
An Evolutionary-based Algorithm for Smart-living
Applications Placement in Fog Networks

Raheleh Moallemi, Arash Bozorgchenani, Daniele Tarchi
Department of Electrical, Electronic and Information Engineering

University of Bologna, Italy
Email: raheleh.moallemi@studio.unibo.it, {arash.bozorgchenani2,daniele.tarchi}@unibo.it

Abstract—Fog computing is an emerging model, complement-
ing the cloud computing platform, introduced to support the
Internet of Things (IoT) processing requests at the edge of
the network. Smart-living IoT scenarios require the execution
of multiple processing tasks at the edge of the network and
leveraging on the Fog Computing approach results to be a
worthwhile solution. Genetic Algorithms (GA) are a heuristic
search and optimization class of techniques inspired by natural
evolution. We propose two GA-based approaches for optimizing
the processing task placement in a fog computing edge infras-
tructure aiming to support the Smart-living IoT nodes requests.
The numerical results obtained in Matlab show that both GA-
based approaches allow to maximize the covered areas while
minimizing the resource wastage through the minimization of
the overlapping areas.

I. INTRODUCTION

Currently, smart-living scenarios are characterized by a
massive amount of Internet of Things (IoT) data emitted by
the distributed devices and sent to the cloud for centralized
processing and then are sent back from the cloud to data
consumers who are often located very close to the generating
data sources. This leads to high delays and considerable
costs for the usage of cloud-based computational resources.
In contrast, the decentralized processing of IoT data has been
identified as a suitable approach [1].

Edge IoT devices (e.g., gateways, access points) offer com-
putational, storage, and networking resources, even if in a
limited way. Therefore, the presence of these resources allows
moving the execution of Smart-living IoT applications to the
edge of the network [2]. The paradigm is known as Fog
Computing (FC) [3] aiming at extending services provided
by the cloud down to the network edge. It also provides a
hierarchical, dense and geographically distributed architecture
to store and process data in the network devices located be-
tween end-users smart objects and Cloud data-centers. Unlike
the Cloud, the Fog can support latency-critical IoT applications
requiring short response times. Fog computing permits a severe
reduction in the overall network latency [4].

Fog computing, firstly introduced by Cisco [5], emerges
as a new approach aiming at solving the latency sensitive

This work has been partially supported by the project ”GAUChO - A Green
Adaptive Fog Computing and Networking Architecture” funded by the MIUR
Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2015 -
grant 2015YPXH4W 004.

computing problems. FC utilizes the local computing resources
instead of a remote cloud for data processing so that the
geographic vicinity between the data source and processors
allows decreasing the transmission latency [6].

A huge number of geo-distributed devices (including user
devices, routers, switches, and access points) create small-
sized clouds at the edge of the network, managed in a
distributed way by the devices themselves. The basic idea in
FC is that instead of always upload/download data to/from core
network as in traditional cloud computing, the edge devices
which are in proximity, can obtain data from other users
through the direct link such as Device-to-Device (D2D) com-
munication and adjacent Small Cell (SC) networks. Moreover,
the edge devices in fog network (FogNet) release some of their
resources like computing and storage capacity to support the
demands of their neighbors. Only those tasks not well handled
by the edge devices are sent to the core cloud part for further
processing. As a result, fog computing significantly reduces
the computing and routing burden of the cloud [7].

On one hand, a FogNet should be able to serve as many
users as possible, but on the other hand due to the reduced
resources of each node, it is not possible to deploy a net-
work composed of fully-functional nodes. Thus, it requires
optimizing the placement of the applications in each node
depending on their usage, the nodes requests, as well as the
nodes coverage, storage and processing capabilities [4]. The
goal of this paper is an application placement technique having
the goal of minimizing the outage probability of the requests
of the different nodes constrained to the resource limited
characteristics of the Fog Nodes (FNs). In particular a Genetic
Algorithm (GA)-based approach is foreseen to be used.

