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Abstract—The scan-line corrector (SLC) of Landsat 7 ETM+ 

failed permanently in 2003, resulting in about 22% un-scanned gap 

pixels in the SLC-off images, affecting greatly the utility of the 

ETM+ data. To address this issue, we propose a spatial-spectral 

radial basis function (SSRBF)-based interpolation method to fill 

gaps in SLC-off images. Different from the conventional 

spatial-only radial basis function (RBF) that has been widely used 

in other domains, SSRBF also integrates a spectral RBF to increase 

the accuracy of gap filling. Concurrently, global linear histogram 

matching is applied to alleviate the impact of potentially large 

differences between the known and SLC-off images in feature 

space, which is demonstrated mathematically in this paper. SSRBF 

fully exploits information in the data themselves and is 

user-friendly. The experimental results on five groups of datasets 

covering different heterogeneous regions show that the proposed 

SSRBF method is an effective solution to gap filling and it can 

produce more accurate results than six popular benchmark 

methods. 

 

Index Terms—Landsat ETM+, SLC-off, Gap filling, radial basis 

function (RBF) interpolation 

I. INTRODUCTION 

The Landsat series of satellites provides a valuable data 

source for land surface monitoring at the global scale [1]-[6], 

The Landsat program represents the world‘s longest continuous 

collection (from 1972 to present) of moderate spatial resolution 

remote sensing data [7]. Until now, the Landsat series sensors 

include the Landsat 1-4 Multispectral Scanners (MSS), the 

Landsat 5 Thematic Mapper (TM), the Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) and the Landsat 8 Operational 

Land Imager (OLI). The long-term repeat coverage [8], [9] and 

relatively fine spatial resolution (e.g., 30 m for TM, ETM+ and 

OLI) have led to Landsat images being one of the most used 

sources of global data for research and operational applications.  

Amongst the Landsat series of satellites, Landsat 7 has 

provided high quality remote sensing data since 1999. Although 

the Landsat 7 mission has exceeded its expected lifetime it is 
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still in operation and has become one of the most important 

satellites for acquiring global coverage data. However, the 

scan-line corrector (SLC) for the ETM+ sensor onboard Landsat 

7 failed permanently on May 31, 2003. The SLC was designed 

to compensate for the forward motion of the satellite. As a 

result, un-scanned pixels (also referred to as gap pixels and 

missing pixels, hereafter) exist in the images acquired after the 

failure of the SLC. These gaps are about 12 pixels wide and 

occupy about 22% of the whole image. Images acquired before 

the failure of the SLC are usually called SLC-on images, while 

images acquired after the SLC failure are called SLC-off 

images. Fortunately, the SLC-off problem does not affect the 

radiometric and geometric quality of the sensor, and about 78% 

of the image contains effective pixels in each SLC-off 

acquisition [10]. Therefore, the Landsat 7 SLC-off data still 

have value for various applications and many users prefer to use 

these data rather than more expensive alternatives. However, the 

missing data caused by SLC-off affect greatly the application 

utility of Landsat 7 data and are the main obstacle to its adoption 

[11], [12]. To this end, it is of great value to develop approaches 

to fill the values (e.g., reflectance) of gap pixels. Since the 

Landsat 7 satellite is retiring and the Landsat 8 and Sentinel-2 

satellites can also provide global coverage data, one may argue 

that it is not necessary to recover the gap pixels in Landsat 7 

ETM+ SLC-off data. However, the Landsat 7 archive is of great 

significance and historical Landsat 7 time-series data (especially 

before the launch of Landsat 8 and Sentinel-2) can be invaluable 

for various applications, such as continuous monitoring of forest 

disturbance [13]. Moreover, the filled Landsat 7 images can be 

combined with Landsat 8 and Sentinel-2 images to provide a 

larger number of high quality images for more frequent 

monitoring. 

Shortly after the failure of the SLC, the United States 

Geological Survey (USGS) published an official report 

indicating that the un-scanned data can be recovered using the 

spatially adjacent scanned data in SLC-off images, and more 

generally, auxiliary images (i.e., temporally close images, called 

known images, hereafter) [10]. This is also the basic mechanism 

of SLC-off image gap filling. The established gap filling 

methods can be grouped into two main categories according to 

the used data: spatial-based methods (i.e., using only spatially 

adjacent effective data in SLC-off images by spatial 

interpolation) and spatio-temporal-based methods (i.e., using 

also temporally neighboring known images). As a typical 

example of the former spatial-based methods, the plug-in of the 

ENVI software (called Gapfill) was developed and has been 

used widely as it is user-friendly and can be implemented 

without any auxiliary data. Although the image predicted by this 
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type of method is visually complete, noticeable stripes still exist. 

For the latter spatio-temporal-based methods, the known images 

can be acquired from various sensors, including Landsat [14], 

[15] and non-Landsat sensors [16]-[19]. 

In recent years, researchers have developed a variety of 

methods by using effective data of both SLC-off and known 

images. The early methods include local linear histogram 

matching (LLHM) and adaptive window linear histogram 

matching (AWLHM). LLHM was officially released by USGS, 

and it is also one of the most widely used methods. In this 

method, one or more known images are used based on a linear 

transformation function established according to effective pixels 

in moving windows of known and SLC-off images. This 

category of method is simple to apply, and performs 

satisfactorily in homogeneous regions. On the basis of LLHM, 

Zhang et al. [20] proposed a method which we will refer to 

hereafter as the Geographically Weighted Regression (GWR) 

method. As an extension of LLHM, the GWR method quantifies 

the contributions of neighboring pixels by spatial distance 

weighting when predicting the values of missing pixels. Zeng et 

al. [21] used multi-temporal ETM+ SLC-off images to restore 

most of the gap pixels and applied a spatial regularization 

algorithm to predict the remaining gap pixels. Maxwell et al. 

[22] developed a multi-scale segmentation method for gap 

filling and this method was applied to land cover mapping [23]. 

Zhang et al. [24] proposed a co-kriging method to predict the 

gap pixels, taking the effective pixels in the SLC-off images as 

the principal variable and the pixels in the known images as the 

covariable. On this basis, Pringle et al. [25] considered the joint 

use of kriging and co-kriging. When there are insufficient 

known pixels in the neighborhood of the center gap pixel to 

support the application of co-kriging, the simple kriging method 

is adopted alternatively. The Neighborhood Similar Pixel 

Interpolator (NSPI) method developed by Chen et al. [26] has 

received increasing attention and is suitable for restoration of 

heterogeneous landscapes. NSPI prediction is considered as a 

linear superposition of predictions of spatial and temporal 

interpolations. Based on NSPI, the Geostatistical Neighborhood 

Similar Pixel Interpolator (GNSPI) was proposed to fill the 

gaps, in which a linear regression model is established for each 

land cover class and the kriging interpolation is implemented to 

estimate the residuals of gap pixels [27]. Luo et al. [28] 

predicted missing pixels by using LLHM and the k-means 

clustering algorithm jointly. Yin et al. [29] presented a direct 

sampling-based multiple-point geostatistical method which is 

simple to implement and can perform satisfactorily in 

heterogeneous regions. Recently, deep learning-based methods 

[30], [31] have also shown potential for SLC-off images gap 

filling. 

