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Abstract 22 

The activity of soil microbes is strongly constrained by water availability. However, it is unclear 23 

how microbial activity responds to spatial and temporal changes in precipitation, particularly to 24 

long-term precipitation changes. To identify the spatiotemporal patterns of microbial responses 25 

to precipitation changes of differing durations, we conducted a meta-analysis of data from 95 26 

field studies with drought treatments and 109 field studies with elevated precipitation 27 

treatments. Our results indicated that microbial biomass carbon (MBC) decreased by 17% under 28 

drought and increased by 18% under elevated precipitation. Across all studies, the phospholipid 29 

fatty acid (PLFA) biomarkers for fungi and bacteria decreased significantly under drought but 30 

increased under elevated precipitation. In addition, the negative effect of drought on MBC 31 

tended to be greater at sites with a high aridity index, but the effect of elevated precipitation on 32 

MBC did not differ among sites. More importantly, the responses of MBC, fungal and bacterial 33 

PLFA abundance did not vary with treatment duration under drought, but under elevated 34 

precipitation, they increased in the first five years of treatment and declined thereafter. These 35 

results are important for our prediction of microbial responses to long-term precipitation change 36 

because they imply that microbes acclimate to long-term elevated precipitation.  37 

 38 
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1 Introduction 43 

Global changes are having a substantial impact on the global hydrologic cycle via altered 44 

precipitation patterns and an increased frequency of extreme wet and dry events (Bintanja and 45 

Selten, 2014; Schlaepfer et al., 2017; Bonan and Doney, 2018). Altered precipitation regimes have 46 

a profound influence on soil processes, most notably by directly affecting soil water content 47 

(Taylor et al., 2012; Brocca et al., 2014). Soil water content largely determines the percentage of 48 

oxygen-filled soil pores and the mobility of soil nutrients, and is therefore one of the major factors 49 

mediating the biomass, activity and composition of soil microbial communities (Schimel et al., 50 

2007; Brockett et al., 2012; Manzoni et al., 2012). Microbial responses to altered moisture 51 

regimes are highly variable (Borken and Matzner, 2009; Balser et al., 2010) because distinct 52 

microbial groups respond differently to variation in precipitation depending on their 53 

physiological tolerances and metabolic flexibility (Allison and Martiny, 2008; Manzoni et al., 2012; 54 

Zhao et al., 2017). Fungi are generally thought to be more tolerant to water stress than bacteria 55 

(Schimel et al., 1999; Zeglin et al., 2013), but a recent study suggests that long-term reductions 56 

in precipitation can have strong impacts on soil fungal communities (Sayer et al., 2017). Clarifying 57 

the microbial responses to altered precipitation patterns is important because soil 58 

microorganisms are key drivers of biogeochemical cycling and numerous important ecosystem 59 

processes such as decomposition and soil respiration. For example, as a result of greater fungal 60 

tolerance to stress, a higher ratio of fungi to bacteria (F:B ratio) in the soil could reduce the rates 61 

of organic matter turnover and soil respiration (Bailey et al., 2002; Kaisermann et al., 2015). In a 62 

paddy soil, 13CO2 efflux was found to increase exponentially to a maximum value with an increase 63 

in the microbial biomass carbon to nitrogen ratio (C:N ratio) (Zhu et al., 2018). However, to fully 64 
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evaluate the impact of altered precipitation, we must also consider how differences among sites 65 

and extant conditions influence the response of soil microbial communities to changes in soil 66 

water availability. 67 

In experimental studies, the direction and magnitude of changes in soil microbial 68 

communities in response to different precipitation regimes depend on the extant humidity levels 69 

of the sites as well as the level and duration of treatments. Although gradient studies show that 70 

the biomass and abundance of soil microbes increase with increasing precipitation or soil water 71 

content (Bachar et al., 2010; Chen et al., 2015; Ma et al., 2015), the response of microbial 72 

communities to change is also shaped by their acclimation to the natural variation in soil water 73 

content among sites (Evans and Wallenstein, 2012; Wallenstein and Hall, 2012). For example, 74 

when soil microbes in drier regions are acclimated to periodic water stress, drought treatments 75 

may have little influence, whereas soil microbes acclimated to wetter regions may be more 76 

sensitive to drought treatments and less responsive to elevated precipitation (Evans and 77 