While conventional gradient-based optimization algorithms
require a smooth and uni-modal space, GAs do not have
these limitations and are useful for solving combinatorial
problems; therefore, GA has the massive potential use for
computer network and telecommunication applications [8].
GAs are a class of optimization algorithms used to determine
the solution(s) to an assigned computational problem that
maximizes or minimizes a special function [9]. GAs are one
of the most efficient meta-heuristic approach used to solve
different problems. A GA starts its search with a random set
of solutions where every solution has assigned a fitness that
is directly related to the objective function of the search and

problem. After that, the population of solutions is modified to a
new population by applying three operators like natural genetic
operators as selection, crossover, and mutation which works
iteratively by successively applying these three operators in
each generation until a terminations criterion is satisfied [10].

This paper introduces a GA-based approach appropriate for
problems which are large, non-deterministic, non-linear and
discrete in nature similar to our work; in particular, we resort
to the meta-heuristic based on the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [11] to discuss the optimal
application placement in fog networks. In this paper, we model
the placement problem as a coverage overlapping problem and,
hence, we apply the GA for maximizing the covered area by
each application and jointly minimizing the overlapping areas
of applications so as to maximize the served IoT devices in the
system area. We formulated the application placement problem
for achieving an optimal placement of the applications on the
FNs. Through MATLAB-based simulations, empirical results
illustrate that the proposed approach significantly increases the
number of served IoT devices while minimizing the resource
wastage.

II. SYSTEM MODEL

The envisaged environment is composed by a set of sensors,
a set of FNs, and a set of IoT services (i.e., application
instances) that can be executed in FNs in a large service area.

Sensors collect data from the humans, in-house and medical
appliances, as well as from the outer environment, to be
sent to the associated application instances for analysis and/or
processing sake. Application instances consume processing,
storage, energy and communication resources of the hosting
node. In general, IoT data can be processed and stored in
different locations in the considered Fog architecture [4],
allowing a flexible deployment of the applications. In our
proposal, we expect that the system has knowledge about: (i)
the IoT sensors position and communication range, (ii) FNs
position and communication range, (iii) deployable applica-
tions on the FNs, (iv) the FNs capacity expressed in terms of
maximum number of applications that can be stored.

In such a scheme, the goal is to maximize the number of
IoT sensors that can be served by a given application that can
be deployed on a certain FN, stated that the IoT sensors and
the selected FN are within the communication range.

We can model the scenario as a two-layer architecture where
the first layer is composed by a set of fixed sensors denoted as
U = {U1, . . . , Un, . . . , UN}, and the second layer is composed
by a set of FNs denoted as F = {F1, . . . , Fm, . . . , FM}. The
set of applications to be deployed on the FNs is denoted as
K = {K1, . . . ,Kp, . . . ,KP }. We define the placement binary
variable:

cm,p =

{
1 if Kp is placed in Fm
0 otherwise

(1)

defining the placement of the generic Kp on the FN Fm.
Hence, the overall placement of the P applications on the
M FNs can be written as:

C =

c1,1 · · · c1,p · · · c1,P

...
. . .

...
. . .

...
cm,1 · · · cm,p · · · cm,P

...
. . .

...
. . .

...
cM,1 · · · cM,p · · · cM,P

 , cm,p ∈ {0, 1} (2)

Each FN has a certain capacity, Cm, corresponding to the
maximum number of applications that can be deployed on the
generic mth FN. Therefore, the application placement of the
mth FN is constrained to:∑

p
cm,p ≤ Cm ≤ P, ∀Fm ∈ F (3)

Now, we define the set of available FNs that are able to serve
the nth IoT sensor as:

FnFN = {Fm|dnm ≤ Rm} , for m = 1, . . . ,M (4)

where Rm is the coverage range of the mth FN, and dnm is
the Euclidean distance between the nth IoT sensor and the
mth FN.

In our problem, each IoT sensor can request multiple ser-
vices to the FNs. If the application implementing the requested
service is not stored in the cache of the FN, the sensor cannot
use that service. Hence, it is of great importance to place the
applications in the FNs such that the sensors’ requests can be
responded by the FNs in their coverage area. Each time an
application Kp is requested, the nth sensor looks up for the
applications in the cache of the FNs listed in FnFN .

