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Abstract

We are provided with stroke audit data containing patient baseline measures and

5-year follow-up data for patients admitted to two Liverpool based hospitals with

acute stroke between January and June 1996. Motivated by this data, we overview

previous research on risk factors for survival post-stroke, and review methods for

survival analysis and handling missing data.

Multiple imputation accounts for the additional uncertainty when handling

missing data, however following analysis of multiple imputed data, assessment

of model fit is complicated. We derive and justify formal and visual assessment

techniques for the proportional hazards assumption of a Cox regression model

fitted to multiply imputed data.

Multiple imputation using chained equations is a flexible approach for han-

dling missing data, however misspecification of imputation model form can lead

to biased and restricted analyses. There is minimal research on handling non-

proportional hazards within an imputation framework. We derive suitable impu-

tation model forms to incorporate survival outcomes appropriately in the presence

of non-proportional hazards, and ensure approximate compatibility with the anal-

ysis model.

On correcting analyses to account for non-proportional hazards, model fit is

rarely re-assessed in practice, with standard techniques inappropriate for non-

standard models. We develop formal and visual assessment techniques of the

proportional hazards assumption for a survival model with a time-split, extending
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the work of Grambsch and Therneau (1994) and Winnett and Sasieni (2001).

Finally, we illustrate the methodological developments achieved within this the-

sis through application to the stroke audit data. Our analyses identify important

risk factors for time to death following stroke, aiding in identification of stroke

patients most at risk of death, both in the acute phase and long-term.
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Chapter 1

Introduction

Stroke is a serious and complex condition, for which many patient and medical

characteristics can affect post-stroke survival. Stroke is a prominent cause of death

worldwide and in the UK, and thus it is important to understand the differences

between stroke patients in terms of survival, and the risk factors that affect time

to death post-stroke.

Examining factors related to both early and late death times, and understand-

ing when a patient is at a higher risk of death, can enable appropriate interventions

to be put in place. Knowledge of when a patient is at a higher risk of death, and

the reasons why this is the case, is key to help identify appropriate interven-

tions. Such interventions may take the form of treatment or end of life care, where

Kendall et al. (2018) highlight the importance of palliative, or end of life care as

an intervention.

There has been a large amount of research into risk factors for survival post-

stroke, however, given the complexities of stroke, and difficulties in collecting ob-

servational data, inappropriate treatment of missing data has potentially compro-

mised the reliability of previous research relating to survival post-stroke. Many

studies which have researched survival post-stroke have focussed upon a single, or

small subset, of potential risk factors, due to large proportions of missing informa-

1



tion, and further, those which attempted to handle missing data have used näıve

approaches (Crichton et al., 2016).

Additionally to missing data complicating survival analysis of stroke patient

data, it is known that risk factors for survival post-stroke can have different effects

on risk of death dependent upon the time post-stroke, where early and long term

survival have previously been considered separately (Petty et al., 2000). The issues

around missing data and time-dependent effects on survival post-stroke mean that

further research is needed to gain a greater understanding of the risk factors for

survival of stroke patients, where reliable inferences have yet to be established.

We aim to examine risk factors for survival post-stroke to establish an impor-

tant set of risk factors, for both short and long term survival, which can be used

together to predict which patients are most at risk of death following stroke. In

order to do this, there are several methodological developments needed to allow

for the complexities of stroke patient data.

Firstly, appropriate methods need to be developed which can be used to analyse

survival data, alongside suitable methods for handling missing data. The survival

analysis methods used need to appropriately describe the relationship between

potential risk factors and survival, and it is important to handle missing data using

appropriate methods in order to avoid introducing bias, whilst also minimising loss

of information (Molenberghs and Kenward, 2007).

A flexible approach to missing data is multiple imputation using chained equa-

tions (van Buuren, 2012), which involves making multiple predictions of the missing

values dependent upon the observed data. However, given the outcome of inter-

est is survival, extra consideration is needed to incorporate this outcome when

imputing the missing values (White et al., 2011).

Moreover, the complexity of stroke, and the crucial nature of early treatment

following stroke onset, results in risk factors having different effects on survival

dependent upon the time post-stroke, where previous research has identified dif-
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ferences in risk factors, and their impact, between early and late survival times

following stroke (Andersen and Olsen, 2011). This further complicates analyses

for survival post-stroke, and also methods for handling missing data, motivating

the methodological developments made within this thesis.

Firstly, there is currently little established methodology for assessing model fit

for models fitted to multiply imputed data. In particular, where the Cox propor-

tional hazards model has been fitted to multiply imputed data sets to indicate the

hazard of death following stroke for various risk factors, it is important to assess

the assumption of proportional hazards, specifically to establish if any of the risk

factors have time-dependent effects on survival post-stroke.

Furthermore, as it is already known that risk factors are likely to have time-

dependent effects on survival post-stroke, methodological developments are needed

to incorporate these effects into a multiple imputation procedure to avoid intro-

ducing bias into the imputations, and in turn, the inferences made following anal-

ysis. This issue is addressed within this thesis by extending the work of White and

Royston (2009) to propose what information should be incorporated into the impu-

tation models in order to accommodate the time-dependent effects, and theoretical

rationale will be presented.

As an additional methodological development, this thesis derives techniques for

assessment of model fit for the piecewise-proportional hazards model, an extension

of the Cox regression model used to incorporate time-dependent effects for survival,

where standard validation techniques are inappropriate for this model form.

Returning to the purpose of this research in relation to stroke, the methodolog-

ical developments made throughout this thesis are applied to a stroke audit data

set, where data was collected on patients with acute stroke admitted to two Liver-

pool based hospitals in 1996, and patients were followed up for five years following

stroke onset. The analyses are interpreted in the context of stroke, identifying

which patients are most at risk of death following stroke.
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With regards to the aforementioned points, the subsequent sections of this

chapter identify the aims of this research and outline the structure of the remainder

of this thesis.

1.1 Thesis Aims

In terms of stroke, the aim of the thesis is to gain a greater understanding of

the differences between stroke patients in terms of survival, through producing a

good survival analysis of the stroke audit data, to identify important risk factors

for time to death post-stroke, and produce a fully adjusted analysis of these risk

factors for early and long-term survival.

In order to produce a good survival analysis of the stroke audit data, the

methodological aims of the thesis are as follows:

� To develop methodology for the multiple imputation of survival data in the

presence of non-proportional hazards;

� To develop methodology for assessing the proportional hazards assumption

of survival models after multiple imputation;

� To develop methodology for assessing the model fit of a survival model with

a time-split, in which piecewise-constant effects account for non-proportional

hazards.

1.2 Thesis Structure

Here we provide an overview of the structure of the remainder of this thesis, giving

a brief description of the contents of each chapter:

Chapter 2: Introduction to Stroke. This chapter gives the definition of stroke

and provides a review of the literature relating to survival post-stroke. Further,
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this chapter gives an overview of the stroke audit data used within this thesis.

Chapter 3: Preliminaries. This chapter will overview methods for the anal-

yses of time-to-event data and handling missing data. Survival analysis will be

introduced, where methods for data exploration, fitting a Cox proportional haz-

ards model, and model validation will be outlined. Further, missing data will

be defined, highlighting issues it can cause and reviewing methods for handling

missing data, with multiple imputation using chained equations discussed in depth.

Chapter 4: Application to Stroke: Part 1. Here the initial analyses will

be presented. The results of the data exploration will be shown, alongside the

imputation process and initial modelling results. Issues around model validation

will be discussed as motivation for the next 3 chapters.

Chapter 5: Model Validation after Multiple Imputation. This chapter

will give an overview of methods used for model validation of the Cox propor-

tional hazards model, in particular the assessment of the proportional hazards

assumption. Extensions of these methods will be outlined for application to mul-

tiply imputed data, with a simulation study and application of these extensions

presented.

Chapter 6: Handling Non-Proportional Hazards in MICE. Motivated

by the model validation results in Chapters 4 and 5, this chapter will present

theoretical developments for handling non-proportional hazards within the MICE

framework, with a piecewise-proportional hazards model used as the analysis model

to incorporate the time-dependent covariate effects.

Chapter 7: Piecewise-Proportional Hazards Model Validation. Moti-
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vated by Chapters 4, 5 and 6, this chapter presents the development of model

validation techniques for the piecewise-proportional hazards model, and provides

extensions for application to multiply imputed data.

Chapter 8: Application to Stroke: Part 2. Extending upon Chapter 4,

here the methods outlined in Chapters 6 and 7 are applied to the stroke audit

data to produce a parsimonious model for the survival of stroke patients, inter-

preted in the context of stroke survival.

Chapter 9: Conclusion. This concluding chapter provides a summary of the

thesis, with the potential for future work identified, alongside further discussion

and conclusions about the findings in this thesis.
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Chapter 2

Introduction to Stroke

2.1 Introduction

This chapter provides a review of previous research around survival post-stroke

and describes the data. Firstly stroke is introduced, giving the definition of stroke

and outlining the national and global burden caused by the condition.

Previous research on survival post-stroke is then discussed, giving details on

the findings of previous studies and highlighting their limitations.

Finally this chapter overviews the stroke audit data analysed throughout this

thesis, defining each of the baseline covariates included as potential risk factors for

survival post-stroke.

2.2 Introduction to Stroke

A stroke is a serious, life-threatening medical condition that occurs when the

blood supply to part of the brain is interrupted by either a blockage or rupture

of an artery to the brain (Johnson et al., 2016). Stroke was the defined by the

World Health Organisation (Aho et al., 1980) as a syndrome of vascular origin,

characterised by rapidly developing clinical symptoms and a focal loss of cerebral

function, in which symptoms last for more than 24 hours or lead to death (Rudd
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and Wolfe, 2002). Strokes are classed as medical emergencies which require urgent

treatment, where early treatment helps to reduce the amount of damage caused

by stroke (ISWP, 2012).

To reflect the improved understanding of stroke and its subtypes due to sci-

entific advancements, the American Stroke Association (Sacco et al., 2013) and

World Health Organisation (Norrving et al., 2013) provide updated definitions

of stroke, defining the different subtypes separately. There are two key types of

stroke; ischemic stroke where a blood clot blocks blood flow to part of the brain

and haemorrhagic stroke which refers to a burst blood vessel in the brain. These

two types can be further categorised into subtypes.

Considering the global burden of stroke, it is the second most common cause

of death worldwide (WHO, 2018; Feigin et al., 2017), and was reported by GBD

(2015) to be the third leading cause of years life lost in 2013 globally with 6.5

million stroke deaths worldwide (Feigin et al., 2015). Mozaffarian et al. (2016)

reported that stroke deaths accounted for 11.8% of total deaths worldwide in 2013,

where the prevalence in 2010 was 33 million, with 16.9 million first strokes.

Stroke is also a major cause of morbidity and mortality in the UK, where stroke

is reported to be the fourth largest cause of death in the UK (Stroke Association,

2018). Over 100,000 strokes occur in England each year (Lee et al., 2011), and

1 in 8 are fatal within the first 30 days post-stroke (Bray et al., 2016). Andrews

et al. (2016) reported that, in 2016, around 38,000 people died of stroke in the UK,

however, Goldacre et al. (2008) suggest that stroke is underestimated as a cause

of death due to reporting on death certificates.

Stroke is not only a prominent cause of death, but is the largest cause of

adult disability in England (NAO, 2010). If a patient survives, the injury caused

to the brain through stroke can lead to long-lasting problems for the patients,

leaving them needing rehabilitation and long-term care. Around half of surviving

stroke patients are left with a significant long term disability (Stroke Association,
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2016; Rudd and Wolfe, 2002) and more than half are left dependent on others

for everyday activities (Wolfe, 2000). Stroke requires long-term follow up and

appropriate care, resulting in costs to the NHS of over £3 billion every year (NAO,

2010), with treatment costs accounting for approximately 5% of the total UK NHS

costs (Saka et al., 2009; Mant et al., 2004).

Stroke remains underfunded in terms of research, where in 2012, stroke received

7% of the overall UK research funding for the four major causes of death. This

equated to £56 million, the equivalent of 2% of the overall health and social care

costs of stroke in 2012 (Luengo-Fernandez et al., 2015).

2.3 Overview of Previous Stroke Research

The impact stroke has on both short-term and long-term survival has been studied

previously. A study on early outcomes post-stroke by Nakibuuka et al. (2015)

found 6% of patients to have died within a week post-stroke, 27% within a month,

and found two thirds of deaths to be within their hospital stay. This study had a

small cohort, however, and thus cannot be generalised.

Bray et al. (2016) reported that within the first 30 days post-stroke, 1 in 8

strokes were fatal, and also found that patients admitted to hospital overnight on

a weekday had an increased hazard of death compared to other times of admission,

noting this was likely due to differences in early care. Parry-Jones et al. (2016)

compared differences between haemorrhagic and ischemic stroke, and found that

69.4% of patients with haemorrhagic stroke had died or were moderately-severely

disabled at the end of their hospital stay, compared to 45.4% of ischemic stroke

patients. These studies were focused upon differences in early care, however, and

did not consider long-term survival.

Considering the survival of stroke patients against the general population,

Hardie et al. (2003) and Gresham et al. (1998) found stroke sufferers to have an
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increased hazard of death for up to 20 years following stroke compared to the age

and sex adjusted general population. These studies are limited by small cohorts

but highlight the long-term effect stroke has on mortality. A more recent study

conducted by Crichton et al. (2016), which looked at long-term survival and other

health related outcomes post-stroke, found that 80% of patients had died by 15

years and poor outcomes were common among survivors. The focus of these stud-

ies was on survival and other outcomes post-stroke, with minimal consideration of

the impact of possible prognostic factors on these outcomes and survival.

Previous stroke research has also focused upon the differences between stroke

patients in terms of survival, examining the risk factors that affect time to death

post-stroke. This is an important area of research for stroke; knowledge of factors

related to both early and late death times, and understanding when a patient is

at a higher risk of death, can enable appropriate interventions to be put in place.

This could be treatment, or, as considered by Kendall et al. (2018), palliative care.

There have been many previous studies which have conducted research to iden-

tify the risk factors for death post-stroke. In particular, on conducting a review

of studies investigating survival post-stroke over the last 20 years, we found there

are many risk factors considered to be related to survival. Risk factors can be

categorised as either non-modifiable, which cannot be changed, or modifiable risk

factors, which can be controlled.

Winovich et al. (2017) identified two key non-modifiable risk factors; age and

sex. These have been identified as risk factors for survival post-stroke by several

studies. Khosravi et al. (2017) and Weimar et al. (2002) determine age to be

important, suggesting increased age increases risk of death post-stroke. Andersen

and Olsen (2011) suggest sex to be an important risk factor, however there is a lack

of clarity regarding the direction of this effect, with Olsen et al. (2007) suggesting

the effect of sex on stroke-survival differs over time. Further Khosravi et al. (2017)

and Di Carlo et al. (2018) established consciousness level post-stroke to be a non-
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modifiable risk factor for survival, suggesting worse consciousness increased risk

of death. Stroke severity was identified as another risk factor by several studies,

which suggested increased severity of stroke was associated with poorer outcomes

(Andersen and Olsen, 2011; Appelros et al., 2003; Weimar et al., 2002).

Di Carlo et al. (2018) identified stroke subtype to be an important risk factor

for survival post-stroke, where stroke subtype can guve an indication of stroke

severity. This was reiterated by several other studies including Mudzi et al. (2012)

and Petty et al. (2000), however, each of these studies used varying definitions

for grouping stroke into subtypes. As a further non-modifiable risk factor, history

of heart failure was shown to be associated with increased risk of death post-

stroke by Di Carlo et al. (2018). Further, Doehner et al. (2012) identified living

arrangements at time of stroke to be a risk factor for survival, where patients living

in a institution prior to stroke were shown to be at increased risk of death.

Modifiable risk factors are those which could be changed or controlled for by

things such as lifestyle changes or medication. Diabetes is shown to be a modifiable

risk factor associated with increased risk of death by Ma et al. (2018), alongside

several other studies; Heldner et al. (2018), Khosravi et al. (2017) and Andersen

and Olsen (2011). Further, each of these studies also identify smoking status to be

a risk factor for survival and suggest smoking increases risk of death post-stroke.

Heldner et al. (2018) and Khosravi et al. (2017) additionally identify hyper-

tension to be a modifiable risk factor associated with an increased risk of death

post-stroke. Likewise, Di Carlo et al. (2018) reiterate the importance of hyperten-

sion on survival post-stroke, but also further identify atrial fibrillation to be a risk

factor, along side Andersen and Olsen (2011) and Appelros et al. (2003). Atrial

fibrillation is suggested to increase risk of death post-stroke. Additional modi-

fiable risk factors identified by previous studies are body mass index (Doehner

et al., 2012) and depression (Robinson and Jorge, 2015). These suggested that

underweight patients were most at risk of poor outcomes, as were patients who
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were untreated for their post-stroke depression.

The focus of many of these studies has been on a on a single risk factor or a

subset previously considered to be important. Ma et al. (2018) focussed on the

effect of diabetes on survival post-stroke, whereas studies such as Doehner et al.

(2012) and Heldner et al. (2018) focussed on a subset of risk factors previously

ascertained to be important for survival. However, as stroke is complex and there

are many risk factors considered to influence survival post-stroke, it is important

to examine potential risk factors jointly.

Winovich et al. (2017), Khosravi et al. (2017) and Weimar et al. (2002) con-

sidered a large set of risk factors and conducted multivariate survival analysis,

however these studies encountered issues around missing data. Within these stud-

ies, näıve approaches were commonly used to handle missing data, including the

exclusion of patients with incomplete observations. This complete-case analysis

approach can result in a loss of information and biased inferences, and Crich-

ton et al. (2016) highlighted this as a limitation of their work as it can result in

misleading findings (Little and Rubin, 2002).

Mogensen et al. (2013) made an attempt to handle missing data more appropri-

ately by using multiple imputation, however, they did not include information on

the survival outcome when imputing the values of the missing observations. Omit-

ting the response in the imputation process can introduce bias into the inferences

(Kontopantelis et al., 2017; Moons et al., 2006), where White and Royston (2009)

demonstrated bias towards the null when ignoring the survival outcome. Missing

data is a common issue for observational studies, particularly for a condition as

complex as stroke, however recent studies still fail to mention missing data as a

potential limitation (Di Carlo et al., 2018).

A further focus of previous studies has been the difference in risk factors for

survival dependent upon time post-stroke (Ma et al., 2018; Collins et al., 2003).

Andersen and Olsen (2011) constructed separate stopped Cox models to consider
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how associations between risk factors and survival differ for 1-month, 1-year, 5-

year and 10-year maximum follow-up times. The authors, however, did not per-

form model selection and hence non-significant effects were included within the

inferences.

Petty et al. (2000) also looked at 30-day and 1-year survival separately, in-

dicating differences between risk factors for early and late survival, however this

study focussed on stroke subtypes. A change in the effect of age for early and late

survival has also been noted by Easton et al. (2014).

In general, previous research has shown that there are many risk factors for

survival post-stroke, with potential differences in risk factors dependent upon time

post-stroke. However, previous research has often been limited by the issue of

missing data, with a lack of studies appropriately considering risk factors jointly.

2.4 Data Overview

The data used throughout this thesis are from an on-going stroke audit programme

which began in 1996 at University Hospital Aintree (UHA) and the Royal Liverpool

University Hospitals, Broadgreen (RLBUH) in Merseyside, UK. For the audit, all

hospitalised patients with acute stroke during the period January - June 1996

were identified prospectively from stroke registers, casualty registers and relevant

wards, and retrospectively from hospital discharge lists. The data included 538

patients who were identified as having had an acute stroke and entered onto stroke

registers between January 1st and June 11th 1996. The follow-up period was 5

years, recorded between 1996 and 2001.

Within the audit, a minimum data set was recorded according to the European

Stroke Database (ESDB), and included information on patient demographics, his-

tory of known risk factors for stroke, characteristics of stroke and resource use in

hospital. Information on mortality was obtained from hospital information sys-
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tems and FHSA/GP registers. To ensure the audit covered all patients, not just

those who could give consent or communicate, all patients had in-hospital data

collected. Provided consent was given, follow-up data was also collected at dis-

charge and at 3, 6, 12 ,24, 36, 48 and 60 months post-stroke to assess general

stroke recovery, such as functionality and mood, however this project focuses on

the ESDB baseline data in relation to mortality post-stroke. Details of the baseline

measures are itemised below in section 2.4.1.

2.4.1 Baseline Measures

The general patient characteristics included are:

� Age - age of the patient in years at time of stroke;

� Sex - male or female;

� Smoking status - smoker, ex-smoker or non-smoker;

� Alcohol consumption - excessive, regular, occasional or non-drinker;

� Pre-stroke mobility - 200 metres outdoors, indoors or needs help;

� Pre-stroke Rankin - participation rated using the modified Rankin scale,

this measures independence, incorporating mental and physical adaptations

to the neurological defects, see Table 2.1;

� Pre-stroke living conditions - home alone, home with companion or in an

institution.

The baseline measures also included details of patients’ medical history and pre-

vious medications:

� Previous stroke - whether or not the patient had suffered from a stroke

previously;

14



� Previous transient ischaemic attack (TIA) - whether or not the patient pre-

viously had a TIA, a temporary disruption to the blood supply to part of

the brain;

� Diabetes Mellitus - whether or not the patient has diabetes, a lifelong con-

dition that causes a person’s blood sugar level to become too high;

� Hypertension - whether or not the patient has previously been diagnosed

with hypertension, or high blood pressure;

� Angina - whether or not the patient has previously suffered from angina,

chest pain caused by restricted blood flow to the muscles of the heart;

� Atrial Fibrillation - whether or not the patient has previously suffered from

atrial fibrillation, a heart condition that causes an irregular, often abnormally

fast, heart rate;

� Peripheral Vascular Disease (PVD) - whether or not the patient has PVD, a

common condition in which build up of fatty deposits in the arteries causes

restricted blood flow to the leg muscles;

� Myocardial Infarction - whether or not the patient has previously had a

myocardial infarction, more commonly known as a heart attack, where the

blood supply to the heart is suddenly blocked;

� Previous anti-hypertensive medication - whether or not the patient has pre-

viously taken medication to reduce blood pressure;

� Previous anti-platelet treatment - whether or not the patient has previously

taken medication to reduce platelet aggregation and prevent formation of

blood clots;

� Previous anti-coagulants - whether not the patient has previously taken anti-

coagulant medications to prevent blood clots forming.
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Details of the stroke event were also recorded, including symptoms shown by the

patient at admission to hospital and within the first 24 hours post-stroke, along side

other important diagnostic details regarding stroke. The stroke event assessments

recorded are:

� Onset date - date of the onset of stroke;

� Admission date - date the patient was admitted to hospital;

� Hospital - specification of whether the patient was admitted to UHA or

RLUBH;

� OCSP classification of stroke - classification of stroke: TACS, PACS, LACS,

POCS, unconscious or unclassified, where definitions of the stroke subtypes

are given in Table 2.2;

� Side of lesion - if the patient had a lesion, this identified the position of the

lesion in the brain: left, right, both sides, or no lesion;

� CT scan results - it was recorded whether or not each patient had a CT

scan, and if so, what type of lesion was shown in the CT scan: no lesion,

cerebral infarction (CI), haemorrhagic cerebral infarction (HCI), or primary

intra-cerebral haemorrhage (PICH);

At admission to hospital, information was recorded about the following:

� Blood pressure (BP) - systolic and diastolic BP measurements (mmHg) and

whether or not the patient had hypertension;

� Arm weakness - recorded as no movement, weakness or no deficit;

� Leg weakness - recorded as no movement, weakness or no deficit.

Information was also recorded regarding symptoms occurring within the first 24

hours after onset of stroke. These include:
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� Worst consciousness level within the first 24 hours after stroke onset - coma,

stupor, drowsy or alert;

� Arm weakness - whether or not the patient had arm weakness;

� Leg weakness - whether or not the patient had leg weakness;

� Facial weakness - whether or not the patient experienced facial weakness;

� Dysphasia - whether or not the patient had dysphasia, an impairment in a

person’s ability to communicate;

� Dysarthria - whether or not the patient had dysarthria, a motor speech

disorder;

� Confusion - whether or not the patient experienced confusion;

� Conjugate Gaze Paresis (CGP) - whether or not the patient had CGP, a

neurological disorder affecting a person’s ability to move both eyes in the

same direction;

� Hemianopia - whether or not the patient had hemianopia, decreased vision

or blindness in one half of the visual field;

� Sensory inattention - whether or the not the patient had sensory inattention,

a sensory deficit causing the inability of a person to process or perceive stimuli

on one side of the body or environment;

� Brainstem or cerebellar signs - whether or not the patient was showing signs

of brainstem or cerebellar damage;

� Other deficit - whether or not the patient had signs of any other deficit.

The primary outcome measure that was recorded was death. Both date and cause

of death were recorded, and survival time was calculated as the number of days

from the date of onset of stroke to the date of death.
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Table 2.1: Modified Rankin Scale

Level Description

0 No symptoms

1 No significant disability despite symptoms; able to perform all usual
duties or activities

2 Slight disability; unable to carry out all previous activities, but able
to look after own affairs without assistance

3 Moderate disability; requires some help but able to walk without
assistance

4 Moderately severe disability; unable to walk without assistance and
unable to attend to own bodily needs without assistance

5 Severe disability; bedridden, incontinent, and requires constant nurs-
ing care and attention

6 Dead

2.5 Conclusion

This chapter has defined stroke and highlighted the national and global burden

of the condition. The review of previous research on survival post-stroke has

shown that there are many risk factors for survival post-stroke, however, the issues

around missing data have led to many studies only considering a small subset of

risk factors, or handling missing data using näıve approaches. Further, this review

has highlighted the need to consider possible time-dependencies of risk factors for

survival post-stroke. The stroke audit data has been outlined in this chapter, and

the issue of missing data and time-dependent effects shown in previous studies

motivate the methods used and developed throughout this thesis.
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Table 2.2: Oxford Community Stroke Project (OCSP) Classification

Type Description

TACS Total Anterior Circulation Stroke is a large cortical stroke in middle
or anterior cerebral artery areas showing all three of:

I Motor and/or sensory deficit in at least two of face, arm or leg;

I Homonymous hemianopia, a visual field deficit;

I Higher cerebral dysfunction e.g. dysphasia.

PACS Partial Anterior Circulation Stroke is a cortical stroke in middle or
anterior cerebral artery areas showing only two of:

I Motor and/or sensory deficit in at least two of face, arm or leg;

I Homonymous hemianopia, a visual field deficit;

I Higher cerebral dysfunction e.g. dysphasia.

POCS Posterior Circulation Stroke shows one of the following:

I Ipsilateral cranial nerve palsy with contralateral long tract signs;

I Bilateral motor and/or sensory deficit;

I Cerebellar dysfunction;

I Disorder of conjugate eye movements;

I Isolated hemianopia or cortical blindness.

LACS Lacunar Stroke is an occlusion of a single deep perforating artery
adhering to one of:

I Pure motor stroke;

I Pure sensory stroke;

I Ataxic hemiparesis.
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Chapter 3

Preliminaries

3.1 Introduction

This chapter sets the notation and introduces the techniques used throughout this

thesis. We overview survival analysis and the issue of missing data, providing a

review of the relevant methods for both these topics.

Firstly survival data is introduced, defining important functions and notation,

and outlining data exploration techniques. The Cox proportional hazards model

is defined, describing in depth how the model can be fitted. Additionally, meth-

ods for selecting a parsimonious model are discussed, alongside model validation

techniques, where focus is upon the assessment of the proportional hazards as-

sumption.

Further, the issue of missing data is introduced, where classifications of missing

data are outlined. The potential issues arising from the presence of missing data

are highlighted, alongside a review of methods for handling missing data. Par-

ticular focus is given to multiple imputation, where a detailed discussion of how

this can be implemented using multiple imputation using chained equations is pro-

vided. Techniques for obtaining a pooled parsimonious model following multiple

imputation are also outlined.
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3.2 Survival Analysis

3.2.1 Background

Survival analysis is used to model and analyse time-to-event data, which consists

of measurements of time until the occurrence of a particular event of interest for

each individual. In order for comparisons to be made, it is essential to measure

the time-to-event from a well-defined origin; in a medical context this could be

the time when treatment began or when the disease was diagnosed. Dependent

upon the type of the event of interest, time-to-event may be described as ‘survival’

time, ‘failure’ time or ‘event’ time. If death is the event of interest, then time-to-

event is referred to as survival time. This is the case in the context of the stroke

data, which includes measurements of time to death from onset of stroke for each

patient, thus we will use the term ‘survival’ time to describe time-to-event.

Censoring is a key feature of time-to-event data, and must be considered within

any analyses carried out on time-to-event data. Censoring occurs when the event

of interest has not been observed for an individual. A particular type of censoring

is right censoring, which commonly occurs when individuals are observed up until a

maximum time point, and if an individual has not experienced the event of interest

prior to this maximum time point, a censored survival time is instead recorded.

This is the time the individual was last known to be alive or event free. A right

censored survival time may also be recorded due to drop-out or loss to follow-up.

It is common to make the assumption that that an individual’s actual survival

time is independent of the mechanism causing their survival time to be censored.

This is known as non-informative censoring, and assumes statistical independence

between the censored and actual survival time.
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3.2.2 Notation and Functions of Interest

In order to define important functions of interest, denote the actual survival time

of an individual to be t, and let T be a non-negative random variable associated

with the survival time. Let ∆t denote a small time interval. There are three main

functions of interest for summarising survival data:

Survivor function: the probability that an individual survives beyond some time

t, and is given by

S(t) = P(T ≥ t);

Hazard function: the risk of the event occurring at time t, given by the proba-

bility of an individual having the event at time t, conditional upon that individual

surviving to time t. More formally,

h(t) = lim
∆t→0+

{
P(t ≤ T ≤ t+ ∆t|T ≥ t)

∆t

}
;

Cumulative hazard function: the risk of an event up to time t, given it has

not occurred before time t. This can be obtained from either the hazard function

or survivor function.

H(t) =

∫ t

0

h(u)du = − logS(t).

These functions can be used to derive the probability density function, f(t), and

cumulative incidence function, F (t), where

F (t) = P(T < t) =

∫ t

0

f(u)du.

Now, suppose we have a set of n individuals followed up for some time interval [0, τ ],

and denote the true survival time for an individual i as ti, and the right censored

time as ci, for i = 1, ..., n. Then the observed survival time for an individual i
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is denoted t∗i , where t∗i = min(ti, ci) and 0 ≤ t∗i ≤ τ . Let δi define an indicator

function, where δi is unity if t∗i is the true survival time ti, and zero otherwise;

this is defined as the censoring indicator. The observed response for an individual

i is then represented by the observed survival time and censoring indicator, and is

denoted as the iid pair (t∗i , δi). The survivor function and hazard function can be

estimated using the observed survival times.

3.2.3 Exploration Techniques

An essential aspect for analyses of observed data is exploration of the data. For

survival data, this can require specialised techniques. Within this section we will

briefly describe the Kaplan-Meier estimator for the survivor function and how it

can be used to explore survival data, alongside the Neslon-Aalen estimator of the

survivor function. Additionally we will overview the log-rank test, and some tech-

niques for considering pairwise associations between explanatory variables within

the data.

Kaplan-Meier Estimator

The Kaplan-Meier (KM) estimator (Kaplan and Meier, 1958) is useful for looking

at overall survival, and comparing survival between groups of individuals. The

KM estimator is the product-limit estimator of survival, and adjusts the empirical

survivor function to account for the presence of right-censored observations. It is

a non-parametric approach so no assumptions about the underlying distribution

need to be made, however the estimator assumes independent censoring and con-

siders a discrete version of the hazard function. Consider N distinct ordered event

times denoted 0 < t1 < t2 < ... < tN . For some event time tj, j = 1, ..., N , denote

the risk set as R(tj), where the risk set is defined to be the set of individuals who

are still in follow-up and remain event free, in other words, the set of individuals

still at risk of the event at time tj. Let nj be the number of individuals in the
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risk set at tj and dj be the number of events that occur at tj. An individual being

event free just before tj is equivalent to the individual being event free beyond

tj−1. This equivalence means the probability of the event at tj can be defined as

a discrete version of the hazard function

h(tj) = P(T = tj|T > tj−1),

which can be estimated by the proportion of individuals at risk at tj,

ĥ(tj) =
dj
nj
.

The probability of being event free up to time point tj is given by taking the

product of the probability of an individual being event free beyond tj−1 and the

conditional probability of being event free up to tj given event free at tj−1. Alge-

braically, this is

Ŝ(tj) = Ŝ(tj−1)(1− ĥ(tj)) = Ŝ(tj−1)(1− dj
nj

).

Through repeated application of this product rule, the KM estimator is obtained

as

Ŝ(t) =
∏
j:tj≤t

(
1− dj

nj

)

The KM estimator, Ŝ(t), is a step-wise function that approaches a continuous

distribution as the number of individuals, n, increases. Plotting the KM survival

curves is a commonly used approach to establish any changes in the estimated

survivor function as time progresses, and can be used to view differences in survival

across groups of individuals.
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Log-Rank Test

The log-rank test can be used to assess the difference in survival between two or

more groups. The log-rank test is a non-parametric approach which tests the null

hypothesis that there no is difference in survival between groups, or more precisely,

levels of a particular covariate, where the null hypothesis is tested against the χ2-

distribution. As an example, the log-rank test could be used to assess differences

in survival by sex, and assess the null hypothesis that there is no difference in

survival between males and females.

In order to calculate the log-rank test statistic, the observed and expected

number of events for each group need to be defined. Let L be the number of

levels to be compared, and l = 1, ..., L. For the jth event time, tj, denote the

number of events at time tj as dj, or dlj for level l, and the let nj denote the

number of patients at risk at tj, nlj for level l. Under the assumption that the

null hypothesis is true and there is no difference in survival between the levels, the

expected number of events in each group is given by

Elj =
djnlj
nj

,

and the observed number of events, Olj, is equal to the number of events at tj,

that is

Olj = dlj.

The log-rank test statistic, L, is calculated as

L =
L∑
l=1

(
∑

j Olj −
∑

j Elj)
2∑

j Elj
,

and can be compared to the χ2-distribution with L− 1 degrees of freedom.
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Techniques for Exploring Pairwise Associations

When conducting data exploration, it can be important to examine relationships

between covariates in addition to the exploration of covariate effects on the re-

sponse. There are several methods which can be used to measure associations

between covariates, and the appropriate method should be chosen dependent upon

variable type.

For two categorical or binary covariates, X1 and X2 say, the χ2-test can be

used to assess any associations between them. The χ2-test will assess the null

hypothesis that X1 and X2 are independent, against the alternative that they are

not independent. Suppose X1 and X2 have A and B total levels respectively, and

level a = 1, ..., A and b = 1, ..., B. The expected frequency count for level a of X1

and level b of X2 is given as

Ea,b =
na × nb

n
,

where na and nb are the total number of sample observations at level a of X1 and

level b of X2 respectively, and n is the total sample size. The test statistic then

follows the χ2-distribution and is defined as

χ2 =
∑ (Oa,b − Ea,b)2

Ea,b
,

where Oa,b is the observed frequency count at level a of X1 and level b of X2. To

assess the null hypothesis, this test statistic is compared to the χ2-distribution

with (A− 1)(B − 1) degrees of freedom at the chosen significance level.

An alternative test for categorical covariates is Kendall’s τ , however this is

specifically used to assess the relationship between two ordered categorical vari-

ables. Kendall’s τ considers the difference between the number of concordant pairs

and the number of discordant pairs for the two covariates being considered, and

gives a non-parametric measure of correlation.

To assess the association between a continuous covariate and a categorical
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covariate, the ANOVA F -test can be used. In order to carry out this test, a linear

regression is set up between the two covariates, where one is chosen to be the

dependent covariate and the other is identified as the independent covariate. The

linear regression can assess if the independent covariate can explain or predict the

dependent covariate. The F -statistic can be obtained through calculating the error

sum of squares and regression sum of squares, which can then be compared to the

F -distribution for a chosen significance level and appropriate degrees of freedom.

Pearson’s correlation coefficient can be used to assess the association between

two continuous covariates. Consider two continuous covariates X1 and X2, with

sample size n, then the Pearson’s correlation coefficient, ρ, is given by

ρ =
n
∑n

i=1X1iX2i − (
∑n

i=1 X1i)(
∑n

i=1X2i)√
[n
∑n

i=1X
2
1i − (

∑n
i=1 X1i)2][n

∑n
i=1X

2
2i − (

∑n
i=1X2i)2]

.

The correlation coefficient ρ can take any value between −1 and 1, and the t-

distribution can be used to assess if ρ is significantly different from zero, indicating

an association between the two covariates.

3.2.4 Cox Proportional Hazards Model

After initial data exploration, in order to examine the relationship between survival

and explanatory variables further, a statistical modelling approach is needed. As

the hazard or risk of an event, such as death, occurring is of primary interest in

the analysis of survival data, the hazard function is modelled directly. Through

modelling the hazard function, we can determine which combination of explanatory

variables affect the form of the hazard function, whilst examining the extent to

which the explanatory variables affect the hazard function. This provides a method

to obtain an estimate of the hazard function for an individual (Collett, 2015).

The Cox Proportional Hazards (PH) model is the most commonly used proce-

dure for modelling survival data, and is the method we will focus upon. The Cox
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PH model is generally given in terms of the hazard function, defined as

h(t|X) = h0(t) exp(β′X), (3.1)

where h0(t) is the baseline hazard function, X is the observed explanatory vari-

ables, and β is the vector of coefficients for the explanatory variables.

The key assumption of the Cox PH model is the proportional hazards assump-

tion, where the hazard ratio (HR) is constant with respect to time t, that is, there

are no time by predictor interactions. Another key property of the Cox PH model

is that no assumptions are made regarding the shape of the underlying hazard or

survivor functions, h(t) and S(t). This means that the β-coefficients can be esti-

mated without requiring estimation of the baseline hazard function, h0(t). Also,

in it simplest form, the model assumes linearity and additivity of the predictors

with respect to the log hazard or log cumulative hazard.

In order to fit the Cox PH model, the unknown β-coefficients for the explana-

tory variables need to be estimated. This can be done using maximum likelihood

estimation. Within the Cox PH model, this involves obtaining the joint probability

of the observed data as a function of the observed survival times and the unknown

β-coefficients in the linear component in the model; giving the likelihood of the

sample. As the hazard is presumed to be zero in the intervals between successive

event times, the construction of the Cox PH model is based on the assumption that

these intervals do not convey any information about the effect of the explanatory

variables on the hazard function.

Suppose we have n individuals, and N distinct event times in the data. Assume

there are no ties in the data, so that only one individual has an event at each event

time. Denote the N ordered event times as t1, t2, ..., tN , where t1 < t2 < ... < tN ,

with tj denoting the jth ordered event time. Let R(tj) denote the risk set at

tj, which is the set of individuals at risk at tj, meaning they are event free and
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uncensored just before tj. The likelihood function defined by Cox (1972) for the

model in Equation (3.1) is given as

L(β) =
N∏
j=1

exp(β′xj)∑
l∈R(tj) exp(β′xl)

, (3.2)

where xj is the vector of covariates for the individual with an event at tj. This is

defined as a partial likelihood as it depends only on the ranking of the event times

and does not use the censored and uncensored survival times directly.

An alternative form of the partial likelihood includes a censoring indicator.

Suppose the data consists of n observed survival times, t1, t2, ..., tn and let δi denote

the censoring indicator which is zero if the ith survival time is right-censored, and

one otherwise. Let R(ti) denote the risk set at ti. The partial likelihood function

given in Equation (3.2) can be expressed as

L(β) =
n∏
i=1

[
exp(β′xi)∑

l∈R(ti)
exp(β′xl)

]δi
,

and the corresponding log-likelihood function is given by

logL(β) =
n∑
i=1

δi

β′xi − log
∑
l∈R(ti)

exp(β′xl)

 . (3.3)

Maximising the log-likelihood function in Equation (3.3) enables us to find the

maximum likelihood estimates of the β-coefficients in the Cox PH model. This can

be achieved using numerical methods, generally the Newton-Raphson procedure.

The Newton-Raphson procedure starts with an initial guess for β, denoted β(0).

The algorithm then iteratively computes

β̂(n+1) = β̂(n) + I−1(β̂(n))U(β̂(n)),

until convergence, where U is the score vector obtained by differentiating the log
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partial likelihood with respect to β. Convergence is assessed by the stability of the

log partial likelihood (Therneau and Grambsch, 2013).

The likelihood and log-likelihood defined above assume no tied events, or sur-

vival, times, however tied survival times can arise due to often being recorded to

the nearest day or month. Multiple censored observations can also occur at an

event time. If at a given time, both censored and uncensored survival times occur,

the censoring is assumed to occur just after all the events to remove ambiguity

about which individuals should be included in the risk set for that time.

There have been several methods proposed to handle ties in survival times,

including Efron (1977), Cox (1972) and Breslow (1974), with the approximation

suggested by Breslow (1974) being the simplest (Collett, 2015). For an individual

with an event at time tj, denote the vector of sums of the q explanatory variables

aswj. If the number of events at tj is dj, then the kth element ofwj can be defined

as wkj =
∑dj

h=1 xkjh, where xkjh is the value of the kth explanatory variable for

the hth of dj individuals who have an event at tj. Breslow (1974) proposed the

approximate likelihood

N∏
j=1

exp(β′wj){∑
l∈R(tj) exp(β′xl)

}dj , (3.4)

and Efron (1977) proposed the approximation

N∏
j=1

exp(β′wj)∏dj
h=1

[∑
l∈R(tj) exp(β′xl)− (h− 1)d−1

j

∑
l∈D(tj) exp(β′xl)

] , (3.5)

where D(tj) is the set of individuals with an event at tj. Efron’s approximation in

Equation (3.5) gives a closer approximation, but the approximation by Breslow,

Equation (3.4), is appropriate when the number of tied observations at event times

is not too large, and both of these approximations often give similar results.
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3.2.5 Model Selection

The model selection process is concerned with determining a parsimonious subset

of variables for inclusion in the model, where the strategy taken to carry out

model selection may depend upon the purpose of the study (Collett, 2015). The

procedures outlined below coincide with the aim of identifying a subset of variables

upon which the hazard function depends.

There are three commonly used approaches which can be automated in statis-

tical software: forward selection, backwards selection and the stepwise approach.

Forward selection starts with the null and adds variables one at a time, where the

variable chosen for inclusion at each stage will be the one with the most significant

association with the outcome which is not already included in the model (Simon

and Altman, 1994). Addition of variables stops when the model is no longer im-

proved by inclusion of further variables, where improvement can be assessed using

various testing procedures with a predefined significance level.

Backwards selection, on the other hand, begins by fitting a model containing

the maximum number of variables under consideration, and excludes variables one

at a time. Again this process ceases when omission of further variable does not

significantly improve the model. The stepwise approach is a combination of the

two procedures, where initially like forward selection, the procedure begins with

addition of variables, however, variables already included in the model can be

considered for exclusion at a later stage. In other words, after each addition, the

procedure checks if any previously included variables can now be removed (Collett,

2015).

Each of these procedures can be flawed in application as the resulting par-

simonious model has been selected solely on statistical grounds. In application

terms this may potentially result in excluding variables deemed to be relevant by

experts in the topic of the application, for example, clinical relevance. Backwards

selection has been suggested to be the best option for this reason, as it allows for
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examination of the full model (Clark et al., 2003). Further, the full model is the

only fit to provide accurate statistical measures (Harrell, 2006).

There are several tests which can be used to assess the significance of any

improvement from addition or exclusion of a variable. The likelihood ratio, Wald

and score tests are the standard likelihood inference tests, and can be used to assess

hypotheses about β for the Cox model. The global null hypotheses is β = β(0),

where β(0) is the initial value for the estimate of β̂, often defaulted as zero in

statistical software (Therneau and Grambsch, 2013).

The likelihood ratio test is defined as twice the difference between the log

partial likelihood at the initial and final estimates of β̂, algebraically this is

2{l(β̂)− l(β(0))},

where l(.) is the log partial likelihood. The Wald test is defined as

(β̂ − β(0))′I(β̂)((β̂ − β(0)),

where I(β̂) is the estimated information matrix. For a single covariate, the Wald

test reduces to the z-statistic, β̂/SE(β̂), where SE(β̂) is the standard error of β̂.

