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Abstract

Time series data can often possess complex and dynamic characteristics. Two key

statistical properties of time series – the mean (first-order) and autocovariance

(second-order) – commonly change over time. Modelling this evolution of so-called

nonstationary time series is crucial to making informed inference on the data. This

thesis focuses on wavelet-based methodology for the simultaneous modelling of

first and second-order nonstationary time series, for which we provide three main

contributions.

First, we propose a method using differencing to jointly estimate the time-

varying trend and second-order structure of a time series, within the locally sta-

tionary wavelet processes framework. We discuss a wavelet-based estimator of the

second-order structure of the original time series by employing differencing, and

show how this can be incorporated into the estimation of the trend of the time

series.

Second, we propose a framework for modelling series with simultaneous time-

varying first and second-order structure by removing the restrictive zero-mean

assumption of locally stationary wavelet (LSW) processes and extending the ap-

plicability of the locally stationary wavelet model to include a trend component.

We develop associated estimation theory for both first and second-order time se-

ries quantities and show that our estimators achieve good properties in isolation

of each other by making appropriate assumptions on the series trend.

Last, we consider simultaneous modelling of first and second-order structure

in the scenario where the mean function is piecewise constant. We propose a
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likelihood-based method using wavelets to detect changes in mean in time series

that exhibit time-varying autocovariance. This allows for a more flexible model

for mean changepoint detection, since commonly the second-order structure is

assumed to be independent and identically distributed. The performance of the

method is investigated via simulation, and is shown to perform well in a variety of

time series scenarios.
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Chapter 1

Introduction

Wavelets can be informally described as oscillatory basis functions that decay

rapidly, constructed in such a manner so as to possess several attractive proper-

ties. Wavelets are multiscale in nature, can often provide sparse representations

of functions, and enjoy localisation in both time and frequency. Due to their

many advantageous properties, wavelets have found prominent use in many areas

of statistics, and in particular have enjoyed popularity for many years in time se-

ries analysis. Wavelets can provide an alternative approach to the classical Fourier

representation of a time series using trigonometric functions.

In this thesis, we focus on developing wavelet-based methodology to model

the evolution of time series data, which can often possess complex and dynamic

characteristics. Most classical time series models are built upon the assumption

of stationarity, for example autoregressive moving average (ARMA) processes.

However, in most practical scenarios, two key statistical properties of a time series –

the mean and autocovariance – vary over time. Appropriately modelling this time-

varying behaviour is crucial in making informed inference on the data. We refer to a

time series whose mean and/or autocovariance is time-varying as first, respectively

second-order nonstationary. Areas of research that feature time series that exhibit

nonstationarity in both first and second-order structure are numerous. Recent

examples include biomedical time series (Hargreaves et al., 2018), climatology

(Das and Politis, 2020), and financial time series (Roueff and von Sachs, 2019).
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CHAPTER 1. INTRODUCTION 2

In recent years, there has been much research effort in the area of nonstationary

time series analysis, including so called “locally stationary” time series. As such,

there are many time series models that can cope with nonstationarity in first or

second-order structure. However, less attention in the time series literature is given

to the joint consideration of time-varying first and second-order behaviour, due to

the highly challenging nature of the problem.

In this thesis, we consider the extension and adaptation of the modelling frame-

work of locally stationary wavelet (LSW) processes. The locally stationary wavelet

(LSW) model, introduced by Nason et al. (2000), provides a way to capture non-

stationary second-order behaviour. The LSW model has gained attention and

much research focus in the time series literature, due to its ability to represent the

series at different scales, enabling the second-order structure to be more readily

discovered and estimated. There have been many successful applications of the

LSW framework to prominent problems in time series analysis. For example, LSW

modelling has been utilised in forecasting (Fryzlewicz et al., 2003), handling miss-

ing observations (Knight et al., 2012), changepoint detection (Killick et al., 2013),

and classification (Krzemieniewska et al., 2014).

The LSW framework is, however, only suitable for the modelling of second-

order nonstationary time series. It cannot account for time-varying first-order

behaviour, as the methodology is restricted to zero-mean time series. This means

that LSW modelling is not immediately applicable to most time series in practice,

due to this restrictive assumption. Commonly, a time series is preprocessed to

be converted to a zero-mean process. This adds an extra level of data analysis

which will have an effect on the results of the task in question, as well as addi-

tional computational complexity. Furthermore, the task of removing the first-order

structure is itself a highly challenging problem, made difficult due to the presence

of time-varying second-order behaviour.

The main contribution of this thesis is to expand the LSWmodelling framework

to incorporate a nonstationary first-order component. In doing so, we ensure
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wider applicability of the methodology as well as a more realistic set of modelling

assumptions for most practical time series scenarios. Using the well-established

theory of wavelets, we propose new tools for modelling nonstationary time series,

expanding upon the rigorous theory developed in Nason et al. (2000). We provide

theoretical results that enable consistent estimation of the various quantities of

interest, discuss the necessary computational aspects of our work, and describe

the practical considerations for implementation of our methodology.

1.1 Contributions and Thesis Outline

In this thesis, we provide three main contributions to the nonstationary time series

literature. Each main chapter of the thesis is summarised below. The contributions

are described in Chapters 3 – 5, and can be broadly described as contributions to

the problem of jointly modelling first and second-order nonstationary time series.

The thesis consists of an introductory literature review in Chapter 2, the main

contributions are given in Chapters 3 – 5, while concluding remarks and areas for

future research are given in Chapter 6. All proofs of theoretical results presented

in the main body are given in the appropriate appendices.

Chapter 2: Literature Review

This chapter reviews the basics of wavelet theory, and provides a survey of wavelet-

based techniques in time series analysis. In particular, we discuss the locally

stationary wavelet (LSW) time series model of Nason et al. (2000). This model

forms the basis for the work carried out in Chapters 3 – 5, in which we extend

the LSW model, capable only of modelling second-order time series behaviour,

to include a first-order component. We also provide a survey of trend estimation

techniques, both wavelet-based and otherwise. We conclude with a short survey

of methods applicable to first and second-order nonstationary time series.
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Chapter 3: Modelling Time-Varying First and Second-Order Structure

of Time Series via Wavelets and Differencing

In this chapter, we consider the problem of incorporating a time-varying first-order

component in a second-order nonstationary time series. We propose a method for

joint estimation of nonstationary first and second-order structure of a time series

using both wavelets and differencing. Differencing is a commonly used technique to

remove a trend from a times series without the need to estimate it. We investigate

the effect that differencing has on the second-order properties of a locally stationary

time series. We propose methodology that enables the consistent estimation of the

second-order structure of the original time series using the differenced series, by

taking into account the effect of differencing. This information is then used in a

wavelet thresholding-based estimator of the trend of the series. We demonstrate

the performance of the method through a simulation study, and show the potential

uses of the methodology by analysing two data examples. The second example

highlights the ability of the method to make features of the original time series

more apparent, when compared with analysis of the differenced data.

Chapter 4: Trend Locally Stationary Wavelet Processes with Applica-

tions to Environmental Data

This work can be viewed as a companion to the work in Chapter 3, as the same

general problem is addressed. However, a different solution to that problem is

presented here in Chapter 4, and some key modelling assumptions differ between

the chapters. This chapter can be viewed as more of a complete modelling frame-

work compared with Chapter 3, which investigated how to utilise the technique of

differencing in a locally stationary time series setting. In this chapter, we develop

a wavelet-based method that expands upon the work on locally stationary wavelet

process modelling of Nason et al. (2000). We remove the restrictive zero-mean

assumption of LSW processes, and extend the applicability of the LSW model by

incorporating a trend component. We show that under certain assumptions we
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can estimate the first and second-order properties of the time series in isolation of

one another. We provide theoretical results for the consistency properties of these

estimators. We illustrate the utility of the methodology by analysing the much

studied global mean sea temperature time series. Furthermore, we describe a new

way to perform boundary handling of the discrete wavelet transform in the case

where a trend is present. Finally, we provide an important theoretical contribu-

tion to the LSW literature, by proving a result relating to the correction matrix

employed in LSW estimation theory. We adapt an erroneous result in Cardinali

and Nason (2017), which enables theoretical results on the LSW model to apply

to a wider family of wavelets than originally described in Nason et al. (2000).

Chapter 5: Detecting Changes in Mean in the Presence of Time-Varying

Autocovariance

In this chapter, we consider the scenario where the mean function of the time

series is given by a piecewise constant function. This setting is within the area of

changepoint detection. Commonly, changepoint detection methods assume that

the error structure of the time series is independent, identically distributed (IID)

noise. We place an LSW process assumption on the error structure, allowing for

a more flexible modelling framework. We show that we can estimate the second-

order structure in the presence of a piecewise constant mean function by using

a running-median smoothed wavelet estimator. We propose a likelihood-based

method using wavelets to detect changes in mean in time series that can display a

much more general error structure than simply IID errors. Our proposed technique

is shown to work well through the use of a simulation study. The method is applied

to two financial time series data sets, which illustrates the method’s ability to work

well in the presence of significant autocorrelation.