The application placement problem in our work is defined
as placing the applications in the FNs such that the number
of covered sensors is maximized. We define with Kn

p (τ) a
generic application requested by the nth sensor at time instant
τ . We also define Ω(Kn

p (τ)), an operator indicating if the
requested application Kp by the nth sensor is deployed on a
FN that can be reached, as:

Ω
(
Kn
p (τ)

)
=

1, if
∑

Fm∈Fn
FN

cm,p ≥ 1

0, Otherwise
(5)

corresponding to state that the pth application is in the cache
of at least one of the FNs in the sensor’s coverage area. The
goal of the problem is:

P1 : max
n

{
Ω
(
Kn
p (τ)

)}
∀n (6)

subject to (3) and (4), corresponding to maximize the number
of sensor nodes able to use the available applications, subject
to the FNs capacity and coverage constraints.

Maximizing the number of serviced sensors by a certain
application correspond to maximize the area covered by that
specific application when placed in multiple nodes. On the
other side, a deployment where multiple FNs are covering the
same area with the same application is a resource wastage.

This leads to the definition of an equivalent problem based on
a joint goal corresponding to maximize the coverage area of
each application and jointly minimize the overlapping areas of
FNs with the same applications in their cache, leading to:

P2 :

max
p
{ACp } = max

p

{
|UC

p |
|U|

}
min
p
{AOp } = min

p

{
|UO

p |
|UC

p |

} (7)

where ACp and AOp represent, respectively, the covered area
and the overlapping area related to the application Kp, |UCp |
is the cardinality of the set of sensors covered by the FNs
having the pth application, defined as:

|UCp | = |{Un|dn,m ≤ RM ∧ cm,p = 1}| ,∀Fm ∈ FnFN
|UOp | is the cardinality of the set of sensors covered by more
than one FN having the pth application, defined as:

|UOp | =
∣∣∣∣{Un|dn,m ≤ Rm ∧∑Fm∈Fn

FN

cm,p > 1

}∣∣∣∣ ,
and |U| is the cardinality of the set U , corresponding to all
the sensors in the area.

III. NSGA-II BASED APPLICATION PLACEMENT

Due to the conflicting objectives, i.e., maximizing the
coverage area and jointly minimizing the overlapping areas,
the problem of application placement to the FNs, introduced
in previous section, can be characterized by a Pareto front
of solutions. In order to find the Pareto front we propose a
Multi-objective Evolutionary Algorithm (MOEA). EAs offer
an efficient way for finding a high quality approximation of
the Pareto fronts.

MOEA exploits the evolutionary principles of crossover,
mutation, and selection of Darwinian evolution to find the
Pareto front. While by crossover and mutation operations, the
solutions are combined probabilistically in order to generate
possible better solutions, the selection phase discards the low-
quality solutions and high-quality solutions are selected for
next generation. Before describing the details of our proposed
MOEA, we first describe Pareto-optimality and give some
definitions as follows.

Since in our problem there are multiple conflicting ob-
jectives, the concept of optimality transforms to Pareto-
optimality, as any solution point has to be evaluated along mul-
tiple dimensions. Thus, the quality of a solution is determined
by its Pareto-dominance with respect to previously computed
solutions. In particular, let S = {s1, s2, ..., sZ} be a set of
solutions generated by an MOEA, where sz corresponds to a
possible application placement solution as represented in (2),
and Z is the total number of generated solutions. Considering
two solutions, say s1 and s2, for a given problem with b
conflicting objectives, say ωb (for all b ∈ [1, B]), we adopt
the Pareto-dominance definition proposed in [11], i.e.,

Definition 1: Let ωb(s) be the value of the objective function
for the bth objective evaluated at some solution s. Then s1 is
said to Pareto-dominate s2 (i.e., s1 � s2) if ωb(s1) ≤ ωb(s2)

for all b ∈ [1, B], and there exists some ν ∈ [1, B] such that
ων(s1) < ων(s2).