The core of the gap filling methods is interpolation. It is 

undoubtedly of great interest to develop more accurate as well as 

simple interpolation methods for more reliable and convenient 

gap filling. The radial basis function (RBF) interpolation 

method has been acknowledged widely as a user-friendly and 

accurate solution due to its great non-linear modeling ability 

[32], [33] and it has been applied extensively in various domains 

[34], such as solving differential equations [35], scattered data 

interpolation [36], structure optimization [37] and image 

downscaling [38]. In this paper, for the first time, the RBF 

interpolation is considered for dealing with the issue of SLC-off 

images gap filling and, further, the conventional spatial-only 

RBF model is extended it for more powerful non-linear fitting 

(i.e., more reliable characterization of the relation between 

pixels in the entire image based on available spatially sparse 

pixels). In particular, the proposed interpolation method 

considers spectral information in addition to the spatial 

information (e.g., distance to adjacent pixels) in existing 

spatial-only RBF model [38]. This novel method is called 

spatial-spectral RBF (SSRBF) interpolation. Additionally, in 

some cases where rapid changes (e.g., seasonal changes) occur 

between the SLC-off image and its temporally closest known 

image, the known image may still be different from the SLC-off 

image in feature space, although they are very close in time. 

This can lead to great uncertainty in gap filling. To address this 

problem, global linear histogram matching (GLHM) is applied 

between the known and SLC-off images before gap filling. 

GLHM can create a new known image which is closer to the 

SLC-off image in feature space, thus, facilitating the post-gap 

filling process. 

The rest of this paper is organized as follows. Section II first 

provides details of GLHM and the proposed SSRBF-based gap 

filling method. Experimental results are provided in Section III, 

in which the effectiveness of the proposed SSRBF method is 

demonstrated. Section IV further discusses potential problems 

and possible future directions of this research. The conclusions 

are drawn in Section V. 

II. METHODS 

A.  GLHM 

As a pre-processing step, GLHM is implemented to create a 

new known image, which can reduce the differences between 

the known image and the SLC-off image in feature space and, 

further, can facilitate post-gap filling. Suppose the acquisition 

times of the known and SLC-off images are kt and pt , 

respectively. GLHM is performed by constructing a linear 

regression model according to the effective pixels of the known 

and SLC-off images 

( , , , ) ( , , , )p b k bL x y b t A L x y b t B                   (1) 

where ( , , , )kL x y b t  and ( , , , )pL x y b t  are values (i.e., 

reflectances in this paper) of the pixels located at ( , )x y  in band 

b of the known and SLC-off images, respectively. bA  and bB  

are two coefficients, which can be estimated by least squares 

fitting according to the set of effective pixels.   is the residual 

of the regression model. The two coefficients are then used to 

transform the known image to a new image L . The new known 

image is closer to the SLC-off image in feature space, as 

demonstrated below. 

We prove the effectiveness of GLHM by mathematical 

derivation. For brevity, the following formulas are based on a 

single band of the images. 

First, a linear regression model is constructed according to the 

effective pixels of the known and SLC-off images acquired at kt  

and pt , respectively, as 

p kA BL L + + γ                                        (2) 
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where pL and 
kL  are the reflectance matrices of the SLC-off 

and known images, respectively. A and B are two coefficients, 

which can be estimated by least squares fitting. γ  is the residual 

image of the regression model. Based on the relation 

characterized by the model, the difference L  between the 

effective pixels of images acquired at 
kt  and pt  is defined as 

( 1)

p k

kA B

  

   

L L L

L γ
.                           (3) 

After GLHM, the new known image 
k
L  is created by a linear 

transformation of the original known image 
kL  using the 

coefficients A and B 

k kA B  L L .                                 (4) 

Thus, the difference L  between the SLC-off image and the 

known image after GLHM is defined as 

p k
    L L L γ .                              (5) 

To compare the two difference images quantitatively, the 

expectations of the squares of L  and L  are calculated, 

respectively. 

1) 
2( )E L  without GLHM 

According to the relation between the expectation and the 

variance, we have 
2 2( ) ( ) ( )E Var E    L L L .                      (6) 

The first term in Eq. (6), by substituting Eq. (3) and considering 

B is a constant, can be transformed based on the basic property 

of the variance 

 

 

( ) ( 1)

( 1) ( ) 2( 1) ( )

k

k k

Var Var A

Var A Var A Cov

   

     

L L γ

L γ L γ
(7) 

where the operator ‗  ‘ represents the inner product between two 

matrices. The term ( )kCov L γ  in Eq. (7) can be expanded 

according to the basic property of the covariance 

 ( ) ( ) ( )k k kCov E E E   L γ L γ L γ .               (8) 

For the classical least squares linear regression model, there 

are two important properties: 1) the expectation of the residual is 

zero and 2) the expectation of the product of the independent 

variable and the residual is zero 

( ) 0

( ) 0k

E

E




 

γ

L γ
.                                 (9) 

Thus, Eq. (8) equals zero according to Eq. (9), and Eq. (7) can be 

simplified further as 

 ( ) ( 1) ( )kVar Var A Var   L L γ .              (10) 

As a result, Eq. (6) can be expressed as 

 2 2( ) ( 1) ( ) ( )kE Var A Var E     L L γ L .        (11) 

2) 2( )E   L  after GLHM 

It can be seen from Eq. (5) that 2 2( ) ( )E E   L γ . 

According to the relation between the expectation and the 

variance 
2 2( ) ( ) ( )E Var E γ γ γ .                        (12) 

Based on Eq. (9), the second term in Eq. (12) equals zero. 

Therefore, Eq. (12) can be simplified as 
2( ) ( )E Varγ γ .                              (13) 

Comparing Eq. (11) with Eq. (13), it is seen clearly that 
2 2( ) ( )E E    L L  (the first and third terms in Eq. (11) are 

larger than zero). In conclusion, it is proved that compared with 

the original known image, the new known image after GLHM is 

closer to the SLC-off image in feature space. 

B.  SSRBF 

In this paper, the SSRBF method is proposed to predict the 

missing pixels. Different from the conventional spatial-based 

RBF, SSRBF considers additional spectral information for 

enhancement. As the relation between pixels decreases or even 

disappears with increasing separation distance, a fixed-size 

moving window (e.g., a 35×35 pixel window in this paper) is 

considered. Note that the known image mentioned below is the 

image created by GLHM. The implementation of SSRBF is 

illustrated as follows: 

1) Selection of neighboring similar pixels. For each gap pixel, 

its neighboring pixels are used to predict the reflectance, as they 

are closely related to the center pixel. Taking land cover 

heterogeneity into consideration, however, many neighboring 

pixels may belong to different land cover classes from the center 

pixel and, thus, have substantially different spectra. Thus, it is 

logical to select neighboring pixels with similar spectra to the 

center pixel for gap filling. Because the reflectance of the center 

gap pixel is unknown, the known image is used to select similar 

pixels. We assume that no rapid land cover changes occurred 

between the acquisition times of the known and SLC-off images, 

and the similar pixels selected from the known image are also 

spectrally similar to the center gap pixel in the SLC-off image. 

The spectral similarity is quantified using the root mean square 

deviation (RMSD) [25] 

2

1

( , , , ) ( , , , )
n

i i k j j k

b

ij

L x y b t L x y b t

RMSD
n



  



     (14) 

where ( , , , )i i kL x y b t  and ( , , , )j j kL x y b t  are reflectances of the 

i- and j-th pixel in band b of the known image, and n is the 

number of spectral bands. A small RMSD denotes a small 

spectral difference. According to Eq. (14), the RMSDs between 

a center pixel and its neighboring pixels in the moving window 

of the known image are calculated and then the N pixels with the 

smallest values are identified as similar pixels. 