CHAPTER 1. INTRODUCTION 6

Chapter 6: Conclusions and Future Work

In this chapter we summarise the conclusions of the thesis and describe several pos-

sible directions for future work, stemming from the research proposed in Chapters

3 – 5.

Note that Chapters 3, 4 and 5 are presented as a series of papers. Therefore,

they are written to be read in isolation of one another. Due to this, there may be

expository detail and background information that is repeated in these chapters.



Chapter 2

Literature Review

This chapter provides an overview of the background wavelet theory necessary

for the work in the thesis. In addition, we review the relevant literature in the

statistical areas that are the focus of this thesis: time series analysis and trend

estimation/nonparametric regression. In particular, we concentrate on locally sta-

tionary time series and wavelet-based trend estimation.

2.1 Wavelet Theory

Loosely speaking, wavelets are localised, oscillatory basis functions that possess

several useful properties not typically enjoyed by Fourier trigonometric basis func-

tions. A desirable property of basis functions is efficiency, in the sense that only

a few of the coefficients in a basis representation are non-zero. Although Fourier

trigonometric functions are localised in frequency, they are not localised in time.

Consequently, many (Fourier) basis functions contribute to the basis representation

at any one point. Therefore, Fourier trigonometric functions struggle to represent

functions with discontinuities or “sharp” changes efficiently, due to their infinite

support. By contrast, wavelets enjoy localisation in both time and frequency. This

allows wavelets to represent discontinuities well, and provide efficient representa-

tions of functions.

The study of wavelets began with the work of Haar (1910), who developed the

7
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theory of the Haar basis – an orthonormal basis of L2(R), the space of square-

integrable functions. The true advent of wavelets did not occur until the late

1980s, when Daubechies, Mallat, and many others further developed the underly-

ing theory. Since then, wavelets have proved to be an important tool of analysis in

statistics, as well as areas such as engineering (Williams and Amaratunga, 1994)

and image processing (Chan and Shen, 2005).

Following Daubechies (1992), a wavelet is formally defined as a function ψ ∈

L2(R) (often referred to as the mother wavelet) that satisfies the following admis-

sibility condition:

Cψ =

∫ ∞
−∞

|ψ̂(ω)|2

|ω|
dω <∞, (2.1.1)

where ψ̂(ω) is the Fourier transform of ψ(x). In this thesis, we utilise wavelet

functions whose dyadic dilations and translations, given by

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z,

form an orthonormal basis of L2(R). The indices j and k are known as scale/dilation

and location/translation parameters, respectively. Condition (2.1.1) implies that

0 = ψ̂(0) =

∫
R
ψ(x)dx. (2.1.2)

Equation (2.1.2) highlights the oscillatory nature of a wavelet, and motivates the

name itself. The “-let" suffix comes from the fact that ψ is oscillatory and well

localised in both time and frequency. Equation (2.1.2) also implies time locali-

sation (since it implies that ψ ∈ L1(R)). Equation (2.1.1) can be interpreted as

localisation in frequency. Many wavelets have compact support (only non-zero on

a compact set), and all wavelets decay rapidly to zero. The coefficients of a wavelet

basis function expansion of a function f ∈ L2(R) are given in the usual way by

the inner product dj,k := 〈f, ψj,k〉 =
∫
f(x)ψj,k(x)dx. The coefficients dj,k can be

interpreted as scaled, localised differences of the function f .
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2.1.1 Multiresolution Analysis (MRA)

In this thesis we are concerned with discretely sampled time series, and hence

discrete wavelets. We therefore are interested in wavelet decompositions of vectors,

as opposed to continuous functions as in the previous section. The key idea of

constructing the necessary wavelet bases lies in the concept of a multiresolution

analysis (MRA), which is a collection of subspaces {Vj}j∈Z of L2(R). Informally,

we can think of each space Vj as the space of functions that have detail up to some

defined level of resolution. The formal definition of an MRA, as given by Mallat

(1989a), is as follows.

Definition 2.1.1. A multiresolution analysis (MRA) is a sequence of closed sub-

spaces {Vj}j∈Z of L2(R) such that they lie in containment hierarchy

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

such that their union is dense in L2(R) and their intersection is trivial:

⋃
j

Vj = L2(R),
⋂
j

Vj = {0}.

Furthermore, the Vj are constructed such that (i) V -spaces are self similar, i.e.

f(2jx) ∈ Vj ⇐⇒ f(x) ∈ V0,

and (ii) there exists a scaling function, or father wavelet, φ ∈ V0 whose integer

translates span V0, that is

V0 =

{
f ∈ L2(R) | f(x) =

∑
k

ckφ(x− k)

}
,

and for which the set {φ(· − k), k ∈ Z} is an orthonormal basis.

Furthermore, we assume that
∫
φ(x)dx 6= 0. Given that {φ(x − k)}k∈Z is an
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orthonormal basis for V0, self similarity implies that

{φj,k(x), k ∈ Z} = {2j/2φ(2jx− k), k ∈ Z}

for fixed j forms an orthonormal basis of Vj. Now, since V0 ⊂ V1, the function

φ(x) ∈ V0 can be written as a linear combination of functions that belong to V1,

that is

φ(x) =
∑
k

hkφ1k(x) =
∑
k

hk
√

2φ(2x− k), (2.1.3)

for some coefficients hk, k ∈ Z. Equation (2.1.3) is known as the scaling equation

or dilation equation, and is one of the most fundamental results in wavelet anal-

ysis. The solution of this equation enables the construction of a general MRA.

It describes how the scaling functions relate to one another for two consecutive

scales. The (possibly infinite) vector {hk, k ∈ Z} is known as a wavelet filter, and

is a low-pass (averaging) filter. It is often useful to work in the Fourier domain to

understand properties of wavelets. To this end, we require the following definition.

Definition 2.1.2. The transfer function m0 is defined by

m0(ω) =
1√
2

∑
k∈Z

hke
−ikω =

1√
2
H(ω).

The function m0 describes the behaviour of the filter {hk} in the Fourier do-

main. The function is 2π-periodic and the filter taps {hk, k ∈ Z} are the Fourier

coefficients of the function H(ω) =
√

2m0(ω). In the Fourier domain, the scaling

equation (2.1.3) becomes

φ̂(ω) = m0

(ω
2

)
φ̂
(ω

2

)
,

where φ̂(ω) is the Fourier transform of φ(x). By iterating this equation, we obtain

φ̂(ω) =
∞∏
n=1

m0

( ω
2n

)
,
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an infinite product which is convergent under very mild conditions on the rate of

decay of the father wavelet φ (Vidakovic, 2009, Section 3.3). The transfer function

is important as it forms part of the construction of generalised wavelets. Wavelet

filters associated with an MRA satisfy the normalisation property
∑

k∈Z hk =
√

2

and the orthogonality property
∑

k hkhk−2l = δl, for all l ∈ Z.

To answer the question of how to construct φ(x) such that it satisfies the condi-

tions for an MRA, as well as possibly satisfying other useful properties, Daubechies

(1988) introduced a projection operator Pj that projects a function onto the space

Vj. Now, since {φj,k(x)}k∈Z is a basis for Vj, this projection can be written as

fj(x) =
∑
k∈Z

cj,kφj,k(x) = Pjf,

for some coefficients {cj,k}k∈Z. Informally, Pjf can be thought of as a sort of

approximation of f using just the father wavelets at level j. Orthogonality of the

basis means that the coefficients can be computed in the standard way as

cj,k = 〈f, φj,k〉 =

∫ ∞
−∞

f(x)φj,k(x)dx.

The following result, due to Daubechies (1992), establishes both existence, and

construction, of a wavelet basis of L2(R).

Theorem 2.1.1. If {Vj}j∈Z with φ form a multiresolution analysis of L2(R), then

there exists an orthonormal wavelet basis {ψj,k(x) = 2j/2ψ(2jx− k) : j, k ∈ Z} of

L2(R) such that for j ∈ Z,

Pj+1f = Pjf +
∑
k

〈f, ψj,k〉ψj,k(x). (2.1.4)

One possibility for the construction of the wavelet ψ(x) is

ψ̂(ω) = eiω/2m0(ω/2 + π)φ̂(ω/2),
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where ψ̂ and φ̂ are the Fourier transforms of ψ and φ respectively and m0 is the

transfer function as defined in Definition 2.1.2. Equivalently,

ψ(x) =
∑
k

(−1)kh1−kφ1,k(x). (2.1.5)

The function ψ(x) = ψ0,0(x) is the mother wavelet. The set {ψj,k(x), k ∈ Z} for

fixed j is an orthonormal basis of the “difference space"Wj, where Vj+1 = Wj

⊕
Vj.