The previous Pareto-dominance definition allows to classify
solutions based on their quality. Consequently, we can define
the set of non-dominated solutions as:

SP = {sa | @sb � sa, for 1 ≤ a, b ≤ Z} (8)

Among several MOEA we resort to the Non-dominated
Sorting Genetic Algorithm (NSGA-II) to solve the application
placement problem introduced in (7). NSGA-II generates
Pareto optimal solutions for our Constrained Multi-objective
Optimization Problem (CMOP). The proposed NSGA-II based
algorithm goes through 4 main steps: (1) initialization, (2)
selection, (3) reproduction, and (4) population update. At
first, an initial solution population is randomly generated
by the proposed algorithm. Then in the selection step, the
solutions are ranked based on their quality and the best are se-
lected. In the reproduction step, the NSGA-II based algorithm
probabilistically combines high-quality solutions to generate
possibly better new solutions by going through crossover and
mutation operations. Then the selection and reproduction steps
are repeated for certain number of iterations.

1) Initialization: Each solution sz is in the form of the
matrix in (2), representing one possible solution to the al-
location problem. In this matrix, FNs and applications are
combined, respecting the constraint of FNs capacity on number
of applications to cache in (3). In the initialization phase the
application placement on each FN is performed randomly to
generate the set of initial solutions S0 = {s1, s2, . . . , sZ}τ=0.
More specifically, each cm,p in matrix C is randomly set to
either 0 or 1, respecting the capacity condition. This procedure
is performed for Z solutions as defined in S0.

2) Selection: After generating the initial population, the
initial solutions are ranked based on their quality calculating
the coverage area and overlapping area in (7) and the Pareto
dominance as introduced in the Definition 1. Then, using the
Pareto-dominance, all solutions in S0 (i.e., the solutions of
the first generation) are compared with each other and given
a rank. The solution that is not dominated is given the first
rank, the solution that has been dominated once is given the
second rank and so on.

To this aim, in order to consider the CMOP, a joint ranking
function ω(s) has been defined operating in two steps. The
solutions are ranked following a coverage area descending
order at the first step, aiming at selecting as first the solutions
able to cover a higher number of IoT sensors. A second
step, involving the overlapping areas in introduced, where the
top 25% solutions (i.e., the 25% solutions allowing to cover
the highest number of sensors) are chosen and successively
ordered in terms of increasing overlapping areas, i.e., from
that having the lowest amount of overlapped areas to that with
the highest value. This corresponds to say that the generated
solutions in S0 are ordered by considering a Pareto dominance
where the first have a joint higher coverage areas and lower
overlapping areas.

3) Reproduction: The generated solutions in S0 are then
used in the reproduction step, following the genetic operations
of (i) binary tournament, (ii) crossover, and (iii) mutation.

In the binary operation, two of the solutions are randomly
selected1 from S0 and the one having a higher rank is stored
in the mating pool. The mating pool, S′, is a set of winner
solutions that have comparatively high rank and are used for
the reproduction procedure. If two solutions have the same
rank (i.e., corresponding to have the same dominance value),
one of them is selected randomly. The binary tournament
continues until Z ′ solutions are stored in S′.

Then the crossover operation is performed, where the solu-
tions in S′ are combined to generate possibly better solutions.
In the crossover operation, two parent solutions, si and sj , are
selected randomly from the mating pool for generating the
child solution s′k by partially combining the parent solutions.

One of the parameters considered during the crossover
operation is the crossover probability P̄c. Every time a new
crossover has to be performed, a random value Pc is generated
in the range [0, 1]; if Pc ≤ P̄c, the crossover is performed.
In case the crossover operation is performed, the algorithm
randomly selects a crossover point χcr in the matrix defined
in (2) corresponding to the element number in the matrix that
divides the values to be crossed and those to be maintained.