The score test statistic is calculated using the first iteration of the Newton-

Raphson procedure, and is defined as

U ′(β(0))I(β(0))−1U(β0).

The score test is closely related to a Wald test based upon one iteration of the

Newton-Raphson procedure. These tests are asymptotically equivalent, and the

null hypothesis distribution for each of them is the χ2-distribution on q degrees of

freedom (Therneau and Grambsch, 2013).
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3.2.6 Model Validation

Once the final model has been fitted, model diagnostics need to be carried out in

order to test if the model fits to the data adequately and assess if the underlying

model assumptions have been satisfied. There are several different types of residual

checking that can be used to conduct model validation. The key assumption to

check is the proportional hazards assumption, which can be assessed visually or in a

formal test using the Schoenfeld residuals (Schoenfeld, 1982). It is also important

to check the functional form of covariates; this can be done using martingale

residuals or smoothing splines.

Schoenfeld Residuals

The ith Schoenfeld residual for the kth explanatory variable in the model is an

estimate of the ith component of the first derivative of the partial log-likelihood

function, evaluated at β̂, and is defined as

ski = δi

{
xki −

∑
l∈R(ti)

xkl exp(β̂
′
xl)∑

l∈R(ti)
exp(β̂

′
xl)

}
,

where xki is the value of the kth explanatory variable, Xk, for the ith individual

and R(ti) is the risk set at ti. Schoenfeld residuals are only non-zero for uncensored

observations, and as the β-coefficients are estimated such that

∂ logL(β)

∂β̂k

∣∣∣∣
β̂

= 0,

we have the constraint that the Schoenfeld residuals must sum to zero. A scaled

version of the Schoenfeld residuals proposed by Grambsch and Therneau (1994) is

more effective in detecting a violation of the proportional hazards assumption.

Defining si to be the vector of Schoenfeld residuals for the ith individual, the
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scaled Schoenfeld residuals, s∗ki, are the the components of the vector

s∗i = d var(β̂) si,

where d is the number of events among the n individuals and var(β̂) is the variance-

covariance matrix of the parameter estimates in the fitted Cox regression model.

The expected value of the scaled Schoenfeld residual, s∗ki, for the ith individual

and kth explanatory variable is

E(s∗ki) ≈ βk(ti)− β̂k, (3.6)

where βk(t) is the time-varying coefficient of the kth explanatory variable, so that

βk(ti) is the value of this coefficient at the event time of individual i, and β̂k is the

estimated value of βk.

Testing the Proportional Hazards Assumption

The proportional hazards assumption can be assessed visually by plotting the

scaled Schoenfeld residuals against the observed survival times, or more formally

by calculating a test statistic. Hosmer et al. (2008) recommend the assessment

of the proportional hazards assumption should be a two-step procedure, where

covariate specific tests are calculated as step 1, and step 2 plots the scaled and

smoothed Schoenfeld residuals; the results of the two steps should support each

other.

In order to understand how the proportional hazards assumption can be as-

sessed, firstly consider a model with a time-dependent coefficient

hi(t) = h0(t) exp(β(t)′xi).

If βk(t) is not a constant, this implies that the impact of the kth explanatory
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variable varies over time, violating the proportional hazards assumption. If the

proportional hazards assumption holds then a plot of β̂k(t) against time will be a

horizontal line.

As defined in Equation (3.6), the expected value of the scaled Schoenfeld resid-

ual, s∗ki, is approximately the difference between the time-varying coefficient of the

kth explanatory variable and the estimated value, β̂k, of βk. The proportional

hazards assumption is satisfied if β̂k(t) is equal to β̂k, therefore, under the propor-

tional hazards assumption, the expected value of the scaled Schoenfeld residuals

should be close to zero and constant over time. This relationship means that the

Schoenfeld residuals can be used to assess the proportional hazards assumption.

Plotting the scaled Schoenfeld residuals against the observed survival times,

or some function of time, provides information regarding the form of the time-

varying coefficient βk(t), presenting a way to visualise the nature and extent of the

non-proportional hazards. In particular, if this plot presents a horizontal line, this

would suggest the proportional hazards assumption is satisfied.

To test for proportional hazards more formally, fitting a line to the plot and

testing for zero slope can be used, where a non-zero slope would give evidence

of a violation of the proportional hazards assumption. A spline fit of the scaled

Schoenfeld residuals against time can be used to aid in the visualisation of the

slope. Further, Therneau and Grambsch (2013) suggest that an analogy to gener-

alised least squares can be used to motivate a formal test statistic, where the linear

dependence can be expressed by writing β(t) as a regression on some function of

time G(t), so that the dependence can be expressed as

βk(t) = βk + θkG(t).

The null hypothesis for proportional hazards corresponds to θk = 0, k = 1, ..., q.

Given the expected values of the scaled Schoenfeld residuals, as defined in Equation
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(3.6), assessment of this null hypothesis, θk = 0, can be done using a score test

of the relationship between the scaled Schoenfeld residuals and time. This test is

outlined in more depth in Chapter 5.

Martingale Residuals

Martingale residuals can be used to assess the functional form of covariates. Th-

erneau and Grambsch (2013) outline martingale residuals based upon counting

processes, however a simple approach to defining them is to show how they can be

obtained through modification of Cox-Snell residuals (Collett, 2015).

For the ith individual, i = 1, ..., n, the Cox-Snell residual can be defined as

rCi
= Ĥi(ti) = − log Ŝi(ti), (3.7)

where Ĥi(ti) and − log Ŝi(ti) are the estimated values of the cumulative hazard and

survivor functions, respectively, of the ith individual at ti, the observed survival

time of individual i. The Cox-Snell residuals, rCi
, can be thought of as a censored

sample with a unit exponential distribution (Hosmer et al., 2008).

Collett (2015) outlines that if the observed survival time of individual i is right-

censored, then the Cox-Snell residual of individual i will also be right-censored,

and hence the definition of the Cox-Snell residuals in Equation (3.7) can be mod-

ified to account for censored survival times. Let t∗i denote the ith survival if it

is censored, where ti is the actual, but unknown, survival time. The Cox-Snell

residual evaluated at the censored survival time for this individual is defined by

replacing ti with t∗i in Equation (3.7), where Ĥi(t
∗
i ) and − log Ŝi(t

∗
i ) again define

the estimated values of the cumulative hazard and survivor functions, respectively,

but now of the ith individual at the censored survival time.

Now, to take into account that the greater the survival time the greater the

corresponding Cox-Snell residual will be, the Cox-Snell residuals for censored sur-
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vival times can be modified by the addition of a positive constant. This constant

can be taken to be one since the rCi
are assumed to follow the unit exponential

distribution, and the modified Cox-Snell residuals can be defined as

r̃Ci
= 1− δi + rCi

, (3.8)

where δi is the event indicator taking the value zero if the observed survival time

is censored, and one if it is uncensored.

To define the martingale residuals, Collett (2015) suggests the modified Cox-

Snell residuals in Equation (3.8) can be refined so that they have zero mean when

an observation is uncensored, and further multiply through by −1. This results in

the martingale residuals being defined as

rMi
= δi − rCi

.

The martingale residuals can therefore be thought of as the difference between

the observed number of events for individual i in time interval (0, ti) and their

conditionally expected number of events given the fitted model (Therneau and

Grambsch, 2013). Martingale residuals take values in the interval (−∞, 1], and

are negative for censored survival times.

In order to assess the functional form of covariates, Therneau et al. (1990)

suggested plotting the martingale residuals from the null model, where β̂ = 0,

against each covariate Xk separately. Superimposing a scatterplot smooth can

then indicate the functional form of Xk. Let f denote the smooth function. Th-

erneau and Grambsch (2013) state that if the correct model for the kth covariate

is exp(f(Xk)βk), then the smooth for the kth covariate will display the form of f .

This can be expressed mathematically as

E(rMi
|Xik = xk) ≈ cf(xk),
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where c simply scales the y-axis and depends on the amount of censoring, but is

roughly independent of xk.

Splines

As flexible fitting functions, Therneau and Grambsch (2013) recommend splines

as useful tools for exploring the functional form of covariates. As smoothing tools,

splines are able to summarise a trend between a response and one or more pre-

dictors by producing a trend less variable than the response itself, whilst avoiding

the assumption of a rigid form of the dependence of the response on the predictors

(Hastie and Tibshirani, 1990). A key property of splines is the locality of influence,

where a large change in one part of the curve will have minimal affect on the fit

in other areas of the curve.

There are several types of splines, including regression or natural splines, and

smoothing splines. To introduce how splines can be fitted, we first outline re-

gression splines. Regression splines represent the trend between a response and

predictor through piecewise polynomials, where breakpoints, or knots, separate

the regions defining the pieces. Hastie and Tibshirani (1990) state that piecewise

cubic polynomials are a common choice, where the polynomials are constrained to

have first and second derivatives at the knot points to ensure they join smoothly

at these points. A larger number of knot points gives more flexibility to the curve.

Basis functions are needed to represent the particular family of piecewise poly-

nomials, with basis vectors being the basis functions evaluated at the observed

values of the predictor. For regression splines, the smooth for any given set of

knots is computed using multiple regression on the basis vectors.

Regression splines require specification of both the position and number of knot

points however, and Hastie and Tibshirani (1990) highlight this as a drawback since

poor choice of horizontal position of the knots can result in non-local behaviour.

Smoothing splines have been shown by Hastie and Tibshirani (1990) to have better
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properties regarding locality of influence compared to regression splines for small

degrees of freedom, or number of knots. Further, Therneau and Grambsch (2013)

highlight that from a user perspective, smoothing splines are simpler as they only

require pre-specification of the number of knots, or degrees of freedom.

Smoothing splines are not constructed explicitly as with regression splines, but

instead are a result of an optimization problem. Denote the response measure by

y and the predictor as x for a spline based on a large number of knots, denoted

f(x, β). Therneau and Grambsch (2013) state that choice of the coefficients, β,

for the basis functions should be chosen to minimize the combined criterion

θ
n∑
i=1

[yi − f(xi, β)]2 + (1− θ)
∫

[f ′′(x, β)]2 dx,

where the first term is the residual sum of squares, measuring closeness to the data,

and the second term penalizes curvature in the function. In order to optimize the

function, θ acts as the tuning parameter, where values of θ closer to zero minimise

the curvature towards the linear least squares line, and as θ approaches one, the

solution converges to an interpolating curve passing through every point, giving n

degrees of freedom.

Therneau and Grambsch (2013) highlight that although smoothing splines are

computationally more difficult than regression splines, smoothing splines can be

fitted as a special case of penalized proportional hazards models in R using the

pspline function within the survival package (Therneau, 2015a). A plot of a

smoothing spline for particular predictors can show their functional form in relation

to the response. Superimposing simpler smooths over the plot, such as a quadratic

polynomial, can indicate if this would be sufficient to represent the trend between

the response and predictor in a model.
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3.3 Missing Data

Missing data is a common issue in observational studies, and refers to observations

we intended to make but did not (Carpenter and Bartlett, 2016). Missing data

complicates the statistical analysis of data collected in almost every discipline, and

generally causes two key problems; bias and loss of efficiency. Loss of efficiency,

or information, is an inevitable consequence of missing data, however it is not

directly related to the proportion of incomplete records. Biased inferences are

caused by mishandling of the missing data, and the extent of bias depends on the

statistical behaviour of the missing data, including the patterns and mechanisms

of the missing data (Carpenter and Kenward, 2013).

The subset of complete records is not necessarily representative of the full

study population, dependent upon the patterns and mechanisms of missingness.

Restricting analysis to the complete records can therefore lead to biased inferences,

and thus knowledge about the patterns and mechanisms is vital in deciding the

most appropriate method for handling the missing data (Molenberghs et al., 2014).

3.3.1 Classification of Missing Data

Missing data can be categorised in two ways; by considering the patterns or by

the mechanism, which considers the underlying reason why the data is missing.

There are four main types of missing data; univariate, monotone, file matching

and arbitrary patterns. Univariate missing data is the simplest and refers to the

case where missingness is confined to one variable. Data following a monotone

missingness pattern can be sorted according to the percentage of missing data.

File matching is where two sets of variables are never jointly observed, and an

arbitrary pattern means missing values occur in any variable in any position.

The missing data mechanism describes the probability that a response is ob-

served or missing, and is not in the control of the study investigator. Rubin (1976)
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specified a hierarchy of three different types of missing data mechanisms: Missing

Completely at Random (MCAR), Missing at Random (MAR) and Not Missing at

Random (NMAR).

In order to define the missing data mechanisms, suppose we have n individuals

and let xi = (xi,1, xi,2, ..., xi,q)
′ denote the q variables intended to be observed from

the ith individual, i = 1, ..., n. For each individual i, let xi,obs denote the subset of

variables that are observed, and xi,mis denote the subset that are missing. These

can be different subsets of the q variables for different individuals. Define Di,k to

be the missing data indicator for the ith individual and kth variable, where Di,k is

zero if xi,k is observed and one if xi,k is missing. Let Di = (Di,1, Di,2, ..., Di,q)
′. We

can then define the missing data mechanism as the probability of Di conditional

upon xi, P(Di|xi) (Carpenter and Kenward, 2013).

Missing Completely at Random

Missing Completely at Random (MCAR) refers to data where the probability of

a value being missing is not associated with the observed or unobserved responses

for that individual. In algebraic terms,

P(Di|xi) = P(Di).

For MCAR data, as the chance of being missing is unrelated to the values, the

observed data is representative of the population, however, information has been

lost relative to the information that was intended to be collected.

Missing at Random

Data is classified as Missing at Random (MAR) when the missingness depends

only on the observed values of the data set, and not on the components that are

missing. Given the observed data, the probability of a value being missing is
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independent of the unobserved data, and this can be expressed algebraically as

P(Di|xi) = P(Di|xi,obs).

Under MAR, the chance of a variable being missing will depend on its value,

however, when conditioned on the observed data, this dependence is broken.

Not Missing at Random

Data is Not Missing At Random (NMAR) if the probability of an observation

being missing is dependent on the underlying value that should have been ob-

tained, where this dependence remains even given the observed data. This can be

expressed as

P(Di|xi) 6= P(Di|xi,obs).

Analysis is more complex under NMAR, and in general, the specification of a

model for the missing data mechanism is required for any valid inferential method

under NMAR.

It is important to note that it is not possible to distinguish between MAR and

NMAR from the observed data alone, making NMAR un-testable. For this reason,

it is essential to explore the missing data thoroughly, and also consider methods of

data collection and expert opinions when attempting to identify which mechanism

may be the most plausible.

Methods for Exploring Missing Data

In order to classify missing data, patterns and associations within the data, par-

ticularly related to the missingness, need exploring. Visualisation tools are partic-

ularly useful for the exploration of missing data, where the VIM package (Kowarik

and Templ, 2016) in R contains many features designed for this purpose. The

VIM package in R provides many visualisation tools for exploring missing data,
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providing useful techniques for examining the data structure and detecting the

most plausible missing data mechanism. Below we provide an overview of some

of the more general visualisation tools, where further discussion and additional

techniques can be found in Templ and Filzmoser (2008).

When exploring missing, it is of particular interest to identify the amount of

missing values within each variable, and also identify combinations of variables

which have a high number of missing values (Templ and Filzmoser, 2008). Aggre-

gation plots are a useful tool to explore this, where these plots show the combi-

nations of missing and observed for the incomplete variables. Within aggregation

plots, each column represents a particular covariate, and each row gives a different

combination of missing and observed. The rows can be ordered so that they as-

cend from most common combination to least common, with a histogram or count

alongside to show the frequency of each combination. The aggr function used

to produce aggregation plots also provides histograms showing the proportion of

missing data for each covariate considered within the plot. Aggregation plots are

useful for identifying the missingness pattern of the data as a whole, alongside

patterns within particular subsets of variables.

Matrix plots are another useful tool for examining missing data. Templ and

Filzmoser (2008) describes the matrix plot as a visualisation of each cell of the

data matrix, where each cell is represented by a horizontal line. Observed data

are presented on a grey scale and missing values are drawn as red lines. As with

aggregation plots, each column will represent a covariate, and the rows present

the observed or missing values for each individual. These plots are useful for

identifying the mechanism of the missing data, showing how missingness relate to

the values of the observed data. Further, these plots can be ordered by the values

of particular covariate to aid in understanding and classification of the missing

data mechanism.

To explore the dependency of missingness on other covariate values in more
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depth, a spineplot can be used, where a spineplot shows the amount of missing-

ness in one variable dependent upon the values of another, in a similar manner to

a stacked histogram. The horizontal axis gives the categories of the explanatory

covariate, scaled according to the relative frequencies within each category. The

vertical axis gives the proportion of missing and observed of the dependent co-

variate within each category of the explanatory covariate (Templ and Filzmoser,

2008). Comparison of the area for missing across the explanatory covariate cate-

gories can indicate the missing data mechanism between the two covariates being

considered. For example strictly decreasing, or increasing, areas for missing would

indicate MAR.

The marginplot function in the VIM package is also a useful tool for exploring

the missing data mechanism between two continuous covariate, where this function

extends upon the usual two-way scatter plot. The main body of these plots gives

a two-way scatter plot of the observed data between the two covariates, with uni-

variate scatter plots of the missing data being given in the margins. Additionally,

box plots are given in the margins, for missing and observed separately, where a

comparison of the box plots can identify the missing data mechanism.

3.3.2 Methods for Handling Missing Data

There are many methods for handling missing data, and these can be categorised as

procedures based on completely recorded data, weighting procedures, imputation-

based procedures and model-based procedures (Little and Rubin, 2002). These

categories are not mutually exclusive however.

Procedures based on completely recorded data simply means that individu-

als with incomplete data are discarded, and only individuals with complete data

are included in the analysis; this method will be outlined in more detail below.

Weighting procedures involve modifying the contribution, or weight, of each ob-

servation in an attempt to adjust for non-response as though it were part of the
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sample design. For example, a covariate pattern with larger proportions of miss-

ing observations would result in higher weights for the observed data within that

covariate pattern.

Imputation-based procedures fill in the missing values so that the resultant

complete data can be analysed via standard methods. There are many types of

imputation-based procedures which will be outlined below. Model-based proce-

dures broadly covers methods involving a model being defined for the observed

data with inferences based on the likelihood or posterior distribution under that

model.

Complete-case Analysis

Complete-case analysis is one of the simplest and most commonly used methods

for handling missing data (Molenberghs et al., 2014), and may be considered ad-

vantageous due to its simplicity as standard complete-data statistical analyses can

be applied without modification. However, as complete-case analysis restricts at-

tention to individuals where all the variables are observed, it can lead to loss of

information from discarding incomplete cases. This can result in loss of precision,

and also the introduction of bias if the data are not MCAR. Use of complete-case

analysis can be justified when the bias and loss of precision is minimal, and this

is most likely when the proportion of complete cases is high. However, the loss of

precision and degree of bias do not solely depend on the proportion of missingness,

making it difficult to develop general rules of thumb for an acceptable proportion.

The extent that complete cases differ and the parameters of interest also influence

bias and loss of precision (Little and Rubin, 2002).

Complete-case analysis can be adjusted for bias using weighting methods, where

estimations are based on observed responses which are weighted is some way to

account for the probability of non-response. Weighting methods are generally best

suited to monotone data, and can be complicated and conceptually difficult to
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formulate in practice for non-monotone data (Molenberghs et al., 2014).

For univariate analyses, available-case analysis is an alternative to complete

case analysis. Loss of efficiency can be particularly high in complete-case analysis

for data containing a large number of variables; available-case analysis attempts

to reduce this loss of efficiency. The idea behind this method is to use all the

available information, however due to the changing sample base between variables,

this method has practical problems. As sophisticated optimisation techniques

and special formulas are required to calculate standard errors, van Buuren (2012)

recommends that this pairwise deletion method only be used if the procedure that

follows it is specifically designed to take the deletion into account.

Full Likelihood and Bayesian Approach

Many methods for estimating the missing values of incomplete data can be based

upon likelihood and Bayesian approaches, where estimation is based upon the

likelihood function under specific modelling assumptions, and the likelihood for

the parameters can be derived based on the incomplete data. Maximum likelihood

estimation can be carried out by solving the likelihood equation, and Bayesian

inference can be carried out by using a prior distribution to obtain the posterior

distribution. Little and Rubin (2002) have highlighted complications with these

methods however. Compared to likelihood or Bayesian inference of complete data,

Little and Rubin (2002) note that for the incomplete data setting, the asymptotic

standard errors calculated from the information matrix are more questionable as

the observed data are generally not an independent and identically distributed

sample. Further complications arise when dealing with the underlying reason for

the occurrence of missing data, where Molenberghs et al. (2014) highlight that

NMAR, a non-ignorable mechanism, can never be truly ruled out.

The methods within the likelihood and Bayesian approaches depend upon

whether the missing data mechanism is ignorable. Let X denote the intended
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data set, so that X = (Xobs,Xmis), where Xobs denotes the observed data and

Xmis denotes the missing values. The likelihood of θ based upon the observed

data, Xobs, but ignoring the missing data mechanism, can be defined to be any

function of θ proportional to the marginal probability density of Xobs,

Lign(θ|Xobs) ∝ f(θ|Xobs). (3.9)

If the missing data mechanism can be ignored, inference about θ can be based upon

this likelihood, where ignorable maximum likelihood estimation can be obtained

using Equation (3.9) with respect to θ. Bayesian inference for θ based upon Xobs

incorporates a prior distribution to give the posterior distribution

π(θ|Xobs) ∝ π(θ)× Lign(θ|Xobs)

on which inferences can be based.

Let Di,k be the missingness indicator as defined in Section 3.3.1, and treat D

as a random variable. To handle the case where the missing data mechanism is

not ignorable we need to specify the full model. This can be achieved through

specification of the joint distribution of D and X, where this distribution defines

the missing data mechanism, subject to an unknown parameter ϕ. The observed

data consist of the values of variables (Xobs, D), and the full likelihood of θ and ϕ

is any function of θ and ϕ based on the observed data (Xobs, D), to give

Lfull(θ, ϕ|Xobs, D) ∝ f(Xobs, D|θ, ϕ) (3.10)

Bayesian inference can be obtained by combining the full likelihood with a prior

distribution for θ and ϕ to the posterior distribution

π(θ, ϕ|Xobs, D) ∝ π(θ, ϕ)× Lfull(θ, ϕ|Xobs, D), (θ, ϕ) ∈ Ωθ,ϕ, (3.11)
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where Ωθ,ϕ is the parameter space of (θ, ϕ).

For both likelihood and Bayesian inference, the missing data mechanism is

ignorable if the missing data are MAR. For likelihood inference, θ and ϕ must also

be distinct, Ωθ,ϕ = Ωθ × Ωϕ, and additionally Bayesian inference requires θ and ϕ

to be a priori independent, that is π(θ, ϕ) = π(θ)π(ϕ). If these conditions do not

hold, then for likelihood or Bayesian approaches, respectively, inference should be

based on Equation (3.10) or Equation (3.11) (Little and Rubin, 2002).

Imputation

Imputation methods assign values to the non-observed data, and has two main

approaches; single imputation or multiple imputation. Single imputation involves

methods that can be applied to impute a single value for each missing observa-

tion, whereas multiple imputation involves methods which impute more than one

value to allow for uncertainty. Little and Rubin (2002) define imputation as means

or draws from a predictive distribution of the missing data. A method is there-

fore required to develop the predictive distribution based upon the observed data.

Methods for imputation can be categorised into two types of approaches; explicit

imputation which is based on a formal statistical model and implicit imputation

which are more ad hoc methods for approaching imputation.

Examples of implicit imputation methods are hot deck imputation, cold deck

imputation, substitution and composite methods. Explicit imputation methods

include mean imputation, regression imputation, and stochastic regression impu-

tation. We will outline several imputation methods below, including various single

imputation methods and the multiple imputation procedure.

Last observation carried forward (LOCF) is a technique used to impute longi-

tudinal data, and replaces every missing value with the last observed value from

the same subject. Baseline observation carried forward (BOCF) takes a similar

approach. LOCF has the underlying assumption that the most recent observation
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is the best guess for the subsequent missing values (McKnight et al., 2007). Al-

though LOCF is convenient in supplying a complete data set, it has several issues,

as highlighted by van Buuren (2012). LOCF can yield biased estimates even under

MCAR, and any statistical analyses following LOCF should distinguish between

the real and imputed data.

Hot deck imputation involves substituting individual values drawn from other

‘similar’ responding units. Selection of these units that are deemed similar can

involve complex elaborate schemes. Three methods to carry out hot deck impu-

tation are the nearest neighbour technique, randomly selecting a value from the

observed data with probability of selection based on rate of occurrence, and hot

deck with adjustment cells, which is similar to the previous technique but also

blocks on relevant covariates. Hot deck imputation is known to underestimate the

standard errors as missing values are replaced with values which already exist in

the observed data, decreasing variability. McKnight et al. (2007) also state that

hot deck procedures can introduce biases that are unpredictable unless the data

are MCAR.

Cold deck imputation is an alternative to hot deck imputation, and replaces

each missing value with a single value from an external source. However, like hot

deck imputation, cold deck imputation again assumes MCAR, and has the issue

of introducing bias and underestimating variance sampling error.

Mean imputation is another ad hoc method used to produce a complete data

set so that standard complete data methods of analysis can be used. Mean im-

putation has two forms; marginal and conditional. Marginal mean imputation

imputes missing values using the average of the observed values for that vari-

able, ignoring all other variables. This is problematic as ignoring other variables

can cause misrepresentation of associations within the data set, and the precision

will be overestimated. Little and Rubin (2002) express many concerns regarding

marginal mean imputation including underestimating the variance, and the in-

49



ability of standard complete data methods to produce consistent estimators after

imputation has been carried out.

Conditional mean imputation is an improvement on marginal mean imputation

as it imputes conditionally upon the observed values. One method to carry out

conditional mean imputation is to classify non-respondent and respondent into

adjustment classes, and impute the respondent mean for the non-respondents in

the same class. Generally, conditional mean imputation imputes more plausible

values than marginal mean imputation, however similar issues still arise as the

values are less variable than the observed values, so standard errors are generally

underestimated (Molenberghs et al., 2014).

Regression imputation replaces the missing values in the data set with pre-

dicted values from the regression of the covariate with missing values on covariates

observed for the individual. A regression model can be developed based upon the

variables associated with the variable containing missing values, and predicted val-

ues are usually calculated from individuals with both missing and observed values

present. Multiple variable types can be incorporated into the regression model,

as can less restrictive parameter forms such as splines. As with mean imputation,

underestimation of the variance remains a downfall of regression imputation, un-

less steps are taken with the analyses of the ‘completed’ data to account for this.

Allison (2001) recommends the addition of an error term to reduce the underesti-

mation of the variance, a method known as stochastic regression imputation.

All of the single imputation methods have a common downfall in that inference

about parameters based upon the imputed data do not account for imputation

uncertainty. Unlike multiple imputation, single imputation methods are unable to

capture the between-imputation variability, a reflection of the uncertainty due to

missing information, thus resulting in standard errors which are too small (White

et al., 2011).
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Multiple Imputation

Multiple imputation (MI) involves imputing more than one value for each missing

value, and is a method of handling missing data which provides a computationally

feasible approach to wide range of problems under a wide range of missingness

mechanisms (Carpenter and Kenward, 2013). There are three distinct steps in-

volved within multiple imputation. Firstly, an appropriate imputation model needs

to be specified and fitted to fill in the missing values M times, to create a series of

M imputed data sets. Note that the observed data values remain the same across

the imputed data sets, and only the originally missing values will differ (Azur et al.,

2011). Next, the M completed data sets can be analysed using standard, complete

data procedures; referred to as the substantive, or analysis, model. The final step

is to combine the results from the M analyses to produce a single estimator and

draw inferences. The results of the M analyses can be combined using Rubin’s

rules (Rubin, 1987), which are a general procedure for summarising M results in

order to obtain point estimates and associated estimates of variance, and to carry

out statistical tests.

Rubin’s rules are based on asymptotic theory in Bayesian framework, and

ensure the combined variance-covariance matrix incorporates both the within-

imputation variability and the between-imputation variability. Within-imputation

variability is the uncertainty about the results from an imputed data set, denoted

W , and between-imputation variability, denoted B, reflects the uncertainty due

to the missing information. Let β denote the vectors of parameters in the sub-

stantive model, where in general Rubin’s rules will be applied to all or part of

this parameter vector. Suppose β̂m is an estimate of a univariate or multivariate

quantity of interest obtained from the mth imputed data set, and Wm is the esti-

mated variance of β̂m. The combined estimate β̂ is the average of the individual
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estimates:

β̃ =
1

M

M∑
m=1

β̂m. (3.12)

The variance estimator, var(β̃), is the total variance of β̃ , and is formed from the

within-imputation variance W = (1/M)
∑M

m=1Wm and the between-imputation

variance B = (1/(M − 1))
∑M

m=1(β̂m − β̃)2. The variance estimator is defined as

var(β̃) = W +

(
1 +

1

M

)
B. (3.13)

Figure 3.1 gives a visualisation of the MI process, where the general MI procedure

is outlined as follows: For a general data matrix X, let Xobs be the observed data

and Xmis be the missing data, then:

1. For m = 1, ...,M , impute the missing data from the distribution of the

missing data given the observed data, f(Xmis|Xobs), ensuring to take full

account of the uncertainty, to obtain M ‘complete’ data sets.

2. Fit the substantive model to each of the M imputed data sets, m = 1, ...,M ,

to obtain M estimates of the parameters of the substantive model, say β̂m,

and also the M estimates of their variance, var(β̂m).

3. Combine the parameter and variance estimates for inference using Rubin’s

rules to obtain the pooled results, β̃ and var(β̃).

Section 3.3.3 below outlines in depth a procedure for carrying out Step 1, and

Section 3.3.4 outlines how Step 3 can be conducted to achieve a parsimonious

pooled model.

3.3.3 Multiple Imputation Using Chained Equations

Multiple imputation using chained equations (MICE) is an approach for carrying

out Step 1 of the multiple imputation procedure outlined above. MICE is recom-

mended as the method of choice for handling incomplete data problems by van
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Figure 3.1: Diagram of the multiple imputation process; showing a single incom-
plete data, multiple imputed data sets, multiple analyses results and the pooled
analyses results.

Buuren and Groothuis-Oudshoorn (2011). It is a practical approach to generat-

ing imputations based on a set of imputation models; one for each variable with

missing values. An important feature of MICE is that it has the ability to handle

different variable types (White et al., 2011). Due to each variable having its own

imputation model, MICE can handle multiple variable types including continuous,

binary, ordered categorical and unordered categorical.

The MICE procedure involves initially filling in all the missing values using

simple random sampling with replacement from the observed values. Denote the

first variable with missing values as x1. Regress x1 on all the other variables

x1, ..., xK , restricted to individuals with observed x1. The missing values in x1 are

then replaced by simulated draws from the corresponding predictive distribution

of x1. The next variable with missingness, x2 say, is then regressed on all the

other variables x1, x3, ..., xK , restricted to individuals with observed x2, and using

imputed values of x1. This process is repeated with all other variables with missing

values in turn; this is called a cycle. The MICE procedure is then repeated, or

iterated, for several cycles in order to stabilize the results and produce a single

imputed data set. The whole procedure is then repeated M times to produce M
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imputed data sets.

There are many important considerations to be made during the MICE pro-

cedure. These include specifying the appropriate form of the imputation models

for different variable types, and inclusion of appropriate variables as predictors for

the missing values; application to survival data further complicates specification

of the imputation models within the MICE procedure. Two other important con-

siderations are the choice of the number of cycles to iterate over, and choice of the

number of imputed data sets to produce. These considerations will be discussed

in depth throughout the remainder of this section.

Specification of the Imputation Models

The main aim in multiple imputation is to draw valid and efficient inferences

by fitting analysis models to multiply imputed data. In order to avoid bias and

gain precision, it is important to satisfy some key requirements when developing

the imputation models. An imputation model should account for the process

that created the missing data, preserve the relations in the data and preserve

the uncertainty in the relations (van Buuren and Groothuis-Oudshoorn, 2011).

Further, variables selected for inclusion in imputation models should be included

in the appropriate way, ensuring correct functional form and including any required

interactions. It is also necessary to ensure imputation models are of the correct

form, where we need to ensure approximate compatibility with the analysis model,

and that the imputation model is appropriate for the type of variable with missing

values we wish to impute.

It can be easy to mis-specify the imputation model when aiming to find the

true imputation model as this has no standard form. An alternative approach is

to find an imputation model that is approximately compatible with the analysis

model but is not necessarily correctly specified, where for two conditional models

to be compatible, there should exist a joint model in which the conditionals for the

54



relevant variables equal these conditional models. If imputations are drawn from

a model incompatible with the analysis model, this can lead to biased estimates

of parameters in the analysis model (Bartlett et al., 2015).

In terms of variable selection, the imputation model needs to include all the

variables that are in the the analysis model, in particular, the imputation model

must include the outcome from the analysis model. Further, Bartlett et al. (2015)

recommend that the imputation model needs to account for any non-linear or

interaction terms within the analysis model. This is to ensure approximate com-

patibility between the imputation model and analysis model, and avoid bias within

the analysis after imputation.

Considering survival data, the outcome of the analysis model comprises of

survival time t and the censoring indicator δ. Research has been conducted into

the best approach for including this outcome, some possibilities are to include all

of t, log(t) and δ, δ and log(t), or δ and t. In the case where the analysis model

is a proportional hazards model, White and Royston (2009) found that inclusion

of log(t) in the imputation model can bias associations towards the null. An

alternative is to include δ and H0(t), where H0(t) is the cumulative baseline hazard

function. White et al. (2011) state this gives the correct imputation model for a

single binary covariate and is approximately correct for more complex situations.

In general, H0(t) is not known, however the Nelson-Aalen estimate, Ĥ(t), (Aalen,

1978) of the cumulative hazard function provides an adequate approximation. It

is recommended by White and Royston (2009) that the imputation model should

be based on the Nelson-Aalen estimate of the cumulative hazard to the survival

time.

Any predictors of the incomplete variable should also be included in the impu-

tation model. This makes the MAR assumption more plausible, reducing bias, and

can also help improve the imputations, in turn reducing the standard errors of the

estimates in the analysis model. As it is not possible to distinguish between MAR
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and NMAR from the observed data alone, inclusion of more explanatory variables

can help make the MAR assumption more plausible. The MAR condition for valid

inferences is that, conditional on the observed data, the probability of data being

missing does not depend on the unobserved data. Due to this, it is recommended

by White et al. (2011) that the imputation model should included every variable

that both predicts the incomplete variable and predicts whether the incomplete

variable is missing.

Imputation Models for Different Variable Types

In order to determine the appropriate form of imputation models for different

variable types in a survival data setting, we must first identify appropriate general

approaches for each of the variable types. We consider approaches for continuous,

binary and both unordered and ordered categorical variables.

A logistic regression model is usually chosen to impute the missing values in a

binary variable. For imputing a Normally distributed continuous variable, a linear

regression model is the most suitable choice. For both unordered and ordered

categorical variables with more than two levels, multinomial logistic regression

can be used to impute the missing values, and the proportional odds model can

also be used for ordered categorical variables.

Now in the case of survival data, it can be assumed that the data follows a Cox

proportional hazards model defined as

h(t|X,Z) = h0(t) exp(βXX + βZZ),

where X is an incomplete variable and Z is complete. An exposure model is

needed for incomplete X, that is p(X|Z; ζ). The imputation model is then defined

as p(X|t, δ, Z), and a number of exact and approximate results have been proved

by White and Royston (2009) regarding the imputation model in terms of the
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model parameters θ = (ζ, βX , βZ , h0(.)). These results can be used to determine

the regression model p(X|t, δ, Z;α), where α is some function of θ. Although in

practice θ is generally unknown, parameters α can be estimated directly from the

complete cases.

The formulation of each of the imputation models for each of the variable

types can be shown by considering the log-likelihood, given the complete data, for

the survival data outcomes and applying Bayes’ theorem to get the conditional

distribution of X given the observed data. This will be shown in more depth in

Chapter 6 where a deeper understanding is needed, but here we will give a brief

overview of the model forms, as outlined by White and Royston (2009).

Lets first consider the case of binary X, and look at the simplest case where

there is no Z. The missing X can be imputed by fitting a logistic regression of

X on the censoring indicator, δ and the baseline cumulative hazard, H0(t), giving

the model

logit p(X = 1|t, δ) = α0 + α1δ + α2H0(t).

Considering a further case of binary X with binary or categorical Z, we take the

most general exposure model logit p(X = 1|Z) = ζZ , and get a logistic regression

on δ, Z, H0(T ) and the interaction between H0(t) and Z

logitp(X = 1|t, δ, Z) = α0 + α1δ + α2H0(t) + α3Z + α4ZH0(t),

where terms such as α3Z represent a set of dummy variables with their coefficients.

For the most general case of binary X with general Z there are no exact results.

Assuming the exposure model logitp(X = 1|Z) = ζ0 + ζ1Z, and taking the Taylor

series approximation for exp(βZZ) for small variance of βZZ, we get a logistic

regression on δ, H0(t) and Z:

logitp(X = 1|t, δ, Z) = α0 + α1δ + α2H0(t) + α3Z.
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Addition of an interaction term α4H0(t)×Z improves the accuracy of the approx-

imation.

For continuous X and general Z, we take the exposure model X|Z ∼ N(ζ0 +

ζ1Z, σ
2) and make a fuller Taylor series approximation of exp(βXX + βZZ) that

is valid for small variance of βXX + βZZ. This gives a regression model on Z, δ

and H0(t), which can be written as

X|t, δ, Z ∼ N(α0 + α1δ + α2H0(t) + α3Z, σ
2).

Again, the addition of an interaction term α4H0(t)× Z improves the accuracy of

the approximation.

For the case of categorical X, where X has levels l = 1, ..., L, we can take

the general exposure model logit p(X = l|Z) = ζl0 + ζl1Z, and again take an

approximation for exp(βZZ). This give a multinomial logistic regression on Z, δ,

and H0(t), written as

log

(
p(X = l|t, δ, Z)

p(X = 1|t, δ, Z)

)
= α0 + α1δ + α2H0(t) + α3Z.

As in the previous cases, addition of the interaction term α4H0(t) × Z improves

the accuracy of the approximation.

Further Considerations

Another important aspect to consider within the MICE procedure is choosing

the appropriate number of imputations. There are several arguments outlined by

White et al. (2011) for choosing the number imputations, including the efficiency

and reproducibility arguments, and a rule of thumb suggested by Bodner (2008).

The efficiency argument bases choice of the number of imputations on sta-

tistical efficiency of the estimates. Letting W and B be the within-imputation

and between-imputation variance respectively, as defined in Section 3.3.2, the true
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variance of a parameter estimate based on M imputations is W + (1 + 1/M)B.

Comparing infinitely many imputations to M imputations, the relative efficiency

is

W + (1 + 1/M)B

W +B
= 1 +

F

M
,

where F = B/(B + W ), the fraction of missing information. Using this, M can

be found to satisfy the condition of F/M being less than the accepted loss of

efficiency. Another argument is that limiting loss of power should be considered

when choosing the number of imputations (Graham et al., 2007).

The reproducibility argument stems from the need to be confident that a repeat

analysis of the same data would produce essentially the same results, and would

suggest that statistical efficiency and power are not sufficient considerations. This

means that the Monte Carlo error of the results should be considered, where Monte

Carlo errors are defined as the standard deviation across repeated runs of the same

imputation procedure of the same data. This tends to zero as M increases.

Bodner (2008) proposed that F can be estimated as the fraction of incomplete

cases, leading to a rule of thumb that the number of imputations should be similar

to the percentage of cases that are incomplete. This rule of thumb is understand-

ably not universally appropriate and individual settings need to be considered

before deciding how to choose the number of imputations. A suggestion by White

et al. (2011) was to impute a larger number of datasets but only use a portion of

them in analyses, however, for F < 0.5, Bodner’s rule of thumb may be appropri-

ate. In practice, choice of number of imputations needs to be determined by what

is feasible and practical based upon the size of the data set, the amount of missing

information and the computational resources available (Azur et al., 2011).

Another consideration is the number of iterations to cycle over within the MICE

procedure. This needs to be sufficient such that it can be assumed the algorithm

has converged to a stationary distribution, where Bartlett et al. (2015) highlight

that a larger number of covariates with missing values results in the need to run the
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procedure over a higher number of iterations to stabilise the results. Assessment of

convergence can be done through examination of plots of the means, by iteration

number, of the variables which were partially observed (Bartlett et al., 2015).

3.3.4 Model Selection after Multiple Imputation

Model selection after multiple imputation can be carried out using backwards

elimination as outlined in Section 3.2.5, with the multivariable Wald test used to

assess the significance of inclusion or exclusion of variables.

Let β̃ denote the average of the M estimates, β̂m, as given in Equation (3.12).

Denote the variance estimate, Var(β̃), given in Equation (3.13), as Ṽ , where Ṽ

incorporates both the within-imputation variance, W , and the between-imputation

variance, B. It has been suggested that if the number of imputations, M , is

small, then the estimates of the between-imputation variance, B, may be unstable

thus making Ṽ unreliable. It was proposed by Li et al. (1991b) that, under the

assumption of B and W being proportional to each other, a more stable estimate

of Ṽ can be given as

Ṽ = (1 + r̄)W,

where r̄ = (1 + 1
M

)tr(BW )/q. This bypasses the need for B, as r̄ is considered a

good overall measure since the assumption of proportionality between B and W

is equivalent to assuming equal fractions of missing data. The Wald test statistic

is then defined as

Tω =
(β̃ − β(0))′Ṽ −1(β̃ − β(0))

q
,

and the p-value for Tω is given as

Pω = 1− F−1
q,νω(Tω),

where F−1
q,νω is the inverse cumulative distribution function of the F -distribution
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with q and νω degrees of freedom (van Buuren, 2012).

Considering the degrees of freedom, based on large samples Li et al. (1991b)

suggested the degrees of freedom νω be given as

νω =


4 + (η − 4)[1 + (1− 2η−1)r̄−1]2, if η = q(M − 1) > 4

η(1 + q−1)(1 + r̄−1)2/2, otherwise.

An alternative degrees of freedom can be found in Reiter (2007), which was de-

veloped for use in smaller samples, and used similar ideas to Barnard and Rubin

(1999).

For completeness, note that it is also possible to use the likelihood ratio test,

however, as long as W and B are available, van Buuren (2012) suggests it is often

more convenient to perform the Wald test. Further, it is possible to pool χ2-

statistics and associated p-values using a procedure outlined by Li et al. (1991a)

and Rubin (1987), however results from pooling χ2-statistics are considerably less

reliable and thus should only be used if B and W are unattainable, or only χ2

statistics are available. Details of these tests can be found in van Buuren (2012).

Wood et al. (2008) have also suggested a less computationally intensive ap-

proach to model selection after multiple imputation. This alternative approach

involves stacking the imputed data sets to obtain one large data set. Weighted

regression can then be applied to the single stacked data set to obtain valid param-

eter estimates. The weighting is important to correct for standard errors which

would otherwise be too small. Although this method can provide a simpler ap-

proach compared to the use of Rubin’s rules, Wood et al. (2008) highlight several

situations under which this approach can have substantially inflated Type 1 error.

The Rubin’s rules approach remains the gold standard under most circumstances.
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3.4 Conclusion

This chapter has provided an outline of methods which are applied to the stroke

audit data in Chapter 4 as an intitial analysis, and are the basis for the method-

ological developments made in subsequent chapters. Notation and techniques for

the analysis of survival data have been introduced, outlining data exploration

techniques alongside use of the Cox proportional hazards model and assessment

of model fit. Further, this chapter has introduced the issue of missing data and

reviewed methods for exploring and handling missing information. Multiple im-

putation using chained equations was discussed in depth, outlining how the impu-

tation procedure can be carried out, and how survival analysis techniques can be

applied to multiply imputed data.
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Chapter 4

Application to Stroke: Part 1

4.1 Introduction

This chapter presents an initial analysis of the stroke audit data, where the meth-

ods outlined in Chapter 3 are applied to the stroke audit data described in Section

2.4.

Firstly this chapter presents the data exploration, where the initial assessment

of covariate effects on survival post-stroke is given, alongside examination of asso-

ciations between the baseline covariates. The missing data is examined in depth,

where patterns and potential reasons for missingness are explored to conclude an

appropriate classification of MAR.