Wallenstein, 2012). However, the level of experimental drought or elevated precipitation also 78 

interacts with extant soil conditions, and the response of soil microbial communities to 79 

precipitation change will also depend upon the pre-existing soil water content, because low soil 80 

water content can induce drought-stress, whereas high soil water content reduces the oxygen 81 

concentrations in the soil. Hence, particularly high or low levels of soil moisture also represent 82 

stressors, which can be alleviated or exacerbated by experimental treatments (Bell et al., 2014; 83 

Jensen et al., 2003) and as a result, previous studies with multiple treatment levels have found 84 

that indicators of microbial community biomass, abundance, and activity consistently increased 85 

at intermediate levels of supplemented rainfall (30% or 40% of mean annual precipitation; Huang 86 
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et al., 2015; Zhao et al., 2016). To date, most experimental studies of microbial responses to 87 

altered precipitation patterns have focused on rainfall exclusion treatments (Bouskill et al., 2013), 88 

and relatively fewer studies have examined the changes in microbial community composition in 89 

response to supplemented rainfall (Brzostek et al., 2012; Cregger et al., 2012). However, 90 

manipulative experiments with elevated precipitation are not only useful for studying water-91 

limited systems, they can also provide critical insights into the impact of long-term global changes 92 

in precipitation regimes and patterns. Therefore, it is urgent to investigate how multiple levels of 93 

elevated precipitation affect soil microbial community depending on site conditions and 94 

experimental duration.  95 

Last but not least, it remains unclear how soil microbes will acclimate to long-term changes 96 

in precipitation regimes, which represents a significant knowledge gap for predicting ecosystem 97 

responses to future climate change. Microbial communities can acclimate to new conditions 98 

(‘resistance’) or recover more rapidly after stress (‘resilience’; sensu Griffiths et al., 2000; Griffiths 99 

and Philippot, 2013). Several long-term studies have demonstrated the increased resistance or 100 

resilience of microbial communities to altered precipitation treatments, for example, in a seven-101 

year experiment in a desert grassland, there was no change in microbial biomass carbon during 102 

the first three years of supplemental rainfall treatments, but there were significant increases 103 

from the fourth year onwards (Bell et al., 2014). However, in a three-year study in a semiarid 104 

grassland, there was an immediate positive effect of increased precipitation on all measured 105 

microbial parameters, which increased over time (Liu et al., 2009), whereas the microbial 106 

resilience to drying-rewetting cycles was altered by 18 years of summer drought treatments in a 107 

temperate heathland (Nijs et al., 2018). Given the wide range of microbial responses to altered 108 
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precipitation patterns and the potential influence of experimental site, treatment duration, and 109 

treatment level, it is important to identify general patterns in microbial community responses to 110 

both drought and elevated precipitation, which will help us predict changes in microbial 111 

community composition and activity.  112 

Although Zhou et al. (2018) have previously presented the general patterns of soil microbe 113 

responses to precipitation changes, our meta-analysis goes further by investigating how the 114 

biomass and composition of microbial communities (represented by phospholipid fatty acids, 115 

PLFAs) responded to different levels of precipitation change. We further assessed how existing 116 

drought conditions influence microbial responses to precipitation change. More importantly, we 117 

assessed the sensitivity of microbial responses to the treatment duration of precipitation change 118 

by performing a meta-analysis of field-based manipulative experiments that reduce or elevate 119 

precipitation, respectively. We aimed to assess whether there were common patterns in the 120 

responses of soil microbial communities to experimentally altered precipitation across different 121 

climates with different treatment durations by testing the following hypotheses:  122 

