72 126+22
−17 0.37

z = 3.2± 0.1 MB, single 109+14
−14 1.77 97+16

−16 1.17 128+15
−14 0.34 111+20

−18 0.18
z = 3.3± 0.1 MB, single 113+13

−13 1.76 118+19
−19 1.21 139+13

−14 0.40 113+16
−14 0.42

z = 3.7± 0.1 MB, single 83+24
−24 1.64 72+26

−26 1.93 90+24
−19 0.20 80+24

−17 0.12
z = 4.1± 0.1 MB, single 257+41

−41 0.66 216+100
−100 0.91 251+81

−65 0.31 171+149
−54 0.08

z = 4.6± 0.1 MB, single 486+183
−183 0.65 318+413

−413 1.30 600+325
−223 0.44 413+43491

−232 0.08
z = 4.8± 0.1 MB, single 93+17

−17 0.42 82+14
−14 0.18 119+41

−31 0.21 94+30
−22 0.12

z = 5.0± 0.1 MB, single 108+26
−26 0.75 85+24

−24 0.75 143+84
−42 0.40 103+39

−24 0.19
z = 5.3± 0.1? MB, single - - - - - - - -
z = 5.8± 0.1? MB, single - - - - - - - -
z = 2.2± 0.1 NB, single 174+95

−95 4.95 174+95
−95 4.95 143+22

−19 0.52 131+26
−19 0.62

z = 3.1± 0.1? NB, single - - - - - - - -
z = 4.8± 0.1 NB, single 86+24

−24 1.05 86+24
−24 1.05 151+98

−50 0.48 101+31
−26 0.32

z = 5.7± 0.1 NB, single 355+71
−71 0.93 188+57

−57 0.70 477+154
−106 0.45 124+34

−27 0.14
z = 2.5± 0.1 MB, bin 104+13

−13 2.31 79+15
−15 2.77 117+12

−12 0.73 94+12
−12 0.12

z = 3.1± 0.4 MB, bin 134+11
−11 2.00 109+12

−12 0.85 149+11
−11 2.26 116+13

−12 1.04
z = 3.9± 0.3 MB, bin 118+18

−18 1.29 90+21
−21 1.69 120+18

−17 0.20 103+21
−18 0.15

z = 4.7± 0.2 MB, bin 119+21
−21 1.17 93+19

−19 0.83 158+34
−27 0.18 114+43

−23 0.14
z = 2.5± 0.1 MB, bin 95+24

−24 1.66 70+21
−21 1.97 125+40

−31 0.24 90+22
−18 0.21

Full sample MB, bin 130+11
−11 3.57 100+11

−11 1.55 143+10
−11 4.01 110+11

−11 0.99
Full sample NB, bin 109+13

−13 1.53 102+14
−14 0.98 151+18

−17 0.45 102+15
−14 0.15

Full sample MB+NB, bin 129+11
−11 4.19 99+11

−11 1.22 147+11
−11 4.46 109+11

−11 0.96
8< log10 (M?/M� < 9† MB+NB, bin 175+14

−14 1.62 179+84
−84 2.77 264+14

−16 0.55 530+582
−163 1.42

9< log10 (M?/M� < 10 MB+NB, bin 85+11
−11 2.87 74+11

−11 1.75 101+11
−10 2.03 89+11

−11 0.96
10< log10 (M?/M� < 11 MB+NB, bin 77+13

−13 2.14 60+13
−13 2.32 89+13

−13 0.81 68+12
−11 0.66

-20<MUV < −19† MB+NB, bin 182+13
−13 1.35 253+103

−103 1.29 263+15
−15 0.50 470+212

−126 0.97
-21<MUV < −20 MB+NB, bin 77+10

−10 1.52 71+11
−11 1.00 93+10

−10 1.09 90+11
−11 1.27

-22<MUV < −21 MB+NB, bin 55+11
−11 1.78 50+11

−11 1.91 63+11
−11 0.39 58+11

−10 0.07
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Hayes M., Schaerer D., Östlin G., Mas-Hesse J. M., Atek H., Kunth D., 2011,

ApJ, 730, 8

Hayes M. J., Runnholm A., Gronke M., Scarlata C., 2020, arXiv e-prints, p.