Further, this chapter outlines the application of the MICE imputation proce-

dure, giving the results of the validation of the imputed values. The building of

the analysis model is presented, where the results of the modelling procedure are

displayed alongside interpretation of the parameter estimates in the context of the

survival of stroke patients.

Finally, this chapter presents validation of the modelling procedure, where

issues are highlighted to motivate the remainder of this thesis.
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4.2 Exploration of Data

The first steps in the exploration of the data were to examine the percentage and

frequency of patient deaths for each of the baseline measures, explore the amount

of missing data within each variable and plot the KM estimates for the survivor

function for each of the variables. Using the KM survival curves, alongside tables

showing the incidence of death by variable, we can gain an initial understanding of

potential relationships between the baseline measures and mortality post-stroke.

Figure 4.1 gives the overall KM survival curve, and shows that only 30% of

patients survive beyond 5 years post-stroke, where 50% of patients died within

the first 500 days post-stroke, and around 40% had died within the first 100 days

post-stroke. The KM curve in Figure 4.1 drops very steeply initially, with around

30% of patients dead within the first month post-stroke; the curve becomes less

steep between 100 and 1000 days post-stroke, but the survival rate drops from 0.6

to 0.4 within this interval. The curve then levels slightly after 1000 days, with

only a drop of 0.1 in survival rate between 1000 and 2000 days post-stroke.

Figure 4.1: Overall Kaplan-Meier survival curve for all patients, showing the proba-
bility of survival over 5 years of follow-up. Dotted lines indicate the 95% confidence
interval.

64



Figures 4.2, 4.3, 4.4 and 4.5 show the KM survival curves for a selection of

the baseline measures. Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 give the

spread of patients across the levels of each variable, giving the number (n) and

percentage (%) of patients of the total number of patients. These tables also show

the incidence of death for each variable, giving the amount (n) of patients who

died within each level, and the percentage (%) who died out of the total number

of patients within that level. For any variables with missing data, ‘Missing’ is

included as an extra level in the tables. These tables give an initial indication

of possible relationships between the baseline measures and incidence of death,

alongside the amount of missing observations.

We can see in Table 4.1 that the older patient groups have higher proportions

of death, with the exception of the 60-70 group which had the lowest percentage

of deaths of all the age groups. Figure 4.2(a) further highlights this, where the

curves show that increasing age gives lower survival rates, however initially the

survival rates for the 50-60 (red) age group drops more rapidly compared to the

60-70 (green) and 70-80 (dark blue) age groups. Considering sex, Table 4.1 shows

that females had a higher rate of incidence of death compared to males, further

shown in Figure 4.2(b), where the survival curve for females (red) is consistently

lower.

Both smoking status and alcohol consumption gave an unexpected result, where

smokers and patients which regularly consume alcohol had the lowest rate of inci-

dence of death compared to the other groups for these variables. Table 4.1 shows

however that those missing information about these behaviours have the highest

death rate. Figures 4.2(c) and 4.2(d) further highlight this, and also reiterate,

respectively, that non-smokers and non-drinkers have worse survival than those

known to smoke or drink. It is well known that smoking and excessive consump-

tion of alcohol can lead to many health problems and thus would be expected to

increase the incidence of death. This indicates that smoking status and alcohol
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consumption may be associated with other risk factors for survival post-stroke and

further exploration of this is needed.

Table 4.1: Patient characteristics: Number and percentage of patients within each
level of the patient characteristics variables and the number and percentage of
patients who died within each level.

Spread Died

Variable n % n %

Sex

Male 249 46.3 160 64.3

Female 289 53.7 219 75.8

Age (Years)

0-50 18 3.3 9 50.0

50-60 36 5.7 21 58.3

60-70 118 21.9 57 48.3

70-80 196 36.4 146 74.5

80-90 147 27.3 124 84.3

90-100 23 4.3 22 95.7

Smoker

Yes 112 20.8 68 60.7

No 170 31.6 118 69.4

Ex-smoker 133 24.7 88 66.2

Missing 123 22.9 105 85.4

Alcohol Consumption

Excessive 18 3.3 10 55.6

Regular 46 8.6 24 52.2

Occasional 87 16.2 51 58.6

None 246 45.7 175 71.1

Missing 141 26.2 119 84.4

Table 4.2 shows that the proportion of deaths is higher for worsened pre-stroke

measures; living conditions, mobility and modified Rankin score. In the worst

cases for each of these, over 90% of patients died. Those living at home with a

companion had a slightly lower rate of incidence of death compared to those living

home alone prior to stroke, but there was a clear ordering of survival rates for

pre-stroke Rankin and pre-stroke mobility. Figure 4.3(a) clearly demonstrates the
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Table 4.2: Patient characteristics: Number and percentage of patients within each
level of the patient characteristics variables and the number and percentage of
patients who died within each level.

Spread Died

Variable n % n %

Pre-Stroke Living Conditions

Home Alone 191 35.5 132 69.1

Home with Companion 293 54.5 195 66.6

Institution 54 10.0 52 96.3

Pre-stroke Mobility

Need Help 50 9.3 49 98.0

Indoors 203 37.7 158 77.8

200m Outside 246 45.7 141 57.3

Missing 39 7.3 31 79.5

Pre-stroke Rankin

No symptoms at all 213 39.6 126 59.2

No significant disability despite symptoms 103 19.1 67 65.0

Slight disability 93 17.3 67 72.0

Moderate disability 63 11.7 58 92.1

Moderately severe disability 34 6.3 33 97.1

Severe disability 10 1.9 10 100.0

Missing 22 4.1 18 81.8

difference in survival between the levels of pre-stroke mobility, where those capable

of walking 200 metres outdoors (black) have the highest survival rates. Between

each of the survival curves in Figure 4.3(a), there is around a 20% difference in

survival rates, with the worst survival rate for patients that need help moving

around.

Table 4.3 shows the incidence of death related to the patients’ previous medical

conditions, and shows that for each of the medical conditions, the percentage of

deaths is higher for the patient groups who have suffered from the medical condi-

tion previously. The incidence of death is around 75-80% for patients who have

previously suffered from a stroke or myocardial infarction, or have diabetes melli-

tus, atrial fibrillation or angina, compared to a 62-65% incidence of death for those
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Table 4.3: Medical history: Number and percentage of patients within each level of
the previous health conditions variables and the number and percentage of patients
who died within each level.

Spread Died

Variable n % n %

Diabetes Mellitus

Yes 68 12.6 52 76.5

No 307 57.1 197 64.2

Missing 163 30.3 130 79.8

Previous Stroke

Yes 152 28.3 115 75.7

No 213 39.6 138 64.8

Missing 173 32.1 126 72.8

Previous TIA

Yes 72 13.4 51 70.8

No 156 29.0 97 62.2

Missing 310 57.6 231 74.5

Atrial Fibrillation

Yes 101 18.8 78 77.2

No 224 41.6 141 62.9

Missing 213 39.6 160 75.1

Angina

Yes 91 16.9 74 81.3

No 142 26.4 88 62.0

Missing 305 56.6 217 71.1

Hypertension

Yes 193 35.9 130 67.4

No 168 31.2 110 65.5

Missing 177 32.9 139 78.5

Peripheral Vascular Disease

Yes 12 2.2 8 66.7

No 38 7.1 25 65.8

Missing 488 90.7 346 70.9

Myocardial Infarction

Yes 67 12.5 52 77.6

No 302 56.1 193 63.9

Missing 169 31.4 134 79.3
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that do not have a history of these medical conditions. The KM survival curve

by previous stroke is shown in Figure 4.3(b), and shows that patients who have

previously suffered from a stroke have lower survival rates overall, but this differ-

ence in survival rates increases at around 1000 days post-stroke. Figures 4.3(c) and

4.3(d) show the KM survival curves for diabetes and atrial fibrillation respectively.

These survival curves show that patients who have diabetes or atrial fibrillation

have lower survival rates overall. The difference in the rate of incidence of death

between whether or not the patients have these conditions is smaller for hyper-

tension, PVD and previous TIA, however Table 4.3 highlights that there is a high

percentage of missingness in the variables PVD and previous TIA. All the variables

in Table 4.3 have over 30% missing, and there is generally a higher proportion of

deaths within the groups of patients missing information about these medical con-

ditions. Table 4.4 suggests little difference in incidence of death between patients

who have previously taken anti-hypertensives, anti-platelets and anti-coagulants,

compared to those who have not, however the proportion of deaths is higher in

the groups missing information about previous treatments.

In terms of admission details, Table 4.5 shows that Hospital 1 had a slightly

lower rate of death compared to Hospital 2. Figure 4.4(a) also shows a slightly

lower rate of survival for patients admitted to Hospital 2. Arm and leg weakness

at admission gave similar results in Table 4.5, where patients with no movement

had the highest rate of death for both these measures. Figure 4.4(b) further high-

lights the difference in survival for patients with no leg movement on admission to

hospital, where the KM survival curve for patients with no leg movement (green)

is lower, and drops more steeply initially compared to patients with some or no

leg weakness. Patients with hypertension at admission to hospital had a lower

incidence of death compared to those that did not, 62% compared to 76% re-

spectively as stated in Table 4.5. Figure 4.4(c) further highlights this difference

in survival, where the survival curve for patients with hypertension at admission
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Table 4.4: Patient medication: Number and percentage of patients within each
level of the previous medications variables and the number and percentage of
patients who died within each level.

Spread Died

Variable n % n %

Previous anti-hypertensives

Yes 161 29.9 110 68.3

No 323 60.1 225 69.7

Missing 54 10.0 44 81.5

Previous anti-platelets

Yes 159 29.6 111 69.8

No 334 62.1 230 68.9

Missing 45 8.4 38 84.4

Previous anti-coagulants

Yes 28 5.2 18 64.3

No 465 86.4 324 69.7

Missing 45 8.4 37 82.2

(red) is consistently above the curve for no hypertension. Considering systolic BP

at admission, we can see in Figure 4.4(d) that again patients with a higher blood

pressure at admission to hospital seem to have better survival overall, where the

survival curve for systolic BP in the range 170 to 200mmHg is highest overall.

Patients with highest systolic BP, of the range 200 to 260mmHg, however, had

worse survival than those in the 170 to 200mmHg range, suggesting the possibility

of a non-linear effect of systolic BP on survival.

Considering the characteristics of stroke shown in Table 4.6, we can see that

unconscious and unclassified patients had the highest incidence of deaths compared

to the remaining OCSP classifications. Figure 4.5(b) shows the KM survival curves

for the OCSP classification of stroke. We can see in Figure 4.5(b) that the most

distinct and lowest survival curve is for patients that were unconscious. The sur-

vival curve for unclassified patients is initially close to the survival curve for those

classified as TACS, however at 800 days post-stroke, the curve for unclassified

patients drops steeply and becomes closer to the survival curve for unconscious
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Table 4.5: Admission details: Number and percentage of patients within each level
of the admission details variables and the number and percentage of patients who
died within each level.

Spread Died

Variable n % n %

Hospital

Hospital 1 270 50.2 184 68.1

Hospital 2 268 49.8 195 72.8

Hypertension

Yes 220 40.9 137 62.3

No 314 58.4 239 76.1

Missing 4 0.7 3 75.0

Arm Weakness

No deficit 101 18.8 64 63.4

Weakness 285 53.0 193 67.7

No movement 125 23.2 99 79.2

Missing 27 5.0 23 85.2

Leg Weakness

No deficit 111 20.6 67 60.4

Weakness 281 52.2 196 69.8

No movement 118 21.9 92 78.0

Missing 28 5.2 24 85.7

patients. The survival curves for TACS, PACS, LACS and POCS are quite close

together in Figure 4.5(b), with some crossing of the curves. Table 4.6 also shows

that patients with a lesion on the right side of their brain had the lowest incidence

of death. Of patients that had a lesion on both sides, or were missing information

about side of lesion, 100% died. In Figure 4.5(d), we can see that the survival

curve for patients with a lesion on both sides drops steeply, and all these patients

had died by 250 days post-stroke. The survival curves in Figure 4.5(d) are close

together for no lesion or a lesion on one side, either left or right, with the right

lesion having the highest survival rates overall.

The incidence of death was highest for the group of patients that did not have

a CT scan; Table 4.6 shows that 30% of patients did not receive a CT scan, of
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Table 4.6: Classification and lesion details of stroke: Number and percentage of
patients within each level of these variables and the number and percentage of
patients who died within each level.

Spread Died

Variable n % n %

Class of Stroke

Unclassified 20 3.7 16 80.0

TACS 53 9.9 36 67.9

PACS 156 29.0 103 66.0

LACS 139 25.8 88 63.3

POCS 17 3.2 10 58.8

Unconscious 97 18.0 87 89.7

Missing 56 10.4 39 69.6

Side of Lesion

No lesion 112 208 79 70.5

Right 198 36.8 130 65.7

Left 204 37.9 146 71.6

Both 16 3.0 16 100.0

Missing 8 1.5 8 100.0

CT Scan Results

No lesion 108 20.1 58 53.7

CI 183 34.0 121 66.1

HCI 17 3.2 13 76.5

PICH 56 10.4 39 69.6

No scan 174 32.3 148 85.1

which, 85% died. Patients with no lesion found in the CT scan had the lowest

incidence of death. Figure 4.5(c) further highlights this, and also shows that of

the lesion types shown in a CT scan, patients with a CI had the highest survival

rates. Initially patients with a HCI had better survival compared to those with a

PICH, however at around 400 days post-stroke the survival curves for PICH and

HCI cross. This means that at the end of the 5 year follow-up, PICH patients had

a higher rate of survival compared to those with a HCI.

Tables 4.7 and 4.8 give details of the incidence of death dependent upon symp-

toms in the first 24 hours after onset of stroke. Worst consciousness level is the
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Table 4.7: Symptoms in first 24 hours after stroke onset: Number and percentage
of patients within each level of these variables and the number and percentage of
patients who died within each level.

Spread Died

Variable n % n %

Worst Consciousness Level

Alert 368 68.4 222 60.3

Drowsy 60 11.2 49 81.7

Stupour 39 7.2 33 84.6

Coma 81 15.1 75 92.6

Facial Weakness

Yes 190 35.3 143 75.3

No 215 40.0 129 60.0

Missing 133 24.7 107 80.5

Arm Weakness

Yes 423 78.6 302 71.4

No 70 13.0 38 54.3

Missing 45 8.4 39 86.7

Leg Weakness

Yes 406 75.5 293 72.2

No 85 15.8 45 52.9

Missing 47 8.7 41 87.2

Dysphasia

Yes 164 30.5 116 70.7

No 219 40.7 140 63.9

Missing 155 28.8 123 79.4

Dysarthria

Yes 159 29.6 107 67.3

No 215 40.0 144 67.0

Missing 164 30.5 128 78.0

only complete variable within these tables, and for the remaining variables, the

groups of patients missing information about these symptoms mostly had the high-

est incidence of death. Table 4.7 shows that worse levels of consciousness gave a

higher incidence of death, where over 90% of comatose patients died compared to

60% of alert patients. Figure 4.5(a) demonstrates the differences in survival for
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Table 4.8: Symptoms in first 24 hours after stroke onset: Number and percentage
of patients within each level of these variables and the number and percentage of
patients who died within each level.

Spread Died

Variable n % n %

Confusion

Yes 81 15.1 54 66.7

No 222 41.3 131 59.0

Missing 235 43.7 194 82.6

Conjugate Gaze Paresis

Yes 58 10.8 50 86.2

No 119 22.1 64 53.8

Missing 361 67.1 265 73.4

Hemianopia

Yes 28 5.2 18 64.3

No 87 16.2 45 51.7

Missing 423 78.6 316 74.7

Sensory Inattention

Yes 82 15.2 55 67.1

No 138 25.7 77 55.8

Missing 318 59.1 245 77.0

Brainstem/cerebellar signs

Yes 34 6.3 25 73.5

No 213 39.6 141 66.2

Missing 291 54.1 213 73.2

Other deficit

Yes 7 1.3 6 85.7

No 250 46.5 169 67.6

Missing 281 52.2 204 72.6

varying levels of worst consciousness within the first 24 hours post-stroke, where

there is a clear distinction between the survival curves for each level of conscious-

ness; lower for worsening consciousness levels. Table 4.7 shows that the groups of

patients who experienced facial, arm or leg weakness had more than a 15% higher

incidence of death compared to patients that did not have the specified weakness.

Table 4.7 shows that patients who had dysarthria had a 7% higher incidence of
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death compared to those who did not, however the incidence of death was very

similar regardless of whether or not patients had dysphasia. The symptoms of

stroke shown in Table 4.8 all have a large proportion of missing values, varying

between 43% and 78%, where patients missing information about these symptoms

had the highest incidence of death. For each of these symptoms, the rate of in-

cidence of death is lower for patients that did not experience the symptom being

considered, but considering the frequencies of patients identified as having one of

these symptoms, and the amount of missing information for each, these symptoms

may be uncommon or difficult to identify.

(a) Age (b) Sex

(c) Smoking Status (d) Alcohol Consumption

Figure 4.2: Plots of the Kaplan-Meier survival curves, split by patient character-
istics: age, sex, smoking status and alcohol consumption.

The frequency tables and KM survival curves gave an initial indication of po-

tential relationships between the baseline measures and survival. The next step
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(a) Pre-stroke Mobility (b) Previous Stroke

(c) Diabetes Mellitus (d) Atrial Fibrillation

Figure 4.3: Plots of the Kaplan-Meier survival curves, split by patient health
prior to stroke: pre-stroke mobility, previous stroke, diabetes mellitus and atrial
fibrillation.

within the data exploration was to carry out log-rank tests to establish if any of the

baseline measures have a significant effect on survival. The results of the log-rank

tests can be seen in Tables 4.9 and 4.10. Table 4.9 shows that age and sex both

have a significant effect on survival post-stroke at the 5% level. Linking this back

to the Kaplan-Meier curves shown in Figures 4.2(a) and 4.2(b) for age and sex

respectively, we can see that older patients have significantly worse survival rates,

as do females. The log-rank test results for smoking status and alcohol consump-

tion, in Table 4.9, along side the KM survival curves in Figures 4.2(c) and 4.2(d),

show that smoking and regular consumption of alcohol significantly reduces the

incidence of death in stroke patients. Pre-stroke living conditions, mobility and
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(a) Hospital (b) Leg Weakness

(c) Hypertension (d) Systolic BP

Figure 4.4: Plots of the Kaplan-Meier survival curves, split by admission details
and symptoms: hospital admitted to, and leg weakness, hypertension and systolic
BP at admission.

modified Rankin score all had a significant effect on survival. The results for these

pre-stroke measures in Table 4.9 alongside the KM survival curves suggest that

survival rates are significantly reduced by worsened levels of these pre-stroke mea-

sures, at the 5% significance level, where Figure 4.3(a) shows a consistently large

difference in survival rates for the levels of pre-stroke mobility.

In terms of medical history, the log-rank test results in Table 4.9 show that,

at the 5% significance level, diabetes mellitus, angina and atrial fibrillation signif-

icantly reduce survival rates post-stroke. Though not significant at the 5% level,

previous stroke and myocardial infarction were significant at the 10% level, suggest-

ing history of these also reduces survival rates post-stroke. History of hypertension
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(a) Worst Consciousness Level (b) OCSP Classification

(c) CT Scan Results (d) Side of Lesion

Figure 4.5: Plots of the Kaplan-Meier survival curves, split by characteristics
of stroke: worst consciousness level in first 24 hours after stroke onset, OCSP
classification of stroke, lesion type shown in CT scan and side of lesion.

or previous TIA did not give a significant effect on survival at the 5% level, nei-

ther did PVD, however PVD has a very high proportion of missing values so this

result may not be representative of the true effect of PVD on survival post-stroke.

Table 4.9 also shows that previous consumption of anti-hypertensive, anti-platelet

or anti-coagulant medication does not significantly affect survival post-stroke.

Table 4.10 gives the log-rank test results for hospital admission details and

stroke event assessments. Considering a significance level of 5%, firstly, Table 4.10

shows that the hospital patients were admitted to did not have a significant effect

on survival post-stroke. Hypertension, arm weakness and leg weakness all have

a significant affect on survival post-stroke. Linking this back to the KM survival
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Table 4.9: Results of the log-rank tests; showing the χ2 values, degrees of freedom
(df) and p-values for each of the baseline measures related to the patient and their
medical history.

Variable χ2 df p-value

Age 64.4 5 0.0005

Sex 12.2 1 <0.0001

Smoking Status 6.5 2 0.04

Alcohol Consumption 15.6 3 0.001

Pre-stroke Living Conditions 52.8 2 <0.0001

Pre-stroke Mobility 56.8 2 <0.0001

Pre-stroke Rankin 92.4 5 <0.0001

Diabetes Mellitus 6.4 1 0.01

Previous Stroke 3.3 1 0.07

Previous TIA 0.5 1 0.5

Atrial Fibrillation 6.7 1 0.01

Angina 10.9 1 0.001

Hypertension 0.5 1 0.5

Peripheral Vascular Disease 0.1 1 0.7

Myocardial Infarction 3.3 1 0.07

Previous Anti-hypertensives 0.7 1 0.4

Previous Anti-platelets 0.3 1 0.6

Previous Anti-coagulants 0.1 1 0.8

curves, we can see in Figure 4.4(c) that not having hypertension at admission

significantly reduced survival rates, and Figure 4.4(b) shows that survival rates are

significantly increased for those without any leg weakness at admission. The OCSP

classification of stroke, along with side of lesion, lesion type shown in CT scan and

worst consciousness level were all shown to be highly significant for survival in the

log-rank test results given in Table 4.10. Arm and leg weakness within the first 24

hours post-stroke were also found to be significant for survival, but facial weakness

was not. Conjugate Gaze Paresis was the only other symptom from the first 24

hours post stroke to be found significant for survival at the 5% level from the

log-rank tests, however this variable has a high percentage of missingness so this

result may not be representative of the true effect of CGP. Dysphasia, confusion

79



Table 4.10: Results of the log-rank tests; showing the χ2 values, degrees of freedom
(df) and p-values for each of the baseline measures related to hospital admission
and stroke event assessments.

Variable χ2 df p-value

Hospital 2.1 1 0.1

Hypertension (Admission) 11.1 1 0.0009

Arm Weakness (Admission) 27.2 2 <0.0001

Leg Weakness (Admission) 25.8 2 <0.0001

OCSP Classfication 122 5 <0.0001

Side of Lesion 45.6 3 <0.0001

CT Scan: Lesion Type 89.9 4 <0.0001

Worst Consciousness Level (24hrs) 192 3 <0.0001

Facial Weakness (24hrs) 0.8 1 0.4

Arm Weakness (24hrs) 9.7 1 0.002

Leg Weakness (24hrs) 12.5 1 0.0004

Dysphasia (24hrs) 3.1 1 0.08

Dysarthria (24hrs) 0 1 0.9

Confusion (24hrs) 3.7 1 0.06

Congugate Gaze Paresis (24hrs) 37.1 1 <0.0001

Hemianopia (24hrs) 1.9 1 0.2

Sensory Inattention (24hrs) 3.4 1 0.07

Brainstem/Cerebellar Signs (24hrs) 1.5 1 0.2

Other Deficit (24hrs) 1.4 1 0.2

and sensory inattention were marginally not-significant at the 5% level, but would

be considered significant for survival at the 10% level, where presence of these

symptoms would reduce survival rates.

After consideration of individual effects on survival, the next stage within the

exploration of the data was to examine the relationships between the covariates,

and how their effects on survival change when adjusted for the effects of other mea-

sures. Firstly, bivariate associations were explored through looking at measures of

correlation between the baseline covariates. A visualisation of these correlations

can be seen in Figure 4.6, which shows the size of the p-values through a colour

scale. Darker squares represent smaller p-values and show stronger associations
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between the baseline measures.

Figure 4.6 highlights several strong associations between some groups of base-

line measures. In particular, we can see that OCSP classification of stroke is

strongly associated with many other baseline measures, including symptoms and

worst consciousness level in the first 24 hours post-stroke, plus the pre-stroke

measures and patient characteristics. The lesion type shown in CT scan is also as-

sociated with several of the patient characteristics and their medical history, along

with admission assessments, worst consciousness level and the OCSP classification.

There seems to be strong associations between the patients characteristics where

age, sex, smoking status, alcohol consumption, and pre-stroke measures: living

conditions, mobility and modified Rankin are all associated. Arm, leg and facial

weakness are all strongly associated, and side of lesion is also strongly associated

with each of these.

The association between OCSP classification and worst conscious level requires

further consideration as these variables have cross-over between their levels. Both

of these variable categorise patients by consciousness level, where those identified

as stupor or comatose in the worst consciousness level variable are categorised

as unconscious in the OCSP classification variable. This is likely to result in

collinearity issues during model fitting, and is discussed further in Section 4.3.

Further to looking at the bivariate associations, as age and sex are complete

measures and are already known to be risk factors for survival post-stroke, we

carried out Cox proportional hazards modelling adjusted for age and sex on each

of the baseline measures. Age was fitted as a continuous variable and, as a binary

measure, sex was included with males as the baseline reference group. The results

of the age and sex adjusted modelling are given in Tables 4.11, 4.12, 4.13, 4.13

and 4.15.

Firstly considering the patient characteristics, we can see in Table 4.11 that

age and sex both have a significant effect on survival. The hazard ratio for males

81



Figure 4.6: Level plot showing the p-values for each of the pairwise correlation
tests.

compared to females is 1.44, however when adjusted for age the hazard ratio re-

duces to 1.26. Smoking status and alcohol consumption give some unexpected

effects in the univariate model, where both smokers and regular consumers of al-

cohol have a reduced hazard of death compared to the baselines of non-smokers

and non-drinkers, respectively. Table 4.11 suggests smoking significantly reduced

hazard of death by around 30%, however, when smoking status is adjusted for age,

this effect is no longer significant. Alcohol consumption also gave an interesting

result, where regular consumption of alcohol halved the hazard of death compared

to non-drinkers. Adjusting for both age and sex resulted in this effect no longer

being significant however. This shows that the effect of smoking status and alcohol
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consumption on survival post-stroke may be confounded by an age or sex effect.

Considering pre-stroke living conditions, the univariate model in Table 4.11

shows that patients living at home with a companion have a lower hazard of

death compared to the baseline of those living home alone. However, when this is

adjusted for age, patients living home alone had the lowest hazard of death. The

differences in effect on survival between living home alone or with a companion

are not significant in any of the models shown in Table 4.11, where we can see

the confidence intervals all span the reference hazard of one. Patients living in

an institution prior to stroke were around 2 and a half times more likely to die

post-stroke compared to those living home alone, regardless of age or sex. Poor

mobility prior to stroke also increased hazard of death regardless of age or sex,

although when this is adjusted for age, the hazard ratios for mobility levels of

‘indoors’ and ‘needs help’ are reduced slightly.

In terms of pre-stoke Rankin scores, we can see in Table 4.11 that a moderate

to severe disability increased hazard of death significantly, irrespective of age or

sex, where patients with a severe disability are over 6 times more likely to die

following a stroke. The significance of the effect of a slight disability on survival

post-stroke is reduced when adjusting for age or sex, or both.

Table 4.12 gives the results for the univariate, and age and sex adjusted Cox

regression models for patient medical history. These results show that previous

medications, such as anti-coagulants, were not important for survival post-stroke.

Further, previous stroke or TIA did not have a significant effect on survival post-

stroke in any of these models. Peripheral vascular disease also did not have a

significant effect on survival post-stroke. Diabetes mellitus was shown to be im-

portant for survival post-stroke, where diabetic patients had almost a 50% increase

in hazard of death post-stroke, regardless of age or sex. Table 4.12 also shows that

atrial fibrillation increased hazard of death post-stroke, however this was not a

significant increase when adjusted for age. The univariate model for myocardial
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infarction suggests it was not important for survival post-stroke, however when ad-

justed for sex, myocardial infarction was found to significantly increase hazard of

death post-stroke by around 40%. Angina gave a similar result, where the univari-

ate models suggest angina did not have a significant effect on survival post-stroke,

but when adjusted for age, sex or both, angina was found to significantly increase

the hazard of death in stroke patients by around 60%.

Considering hospital admission details, Table 4.13 shows that patients admitted

to Hospital 2 had an increased hazard of death compared to the baseline of Hospital

1, however this was not significant. Higher blood pressure and hypertension at

admission to hospital were shown to reduce hazard of death following stroke, and

this effect remained significant regardless of age or sex. The results in Table 4.13

also show that patients with no arm movement or no leg movement on admission

to hospital post-stroke were twice as likely to die, this is slightly reduced to a

80-90% increase in hazard of death when adjusted for age, sex or both, however

the effect remained significant. Patients with a lesion on both sides of their brain

had around 5 times the hazard of death post-stroke compared to those with no

lesion. Adjusting for age increased this hazard, whereas adjusting for sex reduced

the hazard ratio slightly.

Table 4.14 considers patient symptoms in the first 24 hours post-stroke. These

results show that arm and leg weakness in the first 24 hours post-stroke both

increased the hazard of death. In the univariate models the hazard of death is

increased by around 70% for arm or leg weakness, when adjusting for age how-

ever this increase in hazard was reduced by around 15%. Conjugate gaze paresis

(CGP) was also shown to significantly increase hazard of death, where patients

experiencing CGP in the first 24 hours post-stroke were 3 times more likely to die.

When adjusting for age however, this hazard ratio reduced to 2.6. The remaining

symptoms considered in Table 4.14 were all shown to increase the hazard of death

post-stroke, however, none of these effects were significant in any of the models.

84



Table 4.15 gives the results of the univariate and age and gender adjusted

models for OCSP classification of stroke, worst consciousness level and lesion type

shown in CT scan. The stroke classifications were compared to the baseline of

LACS, and the results show that TACS and PACS increased the hazard of death,

and POCS gave a lower hazard compared to LACS. However these effects were not

significant within the Cox regression models given in Table 4.15. The models for

classification of stroke show that unconscious patients had over 4 times the hazard

of death compared to those with LACS, and this effect was significant regardless

of age or sex. Considering worst consciousness level in the first 24 hour post-

stroke, drowsy, stupor and comatose patients had a significantly increased hazard

of death compared to alert patients, regardless of age and sex. Comatose patients

had the highest hazard overall, where they were almost 6 times more likely to die

post-stroke.

The model results in Table 4.15 for lesion type shown in CT scan show that,

compared to no lesion, patients with a CI or HCI had an increased hazard in

the univariate models, however when adjusted for age or sex, CI no longer had

a significant effect on survival post-stroke, and the effect of HCI was no longer

significant when adjusted for age. Patients with PICH had almost twice the hazard

of those with no lesion, regardless of age and sex, and patients that did not receive

a CT scan had the highest hazard overall, where they were around 3 times more

likely to die post-stroke. The effect of no scan is likely to be capturing the effects

of the underlying reasons as to why the patients did not receive a CT scan.

The results of the initial univariate, and age and sex adjusted Cox regression

models show that many of the baseline variables had a significant effect on survival

post-stroke, however, the size and importance of these effects changed on adjust-

ment for other covariate effects. Therefore, it is important to consider the effects

of these variables in a fully adjusted setting. Fitting a fully adjusted Cox model to

the complete cases resulted in a model fitted to only 6 patients due to the amount
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of missing information. This shows that complete case analysis is inappropriate

for the stroke audit data, and an alternative approach towards the missing data is

needed to carry out an adjusted analysis.
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Table 4.11: Results of the age and sex adjusted Cox PH modelling for patient characteristics; showing the hazard ratios (HR) and
95% confidence intervals (CI) for each model, displayed as HR (CI). (* Significant at 5% level)

Variable Univariate Age Adj. Sex Adj. Age & Sex Adj.

Age 1.038 (1.027,1.049)* 1.035 (1.024,1.047)*

Sex 1.437 (1.171,1.764)* 1.258 (1.020,1.551)*

Smoking Status

Ex-smoker 0.788 (0.598,1.039) 0.847 (0.642,1.119) 0.837 (0.632,1.109) 0.881 (0.664,1.169)

Smoker 0.693 (0.514,0.934)* 0.875 (0.642,1.195) 0.720 (0.533,0.972)* 0.894 (0.654,1.222)

Alcohol Consumption

Occasional 0.668 (0.489,0.913)* 0.831 (0.603,1.145) 0.701 (0.506,0.971)* 0.857 (0.613,1.198)

Regular 0.489 (0.319,0.750)* 0.603 (0.391,0.931)* 0.530 (0.336,0.835) 0.633 (0.399,1.003)

Excessive 0.697 (0.369,1.320) 0.897 (0.471,1.710) 0.755 (0.392,1.454) 0.942 (0.485,1.827)

Pre-stroke Living Conditions

Home with Companion 0.911 (0.730,1.136) 1.145 (0.908,1.444) 0.975 (0.777,1.222) 1.201 (0.947,1.522)

Institution 2.737 (1.972,3.799)* 2.469 (1.775,3.435)* 2.681 (1.931,3.723)* 2.437 (1.751,3.391)*

Pre-stroke Mobility

Indoors 1.745 (1.389,2.192)* 1.483 (1.174,1.872)* 1.691 (1.344,2.128)* 1.461 (1.155,1.847)*

Needs Help 3.209 (2.304,4.468)* 2.877 (2.060,4.019)* 3.102 (2.225,4.326)* 2.824 (2.019,3.950)*

Pre-stroke Rankin

No Significant Disability 1.182 (0.879,1.590) 1.112 (0.826,1.496) 1.173 (0.872,1.577) 1.106 (0.822,1.488)

Slight Disability 1.391 (1.033,1.871)* 1.252 (0.929,1.686) 1.345 (0.999,1.812) 1.227 (0.910,1.655)

Moderate Disability 2.796 (2.041,3.830)* 2.492 (1.814,3.423)* 2.695 (1.965,3.697)* 2.443 (1.777,3.360)*

Moderate/Severe Disability 3.058 (2.076,4.506)* 2.943 (1.994,4.344)* 2.874 (1.945,4.246)* 2.851 (1.928,4.216)*

Severe Disability 7.072 (3.667,13.64)* 6.533 (3.382,12.62)* 6.732 (3.485,13.01)* 6.358 (3.287,12.30)*
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Table 4.12: Results of the age and sex adjusted Cox PH modelling for patient medical history; showing the hazard ratios (HR) and
95% confidence intervals (CI) for each model, displayed as HR (CI). (* Significant at 5% level)

Variable Univariate Age Adj. Sex Adj. Age & Sex Adj.

Previous Anti-hypertensives 0.904 (0.720,1.135) 0.906 (0.720,1.139) 0.897 (0.714,1.126) 0.895 (0.712,1.126)

Previous Anti-platelets 0.942 (0.750,1.182) 0.981 (0.782,1.232) 1.005 (0.799,1.264) 1.020 (0.811,1.283)

Previous Anti-coagulants 0.933 (0.581,1.500) 1.091 (0.678,1.756) 0.958 (0.595,1.542) 1.094 (0.680,1.762)

Diabetes Mellitus 1.481 (1.091,2.011)* 1.441 (1.059,1.960)* 1.461 (1.076,1.983)* 1.425 (1.047,1.938)*

Previous Stroke 1.259 (0.983,1.611) 1.246 (0.973,1.595) 1.276 (0.995,1.637) 1.259 (0.981,1.614)

Previous TIA 1.131 (0.806,1.587) 1.084 (0.773,1.522) 1.092 (0.776,1.536) 1.053 (0.748,1.484)

Atrial Fibrillation 1.439 (1.092,1.897) 1.231 (0.927,1.636) 1.384 (1.046,1.832) 1.209 (0.910,1.607)

Hypertension 1.092 (0.846,1.409) 1.066 (0.826,1.375) 1.070 (0.829,1.381) 1.049 (0.813,1.354)

Myocardial Infarction 1.332 (0.981,1.809) 1.296 (0.954,1.759) 1.381 (1.015,1.879)* 1.326 (0.975,1.803)

Angina 1.170 (0.858,1.595) 1.587 (1.165,2.163)* 1.667 (1.223,2.272)* 1.568 (1.148,2.142)*

Peripheral Vascular Disease 1.160 (0.522,2.575) 1.534 (0.657,3.585) 1.121 (0.504,2.493) 1.381 (0.596,3.202)

88



Table 4.13: Results of the age and sex adjusted Cox PH modelling for hospital admission details; showing the hazard ratios (HR)
and 95% confidence intervals (CI) for each model, displayed as HR (CI). (* Significant at 5% level)

Variable Univariate Age Adj. Sex Adj. Age & Sex Adj.

Hospital 1.161 (0.948,1.420) 1.045 (0.852,1.281) 1.169 (0.955,1.430) 1.055 (0.861,1.294)

Systolic BP 0.991 (0.987,0.995)* 0.992 (0.988,0.996)* 0.991 (0.987,0.995)* 0.992 (0.988,0.996)*

Diastolic BP 0.990 (0.984,0.996)* 0.994 (0.988,0.999)* 0.991 (0.985,0.997)* 0.994 (0.988,0.999)*

Hypertension 0.715 (0.580,0.882)* 0.763 (0.618,0.943)* 0.715 (0.579,0.884)* 0.768 (0.621,0.949)*

Arm Weakness

Weakness 1.007 (0.759,1.335) 1.052 (0.794,1.395) 1.075 (0.870,1.328) 1.043 (0.786,1.383)

No Movement 1.950 (1.423,2.674)* 1.861 (1.357,2.551)* 1.919 (1.400,2.632)* 1.842 (1.344,2.526)*

Leg Weakness

Weakness 1.170 (0.886,1.545) 1.119 (0.847,1.477) 1.150 (0.871,1.519) 1.104 (0.836,1.458)

No Movement 2.044 (1.491,2.803)* 1.896 (1.383,2.600)* 2.002 (1.460,2.744)* 1.874 (1.364,2.574)*

Side of Lesion

Right 0.847 (0.640,1.121) 0.839 (0.635,1.108) 0.848 (0.641,1.122) 0.839 (0.635,1.108)

Left 1.043 (0.793,1.372) 1.092 (0.830,1.437) 1.054 (0.801,1.387) 1.092 (0.830,1.437)

Both 4.600 (2.662,7.947)* 5.145 (2.972,8.907)* 4.428 (2.558,7.666)* 4.973 (2.867,8.626)*
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Table 4.14: Results of the age and sex adjusted Cox PH modelling for symptoms in the first 24 hours post-stroke; showing the
hazard ratios (HR) and 95% confidence intervals (CI) for each model, displayed as HR (CI). (* Significant at 5% level)

Variable Univariate Age Adj. Sex Adj. Age & Sex Adj.

Facial Weakness 1.113 (0.878,1.411) 1.147 (0.903,1.457) 1.111 (0.876,1.408) 1.147 (0.903,1.457)

Arm Weakness 1.699 (1.213,2.380)* 1.560 (1.112,2.190)* 1.654 (1.178,2.321)* 1.537 (1.095,2.158)*

Leg Weakness 1.751 (1.279,2.396)* 1.586 (1.157,2.174)* 1.718 (1.255,2.350)* 1.570 (1.145,2.152)*

Dysphasia 1.249 (0.975,1.598) 1.186 (0.927,1.519) 1.214 (0.948,1.554) 1.171 (0.913,1.502)

Dysarthria 1.022 (0.795,1.314) 1.025 (0.798,1.318) 1.058 (0.821,1.362) 1.050 (0.816,1.352)

Confusion 1.363 (0.993,1.873) 1.129 (0.815,1.563) 1.390 (1.012,1.909)* 1.149 (0.828,1.594)

Conjugate Gaze Paresis 3.077 (2.108,4.492)* 2.593 (1.766,3.808)* 3.016 (2.062,4.412)* 2.570 (1.747,3.781)*

Hemianopia 1.462 (0.846,2.527) 1.353 (0.778,2.351) 1.426 (0.824,2.469) 1.347 (0.777,2.337)

Sensory Inattention 1.384 (0.978,1.958) 1.336 (0.945,1.891) 1.374 (0.971,1.944) 1.324 (0.936,1.874)

Brainstem/Cereballar Signs 1.310 (0.856,2.004) 1.347 (0.880,2.061) 1.366 (0.891,2.094) 1.380 (0.900,2.115)

Other Deficit 1.636 (0.724,3.696) 1.781 (0.786,4.032) 1.702 (0.752,3.855) 1.815 (0.801,4.110)

90



Table 4.15: Results of the age and sex adjusted Cox PH modelling for classification of stroke, worst consciousness level in the first
24 hours post-stroke and lesion type shown in CT scan; showing the hazard ratios (HR) and 95% confidence intervals (CI) for each
model, displayed as HR (CI). (* Significant at 5% level)

Variable Univariate Age Adj. Sex Adj. Age & Sex Adj.

Class of Stroke

PACS 1.131 (0.856,1.496) 1.109 (0.839,1.467) 1.101 (0.832,1.457) 1.092 (0.825,1.445)

POCS 0.811 (0.433,1.517) 0.823 (0.440,1.541) 0.826 (0.441,1.547) 0.831 (0.444,1.557)

TACS 1.390 (0.965,2.002) 1.338 (0.929,1.928) 1.338 (0.928,1.929) 1.315 (0.912,1.896)

Unclassified 1.675 (0.996,2.816) 1.497 (0.889,2.520) 1.579 (0.937,2.661) 1.447 (0.858,2.442)

Unconscious 4.528 (3.388,6.050)* 4.160 (3.109,5.567)* 4.375 (3.269,5.855)* 4.085 (3.050,5.470)*

Worst Conscious Level (24hrs)

Drowsy 1.858 (1.363,2.533)* 1.858 (1.362,2.534)* 1.810 (1.327,2.469)* 1.832 (1.342,2.500)*

Stupor 2.860 (1.977,4.137)* 2.538 (1.752,3.675)* 2.779 (1.919,4.023)* 2.507 (1.730,3.632)*

Coma 5.752 (4.365,7.580)* 5.650 (4.285,7.450)* 5.669 (4.297,7.479)* 5.594 (4.240,7.381)*

CT Scan: Lesion Type

CI 1.369 (1.001,1.873)* 1.305 (0.953,1.785) 1.312 (0.958,1.796) 1.273 (0.929,1.743)

HCI 1.873 (1.025,3.420)* 1.719 (0.940,3.141) 1.946 (1.065,3.556)* 1.785 (0.976,3.265)

PICH 1.918 (1.278,2.879)* 1.834 (1.221,2.754)* 1.828 (1.217,2.747)* 1.786 (1.189,2.684)*

No Scan 3.391 (2.496,4.608)* 2.875 (2.102,3.933)* 3.287 (2.417,4.469)* 2.846 (2.080,3.895)*
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4.3 Exploration of Missing Data

As shown in the previous section, complete case analysis is clearly an inappropriate

method of handling the missing data due to the amount of missing observations

in the stroke audit data. As discussed in Section 3.3.2, multiple imputation is a

flexible approach to handling missing data, and will be the method used for this

data. Prior to the imputation procedure, we must first explore the missing data,

considering the patterns and missing data mechanism, and possible predictors for

the missing values. This exploration is needed to allow appropriate assumptions to

be made about the missing data mechanism and ensure the missingness is handled

appropriately.

The first step in exploring the missing data was to examine how much missing

information there was in each variable. Table 4.16 shows the amount and percent-

age of patients missing information for each of the variables with missing values,

ordered by increasing missingness. Age, sex, hospital, pre-stroke living conditions,

worst consciousness level and admission date were completely recorded variables

so are not shown in Table 4.16. There was one patient who was missing informa-

tion regarding whether or not they had a CT scan; this patient was coded as not

having had a CT scan given there was no lesion type results for them.

The missing values for onset date were also handled during this exploration

stage. Onset date was missing for 12 patients, however, as survival time was

calculated as the time to death from onset of stroke, missing onset dates were

imputed as their admission dates. This approach was taken as the majority of

patients had the same admission and onset dates, and missing survival outcomes

further complicates any possible imputation procedures.

A further issue needing consideration at this stage was the OCSP classification

variable. Not only did this variable have missing data, but also collinearity issues

with another variable. Firstly we consider the missing data. Table 4.16 shows that

56 patients were missing OCSP classification, however, as some patients were under
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the group ‘unclassified’ for this variable, the difference between ‘unclassified’ and

‘missing’ was examined. Further exploration of these patients showed that all the

patients missing OCSP classification were diagnosed with a primary intra-cerebral

haemorrhage (PICH) in their CT scan. The OCSP classification groups are not

applicable to classify PICH patients, therefore imputation would not be a feasible

approach for these patients. Exclusion of these patients was also an undesirable

option, giving limited options for handling these patients.