(i) Microbial biomass and community composition will respond negatively to drought 123 

but positively to elevated precipitation but the magnitude of the response will be 124 

influenced by the severity of treatments and the extant humidity levels among sites;  125 

(ii) Microbial physiology and community composition will acclimate to long-term 126 

precipitation change, and therefore, the magnitude of response of microbial biomass and 127 

community composition will decline with treatment duration. 128 

2 Materials and methods 129 
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2.1 Data selection 130 

We first conducted a comprehensive search of relevant peer-reviewed articles and dissertations 131 

published from 2001 to 2018 in the Web of Science® and ProQuest databases using combinations 132 

of the following keywords: drought, decreased precipitation, elevated precipitation, increased 133 

precipitation, microbial, microbial biomass, microbial biomass carbon (MBC), microbial biomass 134 

nitrogen (MBN), microbial community, phospholipid fatty acids (PLFAs), fungal PLFAs, bacterial 135 

PLFAs, gram-positive (G+) PLFAs, and gram-negative (G-) PLFAs. We then cross-checked the 136 

references of the relevant articles to identify other relevant book chapters and peer-reviewed 137 

reports. We extracted mean annual precipitation (MAP, mm), mean annual temperature 138 

(MAT, ℃), ecosystem type (forest, grassland, or shrubland), treatment level (%MAP), treatment 139 

duration (years), soil pH, soil texture (% sand, % silt, and % clay), MBC, MBN, microbial biomass 140 

carbon to nitrogen ratio (MBC:MBN), total PLFAs, and individual functional groups and metrics 141 

defined by PLFA biomarkers in the surface (<20 cm) soil layer. When data from multiple years 142 

were given in the literature, we only used data from the most recent year to avoid temporal 143 

pseudo-replication (Koricheva and Gurevich, 2014). Numerical values were extracted from 144 

graphically presented data by digitizing the figures using Engauge Digitizer (Free Software 145 

Foundation, Inc., Boston, USA). The experimental sites included in our study are shown in Figure 146 

S1, which was generated by ggplot2 (Wickham, 2009). Unless otherwise stated, all data analyses 147 

were conducted using R version 3.4.2 (R Core Team, 2017) and the R packages ggsn (Baquero, 148 

2017) and legendMap (Gallic, 2016). Detailed information on the meta-analysis is provided in 149 

Appendix B.  150 
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2.2 Meta-analysis 151 

The data were analysed following the methods of Hedges et al. (1999). The effect sizes for 152 

drought and elevated precipitation treatments were estimated for each observation using the 153 

natural log of the response ratio (RR): , where  is the control mean, and 154 

 is the treatment mean. Publication bias was estimated using a Gaussian function (Fig. S2-S3 155 

in  Appendix A), which was implemented in R version 3.3.3 (R Core Team, 2017); the histogram 156 

of every RR for the target variables exhibited a normal distribution, indicating the absence of 157 

publication bias. The average RR was calculated using the mixed model of the meta-analytical 158 

software METAWIN (Sinauer Associates, Inc. Sunderland, USA). The variances of the mean effect 159 

sizes were calculated using resampling techniques (Adams et al., 1997). If the lower boundary of 160 

the 95% confidence interval (CI) of the RR was >1, then the response was significantly positive at 161 

P<0.05. If the upper boundary of the 95% CI of the RR was <1, then the response was significantly 162 

negative at P<0.05. A subgroup analysis was conducted for each parameter to identify the 163 

differences in the magnitude of the effects among ecosystem types. We present the results for 164 

individual ecosystems only where at least three observations were available in more than one 165 

subgroup. However, the results were considered valid when there were at least four observations 166 

(Fu et al., 2011). The total heterogeneity (QT) was partitioned into within-group (QW) and 167 

between-group (QB) heterogeneities, whereby a significant QB indicates a different RR among 168 

groups (Hedges et al., 1999). Group means were considered significantly different if their 95% CIs 169 

did not overlap. 170 

2.3 Aridity index 171 

)/ln(ln ct XXRR = cX

tX
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To compare humidity levels among sites, we used the De Martonne aridity index (AI; de 172 