The coefficient that appears in Equation (2.1.5) describes how the wavelet is con-

structed in terms of the next finer scale father wavelet coefficients, and as such has

its own notation:

gn = (−1)nh1−n. (2.1.6)

The filters {hk} and {gk} are known as quadrature mirror filters. Equation (2.1.4)

can be telescoped to produce a fine-scale representation of a function f :

f(x) =
∑
k∈Z

cj0,kφj0,k(x) +
∞∑
j=j0

∑
k∈Z

dj,kψj,k(x). (2.1.7)

Equation (2.1.7) can be interpreted that a function f ∈ L2(R) can be repre-

sented as a ‘smooth’ part involving the φj0,k and a set of detail representations∑
k∈Z dj,kψj,k(x) that accumulate information at a set of scales j going from j0 to

infinity. The first set of terms represents the ‘average’ level of function while the

second set represents the ‘detail’, or changes in average.

2.1.2 The Discrete Wavelet Transform

Any function f ∈ L2(R) can be represented via its wavelet basis expansion as

f(x) =
∑
j,k∈Z

dj,kψj,k(x),

where dj,k = 〈f, ψj,k〉. This representation is unique and corresponds to an MRA

decomposition of L2(R) =
⊕∞

j=−∞Wj. For any fixed j0, the decomposition
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L2(R) = Vj0 ⊕
⊕∞

j=j0
Wj corresponds to the representation given in Equation

(2.1.7).

Given n = 2J observations y = (y1, . . . , yn)T, the discrete wavelet transform

(DWT) computes the coarsest father wavelet coefficient c0,0 and the wavelet co-

efficients dj,k for j = 0, 1, . . . , J − 1, k = 0, 1, . . . , 2j − 1. The DWT is initiated

from a set of father wavelet coefficients cJ,0, . . . , cJ,n−1, and correspond to the finest

resolution, which is at level J .

In time series analysis, it is normally the case that we simply use the data itself

as the finest scale father wavelet coefficients, that is set cJ = y, where cJ is the

vector (cJ,0, . . . , cJ,n−1). Father wavelet coefficients at level j− 1 can be calculated

using the level j coefficients by the relation

cj−1,k =
∑
n

hn−2kcj,n. (2.1.8)

Similarly for the wavelet coefficients

dj−1,k =
∑
n

gn−2kcj,n. (2.1.9)

These equations apply to any scale j = 1, . . . , J . The coefficients cj,k are often

referred to as the smoothing or scaling coefficients, while the dj,k are known as the

detail or wavelet coefficients. We can interpret these two equations in another way.

Equation (2.1.8) can be obtained by first applying the filter {hn} to the sequence

{cj,n}, giving

c∗j−1,k =
∑
n

hn−kcj,n. (2.1.10)

We can then perform dyadic decimation on this sequence to obtain cj−1,k = c∗j−1,2k,

i.e. we only keep the even elements of the sequence {c∗j−1,k}. In signal processing

this is also known as downsampling by a factor of 2. Define the (even) dyadic

decimation operator D0 by

(D0x)l = x2l,
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for a sequence {xi}. Thus, we can express Equations (2.1.8) and (2.1.9) in the

form

cj−1 = D0Hcj, dj−1 = D0Gcj,

where H and G refer to the filtering operation given in Equation (2.1.10). Note

that we have used vector notation here for cj etc., rather than sequences. Nason

and Silverman (1995) show that the entire set of DWT transform coefficients can

be written as

dj = D0G(D0H)J−j−1cJ ,

for j = 0, . . . , J − 1. Similarly, for the father wavelet coefficients we have that

cj = (D0H)J−jcJ ,

for j = 0, . . . , J − 1, and where cj and dj are vectors of length 2j (for periodised

wavelet transforms).

Vanishing moments. Wavelet functions can be constructed to possess a

number of vanishing moments, a key property which has several important conse-

quences. A wavelet ψ is said to have m vanishing moments if

∫
xlψ(x)dx = 0, for l = 0, . . . ,m− 1.

Vanishing moments are useful in wavelet analysis since if a wavelet has m van-

ishing moments, then all wavelet coefficients of any polynomial of degree m − 1

or less will be zero. Hence, if we have a relatively smooth function with only a

few discontinuities, then the wavelet coefficients located at the smooth areas will

be near zero or exactly zero if the behaviour of the function at that location is

polynomial of degree m− 1 or less. This means that wavelets are often capable of

representing a signal in a sparse manner. This property is also attractive from a

computational standpoint as it enables the compression of a signal into its wavelet

transform.
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Matrix notation. The DWT can be represented in matrix notation, which

lends itself to efficient computational usage. The transform can be written as

d = Wy, where W is (usually) an orthogonal matrix. When W is orthogonal, we

have that

||d||2 = dTd = (Wy)TWy = yTWTWy = yTy = ||y||2, (2.1.11)

i.e. the transformation preserves energy, with (2.1.11) following from Parseval’s

relation.

Boundary issues. When performing a wavelet transform, a problem arises

when deciding what to do when the support of the wavelet filter extends beyond

the support of the input vector. Several approaches have been suggested, such as

symmetric reflection of the input vector at the boundaries, polynomial extrapola-

tion, and periodising the vector. See Section 2.8 of Nason (2008) or Section 4.11

of Percival and Walden (2006) for more discussion.

Computational speed. If the size of the input vector is n, the DWT requires

O(n) operations, which is faster than the O(n log n) operations needed for the fast

Fourier transform.

Inverse discrete wavelet transform. Mallat (1989b) proved that for general

wavelets, the inverse relation for the DWT is given by

cj,n =
∑
k

hn−2kcj−1,k +
∑
k

gn−2kdj−1,k,

where {hk} and {gk} are the quadrature mirror filters given in Equations (2.1.3)

and (2.1.6). If the wavelet transform is orthogonal, then the matrix associated to

the inverse transform is simply WT.

2.1.3 Examples of Wavelets

In this section we describe several key examples of wavelets, many of which will

be utilised in the remainder of the thesis. There are a vast array of wavelets
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that can be found in both the mathematical and statistical literature; for a more

complete discussion of common wavelets, see Vidakovic (2009, Chapter 3.4) and

Nason (2008, Chapter 2.5 – 2.6).

The Haar wavelet. The Haar wavelet dates back to the work of Haar (1910),

and is perhaps the most well-known example of a wavelet. The Haar father wavelet

is defined by

φ(x) =


1 x ∈ [0, 1],

0 otherwise.

The Haar mother wavelet is given by ψ(x) = φ(2x)− φ(2x− 1), or equivalently

ψ(x) =


1 x ∈ [0, 1

2
),

−1 x ∈ [1
2
, 1),

0 otherwise.

The Haar basis is not always an appropriate choice of wavelet basis for several

reasons. Firstly, the building blocks of the Haar basis are discontinuous functions,

and so there will be difficulty in attempting to approximate smooth functions.

However, this means it can be useful for modelling rapidly changing functions.

Although the Haar wavelets are well localised in the time domain, they decay at

a rate of O(1/n) in the frequency domain.

Daubechies’ compactly supported wavelets. A landmark result in wavelet

theory was the construction of orthogonal wavelets that were compactly supported,

but smoother than Haar wavelets. Daubechies (1988) constructed wavelets using

a solution of the dilation equation, giving several families of orthonormal wavelets.

Each member of each family is indexed by N , which represents the number of

vanishing moments. As the value of N increases, the wavelets have increasing

degrees of smoothness.

Two of the most commonly used wavelet families are called the Least Asym-
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metric (LA) and Extremal Phase (EP) wavelets. Only the Haar wavelet can be

compact, orthonormal and symmetric (or antisymmetric) simultaneously. The

least asymmetric family minimises the degree of asymmetry, whilst maintaining

compactness and orthogonality. The Haar wavelet, which possesses one vanishing

moment, is a member of the EP family.

The Shannon wavelet. The Shannon wavelet can be thought of as the Fourier

equivalent of the Haar wavelet. It is a time-scale mirror image of the Haar wavelet.

The Shannon wavelet is the limiting wavelet in the Daubechies’ compactly sup-

ported series as the number of vanishing moments N →∞. The scaling function

is defined in the Fourier domain as

φ̂(ω) =


1 ω ∈ [−π, π),

0 otherwise.

In the time domain, we have the following representation:

φ(x) =
1

2π

∫ π

−π
eiωxdω =

sin(πx)

πx
.

In the Fourier domain, the mother wavelet is given by

ψ̂(ω) = −e−iω/2I(π < |ω| ≤ 2π),

where I is the indicator function. The corresponding time domain function ψ(x)

is

ψ(x) =
sin(2πx)− cos(πx)

π(x− 1/2)
.

Shannon’s filter has poor time localisation properties: it corresponds to an infinite

impulse response filter with slowly decaying coefficients, making it non-localised

in time.
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2.1.4 Non-Decimated Wavelets

Previously we have described how the discrete wavelet transform can be viewed

as a filter operation H followed by a dyadic decimation step D0, in which we only

kept the even elements. It is also possible to remove the even elements while

keeping the odd ones, using odd dyadic decimation, given by the operator D1

where (D1x)l = x2l+1. Then, the j-th mother and father wavelet coefficients would

be found using the same method as before. We could, in fact, use D0 or D1 at each

level of the wavelet transform to produce an orthonormal basis. Conventionally,

this basis can be represented as a binary number ε = εJ−1εJ−2 · · · ε0, where εj is

equal to 1 if D1 was used to produce level j and 0 if D0 was used. This transform

is known as the ε-decimated wavelet transform.