The collinearity issues related to consciousness level, where patients classified

as ‘unconscious’ within the OCSP classification variable directly corresponded to

patients who were categorised as as ‘stupor’ or ‘coma’ within the variable for worst

consciousness level in the first 24 hours post-stroke. The collinearity between these

variables meant both could not be included together in any models; imputation

or analysis. This gave the options to either exclude one, or combine them into

one variable. Considering the issues around missing classifications for PICH pa-

tients, and recalling the results of the Cox regression models in Table 4.15, it

was decided to exclude OCSP classification from the imputation and analysis pro-

cedures, maintaining inclusion of worst consciousness level instead. Table 4.15

showed consciousness level to be more informative for survival over the differences

between LACS, PACS, TACS and POCS, and this decision also enabled inclusion

of patients with PICH.

Referring back to Table 4.16 to examine amount of missing data in the rest of

the baseline variables, it can be seen that there are eight variables for which over

50% of patients had missing observations, all of which fall into two categories of

variables: the symptoms present in the first 24 hours post-stroke and history of

medical conditions known to be risk factors for stroke. Whether or not patients had

a history of peripheral vascular disease had the highest amount of missing values,

with data missing for over 90% of patients. As 50% missingness is a sensible cut off

for imputation, the eight variables with over 50% missingness are to be excluded
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Table 4.16: Amount of missingness in each incomplete baseline variable; showing
number and percentage missing.

Variable Number Percentage (%)

Hypertension (Admission) 4 0.7

Systolic BP (Admission) 4 0.7

Diastolic BP (Admission) 4 0.7

Side of Lesion 8 1.5

Onset Date 12 2.2

Pre-stroke Rankin 22 4.1

Arm Weakness (Admission) 27 5.0

Leg Weakness (Admission) 28 5.2

Pre-stroke Mobility 39 7.2

Previous Anti-platelets 45 8.4

Previous Anti-coagulants 45 8.4

Arm Weakness (24hrs) 45 8.4

Leg Weakness (24hrs) 47 8.7

Previous Anti-hypertensives 54 10.0

OCSP Class of Stroke 56 10.4

Smoking Status 123 22.9

Facial Weakness (24hrs) 133 24.7

Alcohol Consumption 141 26.2

Dysphasia (24hrs) 155 28.8

Diabetes Mellitus 163 30.3

Dysarthria (24hrs) 164 30.5

Myocardial Infarction 169 31.4

Previous Stroke 173 32.2

Hypertension 177 32.9

Atrial Fibrillation 213 39.6

Confusion (24hrs) 235 43.7

Other Deficit (24hrs) 281 52.2

Brainstem/Cerebellar Signs (24hrs) 291 54.1

Angina 305 56.7

Previous TIA 310 57.6

Sensory Inattention (24hrs) 318 59.1

Congenital Gaze Paresis (24hrs) 361 67.1

Hemianopia (24hrs) 423 78.6

Peripheral Vascular Disease 488 90.7
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from the imputation procedure and analysis, however they are included in our

general exploration of the missing data as they have potential to be informative

regarding the missing data mechanism.

All of the medical conditions considered as risk factors for stroke, and recorded

as part of patient medical history, have missing values for over 30% of the pa-

tients. This highlights potential issues regarding the collection of this data. The

variables recording symptoms present in the first 24 hours post-stroke also have

high proportions of missing information, with six of these variables having over

40% of observations missing.

In order to explore the missing data in more depth, the VIM package in R

was used to visualise the data. Initially aggregation plots were used to show the

patterns and proportions of the missing data, where aggregation plots display the

combinations of observed and missing data profiles and identify distinct patterns

of missingness. For example, Figure 4.7 gives the aggregation plot for each of the

incomplete variables with less than 50% missingness, showing the combinations of

missing and observed data for these variables. The second to lowest row in Figure

4.7 shows the combination where ’confusion’ is missing, but all other variables are

observed. The combinations are ordered to ascend from the most common on the

bottom row of the plot, to the least common on the top row, and red represents

missing. In Figure 4.7, the vertical bars given above the aggregation plot present

the proportions of missingness within each variable. It is clear this data has an

arbitrary pattern of missingness, however, Figure 4.7 also shows that there are

some clear groups of variables with similar missing data patterns.

Figure 4.7 clearly shows that systolic and diastolic BP at admission had the

same missing data pattern, an expected result as these measurements are al-

ways taken together. Figure 4.7 also shows that the previous medications: anti-

hypertensives, anti platelets and anti-coagulants, had similar missingness patterns,

where if information regarding anti-hypertension medication is missing, informa-
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Figure 4.7: Aggregation plot showing all combinations of missing (red) and non-
missing (grey) parts of the observations, for the incomplete baseline variables with
less than 50% missingness. Vertical bars on top present proportions of missing
observations for each variable.

tion regarding the anti-coagulants and anti-platelets were also missing.

Several other groupings can be seen in Figure 4.7, including variables such

as arm and leg weakness. These groupings can be shown more clearly by fitting

aggregation plots to subsets of variables. These can be seen in Figures 4.8, 4.9,

4.10, and 4.11, where a histogram is presented to the left showing the proportions

of missingness for each variable, and the combinations of missingness are shown

on the right, again with the most common combination of missingness being given

on the lowest row, ascending to the least common combination on the top row.
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Figure 4.8: Visualisation of the patterns and proportions of missingness for patient
characteristics variables. LEFT: Barplot for proportion of missing values in each
variable. RIGHT: Aggregation plot showing all combinations of missing (red)
and non-missing (blue) parts in the observations, with horizontal bars showing
corresponding frequencies.
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Figure 4.9: Visualisation of the patterns and proportions of missingness for vari-
ables relating to facial and limb weakness. LEFT: Barplot for proportion of miss-
ing values in each variable. RIGHT: Aggregation plot showing all combinations
of missing (red) and non-missing (blue) parts in the observations, with horizontal
bars showing corresponding frequencies.
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Again, missing values are represented by red, and observed by blue.

Figure 4.8 shows that alcohol consumption and smoking status had similar

missingness patterns, where smoking status was mostly missing if alcohol con-

sumption was. Similarly, pre-stroke Rankin and mobility had similar missingness

patterns, where pre-stroke Rankin was often missing if pre-stroke mobility was.

Further, Figure 4.9 highlights that arm and leg weakness also had similar missing

data patterns, where arm weakness was always missing if leg weakness was, at

both admission and in the first 24 hours post-stroke. In both of these figures, the

complete cases are the most common combination.

Figure 4.10: Visualisation of the patterns and proportions of missingness for vari-
ables relating to patient medical history. LEFT: Barplot for proportion of missing
values in each variable. RIGHT: Aggregation plot showing all combinations of
missing (red) and non-missing (blue) parts in the observations, with horizontal
bars showing corresponding frequencies.

Figure 4.10 gives the aggregation plot for patient history of conditions consid-

ered as risk factors for stroke. The histogram shows that all of these variables

had a high proportion of missing values, where three had over 50%. This high
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amount of missingness results in the combination where all of these variables are

missing being more common than the combination of them all being observed.

The amount of combinations in this aggregation plot is high due to the amount

of missing values, and suggests an arbitrary pattern of missingness. The two vari-

ables with the most similar pattern were previous stroke and previous TIA, where

they are often missing together. Clinically, this may be expected as stroke and

TIA are the most similar of these medical conditions, with TIA often a pre-cursor

to stroke. With similar departments treating these conditions, it makes sense that

they would either know medical history regarding both or neither, but the excess

missingness for TIA may relate to TIA being harder to establish.

Figure 4.11: Visualisation of the patterns and proportions of missingness for vari-
able relating to symptoms present in the first 24 hours post-stroke. LEFT: Barplot
for proportion of missing values in each variable. RIGHT: Aggregation plot show-
ing all combinations of missing (red) and non-missing (blue) parts in the observa-
tions, with horizontal bars showing corresponding frequencies.

The final subset of variables considered are the variables relating to symptoms

present in the first 24 hours post-stroke. The aggregation plot for these variables

100



is given in Figure 4.11, which shows that this group of variables generally had

high proportions of missing values, with five having over 50%. The most common

combination is however the case where they were all observed. Figure 4.11 shows

that the missingness in arm and leg weakness could be related, where their amount

and patterns of missingness were closely matched. A similar result is shown in

Figure 4.11 for dysphasia and dysarthria, where they too appear to have a related

amount and pattern of missing values.

Overall the aggregation plots have shown that the general missingness pattern

is arbitrary, with some appearance of monotone and file matching patterns within

pairs or small subsets of variables. An alternative method for visualising the

missing data patterns is to use matrix plots, which also give an indication of the

missing data mechanism. Matrix plots present each patients’ observations as a row

in the plot, where the black, white and grey scale indicates the observed values, and

red represents missing observations. Matrix plots can be sorted by the values of a

particular variable to highlight any patterns in the data related to that variable,

although patterns can be clear regardless of sorting.

Figure 4.12 gives the matrix plot sorted by lesion type shown in CT scan. At

first glance, the large amount of red in this matrix plot highlights the amount

of missing data within this data set, particularly for variables regarding medical

history and stroke symptoms. Looking closer at the CT scan variable itself, ‘no

scan’ is represented in black and it appears in Figure 4.12 that patients who did

not have a CT scan had more missing information within other variables; BP

for example is only missing for ‘no scan’ patients. Another pattern shown in

Figure 4.12 is that ‘no scan’ appeared to be more common for patients admitted

to Hospital 2 (black) compared to the other hospital. There also appears to be

blocks of missing data (red) within this matrix plot relating to hospital. Further,

blocks of missingness can be seen to be related to patients who were unconscious

within the first 24 hours post-stroke, represented as black in the matrix plot.
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Figure 4.12: Matrix plot showing visualisation of the missing data patterns and
mechanism, sorted by lesion type shown in CT Scan.
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In order to explore missingness related to hospital further, Figure 4.13 gives the

matrix plot sorted by hospital. Patients admitted to Hospital 2 are shown to have

had more missing data overall, where there is clearly more red towards the top of

the matrix plot overall. The missing data within the variables for whether patients

had brainstem and cerebellar signs or other deficit within the first 24 hours post

stroke appears related to hospital, where most of the missing data was for Hospital

2. Smoking status and alcohol consumption was also more commonly missing for

patients admitted to Hopsital 2, as was whether or not they had facial weakness as

a symptom of stroke within the first 24 hours. On the other hand, whether or not

patients had arm or leg weakness as a symptom of stroke is shown in Figure 4.13 to

have been more commonly missing for patients admitted to Hospital 1. Pre-stoke

mobility and Rankin was also more commonly missing for patients admitted to

Hospital 1.

Looking at the general blocking of missing data in Figure 4.13, it can be seen

that unconscious patients commonly have missing data. Figure 4.14 sorts the

matrix plot by worst consciousness level in the first 24 hours post-stroke to examine

this more, where black represents ‘coma’, scaling to white for ‘alert’ patients. It

can be seen in Figure 4.14 that patients missing information regarding whether or

not they had arm weakness or leg weakness was missing most often for comatose

patients, as was smoking status and alcohol consumption. Whether or not patients

had dysarthria or dysphasia was also mostly missing for comatose patients.

More generally, the matrix plots in Figures 4.12, 4.13 and 4.14 show that

there are clear patterns in the missingness between variables, but the pattern

overall is clearly arbitrary with some randomness. Looking closer at some other

variables, it can be seen that alcohol consumption and smoking status were often

missing together, and this had some correspondence to sex, where females (black)

were missing this information more often. Information regarding the previous

medications was also often missing together, and the variables which had a large
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Figure 4.13: Matrix plot showing visualisation of the missing data patterns and
mechanism, sorted by hospital admitted to.

Figure 4.14: Matrix plot showing visualisation of the missing data patterns and
mechanism, sorted by worst consciousness level in first 24 hours post-stroke.
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proportion of missingness were mostly missing together for the same patient. The

matrix plots also highlight the issues around the OCSP classification variable,

where Figure 4.12 shows that patients who were diagnosed with PICH (dark grey)

in the CT scan were missing OCSP classification, and Figure 4.14 shows that

patients whose consciousness level was categorised as ‘coma’ (black) or ‘stupor’

(dark grey) were all categorised as ‘unconscious’ (black) in the OCSP classification

variable.

An additional method of exploring missing data is to visualise the relationship

between two variables using spine plots. These provide a way of visualising the

amount of missing data in one variable dependent upon the value of the other

variable, thus providing a method of assessing if the missing data in one variable

is related to the observed values in another. Several spine plots are shown in

Figures 4.15 and 4.16, where each column represents a level or set of values for

the variable given on the x-axis, and the proportion of missingness for the other

variable is given on the y-axis, where red in each column represents missing data

and blue represents observed. The width of each column indicates the amount of

patients within each level of the x-axis variable, with a column for ‘missing’ if this

variable is incomplete.

Figure 4.15 gives spine plots for missingness dependent upon pre-stroke Rankin,

age, sex and hospital. The spine plots in Figures 4.15(a) and 4.15(b) show how

missing data may depend on pre-stroke Rankin for facial weakness and confusion,

respectively, as symptoms of stroke. These show the amount of missingness to be

increasing for worsening Rankin scores. This relationship was seen for many of the

variables when included in a spine plot against pre-stroke Rankin. Figures 4.15(c)

and 4.15(d) give the spine plots for smoking status and diabetes, respectively,

against age, where a general pattern emerges that missingness was increasing with

age for patients over 60 years. The youngest groups of patients had slightly higher

proportions of missing data compared to the 60 to 65 age range however.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Spine plots showing colour coding of missing and available data for
variables on y-axis against value of variable given on x-axis.
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Figure 4.15(e) shows the amount of missing data for diabetes against sex, and

shows that females had more missing data regarding diabetes. This was a com-

mon pattern for sex, where a higher proportion of the missing observations in each

variable were missing for females compared to males. The spine plot in Figure

4.15(f) looks at atrial fibrillation against hospital, and shows that patients admit-

ted to Hospital 2 had a higher proportion of missing data than those admitted to

Hospital 1; again this pattern was common across the other variables.

(a) (b)

(c) (d)

(e) (f)

Figure 4.16: Spine plots showing colour coding of missing and available data for
variables on y-axis against value of variable given on x-axis.
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Further spine plots are given in Figure 4.16. The top left spine plot, Figure

4.16(a), shows the amount of missing observations for smoking status by pre-

stroke living conditions, and shows that patients living either home alone or in an

institution had more missing observations compared to those living at home with

a companion. Looking at Figure 4.16(b), it can be seen that smoking status and

alcohol consumption were often both missing together for a patient, and whether

patients smoked did not seem to affect the amount of missing data for alcohol

consumption.

The spine plot for history of myocardial infarction against previous stroke is

given in Figure 4.16(c). This shows that patients who have had a stroke previ-

ously had more missing observations regarding myocardial infarction. The highest

proportion of those missing data on myocardial infarction were those who were

also missing data regarding previous stroke occurrence. This affect appeared to

be common across the other variable, particularly for those relating to medical

history.

Considering the effect systolic BP may have had on whether data is missing,

Figure 4.16(d) gives the spine plot for smoking status against systolic BP. This

shows that smoking status was more commonly missing for more extreme BP

values, both high and low. This was a frequent occurrence for many variables,

with missing data in other variables being more common for patients with systolic

BP values below 100mmHg compared to other BP ranges.

Figures 4.16(e) and 4.16(f) present spine plots to look at the effect of lesion type

shown in CT scan and worst consciousness level in the first 24 hours post-stroke, re-

spectively. These spine plots further reiterate the findings of the matrix plots that

‘no scan’ and ‘coma’ seemed to increase the likelihood of patients having missing

observations. Figure 4.16(e) gives the proportions of missing data for hyperten-

sion against lesion type in CT scan, showing ‘no scan’ and ‘PICH’ patients had the

highest proportions of missing data regarding hypertension. In Figure 4.16(f) it
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can be seen that worsening consciousness levels related to increased missing data

for dysarthria. This pattern was seen among many of the variables, where the

proportions of missing data were found to increase with worsening consciousness

levels.

Through exploration of the missing data, the missing data will be assumed to

be missing at random (MAR) for the remaining analyses. The matrix and spine

plots clearly show that the missingness was related across variables, and dependent

upon the observed values of other variables. This suggests MAR is more plausible

than missing completely at random (MCAR), and MCAR should not be assumed.

It is not possible to truly to detect between missing not at random (NMAR) and

MAR, therefore care needs to be taken when deciding which of these assumptions to

base analyses upon. Discussions with the clinicians responsible for data collection

provided some assurance that the reasons for data being unavailable were not due

to the underlying values of the missing observations. The arbitrary pattern of

missingness, and associations found between missing data and the observed values

of other variables, may further evidence this, though it cannot be truly ruled

out that the data may be NMAR. Considering the findings of the missing data

exploration, alongside assurances from clinicians and the added complications that

the NMAR assumption creates within analyses, we will assume the missing data

is MAR and use methods suitable for the MAR assumption when handling the

missing data.

4.4 Multiple Imputation

4.4.1 Imputation Procedure

The missing data was handled using multiple imputation as outlined in Sections

3.3.2 and 3.3.3, where the imputation stage was implemented using multiple im-

putation using chained equations (MICE). The mice package (van Buuren and

109



Groothuis-Oudshoorn, 2011) in R (R Core Team, 2019) was used to perform the

imputation procedure. There were many considerations to take into account dur-

ing this stage to ensure the imputation models were appropriately specified.

In the previous section, the missing data was explored, concluding that the

missing data could be assumed to be MAR and handled as such. This exploration

also showed that eight variables had missing data for over 50% of patients, and

therefore these variables are excluded from the imputation and analysis process.

The 50% cut point was chosen through the recommendations by White et al.

(2011), who outlined that carrying out imputation on variables with over 50%

missingness can amplify any imperfections in the imputation procedure.

In order to specify an imputation model for each of the remaining incom-

plete variables, several considerations needed to be made. Firstly, variable type

was considered to ensure appropriate form of the imputation models. Linear

regression models were specified to impute the incomplete continuous variables,

which included systolic and diastolic BP. Binary variables were imputed using

logistic regression, where the incomplete binary variables included previous anti-

hypertensives, anti-platelets and anti-coagulants, history of diabetes mellitis, hy-

pertension, myocardial infarction and atrial fibrillation, previous stroke, hyper-

tension at admission, facial, arm and leg weakness within the first 24 hours post

stroke, and stroke symptoms: dysphasia, dysarthria and confusion. To impute

ordered and unordered categorical variables, multinomial logistic regression was

used, where the variables with imputation models of this form were pre-stroke

mobility, pre-stroke Rankin, smoking status, alcohol consumption, and arm and

leg weakness at admission to hospital.

The next consideration to be made was the predictors to be included in the

imputation models. Each imputation model should include all variables in the

analysis model, and in particular the outcome of the analysis model. As recom-

mended by White and Royston (2009), the survival outcome was included in the
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imputation models using the censoring indicator, δ, and the Nelson-Aalen estimate

of the cumulative hazard to the survival time. Additionally it is important for each

imputation model to include all predictors of the incomplete variable, along with

any variables which may predict whether or not the incomplete variable is missing.

Given all these considerations, an all for all approach was taken when specifying

the imputation models, where every variable was included as a predictor for each

incomplete variable.

After specification of the imputation models, the number of imputations and

iterations need to be considered. Given each of the variables included in the

imputation procedure have under 50% missingness, Bodner’s rule of thumb can be

used here, where it is recommended to look at the overall percentage of missing

data and impute a similar number of imputations. White et al. (2011) suggested

the required number of imputations for F = 0.05, 0.1, 0.2, 0.3, 0.5 would be m ≥

3, 6, 12, 24, 59 respectively. The percentage of missing data for the stroke data is

22%, therefore this rule of thumb would suggest the number of imputation should

be between 12 and 24. However, due to the amount of variables in the imputation

models, and the limited computational resources available, m was chosen to be

10. This is sufficient to still give reasonable power to the imputations, and only a

small loss of efficiency.

The imputations were carried out using the mice package in R, where the

variables chosen to be included as predictors in the imputation model for each

incomplete variable were specified using a prediction matrix, and the appropriate

model forms for the variable types were specified within the imputation function.

The imputation cycle was run for 1000 iterations to ensure convergence, and re-

peated 10 times to produce 10 imputed data sets.
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4.4.2 Imputation Diagnostics

After the imputation procedure had been carried out, it was important to carry

out checks on several aspects of the imputations. In particular, it was important

to check the between and within imputation variability and the convergence of the

imputations. Strip plots and histograms were used to examine the distributions

of the imputations, enabling assessment of the between and within imputation

variability. Convergence was assessed using trace plots.

Figure 4.17: Strip plot showing the values of Systolic BP for the incomplete data,
labelled 0, and the 10 imputed data sets, where imputed values are displayed as
red points.

Firstly looking at the distribution of imputations for continuous covariates,

strip plots indicate how the imputed values relate to the observed values of the vari-

ables, and show how the imputed values differ across the imputations m = 1, ...10,

assessing both the within-imputation and between-imputation variability. Figures

4.17 and 4.18 gives the strip plots for the imputations of systolic and diastolic BP,

respectively, where the imputed values are given in red and the observed values in
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Figure 4.18: Strip plot showing the values of Diastolic BP for the incomplete data,
labelled 0, and the 10 imputed data sets, where imputed values are displayed as
red points.

grey. The observed data prior to imputation is represented as 0 on the x-axis, and

the remaining values 1 to 10 represent each imputation m = 1, ..., 10. For both

systolic and diastolic BP, it can be seen in Figures 4.17 and 4.18 that, for each

imputation m, the imputed values fall within the range of the observed values,

with no extreme values imputed. This suggests the imputations are sensible given

the observed data. On the other hand, the strip plots indicates that there appears

to some variability in the imputed values between the imputations. This is not a

large concern though as only four values have been imputed for each of the BP

variables.

For categorical and binary covariates, the distribution of the imputations was

explored using histograms. Plotting histograms of the imputed values for each

imputation m of each variable shows the assignment of patients to each level,

checking between-imputation variability. Figure 4.19 gives the histograms show-

ing the distribution of the imputed values for alcohol consumption for each of the
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imputed data sets. It can be seen in Figure 4.19 that each of the imputed data sets

had a similar proportion of patients imputed into each of the levels of alcohol con-

sumption, showing minimal between-imputation variability. Considering diabetes

mellitus, the histograms in Figure 4.20 again show that similar proportions of pa-

tients have been imputed into each level across the imputed data sets. Figure 4.21

also indicates a similar result for facial weakness, however this also shows that a

similar number of patients were imputed into each level within each imputed data

set.

The histograms for pre-stroke Rankin are given in Figure 4.22. These indicate a

larger amount of between-imputation variability, where there are clear differences

in the distribution of the imputed values across each of the imputed data sets. An

example of this variability can be seen by looking at level 0 in data sets 3 and 5 in

Figure 4.22, where we can see that data set 5 has twice as many patients imputed as

level 0 than data set 3. Further, neither data set 3 or 5 have any patients imputed

as level 5, whereas data set 1 has 4 patients in this level. This variability does not

cause huge concern though, some between-imputation variability is expected due

to the uncertainty around the true underlying value of the missing data, and the

key reason for using multiple imputation is to reflect this.

Further histograms were plotted to examine the proportions of patients im-

puted into each level of the categorical variables, comparing the distribution of

imputed values to the imputed variable as a whole and the observed data prior to

imputation. Three histograms were plotted for each variable: one with imputed

values only, one combing the 10 imputed data sets and one for the original observed

data. In Figure 4.23, we include these histograms for pre-stroke Rankin as pre-

stroke Rankin was shown to have some between-imputation variability previously

in Figure 4.22. Looking at the histogram of the imputed values in Figure 4.23,

which gives the total number of patients imputed into each level over all 10 impu-

tations, we can see that the distribution of the imputed values is not overall that
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Figure 4.19: Histogram showing the number of patients imputed into each level of
alcohol consumption for each imputed data set

Figure 4.20: Histogram showing the number of patients imputed into each level of
diabetes mellitus for each imputed data set

115



Figure 4.21: Histogram showing the number of patients imputed into each level of
facial weakness for each imputed data set

Figure 4.22: Histogram showing the number of patients imputed into each level of
pre-stroke Rankin for each imputed data set
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different to the distribution of the observed and imputed data as a whole, aside

from levels 3 and 4 having higher proportions. Comparing the histograms of the

observed data to the overall imputed data, Figure 4.23 shows that the imputation

procedure has made minimal difference to the overall distribution of this variable.

The finding of similar results on examination of the other variables indicates that

the imputed data has been generated to be comparable with the observed data in

terms of its distribution and variability.

Figure 4.23: Histograms showing: the overall proportion of patients imputed into
each level of pre-stroke Rankin over the 10 imputations, the total proportions of
patients in each level over the 10 imputed data sets and the proportion of patients
in each level of the observed data.

Finally, trace plots were used to assess the convergence of the imputations. A

trace plot was drawn for each imputed variable, where each trace plot presents

a trace of the mean and standard deviation for each of the m imputations, m =

1, ..., 10, over the iterations. Trace plots were plotted for each of the covariates

imputed, where the trace of the mean is given in the left panel and the stan-

dard deviation given on the right. The majority of the trace plots showed good

convergence, however there were a few giving possible cause for concern.

In particular, Figure 4.24 gives the trace plots for side of lesion, hypertension at
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admission and systolic BP at admission, where the mean and standard deviation for

both side of lesion and hypertension at admission do not appear to converge very

well. However, this is likely to be due to variable type and amount of missingness;

side of lesion is categorical with only 1.5% missing data, and hypertension is binary

with only 0.7% missing data. The small amount of values being imputed with these

variable types results in more fluctuating trace plots.

The trace plots for arm and leg weakness in the first 24 hours post-stroke in

Figure 4.25 highlight the need to ensure sufficient iterations, where there is clear

change in the means within the early iterations. We can conclude that overall the

trace plots show good convergence for the imputations over the 1000 iterations.

The imputation diagnostics as a whole seem to imply that in general there was

not excessive between-imputation variability, the convergence was good, and the

imputed values were in line with observed data. This supports the plausibility of

the MAR assumption, and suggests the imputation procedure was satisfactory.

Figure 4.24: Trace plot for imputations of side of lesion, hypertension at admission
and systolic BP at admission to assess their convergence.

118



Figure 4.25: Trace plot for imputations of facial, arm and leg weakness in the first
24 hours post-stroke to assess their convergence.

4.5 Model Building

The analysis stage involved a model building procedure which was carried out on

the imputed data sets using backwards selection and the Wald test, as outlined

in Sections 3.2.5 and 3.3.4. This involved firstly fitting a fully adjusted Cox PH

model to each of the 10 imputed data sets and using Rubin’s rules to calculate

the combined coefficients and standard errors. Using the Wald test and backwards

selection, covariates were removed one by one in order to achieve the optimal set

of covariates within the model.

Each stage of the backwards elimination involved fitting the Cox regression

model to the new set of variables, after exclusion of one, to each of the imputed

data sets separately and again combining the estimates using Rubin’s rules. The

variable of least importance for survival is then chosen for exclusion using the

Wald test, and the model refitted to each of the imputed data sets excluding this
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variable, beginning the procedure again. This process was repeated until only

variables significant for survival at the 5% significance level remained.

Using the combined estimates of the coefficients and standard errors, the haz-

ard ratios, and their corresponding 95% confidence intervals and p-values were

calculated. The results of this are given in Table 4.17, with a visualisation of the

hazard ratios and confidence intervals provided in Figure 4.26.

The results of the model fitting show that the covariates important for survival

are age, hospital, pre-stroke mobility, diabetes mellitus, side of lesion, lesion type

shown in CT scan, and worst consciousness in the first 24 hours post-stroke, where

each of these covariates were significant for survival at the 5% level in the adjusted

Cox model, following backwards elimination.

Firstly looking at age, Table 4.17 shows that per each additional 10 years in

age at time of stroke, there was a 29% increase in the hazard of death following

stroke. The confidence interval gives 95% confidence that this increase in hazard

is between 15% and 44%. This result coincides with the survival curves in Figure

4.2(a) split by age group, where the older age groups had worse survival rates

overall.

Considering hospital admitted to, Figure 4.26 shows that stroke patients ad-

mitted to Hospital 2 had a reduced hazard of death compared to those admitted

to Hospital 1 when adjusted for other important risk factors. Patients admitted

to Hospital 2 had a reduction in hazard of almost 30%, as seen in Table 4.17.

Referring back to the earlier data exploration, the survival curves in Figure 4.4(a),

and the univariate Cox model for hospital in Table 4.13, showed that in the un-

adjusted setting, the opposite was the case, where Hospital 2 patients had an

increased hazard, and where this effect was not significant. This change in effect

will be considered further in the model validation.

The hazards for pre-stroke mobility, given in Table 4.17, suggest that patients

with reduced mobility prior to stroke had an increased hazard of death post-stroke.

120



Table 4.17: Results of the Cox proportional modelling procedure on the multiply
imputed data, showing the pooled estimates of the hazard ratios (HR), along with
the corresponding 95% confidence intervals (CI) and p-values.

Variable HR 95% CI p-value

Age (10 years) 1.288 (1.149,1.444) <0.001

Hospital

Hospital 1 (Baseline)

Hospital 2 0.725 (0.558,0.940) 0.015

Pre-stroke Mobility

200m Outdoors (Baseline)

Indoors 1.458 (1.120,1.898) 0.005

Needs Help 1.688 (1.111,2.564) 0.014

Diabetes Mellitus

No (Baseline)

Yes 1.515 (1.069,2.147) 0.019

Side of Lesion

No Lesion (Baseline)

Right 0.884 (0.664,1.177) 0.398

Left 1.165 (0.871,1.558) 0.303

Both 1.884 (1.022,3.476) 0.043

Systolic BP (10mmHg) 0.954 (0.918,0.991) 0.015

CT Scan: Lesion Type

No Lesion (Baseline)

CI 1.288 (0.934,1.776) 0.123

HCI 2.192 (1.176,4.086) 0.014

PICH 1.844 (1.206,2.819) 0.005

No Scan 2.512 (1.771,3.563) <0.001

Worst Conscious Level

Alert (Baseline)

Drowsy 1.900 (1.370,2.636) <0.001

Stupor 2.308 (1.556,3.425) <0.001

Coma 4.328 (3.144,5.957) <0.001
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Figure 4.26: Visualisation of hazard ratios and 95% confidence intervals for the
pooled Cox regression model results, showing the baseline reference hazard ratio
at one as a dotted line.
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Compared to the baseline of being capable of walking 200 metres outdoors, patients

needing help to get around were most at risk of death with a 69% increase in

hazard, whereas those able to move around indoors had an increase in hazard of

46%. This is concurrent with the data exploration findings, however, adjustment

for other factors resulted in a reduction in the level of increase of the hazard ratios.

Table 4.17 and Figure 4.26 show that patients with diabetes mellitus had an

increased hazard of death following stroke, where their risk of death was 1.5 times

higher than patients who do not have diabetes. The confidence interval suggests

this increase in hazard could be as little as 1.1 times higher, or up to over double

the hazard. This finding is consistent with the data exploration, where the survival

curves in Figure 4.3(c) showed that patients with diabetes had lower survival rates

over the 5 year follow-up.

Side of lesion was also found to be significant for survival in the adjusted

model, where compared to patients with no lesion, those most at risk of death

were patients with a lesion on both sides of the brain; their hazard of death was

almost double the hazard of those with no lesion. The 95% confidence interval

shows this increase could be as little as 2%, or give a risk of up to 3 and half times

higher, as shown in Figure 4.26. The effects of having a lesion either on the left

side, or on the right side of the brain, were not found to be significant for survival,

however the hazard ratios given in Table 4.17 imply that, compared to no lesion,

a right-sided lesion could reduce hazard of death, whereas as a left-sided lesion

would increase hazard.

The results of the pooled model also indicate that in the adjusted setting, for

each 10mmHg increase in systolic BP at admission hospital, the hazard of death

following stroke was reduced by almost 5%, with a hazard ratio of 0.95 given in

Table 4.17. This finding coincides with the findings of the univariate, and age and

sex adjusted, Cox models for systolic BP given in Table 4.13.

Lesion type shown in CT scan was also found to be important for survival in
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the adjusted model, where patients with no lesion were the baseline comparison.

Figure 4.26 clearly shows that patients with the highest hazard of death were

those who did not have a CT scan, where their hazard of death was 2 and half

times higher than those found to have no lesion. Patients with a HCI had the

next highest hazard of death, with a hazard ratio of 2.2, and patients diagnosed

with PICH had a 84% higher risk of death than those with no lesion. CI was the

only lesion type found to not be significant for survival at the 5% level, where the

confidence interval spans one, however, the hazard ratio for CI given in Table 4.17

suggest patients with a CI had a 29% increase in hazard of death.

Finally, worst consciousness level in the first 24 hours post-stroke was found

to be highly significant for survival in the adjusted Cox model, where worsening

consciousness levels resulted in increased risk of death. Compared to alert patients,

the hazard ratio for drowsy patients suggests they had a 90% higher risk of death.

Further, the hazard ratios in Table 4.17 show that, compared to alert patients,

stupor patients were over twice as likely to die post-stroke, and risk of death

for patients in a coma was over quadruple that of alert patients. These findings

regarding the effects of consciousness level on survival post-stroke are reiterated by

the Kaplan-Meier survival curves in Figure 4.5(a), fitted during data exploration.

However, like pre-stroke mobility, the adjustment for other factors resulted in a

reduction in the level of increase of the hazard ratios for the consciousness levels,

compared to the univariate Cox model, given in Table 4.15.

Overall, the results of the model building have shown that on adjustment for

other risk factors, several variables are important for survival post-stroke. The

findings show concurrence with the data exploration, whilst also highlighting the

need for adjusted effects over univariate models. The next step is to assess the fit

of this model by carrying out diagnostic checks.
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4.6 Model Validation

In order to assess the fit of the pooled model, the key assumption to check is

the proportional hazards assumption. This can be done through the test and

visualisation outlined in Section 3.2.6. The pooled model gives the combined

estimates of 10 Cox PH models fitted to each of the multiply imputed data sets,

and current methodology allows for the proportional hazards assumption to be

assessed by examining the Schoenfeld residuals and conducting the score test on

each of the 10 Cox models separately.

Through use of the cox.zph function, here we present the results of the formal

test, given in Table 4.18, for the model fitted to data set 1. In an attempt to

gauge the fit of the pooled proportional hazards model, this test was carried out

for each of the 10 imputed data sets, along with Schoenfeld residual plots, in order

to assess the proportional hazards assumption in the models fitted to each of the

imputed data sets.

The results in Table 4.18 show that several variables violated the proportional

hazards assumption within the model fitted to imputed data set 1. These variables

include age, the needs help level of pre-stroke mobility, no scan as a level of lesion

type shown in CT scan and the stupor and coma levels for worst consciousness level,

where each of these violated the proportional hazards assumption significantly at

the 5% level. Table 4.18 additionally shows a marginal result for PICH, with a

p-value less than 0.1, and hospital and systolic BP also have larger test statistics.

The results for imputed data set 1 indicate violation of the proportional haz-

ards, however this only considers one of the imputed data sets. To look at each of

the imputed data sets, and consider differences between these in terms of potential

violation of the proportional hazards assumption, Table 4.21 presents the p-values

produced by the cox.zph function for each of the imputed data sets.

Table 4.21 shows that there are clear differences between results for each data

set, where for example, a lesion on both sides has a marginal result with a p-
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value less than 0.1 for data set 6, but for other data sets the p-value is as large

as 0.4. Overall these test shows that there is violation of the proportional hazards

assumption in each of the models fitted to the imputed data set, with the global

test all showing a violation. This violation and the differences between the p-

values highlights the need to be able to assess the pooled model formally, and

visually, to gain a better understanding of the violation of the proportional hazards

assumption and how it can be handled in further analyses. This motivates the

work conducted within Chapter 5, where a further assessment of the proportional

hazards assumption is given.

Now, considering the unexpected interpretation, we refer back to the coefficient

for hospital discussed in Section 4.5, where we noted that we had an opposing

effect of hospital in the adjusted model compared to the univariate model. This

indicates a possible interaction between hospital and another covariate included in

the adjusted analysis model. On inspection of the variables included in the analysis

model, we note the most probable interaction is between hospital and whether or

not patients had a CT scan as this is directly related to hospital practice.

Through consideration of the number of patients not given a CT scan at each

hospital by the worst consciousness level of patients, a difference in practice can be

confirmed. Table 4.19 shows that Hospital 2 had a much higher number of patients

who did not receive a CT scan, 130 compared to 44 at Hospital 1. It can also be

seen in Table 4.19 that a higher proportion of alert patients were not given a CT

scan at Hospital 2 with 64% of the unscanned patients being alert. Whereas only

34% of the unscanned patients were alert at Hospital 1. On the other extreme,

39% of the unscanned patients were in a coma in Hospital 1, compared to 24% in

Hospital 2.

To explore how this may relate to survival, an interaction between ‘no scan’

and hospital can be incorporated into the levels of the CT scan variable. This gives

‘no scan’ as two levels: no scan at Hospital 1 and no scan at Hospital 2. Table
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Table 4.18: Results of the formal test of the proportional hazards assumption,
showing the estimates of ρ, χ2, and the p-values of the score tests for each covariate
effect in the adjusted Cox model fitted to imputed data set 1.

Variable ρ χ2 p-value

Age 0.268 33.105 <0.001

Hospital (Hospital 1)

Hospital 2 0.061 1.547 0.214

Pre-stroke Mobility (200m)

Indoors 0.006 0.016 0.901

Needs Help 0.153 10.402 0.001

Diabetes (No)

Yes -0.039 0.557 0.456

Side of Lesion (None)

Left 0.068 1.828 0.176

Right 0.013 0.071 0.790

Both 0.040 0.692 0.405

Systolic BP -0.057 1.692 0.193

CT Scan: Lesion Type (None)

CI 0.037 0.553 0.457

HCI -0.007 0.018 0.894

PICH -0.085 2.812 0.094

No Scan -0.182 12.248 <0.001

Worst Conscious Level (Alert)

Drowsy -0.075 2.216 0.137

Stupor -0.119 5.567 0.018

Coma -0.112 4.871 0.027

GLOBAL NA 83.782 <0.001

4.20 presents the spread of patients across each of the levels, and also gives the

incidence of death to compare how the incidence of death varies across the levels.

Table 4.20 shows that more patients did not have a CT scan at Hospital 2, but the

percentage of those that died who did not have a CT scan was higher for Hospital

1 compared to Hospital 2; 89% compared to 84%. This difference in incidence of

death highlights the need to incorporate this interaction between hospital and no

CT scan into further model building procedures for this stroke audit data.
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Table 4.19: Frequency table showing number of patients who did not receive a CT
scan split by hospital admitted to and worst consciousness level

Hospital
Consciousness Level

Total
Alert Drowsy Stupor Coma

Hospital 1 15 6 6 17 44

Hospital 2 83 7 8 32 130

Table 4.20: Number and percentage of patients within each level of lesion type
shown in CT scan and the number and percentage of patients who died within
each level, with hospital interaction for ‘no scan’.

CT Scan: Lesion Type
Spread Died

n % n %

No lesion 108 20.1 58 53.7

CI 183 34.0 121 66.1

HCI 17 3.2 13 76.5

PICH 56 10.4 39 69.6

No scan @ Hosp. 1 44 8.2 39 88.6

No scan @ Hosp. 2 130 24.2 109 83.8

A further issue needing consideration was the functional form of systolic BP. A

smooth fit of the Martingale residuals against the values of systolic BP, for imputed

data set 1, shown in Figure 4.27(a), gives an indication of the functional form of

Systolic BP, and shows a quadratic shape. To examine this more thoroughly, the

functional form of systolic BP can be visualised by fitting systolic BP as a spline

function in a Cox model. Given the Martingale residuals indicate a quadratic

effect, the spline fit can be compared to a model fit with a quadratic effect of

systolic BP. A plot of the spline fit for systolic BP is given in Figure 4.27(b), with

the quadratic effect overlaid. The shape of these curves indicates that the effect of

systolic BP on survival post-stroke takes a quadratic form, where extreme values,

both high and low, cause an increase in hazard of death.
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(a) Martingale Residuals (b) Spline and Quadratic Fit

Figure 4.27: Visualisation of functional form of systolic BP: (a) Smooth fit of
the Martingale residuals against systolic BP, (b) Plot of the spline fit (black) and
quadratic fit (red) for the effect of systolic BP on survival.

4.7 Conclusion

This chapter has completed an initial analysis of the stroke audit data, and high-

lighted issues to be considered in further analyses. Data exploration indicated

there were many baseline covariates important for survival post-stroke, with the

presence of associations between the baseline covariates highlighting the need for

an adjusted analysis.

The exploration of the missing data enabled the assumption of MAR to be

concluded, allowing the use of MICE to impute the missing data values. Following

imputation, the adjusted analysis demonstrated several baseline covariates to be

important for survival post-stroke; these included age, hospital, side of lesion, le-

sion type shown in CT scan, diabetes mellitus, systolic BP at admission to hospital,

pre-stroke mobility and worst consciousness level the first 24 hours post-stroke.

Interpretation of the analysis model in context resulted in the conclusion that
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hazard of death following stroke would be increased by higher age, a worse con-

sciousness level, poorer mobility prior to stroke, and a lower systolic BP measure-

ment on admission to hospital. Other findings indicated that a lesion on both sides

of the brain would result in a higher hazard, along with not having a CT scan.

During validation of this model, however, several of these effects were found to

be dependent on time post-stroke, violating the proportional hazards assumption.

These results were for the models fitted to each imputed data set separately, and

difference in the results between these motivates the work in Chapter 5 for assessing

the proportional hazards assumption of the pooled model. Further, during model

validation, an interaction between ‘no scan’ and hospital was found, and systolic

BP was shown to have a quadratic functional form.

To resolve the issues found during model validation, and account for them

appropriately in the analysis model, the imputation models need to be redefined.

The imputation models need to be defined such that they are compatible with an

analysis model which can handle time-dependent covariate effects and incorporate

quadratic terms. To do this, further theoretical work is required, motivating the

methodological developments in Chapters 6 and 7 prior to further analysis in

Chapter 8.

130



Table 4.21: Results of the PH test for adjusted Cox model fitted to each of the 10 imputed data sets (DS), showing the p-values of
the test only.

Variable DS 1 DS 2 DS 3 DS 4 DS 5 DS 6 DS 7 DS 8 DS 9 DS 10

Age <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Hospital 2 0.2140 0.1990 0.1120 0.2180 0.2150 0.1770 0.3030 0.2160 0.2200 0.2800

Indoors 0.9010 0.9270 0.9360 0.8660 0.3640 0.9390 0.7450 0.8220 0.8960 0.8740

Needs Help 0.0013 0.0009 0.0039 0.0013 0.0002 0.0009 0.0004 0.0038 0.0005 0.0006

Diabetes 0.4560 0.1030 0.2190 0.4570 0.2610 0.3410 0.6810 0.2320 0.5910 0.8220

Left 0.1760 0.1870 0.1960 0.1750 0.1970 0.1020 0.0773 0.0692 0.1430 0.1360

Right 0.7900 0.9710 0.9780 0.9160 0.8370 0.6570 0.7030 0.6570 0.7750 0.7500

Both 0.4050 0.3230 0.1000 0.3220 0.3300 0.0773 0.4760 0.1210 0.2860 0.2680

Systolic BP 0.1930 0.1660 0.1350 0.1680 0.1920 0.1270 0.2090 0.2050 0.2050 0.1930

CI 0.4570 0.3980 0.4330 0.4000 0.4420 0.4450 0.4270 0.4510 0.4320 0.3920

HCI 0.8940 0.8590 0.8760 0.9260 0.9790 0.9420 0.9500 0.8820 0.9590 0.9290

PICH 0.0936 0.0768 0.1180 0.0858 0.0842 0.1140 0.1020 0.0677 0.1290 0.1150

No Scan 0.0005 0.0005 0.0004 0.0004 0.0002 0.0004 0.0006 0.0005 0.0006 0.0005

Drowsy 0.1370 0.1290 0.1460 0.1160 0.0863 0.1160 0.1020 0.1320 0.1130 0.1080

Stupor 0.0183 0.0137 0.0302 0.0135 0.0056 0.0204 0.0177 0.0030 0.0172 0.0193

Coma 0.0273 0.0156 0.0089 0.0129 0.0086 0.0087 0.0166 0.0088 0.0200 0.0096

GLOBAL <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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Chapter 5

Model Validation after Multiple

Imputation

5.1 Introduction

This chapter discusses methods of model validation for the Cox proportional haz-

ards model, and extends these model validation techniques to suitably assess the

assumptions and fit of a Cox PH model when fitted to multiply imputed data.

