Bozorgchenani, Arash and Mashhadi, Farshad and Tarchi, Daniele and Salinas Monroy, Sergio (2021) Multi-Objective Computation Sharing in Energy and Delay Constrained Mobile Edge Computing Environments. IEEE Transactions on Mobile Computing, 20 (10). pp. 2992-3005. ISSN 1536-1233
Full text not available from this repository.Abstract
In a mobile edge computing (MEC) network, mobile devices, also called edge clients, offload their computations to multiple edge servers that provide additional computing resources. Since the edge servers are placed at the network edge, transmission delays between edge servers and clients are shorter compared to those of cloud computing. In addition, edge clients can offload their tasks to other nearby edge clients with available computing resources by exploiting the Fog Computing (FC) paradigm. A major challenge in MEC and FC networks is to assign the tasks from edge clients to edge servers, as well as to other edge clients, so that their tasks are completed with minimum energy consumption and processing delay. In this paper, we model task offloading in MEC as a constrained multi-objective optimization problem (CMOP) that minimizes both the energy consumption and task processing delay of the mobile devices. To solve the CMOP, we design an evolutionary algorithm that can efficiently find a representative sample of the best trade-offs between energy consumption and task processing delay, i.e., the Pareto-optimal front. Compared to existing approaches for task offloading in MEC, we see that our approach finds offloading decisions with lower energy consumption and task processing delay