Now, note that the operator D1 is the same as first shifting the sequence by one

position and then applying D0, that is D1 = D0S, where S is the shift operator

defined by (Sx)j = xj+1. Using an extension of this idea, along with another

similar relation SD0 = D0S2, and finally the fact that S commutes with the filter

operations H and G, Nason and Silverman (1995) show that the basis vectors of

the ε-decimated wavelet transform can be found from those of the standard DWT

by applying a particular shift operator. This leads Nason and Silverman to observe

that the choice of ε corresponds to a particular choice of ‘origin’ with respect to

which the basis functions are defined.

Thus, since the standard DWT is dependent on a choice of origin, a shift in

position of the input data could produce a different set of wavelet coefficients

compared to the original data. For uses like regression, it would be desirable for

the method to not be dependent on the choice of origin, i.e. translation invariant.

In the non-decimated wavelet transform (NDWT), introduced by Pesquet et al.

(1996), we retain both the odd and even decimations at each scale and proceed

in this manner for each subsequent scale. Starting with the input vector y =

(y1, . . . , yn) where n = 2J , we apply and retain both D0Gy and D1Gy. Each of

these sequences is of length n/2, so in total we have n wavelet coefficients at the
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finest scale.

Similarly, we computeD0Hy andD1Hy to obtain the finest scale father wavelet

coefficients. Again, we have n coefficients in total in this step. Now, for the next

level wavelet coefficients we apply both D0G and D1G to both of D0Hy and D1Hy.

The result of each of these 4 computations is n/4 wavelet coefficients at scale J−2,

once again giving n coefficients in total.

This process is repeated at each scale: at scale J − j we will have 2j sets of

coefficients, each of length 2−jn for j = 1, . . . , J . Thus, the number of wavelet

coefficients at each scale is always 2j × 2−jn = n. There are J scales, so in total

the NDWT produces Jn coefficients. The computational speed of the NDWT

is O(n log n). For further information, see also Nason and Silverman (1995) and

Coifman and Donoho (1995).

2.1.5 Other Extensions of Wavelets

Since the inception of wavelets, there have been many extensions to the classical

wavelet techniques we have described so far. In this section we provide a brief

discussion of some of the most well-known extensions. Further information and

a broader discussion can be found, for example, in Nason (2008) and Vidakovic

(2009).

Mallat (1989a) constructs multidimensional wavelets, capable of performing

multiscale analysis in spaces of higher dimensions. The DWT is extended to a

multivariate version, by constructing wavelets ψ ∈ L2(Rd). Another extension to

classical wavelets is the biorthogonal wavelets of Cohen et al. (1992). Biorthogonal

wavelets use different non-orthogonal wavelets for the decomposition and recon-

struction steps. These wavelets are however, in some sense, mutually orthogonal.

Coifman and Wickerhauser (1992) introduced the concept of wavelet packets :

redundant collections of linear combinations of wavelet functions that provide a

generalisation of standard wavelet bases. The entire collection is referred to as a

library of packet functions. Wavelet packets allow for more flexibility than a classi-
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cal wavelet and hence can provide more efficient decompositions. When performing

a wavelet packet transform, both the low and high pass filters are applied at each

stage of the decomposition, to both the scaling and wavelet coefficients. Coif-

man and Wickerhauser (1992) also develop methodology for searching to find the

best basis representation within a given library. Lawton (1993) derived complex-

valued wavelets, while Lina and Mayrand (1995) provides a comprehensive dis-

cussion of complex-valued Daubechies’ wavelets. Complex-valued wavelet analysis

can extract useful information that is potentially missed when using traditional

real-valued wavelet techniques.

The lifting scheme, proposed by Sweldens (1995), addresses a limitation of clas-

sical wavelets to allow for multiscale transforms of irregularly sampled data. This

transform is composed of two steps, involving prediction and updating. For partic-

ular filters, the lifting scheme can be seen as a generalisation of the (bi)orthogonal

DWT or the wavelet packet transform. Wavelet functions obtained via lifting

are known as second generation wavelets; unlike standard wavelets they are not

necessarily translates and dilates of the same function. Wavelet lifting has also

been applied to the problem of missing observations of time series; see for example

Knight et al. (2012).

2.2 Time Series Analysis

In this thesis, wavelets are to be used as tools in time series analysis, and so in

this section we describe some of the basic concepts of the subject. Time series are

a class of stochastic processes that consist of observations made sequentially over

time. A discrete time series is a collection of random variables {Xt, t ∈ T}, which

has been measured at discrete, successive time points. Often, the time series is

observed on a uniformly spaced interval. A key feature of time series data is that

the observations are, in general, not independent.
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2.2.1 Basic Concepts in Time Series Analysis

Commonly, the first and second moments are used to describe a time series. The

mean function is given by µt = E(Xt) provided it exists, where E is the expected

value operator. The degree of dependence between two values in the time series can

be found, as in classical statistics, using the notions of covariance and correlation.

Without loss of generality, assuming a zero-mean time series and finite variance of

Xt, the autocovariance function is defined as

γt(τ) = Cov(Xt, Xt+τ ) = E (XtXt+τ ) ,

The autocorrelation function (ACF) is given by

ρt(τ) =
γt(τ)

Var(Xt)
.

The autocovariance measures the linear dependence between two points on a time

series observed at different times. If a time series is very smooth, then the auto-

covariance will stay large even for large values of τ . On the other hand, if a time

series is choppy then the autocovariance will usually be close to zero for far apart

observations. Even if γt(τ) = 0, there may still be some dependence between Xt

and Xt+τ , although not linear. When τ = 0, the autocovariance reduces to the

variance function.

2.2.2 Stationary Time Series

It is necessary to impose assumptions on the evolution of a time series in order

to facilitate inference on its behaviour. A large proportion of the literature is

concerned with stationary time series. Informally a stationary times series is one

whose statistical properties do not change over time. More formally, a strictly

stationary time series is one where the joint distribution of (Xt1 , . . . , Xtn) is the

same as (Xt1+τ , . . . , Xtn+τ ) for all ti, n and τ . Strict stationarity is usually too
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strong an assumption in practice, which gives rise to a weaker form of stationarity.

A time series is said to be second-order or weakly stationary if E(Xt) = µ and the

autocovariance γ(τ) = cov(Xt, Xt+τ ) is a function of τ only. Employing a slight

abuse of language, henceforth we will refer to a weakly stationary time series as

stationary.

Any weakly stationary zero-mean discrete time series can be decomposed via

the well-known Cramér representation

Xt =

∫ π

−π
A(ω) exp(iωt)dZ(ω), (2.2.1)

where A(ω) is the amplitude, and Z(ω) is an orthonormal increment process, i.e.

E(dZ(ω1)dZ(ω2)) = δω1,ω2 . The parameter ω can be interpreted as frequency,

in that Xt is given by a weighted linear combination of Fourier trigonometric

functions that oscillate at different frequencies. The spectrum, or spectral density

function f(ω) := |A(ω)|2, is a measure of the ‘amount’ of oscillation at different

frequencies ω ∈ (−π, π). In particular, the term f(ω)dω is the contribution to the

total variance of Xt for frequencies in the range (ω, ω + dω). The autocovariance

function of Xt is related to the spectrum by the following Fourier formula

γ(τ) =

∫ π

−π
f(ω) exp(iωτ)dω.

There is a vast array of time series models in the literature. We briefly describe

ARMA (Autoregressive Moving Average) processes, which are arguably the most

ubiquitous time series models. An ARMA(p, q) process is defined as

Xt =

p∑
j=1

αjXt−j +

q∑
i=1

βiεt−i + εt,

where the εt are independent, identically distributed zero-mean random variables,

often assumed to be Gaussian. An ARMA(p, q) process is stationary provided that
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the polynomial

α(z) = 1− α1z − . . .− αpzp

has no roots in the closed unit disk. ARMA models are examples of linear models,

in which Xt and its random innovations εt are related through a linear transfor-

mation. For a detailed discussion on common time series models, see for example

Brockwell et al. (1991) and Andersen et al. (2009).

2.2.3 Nonstationary Time Series

In the Cramér representation of Equation (2.2.1), the amplitude A(ω) does not

depend on time, and so the amplitude of the process remains constant across all

time. This means that the frequency behaviour of the time series is the same for

all time. For many time series in practical applications, this will not be true, and

so a stationary time series model will not suffice. One solution is to only analyse

small intervals of the observed data, upon which the assumption of stationarity

may hold. However, this raises questions such as the length of interval used, and

can compromise estimation accuracy. Another common approach is to induce

stationarity by differencing the data. This is the case in ARIMA (Autoregressive

Integrated Moving Average) modelling, where “Integrated” refers to the degree of

differencing necessary to induce stationarity.