After an analysis model has been fitted to data, it is important to assess if

the assumptions of this model are satisfied and if the model fits the data well.

There are many techniques available to assess the fit of a Cox proportional haz-

ards model, however, fitting a model to multiply imputed data complicates model

validation. There is minimal literature regarding validation of the Cox PH model

in the setting of multiply imputed data, however given the complex procedures

involved to produce multiply imputed data, it is important to ensure the anal-

ysis model is appropriate. Assessing the substantive model will not only ensure

valid inferences can be made using the model, but will also ensure the imputation

models have been fitted to be congenial to a suitable analysis model.

The key assumption of the Cox model is the proportional hazards assumption.
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This chapter will primarily focus on assessing the proportional hazards assumption

in the multiply imputed data setting, where both a formal test and visualisation

tool will be considered. Initially this chapter will overview the current methods

used to assess the proportional hazards assumption, leading on to provide alter-

native methods for application to multiply imputed data.

A simulation study will be presented to compare the test used in current prac-

tice, for assessing the proportional hazards assumption, against our proposed alter-

native for use with multiply imputed data. Application of our proposed alternative

test and visualisation tool will be shown, where they will be used to assess the pro-

portional hazards assumption of the pooled Cox model fitted to the stroke audit

data.

5.2 Review of Methods to Assess the Propor-

tional Hazards Assumption

As previously discussed in Sections 3.2.4 and 3.2.6, the proportional hazards as-

sumption is the key assumption of the Cox regression model for survival data.

Below we discuss several methods previously proposed to check for violation of the

proportional hazards assumption in a fitted Cox regression model.

The proportional hazards assumption means that the relative hazard between

two individuals is independent of time. More explicitly, for time-fixed covariates,

the relative hazard for any two individuals, i and l say, will obey the relationship

h0(t)eβ
′Xi

h0(t)eβ′Xl
=
eβ

′Xi

eβ′Xl

which is independent of time, and this relationship should hold individually for

each variable Xk in the model. For a time-varying covariate, proportional hazards
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means that the hazard for two individuals, expressed as

eβ
′Xi(t)

eβ′Xl(t)
,

is not independent of time, however the relative impact of any two values of a

covariate can still be given by a single coefficient β. In other words, the coeffi-

cient β for each covariate must be constant over time for the proportional hazards

assumption to be satisfied.

An alternative way to look at proportional hazards assumption is to consider

the form of the log-hazard function, expressed by Schoenfeld (1982) as

log [h(t,X,β)] = log [h0(t)] +X ′β.

Considering a simple example, as given by Hosmer et al. (2008), it can be seen how

the proportional hazards assumption can be assessed. Assume the Cox regression

model contains a single binary covariate. Plotting the log-hazard over time would

result in two curves; log [h0(t)] when X = 0 and log [h0(t)] + β when X = 1.

Therefore, regardless of the form of the baseline hazard function, the difference

between these curves at any point in time will be β. This concept works for further

variable types, and hence generally, assessing the proportional hazards assumption

is simply an examination of the extent to which plotted log-hazard functions are

equidistant from each other over time.

Previously there have been many methods suggested for assessing the propor-

tional hazards assumption, with Hess (1995) outlining eight graphical methods

suggested for assessing this assumption. Firstly, one method suggested was to

compare survival estimate through plotting the predicted survival curves based

on the Cox model along with non-model-based estimates of the observed survival

curves, such as Kaplan-Meier estimates. Early research by Breslow (1984) and

Harrell and Lee (1986) suggested any departures when comparing these estimates
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would give evidence against the proportional hazards assumption, however, judg-

ing whether these discrepancies are a result of sampling fluctuations or real trends

was not always possible.

Hess (1995) highlighted further approaches using the cumulative hazard func-

tions, where plotting this against time, or against each other, allowed checking for

a constant ratio, or constant slope respectively. Further, considering the log of the

cumulative hazard functions, a plot of this against time could check for parallelism

and a plot of difference in log cumulative hazard function against time could check

for constancy. These methods can provide an indication regarding violation of the

proportional hazards assumption but do not allow for inference about the shape

of β(t), a potentially time-varying coefficient.

A method suggested to be more direct by Harrell (2006) is to partition the

follow-up time into intervals and fit models to each interval. There have been

several approaches outlined for this method, including Gore et al. (1984), Kay

(1986) and Anderson and Senthilselvan (1982), where these approaches allow the

log hazard ratio, or Cox regression coefficient, to be a function of time by fitting

specially stratified Cox models. This method can result in difficulties around

choosing the number and location of the breakpoints between time intervals.

Incorporating a time-by-covariate interaction into the Cox regression model

can also be used to assess the proportional hazards assumption, where choice of

an appropriate functional form of time can be critical (Hess, 1995). Plotting the

estimated relative hazard function against time can determine the magnitude of

any violation of the proportional hazards assumption, where a formal test can

assess if the coefficient of the interaction term is significant.

Finally, plotting the Schoenfeld residuals against time can be used to assess the

proportional hazards assumption, where any trends shown in such a plot would

indicate time dependence in covariate effects (Schoenfeld, 1982). Grambsch and

Therneau (1994) developed this further, suggesting a scaled adjustment of the
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Schoenfeld residuals. This adjustment enables a smoothing procedure to be car-

ried out, improving interpretation of the plots. Grambsch and Therneau (1994)

further derived a weighted residual score test analogous to generalised least squares

which is now commonly used in practice. The methods outlined by Grambsch and

Therneau (1994) are widely used in practice, and Ng’andu (1997) showed the

weighted residual score test to have good power, with the added benefit of corre-

sponding graphical plots which can be used to augment the results.

Hosmer et al. (2008) recommend use of both a visualisation and formal test

together to support each other in assessing the proportional hazards assumption,

therefore, we focus upon the methods outlined by Grambsch and Therneau (1994)

and firstly consider how these can be derived. Expressing a model with a time-

dependent coefficient,

hi(t) = h0(t) exp(β(t)′xi),

enables us to test for non-proportional hazards, by assessing if βk(t) is constant.

Therefore, proportional hazards can be expressed as the restriction βk(t) = βk,

where βk is constant. If βk(t) is not constant, this suggests that the impact of

the kth explanatory variable on the hazard may vary over time, violating the

assumption of proportional hazards. If the proportional hazards assumption holds

then a plot of βk(t) against time will be a horizontal line.

Hosmer et al. (2008) suggest the proportional hazards assumption should be

assessed as a two-step procedure, where the results of the two steps should support

each other. The steps to assess whether the proportional hazards assumption

has been violated are visualising the relationship between βk(t) and time, and

calculating a formal test statistic. Both these methods require the use of the

Schoenfeld residuals. In Section 3.2.6, the Schoenfeld residual for the ith individual
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and kth covariate was defined as

ski = δi

{
xki −

∑
l∈R(ti)

xkl exp(β̂
′
xl)∑

l∈R(ti)
exp(β̂

′
xl)

}
.

As Schoenfeld residuals are only non-zero at uncensored observations, rather than

defining Schoenfeld residuals for each individual i, they can instead be defined for

each event time tj, j = 1, ..., d, where d is the total number of events. Letting sj

be the q × 1 vector of Schoenfeld residuals for the jth event time, and V (β, t) be

the variance matrix of X at time t, Grambsch and Therneau (1994) show that, for

the estimated coefficient β̂ from a standard Cox regression model,

E(s∗jk) + β̂k ≈ βk(tj),

where s∗jk is the scaled Schoenfeld residual, defined as V −1(β̂, tj)sj, and βk(tj) is

the time-varying coefficient of Xk at the jth event time tj.

This suggests that in order to examine the form of the time varying coefficient

βk(tj) of covariate Xk, a plot of s∗jk+ β̂k versus time, or alternatively some function

of time, sayG(t), can be used. This provides a method of visualising the nature and

extent of non-proportional hazards. Further, fitting a line to the plot and testing

for non-zero slope can be used to assess the proportional hazards assumption. A

non-zero slope gives evidence that the proportional hazards assumption has been

violated. This can lead to a more formal test.

Therneau and Grambsch (2013) suggest that an analogy to generalised least

squares can be used to motivate a formal test statistic to carry out a score test,

where as discussed in Section 3.2.6, the linear dependence of the coefficient of Xk

on time can be expressed as a regression on some function of time G(t), giving

βk(t) = βk + θkG(t), (5.1)
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with the null hypothesis for proportional hazards corresponding to θk = 0, for

k = 1, ..., q.

In order to define the test statistic, first let Gj be a q × q diagonal matrix

with diagonal entries G(tj), the function G(t) evaluated at the jth event time,

j = 1, ..., d. Letting V̂k = V (β̂, tj) be the variance of the estimated coefficient at

time tj, Therneau and Grambsch (2013) suggest that θ can be estimated by

θ̂ = Q−1

d∑
j=1

Gjsj, (5.2)

where

Q =
d∑
j=1

GjV̂jGj −

(
d∑
j=1

GjV̂j

)(
d∑
j=1

V̂j

)−1( d∑
j=1

GjV̂j

)′
, (5.3)

and Q−1 is the estimator of the variance of
∑d

j=1Gjsj.

Multivariate linear regression would estimate θ by

θ̃ =

(
d∑
j=1

GjV̂jGj

)−1 d∑
j=1

Gjsj,

however, since the Schoenfeld residuals are constrained to sum to zero,
∑d

j=1 sj =

0, Q is defined in Equation (5.3) to add a correction term to
∑d

j=1GjV̂jGj account-

ing for the covariance among the scaled Schoenfeld residuals. The matrix Q−1 gives

a consistent estimator of the variance of
∑d

j=1Gjsj under the null hypothesis, and

so a standard test of the null is

T = θ̂′Qθ̂, (5.4)

where T has an asymptotic χ2 distribution when the proportional hazards as-

sumption holds. This test statistic can be used as a global test of the proportional

hazards assumption for the Cox regression model, or can be used to assess propor-

tionality for individual covariates within the model.
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Rubin’s rules cannot be directly applied to this test statistic, and thus in the

multiple imputation setting, this needs further consideration to obtain a test of

the proportional hazards assumption of the pooled substantive model, globally or

univariate. It is possible to combine χ2 statistics, using the method outlined by

Li et al. (1991a), however this method is deficient compared to the use of Rubin’s

rules and the Wald test, as highlighted by Marshall et al. (2009). The amount

of information wasted from using only a χ2-statistic results in a loss of power

of the significance test (Meng and Rubin, 1992), therefore, when available, point

estimates and the covariance matrix should be combined to allow for use of the

Wald test.

5.3 Assessing Proportional Hazards Assumption

in Multiply Imputed Data Setting

When obtaining a pooled Cox regression model from M models fitted to M im-

puted data sets, the combined estimates consist of the pooled model coefficients

and corresponding variance terms. This means that we do not have any combined

information to inform regarding the model assumptions, such as the Schoenfeld

residuals. Any additional informative features produced in the model fitting pro-

cedure remain as separate objects which can only be retrieved from the M fitted

models, not the pooled model itself. Therefore in order to assess the proportional

hazards assumption of a pooled Cox regression model, we need to assess the as-

sumption separately in the M models fitted to each of the M imputed data sets,

and combine the results of these to achieve a pooled test result.

As previously discussed, Rubin’s rules cannot be directly applied to the test

statistic outlined by Therneau and Grambsch (2013), given in Equation (5.4), to

test the proportional hazards assumption within a pooled Cox regression model.

An analogy to linear regression suggests a natural way to combine test statistics,
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combining individual regression coefficients and the corresponding variance esti-

mates using Rubin’s rules. We seek to show it is possible to test the proportional

hazards assumption using an anology to linear regression, where the Wald test, as

opposed to a score test, can be used to assess the proportional hazards assumption

in the multiple imputation setting.

Further, with multiple sets of Schoenfeld residuals, one for each model fitted

to each of the imputed data sets, visualisation of the nature and extent of non-

proportional hazards for the pooled model requires further consideration to enable

provision of a single combined visual assessment for each covariate effect in the

pooled model.

5.3.1 Formal Test

In order to assess the proportional hazards assumption of a pooled model fitted

to multiply imputed data, an analogy to linear regression suggests a natural way

in which estimates can be combined using Rubin’s rules, and under which the

Wald test can apply. Using the approach outlined by Therneau and Grambsch

(2013), we show that through use of a constant scaling factor for the Schoenfeld

residuals, and by centering the function of time, G(t), it is possible to test the

proportional hazards assumption using standard linear regression of the scaled

Schoenfeld residuals on some function of time. The results of this is that Rubin’s

rules can be applied to the coefficients and variance estimates, and the Wald test

can be used to assess the null hypothesis of proportional hazards.

In order to show this, we take the formula for the variance estimator Q, given in

Equation (5.3), and derive the score test statistic given in Therneau and Grambsch

(2013) through use of a constant scaling factor and centering the function of time.

This derivation also shows how the Wald test statistic can be used to assess the

proportional hazards assumption through the use of linear regression models, with

an extension given for use after the multiple imputation procedure.
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Considering a constant scaling factor

The scaled Schoenfeld residuals are defined as

s∗jk = V̂ −1
j sj,

where V̂j = V (β̂, tj) is the variance matrix of a covariate, X, at time tj. In reality,

these V̂j’s can be unstable, particularly at the later few event times, therefore sub-

stituting this for a constant scaling factor can make it more stable. Denoting the

Fisher’s Information matrix for β̂ as I(β̂), where
∑d

j=1 V̂j = I(β̂), an appropriate

substitution would be to take the average of the V̂j’s, giving V̄ = I(β̂)/d. This

approximation results in the scaled Schoenfeld residuals being defined as

s∗j = d I−1(β̂)sj, (5.5)

and substituting V̄ into the formula for Q as defined in Equation (5.3), we get

Q =
d∑
j=1

GjV̄ Gj −

(
d∑
j=1

GjV̄

)(
d∑
j=1

V̄

)−1( d∑
j=1

GjV̄

)′

=
d∑
j=1

GjV̄ Gj −

(
d∑
j=1

GjV̄

)(
dV̄
)−1

(
d∑
j=1

GjV̄

)′
. (5.6)

We can further simplify this by using V̄ = I(β̂)/d, and that (dV̄ )−1 can be sim-

plified to I−1(β̂) since (dV̄ )−1 = (dI(β̂)/d)−1. Working through algebraically, we

can simplify the formula for Q in Equation (5.6) as follows:

Q =
d∑
j=1

Gj

(
I(β̂)/d

)
Gj −

[
d∑
j=1

Gj

(
I(β̂)/d

)]
I−1(β̂)

[
d∑
j=1

Gj

(
I(β̂)/d

)]′

= d−1

d∑
j=1

GjI(β̂)Gj − d−2

(
d∑
j=1

GjI(β̂)

)
I−1(β̂)

(
d∑
j=1

GjI(β̂)

)′
.
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Since I(β̂) is independent of j, and Gj is a diagonal matrix, we then have:

Q = d−1

d∑
j=1

GjI(β̂)Gj − d−2

(
d∑
j=1

Gj

)(
d∑
j=1

GjI(β̂)

)′

= d−1

d∑
j=1

GjI(β̂)Gj − d−2

d∑
j=1

GjI(β̂)Gj.

Finally, pulling like terms together results in:

Q =

(
d− 1

d2

) d∑
j=1

GjI(β̂)Gj. (5.7)

For a large number of events, or large d, the multiplicative term in Equation (5.7)

can be approximated as

d− 1

d2
≈ d

d2
=

1

d
,

resulting in an approximation for Q simplified as

Q ≈ d−1

d∑
j=1

GjI(β̂)Gj.

Substituting this approximation for Q into Equation (5.2) would give a simpler

approach to estimating θ; one which has potential to be combined using Rubin’s

rules. This result is not exact however and needs further consideration to avoid

the need for the assumption of large d. Centering the function of time can be used

to obtain an exact result, as shown in the following section.

Centering the function of time

Using the constant scaling factor V̄ = I(β̂)/d has allowed us to derive an approx-

imate simplification of Q for large values of d, however, this simplification can be

made exact for any value of d if we consider centering the function of time, G(tj).

Let gj be a q × q diagonal matrix, with diagonal entries g(tj), a function of
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time g(t) evaluated at the jth event time. Now suppose G(tj) is centered, so

that Gj = gj − ḡ, where ḡ = d−1
∑d

j=1 gj. Now considering the formula for Q

given in Equation (5.6), with the initial substitution of the constant scaling factor

V̄ , we can work through algebraically to achieve an exact simplification of Q by

substituting in the centered function of time. This gives:

Q =
d∑
j=1

(gj− ḡ)V̄ (gj− ḡ)−

(
d∑
j=1

(gj − ḡ)V̄

)(
d∑
j=1

V̄

)−1( d∑
j=1

(gj − ḡ)V̄

)′
. (5.8)

Again, considering the Fisher’s Information matrix, we have V̄ = I(β̂)/d. Substi-

tuting this into Equation (5.8) gives

Q =
d∑
j=1

(gj − ḡ)
(
I(β̂)/d

)
(gj − ḡ)

−

(
d∑
j=1

(gj − ḡ)
(
I(β̂)/d

))
I−1(β̂)

(
d∑
j=1

(gj − ḡ)
(
I(β̂)/d

))′
.

Now, as I(β̂)/d is independent of the event times, j, we can simplify Q further to

get

Q = d−1

d∑
j=1

(gj − ḡ)I(β̂)(gj − ḡ)

− d−2

[
I(β̂)

d∑
j=1

(gj − ḡ)

]
I−1(β̂)

[
I(β̂)

d∑
j=1

(gj − ḡ)

]′
.

At this stage, the centering of the function of time enables us to achieve an ex-

act simplification of the correction factor within Q. By definition of ḡ, we have∑d
j=1(gj − ḡ) = 0, and therefore

d−2

[
I(β̂)

d∑
j=1

(gj − ḡ)

]
I−1(β̂)

[
I(β̂)

d∑
j=1

(gj − ḡ)

]′
= 0.

We have now shown that the correction term becomes zero after using a constant
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scaling factor and centering the function of time to achieve an exact simplification

of Q as

Q = d−1

d∑
j=1

(gj − ḡ) I(β̂) (gj − ḡ) .

By Equation (5.2), we can estimate θ as θ̂ = Q−1
∑d

j=1Gjsj, so when the scaling

factor is constant and the time function is centered, θ can be estimated as

θ̂ =

[
d−1

d∑
j=1

(gj − ḡ) I(β̂) (gj − ḡ)

]−1 d∑
j=1

Gjsj. (5.9)

The constant scaling factor, V̄ = I(β̂)/d, now also means that the scaled Schoen-

feld residuals, s∗j , can be defined as s∗j = V̄ −1sj. Using the scaled Schoenfeld

residuals within our estimation of θ gives

θ̂ =

∑d
j=1 (gj − ḡ) s∗j∑d
j=1 (gj − ḡ)2

. (5.10)

The estimate, θ̂, given in Equation (5.10) shows that under the conditions of

using a constant scaling factor, V̄ , and centering the function of time, the pro-

portional hazards assumption can be tested using a simple linear regression model

of the scaled Schoenfeld residuals against a centered function of time, with no

intercept term. This now provides a simple approach for testing the proportional

hazards assumption, where the linear regression models give estimates of the coeffi-

cients and variance terms to which Rubin’s rules can be easily applied. Combining

these estimates enables assessment of the proportional hazards assumption for a

pooled Cox regression model, fitted to multiply imputed data, using the Wald test.

Now, as Hosmer et al. (2008) recommend, covariate specific tests should be

calculated. For a particular covariate, Xk, we have a linear regression model of

the form

s∗jk = θk (gj − ḡ) + ε, (5.11)
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where θk is estimated by

θ̂k =

∑d
j=1 (gj − ḡ) s∗jk∑d
j=1 (gj − ḡ)2

.

The univariate test of the proportional hazards assumption for the kth covariate

can therefore be based upon the linear regression model given in Equation (5.9),

and the Wald test, with the test statistic Tk given as

Tk =
θ̂2
k

Var(θ̂k)
.

Grambsch and Therneau (1994) suggested that since the (k, k)th element of Q−1

is a good estimator of the variance of θ̂j, the test statistic can be defined as

Tk =

{∑d
j=1 (gj − ḡ) s∗jk

}2

d I−1(β̂)(k,k)

∑d
j=1 (gj − ḡ)2

,

where d I−1(β̂)(k,k) gives the variance of
∑d

j=1 (gj − ḡ) s∗jk under the null. The dif-

ference between this test statistic and the Wald test statistic calculated directly

from the linear regression is related to the variance term d I−1(β̂)(k,k). This vari-

ance relates to the the Fisher’s Information matrix from the Cox regression model

itself as opposed to the linear regression of the residuals on time, and thus the test

statistic is not directly calculated from the linear regression model.

As previously discussed, Rubin’s rules do not apply directly to the test statis-

tics, and it is not sensible to combine the test statistic directly as this results in

wasted information and a loss power of the test. We instead suggest that focus

should be on using Rubin’s rules to combine the coefficients and variance estimates

from the linear regressions of the residuals against time.

In order to test the proportional hazards assumption for a particular covariate,

k, in a pooled Cox regression model, we suggest that the linear regression model

given in Equation (5.11) should be fitted to the scaled Schoenfeld residuals of

each of the M Cox regression models separately. This obtains M estimates of
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θk, denoted as θ̂
(m)
k , and M corresponding variance estimates, Var(θ̂

(m)
k ), for m =

1, ...,M . Typically, if θ̂ is calculated using maximum likelihood estimation, this

variance estimate, Var(θ̂
(m)
k ), will the be the inverse Fisher’s Information matrix

of the regression.

Here Rubin’s rules can be applied to obtain pooled coefficient and variance

estimates, where the combined coefficient is given as

θ̂∗k =
1

M

M∑
m=1

θ̂
(m)
k . (5.12)

The variance estimator of θ̂∗k is more complex as it needs to take into account

both the between-imputation variance and the within-imputation variance. The

between-imputation variance gives the variance between the estimates θ̂
(m)
k and

can be defined as

B(θk) =
1

M − 1

M∑
m=1

(
θ̂

(m)
k − θ̂∗k

)2

, (5.13)

and the within-imputation variance corresponds to the average variance of the

estimates θ̂
(m)
k and is given by

W(θk) =
1

M

M∑
m=1

Var(θ̂
(m)
k ). (5.14)

The total variance of θ̂∗k, denoted Var(θ̂∗k), is then defined as

Var(θ̂∗k) = W(θk) +

(
1 +

1

M

)
B(θk). (5.15)

Using the combined estimates of the coefficients and variance terms, given in Equa-

tions 5.12 and 5.15 respectively, the resulting combined test statistic can be cal-

culated as

T ∗k =
θ̂∗2k

Var(θ̂∗k)
.

Under the null of proportional hazards, T ∗k has an asymptotic χ2 distribution.
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The significance of T ∗k can be assessed using the Wald test to check for violation of

the proportional hazards assumption for covariate k in the pooled Cox regression

model. This procedure can be carried out for each of the q covariates fitted within

the pooled Cox proportional hazards model.

A simulation study is presented in Section 5.4 to compare the use of Wald tests

against the score test in assessing the proportional hazards assumption, examining

the type I error of each test.

5.3.2 Visual Examination

Now, we covered in Section 5.3.1 how to conduct a formal test of the proportional

hazards assumption of a pooled Cox regression model, however as Hosmer et al.

(2008) recommend, a visualisation should also be used to support the formal test.

To visualise the nature and extent of non-proportional hazards, it was recom-

mended by Therneau and Grambsch (2013) to plot the scaled Schoenfeld residuals

for each covariate against some function of time, where the addition of a smooth

curve with confidence bands can aid in detecting departures from proportional

hazards.

As in the formal test, in order to produce a visualisation for the pooled Cox

regression model, we need to use the Schoenfeld residuals from the M Cox models

fitted to the imputed data sets. Current practice would see this visualisation pro-

duced for each of the M imputed data sets separately for each of the q covariates.

This would result in at least M × q plots in total, in which each one considers only

one particular imputed data set and one covariate effect. We aim to show how an

overall visualisation can be produced for each covariate effect within the pooled

model by suggesting methods for combining the scaled Schoenfeld residuals and

fitting a combined smooth curve to a plot of the combined residuals.

Below we discuss approaches for combining the scaled Schoenfeld residuals and

fitting a smooth curve on a combined plot. We consider the current practice
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for fitting the smooth curve, as outlined by Therneau and Grambsch (2013) and

provide an extension of this for use after multiple imputation.

Combining the Scaled Schoenfeld Residuals

Using the M sets of scaled Schoenfeld residuals for each covariate, two possible ap-

proaches were considered to produce a single visualisation of proportional hazards

for each covariate.

Firstly, as we aim to produce a single plot incorporating all the residuals for a

particular covariate, one possible approach would be to overlay all M sets of the

scaled Schoenfeld residuals onto a single plot before adding a smoothed curve.

This approach could be highly informative, however it is more likely to be

excessive, where each individual with an event would be represented by M points

on the plot. The imputation variation would affect the scaling of the residuals, so

even those individuals with observed data rather than imputed data, would have

slight differences in their residual values for each of the M models. This method

would therefore make interpretation difficult due to the amount of points presented

within a single plot, particularly if M or d are large. It would also be difficult to

distinguish if a group of residuals causing concern were from the same individual

or not.

To produce a simpler plot, with more similarity in interpretation to the current

practice, an alternative approach would be to take the average scaled Schoenfeld

residual for each individual for each covariate and plot these against g(t). Taking

the average of the scaled Schoenfeld residuals across the imputations would not be

a suitable approach to carry out formal tests given the reliance upon the variance

for scaling, however, for visualisation purposes, the average would be sufficient

to view the nature of the proportional hazards. This approach would therefore

appear to be the more sensible option to allow for easier interpretation and clarity

of the form of proportional hazards, and is the method we recommend.
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Fitting a Smooth Curve

Further consideration is needed to appropriately add a smooth curve with con-

fidence bands to a plot of combined residuals. It would not be appropriate to

fit a smooth curve to the average scaled Schoenfeld residuals, particularly as this

would prevent the confidence bands taking into account the between-imputation

variance. Instead, a more rigorous approach would be needed.

Therneau and Grambsch (2013) outline that a common approach in statistical

software packages to adding the smooth curve and confidence bands onto residual

plots is to use a spline fit. In order to define the plotted values of the spline

curve firstly suppose U is the matrix of basis vectors for the spline fit of the

scaled Schoenfeld residuals on the g(tk)s, and let C be the matrix for the same

spline functions evaluated at the v plotting points. Let S be the d × q matrix of

Schoenfeld residuals, so that the matrix of scaled Schoenfeld residuals is defined

as S∗ = dSI−1 under the simplification of constant variance. The plotted values

of the spline curve for the kth covariate can then be defined as

ŷk = 1β̂k + C(U ′U)−1U ′S∗k ≡ 1β̂k +HS∗k ,

where S∗k is the kth column of S∗ and 1 is a v-vector of ones.

Through consideration of the variance matrix of S∗k , Therneau and Grambsch

(2013) provide an estimate for Var(ŷk). For notational simplicity, let Ijk = I−1
jk ,

the (j, k)th element of I−1. Under the assumption of constant variance over time

and controlling for the constraint of the Schoenfeld residual summing to zero,

Therneau and Grambsch (2013) suggest Ikk [dId − Jd] gives a consistent estimator

of the variance matrix of S∗k under proportional hazards, where Id is the d × d

identity matrix and Jd is the d× d matrix of ones. Since the Schoenfeld residuals,

and therefore also the scaled Schoenfeld residuals, are asymptotically uncorrelated
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with β̂k, we have

Var(ŷk) = IkkJv + IkkdHH ′ − IkkHJdH ′.

Now, it is obvious that the smooth of a constant under the spline function equates

said constant, so we have HJ = J . This results in the cancellation of terms to get

Var(ŷk) = d IkkHH ′. (5.16)

Therneau and Grambsch (2013) therefore recommend that confidence intervals can

be constructed using standard linear model calculations. This is due to the equiv-

alence of Equation (5.16) to the standard linear model formula for the variance of

predicted values, with the exception of d Ikk replacing the usual estimator of σ̂2.

Now, as the spline fits contain point and variance estimates, ŷk and Var(ŷk)

respectively, Rubin’s rules can apply to yield a pooled smooth curve with appro-

priate confidence bands, allowing for extension to the multiple imputation setting.

This can be done by fitting the smooth curve to each of the M sets of residuals sep-

arately using a spline fit of the scaled Schoenfeld residuals on time. The plotting

points of the spline fits and their corresponding variance can then be combined

using Rubin’s rules to give an overall smooth curve. This curve will represent the

form of the hazards of the covariates fitted within a pooled Cox regression model,

and indicate if proportionality is satisfied.

The plotting points of the pooled smooth curve can be calculated as the average

of the plotting points for the M imputed data sets, giving

ŷ∗k =
1

M

M∑
m=1

ŷ
(m)
k , (5.17)

where ŷ
(m)
k denotes the plotting points for the kth covariate of the mth imputed

data set. Further, using Rubin’s rules gives the between-imputation variance of
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ŷk to be B(yk) = 1
M−1

∑M
m=1

(
ŷ

(m)
k − ŷ∗k

)2

, and the within-imputation variance to

be defined as W(yk) = 1
M

∑M
m=1 Var(ŷ

(m)
k ). This results in the total variance of ŷ∗k

being defined as

Var(ŷ∗k) = W(yk) +

(
1 +

1

M

)
B(yk), (5.18)

which can then be used to form confidence intervals using standard linear model

calculations.

This use of Rubin’s rules ensures both the within-imputation and between-

imputation variance are fully taken into account in the calculation of the pointwise

confidence bands. The pooled smooth curve and confidence bands can then be

superimposed onto the plot of the average residuals.

5.4 Simulation Study

In order to test the accuracy of the Wald test compared to the score test for

assessing the proportional hazards assumption, here we present a simulation study

of the Type I error of these tests. We compare the Type I error of the score test and

Wald test used to assess the proportional hazards assumption of complete data,

and also present the Type I error of the Wald test used to assess the assumption

of a Cox model fitted to multiply imputed data.

We produced 5000 simulations of survival data for n = 1000 individuals, where

in each simulation three covariates were generated. The first covariate, X1, was

a continuous covariate simulated from a normal distribution with µ = 65 and

σ = 10, the second covariate, X2, was a binary covariate generated using the

Bernoulli distribution with probabilities dependent upon the values of X1, and

the third covariate, X3, was simulated as a continuous covariate dependent upon

X1 and X2.

Survival times were generated from covariates X1, X2 and X3 using the

simsurv package in R under the Weibull distribution. Survival times were gener-
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ated under the assumption of proportional hazards. Four scenarios were simulated

for the survival times, varying the proportion of individuals with events. The per-

centage of individuals simulated to have events in the four scenarios were 20%,

40%, 60% and 80%.

Cox regression models adjusted for all three covariates, X1, X2 and X3, were

fitted in each of the scenarios. The proportional hazards assumption was tested

for each covariate in these Cox models using two tests; the test commonly used in

practice and our proposed alternative. Respectively, these are the score test in the

cox.zph function in R, and the Wald test of the scaled Schoenfeld residuals re-

gressed against the centered Kaplan-Meier function of time, as outlined in Section

5.3.1. To compare the performance of these tests, the Type 1 error was recorded

for each covariate in each scenario.

Further, to examine the performance of our proposed Wald test method on a

model fitted to multiply imputed data, missing data was introduced into covariates

X2 and X3. The proportion of missing observations in each covariate were varied

to produce three scenarios: 10% missing in X2 and 50% missing in X3, 20%

missing in X2 and 40% missing in X3, and 30% missing in both X2 and X3.

Covariate X1 remained complete in each scenario.

These three scenarios were simulated for each of the four survival rate scenarios,

resulting in a total of twelve scenarios overall. The mice package in R was used to

impute the missing data in each scenario, where the number of imputations was

chosen to be M = 10, and the imputations were run over 1000 iterations.

A Cox model adjusted for all three covariates, X1, X2 and X3, was fitted to

each of the M = 10 imputed data sets for each scenario in each simulation. The

proportional hazards assumption was tested using the Wald test method, regress-

ing the scaled Schoenfeld residuals against the centered Kaplan-Meier function of

time as outlined in Section 5.3.1. The coefficient and variance estimates of the

regressions were combined using Rubin’s rules before applying the Wald test. The
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Type 1 error was again recorded for each covariate in each scenario.

For each scenario within this simulation study, the Type 1 error was given

as the proportion of the 5000 simulations where the p-value of the test of the

proportional hazards assumption, for each covariate, was less than the significance

level of α = 0.05.

5.4.1 Type I Error Results

The results of the simulation study are presented in Table 5.1, where the Type 1

error is presented for the tests of the proportional hazards assumption for each of

the covariates, under each of the scenarios outlined.

Initially comparing the Type 1 error between the results of the score and Wald

tests for the complete data setting, it can be seen in Table 5.1 that the score and

Wald test produce very similar Type 1 errors for each covariate, over the varying

proportions of events. The Type 1 errors are all close to 0.05 for the complete

data in both tests, thus we can conclude that the Wald test can be used as an

alternative to the score test.

Now looking at the simulation study results in the situation where multiple

imputation has been used to impute missing values, we can see that the Type 1

error is increased due to the uncertainty around the imputations. In particular, for

the lower event proportion scenarios, X2 has increased Type 1 error with increased

missing data. For larger event proportions, the missing information in covariate

X3 appears to be causing an increase in Type 1 error for each of the covariates,

with the Type 1 error for X2 increasing with increased missing data in X3, for 60%

events and above. The Type 1 error for X1 and X3 can be seen in Table 5.1 to

be increasing for increased missingness in X3, regardless of the amount of events.

The increase in Type 1 error for X1 appears strange given X1 was complete in all

scenarios, however, this may be explained by the model being adjusted for X2 and

X3 which were incomplete. Any bias introduced through the imputation of X2
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Table 5.1: Simulation results giving Type 1 error of test of proportional hazards as-
sumption used in current practice and our proposed Wald test method on complete
and multiply imputed data (n=1000, 5000 Simulations).

Events Missing (%) Type of Type 1 Error

(%) X2 X3 Test X1 X2 X3

0 0 Score Test 0.051 0.052 0.049

0 0 Wald Test 0.050 0.052 0.049

20 10 50 Wald-MI 0.055 0.053 0.052

20 40 Wald-MI 0.049 0.058 0.049

30 30 Wald-MI 0.048 0.060 0.045

0 0 Score Test 0.057 0.046 0.049

0 0 Wald Test 0.053 0.046 0.049

40 10 50 Wald-MI 0.072 0.054 0.071

20 40 Wald-MI 0.068 0.054 0.072

30 30 Wald-MI 0.068 0.060 0.070

0 0 Score Test 0.053 0.049 0.051

0 0 Wald Test 0.050 0.048 0.052

60 10 50 Wald-MI 0.102 0.064 0.115

20 40 Wald-MI 0.096 0.058 0.111

30 30 Wald-MI 0.090 0.047 0.100

0 0 Score Test 0.056 0.045 0.050

0 0 Wald Test 0.056 0.045 0.052

80 10 50 Wald-MI 0.114 0.068 0.151

20 40 Wald-MI 0.117 0.055 0.156

30 30 Wald-MI 0.107 0.042 0.140

and X3 may influence the association between X1 and survival within a model

adjusted for all three covariates.

Given the consistency in Type 1 error between the score and Wald test in the

complete data setting, the increase in Type 1 error of the test for proportional

hazards following multiple imputation indicates that the imputation procedure

may not have performed well. Given this, it it is possible that the imputations

could be causing bias in the covariate effects for survival, and hence affecting the

assumption of proportional hazards. The increase in Type 1 error of the test for

violation of the proportional hazards assumption is therefore not necessarily an
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indication of poor performance of the test itself.

5.5 Application to Stroke Data

This chapter has outlined methods for assessing the proportional hazards assump-

tion after multiple imputation, and here we provide an application of these methods

to the model fitted to the stroke data in Section 4.5. A formal test of the propor-

tional hazards assumption for each covariate effect was carried out by regressing

the scaled Schoenfeld residuals for each covariate against the centered Kaplan-

Meier function of time, as outlined in Section 5.3.1. The visualisation technique

described in Section 5.3.2 was also carried out for each covariate effect.

This section presents the results of the formal test and visualisations, giving

interpretaion of the results in the context of the model and providing a comparison

of these methods against the results of the methods used in current practice.

Table 5.2 presents the results of the formal test, giving the pooled estimates

of the regression coefficients of the residuals against time, and their corresponding

p-values, calculated using the Wald test. Figures 5.1, 5.2, 5.3 and 5.3 present the

visualisations of proportional hazards for each covariate effect, showing plots of

the combined Schoenfeld residuals against time, with the pooled spline curves and

confidence interval to aid with interpretation.

Firstly focusing upon the formal test, Table 5.2 shows that several covariate ef-

fects violate the proportional hazards assumption, where the regression coefficients

of the residuals against time are significantly non-zero, with p-values less than 0.05.

It can be seen in Table 5.2 that the effect of age violates the proportional hazards

assumption, along with the ‘needs help’ level of pre-stroke mobility. Further, ‘no

scan’ as a level of lesion type shown in CT scan violates the assumption, as do the

effects of levels ‘stupor’ and ‘coma’ in the worst consciousness level covariate. This

is the same set of covariate effects highlighted to be in violation of the proportional
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hazards assumption in Section 4.6. These results imply that the effects of these

covariates on survival post-stroke are dependent upon time since stroke.

Table 5.2: Results of the formal test of the proportional hazards assumption,
showing the pooled coefficient estimates of the scaled Schoenfeld residuals regressed
against time, and their corresponding p-values, for each covariate effect in the
adjusted Cox model.

Variable Coefficient p-value

Age (10 years) 0.148 0.001

Hospital (Hospital 1)

Hospital 2 0.756 0.265

Pre-stroke Mobility (200m Outdoors)

Indoors 0.135 0.834

Needs Help 2.675 0.018

Diabetes Mellitus (No)

Yes -0.486 0.505

Side of Lesion (None)

Right 0.981 0.191

Left 0.134 0.857

Both 1.557 0.329

Systolic BP (10mmHg) -0.012 0.285

CT Scan: Lesion Type (No Lesion)

CI 0.599 0.463

HCI -0.148 0.923

PICH -1.642 0.143

No Scan -2.867 0.007

Worst Conscious Level (Alert)

Drowsy -1.198 0.168

Stupor -2.229 0.047

Coma -1.794 0.057

To further understand the violations of the proportional hazards assumption,

the visualisations of the scaled Schoenfeld residuals against time can be used to

examine the form of the hazards. Figure 5.1 gives these residual plots for age,

diabetes mellitus and pre-stroke mobility. The violation of the proportional haz-

ards assumption by the effect of age, determined in the formal test, is reiterated
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in Figure 5.1(a), which shows an initially increasing smooth curve, before levelling

after 100 days post-stroke. The spline curve is below the coefficient reference line

prior to 14 days post-stroke, before crossing the line, and the confidence interval

of the smooth only contains the coefficient line around the time they cross. This

suggests the effect of age on survival may change around this time, however given

the shape of the spline fit, the effect of age may change any time within the first

100 days post-stroke.

The effect of diabetes mellitus on survival post-stroke is shown to satisfy the

proportional hazards assumption in Figure 5.1(b), where the spline curve is rea-

sonably constant, with the coefficient being within the confidence interval for the

whole follow-up period. This coincides with the formal test, where the results in

Table 5.2 suggest that the regression coefficient is not significantly different from

zero, and thus diabetes mellitus has a constant effect on survival over time.

Figures 5.1(c) and 5.1(d) give the Schoenfeld residual plots for pre-stroke mo-

bility, where Figure 5.1(c) shows the spline fit of the residuals against time to be

constant for the ‘indoors’ level of pre-stroke mobility. This corresponds to the

formal test result of this covariate effect satisfying the proportional hazards as-

sumption. Figure 5.1(d) gives the Schoenfeld residual plot for the ‘needs help’

level of pre-stroke mobility. This displays a spline curve which is initially increas-

ing, before levelling out around 10 to 30 days post-stroke. This again reiterates the

findings of the formal test, where the covariate effect of ‘needs help’ was found to

violate the proportional hazards assumption, since the coefficient is not contained

within the confidence interval of the smooth at these early times. The shape of

the smooth curve in Figure 5.1(d) indicates that there is likely to be a change in

effect of ‘needs help’ on survival within the first month post-stroke.

The Schoenfeld residual plots for systolic BP and side of lesion are given in

Figure 5.2. Firstly examining the residual plot for systolic BP in Figure 5.2(a), it

can be seen that the coefficient reference line is within the confidence interval of
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(a) (b)

(c) (d)

Figure 5.1: Combined plots of scaled Schoenfeld residuals against time (days) with
smooth curve to visualise extent of violation of proportional hazards for: (a) Age;
(b) Diabetes Mellitus; (c) Pre-stroke Mobility - Indoors; (d) Pre-stroke Mobility -
Needs Help.
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(a) (b)

(c) (d)

Figure 5.2: Combined plots of scaled Schoenfeld residuals against time (days)
with smooth curve to visualise extent of violation of proportional hazards for: (a)
Systolic BP; (b) Side of Lesion - Right; (c) Side of Lesion - Left; (d) Side of Lesion
- Both.
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the spline fit for the whole of follow-up, confirming the findings of the formal test

that the covariate effect of systolic BP does not violate the proportional hazards

assumption. Given systolic BP is a continuous covariate, the shape of the spline

can also indicate any issues around the functional form of the covariate effect.

Examining the spline fit closer, Figure 5.2(a) shows that the curve is increasing

until around 350 days post-stroke, where the curve then becomes a decreasing

function for the remainder of follow-up. This indicates that the effect of systolic

BP may not be linear, and the functional form of this covariate will need further

consideration.

The effects for the levels of side of lesion were all found to satisfy the pro-

portional hazards assumption in the formal test; this seems reasonable given the

Schoenfeld residual plots in Figures 5.2(b), 5.2(c) and 5.2(d). Within each of these

plots, the spline curves remain close to the coefficient line for the full follow-up,

with the coefficient reference lines mostly being contained with the confidence in-

tervals of the spline fits. The curve in Figure 5.2(d), however, is initially decreas-

ing, with the coefficient line outside the confidence interval, and could indicate

non-proportional hazards for early survival times.

Figure 5.3 displays the Schoenfeld residual plots for hospital admitted to and

worst consciousness level in the first 24 hours post-stroke. The results of the

formal test in Table 5.2 indicated that the effect of hospital did not violate the

proportional hazards assumption, which is further asserted by the residual plot,

Figure 5.3(a). Although the smooth curve in Figure 5.3(a) appears to be on a

slight incline over the 5 year follow-up, the curve remains close to the coefficient

line, with the coefficient line remaining inside the confidence interval.

The Schoenfeld residual plots for worst consciousness level show some more

interesting results, relating to the violation of proportional hazards shown in Table

5.2. Firstly considering the residual plot for ‘drowsy’ in Figure 5.3(b), it can be

seen that the spline fit is constant initially, before reducing at around 10 days post-
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stroke to become level again from around 200 days post-stroke. This indicates that

there may be a change of effect for survival of ‘drowsy’ patients between the early

and late event times, however, the coefficient line remains within the confidence

bands of the smooth for the whole follow-up time.

(a) (b)

(c) (d)

Figure 5.3: Combined plots of scaled Schoenfeld residuals against time (days)
with smooth curve to visualise extent of violation of proportional hazards for:
(a) Hospital; (b) Conscious Level - Drowsy; (c) Conscious Level - Stupor; (d)
Conscious Level - Coma.