Martonne, 1926), which was calculated as follows for each site: 173 

                                           AI = MAP/(MAT+10)                                                      (1) 174 

where MAP is the mean annual precipitation and MAT is the mean annual temperature. A 175 

lower aridity index value corresponds to more arid conditions, whereas a higher value 176 

corresponds to a more humid climate (Liu et al., 2016).  177 

2.4 Linear and nonlinear regression analyses 178 

The treatment levels for altered precipitation (mm) were available in most of our data sources, 179 

and we expressed them relative to the mean annual precipitation (%MAP) of the study site to 180 

facilitate comparison. To test whether treatment level affected the sensitivity of the microbial 181 

responses, we used linear regressions to examine the relationships between treatment levels 182 

and the effect sizes of changes in MBC. To determine whether there was a common pattern in 183 

the response of soil microbial biomass to drought or elevated precipitation treatments among 184 

sites with different humidity levels, we used linear regressions to examine the relationships 185 

between aridity indices and the effect sizes for changes in MBC. To assess the evidence for 186 

microbial acclimation to long-term changes in precipitation, we performed linear and nonlinear 187 

regressions (binomial) of the response ratios for each microbial parameter against treatment 188 

duration. Finally, the relationships between MBC and microbial respiration were assessed using 189 

linear regressions.  190 

3 Results 191 
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3.1 Responses of soil microbial communities to altered precipitation 192 

Microbial biomass and community composition were strongly modified by changes in 193 

precipitation. Overall, under drought, MBC decreased by 17% (n=61) and total PLFAs decreased 194 

by 13% (n=18; Fig. 1a), whereas under elevated precipitation, MBC increased by 18% (n=56) and 195 

total PLFAs increased by 22% (n=26; Fig. 1b). The response of MBN to drought and elevated 196 

precipitation was similar to the response of MBC, and hence there was no change in the microbial 197 

C:N ratio in response to either treatment. There were distinct patterns between forest and 198 

grassland ecosystems in the effects of drought, whereby a negative effect of drought on MBC 199 

was observed in forests but not in grasslands (Fig. S4a). By contrast, microbial biomass and 200 

abundance responded similarly to elevated precipitation in both ecosystem types (Fig. S4b).  201 

The effect of drought on MBC became increasingly negative with the increased severity of 202 

the drought treatment (Fig. 2a, r2=0.23, P=0.0005), whereas there was no relationship between 203 

the response of MBC and the level of elevated precipitation treatments (Fig. 2b).  204 

Microbial functional groups were also strongly affected by altered precipitation. Across all 205 

studies, fungal and bacterial biomarkers declined significantly with drought and increased with 206 

elevated precipitation (Fig. 1a, b). Both G+ and G- bacterial biomarkers declined with drought but 207 

were unaffected by elevated precipitation, whereas the F:B ratio increased with elevated 208 

precipitation but was unaffected by drought (Fig. 1a, b). The ratio between G+ and G- bacterial 209 

biomarkers was not affected by either drought or elevated precipitation treatments (Fig. 1a, b). 210 

The subgroup analysis of individual ecosystems revealed a strong increase in fungal biomarkers 211 

and in the F:B ratio under elevated precipitation in grasslands but not in forests (Fig. S4b). There 212 

were insufficient data to evaluate the responses of G+ and G- bacteria among ecosystems. 213 
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However, the results showed that the responses of G- bacterial biomarkers to elevated 214 

precipitation differed significantly between acidic soils (pH<7) and alkaline soils (pH>7), with a 215 

decrease in G- bacterial biomarkers with elevated precipitation in alkaline soils (Fig. S5b). 216 