There are several ways in which model (2.2.1) can be adapted to introduce

time dependence. For example, the amplitudes, A(ω), can be replaced with a time-

dependent version At(ω), as in Priestley (1965) and Dahlhaus (1997). A method of

this form results in a time-frequency model. Dahlhaus (1997) introduces the class

of locally stationary Fourier (LSF) processes, in which the process Xt is modelled

as a triangular stochastic array {Xt,T}T−1t=0 , such that

Xt =

∫ π

−π
A0
t,T (ω) exp(iωt)dZ(ω). (2.2.2)

Furthermore, there exists a transfer function A : [0, 1]×R→ C, continuous in the
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first argument, and 2π-periodic in the second, such that

sup
t,ω

∣∣A0
t,T (ω)− A(t/T, ω)

∣∣ ≤ K

T
, (2.2.3)

where K is a positive constant. Asymptotic analysis is made difficult in a nonsta-

tionary setting since future observations of the process do not provide information

on its current structure. Dahlhaus (1997) addresses this problem through the no-

tion of rescaled time, z = t/T ∈ (0, 1). Modelling the amplitudes as a function of

rescaled time facilitates meaningful asymptotic theory. As the length of the time

series increases, more information about the local structure of A(z, ω) is revealed.

There are a number of other approaches in the literature for modelling non-

stationary time series. Van Bellegem and Dahlhaus (2006) discuss nonstationary

autoregressive models, where the parameters are allowed to vary with time. Ombao

et al. (2002) describe an alternative representation for nonstationary time series in

terms of SLEX (Smoothed Localised Complex Exponential) functions, that can be

viewed as localised versions of the Fourier exponential functions. The time series

is segmented into approximately stationary intervals in a data-driven fashion, via

the Auto-SLEX method (Ombao et al., 2001). This allows for estimation of the

time-varying spectra. For an overview of nonstationary time series modelling, see

Dahlhaus (2012).

2.3 Locally Stationary Wavelet Processes

The time series models considered in Chapters 3 – 5 of this thesis are based upon

the locally stationary wavelet (LSW) model, introduced in Nason et al. (2000). In

this section, we describe the LSW model and discuss various related quantities.

The LSW model follows Dahlhaus (1997) in that it adopts the use of rescaled time,

but differs by replacing the Fourier basis representation with a non-decimated

wavelet basis representation. First, we describe discrete non-decimated wavelets

which will form the building blocks for LSW processes.
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2.3.1 Discrete Non-Decimated Wavelets

Let {hk} and {gk} be the low and high-pass quadrature mirror filters that are

used in the construction of Daubechies compactly supported wavelets. Nason

et al. (2000) recursively construct the compactly supported discrete wavelets ψj =

(ψj,0, . . . , ψj,Nj−1) of length Nj for scale j < 0 by using the following equations:

ψ−1,n =
∑
k∈Z

gn−2kδ0,k = gn, for n = 0, . . . , N−1 − 1,

ψj−1,n =
∑
k∈Z

hn−2kψj,k, for n = 0, . . . , Nj−1 − 1,

Nj = (2−j − 1)(Nh − 1) + 1,

where Nh is the number of non-zero elements of {hk}. Note here that we adopt

the convention whereby the scale j takes negative values. In this setting, the data

can be viewed as being at scale 0, while the finest level of detail is given by scale

−1, and coarser scales given by smaller values of j. For example, the discrete Haar

wavelets at scales −1 and −2 are given by

ψ−1 = (g0, g1) =
1√
2

(1,−1), ψ−2 = (h0g0, h1g0, h1g0, h1g1) =
1

2
(1, 1,−1,−1),

and so on for coarser scales:

ψj = 2j/2(1, 1, . . . , 1︸ ︷︷ ︸
2−j−1 times

,−1,−1, . . . ,−1︸ ︷︷ ︸
2−j−1 times

).

The discrete wavelets are the same as the vectors produced by Daubechies’ cascade

algorithm used for producing discrete approximations to continuous-time wavelets

at successively finer scales. We further define from Nason et al. (2000) the au-

tocorrelation wavelets, which appear in the representation of the autocovariance
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functions of LSW processes. The autocorrelation wavelets (ACW) are defined by

Ψj(τ) :=
∑
k∈Z

ψj,kψj,k−τ , j < 0, τ ∈ Z.

The autocorrelation wavelets average the discrete wavelets over all locations within

one scale j, and form a family of symmetric, compactly supported and positive

definite functions on τ ∈ Z. The autocorrelation wavelets, although not orthogo-

nal, satisfy the following three important properties: Ψj(0) = 1,
∑

τ Ψj(τ) = 0 for

all j, and
∑

j 2jΨj(τ) = δτ0. The discrete autocorrelation wavelets are related to

their continuous counterparts by the formula

Ψj(τ) = Ψ(2j|τ |), (2.3.1)

where the continuous autocorrelation wavelet Ψ(u) is defined by

Ψ(u) =

∫ ∞
−∞

ψ(x)ψ(x− u)dx,

where u ∈ R and the support of Ψ(u) is R. Equation (2.3.1) holds for all

Daubechies compactly supported wavelets. Lastly, we define the autocorrelation

wavelet inner product matrix A, which will be used later in the estimation of LSW

process quantities. Define the operator A = (Ajl)j,l<0 by

Ajl = 〈Ψj,Ψl〉 =
∑
τ

Ψj(τ)Ψl(τ),

and the J-dimensional matrix AJ := (Ajl)j,l=−1,...,−J .

2.3.2 The LSW Model

The LSW model utilises wavelets to decompose a stochastic process with respect to

an orthonormal increment process in the time-scale domain. Following the original

LSW model in Nason et al. (2000) and the adaptations described in Fryzlewicz
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(2003), the non-decimated wavelets described above are used to define the following

time series model.

Definition 2.3.1. An LSW process {Xt,T}, t = 0, . . . , T − 1, and T = 2J ≥ 1

is a doubly-indexed stochastic process with the following representation in the

mean-square sense:

Xt,T =
−1∑

j=−∞

∑
k∈Z

wj,k;Tψj,k−tξj,k, (2.3.2)

where {ξj,k} is a random orthonormal increment sequence, {ψj,k−t}j,k is a set of dis-

crete non-decimated wavelets, and {wj,k;T}j,k is a set of amplitudes. The quantities

in representation (2.3.2) possess the following properties:

1. E(ξj,k) = 0 for all j, k.

2. Cov(ξjk, ξlm) = δjlδkm.

3. There exists, for each j ≤ −1, a Lipschitz continuous function Wj(z) for

z ∈ (0, 1) which satisfies the following properties:

−1∑
j=−∞

|Wj(z)|2 <∞ uniformly in z ∈ (0, 1). (2.3.3)

The Lipschitz constants Lj are uniformly bounded in j and

−1∑
j=−∞

2−jLj <∞.

There exists a sequence of constants Cj such that for each T

sup
k

∣∣∣∣wj,k;T −Wj

(
k

T

)∣∣∣∣ ≤ Cj
T
, (2.3.4)

where for each j the supremum is over k = 0, . . . , T − 1, and where the

sequence {Cj} satisfies
−1∑

j=−∞

Cj <∞.
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This representation can be thought of as building a time series model Xt,T

out of a linear combination of oscillatory functions ψj,k with random amplitudes

wj,k;T ξj,k, which can be viewed as a multiscale version of the stationary time series

definition.

The key assumption of the model lies in requiring that E(ξj,k) = 0, which in

doing so implies that E(Xt,T ) = 0. In most practical situations it is simply not the

case that the time series is zero-mean, and so the data must be preprocessed in some

way to convert it to a zero-mean time series in order to make it amenable to the

LSW process representation. This can be achieved, for example, by detrending the

time series using wavelet-based techniques, such as in von Sachs and MacGibbon

(2000). However, this is far from straightforward as it requires a pre-estimate

of the nonstationary second-order structure. We will discuss in Chapters 3 – 5

our proposed methodology of simultaneously considering first and second-order

structure within the same methodological framework, building upon the LSW

model.

2.3.3 The Evolutionary Wavelet Spectrum

In the classical stationary setting, the spectrum is the usual summary statistic

used for describing oscillatory behaviour. Its wavelet analogue, the evolutionary

wavelet spectrum (EWS), measures the local power (contribution to variance) in

an LSW process at a particular rescaled time z = k/T and scale j. It is defined as

Sj(z) = |Wj(z)|2.

Since the Wj are assumed to be Lipschitz continuous, the spectrum Sj is also

Lipschitz continuous, which ensures it evolves slowly over time. The local auto-

covariance (LACV) function for an LSW process provides information about the

autocovariance at a rescaled location z = k/T ∈ (0, 1). In stationary time series

analysis the spectrum is the Fourier transform of the autocovariance function; in
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LSW analysis we obtain an analogous relationship between the EWS and LACV.