2) Construction of spatial-based RBF. The widely used 

Gaussian function is considered to define the spatial-based RBF 

Dij  

2 2

1

( ) ( )i j i jx x y y

Dij e




  


 .                         (15) 

In Eq. (15), ( , )i ix y  and ( , )j jx y are the locations of the i- and 

j-th spectrally similar pixels in the local window and 
1  is a 

parameter. In this paper, the parameter for the spatial-based 

RBF is determined as twice the maximum distance between the 

center pixel and the neighboring pixels in the window. 

Specifically, the maximum distance is 17 2  when the size of 

the window is 35×35, and in this case, 
1  can be approximately 

determined as 50. 
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Furthermore, the spatial-based RBF 
Di  between the center 

and similar pixels is defined as 
2 2

0 0

1

( ) ( )i ix x y y

Di e




  


                            (16) 

where 
0 0( , )x y  indicates the location of the center pixel. 

3) Construction of SSRBF. It is seen from Eqs. (15) and (16) 

that the spatial-based RBF simply considers the spatial distance 

between pixels, that is, the larger the distance, the smaller the 

value of the spatial-based RBF (i.e., smaller spatial relation 

between the two pixels). However, it may not be sufficient to 

characterize the relation between pixels based solely on spatial 

distance, as the reflectances of some pixels can be very different 

even they are spatially close and also some pixels may be very 

similar even they are spatially distant. Thus, when 

characterizing the RBF, it is helpful to account for the spectral 

information in addition to spatial distance as in the spatial-only 

RBF. Accordingly, the spectral-based RBF Rij  between 

similar pixels and 
Ri  between the center pixel and its 

neighboring similar pixels are defined as 

2

2

ij

i

RMSD

Rij

RMSD

Ri

e

e














 





                                (17) 

where RMSDi is the RMSD between the center pixel and the i-th 

similar pixel in the window and 
2  is the parameter of the 

spatial-based RBF. The parameter 
2  is determined according 

to the set of RMSD values for all windows. Specifically, if 

almost all RMSD values are smaller than 0.05, then 
2  is set to 

0.1, which is twice the maximum value. A larger RMSD leads to 

a smaller value of the spatial-based RBF, indicating a smaller 

correlation between pixels. 

Based on the definitions of the spatial- and spectral-based 

RBF, the SSRBF is proposed by integrating both terms. This 

characterizes the relation between pixels more reliably by 

considering the spatial and spectral information simultaneously 

and exploiting fully the information in the data themselves. 

Correspondingly, the SSRBF between similar pixels (denoted as 

ij ) and between the center pixel and its neighboring similar 

pixels (denoted as 
i ) are defined as 

ij Dij Rij

i Di Ri

  

  





.                                (18) 

4) SSRBF for gap filling. It is acknowledged widely in the 

existing literature [25], [26], [39], [40] that the center gap pixel 

is always expected to have similar temporal changes to its 

neighboring similar pixels. In this paper, SSRBF is proposed to 

estimate the temporal changes in reflectance for gap pixels. The 

SSRBF prediction for each gap pixel is a linear combination of 

i  for all its similar pixels and the key is the calculation of the 

weights through effective pixels. Specifically, the temporal 

changes between the known and SLC-off images for the N 

similar pixels are first calculated as 

( , , ) ( , , , ) ( , , , )i i i i p i i kL x y b L x y b t L x y b t   . The weights, 

denoted as 
bi  ( 1,2,...,i N ), can then be calculated from the 

following equation: 

11 1 1 1 1 1

1

1

( , , )

( , , )

( , , )

i N b

i ii iN bi i i

N Ni NN bN N N

L x y b

L x y b

L x y b

   

   

   

     
     
     
      
     
     
          

.  (19) 

For each gap pixel, a unique set of weights 
bi  is produced 

with Eq. (19) and its temporal change 
0 0( , , )L x y b  is estimated 

as  

0 0

1

( , , )
N

bi i

i

L x y b  


  .                        (20) 

The final prediction is the combination of the known image 

produced by GLHM and the predicted temporal change 

0 0 0 0 0 0
ˆ( , , , ) ( , , , ) ( , , )p kL x y b t L x y b t L x y b   .        (21) 

The overview of the implementation of the proposed method 

is shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Flowchart of the proposed SSRBF-based gap filling method. 
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III. EXPERIMENTS 

A. Data and experimental design 

The proposed SSRBF method was validated with both 

simulated and real ETM+ SLC-off images, and five groups of 

datasets covering different regions were used in the experiments. 

The five regions are located in Verona, Italy (Region 1), 

Zhejiang Province, China (Region 2), Northern New South 

Wales, Australia (Region 3), Beijing, China (Region 4) and 

Versailles, France (Region 5). Regions 1-3 cover 15 km × 15 km 

(500×500 Landsat pixels) areas, while Regions 4 and 5 both 

cover 36 km × 36 km (1200×1200 Landsat pixels) areas. The 

data used include three Landsat 8 OLI images for Region 1, two 

Landsat 8 OLI images for Region 2 and 3, as well as one 

Landsat 7 ETM+ SLC-off and one Landsat 8 OLI images for 

both Regions 4 and 5, as shown in Table 1.  

It should be noted that for Regions 1-3, the Landsat 8 OLI 

images were used in the simulation experiments in place of real 

Landsat 7 ETM+ SLC-off images. That is, the ETM+ SLC-off 

images were simulated using the Landsat 8 OLI images. This is 

because there are no reference data of the gaps for objective 

evaluation, if real SLC-off images are used. On the contrary, the 

corresponding data in the simulated ETM+ SLC-off images are 

known perfectly for both visual and quantitative evaluation. 

Moreover, the Landsat 8 OLI bands also have the same 

wavelengths as the Landsat 7 ETM+ bands. Thus, the scheme of 

simulating ETM+ SLC-off images using OLI images can 

persuasively reflect the performances of the gap filling methods. 

On the other hand, to further show the performance of the 

SSRBF-based gap filling method in real cases, the real Landsat 

7 ETM+ SLC-off images were also involved in the later 

experiments on Regions 4 and 5 in this paper. 
 

Table 1 Images used in the experiments (S represents the Landsat 8 OLI image 
used to simulate the SLC-off image, L represents the Landsat 8 OLI data used as 

known images and R represents the real Landsat 7 ETM+ SLC-off images) 

Region Number Acquisition date 

Verona, Italy 

(Region 1; heterogeneous) 

S1 2016.08.27 

L11 2016.10.30 

L12 2017.01.02 

Zhejiang, China 

(Region 2; heterogeneous) 

S2 2016.04.22 

L2 2016.07.20 

Northern New South Wales, Australia 
(Region 3; abrupt change) 

S3 2004.12.12 

L3 2004.11.26 

Beijing, China 
(Region 4; heterogeneous) 

R4 2019.05.21 

L4 2019.03.26 

Versailles, France 

(Region 5; abrupt change) 

R5 2020.05.27 

L5 2020.08.07 

 

In the simulation experiments on Regions 1-3, the Landsat 8 

OLI images acquired on August 27, 2016 (S1), April 22, 2016 

(S2) and December 12, 2004 (S3) were used to simulate the 

SLC-off images, respectively. The images acquired on other 

dates were used as the known images for gap filling. Finally, the 

original gap-free images S1, S2 and S3 were used for evaluation. 