3.2 Spatiotemporal patterns of microbial communities under simulated precipitation changes 217 

The negative effect of drought on MBC tended to be greater at sites with a high aridity index, but 218 

the relationship was weak (Fig. 3a, r2=0.09, P=0.03), and the effect of elevated precipitation on 219 

MBC did not differ among sites regardless of their aridity index (Fig. 3b).  220 

The duration of treatments included in our analysis ranged from 1 to 13 years. However, we 221 

found no evidence for an increasing impact of drought treatments over time; there was no 222 

relationship between the duration of drought treatments and the response of MBC (Fig. 4a). 223 

Accordingly, the responses of the different microbial functional groups did not change with the 224 

duration of the drought treatment. By contrast, the greatest response of MBC and fungal and 225 

bacterial PLFA abundance to elevated precipitation occurred after five years of treatment and 226 

declined thereafter (Fig. 4b, Fig. 5e, f). 227 

3.3 Microbial respiration responses to altered precipitation  228 

Microbial respiration declined with drought and increased with elevated precipitation (Fig. 6a). 229 

The response of microbial respiration to elevated precipitation was strongly related to the 230 

response of MBC (Fig. 6b, r2=0.63, P=0.011). There were insufficient studies to assess the 231 

relationships between the responses of microbial respiration or MBC and drought. 232 

4 Discussion 233 
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Our global meta-analysis revealed general patterns in the responses of microbial biomass and 234 

community composition to experimentally modified precipitation across different ecosystems 235 

and climates. We showed that drought generally led to a decrease in microbial biomass and a 236 

decline in the abundance of key PLFA biomarkers, including fungal, bacterial, G+ bacterial and G- 237 

bacterial PLFAs, but did not affect microbial stoichiometry (the ratio of microbial C:N) or change 238 

the ratios of key microbial functional groups. By contrast, elevated precipitation treatments led 239 

to increases in the microbial biomass and the abundance of PLFA biomarkers and a higher ratio 240 

of fungi to bacteria. Our results suggest that microbial communities can acclimate to long-term 241 

elevated precipitation but not to long-term drought. In contrast to the study of Zhou et al. (2018), 242 

we analysed the responses of MBC and total PLFAs to the duration of precipitation change, which 243 

is very important for the prediction of soil microbial responses to long-term precipitation changes.  244 

4.1 The effect of extant site humidity levels on the response of soil microbial communities  245 

The biomass of soil microorganisms is often indicated by the concentrations of MBC and MBN in 246 

the soil, both of which decreased substantially under drought treatments and increased under 247 

elevated precipitation (Fig. 1a). This relationship not only reflects the importance of water 248 

availability for microbial growth but can also be partly attributed to variation in the availability of 249 

organic substrates (Fig. S7, 8, Zhou et al., 2018; Wei et al., 2019). We also found that the 250 

sensitivity of MBC to drought increased with the treatment level (Fig. 2a). More importantly, the 251 

sensitivity of MBC to drought was greater at relatively humid sites (Fig. 3a, Fig. S10c), possibly 252 

because microbial communities at drier sites are more likely to acclimate to low water availability 253 

(Evans and Wallenstein, 2012). This difference in sensitivity was also reflected by the microbial 254 

responses in different ecosystems, as MBC and MBN declined significantly with drought in forests 255 
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but not in grasslands (Fig. S4a), possibly because the aridity index of the forest sites (~60) in our 256 

study was significantly higher than that of the grassland sites (~39; Fig. S6). However, the 257 

magnitude of the positive response of MBC to elevated precipitation was not related to 258 

treatment levels or aridity indices (Fig. 2b, Fig. 3b), which is consistent with the results of MBC 259 

responses to elevated precipitation between forest and grassland ecosystems (Fig. S4b). 260 

We found no influence of drought on the C:N ratio of the microbial biomass (Fig. 1a), which 261 

suggests that drought constrains microbial growth without altering microbial stoichiometry. This 262 

is noteworthy because the microbial C:N ratio is generally considered a better indicator of 263 

changes in soil C and N cycling (Buchkowski et al., 2015) than microbial biomass, and our results 264 

suggest that microbial communities maintain a relatively stable C:N ratio under drought 265 

conditions. The C:N ratio of fungi (~15) is higher than that of bacteria (~6; Wallenstein et al., 266 