The local autocovariance (LACV), c(z, τ), is defined as

c(z, τ) =
−1∑

j=−∞

Sj(z)Ψj(τ), τ ∈ Z, z ∈ (0, 1). (2.3.5)

Equation (2.3.5) is a decomposition of the autocovariance of a process over scales

and rescaled time locations. In Nason et al. (2000), it was shown that the error in

approximating the true autocovariance of the process with the LACV was O(T−1).

Furthermore, the representation in Equation (2.3.5) is invertible:

Sj(z) =
∑
l

A−1jl
∑
τ

c(z, τ)Ψl(τ),

provided that the operator A is invertible and possesses a bounded inverse. In the

original work of Nason et al. (2000), it was shown that the operator A possesses

a bounded inverse in the case where A is constructed using either Haar or Shan-

non wavelets. The authors also conjectured that the general result holds for all

Daubechies compactly supported wavelets. In Chapter 4, we affirmatively answer

the conjecture, by adapting techniques from Cardinali and Nason (2017), in which

the authors state that bounded invertibility holds for all wavelet packet-based op-

erators. We correct a mistake in the authors’ proof and make a crucial alteration

in order to show bounded invertibility for all Daubechies compactly supported

wavelets.

2.3.4 Example

Next, we briefly describe an example to illustrate some properties of the LSW

model. We define the following evolutionary wavelet spectrum:



CHAPTER 2. LITERATURE REVIEW 30

Sj(z) =


sin2(4πz) for j = −5, z ∈ (0, 1),

1 for j = −1, z ∈ (800/1024, 900/1024),

0 otherwise.

(2.3.6)

In Figure 2.3.1, we see the spectrum plot of the EWS in Equation 2.3.6. The

way to interpret the plot is that from the bottom to the top, we go from fine scales

to coarser scales. The finest scale is given by scale −1 at the bottom of the plot,

with coarser scales above. This spectrum contains a burst of power at the finest

scale of the spectrum, and slowly-evolving, oscillatory behaviour at a coarser scale.

We simulate a realisation from this spectrum in order to highlight the behaviour

of the time series. The simulation is achieved by constructing the coefficients

wj,kξj,k, where wj,k = Sj(k/T )1/2 and the ξj,k are Gaussian with mean zero and

variance one. We see in Figure 2.3.2 a realisation from this process. The sinusoidal

nature of the spectrum at a fairly coarse scale can be seen in the plot and the very

high frequency behaviour due to the burst between 800 and 900 is also apparent.
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Figure 2.3.1: Square sine at scale -5, with a burst at 800 at scale -1, as defined in
Equation (2.3.6).
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Figure 2.3.2: A realisation from the square sine and burst at 800 spectrum, shown
in Figure 2.3.1.

2.3.5 Estimation of the Evolutionary Wavelet Spectrum

In order to estimate the EWS, we begin by taking a non-decimated wavelet trans-

form of the LSW process Xt,T . This is motivated by the fact that the definition

of an LSW process suggests that the wavelet transform of the amplitude wj,k is

approximately Xt,T (with error). The empirical wavelet coefficients of an LSW

process Xt,T are given by

dj,k;T := 〈Xt,T , ψj,k−t〉 =
∑
t

Xt,Tψj,k−t. (2.3.7)

This transform produces a matrix of coefficients with dimension J × T . We can

then estimate the EWS of an LSW process using the raw wavelet periodogram,

which is given by

Ijk,T := |dj,k;T |2,

where j = −1, . . . ,−J , k = 0, . . . , T − 1. The raw wavelet periodogram of an

LSW process Xt,T is the squared modulus of the non-decimated empirical wavelet

coefficients, and measures the “power" of the time series at location k and scale j.

It is a biased, inconsistent estimate of the EWS:
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Proposition 2.3.1.

E
(
IjbzT c,T

)
=
∑
l

AjlSl(z) +O(T−1). (2.3.8)

If Xt,T is Gaussian, then

Var(IjbzT c,T ) = 2

(∑
l

AjlSl(z)

)2

+O(2−jT−1). (2.3.9)

Hence, for the vector of periodograms I(z) := {I lbzT c,T}l=−1,...,−J , and the vector of

corrected periodograms L(z) := {LjbzT c,T}j=−1,...,−J with L(z) = A−1J I(z),

E (L(z)) = E
(
A−1J I(z)

)
= S(z) +O(T−1) ∀ z ∈ (0, 1), (2.3.10)

where S(z) := {Sj(z)}j=−1,...,−J .

The bias is due to the redundancy of the non-decimated wavelet transform,

and is corrected by premultiplication by A−1J . The variance does not vanish as

the sample size T tends to infinity, and hence smoothing must be performed in

order to obtain a consistent estimate of the spectrum. Nason et al. (2000) use a

wavelet thresholding approach for smoothing, while a running mean smoother can

also be employed; see Nason (2013). In practice, the raw wavelet periodogram is

first smoothed, then corrected, to obtain the final estimate of the EWS.

There are several associated techniques described in the literature for estima-

tion of evolutionary wavelet spectra. Fryzlewicz and Nason (2006) propose an

estimation strategy involving the Haar-Fisz transform, for LSW processes with

piecewise constant EWS. Van Bellegem and von Sachs (2008) discuss an adaptive

procedure for estimation of the EWS of LSW processes whose EWS is subject

to a total variation assumption. Nason and Stevens (2015) use Bayesian wavelet

shrinkage to estimate the EWS under the same assumptions as Van Bellegem and

von Sachs (2008). The LACV function can be estimated by substituting the con-

sistent spectral estimate into Equation (2.3.5), and replacing the infinite sum with
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a finite one with lower limit −J0, where 2J0 = o(T ). The resulting estimator is

shown to be mean square consistent in Nason et al. (2000).

Lastly, we note that the LSW model is but one possible representation for a

locally stationary time series. Depending on the application at hand, the appro-

priate type of locally stationary model to use will vary. For example, in situations

where the second-order structure evolves rapidly, LSW processes will work well

due to the wavelet being compactly supported. If, however, the data application is

known to posses certain cyclic behaviour, such as in the case of some environmen-

tal time series where certain physical processes drive the variability, then a locally

stationary Fourier approach may be more appropriate. It could also be the case

that a locally stationary model is too complicated for the problem, and an ap-

proach assuming stationary is more appropriate. Indeed, principled methodology

for model selection in locally stationary time series remains an open problem.

2.4 Nonparametric Regression/Trend Estimation

As discussed in the introduction, the LSW framework does not incorporate first-

order behaviour within the model. To that end, it is necessary to review some ideas

from nonparametric regression and trend estimation; most importantly wavelet-

based techniques. We aim to estimate a function g : [0, 1] → R, given noisy

observations yi, observed on an equally spaced grid:

yi = g(i/n) + εi, i = 1, . . . , n, (2.4.1)

where the εt are noise with E(εt) = 0. There are a number of subclasses of this

problem, depending on the nature of the noise εt and the smoothness of the func-

tion g. Often, the area of trend estimation is concerned with estimation of smooth

functions, while in general in nonparametric regression the function is not neces-

sarily constrained to be smooth.
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2.4.1 Wavelet-Based Methods

Donoho (1993, 1995), Donoho and Johnstone (1994, 1995) and Donoho et al. (1995)

introduced the concept of wavelet shrinkage in their seminal papers. The main

idea of their work is that we can apply the DWT to the model (2.4.1), to obtain

dj,k = θj,k + εj,k, where dj,k, (θj,k, εj,k) is the DWT of yi, (g(i/n), εi).

The motivation behind this approach is threefold. Firstly, when the function

g is relatively smooth, the wavelet coefficients will be close to zero. Secondly,

by Parseval’s relation, the energy in the function domain is equal to the sum of

squares of wavelet coefficients. Combining this fact with the sparsity of the wavelet

coefficients, this means that the energy of the original signal g is often strongly

concentrated into fewer wavelet coefficients. Thus, relative to the noise variance

the values of the coefficients are often larger. Finally, since the wavelet transform

is orthogonal, the wavelet transform of white noise is also white noise.

Donoho and Johnstone (1994) use these ideas in their wavelet shrinkage method

to estimate g. The idea of the method is that the large values of the empirical

wavelet coefficients are the ones that are most likely to contain true signal and

noise, whereas the small coefficients are only the result of noise. Donoho and

Johnstone (1994) define the following hard and soft thresholding functions

d̂Hj,k = ηH(dj,k, λ) = dj,kI(|dj,k| > λ),

d̂Sj,k = ηS(dj,k, λ) = sgn(dj,k)(|dj,k| − λ)I(|dj,k| > λ),

where I is the indicator function, dj,k is the empirical coefficient to be thresh-

olded, and λ is the threshold. Donoho and Johnstone (1994) define the universal

threshold, one of the most widely used thresholds, by λu = σ
√

2 log n. In practical

situations, the noise level σ must be estimated by σ̂, an estimate of the common

standard deviation of the noise εi. Donoho and Johnstone (1994) suggest esti-

mating σ using the median absolute deviation (MAD) of the finest-scale wavelet

coefficients, which ensures robustness.
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There are many other threshold functions in the literature. For example, in

Donoho (1995), the authors introduce the Stein’s Unbiased Risk Estimator (SURE)

threshold, considering a soft thresholding procedure based on Stein’s shrinkage

method for estimating the mean of multivariate normal random variables. Gao

and Bruce (1997) use firm shrinkage, while it is also possible to take a Bayesian

approach to thresholding: see for example Johnstone and Silverman (2005). Nason

(1996) employs cross-validation in order to select the threshold. Cai and Silverman

(2001), among others, consider a block thresholding approach in which wavelet

coefficients are considered in overlapping blocks. Cai and Brown (1998) and Sardy

et al. (1999), for example, consider wavelet shrinkage in the case of unequally

spaced data.