Figs. 2-6 show the images for Regions 1-5, respectively. Region 

1 is a typical rural area in which the crops show different 

seasonal changes, resulting in great heterogeneity. From Fig. 2, 

it can be seen that S1 and L11 are similar in hue while L12 is 

less similar to them mainly due to the distinct difference 

between the vegetation in autumn (Fig. 2(a) and (b)) and winter 

(Fig. 2(c)). Region 2 is a typical urban area, and similar changes 

in hue can also be observed in Fig. 3. Moreover, most of the 

buildings in Fig. 3 have smaller spatial width than the gaps. 

Thus, the ability of each method to restore the spatial details can 

be examined. In Fig. 4, we can see the abrupt changes caused by 

flood inundation in Region 3, which was a challenge for gap 

filling. Region 4 represents a real case experiencing significant 

seasonal changes in urban areas. Region 5 is dominated by 

farmlands with a wide range of significant changes (caused by 

crop rotation) between the SLC-off and known images. 

The proposed SSRBF-based gap filling method is compared 

with several benchmark methods in the simulation experiments 

on Regions 1-3, including Gapfill, LLHM, GWR, weighted 

multiple linear regression (WMLR) [41], NSPI and GNSPI. We 

set a fixed size of 35×35 pixels for the moving window and the 

same number of similar pixels of 20 for all methods. It should be 

emphasized that regarding the choice of number of similar 

pixels, 20 has been widely selected, such as in the NSPI and 

GNSPI. Specifically, the accuracy of gap filling tends to be 

stable when the number exceeds 20, but the computing time 

increases obviously as the number increases further. That is, the 

number of 20 balances satisfactorily model accuracy and 

computational burden. For the experiments on real ETM+ 

SLC-off images in Regions 4 and 5, the performance of SSRBF 

is examined by visual inspection. 

 

   
(a)                                                           (b)                                                          (c) 

Fig. 2. Landsat 8 OLI data used in the simulation experiment for Region 1 (NIR, red and green bands as RGB). (a) S1. (b) L11. (c) L12. 
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(a)                                                           (b) 

Fig. 3. Landsat 8 OLI data used in the simulation experiment for Region 2 (NIR, 

red and green bands as RGB). (a) S2. (b) L2. 

 

  
(a)                                                           (b) 

Fig. 4. Landsat 8 OLI data used in the simulation experiment for Region 3 (NIR, 

red and green bands as RGB). (a) S3. (b) L3. 
 

  
(a)                                                           (b) 

Fig. 5. Landsat 7 ETM+ SLC-off and Landsat 8 OLI data used in the experiment 

for Region 4 (NIR, red and green bands as RGB). (a) R4. (b) L4. 
 

  
(a)                                                           (b) 

Fig. 6. Landsat 7 ETM+ SLC-off and Landsat 8 OLI data used in the experiment 
for Region 5 (NIR, red and green bands as RGB). (a) R5. (b) L5. 

B. Simulation experiment on the Verona data (Region 1; 

heterogeneous) 

In the experiment on Region 1, the SLC-off image simulated 

based on S1 (acquired on August 27, 2016) is shown in Fig. 7(a). 

L11 and L12 were used as the input known images and the 

gap-free S1 was used for evaluation. Fig. 7(b)-Fig. 7(h) show 

the gap filling results using L12 in Fig. 2(c) as the known image 

based on the Gapfill, LLHM, GWR, WMLR, NSPI, GNSPI and 

SSRBF methods, respectively. It is obvious that all filled images 

are similar to the actual image to various extents. Amongst them, 

there are apparent stripes in predictions of the Gapfill, LLHM, 

GWR and WMLR methods, while the predictions produced by 

NSPI, GNSPI and SSRBF are much closer to the actual image. 

To show the differences between the methods more clearly, two 

subareas are selected for each image, which are enlarged and 

placed on the right side of each entire image. The results show 

that Gapfill produces ambiguous artifacts in both subareas and 

cannot restore the spatial details of objects satisfactorily. For 

example, the contour of the red object at the center of the first 

subarea is not restored, and the red object on the right in the 

second subarea is partially predicted as yellow. The results of 

LLHM and GWR are very similar: the red part of the central 

object in the first subarea is predicted as green which is similar 

to the surrounding features, and the yellow feature in the second 

subarea is incorrectly predicted as light red, showing large 

stripes. A small part of the red object predicted by WMLR in the 

first subarea is close to the reference, but the other pixels are 

obviously different from the real data. In the second subarea of 

the WMLR result, the prediction is visually more accurate than 

Gapfill, LLHM and GWR, but the color of some pixels is 

inappropriately predicted as red. For the NSPI and GNSPI 

results, the red object in the center of the first subarea is partly 

predicted as small green patches; in the second subarea, there 

are some dark pixels on the left side of the yellow object. 

Compared with the six benchmark methods, SSRBF produces a 

result closer to the actual image (see, e.g., restoration of the red 

and yellow objects in the first and second subareas, respectively). 

The same conclusion can also be drawn when L11 was used as 

the known image, as shown in the results in Fig. 8. 

To observe the difference between the NSPI and SSRBF 

predictions more clearly, the error images of both methods for 

the two subareas in Fig. 7 are shown in Figs. 9 and 10. The error 

image of each band is composed of the absolute value of the 

difference between the true and predicted reflectances, in which 

the value of zero is set to black. From Figs. 9 and 10, two 

conclusions can be drawn. First, the error of the filling results 

(including the results of both NSPI and SSRBF) is more obvious 

near the center of the stripe. Second, the error of SSRBF is 

obviously smaller than of NSPI. Taking the results of the NIR 

band in Fig. 9 as an example, in the middle of the stripe, the error 

map of SSRBF is generally blue with very few red pixels while 

the error map of NSPI is basically yellow or even red in the 

central region. In Fig. 10, a similar conclusion can be drawn for 

all bands. Note that for the NIR band in Fig. 10, while SSRBF 

produces larger errors for several pixels on the left than that for 

the NSPI, the errors are smaller for the middle pixels. 

The scatter plots can reveal the difference between the actual 

and the predicted reflectances intuitively. Thus, the scatter plots 

between the predictions in Fig. 7 and the reference are shown in 
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Fig. 11, where the NIR band is taken as an example. It is seen 

that the points of the SSRBF method are more aggregated and 

closer to the diagonal line, while the points of other methods 

present greater dispersion. This means that even though the 

SSRBF prediction produces larger errors in a few local areas (as 

shown in the NIR band in Fig. 10), its overall error is smaller. 