2006), and given that fungi and bacteria are the dominant decomposers in soils (Manzoni et al., 267 

2012; Schimel et al., 2007), the relatively stable microbial C:N ratio could also be related to the 268 

ratio of fungi to bacteria (F:B) in the soil, which did not change under drought (Fig. 1a). However, 269 

the F:B ratio increased under elevated precipitation without a concomitant change in the 270 

microbial C:N ratio (Fig. 1b). Hence, the mechanisms underlying the stable microbial C:N 271 

stoichiometry require further investigation. 272 

Fungi and bacteria have distinct physiologies that underlie their responses to environmental 273 

stressors (Manzoni et al., 2012; Schimel et al., 2007). Fungi are generally considered drought-274 

tolerant (Schimel et al., 2007; Strickland and Rousk, 2010; Manzoni et al., 2012), whereas bacteria 275 

may be more drought-sensitive (Holland and Coleman, 1987; Manzoni et al., 2012), and we 276 

therefore expected to see a greater decline in bacterial PLFAs under drought. However, both 277 
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fungal and bacterial PLFAs declined significantly in drought treatments, and their responses were 278 

sufficiently similar that the F:B ratio was not altered by drought (Fig. 1a). For example, a long-279 

term manipulative precipitation experiment also showed that decreased precipitation did not 280 

change the F:B ratio, although the original drier plots had higher F:B ratios than the original 281 

wetter plots (Zeglin et al., 2013). The absence of change in the F:B ratio suggests that the 282 

recalcitrance of soil C may not be affected by drought, as soil C is expected to be more persistent 283 

when its storage is mediated by the fungal biomass and to be more labile when mediated by the 284 

bacterial biomass (Ho et al., 2017). Conversely, the increases in fungal and bacterial PLFA 285 

abundance as well as the F:B ratio under elevated precipitation (Fig. 1b) are possibly related to 286 

greater availability of soil C sources as suggested by the increase in dissolved organic carbon (DOC) 287 

under elevated precipitation (Fig. S7b). This is consistent with the results from Ge et al. (2017a), 288 

which found that shoot and root biomass increased with N fertilization as did fungal and bacterial 289 

biomarkers and F:B ratios.  290 

Different groups of bacteria also have distinct physiologies and life cycles that confer varying 291 

levels of stress-tolerance. Gram-positive bacteria, which have a thicker peptidoglycan layer in 292 

their cell walls, are generally considered to be more resistant to drought than gram-negative 293 

bacteria (Lennon et al., 2012; Schimel et al., 2007; Manzoni et al., 2012). However, across all 294 

studies, both gram-positive and gram-negative bacterial PLFAs declined similarly under drought 295 

and did not change with elevated precipitation (Fig. 1a). It is possible that the low number of 296 

studies reporting data on individual taxonomic groups precludes the detection of a clear pattern 297 

across multiple ecosystems and climates (Fig. S4). Alternatively, the timing of measurements and 298 

the availability of substrates may play a more important role than the experimental treatment 299 
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per se; Gram-negative bacteria predominantly use labile plant-derived C as a substrate, whereas 300 

Gram-positive bacteria can use more recalcitrant C sources derived from soil organic matter 301 

(Griffiths et al., 1999; Fierer et al., 2003; Kramer and Gleixner, 2006; Potthoff et al., 2006), and 302 

hence their resistance and resilience to drought treatments are also likely to differ as a result of 303 

changes in available resources. Although Gram-negative bacteria predominantly use labile plant-304 

derived C as a substrate, they tend to favour acidic soils (Ge et al., 2017a), which explains why 305 