arXiv:2006.03232

Henriques B. M. B., White S. D. M., Thomas P. A., Angulo R., Guo Q., Lemson

G., Springel V., Overzier R., 2015, MNRAS, 451, 2663

Henry A., Scarlata C., Martin C. L., Erb D., 2015, ApJ, 809, 19

Herenz E. C., Urrutia T., Wisotzki L., et al., 2017, A&A, 606, A12

Hildebrandt H., et al., 2017, MNRAS, 465, 1454

216

http://dx.doi.org/10.1051/0004-6361/201424750
http://adsabs.harvard.edu/abs/2015A%26A...575A..96G
http://dx.doi.org/10.1051/0004-6361/201014519
http://adsabs.harvard.edu/abs/2010A%26A...518L...3G
http://dx.doi.org/10.1086/520324
http://adsabs.harvard.edu/abs/2007ApJ...667...79G
http://dx.doi.org/10.1088/0004-637X/714/1/255
https://ui.adsabs.harvard.edu/abs/2010ApJ...714..255G
http://dx.doi.org/10.1051/0004-6361/201425053
http://adsabs.harvard.edu/abs/2015A%26A...576A..51G
http://dx.doi.org/10.1103/PhysRevD.23.347
https://ui.adsabs.harvard.edu/abs/1981PhRvD..23..347G
http://dx.doi.org/10.3847/0004-637X/817/1/79
http://adsabs.harvard.edu/abs/2016ApJ...817...79H
http://dx.doi.org/10.3847/1538-4357/aabd80
https://ui.adsabs.harvard.edu/abs/2018ApJ...859...84H
http://dx.doi.org/10.1051/0004-6361/201731579
http://adsabs.harvard.edu/abs/2017A%26A...608A..10H
http://dx.doi.org/10.1051/0004-6361/201526012
http://adsabs.harvard.edu/abs/2016A%26A...588A..26H
http://dx.doi.org/10.1093/pasj/psx088
https://ui.adsabs.harvard.edu/abs/2018PASJ...70S..17H
http://dx.doi.org/10.1038/nature08881
https://ui.adsabs.harvard.edu/abs/2010Natur.464..562H
http://dx.doi.org/10.1051/0004-6361/200913217
http://adsabs.harvard.edu/abs/2010A%26A...509L...5H
http://dx.doi.org/10.1088/0004-637X/730/1/8
http://adsabs.harvard.edu/abs/2011ApJ...730....8H
https://ui.adsabs.harvard.edu/abs/2020arXiv200603232H
https://ui.adsabs.harvard.edu/abs/2020arXiv200603232H
http://dx.doi.org/10.1093/mnras/stv705
http://adsabs.harvard.edu/abs/2015MNRAS.451.2663H
http://dx.doi.org/10.1088/0004-637X/809/1/19
http://adsabs.harvard.edu/abs/2015ApJ...809...19H
http://dx.doi.org/10.1051/0004-6361/201731055
http://adsabs.harvard.edu/abs/2017A%26A...606A..12H
http://dx.doi.org/10.1093/mnras/stw2805
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.1454H


BIBLIOGRAPHY

Hu E. M., Cowie L. L., Capak P., McMahon R. G., Hayashino T., Komiyama Y.,

2004, AJ, 127, 563

Hu E. M., Cowie L. L., Barger A. J., Capak P., Kakazu Y., Trouille L., 2010,

ApJ, 725, 394

Hu E. M., Cowie L. L., Songaila A., Barger A. J., Rosenwasser B., Wold I. G. B.,

2016, ApJL, 825, L7

Ilbert O., et al., 2009, ApJ, 690, 1236

Ilbert O., et al., 2013, A&A, 556, A55

Iye M., et al., 2006, Nature, 443, 186

Izotov Y. I., Schaerer D., Thuan T. X., Worseck G., Guseva N. G., Orlitová I.,
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K., Laursen P., Östlin G., 2009, A&A, 498, 13

Noeske K. G., et al., 2007, ApJL, 660, L43

Noll S., Burgarella D., Giovannoli E., Buat V., Marcillac D., Muñoz-Mateos J. C.,
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