That is, the prediction of the proposed SSRBF method is in 

greater agreement with the actual image.  
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(d)  (e)  (f) 

 

 
 

 

 

 

 
 

 

 

 

 
 

 
(g)  (h)  (i) 

Fig. 7. Results of different methods for filling the gaps in the Verona dataset (Region 1) acquired on August 27, 2016 (15 km by 15 km), with two subareas shown on 
the right (NIR, red, and green bands as RGB). The image acquired on January 2, 2017 (L12) was used as the known image. (a) The simulated SLC-off image based on 

(g); (b) Gapfill. (c) LLHM. (d) GWR. (e) WMLR. (f) NSPI. (g) GNSPI. (h) SSRBF. (i) The actual image. 
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(g)  (h)  (i) 

Fig. 8. Results of different methods for filling the gaps in the Verona dataset (Region 1) acquired on August 27, 2016 (15 km by 15 km), with two subareas shown on 

the right (NIR, red, and green bands as RGB). The image acquired on October 30, 2016 (L11) was used as the known image. (a) The simulated SLC-off image based 

on (i); (b) Gapfill. (c) LLHM. (d) GWR. (e) WMLR. (f) NSPI. (g) GNSPI. (h) SSRBF. (i) The actual image. 
 

 
 

 
Fig. 9. Error images of SSRBF (top) and NSPI (bottom) for the first subarea in Fig. 7. Bands from left to right are blue, green, red, NIR, SWIR1 and SWIR2. 
 

 
 

 
Fig. 10. Error images of SSRBF (top) and NSPI (bottom) for the second subarea in Fig. 7. Bands from left to right are blue, green, red, NIR, SWIR1 and SWIR2. 

 

 
(a)                                 (b)                               (c)                                (d)                               (e)                                (f)                               (g) 

 

Fig. 11. Scatter plots between the actual and predicted reflectances of the NIR band for the results in Fig. 7. (a) Gapfill. (b) LLHM. (c) GWR. (d) WMLR. (e) NSPI. 

(f) GNSPI. (g) SSRBF. 
 

Table 2 Accuracies of the gap filling methods produced using different known images (L11 and L12) in Verona, Italy (Region 1) (the values in bold and italic mean 

the most, and second most, accurate results in each case) 

   Blue Green Red NIR SWIR1 SWIR2 Mean 

L11 as 

known 

image 

RMSE 

Gapfill 0.0179 0.0222 0.0318 0.0592 0.0503 0.0462 0.0379 

LLHM 0.0102 0.0140 0.0224 0.0506 0.0394 0.0374 0.0290 

GWR 0.0102 0.0140 0.0224 0.0503 0.0392 0.0373 0.0289 

WMLR 0.0099 0.0135 0.0212 0.0462 0.0368 0.0357 0.0272 

NSPI 0.0090 0.0120 0.0187 0.0407 0.0332 0.0313 0.0241 

GNSPI 0.0095  0.0127  0.0194  0.0412  0.0349  0.0334  0.0252  
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SSRBF 0.0086 0.0116 0.0179 0.0388 0.0323 0.0302 0.0232 

CC 

Gapfill 0.7241 0.6815 0.6882 0.6551 0.5212 0.6025 0.6454 

LLHM 0.9168 0.8826 0.8527 0.7452 0.7231 0.7506 0.8118 

GWR 0.9172 0.8834 0.8541 0.7482 0.7254 0.7531 0.8136 

WMLR 0.9214 0.8905 0.8700 0.7936 0.7629 0.7767 0.8358 

NSPI 0.9367 0.9156 0.9004 0.8442 0.8127 0.8337 0.8739 

GNSPI 0.9276  0.9044  0.8917  0.8415  0.7909  0.8081  0.8607  

SSRBF 0.9408 0.9207 0.9095 0.8599 0.8237 0.8460 0.8834 

UIQI 

Gapfill 0.7163 0.6701 0.6766 0.6463 0.4996 0.5837 0.6321 

LLHM 0.9103 0.8711 0.8388 0.7190 0.6822 0.7178 0.7899 

GWR 0.9108 0.8719 0.8402 0.7221 0.6849 0.7204 0.7917 

WMLR 0.9153 0.8810 0.8606 0.7798 0.7366 0.7537 0.8212 

NSPI 0.9316 0.9086 0.8936 0.8364 0.7969 0.8198 0.8645 

GNSPI 0.9247  0.9000  0.8873  0.8370  0.7762  0.7952  0.8534  

SSRBF 0.9393 0.9180 0.9063 0.8543 0.8107 0.8358 0.8774 

L12 as 
known 

image 

RMSE 

Gapfill 0.0179 0.0222 0.0318 0.0592 0.0503 0.0462 0.0379 

LLHM 0.0116 0.0157 0.0259 0.0556 0.0447 0.0427 0.0327 

GWR 0.0116 0.0156 0.0257 0.0553 0.0445 0.0425 0.0325 

WMLR 0.0114  0.0152  0.0246  0.0507  0.0420  0.0407  0.0308  

NSPI 0.0103 0.0137 0.0209 0.0445 0.0368 0.0345 0.0268 

GNSPI 0.0105  0.0140  0.0215  0.0456  0.0386  0.0364  0.0278  

SSRBF 0.0093 0.0126 0.0194 0.0425 0.0354 0.0330 0.0254 

CC 

Gapfill 0.7241 0.6815 0.6882 0.6551 0.5212 0.6025 0.6454 

LLHM 0.8902 0.8494 0.7988 0.6808 0.6212 0.6567 0.7495 

GWR 0.8913 0.8511 0.8013 0.6845 0.6246 0.6602 0.7521 

WMLR 0.8947  0.8591  0.8199  0.7448  0.6762  0.6948  0.7816  

NSPI 0.9161 0.8902 0.8752 0.8107 0.7630 0.7929 0.8414 

GNSPI 0.9102  0.8823  0.8652  0.8019  0.7368  0.7663  0.8271  

SSRBF 0.9306 0.9060 0.8917 0.8291 0.7835 0.8124 0.8589 

UIQI 

Gapfill 0.7163 0.6701 0.6766 0.6463 0.4996 0.5837 0.6321 

LLHM 0.8803 0.8322 0.7739 0.6412 0.5528 0.6018 0.7137 

GWR 0.8814 0.8340 0.7766 0.6451 0.5563 0.6056 0.7165 

WMLR 0.8852  0.8448  0.8030  0.7253  0.6342  0.6573  0.7583  

NSPI 0.9047 0.8751 0.8621 0.7993 0.7375 0.7717 0.8251 

GNSPI 0.9062  0.8754  0.8582  0.7935  0.7168  0.7474  0.8162  

SSRBF 0.9282 0.9015 0.8871 0.8209 0.7648 0.7974 0.8500 

 
Table 3 Classification accuracy for the filled results in Fig. 7 (the value in bold means the most accurate result in each case) 

 Gapfill LLHM GWR WMLR NSPI GNSPI SSRBF 

Water 0.3577 0.4498 0.4525 0.5223 0.5625 0.5308 0.5765 

Vegetable 1 0.4703 0.6041 0.6049 0.5757 0.6073 0.6134 0.6175 

Vegetable 2 0.6901 0.5756 0.5808 0.6593 0.7732 0.7745 0.7795 

Vegetable 3 0.4177 0.5342 0.5353 0.5466 0.5116 0.5167 0.5601 

Buildings 0.4658 0.4100 0.4142 0.4993 0.6257 0.6392 0.6646 

OA 0.5344 0.5416 0.5447 0.5878 0.6522 0.6538 0.6718 

 

We evaluated quantitatively the accuracies of the seven 

methods when L11 and L12 were used as the known image, 

respectively. The results based on root mean square error 

(RMSE), correlation coefficient (CC) and universal image 

quality index (UIQI) are shown in Table 2. Generally, compared 

with Gapfill, LLHM, GWR and WMLR, the RMSEs of the 

NSPI, GNSPI and SSRBF are smaller and their CCs and UIQIs 

are obviously larger. Moreover, SSRBF produces greater 

accuracies than NSPI and GNSPI for all six bands; that is, the 

accuracy of SSRBF is the greatest amongst the seven methods. 