Wavelet thresholding has been applied successfully in a variety of other sce-

narios. For example, Neumann and von Sachs (1995) consider thresholding in

the case where the error structure is non-Gaussian and non-IID. Johnstone and

Silverman (1997) propose a variety of threshold choices for data with correlated

noise. Neumann and von Sachs (1997) and von Sachs and Schneider (1996) pro-

pose thresholding estimators of time-varying spectra where the errors are assumed

to follow the locally stationary time series model of Dahlhaus (1997).

Coifman and Donoho (1995) introduce the concept of translation invariant (TI)

denoising, in which the non-decimated wavelet transform is used in place of the

standard decimated DWT. The non-decimated wavelet coefficients are then shrunk

via the universal threshold, and an inverse NDWT is performed to obtain the

estimate of the function g. Since the NDWT is redundant, there are many possible

methods of performing the inverse NDWT transform. Coifman and Donoho (1995)

propose a method that is equivalent to taking the average over all possible DWTs

contained in the NDWT. This corresponds to the DWT of all possible circular

shifts of the data, which inspires the name “translation invariant”. The inverse

transform can also be performed using a single basis, selected using, for example,

the best-basis algorithm of Coifman and Wickerhauser (1992).
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2.4.2 Other Estimation Methods

There is a vast array of non wavelet-based methods in the statistical literature

concerning the well studied problem of nonparametric regression. A common

technique is to use kernel smoothing to estimate the unknown function g. Ex-

amples of well-known kernel functions include the Nadaraya-Watson kernel esti-

mator (Nadaraya, 1964; Watson, 1964), the Epanechnikov kernel (see for example

Benedetti (1977)), and the Preistley-Chao kernel estimator (Priestley and Chao,

1972).

Another well studied technique is local polynomial regression, in which poly-

nomials of some prescribed order that are localised are fit to the data – see for

example Fan and Gijbels (1996). For generality assume that the data yi are ob-

served at not necessarily equally spaced values xi. Local polynomial estimators

use weight functions W to fit polynomials of order p, according to the weighted

least squares criterion

n∑
i=1

(yi − β0 − . . .− βp(x− xi))2W
(
x− xi
h

)
. (2.4.2)

The estimator ĝ is the minimiser of Equation (2.4.2). The bandwidth parame-

ter h specifies the smoothing window and affects the smoothness of the resulting

estimate of g.

Another common method is spline smoothing, which trades off fidelity to the

data with the smoothness of the estimate in order to estimate the unknown func-

tion g. A cubic smoothing spline estimator ĝ is defined as the function that

minimises the equation

1

n

n∑
i=1

(yi − g(xi))
2 + α

∫
g′′(x)2dx.

Spline functions are piecewise polynomials that are smooth and satisfy continuity

constraints at the knots {xi} joining their pieces; for detailed discussion see for

example Green and Silverman (1993).
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At their inception, all of the aforementioned methods were based on the as-

sumption that the error processes are independent, which is unlikely to be true

when considering time series data. This correlation in the errors will have an

effect on the asymptotic properties of the estimators. The methods have since

been extended to accommodate more general error structures. For example, for

spline smoothing, Wang (1998) considers Gaussian autocorrelated errors, while

Xiao et al. (2003) perform local polynomial estimation by first whitening the data

to remove the autocorrelation. For detailed discussion of nonparametric smoothing

methods, see for example Härdle (1991) or Simonoff (2012).

The trend of a time series may also be modelled as a stochastic component, as

opposed to a deterministic one. One of the most extensively studied methods which

can be used to incorporate a stochastic trend component is the use of dynamic

linear models (DLMs). The idea is that the observations depend on an underlying

unobserved state, which is assumed to follow a well-defined stochastic process.

The Kalman filter approach utilises this idea and can be used to model a trend

by assuming a certain form for the unobserved state. For a detailed discussion of

DLMs, see for example Chapter 6 of Shumway and Stoffer (2010).

2.4.3 Joint Consideration of First and Second-Order Non-

stationarity

Up until now, the literature that has been cited has been concerned with nonsta-

tionary first or second-order structure estimation. There is, however, an emerging

literature related to inference in the case that both first and second-order quanti-

ties are assumed to be nonstationary in some manner. We devote the rest of the

section to briefly surveying these methods.

von Sachs and MacGibbon (2000) construct a wavelet thresholding estimator

of the first-order structure of a time series that possesses locally stationary, not

necessarily Gaussian errors. The authors derive the asymptotic properties of the

empirical wavelet coefficients under mild, general assumptions, showing that at ap-
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propriate scales the wavelet coefficients are asymptotically Gaussian. This permits

the use of a time-dependent universal threshold of the form λj,k = σj,k
√

2 log(2j),

where σj,k is the noise level of the empirical wavelet coefficient dj,k.

Therefore, a pre-estimate of the variance of the wavelet coefficients is required

in order to perform the thresholding procedure. This can potentially hamper the

practical performance of the method, since the locally stationary second-order

structure of the time series is unknown. The authors propose to use a hybrid local

MAD type method in order to estimate the unknown variance. First, a linear Haar

wavelet estimator is fitted to the squared wavelet coefficients d2j,k. Then, the MAD

of the squared wavelet coefficients is calculated in each region of the Haar wavelet

estimator that is constant, giving the final estimate. All coefficients within the

same constant block with respect to the Haar estimator have the same variance

estimate, and so the threshold can be viewed as a locally universal threshold.

Vogt (2012) considers the problem of nonparametric regression in the pres-

ence of locally stationary errors. The trend, assumed to be relatively smooth, is

estimated using kernel-based methods, while the error structure can be nonlin-

ear. Krampe et al. (2015) use a bootstrap approach to estimate a trend function

that satisfies Hölder continuity type conditions, in the presence of linear locally

stationary errors.

Vogt and Dette (2015) propose nonparametric methodology to detect grad-

ual changes in statistical properties of locally stationary processes, including the

mean, autocovariance, and higher moments. Dette and Wu (2019) test for relevant

changes in the mean of nonstationary processes, while Wu and Zhou (2020) test

for abrupt changes in smooth mean functions in the presence of locally stationary

errors. Das and Politis (2020) and Dette and Wu (2020) consider the problem of

prediction in time series that can exhibit trend and locally stationary errors.

Beran and Feng (2002) propose parallel first and second-order estimation using

a semiparametric approach, in which the second-order structure follows a para-

metric model and is assumed to be difference-stationary. Tunyavetchakit (2010)
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examines mean estimation for the case of time-varying autoregressive processes.

Ferreira et al. (2013) perform Kalman filtering for models that display time-varying

trends and errors belonging to a class of locally stationary processes.

In this thesis, we consider time series that display a non-trivial mean function

and LSW process errors, a problem that has yet to be studied in the literature.

Further discussion on the topic of joint first and second-order nonstationary time

series can be found in the introductory sections of Chapters 3 – 5, and can also be

found within Dahlhaus (2012).



Chapter 3

Modelling Time-Varying First and

Second-Order Structure of Time

Series via Wavelets and Differencing

3.1 Introduction

Time series data can often possess complex and dynamic characteristics. Most

commonly encountered time series in practice are nonstationary – the mean and

autocovariance of the series vary over time. Modelling how these properties change

over time is crucial for making inference on the data. Nonstationary time series

arise in a variety of applications, for example in environmental sciences (Hu et al.,

2019), climatology (Das and Politis, 2020), and financial time series (Roueff and

von Sachs, 2019). In this chapter, we consider a time series model of the form

Xt,T = µ

(
t

T

)
+ εt,T , 0 ≤ t < T, (3.1.1)

where µ : [0, 1] → R is a non-parametric deterministic trend function, and εt,T is

a locally stationary wavelet (LSW) process with E(εt,T ) = 0. This model accounts

for nonstationarity in both the first and second-order structure of the time series:

the time-varying mean function is encapsulated in the trend term, while the time-

40
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varying second-order behaviour is described by the LSW process term. A thorough

explanation of Model (3.1.1), including necessary background on LSW processes,

is given in Section 3.2.

First and second-order estimation of a time series are most commonly per-

formed in isolation, rather than in parallel within the one common methodological

framework. However, there is an emerging literature where the mean function

is estimated as well as parameters responsible for second-order nonstationarity.