Following this, the children s′k is formed by alternating rows
from si and sj according to the crossover point in a way that
the FN capacity constraint is not violated. Hence, the child s′k
is formed such that cm,p, ∀m ≤ χcr are taken from parent si
and cm,p, ∀m > χcr are taken from parent sj . Hence,

s′k =

ci1,1 · · · ci1,p · · · ci1,P
...

. . .
...

. . .
...

ciχcr,1 · · · ciχcr,p · · · ciχcr,P

cjχcr+1,1 · · · cjχcr+1,p · · · cjχcr+1,P
...

. . .
...

. . .
...

cjM,1 · · · cjM,p · · · cjM,P

, (9)

where cim,p is a generic allocation derived for the parent
solution si, cjm,p is a generic allocation derived for the parent
solution sj , and χcr is the crossover point.

The child solutions are then added to the set Q0, and the
crossover operation continues until Z ′′ children are generated,
where Z ′′ + Z ′ = Z.

Finally, the mutation operation is performed, where each
row of each solution is changed with probability P̄mu. In this
phase, if the m̄th row of the kth solution has to be mutated,
its components ckm̄,p are generated once again in a random
way similarly to the Initialization step, still respecting the FN
capacity constraint, i.e.,∑

p
cm̄,p ≤ Cm̄

In order to take into account two possible approaches, we
resorted to two possible mutation operations:

1The solutions are selected randomly, because randomness is an inherent
property of GA

(a) Centralized: In this case we suppose that in the mutation
operation the application placement can be randomly
changed by respecting only the capacity constraint in (3),
similarly to the Initialization phase. We are modeling the
presence of a centralized orchestrator able to change the
application placement on the FNs to be mutated while
respecting the CMOP.

(b) Distributed: In this case the mutation operation on the
m̄th row is restricted to those applications placed in the
nearby FNs, defined as those FNs having a distance lower
than 2Rm with respect to teh FN to be mutated. This
corresponds to say that cm̄,p can mutate from 0 to 1 only
if cm̄′,p is equal to 1, and dm̄′m̄ < 2Rm, for all Fm̄′ .
In this case we are modeling a scenario where the appli-
cation exchange during mutation is limited only between
nearby FNs, implementing a distributed approach, where
the FNs exchange the applications among them. Two FNs
are considered near if they have a distance lower than
2Rm, that is supposed to be the inter-FN mesh-based
network allowing the direct exchange of the applications
among the FNs.

4) Population Update: Once the offspring population Q0

has been generated, the new solution population S1, should be
formed for next generation. Thus, we define Ψ0 = S0 ∪Q0,
as the aggregated solution population of the previous solution
population and the offspring population. Then, the solutions
in Ψ0 are ranked based on their dominance rank, as explained
in reproduction step, and the high-quality solutions are added
to S1 in a descending rank order until it reaches its max-
imum size to form the new solution population. Similarly,
the solution population in the tth iteration, St, is based on
Ψt−1 = St−1∪Qt−1. The summary of the proposed NSGA-
II based algorithm is shown in Algorithm 1.

Algorithm 1 The evolutionary-based application placement
algorithm
Require: U , F

Execute initialization phase and generate S0 having size Z
for t = 0 to X do

for all sz ∈ St do
Calculate AC

p and AO
p ∀p using (7)

end for
Sort St based on the Pareto dominance relationship
Use binary tournament to fill the mating pool
Apply crossover on St and generate Qt

Apply mutation on Qt

Generate Ψt = St ∪ Qt

Sort Ψt based on Pareto dominance relationship
Select the best Z solutions to form next generation

end for
Ensure: Pareto Fronts of the multi-objective application placement problem

IV. NUMERICAL RESULTS

In order to test the proposed NSGA-II based approaches,
in this Section, we introduce the numerical results obtained
through computer simulations implemented in Matlab.