The spline fits in Figure 5.3(c) and 5.3(d), for ‘stupor’ and ‘coma’ respectively,

appear to follow similar shapes, where the slopes are initially decreasing until

around 7 to 14 days post stroke, where there is slight increase or levelling close

to the coefficient line before decreasing again towards the end of follow. Within

Figure 5.3(c), the coefficient line just remains inside the confidence interval of the

spline fit for the follow-up period, but is close to the edge for early and late times.

For ‘coma’ in Figure 5.3(d) coefficient line is not contained within the confidence

interval for early follow-up times. The change in gradient of this curve is strongest
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at around one to two weeks post-stroke, where the spline fit then becomes more

constant. The shape of these spline fits indicate that there is likely to be a change

in effect of both ‘stupor’ and ‘coma’ within the first few weeks post-stroke.

Finally, Figure 5.4 gives the plots of the Schoenfeld residuals against time for

the lesion type shown in CT scan variable. Figures 5.4(a) and 5.4(b) give the

plots for ‘CI’ and ‘HCI’ respectively. In the formal test, the effects of ‘CI’ and

‘HCI’ were shown to not violate the proportional hazards assumption and this is

reiterated in Figures 5.4(a) and 5.4(b). The spline fit in Figure 5.4(a) is on a slight

incline, however the curve remains close to the coefficient line, with the confidence

interval of the spline fit spanning the coefficient line over the full follow-up period.

The spline curve in Figure 5.4(b) also remains close to the coefficient line.

(a) (b)

(c) (d)

Figure 5.4: Combined plots of scaled Schoenfeld residuals against time (days) with
smooth curve to visualise extent of violation of proportional hazards for lesion type
shown in CT scan: (a) CI; (b) HCI; (c) PICH; (d) No Scan.

Considering the residual plot for ‘PICH’ in Figure 5.4(c), the shape of the
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spline curve indicates that there could be a violation of the proportional hazards

assumption for the effect of this covariate level. The curve is initially constant,

but is above the coefficient line. At around 2 weeks post-stroke, the curve then

appears to decline, dropping below the coefficient line and gradually increasing

again to reach the coefficient line at the end of follow-up. The results in Table 5.2

indicates that there is not a significant effect of time on the covariate effect for

‘PICH’ which is consistent with the residual plot as the confidence interval spans

the coefficient line for the whole of follow-up. However given the shape of the

smooth in Figure 5.4(c), it may be sensible to consider accounting for a possible

time-dependent covariate effect for ‘PICH’, where the residual plot indicates the

change in effect could be within the first month post-stroke.

The final level of lesion type shown in CT scan to consider is ‘no scan’. The

covariate effect of ‘no scan’ was shown to violate the proportional hazards assump-

tion in the formal test, and this result is clearly supported by the residual plot

in Figure 5.4(d). For around the first 7 days post-stroke, the coefficient line is

not within the confidence bands of the spline fit, where the curve remains above

the coefficient line until around a month post-stroke. The curve then crosses the

coefficient line and remains below it for the remainder of follow-up, when the coef-

ficient is close to the upper interval line. The curve is initially constant and begins

decreasing around a week to 2 weeks post-stroke, indicating that a change in effect

of ‘no scan’ could be around this time period.

5.6 Conclusion

This chapter has reviewed methods for assessing the proportional hazards assump-

tion, and derived that the proportional hazards assumption can be assessed using

a linear regression of the scaled residuals against time for each covariate, where

this derivation relies on scaling the Schoenfeld residuals using a constant scaling
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factor, and using a centered function of time. Application of Rubin’s rules to the

regression estimates was shown to enable assessment of the proportional hazards

assumption for a pooled Cox model fitted to multiply imputed data.

This chapter also presented a simulation study to show the Type 1 error of

using linear regression and the Wald test, compared to the score test derived

by Grambsch and Therneau (1994) which is used as standard in practice. The

simulation study showed consistent Type 1 error between the two methods for

the complete data, but highlighted possible issues around application to imputed

data, with increased Type 1 errors for larger amounts of missing information,

further increasing with number of events. We noted these issues are likely due to

imputation procedure imperfections rather than the test itself however.

Application of our proposed test of proportional hazards to the pooled adjusted

Cox model fitted in Chapter 4 has shown that the proportional hazards assumption

was violated by several covariates within the stroke audit data, and thus any

further analyses of this data needs to account for time-dependent covariate effects.

This motivates the methodology developed in the next two chapters, prior to

additional analyses in Chapter 8.
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Chapter 6

Handling Non-Proportional

Hazards in MICE

6.1 Introduction

Motivated by the violation of the proportional hazards assumption shown in the

application to stroke data in Chapter 4 and Section 5.5, this chapter shows the

theoretical extension for handling non-proportional hazards survival data within

MICE, detailing the development of the appropriate form of the imputation models

for multiple variable types.

Firstly, methods for handling non-proportional hazards will be reviewed, dis-

cussing how time-dependent covariate effects can be incorporated into the Cox

proportional hazards model. We will highlight potential issues around handling

time-dependent covariate effects in the presence of missing data and consider the

current methods for handling missing data.

The Cox proportional hazards and piecewise-proportional hazards models will

be defined. The derivation of the imputation model forms, approximately compat-

ible with the standard Cox proportional hazards model, will be outlined in detail

for each variable type, expanding upon the work by White and Royston (2009).
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We will then present how this can be extended to derive the appropriate forms of

the imputation models for the different variable types when the survival data has

non-proportional hazards. The extension we present gives the form of imputation

models approximately compatible with the piecewise-proportional hazards model.

6.2 Review of Current Methods

Previous chapters in this thesis have highlighted the importance of the proportional

hazards assumption when fitting a Cox regression model, however, motivated by

the model validation carried out in Section 5.5, here we consider alternatives to the

standard Cox PH model in order to incorporate time-dependent covariate effects

within survival analysis. Further, we explore approaches for handling missing

data using multiple imputation, with a particular interest in their suitability for

application to non-proportional hazards survival data.

Considering a time-constant explanatory variable, where the value of the vari-

able itself does not change over time, such a variable can be defined to have a

time-dependent covariate effect if its model coefficient is a function of time. By

the definition of proportional hazards, a model coefficient which is a function of

time violates this assumption. Collett (2015) states there are several alternative

modelling approaches which do not require the assumption of proportional haz-

ards, including accelerated failure time modelling and proportional odds models.

Interpretation of an accelerated failure time model is in terms of the speed

of progression of a disease, where Tableman and Kim (2005) state that within

an accelerated failure time model, the explanatory variables are assumed to act

multiplicatively on the time-scale, affecting the rate of progression of an individ-

ual along the time-axis (Harrell, 2006). The Weibull, log-logistic and log-normal

distributions are most commonly used for the survival times as the basis for a

parametric accelerated failure time model, where an in depth discussion of these
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can be found in Collett (2015).

The proportional odds model, on the other hand, gives a non-parametric es-

timation of the baseline hazard function, and expresses the odds of an individual

surviving beyond some time point t. Within this model the covariates act mul-

tiplicatively on these odds, resulting in a model which is a linear model for the

log-odds ratio (Collett, 2015).

Hosmer et al. (2008) highlight, however, that the proportional hazards model is

accepted in many applied settings as the standard method for analysis of survival,

and thus focus will now be upon how time-dependent covariate effects can be

incorporated into the Cox proportional hazards model.

Harrell (2006) state that the stratified proportional hazards model can be used

to adjust for factors which are not modelled, such as those which do not satisfy

the proportional hazards assumption, where Hosmer et al. (2008) reinforce its

use for accommodating non-proportional hazards within a covariate. Within the

stratified proportional hazards model, rather than incorporating covariates with

non-proportional hazards as regressors, they can be incorporated as stratification

factors, however Therneau and Grambsch (2013) highlight that stratified analy-

ses are less efficient and this approach does not provide a test of the association

between the stratification factor and survival.

An alternative approach, outlined by Therneau and Grambsch (2013), is to

partition the time axis. This involves splitting the follow-up time into intervals,

where the proportional hazards assumption may approximately hold within each

interval. Models can then be fitted to each time interval separately, considering

only those still at risk within the interval, and censoring those still at risk at the

end of the interval.

A further method is to model time-varying covariate effects through creating

time-dependent covariates. For a time-dependent coefficient β(t), Therneau and
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Grambsch (2013) suggest a time-dependent covariate X∗(t) can be created so that

β(t)X = βX∗(t).

However, this approach can be computationally challenging and it can be difficult

to specify X∗(t) appropriately to produce valid inferences.

It is also possible to incorporate a time-dependent effect into the model directly,

as a time-dependent coefficient, β(t), which is some function of time. One of the

simplest approaches to incorporate a time-dependent coefficient into a model is to

define β(t) as a step function. Zhou (2001) introduce this approach as a piecewise

regression model, and Therneau et al. (2019) discuss how this can implemented

within statistical software. This approach is another which involves partitioning

the time axis into intervals, however rather than fitting separate models, a model

is fitted with different coefficients for a covariate with non-proportional hazards,

dependent upon the interval. We refer to this as the piecewise-proportional hazards

model, where the coefficients for the covariate with non-proportional hazards are

piecewise-constant. The coefficients for each time interval are therefore assumed to

satisfy the proportional hazards assumption over the corresponding time interval.

This is the approach we intend to use to handle the non-proportional hazards

within the stroke audit data and will fully define the model in Section 6.3.2.

Now, we also need to consider possible approaches to handling non-proportional

hazards within a multiple imputation framework, however there is currently min-

imal literature around how this can be incorporated into imputation models ap-

propriately. Incorporating survival data into imputation models is a challenge in

itself and requires special consideration for how the survival outcome is taken into

account during imputation. Below we focus on a key set of papers which outline

approaches for multiple imputation with survival data, discussing their findings

and recommendations.
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Multiple imputation using chained equations (MICE) has been identified as

a flexible approach for multiple imputation, with the ability to handle multiple

covariate types (White et al., 2011). Sterne et al. (2009) discuss the potentials

and pitfalls of multiple imputation, particularly within clinical data. A key pitfall

highlighted by Sterne et al. (2009) is the omission of the outcome variable from

the imputation procedure as this can result in falsely weakening the association

between covariates and the outcome.

White and Royston (2009) investigated approaches for incorporating the sur-

vival outcome within imputation models, and concluded a suitable approach is to

include the censoring indicator and the Nelson-Aalen estimator of the cumulative

hazard as terms within the imputation models. White et al. (2011) provide guid-

ance around implementing MICE, discussing many considerations for the multiple

imputations as we have previously outlined in Section 3.3.3. Further guidance

on practical aspects of implementing MICE are provided by Azur et al. (2011),

and van Buuren and Groothuis-Oudshoorn (2011) present an overview of the mice

package in R.

Bartlett et al. (2015) expanded upon the work by White and Royston (2009)

and White et al. (2011), discussing appropriate ways to incorporate non-linear

or interaction terms into imputation models. The work by Bartlett et al. (2015)

highlights that for an imputation model to be compatible with the substantive,

or analysis, model, it must allow for any interaction or non-linear terms included

within the analysis model. This is to avoid imposing any restrictions on the anal-

yses of the imputed data sets, and suggests that time-dependent covariate effects

should also be accounted for within imputation models to avoid restricting the

form of the hazard functions for covariates with non-proportional hazards.

169



6.3 Imputation Model Theory

6.3.1 Background

The development of the MICE imputation models for application to non-PH sur-

vival data relies upon understanding the differences between a standard Cox PH

model and a piecewise-proportional hazards model, and how this affects the deriva-

tion of the conditional distribution of the incomplete variable on the observed data.

Firstly we will define the Cox PH model and show the derivation of the condi-

tional distribution of the incomplete variable on the observed data, as outlined by

White and Royston (2009). Let t denote the survival time and δ be the censoring

indicator. Suppose we have an incomplete variable X and complete variable Z.

The Cox proportional hazards model is defined as

h(t|X,Z) = h0(t) exp(βXX + βZZ).

In order to find the conditional distribution of the incomplete variable X on the

observed data, we must first define the log-likelihood of the outcomes. Given the

complete data, this is

log p(t, δ|X,Z) = δ log h(t|X,Z)−H(t|X,Z). (6.1)

This can also be stated by substituting in the Cox PH model for the hazard

function to give the log-likelihood

log p(t, δ|X,Z) = δ(log h0(t) + βXX + βZZ)−H0(t) exp(βXX + βZZ).

By Bayes’ theorem, we can determine the conditional distribution of the incomplete
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variable X on the observed data:

log p(X|t, δ, Z) = log p(X|Z) + log p(t, δ|X,Z)− log p(t, δ|Z). (6.2)

Substituting in the log-likelihood and considering a constant term C which depends

only on δ, t, and Z, but not X, the conditional distribution of X on the observed

data is equivalently

log p(X|t, δ, Z) = log p(X|Z)+δ(βXX+βZZ)−H0(t) exp(βXX+βZZ)+C. (6.3)

Using appropriate exposure models and the conditional distribution of X on the

observed data, the appropriate imputation models for different variable types can

be formulated. Sections 6.3.3, 6.3.4 and 6.3.5 will cover this is depth for binary,

categorical and continuous variables, respectively.

6.3.2 The Piecewise-Proportional Hazards Model

Now suppose the incomplete variable X has a time-dependent covariate effect, or

non-proportional hazards. Suppose the hazard ratio associated with X is constant

up until some survival time t0, at which a change in the effect of X on survival

occurs. Assume the new hazard ratio associated with X beyond survival time t0 is

again constant. We can define the hazard function using a piecewise-proportional

hazards model as follows

h(t|X,Z) = h0(t) exp(βX1X + βX2I(t > t0)X + βZZ), (6.4)

where

I(t > t0) =


1, if t > t0

0, if t ≤ t0
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is an indicator function for the effect of X dependent on survival time t, so that βX1

gives the effect of X before t0, and the effect of X after t0 is given by (βX1 +βX2).

This now results in the need for two censoring indicators, defined as

δ1 =


δ, if t ≤ t0

0, otherwise

, δ2 =


δ, if t > t0

0, otherwise

.

Given the log-likelihood of the outcomes given the complete data, in Equation

(6.1), we now derive the conditional distribution of X given the observed data for

the piecewise-proportional hazards model. For notational ease, let tm = min(t0, t),

where min(t0, t) is the earliest of the survival times t0 and t. Considering the

piecewise-proportional hazards model, the log-likelihood of the outcomes becomes

log p(t, δ1, δ2|X,Z) (6.5)

= δ1(log h0(t) + βX1X + βZZ) + δ2(log h0(t) + (βX1 + βX2)X + βZZ)

−
[
H0(tm)eβX1X+βZZ + (H0(t)−H0(tm))e(βX1+βX2)X+βZZ

]
,

where H0(tm) = H0(min(t0, t)) is defined as the cumulative baseline hazard func-

tion at the minimum value of t and t0.

Bayes’ theorem was used by White and Royston (2009) to derive the conditional

distribution of X given the observed data given in Equation (6.2). Now, by Bayes’

theorem and using the log-likelihood derived from the piecewise-proportional haz-

ards model, as defined in Equation (6.5), we derive that the conditional distribution

of X given the observed data can be defined as

log p(X|t, δ1, δ2, Z) (6.6)

= log p(X|Z) + δ1(βX1X + βZZ) + δ2(βX1X + βX2X + βZZ)

−
[
H0(tm)eβX1X+βZZ + (H0(t)−H0(tm))eβX1X+βX2X+βZZ

]
+ C,

172



where the constant term C may depend on δ1, δ2, t and Z, but not X.

6.3.3 Imputation of Binary Variables

Here we will show how the imputation model can be derived to impute the missing

observations of a binary variable using the conditional distribution of X given the

observed data. Firstly, we will show how imputed values can be drawn from fitting

an imputation model to the incomplete variable X on observed Z. We will then

focus on the derivation of the imputation models to include the survival outcomes

appropriately, giving both the derivations for imputation models approximately

compatible to the standard Cox PH model and, as a novel contribution, to the

piecewise-proportional hazards model. For these we will take three cases of the

type of complete variable Z; categorical Z, no Z and the general case.

Drawing Imputations from the Imputation Model

Logistic regression is the model of choice for imputing binary X from observed Z,

where the logistic regression model is defined as

logit p(X = 1|Z; β) = βZ.

Fitting this model to individuals with observed X gives estimated parameter β̂ and

estimated variance-covariance matrix V. Approximate the posterior distribution

of β̂ by MVN(β̂,V), and let β∗ be a draw from this posterior distribution. In

order to impute each missing observation Xi, define ui to be a random draw from

a uniform distribution on (0, 1), and let p∗i = [1 + exp(−β∗Zi)]
−1. An imputed

value, X∗i can be drawn as

X∗i =


1, if ui < p∗i

0, otherwise.
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This is a straightforward procedure to implement, however problems can arise due

to perfect prediction (White et al., 2011). This occurs in logistic regression when

a two-way table of the predictor and outcome variables contains a zero cell, or

in other words, if there is a category within a predictor variable for which the

outcome is always 0, or always 1. White et al. (2010) discuss the issue of perfect

prediction in more depth.

Derivation for Standard Cox PH Model

Here we outline the derivation presented by White and Royston (2009) for the im-

putation model for binary incomplete variable X, expanding upon the theoretical

rationale given. In order to derive the imputation model for binary incomplete

variable X, take an exposure model for X on observed Z and extend this to ac-

count for the survival outcomes. Using exposure model, logit p(X = 1|Z) = ζZ ,

we have

logit p(X = 1|t, δ, Z) = log p(X = 1|t, δ, Z)− log p(X = 0|t, δ, Z).

Substituting in the conditional distribution of X given the observed data as defined

in Equation (6.2), and simplifying gives

logit p(X = 1|t, δ, Z) = log p(X = 1|Z) + δ(βX + βZZ)−H0(t)eβX+βZZ

−
[
log p(X = 0|Z) + δ(βZZ)−H0(t)eβZZ

]
= log p(X = 1|Z)− log p(X = 0|Z) + δβX

−H0(t)eβX+βZZ +H0(t)eβZZ .

Referring back to the exposure model, and simplifying further, gives the imputa-

tion model for binary X as

logit p(X = 1|t, δ, Z) = ζZ + δβX −H0(t)(eβX − 1)eβZZ . (6.7)
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This is not a standard logistic regression model due to the exp(βZZ) term on

the right hand side. For binary or categorical Z, Equation (6.7) gives a logistic

regression on δ, Z, H0(t) and the interaction term between H0(t) and Z. This

gives us the model previously defined in Section 3.3.3,

logit p(X = 1|t, δ, Z) = α0 + α1δ + α2H0(t) + α3Z + α4ZH0(t),

where the terms α3Z and α4Z each represent a set of dummy variables with their

coefficients. Considering the case where there is no Z, the imputation model can

be defined as

logit p(X = 1|t, δ) = ζ + δβX −H0(t)(eβX − 1).

This gives a logistic regression of X on the censoring indicator, δ, and the baseline

cumulative hazard, H0(t), giving the model specified in Section 3.3.3,

logit p(X = 1|t, δ) = α0 + α1δ + α2H0(t).

For the most general case, where Z is continuous, there are no exact results.

Here we assume the exposure model logit p(X = 1|Z) = ζ0 + ζ1Z, and make an

approximation of the exp(βZZ) term. For small Var(βZZ), we can take the Taylor

series approximation exp(βZZ) ≈ exp(βZZ̄). Substituting the new exposure model

and Taylor series approximation into Equation (6.7) gives the imputation model

of binary X on general Z as

logit p(X = 1|t, δ, Z) = ζ0 + ζ1Z + δβX −H0(t)(eβX − 1)eβZ Z̄ .

This gives a logistic regression on δ, H0(t) and Z, and can be defined as

logit p(X = 1|t, δ, Z) = α0 + α1δ + α2H0(t) + α3Z.
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A more accurate approximation can be made using the Taylor series, giving exp(βZZ) ≈

exp(βZZ̄){1 + βZ(Z − Z̄)}. This results in the imputation model

logit p(X = 1|t, δ, Z) = ζ0 + ζ1Z + δβX −H0(t)eβZ Z̄(eβX − 1){1 + βZ(Z − Z̄)},

which is a logistic regression model on δ, Z, and H0(t), plus the interaction term

H0(t)× Z.

Derivation for Piecewise-Proportional Hazards Model

The section above provides the derivation previously presented by White and Roys-

ton (2009) for the standard Cox PH setting, however, modification is needed to

obtain an appropriateness imputation model form for the piecewise-proportional

hazards setting. Taking a similar approach to the theoretical rationale for imputa-

tion models in the standard Cox PH model setting, here we present our derivation

of the imputation model for binary X in the non-proportional hazards setting.

This section aims to improve current practice and presents a novel contribution of

this thesis.

We again take the most general exposure model logit p(X = 1|Z) = ζZ , but

now consider the outcomes of survival time t and the two censoring indicators δ1

and δ2. This gives

logit p(X = 1|t, δ1, δ2, Z) = (6.8)

log p(X = 1|t, δ1, δ2, Z)− log p(X = 0|t, δ1, δ2, Z).

Equation (6.6) states the conditional distribution of X given the observed data

derived from the piecewise-proportional hazards model. Substituting this into
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Equation (6.8) gives

logit p(X = 1|t, δ1, δ2, Z) ={
log p(X = 1|Z) + δ1(βX1 + βZZ) + δ2(βX1 + βX2 + βZZ)

−
[
H0(tm)eβX1+βZZ + (H0(t)−H0(tm))eβX1+βX2+βZZ

] }
−
{

log p(X = 0|Z) + δ1(βZZ) + δ2(βZZ)

−
[
H0(tm)eβZZ + (H0(t)−H0(tm))eβZZ

] }
,

where again H0(tm) = H0(min(t0, t)) is the cumulative baseline hazard at the

minimum of t0 and t. Simplifying gives

logit p(X = 1|t, δ1, δ2, Z) =

log p(X = 1|Z)− log p(X = 0|Z) + δ1βX1 + δ2(βX1 + βX2)

−
[
H0(tm)eβZZ(eβX1 − 1) + (H0(t)−H0(tm))eβZZ(eβX1+βX2 − 1)

]
.

Substituting in the exposure model and carrying out further simplification gives

logit p(X = 1|t, δ1, δ2, Z) = ζZ + δ1βX1 + δ2(βX1 + βX2) (6.9)

−
[
H0(tm)(eβX1 − 1) + (H0(t)−H0(tm))(eβX1+βX2 − 1)

]
eβZZ

This is not a standard logistic regression due to the exp(βZZ) term again. For the

simplest case where there is no Z we get

logit p(X = 1|t, δ1, δ2) = ζ + δ1βX1 + δ2(βX1 + βX2)

−
[
H0(tm)(eβX1 − 1) + (H0(t)−H0(tm))(eβX1+βX2 − 1)

]
,

which gives a logistic regression on the censoring indicators, δ1 and δ2, and the
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two terms for the cumulative baseline hazard H0(tm) and H0(t)−H0(tm);

logit p(X = 1|t, δ1, δ2) =

α0 + α1δ1 + α2δ2 + α3H0(tm) + α4(H0(t)−H0(tm)).

For binary or categorical Z, Equation (6.9) gives a logistic regression on Z and the

censoring indicators, δ1 and δ2, alongside the two terms for the cumulative baseline

hazard H0(tm) and H0(t) −H0(tm), and the interaction terms between these and

Z. This can be represented as

logit p(X = 1|t, δ1, δ2, Z) = α0 + α1δ1 + α2δ2 + α3H0(tm)

+ α4(H0(t)−H0(tm)) + α5Z + α6ZH0(tm) + α7Z(H0(t)−H0(tm)),

where terms such as α5Z represent a set of dummy variables with their coefficients.

Considering the general case for Z, we again have no exact results. Taking the

same general case exposure model logit p(X = 1|Z) = ζ0 + ζ1Z, and using the

Taylor series approximation exp(βZZ) ≈ exp(βZZ̄) for small Var(βZZ) again, we

get the imputation model

logit p(X = 1|t, δ1, δ2, Z) = ζ0 + ζ1Z + δ1βX1 + δ2(βX1 + βX2)

−
[
H0(tm)(eβX1 − 1) + (H0(t)−H0(tm))(eβX1+βX2 − 1)

]
eβZ Z̄ .

This gives a logistic regression model on Z, δ1, δ2, H0(tm) and H0(t) − H0(tm),

which can be written as

logit p(X = 1|t, δ1, δ2) =

α0 + α1δ1 + α2δ2 + α3H0(tm) + α4(H0(t)−H0(tm)) + α5Z.

Any transformation of Z needed for predicting X should also be included in the
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imputation model.

Previously we considered a more accurate approximation for exp(βZZ), which

resulted in the imputation model containing an interaction term between the cu-

mulative baseline hazard function and Z, however a simulation study conducted

by White and Royston (2009) suggested that the addition of this interaction term

does not increase the accuracy sufficiently to warrant the extra complication. Due

to the added complication of accounting for non-proportional hazards here, we will

not further complicate this by the addition of any such interaction terms.

6.3.4 Imputation of Categorical Variables

This section will show the derivation of the imputation model for a categorical

variable X using the conditional distribution of X given the observed data. Ini-

tially we will outline multinomial logistic regression and describe how this can

be used to draw an imputed value of X based on a fully observed variable Z.

The approximate theoretical rationale for imputation models suitable for handling

survival outcomes will then be given, both for approximate compatibility to the

standard Cox PH model and to the piecewise-proportional hazards model. Here

we will focus upon the general case for the variable Z.

Drawing Imputations from the Imputation Model

Categorical variables can be imputed using either multinomial logistic regression

or a proportional odds model, however as proportional odds is only suitable for

handling an ordered categorical variable, we will focus on multinomial logistic

regression.

Let l = 1, ..., L denote the levels of the categorical variable X and suppose

the variable X has L > 2 levels modelled using multinomial logistic regression.

Each of the levels, l, has a logistic regression equation comparing the level to some
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chosen baseline level, say level 1. This can be expressed as

p(X = l|Z; β) =

[
L∑
l′=1

exp(βl′Z)

]−1

exp(βlZ),

where β1 = 0. Denote a random draw from a Normal approximation to the

posterior distribution of β = (β2, ..., βL) as β∗. For each missing observation Xi, let

p∗il denote the drawn level membership probabilities, where p∗il = p(Xi = l|Zi; β
∗),

for l = 1, ..., L, and let Pil =
∑l

l′ p
∗
il′ . Define ui to be a random draw from a

uniform distribution on (0, 1). Each imputed value X∗i is given as

X∗i = 1 +
L−1∑
l=1

I(ui > Pil),

where the indicator function I(ui > Pil) = 1 if ui > Pil, and 0 otherwise.

Derivation for Standard Cox PH Model

Here we expand upon the work by White and Royston (2009) to show the deriva-

tion of the imputation model for a categorical variable X. In order to derive

the imputation model for a categorical variable X, with levels l = 1, ..., L, firstly

the log-likelihood of the outcomes given the complete data needs to be reviewed.

Consider the Cox proportional hazards model

h(t|X,Z) = h0(t) exp(βX2X2 + βX3X3 + ...+ βXL
XL + βZZ),

where βX1 = 0 for the baseline level of X = 1, and Xl is the indicator variable

Xl =


1, if X = l(l = 1, ...L)

0, otherwise.

(6.10)
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Given the complete data, the log-likelihood for the outcomes for the case X = l is

given by

log p(t, δ|Z,X = l) = δ log h(t|Z,X = l)−H(t|Z,X = l). (6.11)

This is equivalent to

log p(t, δ|Z,X = l) = δ(log h0(t) + βXl
+ βZZ)−H0(t) exp(βXl

+ βZZ).

Given multinomial logistic regression consists of a logistic regression for each of the

levels, assume we have a set of L−1 independent binary regressions for l = 2, ..., L,

which can be defined as

p(X = l|t, δ, Z)

p(X = 1|t, δ, Z)
=

p(t, δ|Z,X = l) · p(X = l|Z)

p(t, δ|Z,X = 1) · p(X = 1|Z)
,

taking the form exp(θl(t, δ, Z)), where θ1 = 0 since X = 1 is the baseline level.

These can be expressed as the log-odds for each level against the baseline giving

log

(
p(t, δ|Z,X = l) · p(X = l|Z)

p(t, δ|Z,X = 1) · p(X = 1|Z)

)
=

log p(t, δ|Z,X = l) + log p(X = l|Z)− log p(t, δ|Z,X = 1)− log p(X = 1|Z).

Considering the log-likelihood of the outcomes given the observed data, defined in

Equation (6.11), the log-odds of each level can be expressed as

log

(
p(t, δ|Z,X = l) · p(X = l|Z)

p(t, δ|Z,X = 1) · p(X = 1|Z)

)
= logit p(X = l|Z)

+ δ(log h0(t) + βXl
+ βZZ)−H0(t) exp(βXl

+ βZZ)

− [δ(log h0(t) + βX1 + βZZ)−H0(t) exp(βX1 + βZZ)] ,
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since logit p(X = l|Z) = log p(X = l|Z) − log p(X = 1|Z). Noting that βX1 = 0,

further simplification gives

log

(
p(t, δ|Z,X = l) · p(X = l|Z)

p(t, δ|Z,X = 1) · p(X = 1|Z)

)
=

logit p(X = l|Z) + δβXl
−H0(t) exp(βZZ)(exp(βXl

)− 1).

We need to linearise this by making an approximation for exp(βZZ). For small

Var(βZZ), the Taylor series can be used to approximate exp(βZZ). Firstly, con-

sider the approximation exp(βZZ) ≈ exp(βZZ̄), and take the general exposure

model logit p(X = l|Z) = ζl0 + ζl1Z. This gives the imputation model

log

(
p(X = l|t, δ, Z)

p(X = 1|t, δ, Z)

)
= ζl0 + ζl1Z + δβXl

−H0(t)eβZZ(eβXl − 1),

which is a multinomial logistic regression on Z, the censoring indicator δ and the

cumulative baseline hazard H0(t). This can be expressed as

log

(
p(X = l|t, δ, Z)

p(X = 1|t, δ, Z)

)
= α0 + α1Z + α2δ + α3H0(t).

Using the convention that log
(
p(X=1|t,δ,Z)
p(X=1|t,δ,Z)

)
= 0, we can express this in terms of

the probabilities as

p(X = l|t, δ, Z) =
exp{ζl0 + ζl1Z + δβXl

−H0(t)eβZ Z̄(eβXl − 1)}∑L
l=1 exp{ζl0 + ζl1Z + δβXl

−H0(t)eβZ Z̄(eβXl − 1)}
,

or equivalently,

p(X = l|t, δ, Z) =
exp{α0 + α1Z + α2δ + α3H0(t)}∑L
l=1 exp{α0 + α1Z + α2δ + α3H0(t)}

.

182



Derivation for Piecewise-Proportional Hazards Model

Following our expansion on the work of White and Royston (2009) to demonstrate

how the imputation model for a categorical variable can be derived for the standard

Cox PH setting, this section provides a further novel contribution of this thesis

by modifying this work for the piecewise-proportional hazards setting. Here we

present our derivation of the imputation model for a categorical variable X with

non-proportional hazards, where we approach the theoretical rationale for the

imputation model for a categorical variable X with non-proportional hazards in a

very similar format to the derivation for the standard Cox PH model. Firstly, let

X be a categorical variable with a time-dependent covariate effect, where X has

levels l = 1, ..., L. The piecewise-proportional hazards model fitted to X and some

other variable Z is defined as

h(t|X,Z) =

h0(t) exp(βX21X2 + I(t > t0)βX22X2 + ...+ βXL1XL + I(t > t0)βXL2XL + βZZ),

where βX11 = 0 and βX12 = 0 since X = 1 is the baseline level, and Xl is the

indicator variable as defined in Equation (6.10). Then we have that βXl1 gives the

effect of X = l before t0 and βXl1 + βXl2 gives the effect of X = l after t0, where

t0 is the time point at which the change in effect of X occurs.

The next step is to consider the log-likelihood of the outcomes given the ob-

served data for the case of X = l. The outcomes to consider in the case of X

having a time-dependent covariate effect are the two censoring indicators δ1 and

δ2, and survival time t, giving the log-likelihood

log p(t, δ1, δ2|Z,X = l) = (6.12)

δ1(log h0(t) + βXl1 + βZZ) + δ2(log h0(t) + βXl1 + βXl2 + βZZ)

−
[
H0(tm) exp(βXl1 + βZZ) + (H0(t)−H0(tm)) exp(βXl1 + βXl2 + βZZ)

]
,
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where H0(tm) = H0(min(t0, t)) is the cumulative baseline hazard at the minimum

of t0 and t. Assume again that we have L− 1 independent regressions, defined as

p(X = l|t, δ1, δ2, Z)

p(X = 1|t, δ1, δ2, Z)
=

p(t, δ1, δ2|Z,X = l) · p(X = l|Z)

p(t, δ1, δ2|Z,X = 1) · p(X = 1|Z)
,

for each level l = 1, ..., L, which takes the form exp(θl(t, δ1, δ2, Z)), where θ1 = 0

since X = 1 is the baseline level. Expressing these as log-odds for each level

against the baseline gives

log

(
p(t, δ1, δ2|Z,X = l) · p(X = l|Z)

p(t, δ1, δ2|Z,X = 1) · p(X = 1|Z)

)
= log p(t, δ1, δ2|Z,X = l)

+ log p(X = l|Z)− log p(t, δ1, δ2|Z,X = 1)− log p(X = 1|Z).

Since logit p(X = l|Z) = log p(X = l|Z) − log p(X = 1|Z) and βX11, βX12 are

both zero, the log-odds can be expressed considering the log-likelihood given in

Equation (6.12) as

log

(
p(t, δ1, δ2|Z,X = l) · p(X = l|Z)

p(t, δ1, δ2|Z,X = 1) · p(X = 1|Z)

)
= logit p(X = l|Z)

+ δ1(log h0(t) + βXl1 + βZZ) + δ2(log h0(t) + βXl1 + βXl2 + βZZ)

−
[
H0(tm) exp(βXl1 + βZZ) + (H0(t)−H0(tm)) exp(βXl1 + βXl2 + βZZ)

]
+ δ1(log h0(t) + βZZ) + δ2(log h0(t) + βZZ)

−
[
H0(tm) exp(βZZ) + (H0(t)−H0(tm)) exp(βZZ)

]
.

This expression can be simplified further to get

log

(
p(t, δ1, δ2|Z,X = l) · p(X = l|Z)

p(t, δ1, δ2|Z,X = 1) · p(X = 1|Z)

)
=

logit p(X = l|Z) + δ1βXl1 + δ2(βXl1 + βXl2)

−
[
H0(tm)(eβXl1 − 1) + (H0(t)−H0(tm))(eβXl1

+βXl2 − 1)
]
eβZZ .
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Again, we need to linearise this by making an approximation for exp(βZZ) using

the Taylor series. For small Var(βZZ), a possible approximation is exp(βZZ) ≈

exp(βZZ̄). Using this approximation and taking the general exposure model,

logit p(X = l|Z) = ζl0 + ζl1Z, gives the imputation model

log

(
p(X = l|t, δ1, δ2, Z)

p(X = 1|t, δ1, δ2, Z)

)
= ζl0 + ζl1Z + δ1βXl1 + δ2(βXl1 + βXl2)

−
[
H0(tm)(eβXl1 − 1) + (H0(t)−H0(tm))(eβXl1

+βXl2 − 1)
]
eβZ Z̄ .

This gives a multinomial logistical regression on Z, δ1, δ2, H0(tm) and H0(t) −

H0(tm), which can be expressed as

log

(
p(X = l|t, δ1, δ2, Z)

p(X = 1|t, δ1, δ2, Z)

)
=

α0 + α1Z + α2δ1 + α3δ2 + α4H0(tm) + α5(H0(t)−H0(tm)).

Using the convention that log
(
p(X=1|t,δ1,δ2,Z)
p(X=1|t,δ1,δ2,Z)

)
= 0, we can express the imputation

model in terms of the probabilities, giving the equation

log

(
p(X = l|t, δ1, δ2, Z)

p(X = 1|t, δ1, δ2, Z)

)
=

exp {α0 + α1Z + α2δ1 + α3δ2 + α4H0(tm) + α5(H0(t)−H0(tm))}∑L
l=1 exp {α0 + α1Z + α2δ1 + α3δ2 + α4H0(tm) + α5(H0(t)−H0(tm))}

.

6.3.5 Imputation of Continuous Variables

The final variable type to consider is continuous; this section will consider the im-

putation model for incomplete continuous variable X. Assuming X is a Normally

distributed continuous variable, we will firstly show how imputed values for each

missing observation can be obtained from a linear regression model. The derivation

of the imputation model will then be shown to accommodate survival data out-

comes, firstly focusing on the standard Cox PH model, and then extending to the

non-proportional hazards setting where we derive the imputation model approxi-
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mately compatible to the piecewise-proportional hazards model. The derivations

will focus on the general case of observed variable Z.

Drawing Imputations from the Imputation Model

The most common choice of model for imputing a Normally distributed continuous

variable is a linear regression model, defined as

X|Z; β ∼ N(βZ, σ2).

Fitting this model to individuals with observed X gives estimated parameter,

denoted β̂ and the estimated variance-covariance matrix of β̂, denoted V. The

estimated root mean-squared error is denoted as σ̂. The imputation parameters β∗

and σ∗ can be drawn from the posterior distribution of β and σ. Let the number

of individuals with observed X be denoted as nobs, and let k be the number of

parameters estimated. We firstly draw the imputation parameter σ∗ as

σ∗ = σ̂
√

(nobs − k)/φ,

where φ is a random draw from a χ2-distribution on nobs − k degrees of freedom.

Next, we draw imputation parameter β∗ as

β∗ = β̂ +
σ∗

σ̂
u1V

1/2,

where V1/2 is the Cholesky decomposition of V, and u1 is a row vector of k

independent random draws from a standard Normal distribution. For each missing

value of X, Xi, let X∗i be the imputed value, which can be obtained as

X∗i = β∗Zi + u2iσ
∗,
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where u2i is a random draw from a standard Normal distribution. If X is non-

Normal, it may be possible to find a transformation of X, say ψ(X), where ψ(X)

is Normally distributed. As the imputed values of ψ(X) must be back-transformed

to the original scale to get the imputed values of X, ψ(X) must be monotonic and

invertible.

Derivation for Standard Cox PH Model

Here we present the derivation for the imputation model of a continuous variable

X, as outlined by White and Royston (2009). Theoretical rationale for the impu-

tation model of a continuous variable X in the survival data setting requires the

assumption of the exposure model X|Z ∼ N(ζ0 + ζ1Z, σ
2), for general Z. Using

this exposure model, the conditional distribution of X given the observed data, in

Equation (6.3), becomes

log p(X|t, δ, Z) = −(X − ζ0 − ζ1Z)2

2σ2
+δβXX−H0(t) exp(βXX+βZZ)+C, (6.13)

where the constant term C may depend on t, δ or Z, but not on X. Due to the

exp(βXX) term, this is not a Normal distribution, or any other common distribu-

tion, therefore we need to make an approximation. For small Var(βXX + βZZ),

the Taylor series expansion gives the linear approximation exp(βXX + βZZ) ≈

exp(βXX̄ + βZZ̄)[1 + βX(X − X̄) + βZ(Z − Z̄)]. Substituting this approximation

into Equation (6.13), and simplifying gives

log p(X|t, δ, Z) ≈ −(X − ζ0 − ζ1Z)2

2σ2
+ βXX

[
δ −H0(t) exp(βXX̄ + βZZ̄)

]
+ C,

where again the constant term C may depend on t, δ or Z, but not onX. Therefore,

approximately we have

X|t, δ, Z ∼ N
(
ζ0 + ζ1Z + βXσ

2
[
δ −H0(t) exp(βXX̄ + βZZ̄)

]
, σ2
)
,
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This is a linear regression model on Z, δ and H0(t), and can be expressed as

X|t, δ, Z ∼ N
(
α0 + α1δ + α2H0(t) + α3Z, σ

2
)
,

for unknown parameters α. White and Royston (2009) further showed that us-

ing a quadratic approximation for exp(βXX + βZZ) could be used, however, this

would give a model which is not linear in the parameters. Using the quadratic

approximation, X|t, δ, Z would be approximately Normally distributed with mean

ζ0 + ζ1Z + βXσ
2(δ −H0(t)eβXX̄+βZ Z̄(1− βXX̄))− βXβZσ2H0(t)eβXX̄+βZ Z̄(Z − Z̄)

1 + β2
Xσ

2H0(t)eβXX̄+βZ Z̄

and variance

σ2

1 + β2
Xσ

2H0(t)eβXX̄+βZ Z̄
.

In order to get a linear regression on δ, H0(t), Z and the interaction term H0(t)×Z,

the quadratic terms β2
X would need to be ignored. This means that this approx-

imation is only valid for small β2
Xσ

2H0(t), or more specifically, when Var(βXX)

and/or H0(t) are small. If H0(t) is large, the approximation gives a slope which is

too large.

Derivation for Piecewise-Proportional Hazards Model

The section above provides the derivation previously presented by White and Roys-

ton (2009) for the standard Cox PH setting, however, modification is needed to

obtain an appropriateness imputation model form for the piecewise-proportional

hazards setting. Following a similar process to White and Royston (2009), here

we present our derivation of the imputation model for a continuous variable X

which has a time-dependent covariate effect. This section aims to improve current

practice and presents a novel contribution of this thesis.

Assuming the analysis model is a piecewise-proportional hazards model, as
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given in Equation (6.4), and considering a general Z, we can take the exposure

model X|Z ∼ N(ζ0 + ζ1Z, σ
2). This results in the conditional distribution of X

given the observed data being expressed as

log p(X|t, δ1, δ2, Z) = (6.14)

− X − ζ0 − ζ1Z)2

2σ2
+ δ1(βX1X + βZZ) + δ2(βX1X + βX2X + βZZ)

−
[
H0(tm)eβX1X+βZZ + (H0(t)−H0(tm))eβX1X+βX2X+βZZ

]
+ C,

where the constant C may depend on δ1, δ2, t, and Z, but not X. As for the

standard Cox PH model, this does not follow a Normal distribution, or any other

common distribution, so an approximation is needed. In this case we need approx-

imations for two terms; exp(βX1X + βZZ) and exp(βX1X + βX2X + βZZ). Using

the Taylor series, for small Var(βX1X+βZZ) and small Var(βX1X+βX2X+βZZ),

respectively, we can get the linear approximations

eβX1X+βZZ ≈ eβX1X̄+βZ Z̄
[
1 + βX1(X − X̄) + βZ(Z − Z̄)

]
,

and

eβX1X+βX2X+βZZ ≈

eβX1X̄+βX2X̄+βZ Z̄
[
1 + βX1(X − X̄) + βX2(X − X̄) + βZ(Z − Z̄)

]
.

Substituting these approximations into the conditional distribution of X given the
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observed data, shown in Equation (6.14), gives

log p(X|t, δ1, δ2, Z) ≈

− X − ζ0 − ζ1Z)2

2σ2
+ δ1(βX1X + βZZ) + δ2(βX1X + βX2X + βZZ)

−
{
H0(tm)eβX1X̄+βZ Z̄

[
1 + βX1(X − X̄) + βZ(Z − Z̄)

]
− (H0(t)−H0(tm))eβX1X̄+βX2X̄+βZ Z̄

[
1 + βX1(X − X̄)

+ βX2(X − X̄) + βZ(Z − Z̄)
]}

+ C.

Many of these terms do not depend on X, therefore, we can rearrange and simplify

to get the approximate conditional distribution of X given the observed data as

log p(X|t, δ1, δ2, Z) ≈

− X − ζ0 − ζ1Z)2

2σ2
+ βX1X

(
δ1 −H0(tm)eβX1X̄+βZ Z̄

)
+ (βX1 + βX2)X

(
δ2 − (H0(t)−H0(tm))eβX1X̄+βX2X̄+βZ Z̄

)
+ C,

where the constant term C may depend on Z, δ1, δ2 and t, but not X. Therefore

approximately we have

X|t, δ1, δ2, Z ∼ N(µ, σ2),

where

µ = ζ0 + ζ1Z + σ2
{
βX1δ1 + (βX1 + βX2)δ2 − βX1H0(tm)eβX1X̄+βZ Z̄

− (βX1 + βX2)(H0(t)−H0(tm))eβX1X̄+βX2X̄+βZ Z̄
}
.