Taking the results of using L12 as the known image as an 

example, the average CCs of the six bands of Gapfill, LLHM, 

GWR, WMLR, NSPI, GNSPI and SSRBF are 0.6454, 0.7495, 

0.7521, 0.7816, 0.8414, 0.8271 and 0.8589, respectively. The 

CC of SSRBF is 0.2135, 0.1094, 0.1068, 0.0773, 0.0175 and 

0.0318 larger than those of Gapfill, LLHM, GWR, WMLR, 

NSPI and GNSPI, respectively. 

To further test the suitability of the predictions of the methods 

for application to land cover mapping, the unsupervised 

k-means clustering algorithm was adopted to classify the gap 

filling results in Fig. 7. Meanwhile, the reference land cover 

map was produced by k-means classification of the reference 

image in Fig. 7(i). For the classification result of filled pixels for 

each method, we calculated the producers‘ accuracy (PA) of five 

identified classes and the overall accuracy (OA), as shown in 

Table 3. It is obvious that the classification accuracy of the 

SSRBF prediction is the greatest. This also indicates that the 

SSRBF prediction is the closest to the reference image. The 

McNemar‘s test on the classification results shows that there are 

significant differences between the classified maps of SSRBF 

and the other six methods. 
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Fig. 12. Results of different methods for filling the gaps in the Zhejiang dataset (Region 2) acquired on April 22, 2016 (15 km by 15 km) with two subareas shown on 

the right (NIR, red, and green bands as RGB). The image acquired on July 20, 2016 (L2) was used as the known image. (a) The simulated SLC-off image based on (i). 

(b) Gapfill. (c) LLHM. (d) GWR. (e) WMLR. (f) NSPI. (g) GNSPI. (h) SSRBF. (i) The actual image. 

 
Table 4 Accuracies of the different gap filling methods in Zhejiang, China (Region 2), with L2 as known image (the values in bold and italic mean the most, and 

second most, accurate results in each case) 

  Blue Green Red NIR SWIR1 SWIR2 Mean 

RMSE 

Gapfill 0.0128 0.0137 0.0181 0.0461 0.0357 0.0405 0.0278 

LLHM 0.0069 0.0086 0.0118 0.0464 0.0291 0.0276 0.0217 

GWR 0.0069 0.0086 0.0118 0.0462 0.0288 0.0274 0.0216 

WMLR 0.0060  0.0074  0.0103  0.0421  0.0242  0.0245  0.0191  

NSPI 0.0078 0.0093 0.0121 0.0401 0.0238 0.0239 0.0195 

GNSPI 0.0062  0.0075  0.0103  0.0368  0.0223  0.0239  0.0178  

SSRBF 0.0065 0.0077 0.0105 0.0373 0.0216 0.0236 0.0179 

CC 

Gapfill 0.7504 0.7038 0.7014 0.5959 0.6150 0.6546 0.6702 

LLHM 0.9283 0.8875 0.8782 0.5387 0.7492 0.8490 0.8051 

GWR 0.9290 0.8887 0.8794 0.5456 0.7533 0.8510 0.8079 

WMLR 0.9454  0.9166  0.9066  0.6508  0.8304  0.8818  0.8553  

NSPI 0.9167 0.8807 0.8812 0.6982 0.8430 0.8900 0.8516 

GNSPI 0.9435  0.9139  0.9084  0.7473  0.8596  0.8888  0.8769  

SSRBF 0.9388 0.9107 0.9064 0.7395 0.8691 0.8934 0.8763 

UIQI 

Gapfill 0.7496 0.7017 0.6973 0.5874 0.6073 0.6465 0.6650 

LLHM 0.9281 0.8868 0.8770 0.4765 0.7399 0.8456 0.7923 

GWR 0.9288 0.8881 0.8783 0.4836 0.7444 0.8478 0.7952 

WMLR 0.9445  0.9142  0.9040  0.6244  0.8213  0.8782  0.8478  

NSPI 0.9156 0.8797 0.8809 0.6872 0.8421 0.8890 0.8491 

GNSPI 0.9432  0.9133  0.9075  0.7367  0.8565  0.8870  0.8740  

SSRBF 0.9388 0.9106 0.9061 0.7273 0.8669 0.8929 0.8738 

 

C. Simulation experiment on the Zhejiang data (Region 2; 

heterogeneous) 

In the experiment on Region 2, S2 (acquired on April 22, 

2016) was used to simulate the SLC-off image (shown in Fig. 

12(a)) and L2 was used as the known image. The gap filling 

results of the seven methods are shown in Fig. 12. It is 

noticeable that the Gapfill result in Fig. 12(b) contains 

ambiguous stripes, which means that only using the valid pixels 

in the SLC-off image is insufficient for gap filling. Comparing 
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Fig. 12(c) with Fig. 12(d), it is found that the results of LLHM 

and GWR are similar, in which the red objects are incorrectly 

predicted as gray in the first subarea. The WMLR and NSPI 

predictions in Fig. 12(e) and Fig. 12(f) look more satisfactory 

than Gapfill, LLHM and GWR, but for the red object in the first 

subarea, the WMLR and NSPI predictions contain some abrupt 

black and gray pixels, respectively. Checking the predictions of 

SSRBF and GNSPI, they are obviously more satisfactory and 

closer to the reference data. 

The results of quantitative evaluation are shown in Table 4. 

From the three indices of each band, it is seen that compared to 

the other four methods, the RMSEs of GNSPI, NSPI and 

SSRBF are smaller and the CCs and UIQIs are larger. Moreover, 

the accuracy of SSRBF is greater than NSPI, and almost the 

same with GNSPI (the McNemar‘s test on the classification 

results suggest that there is no significant difference between 

SSRBF and GNSPI results). 

D. Simulation experiment on the Northern New South Wales 

data (Region 3; abrupt change) 

In the experiment on Region 3, S3 (acquired on December 12, 

2004) was used to simulate the SLC-off image and L3 (acquired 

on November 26, 2004) was used as the known image. Fig. 13 

shows the gap filling results of the seven methods. It can be seen 

from Fig. 13 that there are obvious gap areas in the predictions 

of the Gapfill, LLHM and GWR methods, especially at the 

edges of the two large red objects and the abrupt change area 

covered by the waterbody. For the other four methods, the 

differences between them can be observed clearly from the two 

subareas shown in Fig. 13(e)-(h). Moreover, it can be found that 

the SSRBF prediction is the closest to the actual image. 

Table 5 lists the quantitative evaluation results of the seven 

methods. Comparing the three indices of each band, it is seen 

that the accuracy of SSRBF is the greatest, suggesting that 

SSRBF can produce more satisfactory results even in areas 

where abrupt changes occurred. 

 

Fig. 13. Results of different methods for filling the gaps in the Northern New South Wales dataset (Region 3) acquired on December 12, 2004 (15 km by 15 km) with 

two subareas shown on the right (NIR, red, and green bands as RGB). The image acquired on November 26, 2004 (L3) was used as the known image. (a) The 

simulated SLC-off image based on (i). (b) Gapfill. (c) LLHM. (d) GWR. (e) WMLR. (f) NSPI. (g) GNSPI. (h) SSRBF. (i) The actual image. 