We consider a service area having size 200 × 200 meters,
where the FNs, having the same coverage area equal to 25 m,

TABLE I
SCENARIO 1: VARIABLE FNS

Parameter Value

Service Area 200× 200
FN Coverage Area 25 m

Number of Sensors (Sn) 1000
Number of FNs (Fn) [10− 60]
FNs Capacity (Cn) 2

Number of Applications (Kp) 4
Number of GA Iterations 100

Number of simulation Trials 10
Crossover probability (P̄c) 0.60

Mutation probability (P̄mu) 0.01

are scattered in a random position. Let’s think as an example to
a neighborhood willing to implement a smart-living infrastruc-
ture. It is worth to be noticed that both FNs and Sensors are
placed in random positions hence no planning optimization is
performed when obtaining the following results. The crossover
P̄c and mutation P̄mu probabilities of the GA have been set to
0.60 and 0.01, respectively, after a careful optimization phase.
Such values are similar to those used in similar contexts. For
simplicity but without loss of generality, the iteration process
of the genetic algorithm is assumed to be repeated 100 times,
while we fixed to Z ′ equal to 10 the number of winner
solutions for generating off springs. The crossover point χcr
is randomly selected in the range [1, P −1] at every crossover
operation. All the simulations have been carried out for 10
trials, and then the results averaged, in order to ensure a higher
reliability in the numerical results.

The numerical results are expressed in terms of average
coverage areas and overlapping areas by comparing three
approaches: the random approach, the centralized approach
and the distributed approach. It is worth to be noticed that
the average coverage area corresponds to the percentage of
sensors we are able to serve averaged among all the deployed
applications, while the average overlapping area correspond to
the percentage of sensors having more than one FN that can
serve them with a given application, averaged over all the de-
ployed applications. The coverage area should be maximized,
while the overlapping area should be minimized for avoiding
resource wastage.

The random approach consider the case in which the ap-
plications are randomly placed in the network; this is con-
sidered as the benchmark solution. The Centralized NSGA-II
approach where we optimize the application placement based
on the NSGA-II algorithm by considering the presence of a
centralized repository able to exchange the applications among
every FN. The Distributed NSGA-II where we constraint the
applications to be exchanged among nearby FNs.

We have performed the simulations for two scenarios. The
first scenario is based on the presence of a fixed number of
applications, equal to 4, while each FN can cache only 2
applications. We have instead changed the number of deployed
FNs in the service area between 10 to 60. In Tab. I, the
parameters for the first scenario are listed.

In Figs. 1 and 2 the numerical results are shown, where it
is possible to notice that NSGA-II based solutions allow to

10 15 20 25 30 35 40 45 50 55 60

Fog Nodes

10

20

30

40

50

60

70

80

A
v
e
ra

g
e
 C

o
v
e

ra
g
e
 A

re
a

 [
%

]

GA Centralized

GA Distributed

Random

Fig. 1. Coverage Area for variable FNs

10 15 20 25 30 35 40 45 50 55 60

Fog Nodes

0

10

20

30

40

50

60

A
v
e
ra

g
e
 O

v
e
rl
a
p
p
e
d
 A

re
a
 [
%

]

GA Centralized

GA Distributed

Random

Fig. 2. Overlapping Area for variable FNs

achieve better performance in terms of both coverage areas
and overlapping areas. By increasing of the number of FNs,
the coverage area increases as expected by the increased
number of FNs; however, it is possible to notice that GA-based
solutions achieve better performance than the random solution.
Moreover, it can be noticed that the Centralized NSGA-
II allows to achieve better performance. This is expected
since the Centralized approach could gain from a bigger set
of possible solutions, while in the Distributed approach the
solutions are constrained by the FNs proximity.

Even for the overlapping areas, leading to resource wastage,
it is possible to notice that both GA approaches allow to
achieve better performance. The increased number of FNs
impact in a higher overlapping areas, where the Centralized
approach performs better.

