Parity-time symmetry and coherent perfect absorption in a cooperative atom response

Ballantine, Kyle and Ruostekoski, Janne (2021) Parity-time symmetry and coherent perfect absorption in a cooperative atom response. Nanophotonics, 10 (2). pp. 1357-1366. ISSN 2192-8614

Full text not available from this repository.


Parity-Time (PT) symmetry has become an important concept in the design of synthetic optical materials, with exotic functionalities such as unidirectional transport and non-reciprocal reflection. At exceptional points, this symmetry is spontaneously broken, and solutions transition from those with conserved intensity to exponential growth or decay. Here we analyze a quantum-photonic surface formed by a single layer of atoms in an array with light mediating strong cooperative many-body interactions. We show how delocalized collective excitation eigenmodes can exhibit an effective PT symmetry and non-exponential decay. This effective symmetry is achieved in a passive system without gain by balancing the scattering of a bright mode with the loss from a subradiant dark mode. These modes coalesce at exceptional points, evidenced by the emergence of coherent perfect absorption where coherent incoming light is perfectly absorbed and scattered only incoherently. We also show how PT symmetry can be generated in total reflection and by balancing scattering and loss between different polarizations of collective modes.

Item Type:
Journal Article
Journal or Publication Title:
ID Code:
Deposited By:
Deposited On:
04 Jan 2021 10:50
Last Modified:
16 May 2024 02:33