 
Table 5 Accuracies of the different gap filling methods in Northern New South Wales, Australia (Region 3), with L3 as known image (the values in bold and italic 

mean the most, and second most, accurate results in each case) 

  Blue Green Red NIR SWIR1 SWIR2 Mean 

RMSE 

Gapfill 0.0092  0.0135  0.0170  0.0206  0.0358  0.0273  0.0206  

LLHM 0.0102  0.0154  0.0190  0.0234  0.0383  0.0281  0.0224  

GWR 0.0101  0.0152  0.0188  0.0231  0.0379  0.0278  0.0222  

WMLR 0.0108  0.0172  0.0193  0.0236  0.0363  0.0278  0.0225  

NSPI 0.0087  0.0127  0.0153  0.0163  0.0320  0.0237  0.0181  

GNSPI 0.0077  0.0111  0.0136  0.0172  0.0323  0.0268  0.0181  
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SSRBF 0.0078  0.0114  0.0137  0.0154  0.0303  0.0225  0.0168  

CC 

Gapfill 0.8922  0.8983  0.8837  0.9083  0.9031  0.8919  0.8963  

LLHM 0.8649  0.8634  0.8493  0.8801  0.8881  0.8850  0.8718  

GWR 0.8683  0.8671  0.8533  0.8832  0.8904  0.8874  0.8750  

WMLR 0.8477  0.8313  0.8475  0.8794  0.9002  0.8877  0.8656  

NSPI 0.9048  0.9095  0.9059  0.9438  0.9232  0.9190  0.9177  

GNSPI 0.9259  0.9312  0.9260  0.9378  0.9222  0.8969  0.9233  

SSRBF 0.9226  0.9284  0.9252  0.9499  0.9312  0.9278  0.9308  

UIQI 

Gapfill 0.8903  0.8965  0.8817  0.9059  0.9009  0.8895  0.8941  

LLHM 0.8500  0.8497  0.8338  0.8701  0.8792  0.8756  0.8597  

GWR 0.8542  0.8540  0.8384  0.8735  0.8818  0.8783  0.8634  

WMLR 0.8438  0.8281  0.8438  0.8773  0.8969  0.8840  0.8623  

NSPI 0.9012  0.9064  0.9026  0.9423  0.9206  0.9158  0.9148  

GNSPI 0.9252  0.9305  0.9251  0.9376  0.9208  0.8955  0.9225  

SSRBF 0.9204  0.9263  0.9229  0.9486  0.9293  0.9257  0.9289  

 

        
 

      
 

        
(a)                                                                                                                                  (b) 

Fig. 14. Gap filling results of two real SLC-off images in Regions 4 and 5 (both 36 km by 36 km; NIR, red and green bands as RGB), with two subareas and 

corresponding SLC-off areas zoomed. (a) Results for R4. (b) Results for R5. 

 

Table 6 Accuracies of different schemes of using GLHM and spectral RBF (the value in bold means the most accurate result in each case) 
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 GLHM (No) 

Spectral RBF (No) 
GLHM (No) 

Spectral RBF (Yes) 
GLHM (Yes) 

Spectral RBF (No) 
GLHM (Yes) 

Spectral RBF (Yes) 

Region 1 
(L11 as known image) 

RMSE 0.0240 0.0235 0.0238 0.0232 

CC 0.8761 0.8809 0.8785 0.8834 

UIQI 0.8718 0.8752 0.8737 0.8774 

Region 1 

(L12 as known image) 

RMSE 0.0270 0.0260 0.0263 0.0254 

CC 0.8403 0.8520 0.8484 0.8589 

UIQI 0.8342 0.8429 0.8416 0.8500 

Region 2 
(L2 as known image) 

RMSE 0.0210 0.0205 0.0185 0.0179 

CC 0.8374 0.8400 0.8695 0.8763 

UIQI 0.8349 0.8381 0.8674 0.8738 

 

E. Experiments on the Beijing and Versailles data (Regions 4 

and 5; heterogeneous and abrupt change) 

In this section, the proposed SSRBF-based gap filling method 

was applied to real Landsat 7 ETM+ SLC-off images for 

qualitative evaluation in practice. Specifically, for Regions 4 

and 5, L4 (acquired on March 26, 2019) and L5 (acquired on 

August 7, 2020) were used as the known images to restore the 

missing pixels in R4 (acquired on May 21, 2019) and R5 

(acquired on May 27, 2020), respectively. The filled results of 

the two regions are shown in Fig. 14, with two magnified 

subareas and two corresponding SLC-off areas. The results 

show that the proposed SSRBF method can satisfactorily 

reconstruct the missing data in the SLC-off images in practice, 

even when there are distinct land cover changes between the 

known and SLC-off images (see, for example, the difference 

between the land cover in Region 5 in Fig. 6(a) and Fig. 6(b)). 

IV. DISCUSSION 

A. Benefits of using GLHM and the spectral RBF in SSRBF 

The proposed SSRBF-based gap filling method uses the 

pre-processing of GLHM and also integrates the spectral RBF 

with the existing spatial RBF. The rationality of the two parts is 

illustrated by experiments as follows. As before, S1 in Region 1 

and S2 in Region 2 were used to simulate the SLC-off images 

and then the original complete images were used for quantitative 

evaluation. Accordingly, L11 and L12 in Region 1 and L2 in 

Region 2 were used as known images. Here, four different 

strategies are compared, and the average accuracies of the six 

bands are shown in Table 6. It can be seen from Table 6 that the 

accuracies of the results produced with GLHM are greater than 

without GLHM. For example, when using L2 as the known 

image for Region 2, the CCs of the spatial and spatial-spectral 

RBF increased by 0.0321 and 0.0363 after using GLHM. 

Moreover, the integration of the spectral RBF also increases the 

accuracy. For example, when using L12 as the known image for 

Region 1, the CC increased by 0.0117 with the use of the 

spectral RBF without GLHM, and increased by 0.0105 when 

using the spectral RBF with GLHM. In summary, either the 

GLHM or spectral RBF strategy can benefit the final result, and 

the accuracy can be further increased by integrating both. 

GLHM not only alleviates the influence of temporal variation 

to a certain extent, but also facilitates the use of multiple known 

images. Specifically, GLHM establishes the relation between 

the known and SLC-off images through linear regression, which 

enables it to simultaneously utilize multiple known images 

through multiple regression. In multiple regression, the 

selection of the known images is flexible, by either using 

multiple Landsat OLI images or TM images, or even using both 

Landsat OLI and TM images. It should be noted, however, that 

it is often the case in practice that only one image is close to the 

SLC-off image amongst the several known images. Thus, it is 

unclear how greatly the land cover changes that have occurred in 

other known images will impact the gap filling results. It is 

possible that the use of extra known images with a larger time 

interval may decrease the accuracy of the filled result. That is, 

the increase of input known images may not necessarily increase 

the accuracy of gap filling. On the other hand, intelligent models 

(e.g., the deep learning-based methods) can be developed 

potentially to take fuller advantage of the multiple known 

images by learning the trajectory of land cover change across 

time. Since multiple known images with high quality are usually 

difficult to acquire (or if available, are temporally distant, 

resulting in distinct land cover changes), this paper considers the 

general case of using one known image. 