The second scenario we have considered is based on a
variable number of applications to be deployed, between 4
and 8, while considering the capacity of each FN fixed to 2,

TABLE II
SCENARIO 2: VARIABLE APPLICATIONS

Parameter Value

Service Area 200× 200
FN Coverage Area 25 m

Number of Sensors (Sn) 1000
Number of FNs (Fn) 40
FNs Capacity (Cn) 2

Number of Applications (Kp) [4− 8]
Number of GA Iterations 100

Number of Simulation Trials 10
Crossover Probability (P̄c) 0.60

Mutation Probability (P̄mu) 0.01

4 5 6 7 8

Apps

25

30

35

40

45

50

55

60

A
v
e
ra

g
e
 C

o
v
e
ra

g
e
 A

re
a
 [

%
]

GA Centralized

GA Distributed

Random

Fig. 3. Coverage Area for variable Applications

and the number of FNs to 40. The parameters are listed in the
Table II.

Figs. 3 and 4, show the results in terms of coverage
and overlapping areas for the Scenario 2. It is possible to
notice that both NSGA-II approaches outperform the random
approach by increasing the coverage area and minimizing the
overlapping areas. In general, as expected, we can notice that
a higher number of possible applications impact on a lower
coverage areas; this is expected since we are constraining the
number of applications per node to the same value, indepen-
dently from the possible deployable applications. However we
can notice that the overlapping areas are drastically decreased,
leading to the fact that we are able to optimize at the best
the system. In general, we are noticing that the Centralized
approach allows to achieve better performance due to the
higher flexibility in deploying the applications.

V. CONCLUSION

In this paper, an application placement approach for fog
computing is introduced. We present the impact of an evolu-
tionary algorithm over a distributed architecture, like the Fog
Computing, for solving the problem of maximizing the number
of serviced sensors in a given area. We firstly have formulated
the application placement problem in a Fog Network, and
then we proposed a meta-heuristic solution based on NSGA-

4 5 6 7 8

Apps

0

5

10

15

20

25

30

A
v
e
ra

g
e
 O

v
e

rl
a
p
p
e

d
 A

re
a
 [
%

]

GA Centralized

GA Distributed

Random

Fig. 4. Overlapping Area for variable Applications

II. Finally, we provided a framework for testing our policies.
The numerical results show promising results by minimizing
the overlapping area when changing number of applications
and FNs for two different approaches.

REFERENCES

[1] S. M. A. Oteafy and H. S. Hassanein, “IoT in the fog: A roadmap
for data-centric IoT development,” IEEE Communications Magazine,
vol. 56, no. 3, pp. 157–163, Mar. 2018.

[2] B. McMillin and T. Zhang, “Fog computing for smart living,” Computer,
vol. 50, no. 2, pp. 5–5, Feb. 2017.

[3] Y. Liu, J. E. Fieldsend, and G. Min, “A framework of fog computing:
Architecture, challenges, and optimization,” IEEE Access, vol. 5, pp.
25 445–25 454, 2017.

[4] M. I. Naas, P. R. Parvedy, J. Boukhobza, and L. Lemarchand, “iFogStor:
An IoT data placement strategy for fog infrastructure,” in 2017 IEEE 1st
International Conference on Fog and Edge Computing (ICFEC), May
2017, pp. 97–104.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, Aug.
2012, pp. 13–16.

[6] Y. Gu, Z. Chang, M. Pan, L. Song, and Z. Han, “Joint radio and com-
putational resource allocation in iot fog computing,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 8, pp. 7475–7484, Aug 2018.

[7] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing:
Fundamental, network applications, and research challenges,” IEEE
Communications Surveys Tutorials, vol. 20, no. 3, pp. 1826–1857, Third
Quarter 2018.

[8] A. Kumar, R. M. Pathak, and Y. P. Gupta, “Genetic-algorithm-based
reliability optimization for computer network expansion,” IEEE Trans-
actions on Reliability, vol. 44, no. 1, pp. 63–72, March 1995.

[9] M. Mitchell, An Introduction to Genetic Algorithms, ser. A Bradford
book. Cambridge, MA, USA: The MIT Press, 1998.

[10] B. M. Varghese and R. J. S. Raj, “A survey on variants of genetic
algorithm for scheduling workflow of tasks,” in 2016 Second Interna-
tional Conference on Science Technology Engineering and Management
(ICONSTEM), March 2016, pp. 489–492.

[11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