This shows that the imputation model for a continuous variable X with a time-

dependent covariate effect is a regression model on the two censoring indicators,

δ1 and δ2, the cumulative baseline hazard terms, H0(tm) and H0(t)−H0(tm), and
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observed variables Z. This can be expressed in terms of unknown parameters α as

X|t, δ1, δ2, Z ∼ N(α0 + α1δ1 + α2δ2 + α3H0(tm) + α4(H0(t)−H0(tm)) + α5Z, σ
2).

6.3.6 Further Considerations

Each of the imputation models defined above depend upon the baseline cumulative

hazard function which is unknown. A simulation study conducted by White and

Royston (2009) found that using the Nelson-Aalen estimator of the cumulative

hazard function within the imputation models produced the lowest bias and highest

power. Therefore it is recommended that using the Nelson-Aalen estimator is the

best approach to incorporate the cumulative hazard function into the imputation

models for each variable type.

A further issue to consider is how the observed variables Z should be incor-

porated into the imputation models, and whether a linear term is appropriate.

Chapter 4 demonstrated a need to incorporate quadratic terms into the imputa-

tion models. Bartlett et al. (2015) considered methodology for this, as discussed in

Section 6.2. Additionally, a covariate with a quadratic effect on survival may have

missing values, and thus the linear and quadratic values of this covariate would

need to be imputed appropriately.

A particular approach to imputing both linear and quadratic terms of the same

covariate is passive imputation. This approach involves imputing the linear term

and calculating the quadratic values as the square of the corresponding imputations

of the linear term. However, Bartlett et al. (2015) showed that this approach can

introduce biased estimates, which is reiterated by Von Hippel (2009), as using only

the linear term for imputation of the quadratic dilutes the effect of the quadratic

term on the outcome, thus causing underestimation of the coefficient.

An alternative approach is outlined by Von Hippel (2009) as ‘transform, then
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impute’, which fits the quadratic term as an additional variable in the imputation

models, and was further shown by Bartlett et al. (2015) to give unbiased results.

The downfall of this approach is inconsistency in the imputations between the

linear and quadratic terms, however, avoidance of bias in the coefficients is deemed

to be of more importance by Von Hippel (2009), and therefore this would be the

recommended approach.

6.4 Simulation Study

In order to assess if the specification of the imputation models proposed in Section

6.3, to account for time-dependent covariate effects, are an improvement over use

of the näıve approach to ignore the non-proportional hazards, we conducted a

simulation study to assess the bias of each imputation approach.

We produced 2000 simulations of survival data for n = 500 individuals, where

in each simulation, three covariates were generated. The first covariate, X1 was

continuous and generated from a normal distribution with µ = 65 and σ = 10.

The second covariate, X2, was a binary covariate generated using the Bernoulli

distribution with probabilities dependent upon the values of X1. Finally, the third

covariate, X3, was simulated to be a continuous covariate dependent upon both

X1 and X2.

Survival times were generated from X1, X2 and X3 using the simsurv package

in R, under the exponential distribution, where a time-dependent covariate effect

was introduced for X3. This effect was piecewise-constant, where a changepoint

for the effect was specified at t = 200, giving two piecewise-constant coefficients;

βX3(≤) for t ≤ 200 and βX3(>) for t > 200, where βX3(≤) = 0.3 and βX3(>) = −0.3.

The effects of X1 and X2 on survival were assumed to satisfy the proportional

hazards assumption, with coefficients βX1 = 0.08 and βX2 = 1.1. Four scenarios

were simulated for survival, varying the proportion of events. The four scenarios
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specified the overall proportion of individuals with events to be: 20%, 40%, 60%

and 80%, where for each scenario, the split of the amount of events within each

time interval, t ≤ 200 and t > 200, was simulated to be approximately equal.

Piecewise-proportional hazards models adjusted for all three covariates X1,

X2 and X3, with a time-dependent effect for X3, were fitted to the complete

data within each of the event proportion scenarios in each simulation. The bias of

coefficients was computed for each covariate in each scenario, where the bias was

calculated as the average over the simulations of the absolute difference between the

model coefficients and the corresponding coefficient used to simulate the survival

times.

Missing data was introduced into covariates X2 and X3 in order to examine

the performance of the the imputation approaches. The proportion of missing

values within each covariate was varied to produce three scenarios of missingness:

10% missing in X2 and 50% missing in X3, 20% missing in X2 and 40% missing

in X3, and 30% missing in both X2 and X3. Covariate X1 remained complete in

each scenario. This resulted in 12 missing data scenarios overall with the varying

proportions of events, plus the 4 complete data scenarios.

For each of the twelve missing data scenarios, two imputation approaches were

applied. The first approach ignored the time-dependent effect of X3 when incorpo-

rating the survival outcome into the imputation models, and fitted the imputation

models with the outcome included through the Nelson-Aalen estimate of the cu-

mulative hazard and the censoring indicator, as outlined by White and Royston

(2009); this approach will be referred to as the ‘näıve imputation’ approach. The

second imputation accounts for the time-dependent covariate effects using the

imputation model forms proposed in Section 6.3, where the imputation models

incorporated the survival outcome using the two censoring indicators δ1 and δ2,

and Nelson-Aalen estimates for the two cumulative baseline hazard terms, H0(tm)

and H0(t) − H0(tm). This approach will be referred to as the ‘TD imputation’
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approach.

Both imputation approaches were applied to each of the missing data scenar-

ios within each event proportion scenario, where the imputations in each case

were carried out using the mice package in R over 100 iterations for 10 cycles, to

produce 10 imputed data sets within each approach for each scenario. A piecewise-

proportional hazards model was fitted to each of the 10 imputed data sets from

each imputation approach, where as in the complete case, the models were ad-

justed for all three covariates, X1, X2, and X3, with a time dependent effect on

X3. For each approach, the 10 sets of model coefficients were combined using

Rubin’s rules to achieve a pooled piecewise-proportional hazards model for each

approach in each scenario. The bias of the coefficients was again calculated as the

average over the simulations of the absolute difference between the pooled model

coefficients and the corresponding coefficients used to simulate the survival times.

This resulted is estimates of bias of model coefficients for each of the event

proportion scenarios for both the complete case, and for the two imputation ap-

proaches for each missing data scenario. Smaller differences between the model

coefficients and the simulation coefficients indicate lower bias.

6.4.1 Bias Results

The results of the simulation study are presented in Tables 6.1 and 6.2, which

show the bias and percentage bias, respectively, in the coefficients for each of the

covariates. The notation X3(≤) and X3(>) represents the coefficients for X3 for

time intervals t ≤ 200 and t > 200, respectively.

The results in Tables 6.1 and 6.2 show that compared to the complete case,

both imputation methods introduce some extra bias into the model coefficients of

the piecewise-proportional hazards model.

In terms of the imputation approaches, Table 6.1 shows that the bias is lower

for the coefficients of the model fitted following the TD imputation approach,
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Table 6.1: Simulation results giving bias of coefficient of piecewise-proportional
hazards model on complete and multiply imputed data, using näıve and TD im-
putation approaches (n=500, 2000 Simulations).

Events Missing (%) Imp. Bias

(%) X2 X3 Type X1 X2 X3(≤) X3(>)

0 0 Complete 0.018 0.288 0.029 0.024

10 50 Näıve Imp 0.095 1.072 0.038 0.178

TD Imp. 0.046 0.714 0.036 0.121

20 20 40 Näıve Imp 0.088 1.159 0.040 0.171

TD Imp. 0.042 0.784 0.034 0.116

30 30 Näıve Imp 0.080 1.191 0.040 0.163

TD Imp. 0.039 0.821 0.033 0.110

0 0 Complete 0.012 0.209 0.020 0.016

10 50 Näıve Imp 0.099 1.090 0.029 0.194

TD Imp. 0.040 0.647 0.027 0.094

40 20 40 Näıve Imp 0.095 1.147 0.030 0.189

TD Imp. 0.039 0.711 0.025 0.092

30 30 Näıve Imp 0.087 1.162 0.031 0.180

TD Imp. 0.035 0.720 0.024 0.088

0 0 Complete 0.010 0.165 0.016 0.015

10 50 Näıve Imp 0.090 0.994 0.030 0.208

TD Imp. 0.040 0.612 0.023 0.073

60 20 40 Näıve Imp 0.086 1.037 0.026 0.201

TD Imp. 0.038 0.677 0.021 0.070

30 30 Näıve Imp 0.078 1.046 0.024 0.189

TD Imp. 0.034 0.717 0.019 0.065

0 0 Complete 0.009 0.150 0.015 0.013

10 50 Näıve Imp 0.080 0.894 0.058 0.230

TD Imp. 0.040 0.596 0.025 0.081

80 20 40 Näıve Imp 0.075 0.930 0.045 0.218

TD Imp. 0.037 0.655 0.021 0.074

30 30 Näıve Imp 0.067 0.938 0.034 0.203

TD Imp. 0.033 0.693 0.018 0.066

compared to the näıve imputation approach. This is the case for all scenarios,

with varying event and missingness proportions. Looking at the percentage bias

in Table 6.2, it can be seen that the TD imputation approach reduced the bias
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by around 70% in some cases compared to the näıve imputation approach. The

addition of separate terms for the cumulative hazard and censoring indicators for

each time interval into the imputations models, to account for the time-dependent

covariate effect, reduces the bias in the analysis stage compared to ignoring the

non-proportional hazards.

These simulation results therefore suggest that the proposed method for in-

corporating time-dependent covariate effects, with approximate compatibility to

a piecewise-proportional hazards analysis model, is an improvement on the näıve

approach to ignore the non-proportional hazards in the imputation stage.

6.5 Conclusion

This chapter has reviewed methods for accounting for non-proportional hazards

in a survival model, and discussed the issues this causes for multiple imputation.

Following this, we showed the derivation of the imputation model form for each

covariate type, as outlined by White and Royston (2009).

Using a similar process to White and Royston (2009), we defined the piecewise-

proportional hazards model, and derived the form of the imputation models for

binary, categorical and continuous covariates, to ensure approximate compatibility

with the piecewise-proportional hazards model.

Finally, we presented a simulation study to compare the bias in model coeffi-

cients between the two imputation approaches; MICE ignoring non-proportional

hazards and our derived imputation model forms incorporating a time-dependent

hazard. This simulation study showed that the multiple imputation procedure

causes bias in both cases, but the bias was reduced when time-dependent effects

were accounted for within the imputation procedure. Therefore we can conclude

our proposed imputation model forms produce more favourable results.
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Table 6.2: Simulation results giving percentage bias of coefficient of piecewise-
proportional hazards model on complete and multiply imputed data, using näıve
and TD imputation approaches (n=500, 2000 Simulations).

Events Missing (%) Imp. Bias (%)

(%) X2 X3 Type X1 X2 X3(≤) X3(>)

0 0 Complete 22.5 26.2 9.7 8.0

10 50 Näıve Imp 118.8 97.5 12.7 59.3

TD Imp. 57.5 64.9 12.0 40.3

20 20 40 Näıve Imp 110.0 105.4 13.3 57.0

TD Imp. 52.5 71.3 11.3 38.7

30 30 Näıve Imp 100.0 108.3 13.3 54.3

TD Imp. 48.8 74.6 11.0 36.7

0 0 Complete 15.0 19.0 6.7 5.3

10 50 Näıve Imp 123.8 99.1 9.7 64.7

TD Imp. 50.0 58.8 9.0 31.3

40 20 40 Näıve Imp 118.8 104.3 10.0 63.0

TD Imp. 48.8 64.6 8.3 30.7

30 30 Näıve Imp 108.8 105.6 10.3 60.0

TD Imp. 43.8 65.5 8.0 29.3

0 0 Complete 12.5 15.0 5.3 5.0

10 50 Näıve Imp 112.5 90.4 10.0 69.3

TD Imp. 50.0 55.6 7.7 24.3

60 20 40 Näıve Imp 107.5 94.3 8.7 67.0

TD Imp. 47.5 61.5 7.0 23.3

30 30 Näıve Imp 97.5 95.1 8.0 63.0

TD Imp. 42.5 65.2 6.3 21.7

0 0 Complete 11.3 13.6 5.0 4.3

10 50 Näıve Imp 100.0 81.3 19.3 76.7

TD Imp. 50.0 54.2 8.3 27.0

80 20 40 Näıve Imp 93.8 84.5 15.0 72.7

TD Imp. 46.3 59.5 7.0 24.7

30 30 Näıve Imp 83.8 85.3 11.3 67.7

TD Imp. 41.3 63.0 6.0 22.0
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Chapter 7

Piecewise-Proportional Hazards

Model Validation

7.1 Introduction

This chapter provides methodology for assessing the proportional hazards assump-

tion within the piecewise-proportional hazards model, detailing an alternative

method for scaling the Schoenfeld residuals.

Initially, the form of the piecewise-proportional hazards model will be defined,

outlining what the proportional hazards assumption means for this model and

how it can be assessed. A review of the methods for assessing the proportional

hazards assumption will be given, identifying their unsuitability for application to

the piecewise-proportional hazards model.

A new method for scaling the Schoenfeld residuals is proposed, with discussion

of how this can be used in assessing the proportional hazard assumption. An

adapted visualisation technique is also provided to coincide with the formal test.

Finally, further extensions of these methods are outlined for application within the

multiple imputation setting.
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7.2 Piecewise-Proportional Hazards Model

Prior to consideration of how we can assess the proportional hazards assump-

tion within the piecewise-proportional hazards model, we must first define the

piecewise-proportional hazards model and how it’s form relates the proportional

hazards assumption.

From the findings in Chapter 5, we would expect a single change point in

covariate effects to be found for the stroke data, and thus, as the simplest case,

we will focus on that scenario here. The methods we outline below will be able

to be extended to additional change points and time intervals as needed however.

Considering the scenario where there is a single change point in covariate effects,

there will be two time intervals to consider.

To define the piecewise-proportional hazards model, suppose we have a covari-

ate X with a time-dependent covariate effect and a further q explanatory vari-

ables Zk, k = 1, ..., q, assumed to have time-constant effects. Fitting a piecewise-

proportional hazards models assumes the effect of X is constant up until some

survival time t0, at which a change in the effect of X occurs, with the new effect

of X assumed to again be constant beyond survival time t0. Using a piecewise-

proportional hazards model results in the hazard function being defined as

h(t|X) = h0(t) exp {βX1X + βX2I(t > t0)X + β1Z1 + ...+ βqZq} , (7.1)

where, as defined in Section 6.3.2,

I(t > t0) =


1, if t > t0

0, if t ≤ t0

is an indicator function for the effect of X dependent on survival time t, so that βX1

gives the effect of X up to t0, and the effect of X after t0 is given by (βX1 + βX2).
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Given the piecewise-constant effect of X, we can consider the model given in

Equation (7.1) as two separate models over two time intervals, defined as

h(t|X) =


h0(t) exp {βX1X + β1Z1 + ...+ βqZq} , if t ≤ t0

h0(t) exp {(βX1 + βX2)X + β1Z1 + ...+ βqZq} , if t > t0.

The form of this model suggests the proportional hazards assumption should be

examined separately for the two time periods for the variable X with a time-

dependent covariate effect. This is required to assess whether the covariate effects

of X satisfy the proportional hazards assumption within each of the time periods.

For the remaining covariates, Zk, the proportional hazards assumption should hold

over the total follow-up time, and therefore should still be assessed as such.

Now, as outlined in Chapter 5, the proportional hazards assumption can be

validated by assessing the linear dependence of the model coefficients on time.

Equation (5.1) gave this linear dependence expressed as a regression on some

function of time G(t). Considering the form of the piecewise-proportional hazards

model, we have three cases requiring assessment; the dependence of βX1 on time,

the dependence of βX1 +βX2 on time, and the dependence of the remaining βk’s on

time. This results in the need to express three regressions for assessing the linear

dependence of the coefficients on time:

1. βX1(t) = βX1 + θX1G1(t), (t ≤ t0),

2. (βX1 + βX2)(t) = βX1 + βX2 + θX2G2(t), (t > t0),

3. βk(t) = βk + θkG(t).

The null hypotheses for proportional hazards correspond to θX1 = 0, θX2 = 0 and

θk = 0 (k = 1, ..., q) for regression models 1, 2 and 3 respectively.

In order to assess these null hypotheses, use of the scaled Schoenfeld residuals

are required, as for a standard Cox proportional hazards model. This is where
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issues arise with the current methods.

7.3 Overview and Issues of Current Methods

As outlined in Section 5.2, in order to assess the proportional hazards assumptions,

we first express a model with a time-dependent coefficient,

hi(t) = h0(t) exp(β(t)′xi),

and assess if βk(t) is constant. Grambsch and Therneau (1994) showed that for

the estimated coefficient β̂ from standard Cox regression, we have

E(s∗jk) + β̂k ≈ βk(tj), (7.2)

where s∗jk is a scaled Schoenfeld residual.

An analogy to generalised least squares can be used, where Therneau and

Grambsch (2013) suggest expressing the linear dependence of the coefficient on

time as a regression on some function of time, as in Equation (5.1), giving

βk(t) = βk + θkG(t), (7.3)

where G(t) is a specified function of time, and the null hypothesis for proportional

hazards corresponds to θk = 0, for k = 1, ..., q.

The relationship between the expected value of the scaled Schoenfeld residuals

and the coefficients given in Equation (7.2) enables use of the scaled Schoenfeld to

test the null hypothesis for proportional hazards of θk = 0, as outlined in Section

5.2.

The rationale for the regression in Equation (7.3) relates to the rationale for the

three regressions expressed in Section 7.2 for assessing the piecewise-proportional
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hazards model. The piecewise-proportional hazards model can also be expressed as

a model with time-dependent coefficients, but this time for each interval separately.

Like the standard Cox regression model, Schoenfeld residuals are obtained in

the output of the piecewise-proportional hazards model. However, scaled residuals

have better diagnostic power for assessing the proportional hazards assumption and

so are used more often (Lee and Wang, 2003). This weighting of the Schoenfeld

residuals is where the issues arise for the piecewise-proportional hazards model.

Therneau et al. (2019) suggest the proportional hazards assumption for the

piecewise-proportional hazards model can be assessed using the Therneau (2015b)

cox.zph function in R. This scales the Schoenfeld residuals using the overall co-

variance matrix of the β̂’s as described in Section 5.3, however, this scaling does

not take into account the disjoint nature of the piecewise-proportional hazards

model.

As outlined in Section 5.2, the Schoenfeld residuals can be scaled using V̂ −1
j ,

where V̂ −1
j is a good approximation of the estimated variance of V̂ −1

j sj. Grambsch

and Therneau (1994) suggested the use of the approximation V̄ for V̂ −1
j , where V̄ =

I(β̂)/d, and this is now used as standard practice for assessing the proportional

hazards assumption. In particular, this approximation is used as the default in

the R survival package.

The simulations presented by Grambsch and Therneau (1994) show that the

approximation has minimal affect on analyses, however this simulation only con-

sidered the case of binary covariates. Winnett and Sasieni (2001) investigated the

suitability and impact of using this approximation further, considering possible

scenarios where it may not be appropriate. The work by Winnett and Sasieni

(2001) highlighted that for any covariate with more than two values, or levels, the

approximation may not be appropriate, where in this case, there can be a decrease

in covariate values in the risk set, particularly for extreme covariate values result-

ing in early event times. Under this circumstance, Winnett and Sasieni (2001)
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state the approximation V̄ will be not close to V̂ −1
j .

As the purpose of the test of the proportional hazards assumption is to examine

the deviation of the hazard ratio from constant, it is important to ensure the scaling

is appropriate, where Winnett and Sasieni (2001) highlighted that inappropriate

scaling can result in under or over estimation of the deviation being investigated.

We consider how the use of the approximation V̄ may impact the assessment of

the proportional hazards assumption for piecewise-proportional hazards, where

the assumption that all the Schoenfeld residuals have the same variance, which is

assumed to be proportional to the inverse of the Fisher’s information matrix, will

not hold for the piecewise-proportional hazards model.

More specifically, considering the nature of the piecewise-proportional hazards

model, and the difference in coefficients for a covariate with a time-dependent

effect, over specified time intervals, it is expected that the estimates of V̂ −1
j will be

different for time intervals tj ≤ t0 and tj > t0, where tj is the jth event time and

t0 is the changepoint of the time-dependent covariate effect. This suggests that V̄

would not be good approximation of V̂ −1
j .

Further, the output of the piecewise-proportional hazards model produces a

vector of Schoenfeld residuals for each coefficient in the model. For time-dependent

covariate X, this results in two vectors of Schoenfeld residuals, one for events

occurring prior to time t0, and one for events after t0. However, the length of

these vectors is the total number of events over the full follow-up time, resulting in

these vectors having multiple consecutive zeros for events within the time interval

for which that coefficient does not represent.

As the Schoenfeld residuals correspond to the score function of the model like-

lihood, the issue around the presence of zero residuals is likely to result in an

underestimation of elements of the Fisher’s Information matrix of the model fit,

in turn interfering with the scaling of the Schoenfeld residuals and impacting the

score test for proportional hazards.
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The presence of zero residuals can lead to underestimation of the variance of

the non-zero residuals corresponding to events, and considering the zero-valued

residuals within the residual matrix, any scaling procedure will cause them to

become marginally non-zero. The presence of these residuals can also influence

the score test, where, given their closeness to zero, inclusion of them when testing

for deviation of the hazard ratio from constant, can exaggerate the result towards

accepting the null of zero-coefficient and non-violation of proportional hazards.

To illustrate this issue further, and highlight how this also affects the standard

visualisation method for assessing the proportional hazards assumption, Figure

7.1 presents an example visualisation of the scaled Schoenfeld residuals for a vari-

able with a time-dependent covariate effect in the piecewise-proportional hazards

model, plotted using the cox.zph function in R. The left plot presents the scaled

Schoenfeld residuals and smooth curve for the coefficient representing events in the

first time interval of t ≤ t0, and the right plot presents the residuals related to the

coefficient of the interval t > t0 for the time-dependent covariate, where t0 = 30.

These plots clearly show the grouping of zero-valued residuals which have now

been scaled to be marginally non-zero, whilst highlighting how these residuals ag-

gregate the smooth to be more constant. Given the score test assesses significance

of the slope of a regression of the residuals against time, any amplification of the

slope towards zero will result in lower power of detecting any remaining violation

of the proportional hazards assumption for the coefficients of the time-dependent

covariate.

To illustrate how the disjoint nature of the piecewise-proportional hazards

model can affect the scaling of the Schoenfeld residuals for covariates without time-

dependent coefficients, example residual plots are presented in Figure 7.2, where

as in Figure 7.1, the time point for the change in effect of the time-dependent

covariate effects is at t0 = 30. Examining the residuals on either side of this

time point, Figure 7.2 indicates that there is some difference in the variation of
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(a) (b)

Figure 7.1: Plot of Schoenfeld residual plot for a time-dependent covariate in a
piecewise-proportional hazards model, where the left plot represents the residuals
for the coefficient of the first interval of t ≤ t0, and right for the interval t > t0
(t0 = 30).

the residuals between each interval for variables without a time-dependent effect.

This suggests the variance of the scaled residuals may have been influenced by use

of the estimation V̄ and the presence of the zero-valued residuals.

Given these issues around the scaling of the Schoenfeld residuals, we propose

the scaling of the Schoenfeld residuals should be handled separately for each time

interval to avoid any influence of the poor variance estimate and zero-valued resid-

uals on the assessment of the proportional hazards assumption.

7.4 Proposed Test of Proportional Hazards As-

sumption

In order to avoid the influence of the poor variance estimate and the zero-valued

residuals when assessing the proportional hazards assumption, we propose it is

necessary to consider the Schoenfeld residuals in separate pieces for each time in-

terval. Below we assume a single change point and two time intervals, presenting

a method for scaling the Schoenfeld residuals for each time interval and outlin-
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(a) (b)

Figure 7.2: Examples of Schoenfeld residual plots for variables without a time-
dependent covariate effect within a piecewise-proportional hazards model, with
t0 = 30.

ing how to proceed with testing the proportional hazards assumption afterwards.

Further, we outline how this testing procedure can be supported by a suitable

visualisation, and discuss how it may be extended when additional time intervals

are needed.

7.4.1 Scaling Factor for Schoenfeld Residuals

In order to define a scaling factor for the Schoenfeld residuals, suppose there are

v = q+1 explanatory variables included in a piecewise-proportional hazards model,

one with a time-dependent covariate effect, X, and q with a constant effect, Zk,

k = 1, ..., q. Let t0 be the time point at which the change in effect occurs for

variable X, so that there are two time-intervals t ≤ t0, and t > t0. The effects of

X are constant but different either side of t0. Suppose there are d1 events prior to

t0 and d2 events after t0, where the total number of events is d = d1 + d2.

The matrix of Schoenfeld residuals would be a d×(v+1) matrix, where variable

X has two columns of residuals, one for each coefficient. This would give a matrix
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of the form

S =



s1X 0 s1Z1 s1Z2 · · · s1Zq

s2X 0 s2Z1 s2Z2 · · · s2Zq

...
...

...
...

. . .
...

sd1X 0 sd1Z1 sd1Z2 · · · sd1Zq

0 sd1+1X sd1+1Z1 sd1+1Z2 · · · sd1+1Zq

0 sd1+2X sd1+2Z1 sd1+2Z2 · · · sd1+2Zq

...
...

...
...

. . .
...

0 sdX sdZ1 sdZ2 · · · sdZq



,

where sjk is the Schoenfeld residual for covariate k at event time j. Now consider

the Schoenfeld residuals as two separate matrices for the two time intervals and

let S1 be the matrix for events in the interval t ≤ t0, and S2 be the matrix for

events in the interval t > t0. This would result in S1 being a d1× v matrix and S2

being a d2 × v matrix, presented as

S1 =



s11X s11Z1 · · · s11Zq

s21X s21Z1 · · · s21Zq

...
...

. . .
...

sd1X sd1Z1 · · · sd1Zq


, S2 =



s12X s12Z1 · · · s12Zq

s22X s22Z1 · · · s22Zq

...
...

. . .
...

sd2X sd2Z1 · · · sd2Zq


,

where sjuk is the Schoenfeld residual for covariate k at the jth event time of the

corresponding time interval, u.

We propose each of these matrices, S1 and S2, can be scaled separately using an

approximation of the Fisher’s Information matrix for each time interval. Since the

Cox regression model only outputs the overall Fisher’s information matrix for the
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model, the variance would need to be computed for each event externally to the

model output. Given the relationship between the Fisher’s information, the score

function, and how these relate to the Schoenfeld residuals, we have that (S ′S),

the product of the Schoenfeld residual matrix and it’s transpose, is asymptotically

equivalent to the Fishers information matrix, and thus we can use this relationship

to approximate the Fisher’s information within each time interval.

Let u denote the time interval, so that u = 1 represents the time interval t ≤ t0

and u = 2 represents time interval t > t0. We propose the Fisher’s Information

matrix for time interval u can be approximated as

Iu(β̂) ≈ (S ′uSu), (7.4)

where Iu(β̂) is a v × v matrix.

Noting that, as in Equation (5.5), the Schoenfeld residuals are generally scaled

as

S∗ = d I−1(β̂)S,

we suggest the approximation of Iu(β̂) in Equation (7.4) can be used to weight

the Schoenfeld residuals for time interval u. The matrices of Schoenfeld residuals,

S1 and S2 respectively, can therefore be scaled as

S∗1 = S1d1(S ′1S1)−1, S∗2 = S2d2(S ′2S2)−1,

where S∗1 now denotes the v × d1 matrix of scaled Schoenfeld residuals for time

interval t ≤ t0, and S∗2 denotes the v× d2 matrix of scaled Schoenfeld residuals for

time interval t > t0. The matrices of the scaled Schoenfeld residuals can now be
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presented as

S∗1 =



s∗11X s∗11Z1
· · · s∗11Zq

s∗21X s∗21Z1
· · · s∗21Zq

...
...

. . .
...

s∗d1X s∗d1Z1
· · · s∗d1Zq


, S∗2 =



s∗12X s∗12Z1
· · · s∗12Zq

s∗22X s∗22Z1
· · · s∗22Zq

...
...

. . .
...

s∗d2X s∗d2Z1
· · · s∗d2Zq


.

For each covariate, we now have two vectors of scaled Schoenfeld residuals,

one for each time-interval. For variable X, the covariate with a time-dependent

effect, the two vectors can be used individually to assess the proportional hazards

assumption over each time period separately. The vectors of scaled Schoenfeld

residuals for variable X can be defined as s∗Xu for time interval u, where s∗Xu =

(s∗1uX , s
∗
2uX

, ..., s∗duX)′, the column of residuals for X in S∗u. The vector of residuals

s∗Xu can now be used in the test for proportional hazards in time interval u for

covariate X.

In order to check the proportional hazards assumption for the remaining co-

variates, Zk, which do not have a time-dependent covariate effect in the piecewise-

proportional hazards model, the two vectors of scaled residuals need stacking to-

gether so the assumption can be assessed over the full follow-up time. Before these

vectors can be stacked, the residuals need re-weighting to account for the difference

in the scaling factors.

Let Λu be a v×v matrix denoting the scaling factor for the Schoenfeld residual

matrix for time interval u, so that Λu = duI−1
u (β̂). Now, exclude the rows and

columns of Λu corresponding to variable X to form a q× q matrix whose diagonal

entries, (k, k), correspond to the variance elements of I−1
u (β̂) relating to Zk. Denote

this matrix as ΛuZ .

To stack the scaled Schoenfeld residual vectors for Zk from each time interval,

the residuals from time interval u = 2 can be re-weighted using the square root
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of the ratio of the variance elements of I−1
u (β̂) relating to Zk, or rather the ratio

of the (k, k) entries of Λ1Z and Λ2Z . Let λ̃k denote the weighting factor for Zk’s

residuals, defined as

λ̃k =

√
Λ1Z(k,k)

Λ2Z(k,k)

, (7.5)

and note the vector of scaled Schoenfeld residuals for time interval u = 2 and

covariate Zk from S∗2 is defined as s∗Zk2 = (s∗12Zk
, s∗22Zk

, ..., s∗d2Zk
)′. The re-weighted

vectors of residuals for time interval u = 2 for Zk, denoted s̃∗Zk2, are then given as

s̃∗Zk2 = λ̃ks
∗
Zk2.

The residual vectors for Zk can then be stacked to become s̃∗Zk
= (s∗Zk1, s̃

∗
Zk2)′, or

s̃∗Zk
= (s∗11Zk

, s∗21Zk
, ..., s∗d1Zk

, s̃∗12Zk
, s̃∗22Zk

, ..., s̃∗d2Zk
)′, a d × 1 vector which can now

be used to assess the proportional hazards assumption for variable Zk.

Recall that s∗X1 and s∗X2 are respectively the d1×1 and d2×1 vectors of scaled

Schoenfeld residuals for variable X for the time intervals t ≤ t0, and t > t0, and

s̃∗Zk
denotes the vector for variable Zk, k = 1, ..., q, including the residuals for the

whole of follow-up. Let gj be a function of time, where g1j and g2j denote the

function of time at the event times in time interval u = 1 and u = 2 respectively.

Note that ḡ =
∑d

j=1 gj and ḡu =
∑du

j=1 guj. The tests for proportional hazards

given in Section 7.2 can now be expressed as three corresponding linear regression

models:

1. s∗j1X = θX1(g1j − ḡ1)

2. s∗j2X = θX2(g2j − ḡ2)

3. s̃∗jZk
= θZk

(gj − ḡ),

where θX1 = 0, θX2 = 0 and θZk
= 0 correspond to the null hypothesis of propor-

tional hazards for the regressions 1, 2 and 3 respectively.
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Referring back to the test outlined in Section 5.3.1, we can estimate these θ

coefficients and calculate a test statistic to conduct a score test for assessing the

proportional hazards assumption. For the variables Zk, we can estimate θZk
from

model 3 as

θ̂Zk
=

∑d
j=1 (gj − ḡ) s∗jZk∑d
j=1 (gj − ḡ)2

,

with test statistic

Tk =

{∑d
j=1 (gj − ḡ) s∗jZk

}2

(Λ1Z(k,k) + Λ2Z(k,k))
∑d

j=1 (gj − ḡ)2
.

For covariate X with a time-dependent covariate effect, the estimates of the coef-

ficients θX1 and θX2, and their corresponding test statistics, are

θ̂X1 =

∑d1
j=1 (g1j − ḡ1) s∗jX1∑d1
j=1 (g1j − ḡ1)2

, TX1 =

{∑d1
j=1 (g1j − ḡ1) s∗jX1

}2

d1(S ′1S1)−1
(X,X)

∑d1
j=1 (g1j − ḡ1)2

,

and

θ̂X2 =

∑d2
j=1 (g2j − ḡ2) s∗jX2∑d2
j=1 (g2j − ḡ2)2

, TX2 =

{∑d2
j=1 (g2j − ḡ2) s∗jX2

}2

d2(S ′2S2)−1
(X,X)

∑d2
j=1 (g2j − ḡ2)2

.

respectively, where du(S
′
uSu)

−1
(X,X) is the diagonal entry of du(S

′
uSu)

−1 correspond-

ing to covariate X.

7.4.2 Visualisation

As recommended by Hosmer et al. (2008), it is also useful to use a visualisation of

the residuals alongside the formal test. Figures 7.1 and 7.2 highlighted that the

visualisations produced by the cox.zph function in R are not appropriate for the

piecewise-proportional hazards model since they do not handle the residuals for

the time-dependent covariate effects separately.

We propose that for a variable with a time-dependent covariate effect, two plots
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should be produced, one for the residuals from each time interval. Using the scaling

technique outlined in Section 7.4.1, we have vectors of scaled residuals which can be

plotted against the chosen function of time for each time interval. More specifically

s∗X1 can be plotted against g1 to visualise any violation of proportional hazards

in the effect of X for t ≤ t0, and likewise, s∗X2 can be plotted against g2 for time

interval t > t0.

Further, as outlined in Section 5.3.2, a smooth curve and corresponding con-

fidence interval can be added to these plots. To define the plotted values of the

spline curves, firstly suppose UXu is the matrix of basis vectors for the spline fit

of the scaled Schoenfeld residuals on gu, and let CXu be the matrix for the same

spline functions evaluated at the p plotting points. The plotted values of the spline

curve for variable X, with a time-dependent covariate effect, on interval u can be

defined as

ŷXu = 1β̂Xu + CXu(U
′
XuUXu)

−1U ′Xus
∗
Xu ≡ 1β̂Xu +HXus

∗
Xu,

and the variance of ŷXu is given by

Var(ŷXu) = du(S
′
uSu)

−1
(X,X)HXuH

′
Xu.

As stated in Section 5.3.2, the confidence intervals can be constructed using stan-

dard linear model calculations.

Now, for variables Zk, a single plot for each Zk is required to visualise propor-

tional hazards over the full follow-up. This can be done by plotting the stacked

vector of scaled and re-weighted Schoenfeld residuals against some function of

time, or more specifically plotting s̃∗Zk
against g. Again, a smooth curve needs to

be added to help in the interpretation. Let UZ be the matrix of basis vectors for

the spline fit of s̃∗Zk
on g, with CZ being the matrix of the spline functions evalu-

ated at the plotting points. The plotted values of the spline curve for variable Zk
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can be defined as

ŷZk
= 1β̂Zk

+ CZ(U ′ZUZ)−1U ′Z s̃
∗
Zk
≡ 1β̂Zk

+HZ s̃
∗
Zk
,

where the variance of ŷZk
is defined as

Var(ŷZk
) = (Λ1Z + Λ2Z)(k,k)HZH

′
Z .

Again, the confidence intervals can be constructed using standard linear model

calculations.

7.4.3 Consideration of Number of Changepoints

For completeness, it is important to note how the number and location of change-

points in effect can be determined, and how the methods outlined above in Sections

7.4.1 and 7.4.2 can be applied when more than one changepoint is needed.

Firstly, considering the choice of time points for any changes in effects, the

standard visualisation of the Schoenfeld residuals can be used in the first instance

to identify possible changepoints. Any turning points or changes in gradient to the

smooth curve can indicate possible time points for a change in effect. If there are

multiple occurrences of turning points or large changes to gradient of the curve, this

may indicate multiple changepoints. To assess the suitability of possible change

points, a range of possible choices can be compared through fitting piecewise-

proportional hazards models with varying changepoints and comparing their fit

using the Akaike Information Criterion.

If more than one change in effect is found, resulting in more than two time

intervals for fitting the model over, the methods outlined in Sections 7.4.1 and

7.4.2 can be easily extended. Considering the form of the residual matrices out-

lined in section 7.4.1, the number of coefficients for time-dependent covariate X

would equate the number of time intervals, and this would equate the number of
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columns for X in the residual matrix S. Again, residuals matrices can be specified

for each time interval, u, separately. Here it is important to ensure to use the

column of residuals which corresponds to the appropriate coefficient of X and the

appropriate rows of residuals for Zk which correspond to time interval u. These

residual matrices can be scaled in the same way, using the approximation of the

Fisher’s Information matrix for each interval as in Equation (7.4).

In order to re-weight the residuals for variables Zk with time-constant effects,

define λ̃k to be as in Equation (7.5), but replace Λ2Z(k,k) with ΛuZ(k,k), for each time

interval u. The scaled, re-weighted residuals for each Zk from each time interval

can then be stacked as previously outlined. The test statistics and smooth curves

can be fitted as outlined in Sections 7.4.1 and 7.4.2, ensuring to account for the

variance terms for each of the additional time intervals.

7.5 Extension to Multiply Imputed Data

The methods outlined in Section 7.4 for testing the proportional hazards assump-

tion for a piecewise-proportional hazards model can be extended to the multiple

imputation setting.

Firstly, we consider the formal test. Fitting a piecewise-proportional hazards

model to multiply imputed data sets, results in M sets of the residual matrix S,

denoted S(m), m = 1, ...,M . For each imputed data set m, the Schoenfeld residual

matrix can be be split and scaled separately using the methods outlined in Section

7.4.1. This results in M vectors of scaled Schoenfeld residuals s
(m)∗
Xu for the variable

X with a time-dependent covariate effect, and M vector s̃
(m)∗
Zk

for the q variables,

Zk, k = 1, ..., q, assumed to have time-constant effects.

As outlined in Section 7.4.1, the tests for proportional hazards can be expressed

as three linear regression models:

1. s
(m)∗
j1X

= θ
(m)
X1 (g1j − ḡ1)
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2. s
(m)∗
j2X

= θ
(m)
X2 (g2j − ḡ2)

3. s̃
(m)∗
jZk

= θ
(m)
Zk

(gj − ḡ).

For covariates with time-dependent coefficients, the methods outlined in Sec-

tion 5.3 still hold for assessing the proportional hazards assumption over multiply

imputed data sets, for the both the formal test and visualisation. This holds since,

for each time interval separately, the Schoenfeld residuals are scaled by a constant

scaling factor, and can be regressed against the centered function of time for the

corresponding interval, as in regressions 1 and 2 above.

For the covariates considered to have a constant coefficient over the whole of

follow-up, assessing the proportional hazards assumption requires extra consider-

ation as we have stacked two vectors of residuals, which have been scaled using

different scaling factors, and thus do not necessarily have constant variance. This

affects the derivations shown in Section 5.3.1, where the correction factor within

Q will now no longer be exactly zero.

Considering the formula for Q, given in Equation (5.3), it is possible to derive Q

for the piecewise-proportional hazards model, where instead of V̄ as an estimate

of the overall variance, we can take approximations V̄1 and V̄2 as the variance

estimates for the two time intervals. An exact result for the correction factor being

zero cannot be shown, but we aim to show that the correction factor within Q is

small enough so that the proportional hazards can be tested using the regression

given in model 3 above.

We can estimate V̄u, for u = 1, 2 using the approximation of the Fisher’s

information matrix for each interval, as given in Equation (7.4). For u = 1, this

gives

V̄1 = d−1
1 I1(β) ≈ d−1

1 (S ′1S1),

where d1 is the number of events in time interval u = 1. For u = 2, we also need

to consider the additional scalar λ̃k used to re-weight the residuals. This gives the
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approximation of the variance for interval u = 2 as

V̄2 = d−1
2 λ̃

−1I2(β) ≈ d−1
2 λ̃

−1
(S ′2S2),

where λ̃ is a k × k matrix with the (k, k)th diagonal elements being λk, as in

Equation (7.5), and d2 is the number of events in time interval u = 2, so that

d1 + d2 = d, the total number of events. Substituting the V̄u terms into Equation

(5.3) gives Q as

Q =

d1∑
j=1

GjV̄1Gj +
d∑

j=d1+1

GjV̄2Gj

−

(
d1∑
j=1

GjV̄1 +
d∑

j=d1+1

GjV̄2

)(
d1V̄1 + d2V̄2

)−1

(
d1∑
j=1

GjV̄1 +
d∑

j=d1+1

Gj

)′
.(7.6)

As in Section 5.3, we consider centering the function of time, so that Gj = gj − ḡ,

where ḡ = d−1
∑d

j=1 gj. Note that the function of time is centered over the whole

follow-up and not within the individual time intervals. We aim to show that the

correction factor term in Equation (7.6) is small and thus inconsequential.

Substituting the centered function of time into Equation (7.6), and showing

the V̄u in terms of Iu(β), gives

Q =

d1∑
j=1

(gj − ḡ)[d−1
1 I1(β)](gj − ḡ) +

d∑
j=d1+1

(gj − ḡ)[d−1
2 λ̃

−1I2(β)](gj − ḡ)

−

(
d1∑
j=1

(gj − ḡ)d−1
1 I1(β) +

d∑
j=d1+1

(gj − ḡ)d−1
2 λ̃

−1I2(β)

)
[I1(β) + λ̃

−1I2(β)]−1

×

(
d1∑
j=1

(gj − ḡ)d−1
1 I1(β) +

d∑
j=d1+1

(gj − ḡ)d−1
2 λ̃

−1I2(β)

)′
. (7.7)
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Taking the first set of brackets within the correction factor, we can simplify to get

d−1
1 d−1

2

(
d2I1(β)

d1∑
j=1

(gj − ḡ) + d1λ̃
−1I2(β)

d∑
j=d1+1

(gj − ḡ)

)
. (7.8)

Centering the function of time over the full follow-up means that the two sum-

mation terms in Equation (7.8) are of opposing signs, where
∑d1

j=1(gj − ḡ) will

be a negative term, and
∑d

j=d1+1(gj − ḡ) will be a positive term, since the early

event times will be less than ḡ, and the later event times will be greater than

ḡ. Subject to the additional scalars of Iu(β) and du, the addition of these two

summation terms should therefore be reasonably close to zero, particularly when

the variance terms V̄1 and V̄2 are similar. The re-weighting term λ̃k is intended to

ensure closeness between the variance terms.

The term in Equation (7.8) is the transpose of the third bracket term in the

correction factor in Equation (7.7), and thus overall from this simplification in

Equation (7.8), we can see that the correction factor is divided through by the

term (d1d2)2. With possible multiplicative terms of d1 and d2 in each, this gives

the smallest divisor of the correction term as d2
1, assuming d1 < d2. For a survival

model with a time-split, there should be a sufficient proportion of events within

each interval, and thus the inequality d2
1 > d should hold. Therefore for large

d, the correction factor can be assumed to be negligibly small, and hence the

linear regression model, numbered 3 above, can be used to assess the proportional

hazards assumption of covariates Zk with constant coefficient, where the Wald test

can be used to assess if θ̂Zk
is significantly non-zero.

Now, through fitting the linear regression models defined above, the M esti-

mates of the θ coefficients, denoted θ̂
(m)
Xu and θ̂

(m)
Zk

, and their corresponding vari-

ance, can be combined using Rubin’s rules. The coefficients can be combined over

the M imputed data sets using Equation (5.12), and the variance estimates can

be combined by taking the between-imputation and within-imputation variance
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estimates, as stated in Equations (5.13) and (5.14) respectively, and combining

these using Equation (5.15) to give the pooled variance estimate. For each of the

three regressions, the Wald test statistic can then be calculated from the combined

estimates to assess the proportional hazards assumption.

For the visualisation, the M sets of the scaled Schoenfeld residuals, s
(m)∗
Xu and

s̃
(m)∗
Zk

, can be plotted by taking their average and plotting this against the corre-

sponding functions of time, gu or g respectively. The smooth curve to help with

interpretation can then be added to the plots using the method outlined in Section

5.3.2. This involves fitting spline fits to each of the M sets of scaled residuals sep-

arately, combining their plotting points ŷ
(m)
Xu and ŷ

(m)
Zk

, and corresponding variance

estimates. This can be done using Rubin’s rules, as given in Equations (5.17) and

(5.18) for the plotting points and their variance respectively, to achieve the pooled

smooth curves for each of the covariates.