B. Advantages of the proposed SSRBF-based gap filling 

method 

 

Table 7 Running times (in units of seconds) of the methods for Regions 1 and 2 

 Region 1 Region 2 

LLHM 192.4 353.9 

GWR 1909.0 2006.2 

WMLR 113.7 141.0 

NSPI 25.5 28.5 

GNSPI 464.1 447.7 

SSRBF 49.2 58.0 

 

The gap filling method proposed in this paper holds the 

following three advantages. First, SSRBF is an accurate 

interpolation method with a simple mathematical calculation 

model, which means that it has a low computational complexity. 

SSRBF interpolation establishes a clear analytic function 

between the predicted value and the known values. This process 

does not require any auxiliary information, and the solution is 

fast and simple to realize, which is conducive to its widespread 

application in various scenarios. The running times of the 

methods for Regions 1 and 2 are shown in Table 7 (CPU: Intel 

Xeon Silver 4110). It is seen that the computing time of SSRBF 

is very close to that of NSPI and is significantly less than for 

other methods. Second, compared with the conventional spatial 

RBF, the integration of spectral RBF enables SSRBF to 

characterize the difference between similar pixels more 

accurately and achieve greater non-linear fitting capability, as 

shown in the results in Section IV-A. Third, the GLHM process 

applied to the known images can, to a certain extent, reduce the 

impact of apparent differences between the known and SLC-off 

images in feature space due to the acquisition time interval and 

land cover changes, as proved in the Section II-A. GLHM, thus, 

extends the application utility of SSRBF and enables it to deal 
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with the challenging case where large differences exist between 

the known and SLC-off images. 

C. Temporal distance between the known and SLC-off images 

Since GLHM in the proposed SSRBF method is used to 

reduce the difference between the SLC-off and known images 

caused by temporal changes, it is necessary to investigate how 

greatly the temporal distance influences the gap filling accuracy 

after GLHM. The Region 1 dataset was used for testing. Based 

on the results for Regions 1-3 in Section III, it was found that the 

performances of NSPI and GNSPI are generally comparable. 

Note, however, that in the experiment for Region 1 in Section 

III-B, NSPI performs more satisfactorily than GNSPI. Therefore, 

NSPI was selected for further comparison with SSRBF in this 

section. 

In Section III-B, it was shown that using L12 that was 

acquired further from the SLC-off image leads to a lower 

accuracy of gap filling than for L11. To explore the effects of 

time interval on the accuracies of the results, we conducted 

experiments using different OLI data in Region 1 over two years 

(between 2016 and 2018) as the known image for gap filling of 

the SLC-off image simulated based on S1 (acquired on August 

27, 2016). Fig. 15 shows the accuracies (in terms of CC) in 

relation to the known images at different times. In Fig.15, the 

three horizontal dotted lines from left to right represent the dates 

of August 27, 2016, August 27, 2017, and August 27, 2018, 

respectively. From Fig. 15, three interesting points can be 

observed. First, the accuracies of gap filling using both methods 

show a periodic change between years. Specifically, in the same 

cycle (e.g., from August 27, 2016 to August 27, 2017), as the 

acquisition date of the known image moves away from the 

SLC-off image and gradually approaches the same date in the 

next year, the gap filling accuracy shows a trend of first 

decreasing and then increasing. The reason is that within one 

year, due to periodic seasonal changes, the difference between 

the known and SLC-off images in hue first reaches the 

maximum in the opposite season in the same year and then the 

minimum in the same season in the next year. Furthermore, for 

the three dates that are closest to the three horizontal dotted lines 

(i.e., the same day of the year with the SLC-off image), the 

accuracies are the greatest amongst all the results. Second, 

taking a year as a cycle, the accuracies of the filled results 

decrease year-by-year. For example, the largest CC decreases by 

0.03 from 2016 to 2017, and by 0.04 from 2017 to 2018. This is 

because more land cover changes such as abrupt changes occur 

when the temporal distance to the SLC-off image increases, 

leading to greater uncertainty in gap filling. Third, SSRBF 

consistently performs more satisfactorily and stably than NSPI.  

Based on the above observations, two further conclusions can 

be drawn. First, the differences in hue caused by seasonal 

changes and land cover changes (e.g., abrupt changes) between 

the known and SLC-off images have a significant influence on 

the accuracies of the filled results. Second, SSRBF is less 

affected by seasonal changes than the existing NSPI. This means 

that in the proposed SSRBF-based gap filling method, GLHM 

can reduce the influence of hue differences to a certain extent. 

Based on the assumption of very few land cover changes, if a 

known image is acquired far from the SLC-off image in time, 

but is closer to the SLC-off image in hue, then the gap filling 

results may be more satisfactory than using another known 

image that is closer to the SLC-off image in time, but 

significantly different in hue. Therefore, the acceptable time 

interval for a useful known image depends mainly on whether 

there are sufficiently small differences in hue and land cover 

changes between it and the SLC-off image. In the future, further 

case studies may be needed to investigate how large hue 

differences and land cover changes (especially abrupt changes) 

may have an unacceptable negative impact on the use of known 

images. 
 

 
 
 

 
Fig. 15. CCs of NSPI and SSRBF for gap filling of the S1-simulated SLC-off 
image (on August 27, 2016) using different known images acquired between 

August 1, 2016 and September 1, 2018 (the three horizontal dotted lines mark 
the dates of August 27, 2016, August 27, 2017 and August 27, 2018). 

D. Generalization of SSRBF 

Although the SSRBF method is proposed for SLC-off image 

gap filling in this paper, its application is not limited to this 

specific issue. Essentially, the principle of gap filling for 

SLC-off images is similar to other data reconstruction issues 

such as cloud removal and infilling [11], [42], [43], all of which 

are performed by borrowing information from the spatially and 

temporally neighboring data of the gap image. Moreover, 

besides optical images, there are also missing data in a variety of 

quantitative products, such as global soil moisture [44], [45], 

land surface temperature (LST) [46], [47] and the normalized 

difference vegetation index (NDVI) [48], [49], etc. Given the 

competitive performance of SSRBF in this paper, it has great 

potential for other data reconstruction problems. In future 

research, the feasibility of SSRBF will be examined for other 

data reconstruction problems, and the model will also be further 

extended for tackling challenges in specific problems. 

V. CONCLUSION 

Landsat 7 ETM+ data play a crucial role in various 

applications, even after the SLC failure. Therefore, it is of great 

significance to fill gaps in the SLC-off images. To this end, we 

developed the SSRBF method for gap filling in this paper. 

SSRBF uses GLHM as a pre-processing step and, further, 

considers spectral information in characterizing the relation 

between pixels in addition to the conventional 

spatial-only-based RBF. Through the case studies in five 

different regions, it is shown that the proposed SSRBF method 

is an accurate solution for gap filling. Either the GLHM or 
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spectral RBF strategy are beneficial to the prediction, and the 

accuracy is further increased by integrating both aspects. 

Compared with the existing Gapfill, LLHM, GWR, WMLR, 

NSPI and GNSPI methods, SSRBF produces consistently 

greater accuracy in gap filling.  

The SSRBF method proposed in this paper are not only 

limited to the issue of Landsat 7 ETM+ SLC-off images gap 

filling, but are also applicable to other data reconstruction issues 

such as cloud removal and infilling, and this will be investigated 

in future research. 
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