Gram-negative bacteria did not increase under elevated precipitation or with increased DOC 306 

concentration at higher soil pH (Fig. S7b). Indeed, when we calculated the effect sizes for soils 307 

with pH<7 (acidic soils) or pH>7 (alkaline soils), we found that the responses of G- bacterial 308 

biomarkers to elevated precipitation differed significantly between acidic soils (pH<7) and 309 

alkaline soils (pH>7), with a decrease in G- bacterial biomarkers in alkaline soils (Fig. S5b). 310 

4.2 Evidence for microbial acclimation to long-term elevated precipitation but not to long-term 311 

drought treatments 312 

Our meta-analysis demonstrated changes in the sensitivity of multiple microbial parameters to 313 

altered precipitation in field experiments lasting more than 10 years. We expected diminishing 314 

impacts of the treatments with increasing experimental duration as the microbial communities 315 

acclimated to altered precipitation patterns. However, we found no relationship between 316 

microbial responses to drought treatments and experimental duration (Fig. 4a), possibly because 317 

the majority of drought experiments had a duration of <5 years. However, it is noteworthy that 318 

the response of MBC was lower in the few drought experiments with a duration >5 years (Fig. 319 

4a). By contrast, the responses of MBC and fungal and bacterial PLFAs declined with the 320 

increasing duration of elevated precipitation treatments (Fig. 4b, Fig. 5e, f). Individual studies 321 



16 
 

have observed changes in microbial biomass and community structure during continuous multi-322 

year (5-6 years) treatments with increased precipitation and found that treatment duration 323 

affected the magnitude of the microbial response to elevated precipitation (Bell et al. 2014; 324 

Gutknecht et al. 2012). Together, these results suggest that drought stress has a large and 325 

immediate impact on soil microbial communities, but that microbial communities are better at 326 

acclimating to elevated precipitation over time. Several mechanisms could underlie the 327 

acclimation of microbial communities to increased precipitation, including the acclimation of 328 

individual microbial taxa (Allison et al., 2010; Crowther and Bradford, 2013), shifts in microbial 329 

community composition (Barcenas-Moreno et al., 2009; Treseder et al., 2016), and evolutionary 330 

adaptation of microbial populations (Romero-Olivares et al., 2015). These mechanisms are not 331 

mutually exclusive, and their relative influence may vary with season (Contosta et al., 2015), 332 

ecosystem, and time scale. The observed shifts in the fungal to bacterial ratio (Fig. 1b) could 333 

facilitate the acclimation of microbial communities to increased precipitation across sites, but 334 

further work is required to determine the mechanisms and the pace of microbial acclimation to 335 

climate changes to improve predictions of the long-term consequences of altered precipitation 336 

patterns for key soil microbial processes. Importantly, our results provide some evidence that the 337 

long-term impact of altered precipitation on soil microbial communities may be weaker than 338 

suggested by initial or short-term responses, and long-term experiments are therefore crucial for 339 

predicting future change.  340 

The responses of decomposition processes to climate change depend on microbial 341 

community composition (Glassman et al., 2018), and microbial respiration during decomposition 342 

is an important component of soil CO2 efflux. Changes in precipitation can influence microbial 343 
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respiration via the impact on microbial biomass and community composition (Huang et al., 2015; 344 

Ren et al., 2018). Our results showed that the extent of the changes in microbial respiration under 345 

elevated precipitation (Fig. 6a) was strongly related to the sensitivity of the microbial biomass 346 

(Fig. 6b). Although there are currently insufficient data to predict whether microbial respiration 347 

will acclimate to long-term variation in precipitation, the relationship between MBC and 348 

microbial respiration suggests that the response in respiration will most likely parallel the 349 

observed decline in the response of MBC after 5 years of elevated precipitation (Fig. 6b). The lack 350 

of data on microbial activity in response to drought represents a significant knowledge gap in our 351 

understanding of the impact of altered precipitation patterns on ecosystem functioning. 352 