7.6 Simulation Study

In order to assess the appropriateness of the using the approximation in Equation

(7.4), a simulation study was carried out to examine the differences in Type 1 error

of testing the proportional hazards assumption, dependent upon which scaling

technique is used for the Schoenfeld residuals. The two scaling methods differ

in the use of the Fisher’s information matrix of the model fit, or our proposed

approximation for this in Equation (7.4).

This simulation was an add-on to the simulation study presented in Chapter 5,

so has the same set-up, where again 5000 simulations were produced for n = 1000

individuals. Three covariates were simulated, X1, X2, and X3, where X1 and X3

were continuous and X2 was binary, with X2 dependent on X1, and X3 dependent

on both X1 and X2, as outlined in Section 5.4.

The survival times were generated from covariates X1, X2, and X3 using the
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simsurv package in R under a Weibull distribution, where the covariate effects of

X1, X2, and X3 were all assumed to satisfy the proportional hazards assumption.

The number of events was varied to produce four scenarios, where the proportions

of individuals simulated to have events in the four scenarios were 20%, 40%, 60%

and 80%.

Within each scenario, a Cox regression model was fitted to the survival data,

adjusted for all three covariates, X1, X2, and X3. The proportional hazards

assumption was assessed in four ways for each covariate within each scenario,

where we considered both the score test, as outlined by Grambsch and Therneau

(1994), and the Wald test, as discussed in Section 5.3.1. For each of these tests,

we considered two approaches to scaling the Schoenfeld residuals. These were

the use of the standard scaling factor d I−1(β̂), or our proposed scaling factor,

d(S ′S)−1. These are referred to as ‘Fisher’ and ‘Approx’, respectively, within the

results section.

In order to assess if the approximation in Equation 7.4 is a reasonable alter-

native to using the Fisher’s information from the model fit, the Type 1 error was

recorded for each covariate for each test. The Type 1 error was given as the pro-

portion of the 5000 simulations where the p-value of the test of the proportional

hazards assumption was less than the significance level of α = 0.05.

7.6.1 Type 1 Error Results

Table 7.1 presents the results of the simulation study, and shows overall that there

is very minimal difference between the two scaling methods in terms of the Type

1 error of the tests. The maximum difference in Type 1 error shown in Table 7.1

is for the score test for covariate X3, with 20% events, but this difference was still

small at 0.005. Most of the results in Table 7.1 show a difference in Type 1 error

0.001 or less between the two scaling types.

Given how minimal the difference in Type 1 error is between the two scaling
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techniques, for both the Wald and score tests, we can conclude that use of the ap-

proximation in Equation (7.4) for the Fisher’s information is a reasonable alterna-

tive. Therefore this approximation can be used to provide a more computationally

convenient approach within the setting of piecewise-proportional hazards to give

an approximation of the Fisher’s information for each time interval separately.

Table 7.1: Simulation results giving Type 1 error of test of proportional hazards as-
sumption using Score or Wald test method on complete data for two scaling meth-
ods of the Schoenfeld residuals: d I−1(β̂) (Fisher) or d (S ′S)−1 (Approx) (n=1000,
5000 Simulations).

Events Test Scale Type 1 Error

(%) Type Type X1 X2 X3

Score Fisher 0.051 0.052 0.053

20 Approx 0.051 0.054 0.048

Wald Fisher 0.050 0.052 0.049

Approx 0.050 0.053 0.048

Score Fisher 0.057 0.046 0.049

40 Approx 0.054 0.047 0.050

Wald Fisher 0.053 0.046 0.049

Approx 0.054 0.046 0.049

Score Fisher 0.053 0.049 0.051

60 Approx 0.051 0.049 0.052

Wald Fisher 0.050 0.048 0.052

Approx 0.051 0.049 0.052

Score Fisher 0.056 0.045 0.050

80 Approx 0.054 0.045 0.051

Wald Fisher 0.056 0.045 0.052

Approx 0.055 0.046 0.050

7.7 Conclusion

This chapter provided an adaptation of the standard method for assessing the

proportional hazards assumption so that the piecewise-proportional hazards model

can be validated appropriately.
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Initially, the unsuitably of the use of the standard method for a piecewise-

proportional hazards model was highlighted, showing the potential bias of the

test towards the null of proportional hazards if the Schoenfeld residuals are not

scaled appropriately. An alternative scaling technique for the Schoenfeld residuals

was then proposed, taking into the account the disjoint nature of the piecewise-

proportional hazards model. This alternative scaling was shown to be applicable

for both a formal test and visualisation of proportional hazards, where the simula-

tion study evidenced the suitability of the approximation used within the scaling.

Methods for conducting a formal test and producing suitable visualisations

were outlined, where emphasis was placed on the disjoint nature of the piecewise-

proportional hazards model. The methods proposed suggested separate assessment

of the proportional hazards assumption over the two or more time periods for the

time-dependent covariate effects, whilst still allowing for assessment over the full

follow-up time for covariates with time-constant effects.

Finally, an extension of these methods was provided for application to the

multiply imputed data setting. This brought together the methods in Chapters 5

and 7, ready for application in Chapter 8.
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Chapter 8

Application to Stroke: Part 2

8.1 Introduction

Following on from the initial analyses of the stroke audit data in Chapter 4, this

chapter addresses the issues found during the model validation of the initial model

building procedure by applying the methods outlined in Chapters 6 and 7.

Firstly this chapter recaps the results of initial analyses in Chapter 4. Issues

around interactions and functional form of the baseline covariates are addressed,

and the non-proportional hazards are further examined to identify the time post-

stroke of the changepoint of the time-dependent covariate effects.

Subsequently, the multiple imputation procedure is detailed, demonstrating the

application of the methodology outlined in Chapter 6. Here this chapter discusses

how the imputation procedure accounts for time-dependent covariate effects, in-

teractions, and non-linear covariate effects.

Following the imputation process, this chapter outlines the model building

procedure, giving interpretation of the resulting fitted model in the context of

stroke survival.

Finally, assessment of the proportional hazards assumption is provided, demon-

strating the application of the model validation techniques given in Chapter 7.
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8.2 Summary of Application to Stroke: Part 1

The initial analyses outlined in Chapter 4 identified several covariates to be im-

portant for survival post-stroke, where the model validation in Sections 4.6 and

5.5 highlighted that many of these effects may depend upon time post-stroke.

The baseline covariates identified to be significant for survival in the adjusted

model were age at time of stroke, hospital admitted to, pre-stroke mobility, side

of lesion, diabetes mellitus, systolic BP at hospital admission, lesion type shown

in CT scan and worst consciousness level in the first 24 hours post-stroke.

The results of the pooled adjusted model, as shown in Table 4.17 and Figure

4.26, indicated that increased age, poorer mobility prior to stroke, diabetes, and

worsened consciousness all increased hazard of death following stroke. Further,

considering lesion types, a lesion on both sides of the brain, and PICH shown in

CT scan, were found to result in the highest hazard. Patients who did not receive

a CT scan had the highest hazard overall compared to any of the identified lesion

types. Admission to Hospital 2 was found to give a reduced hazard of death, as

was higher systolic BP on admission to hospital.

Model validation highlighted several issues with the fit of the model. Section

8.3 discusses these in more depth, and shows how these can be handled.

8.3 Handling issues found during model valida-

tion

The validation of the initial modelling procedure, as given in Sections 4.6 and 5.5,

highlighted three key issues which need addressing: a possible interaction between

hospital and no CT scan, non-linear covariate effects, and time-dependent covariate

effects. Throughout this section, we explore each of these issues further and show

how these can be handled to improve the model fit.
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8.3.1 Interaction between hospital and no CT scan

During the initial model building procedure, we found the effect of hospital to have

an unexpected interpretation, where the hazard ratio for hospital in the adjusted

model opposed the univariate hazard ratio of hospital. Table 4.19 in Section

4.6 showed that there appeared to be differing practices between the hospitals

regarding whether or not patients received a CT scan, dependent upon the level

of consciousness of patients. Further, Table 4.20 indicated that there was a 5%

higher incidence of death for patients who did not have a CT scan at Hospital 1

compared to Hospital 2.

To examine if an interaction between ‘no scan’ and hospital resolves the unex-

pected hazard ratio for hospital in the adjusted model in Chapter 4, we incorpo-

rated this interaction into a Cox model. The results of the Cox regression model

for the effect of lesion type shown in CT scan on survival, including an interaction

between ‘no scan’ and hospital, are given in Table 8.1. The results in Table 8.1

highlight the need incorporate this interaction into further model building proce-

dures for the stroke audit data, where the results show that the hazard ratio for

hospital is now concurrent with the results of the univariate model for hospital, in

Table 4.13. Table 8.1 also indicates there is a difference in the effects of ‘no scan’

between the two hospitals on survival post-stroke, where the hazard ratios are 4.7

and 3.2 for ‘no scan’ at hospitals 1 and 2, respectively.

8.3.2 Functional form of non-linear covariate effects

The model validation in Section 4.6 also found issues around the functional form

of systolic BP, suggesting a quadratic term for systolic BP may need to be incor-

porated into the model building. Given the effect of systolic BP was found to be

non-linear in Section 4.6, here we also examine the functional form of diastolic BP

to ensure both these covariates are included in the imputation procedure in the

correct functional form.
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Table 8.1: Results of Cox regression model fitted to complete data for survival of
stroke patients on lesion type shown in CT scan, with an interaction between ‘no
scan’ and hospital.

Variable HR 95% CI p-value

Hospital (Hospital 1)

Hospital 2 0.925 (0.699,1.224) 0.586

CT Scan: Lesion Type (None)

CI 1.376 (1.005,1.882) 0.046

HCI 1.944 (1.048,3.605) 0.035

PICH 1.889 (1.253,2.846) 0.002

No Scan @ Hosp. 1 4.692 (3.080,7.147) <0.001

No Scan @ Hosp. 2 3.228 (2.231,4.672) <0.001

Figure 8.1 gives plots of the spline fits for the blood pressure measures. The

corresponding quadratic effects of the BP measures are overlaid onto the plots in

Figure 8.1, where the quadratic effect is the resulting effect of the measure when it

is fitted in a Cox model as a linear term plus the quadratic term for the measure.

As previously stated in Section 4.6, adding a quadratic term for systolic BP

appears to be an appropriate fit of its functional form. Figure 8.1(a) reiterates

this, with the spline and quadratic curves being close. Figure 8.1(b) also shows

the shape of the quadratic fit to be close to the spline fit for diastolic BP, indicating

a quadratic term should also be included for diastolic BP during further imputation

and model building procedures for the stroke audit data.

8.3.3 Change point of time-dependent covariate effects

The main issue highlighted by model validation, in both Sections 4.6 and 5.5,

was that several covariates in the adjusted Cox model violated the proportional

hazards assumption, indicating the presence of time-dependent covariate effects.

To incorporate the time-dependent covariate effects, a piecewise-proportional

hazards model can be used. In order to appropriately fit the time-dependent

covariate effects within a piecewise-proportional hazards model, it is necessary to
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(a) Systolic BP (b) Diastolic BP

Figure 8.1: Visualisation of functional form of BP, showing plots of the spline fit
(black) and quadratic fit (red) for the effects of: (a) Systolic BP; (b) Diastolic BP,
on survival post-stroke.

identify the time point, or time points, at which the change in the effect of the

covariates occur.

The plots of the Schoenfeld residuals in Section 5.5 indicated that the change-

point appears to be within the first 100 days post-stroke, possibly around the first

month post-stroke. Considering previous research, a week and a month post-stroke

have previously been identified to be key time points for survival (Easton et al.,

2014; Andersen and Olsen, 2011; Petty et al., 2000).

To identify an appropriate changepoint, adjusted piecewise-proportional haz-

ards models with varying changepoints were fitted to each of the imputed data sets

from the initial analysis in Chapter 4. The Akaike Information Criterion (AIC)

was used to compare the fit of the models for each changepoint. We assumed a

single change in effect and explored changepoints at each of the first 10 days post-

stroke, then in increments of 5 days up to 30 days. We also examined changepoints

at 40, 50, 70 and 100 days post-stroke.

Figure 8.2 gives a plot of the AIC values for each of the piecewise-proportional
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hazards models, with different time points of change in effects, fitted to multiply

imputed data set 1. It is clear in Figure 8.2 that a change in effect at 7 days post-

stroke minimises the AIC and thus could be the most appropriate choice. Similar

plots for the remaining imputed data sets also showed 7 days to be the optimal

changepoint which minimised the AIC.

Figure 8.2: Plot of AIC results for piecewise proportional hazards models with
varying time points of change in effects to identify optimal change point

8.4 Multiple Imputation

8.4.1 Imputation Procedure

After the näıve imputation approach in Chapter 4, the incomplete data were

re-imputed using the methods outlined in Chapter 6 to incorporate the time-

dependent covariate effects found during the initial model validation. The imputa-

tion procedure was again implemented through multiple imputation using chained

equations (MICE) using the mice package in R, and the missing data mechanism
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was assumed to be MAR, as discussed in Section 4.3. Several additional consider-

ations were taken into account during this imputation procedure.

The key additional consideration within this imputation procedure was ac-

counting for the non-proportional hazards. The imputation models were specified

using the methods outlined in Section 6.3, where the imputation models were spec-

ified to be approximately compatible with a piecewise-proportional hazards model

as the analysis model.

This involved incorporating additional terms within the imputation models

which account for the change in hazard at the 7 day time-point post-stroke. Sec-

tion 6.3 showed that in order to incorporate this change in hazard, the imputation

models needed to contain two terms for the cumulative baseline hazard; the cu-

mulative baseline hazard up to and including 7 days post-stroke, and the other for

after 7 days post-stroke. These were calculated using the Nelson-Aalen estimator.

Additionally, the imputation models also needed to incorporate two censoring in-

dicator terms, one for up to 7 days post-stroke, and the other identifying events

after 7 days.

A further issue found in the model validation was that the BP measures did not

have linear functional form, but instead would need to be included as quadratic

terms in further analyses. This also means that these measures needed to be

incorporated into the imputation procedure as quadratic terms. This resulted in

two issues, how to include them in imputation models as predictors for the missing

values of other incomplete covariates, and also how to impute the missing values

of the BP measures themselves, given we need both the measure and the quadratic

measure.

In terms of including the BP measures as predictors for the missing values

of other incomplete covariates, the quadratic terms could simply be added as an

additional term in the imputation models. For imputing the missing BP values,

more consideration was needed, with several possible approaches, as outlined in
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Section 6.3.6. As there was minimal missingness within these covariates with only

4 observations missing, a passive approach was taken where the quadratic BP

measures were calculated using the square of the imputed values for the linear

variables.

Model validation also highlighted an interaction between hospital and no CT

scan. This interaction also needed to be incorporated into the imputation pro-

cedure. As the interaction was added to a single level in the lesion type shown

in CT scan variable, this interaction was incorporated into the variable itself and

thus no additional terms were needed. The key thing to note for this was that

hospital needed to be included along side the CT scan variable, as a main effect

in the imputation models, due to the interaction. There were no missing values in

either of these covariates so this did not complicate the imputation procedure.

During this new imputation procedure accounting for additional issues, we also

had to choose a cut off for the amount of missing observations to be imputed, and

ensure the imputations were of the appropriate form for the variable type. As

with the previous imputation procedure, 50% was chosen as the cut off for the

amount of missing data to be imputed, to again avoid amplifying imperfections in

the imputation procedure. Linear regression models were used for the imputation

models of continuous covariates, binary variables were imputed using logistic re-

gression models and multinomial logistic regression was used for both unordered

and ordered categorical covariates.

The imputation models also needed to include all covariates to be included in

the analysis model, and all covariates which are predictors of either the incomplete

covariate or whether the observation is missing. As with the previous imputation

procedure, an all for all approach was taken where every baseline covariate was

included as a predictor in every incomplete covariate’s imputation model.

The imputation procedure was again carried out using the mice package in

R, where a prediction matrix was used to specify the variables to be included
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as predictors in the imputation model. Each imputation cycle was run for 1000

iterations to ensure convergence, and the number of imputations was also again

chosen to be 10, to produce 10 imputed data sets.

In terms of the computational aspect of implementing the imputation proce-

dure, it should be noted that the new methods applied here, as outlined in Chapter

6, have not been any more computationally intensive than the standard methods

upon application. The methods can be easily implemented in the MICE package

in R, and the only part that would result in higher computational intensity is the

addition of extra predictive terms to account for the non-proportional hazards. In

our case, this only caused the imputation procedure to run marginally slower.

For both types of imputation procedure, we found that the procedure took

around 24-36 hours to run on a standard computer, and this was reduced to 6-12

hours when a high-speed computer cluster was used. Although this is reasonably

computationally intensive, the key things which affect the running time are the

number of imputations, the number of iterations and the number of variables

with missing data. It is possible to run the imputation procedure on a standard

computer, regardless of which procedure is used, though it would be preferable to

use a high-speed cluster if that resource were available. Compared to the standard

approach, no additional computing facilities are required to the run imputation

procedure developed to handle non-proportional hazards.

8.4.2 Imputation Diagnostics

Imputation diagnostics were again carried out to assess several aspects of the

imputation procedure. Strip plots and histograms were used to examine the dis-

tributions of the imputed values compared to the observed values, assessing the

within and between imputation variability. Trace plots were again used to assess

the convergence of the imputations.

Strips plots for the imputation of the systolic and diastolic BP missing values
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are shown in Figures 8.3 and 8.4, respectively. These show the distribution of the

observed values and how the imputed values relate, and also show how the imputed

values vary between the imputed data sets. For systolic BP, Figure 8.3 shows that

imputed data set 4 has an extreme imputed value slightly below the range of the

observed data, however all the remaining imputed data sets are shown to have

imputed values within the range of the observed data. Figure 8.4 shows that the

imputed values for diastolic BP are all within the range of the observed data, with

reasonable consistency in the imputed values between the imputed data sets.

Figure 8.3: Strip plot showing the observed and imputed values of systolic BP, for
both incomplete data, labelled 0, and the 10 imputed data sets, where imputed
values are displayed as red points.

For categorical and binary covariates, the distribution of the imputations were

explored using histograms. Histograms showing the imputed values for each im-

puted data set m for each variable were plotted to check between imputation vari-

ability. Figure 8.5 gives these histograms for pre-stroke mobility, chosen for inclu-

sion since pre-stroke mobility was an incomplete covariate with a time-dependent

covariate effect. Figure 8.5 shows that in general, similar proportions of patients
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Figure 8.4: Strip plot showing the observed and imputed values of diastolic BP,
for both incomplete data, labelled 0, and the 10 imputed data sets, where imputed
values are displayed as red points.

were imputed into each of the levels, where every imputed data set had the highest

proportion imputed into level 1, followed by level 3. Imputed data sets 4 and 8 had

a higher proportion imputed into the middle level compared to other imputed data

sets however, with the proportions more similar across the levels. The distribution

of imputed values were generally found to be consistent across the imputed data

sets for the other binary and categorical covariates.

Further histograms were plotted showing the overall distribution of the imputed

values, against the distribution of the imputed data sets and observed data. Again

using the imputation of pre-stroke mobility as an example, these histograms can

be seen in Figure 8.6. The left histogram gives the imputed values only, the middle

shows the proportions in each level over all the imputed data sets, and the right

gives the distribution of pre-stroke mobility in the original observed data. Figure

8.6 shows that the distribution of the imputed values differs from the data as a

whole, but the distributions of the overall imputed data and the observed data are
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near identical. Similar results were found for the majority of the covariates, where

there were minimal differences in shape between the imputed and observed data.

Finally, trace plots were used to assess the convergence of the imputations

and overall showed good convergence. Figure 8.7 shows the trace plots for the

imputed values of pre-stroke mobility, smoking status and alcohol consumption in

descending order. These show good convergence overall. The BP measures had the

additional consideration of having quadratic functional form so we also present the

trace plot for the BP measures, where Figure 8.8 gives the trace plot for quadratic

systolic BP, and both linear and diastolic BP. Again, these trace plots show good

convergence.

The imputation diagnostics as a whole showed that overall the imputations

had good convergence, and in general the between imputation variance was not

excessive. This suggests that the imputation procedure was satisfactory and the

MAR assumption was reasonable to make.

Figure 8.5: Histograms showing the distribution of the imputed values for pre-
stroke mobility for each of the 10 imputed data sets.
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Figure 8.6: Histograms showing the overall distributions of the imputed values,
imputed data and observed data for pre-stroke mobility.

Figure 8.7: Trace plots for imputations of pre-stroke mobility, smoking status and
alcohol consumption to assess their convergence.
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Figure 8.8: Trace plots for imputations of quadratic systolic BP, and linear and
quadratic diastolic BP at hospital admission to assess their convergence.

8.5 Model Building

Following the imputation procedure accounting for a change in hazard due to

time-dependent covariate effects, the analysis stage was again carried out by using

backwards elimination and the Wald test for model selection. The fully adjusted

piecewise-proportional hazards model was fitted to each of the imputed data sets,

where time-dependent covariate effects were incorporated for age, pre-stroke mo-

bility, worst consciousness level and lesion type shown in CT scan. The interaction

between hospital and no CT scan meant during backwards elimination we had to

ensure hospital was not excluded while the lesion type shown in CT scan variable

remained in the model. Similarly, we had to ensure the linear terms for the BP

measures stayed in the model whilst the quadratic terms remained as significant

variables.

Implementation of the backwards elimination procedure involved fitting the
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piecewise-proportional hazards model to each of the imputed data sets, at each

stage, to the new set of variables, before combining the estimates using Rubin’s

rules and excluding the least important covariate. The process was repeated until

only variables significant at the 5% level remained, along side any main effects for

interactions or quadratic terms.

The combined estimates of the final model from the model building procedure

were used to calculate the hazard ratios, and their corresponding 95% confidence

intervals and p-values. The results of the model building are presented in Tables

8.2 and 8.3, with a visualisation of the hazard ratios presented in Figure 8.9. For

variables with different effects on survival depending on the time post-stroke, this

change in effect occurs at 7 days post-stroke. The notation (T ≤ 7) and (T > 7)

refers to the effects which are dependent upon time, referring to the effect between

0 and 7 days post-stroke and the effect after 7 days, respectively.

Table 8.2 shows that between 0 and 7 days post-stroke, higher ages reduced

hazard of death, however, from 7 days onwards post-stroke, older patients had

an increased hazard of death. After 7 days, for every 10-year increase in age at

time of stroke, there was a 64% increase in hazard of death. Patients with worse

pre-stroke mobility had a significantly increased hazard of death after 7 days post-

stroke; those needing help had the worst chance of survival with a 165% increase

in risk of death compared to those able to walk 200 metres outdoors.

It is also shown in Table 8.2 that patients with diabetes mellitus had a 44%

higher hazard of death. Systolic BP has a quadratic form, meaning patients with

extremely low or high systolic BP values had the highest hazard of death, where

a systolic BP value of 181mmHg gave the lowest estimated hazard.

For worst consciousness level within the first 24 hours post-stroke, any reduc-

tion in consciousness level gave an increased hazard of death. Table 8.2 and Figure

8.9 show that the hazard ratios were highest within the first week post-stroke, with

hazard ratios 3.6, 6.6 and 7.5 times higher for drowsy, stupor and coma patients
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Table 8.2: Results of the piecewise-proportional modelling procedure on the mul-
tiply imputed data, showing the pooled estimates of the hazard ratios (HR), along
with the corresponding 95% confidence intervals (CI) and p-values for: age, pre-
stroke mobility, diabetes, systolic BP, and worst consciousness level.

Variable HR 95% CI p-value

Age (T ≤ 7) (10years) 0.739 (0.610,0.895) 0.002

Age (T > 7) (10years) 1.636 (1.419,1.886) <0.0001

Pre-stroke Mobility

200m Outdoors 1.00

Indoors (T ≤ 7) 1.089 (0.636,1.866) 0.755

Indoors (T > 7) 1.517 (1.130,2.038) 0.006

Needs Help (T ≤ 7) 0.526 (0.272,1.014) 0.055

Needs Help (T > 7) 2.651 (1.591,4.417) 0.0002

Diabetes Mellitus

No 1.00

Yes 1.436 (1.035,1.993) 0.03

Systolic BP

Linear (10mmHg) 0.673 (0.517,0.876) 0.003

Quadratic (100mmHg2) 1.011 (1.002,1.019) 0.011

Worst Conscious Level

Alert 1.00

Drowsy (T ≤ 7) 3.661 (1.820,7.362) 0.0003

Drowsy (T > 7) 1.829 (1.256,2.662) 0.002

Stupor (T ≤ 7) 6.622 (3.399,12.902) <0.0001

Stupor (T > 7) 1.454 (0.828,2.554) 0.193

Coma (T ≤ 7) 7.502 (4.471,12.590) <0.0001

Coma (T > 7) 3.127 (2.030,4.819) <0.0001
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respectively compared to alert patients. The hazard ratios reduced after 7 days

giving an 83% increase in hazard of death for drowsy patients, a 45% increase for

stupor and a hazard ratio of 3.1 for unconscious patients.

No lesion was specified as the baseline for the CT scan results, so any change

in hazard of death is compared to patients with no lesion showing on the CT scan.

Considering the CT scan results, Table 8.3 and Figure 8.9 show that patients

diagnosed with a primary intracerebral haemorrhage (PICH) or haemorrhagic in-

farction (HCI) had an increased risk of death. The hazard ratios were higher within

the first week post stroke, reducing from triple to double for HCI after 7 days, and

PICH had a hazard ratio of 3.5 initially, reducing to a 43% increase in risk of

death after 7 days compared to no lesion. Conversely, cerebral infarction (CI) had

a lower hazard ratio in the first week post-stroke. Initially, CI corresponded to a

20% decrease in risk of death compared to patients with no lesion, however post 7

days this increased to a 35% increase in hazard of death.

Figure 8.9 highlights that, of all the CT scan results, patients that did not

have a CT scan had the highest hazard ratios overall, and the hazard of death was

higher for patients at Hospital 1 compared to Hospital 2. No scan at Hospital 1

resulted in a hazard ratio of 10.5 initially, but this reduced after 7 days to doubling

the risk of death compared to no lesion. The estimated hazard ratio for no scan

at Hospital 2 in the first 7 days post-stroke was 6.3, but again after 7 days this

reduced to give a 66% increase in risk of death compared to patients with no lesion.

The results overall suggest that when adjusted for other baseline covariates,

the patients most at risk of death in the first week post-stroke are those which

were stupor or comatose in the first 24 hours post-stroke, and those which did not

receive a CT scan. For patients that have survived beyond 7 days post-stroke,

the hazard of these patients is reduced going forward, however they are still at a

higher risk of death compared to the baseline. After 7 days post-stroke, increased

age and needing help in terms of pre-stroke mobility now also give some of the

238



largest hazards for death.

Table 8.3: Results of the piecewise-proportional modelling procedure on the mul-
tiply imputed data, showing the pooled estimates of the hazard ratios (HR), along
with the corresponding 95% confidence intervals (CI) and p-values for: hospital
and lesion type shown in CT scan.

Variable HR 95% CI p-value

Hospital

Hospital 1 1.00

Hospital 2 0.836 (0.619,1.129) 0.242

CT Scan: Lesion Type

No Lesion 1.00

CI (T ≤ 7) 0.797 (0.294,2.157) 0.655

CI (T > 7) 1.352 (0.961,1.902) 0.083

HCI (T ≤ 7) 3.380 (0.679,16.824) 0.137

HCI (T > 7) 2.041 (1.043,3.993) 0.037

PICH (T ≤ 7) 3.458 (1.394,8.577) 0.007

PICH (T > 7) 1.428 (0.850,2.397) 0.178

No Scan @ Centre A (T ≤ 7) 10.461 (4.282,25.553) <0.0001

No Scan @ Centre A (T > 7) 2.075 (1.063,4.051) 0.032

No Scan @ Centre B (T ≤ 7) 6.349 (2.583,15.602) 0.0001

No Scan @ Centre B (T > 7) 1.663 (1.077,2.568) 0.022
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Figure 8.9: Visualisation of the hazard ratios and corresponding confidence intervals for each of the variables in the piecewise-
proportional hazards model.
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8.6 Model Validation

The key focus of model validation for the piecewise-proportional hazards was to

check that the proportional hazards assumption was now satisfied after application

of methods to handle the initial violation of this assumption. In order to assess the

proportional hazards assumption in a piecewise-proportional hazards model, the

methods outlined in Chapter 7 were applied. For variables with time-dependent

covariate effects, the proportional hazards assumption of the two coefficients were

assessed within each time interval separately. For variables with a constant co-

efficient over the full follow-up time, the proportional hazards assumption was

assessed across the whole follow-up time.

The scaled Schoenfeld residuals from the model fitted to each imputed data

set were regressed against the centered Kaplan-Meier function of time, using the

regression models defined in Section 7.5, and where the residuals were scaled using

the techniques outlined in Section 7.4.1.

Table 8.4 gives the combined results of the linear regression modelling of the

residuals against time, where the coefficients and variance estimates were com-

bined using Rubin’s rules, and the Wald test was used to assess if the combined

coefficients were significantly non-zero. Table 8.4 gives the coefficients and corre-

sponding p-values of these regression models.

From the results in Table 8.4, it is clear the use of the piecewise-proportional

hazards models to include time-dependent covariate effects has resolved the is-

sue around violation of the proportional hazards assumption, where the p-values

are all larger than 0.05. These results show that the time-dependent coefficients

are constant and do not violate the proportional hazards assumption within their

corresponding time-intervals. Variables fitted in the piecewise-proportional haz-

ards model with time-constant coefficients also satisfy the proportional hazards

assumption.

As an additional assessment of the proportional hazards assumption, the scaled

241



Schoenfeld residuals can be plotted against time to visualise the nature and extent

of any non-proportional hazards. Given the change in effect of some covariates

on survival, the scaled Schoenfeld residuals were plotted separately for each time

interval for those covariates with time-dependent effects, resulting in two plots for

each level of these covariates. For covariates assumed to have constant effect over

time, a single plot of the residuals were produced for the full follow-up period.

(a) (b)

(c) (d)

Figure 8.10: Combined plots of scaled Schoenfeld residuals against time (days)
with smooth curve to visualise extent of violation of proportional hazards for
variables with a constant effect over time: (a) Hospital; (b) Diabetes; (c) Systolic
BP; (d) Quadratic Systolic BP.

Figure 8.10 presents the plots for the covariates with a constant effect over

the full follow-up period. Unlike the cox.zph function, the residuals scaled by

the methods in Section 7.4.1 are not transformed by the coefficient, and thus to

interpret these plots, the smooth can be compared to the zero line to check for

non-proportional hazards. Figure 8.10 clearly shows that the smooths on each

of these plots are close to the zero line with the zero line within the confidence
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intervals of the smooth. Figure 8.10(b) has a wide confidence interval, but this is

likely due to the large amount of missing data that has been imputed for diabetes

and any between-imputation variance due to this.

The remaining plots of the scaled Schoenfeld residuals, given in Figures 8.11,

8.12, 8.13, 8.14, and 8.15, give separate plots for each time interval to examine the

extent of non-proportional hazards for each coefficient separately.

Firstly, the residuals for age are given in Figure 8.11, where Figure 8.11(a)

shows a slight issue around the end of the first time-period. However, given the

zero line is still within the confidence interval, and the p-value in Table 8.4 is

greater than 0.05, it can be concluded that the proportional hazards assumption

has not been violated significantly. Figure 8.11(b) indicates that the effect of age

after 7 days post-stroke also does not violate the proportional hazards assumption.

(a) (b)

Figure 8.11: Combined plots of scaled Schoenfeld residuals against time (days)
with smooth curve to visualise extent of violation of proportional hazards for each
of the time periods for Age: (a) T ≤ 7; (b) T > 7.

Considering the effects of pre-stroke mobility, Figure 8.12 shows that the pro-

portional hazards is satisfied for the effects of both levels within each of the time

intervals, where the smooth fits are close to the zero line, with the zero line within

the confidence interval of the smooth on each of these plots.

Figure 8.13 and 8.14 give the plots of the scaled Schoenfeld residuals for the

effects of lesion types shown in CT scan. The results for PICH in Figure 8.13(e)

are similar to that of age before 7 days post-stroke, however, again the zero line
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remains within the confidence interval of the smooth, and the formal test results

also indicated this possible violation is not significant. The remaining plots in

Figure 8.13 show smooth curves all close to the zero line with minimum curvature.

(a) (b)

(c) (d)

Figure 8.12: Combined plots of scaled Schoenfeld residuals against time (days)
with smooth curve to visualise extent of violation of proportional hazards for
variables with a constant effect over time for each of the time period for Pre-stroke
Mobility: (a) Indoors (T ≤ 7); (b) Indoors (T > 7); (c) Needs Help (T ≤ 7); (d)
Needs Help (T > 7).

Looking at the residual plots for no CT scan at the two hospitals, Figure

8.14 reiterates the test results in Table 8.4, indicating the proportional hazards

assumption is not violated by the effect of no scan, interacted with hospital, for

both time intervals of before and after 7 days post-stroke.

Finally, considering the effects of the levels of worst consciousness level, Figure

8.15 shows that there is some non-linearity in the effect prior to 7 days post-stroke,

see Figures 8.15(a), 8.15(c) and 8.15(e), however the zero line is again contained

within the confidence interval of the smooths and the test results in Table 8.4
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(a) (b)

(c) (d)

(e) (f)

Figure 8.13: Combined plots of scaled Schoenfeld residuals against time (days)
with smooth curve to visualise extent of violation of proportional hazards for
variables with a constant effect over time for each of the time period for Lesion
Type shown in CT Scan: (a) CI (T ≤ 7); (b) CI (T > 7); (c) HCI (T ≤ 7); (d)
HCI (T > 7); (e) PICH (T ≤ 7); (f) PICH (T > 7).
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showed that the proportional hazards assumption was not significantly violated

for these effects. For the effects of consciousness after 7 days post-stroke, Figures

8.15(b) and 8.15(f) show constant effects, however there is some curvature of the

smooth in Figure 8.15(d) for the effect of stupor. Given the test results in Figure

8.4, and the zero line being contained within the confidence interval of the smooth

in Figure 8.15(d), however, this does not suggest a significant violation of the

proportional hazards assumption.

(a) (b)

(c) (d)

Figure 8.14: Combined plots of scaled Schoenfeld residuals against time (days)
with smooth curve to visualise extent of violation of proportional hazards for
variables with a constant effect over time for each of the time period for Lesion
Type shown in CT Scan: (a) No Scan at Hospital 1 (T ≤ 7); (b) No Scan at
Hospital 1 (T > 7); (c) No Scan at Hospital 2 (T ≤ 7); (d) No Scan at Hospital 2
(T > 7).

Overall, the plots of the scaled Schoenfeld residuals with smoothed curves, and

the results of the residuals regressed against time, indicate that the proportional

hazards has not been violated by any of the covariate effects within the piecewise-
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proportional hazards model, so we can conclude that the model fit is adequate in

terms of the proportional hazards assumption.

(a) (b)

(c) (d)

(e) (f)

Figure 8.15: Combined plots of scaled Schoenfeld residuals against time (days)
with smooth curve to visualise extent of violation of proportional hazards for
variables with a constant effect over time for each of the time period for Worst
Consciousness Level: (a) Drowsy (T ≤ 7); (b) Drowsy (T > 7); (c) Stupor (T ≤
7); (d) Stupor (T > 7); (e) Coma (T ≤ 7); (f) Coma (T > 7).
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Table 8.4: Results of the formal test of the proportional hazards assumption,
showing the pooled coefficient estimates of the scaled Schoenfeld residuals regressed
against time, and their corresponding p-values, for each covariate effect in the
adjusted piecewise-proportional hazards model.

Variable Coefficient p-value

Age (T ≤ 7) (10years) -0.010 0.886

Age (T > 7) (10years) 0.002 0.886

Hospital (Hospital 1)

Hospital 2 0.004 0.984

Pre-stroke Mobility (200m Outdoors)

Indoors (T ≤ 7) 0.263 0.879

Indoors (T > 7) -0.001 0.997

Needs Help (T ≤ 7) 0.429 0.850

Needs Help (T > 7) 0.042 0.896

Diabetes Mellitus (No)

Yes 0.006 0.953

Systolic BP (10mmHg) -0.0001 0.986

Quadratic Systolic BP (100mmHg2) <0.0001 0.998

CT Scan: Lesion Type (No Lesion)

CI (T ≤ 7) 0.633 0.857

CI (T > 7) 0.019 0.933

HCI (T ≤ 7) 2.986 0.767

HCI (T > 7) 0.019 0.964

PICH (T ≤ 7) -0.402 0.889

PICH (T > 7) -0.045 0.907

No Scan @ Centre A (T ≤ 7) -0.198 0.944

No Scan @ Centre A (T > 7) -0.131 0.866

No Scan @ Centre B (T ≤ 7) 1.404 0.791

No Scan @ Centre B (T > 7) -0.029 0.926

Worst Conscious Level (Alert)

Drowsy (T ≤ 7) -0.591 0.825

Drowsy (T > 7) -0.049 0.885

Stupor (T ≤ 7) 0.018 0.993

Stupor (T > 7) -0.030 0.933

Coma (T ≤ 7) -0.340 0.852

Coma (T > 7) -0.046 0.896

248



8.7 Conclusion

This chapter has provided further analyses of the stroke audit data, providing

application of the methodological developments made within Chapters 6 and 7.

The analyses within this chapter addressed the issues found in the previous anal-

yses in Chapter 4 through incorporating interaction terms, quadratic terms and

identifying the time-point at which the change in effect of variables occurred.

The methods outlined in Chapter 6 were applied to the stroke audit data in

order to account for the non-proportional hazards, giving a less restrictive ap-

proach to predicting the missing values, and ensuring the imputation models were

approximately compatible to the piecewise-proportional hazards model.

Following the multiple imputation procedure, the model building procedure

involved backwards selection using the Wald test to obtain a parsimonious pooled

piecewise-proportional hazards model, identifying an important set of risk factors

for survival post-stroke. The model was validated through application of the meth-

ods outlined in Chapter 7, where it was concluded the covariate effects within the

model did not violate the proportional hazards assumption.

In the context of stroke, the analyses in this chapter identified age, pre-stroke

mobility, worst consciousness level, and lesion type shown in CT scan to be im-

portant for survival post-stroke in the adjusted setting, where 7-days post-stroke

was found to be the changepoint for the effects of these risk factors. Overall older

patients were shown to have better survival initially but were at increased risk of

death after a week had passed following stroke. Generally worsening conscious-

ness increased hazard of death, and the effect of this was more extreme within the

first 7-days post-stroke. Similarly, compared to no lesion, presence of a lesion or

not having a CT scan increased risk of death, particularly within the first week

post-stroke, with the risk of no scan related to hospital admitted to.

On the other hand, pre-stroke mobility was more important after 7-days, where

patients with worse mobility prior to stroke had increased hazard of death. Further,
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diabetes was found to be important in the adjusted model, where diabetic patients

had increased hazard of death, and systolic BP at hospital admission was also

shown to be important for survival post-stroke, with more extreme BP values, low

or high, resulting in increased risk of death.

This analysis has demonstrated the application of the methodological develop-

ments made within Chapters 6 and 7, whilst providing insight in the context of

stroke, to aid in a greater understanding of risk factors for survival post-stroke,

and help to identify which patients are most at risk, in both the acute phase and

for long-term survival.
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Chapter 9

Conclusion

This thesis aimed to gain a greater understanding of the differences between stroke

patients in terms of survival by developing methodology for handling missing data

in survival data with non-proportional hazards, in order to identify important risk

factors for time to death post-stroke.

Using the stroke audit data as our motivating data set, the thesis presented

an overview of current methods for survival analysis and handling missing data,

conducive to conducting an initial analysis to identify the key areas where method-

ological advancements were needed.

Following this, in Chapter 5, we derived and justified techniques for assessing

the proportional hazards assumption of a pooled Cox regression model fitted to

multiply imputed data. We presented a formal test and a visualisation technique,

where simulation results suggested the test for complete covariate data was com-

parable to standard practice, but is notably more convenient to implement for a

model fitted to multiply imputed data.

The finding of non-proportional hazards motivated the remainder of this thesis,

where accounting for non-proportional hazards within an imputation framework

was a key focus of this; failure to do so can introduce extra bias into inferences. We

extended upon the imputation framework outlined by White and Royston (2009) to
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develop suitable forms of imputation models for multiple covariate types. Chapter

6 presented the derivation of these imputation model forms, where the theoretical

rationale was further reinforced by favourable simulation results.

In depth consideration of the piecewise-proportional hazards model resulted in

the detection of issues around assessment of the proportional hazards assumption

for this model, where the current recommendations by Therneau et al. (2019)

ignore how the disjoint nature of the model can impact the test. Within Chapter

7, we addressed these issues and developed an alternative approach to scaling the

Schoenfeld residuals. Under this alternative approach, we presented adaptations of

the formal test and visualisation technique to provide suitable methods of assessing

the proportional hazards assumption within a survival model with a time-split.

The methodological advancements achieved within this thesis have fulfilled

the aims to develop methodology for the multiple imputation of survival data

in the presence of missing data, and for assessment of the proportional hazards

assumption for survival models, both after multiple imputation, and for a model

with a time-split. This has enabled the clinical aim of this thesis to be achieved

through application of these methods.

In the context of stroke, we have identified several important risk factors for

time to death post-stroke, including age, pre-stroke mobility, worst consciousness

level, diabetes mellitus, systolic BP, and lesion type shown in CT scan, where

hospital affected the risk relating to no scan. These results have aided in under-

standing differences between stroke patients in terms of survival, and can enable

predictions to be made regarding which patients are most at risk of death following

a stroke, both in the acute phase and long-term.
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9.1 Further Work

Finally to conclude this thesis, we acknowledge areas of work where the achieve-

ments of this thesis could be developed further. Given the opportunity, in terms

of the applied context of this thesis, it would be of interest to see the methods

developed in this thesis applied to a more recent data set regarding survival of

stroke patients.

Methodologically, this work has developed an imputation framework for han-

dling non-proportional hazards, where the time-dependent covariate effects are

incorporated through using a model with a time-split and piecewise-constant coef-

ficients. This could be extended to produce a more general imputation framework

which considers more general approaches of incorporating time-dependent covari-

ate effects into the analysis model, for example, a linear function of time interacted

with the covariate effect. Keogh and Morris (2018) provided methodology for a

very general imputation model form, but there is still scope for developments to

be made regarding more specific functions of time-dependent effects.

Taking an alternative approach to multiple imputation could be of interest, as

opposed to using MICE. For example, the algorithm developed by Bartlett et al.

(2015) to be compatible with the substantive model. It would be interesting to

see whether the inflation of the Type 1 error of the proportional hazards test in

Section 5.4 would be smaller if an imputation model compatible with the survival

model were used.

It should also be noted that the stroke audit data set contains longitudinal data

on functionality and mood following stroke. Considering this, a possible extension

of this work would therefore be to consider if these longitudinal measures should be

accounted for within the imputation framework for predicting the missing baseline

covariate values.

Additionally, the presence of this longitudinal data provides a possible further

extension of this work for the joint modelling of the baseline and longitudinal
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measures for predicting the survival of stroke patients. This would require consid-

eration of how both the baseline and longitudinal measures could be incorporated

into an imputation framework, where missing data is present in both.

Finally, an additional development of this work would be around the diagnostics

of survival models following multiple imputation, where this thesis has focussed

on assessing the proportional hazards model, but extensions could be made to

further assessments of model fit. In particular, considering the functional form of

covariates, Lin et al. (1993) suggested the use of cumulative sums of the martingale

residuals for assessing the adequacy of fit of a Cox regression model; giving a formal

test of functional form. This could be expanded upon to produce a formal test for

a pooled model fitted to multiple imputed data.

Bernhardt (2018) made an attempt to introduce model validation techniques

for multiply imputed data, however some of their suggestions were somewhat ques-

tionable, in particular combining p-values by taking the average. Marshall et al.

(2009) present guidelines for combining estimates over multiply imputed data,

considering different types of estimates with varying underlying distributions and

appropriate methods for combining each. There is scope for the application and

development of this with regards to model validation techniques of survival models.
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