5 Conclusions 353 

Given the importance of microbial processes in soil functioning and plant productivity, our meta-354 

analysis informs future global change research by identifying the spatiotemporal patterns in the 355 

response of microbial biomass and community composition to altered precipitation regimes. Our 356 

results suggest that microbial communities can acclimate to long-term elevated precipitation but 357 

not to long-term drought. In contrast to the study by Zhou et al. (2018), we analysed the 358 

responses of MBC and PLFAs to experimental duration, which is important for predicting the 359 

responses of soil microbes to long-term precipitation changes. However, we still lack long-term 360 

experiments (>10 years duration) that focus on soil microbial activity and function, particularly in 361 

response to drought. Detailed studies on soil microbial community composition, specific 362 

functional groups and key microbial processes are required to improve predictions of future 363 

ecosystem functioning under altered precipitation regimes.  364 
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Fig. 1 Responses of microbial biomass and microbial communities to altered precipitation, i.e., (a) 550 
drought and (b) elevated precipitation; numbers in parentheses represent the number of 551 
observations for each parameter, and error bars represent 95% confidence intervals. Error bars 552 
overlapping the dashed vertical line indicate no effect relative to the controls, where MBC is 553 
microbial biomass carbon, MBN is microbial biomass nitrogen, PLFAs is phospholipid fatty acids, 554 
F:B is the ratio of fungal to bacterial PLFAs, G+ is gram-positive bacteria, G- is gram-negative 555 
bacteria, G+:G- is the ratio of gram-positive bacterial to gram-negative bacterial PLFAs. 556 
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 563 
Fig. 2 Relationships between the level of drought or elevated precipitation treatments, expressed 564 
relative to the mean annual precipitation (%MAP), and the response ratio of MBC under (a) 565 
drought and (b) elevated precipitation, where RR is response ratio and other abbreviations follow 566 
the legend for Figure 1. The symbol size (n) represents the number of replicates in each study 567 
and the grey shading represents the confidence interval around the mean (line) when the 568 
relationship is significant at P<0.05. 569 
 570 
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Fig. 3 Relationships between the aridity indices and the response ratio of MBC under (a) drought 578 
and under (b) elevated precipitation. The abbreviations follow the legend for Figure 2. The 579 
symbol size (n) represents the number of replicates in each study and the grey shading represents 580 
the confidence interval around the mean (line) when the relationship is significant at P<0.05. 581 
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Fig. 4 Relationships between treatment duration (years) and the response ratio of MBC under (a) 591 
drought and under (b) elevated precipitation. The abbreviation yr indicates year; other 592 
abbreviations follow the legend for Figure 2. The symbol size (n) represents the number of 593 
replicates in each study and the grey shading represents the confidence interval around the mean 594 
(line) when the relationship is significant at P<0.05. 595 
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Fig. 5 Relationships between treatment duration in years (yr) and the response ratios (RR) of 605 
microbial functional groups for (a) fungal PLFAs, (b) bacterial PLFAs, (c) G+ PLFAs, (d) G- PLFAs 606 
under drought, and for (e) fungal PLFAs, (f) bacterial PLFAs, (g) G+ PLFAs, (h) G- PLFAs under 607 
elevated precipitation; PLFAs are phospholipid fatty acids, G+ is gram-positive bacteria and G- is 608 
gram-negative bacteria. The symbol size (n) represents the number of replicates in each study 609 
and the grey shading represents the confidence interval around the mean (line) when the 610 
relationship is significant at P<0.05. 611 
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Fig. 6 The response of microbial respiration under drought and elevated precipitation (a), and the 621 
relationship between microbial respiration and MBC (b). MR is microbial respiration; other 622 
abbreviations follow the legend for Figure 1. The vertical line is drawn at an effect size of one 623 
(i.e., no effect), and the error bars that overlap the dashed line are not significant. The symbol 624 
size (n) represents the number of replicates in each study and the grey shading represents the 625 
confidence interval around the mean (line) when the relationship is significant at P<0.05. 626 
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