For example Tunyavetchakit (2010) consider time varying AR(p)-processes where

the mean curve is estimated in parallel. Other methods, such as Dahlhaus and

Neumann (2001) which focuses on the semi-parametric setting, consider results

where the mean function is time-varying and/or estimated. Khismatullina and

Vogt (2020) test for increases and decreases in trend in the presence of stationary

time series errors, while Dette and Wu (2020) consider the problem of prediction

in locally stationary time series.

The problem of performing inference on the mean function in the presence of

nonstationary second-order structure is a highly challenging one. In von Sachs

and MacGibbon (2000), for example, the authors describe a method using wavelet

thresholding, however the threshold used is data-driven and depends on the nonsta-

tionary second-order structure, which is ultimately unknown. Vogt (2012) employs

kernel-based methods to estimate a smooth non-parametric trend function in the

presence of locally stationary errors. Dette and Wu (2019) test for relevant changes

in the mean of nonstationary processes. Similarly, there is less attention in the

literature on nonstationary second-order estimation in the presence of a non-trivial

mean function.

In order to estimate a nonstationary second-order structure a zero-mean process

is often assumed. One of the most well-known methods for removing the trend

in a time series is differencing: see for example Chan et al. (1977) and Shumway

and Stoffer (2010). The time series {Xt} can be, for example, first-differenced to

obtain a new time series, {∇Xt = Xt−Xt−1}. Differencing aims to remove a trend
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without the need to estimate any parameters (whose estimation often includes an

assumption of stationary errors). For example, Hart (1989) utilises differencing

to estimate the stationary covariance function, while Dai et al. (2015) propose

a difference-based variance estimator, both within the context of nonparametric

regression. In the time series literature, it is often the case that inference is made

on the properties of the differenced time series. In contrast, this chapter proposes

a method to jointly estimate the time-varying trend and second-order structure of

the original time series, by employing the commonly used strategy of differencing

a time series in order to remove the trend.

Our approach to this problem can be summarised as follows. By differencing

the time series to remove the trend, we can estimate the appropriate second-order

quantities of interest of the locally stationary wavelet part of Model (3.1.1). This

is achieved by considering the effect of differencing on the second-order properties

of the series in order to develop an appropriate estimation procedure. Expand-

ing upon the rigorous theory developed in Nason et al. (2000), we obtain results

on the consistent estimation of the second-order structure using our modified es-

timation strategy for the original time series. Using this estimate, we discuss a

wavelet thresholding technique to estimate the trend function µ(t/T ) in a prin-

cipled manner, by taking into account the time-varying second-order behaviour.

Our methodology thus enables the joint estimation of the first and second-order

structure of nonstationary time series. The data applications analysed in this

chapter demonstrate the added utility that estimating the second order structure

of the original time series brings.

The rest of the chapter is organised as follows. In Section 3.2 we introduce the

time series model which we focus on in this chapter, describe key assumptions, and

discuss necessary background to LSW processes. In Section 3.3, we analyse the

effect that differencing has on the spectral structure of a time series, and explain

the intuition behind our methodology. Furthermore, we describe the methodology

for consistent estimation of the second-order structure in the presence of trend,
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and in Section 3.4 we use this estimate in order to estimate the trend of the series.

Simulation studies assessing the method’s performance are given in Section 3.5.

In Section 3.6, we apply our framework to two data examples, demonstrating the

utility of the method, while concluding remarks are given in Section 3.7. All proofs

of stated results are contained within Appendix A.

3.2 Model Formulation

In this section we introduce the modelling paradigm that we will use, as well

as explaining the necessary background concepts. Our Trend Locally Stationary

Wavelet (T-LSW) model, developing on the theory of locally stationary wavelet

processes of Nason et al. (2000), allows for simultaneous inference on the time-

varying mean and autocovariance of a time series. Wavelets are useful in estimat-

ing time-varying quantities, especially nonstationary characteristics, as they are

compactly supported oscillatory functions that can be translated and dilated to

provide location-scale decompositions. For an overview of wavelet techniques, see

for example Nason (2008) or Vidakovic (2009).

3.2.1 Model Definition

Below, we define the T-LSW model, which is composed of a deterministic Lipschitz

continuous trend component and a locally stationary wavelet component.

Definition 3.2.1. A trend locally stationary wavelet (T-LSW) process {Xt,T},

t = 0, . . . , T − 1, and T = 2J ≥ 1 for J ∈ N is a doubly-indexed stochastic process

with the following representation in the mean-square sense:

Xt,T = µ

(
t

T

)
+

−1∑
j=−∞

∑
k∈Z

wj,k;Tψj,k−tξj,k, (3.2.1)

where {ξj,k} is a random zero-mean orthonormal increment sequence, {ψj,k−t}j,k is

a set of discrete non-decimated wavelets, and {wj,k;T} is a set of amplitudes. The
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quantities in representation (3.2.1) possess the following properties:

1. The function µ : [0, 1] ∈ R is Lipschitz continuous with constant K > 0, i.e

∣∣∣∣µ( t

T

)
− µ

( s
T

)∣∣∣∣ ≤ K

T
, ∀ s, t ∈ [0, T ].

2. There exists, for each j ≤ −1, a Lipschitz continuous function Wj(z) for

z ∈ (0, 1) which satisfies the following properties:

−1∑
j=−∞

|Wj(z)|2 <∞ uniformly in z ∈ (0, 1);

the Lipschitz constants Lj are uniformly bounded in j and
∑−1

j=−∞ 2−jLj <

∞. There exists a sequence of constants Cj such that for each T

sup
k

∣∣∣∣wj,k;T −Wj

(
k

T

)∣∣∣∣ ≤ Cj
T
,

where for each j ≤ −1 the supremum is over k = 0, . . . , T − 1, and where

the sequence {Cj} satisfies
∑−1

j=−∞Cj <∞.

The model imposes the same assumptions on the LSW component as in Nason

et al. (2000), allowing for locally stationary second-order structure, while also per-

mitting nonstationary first-order behaviour by incorporating a smooth mean func-

tion µ. Imposing a Lipschitz continuous trend assumption is not overly restrictive,

given that trend functions are generally assumed to be smooth and slowly-evolving.

In particular, polynomials (restricted to the interval [0, 1]) are Lipschitz contin-

uous, as are sinusoids. Such an assumption is commonly made in the literature,

see for example Vogt (2012) and Khismatullina and Vogt (2020). Furthermore, in

Section 3.3.6 we will discuss the case when the trend is not Lipschitz.
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3.2.2 Background to LSW Processes

In the original work of Nason et al. (2000), the trend function µ(t/T ) in Equation

(3.2.1) is assumed to be everywhere zero, which forces the process mean E(Xt,T )

to be equal to zero for all t. Consequently, within the original LSW framework

it is only possible to estimate time-varying second-order structure when the time

series does not exhibit a trend. In order to discuss our proposed methodology in

the setting where a trend is present, we dedicate the rest of the section to recalling

a number of definitions and results from Nason et al. (2000), which we will expand

upon and adapt to the setting where a trend is present.

The second-order structure of an LSW process is encoded in the spectrum. The

evolutionary wavelet spectrum (EWS) of an LSW process is defined as Sj(z) :=

|Wj(z)|2 for rescaled time z = k/T ∈ (0, 1), and measures the contribution to

variance at a particular rescaled time z and scale j. Since the Wj are assumed

to be Lipschitz continuous, the spectrum Sj is also Lipschitz continuous, which

ensures it evolves slowly over time. Alterations to the LSW model that use dif-

ferent assumptions on the EWS can be found in Fryzlewicz and Nason (2006) and

Van Bellegem and von Sachs (2008), which assume respectively that the EWS is

piecewise constant and of bounded total variation.

For ease of notation we now drop the dependence on T in the subscripts of

the model quantities. The EWS is estimated via the empirical wavelet coefficients

of the time series, given by dj,k := 〈Xt, ψj,k−t〉 =
∑

tXtψj,k−t. As with Fourier

approaches, the raw wavelet periodogram Ijk := |dj,k|2 is a biased, inconsistent

estimator of the EWS (Nason et al. (2000), Proposition 4):

E
(
Ijk
)

=
∑
l

AjlSl(k/T ) +O(T−1), (3.2.2)

Var(Ijk) = 2

(∑
l

AjlSl(k/T )

)2

+O(2−jT−1), (3.2.3)

where the operator A = (Ajl)j,l<0 is given by Ajl := 〈Ψj,Ψl〉 =
∑

τ Ψj(τ)Ψl(τ), and



CHAPTER 3. TREND-LSW PROCESSES USING DIFFERENCING 46

the autocorrelation wavelets are defined by Ψj(τ) :=
∑

k∈Z ψj,kψj,k−τ , j < 0, τ ∈ Z.

Hence, for the vector of periodograms I(z) := {I lbzT c}l=−1,...,−J , and the vector of

corrected periodograms L(z) := {LjbzT c}j=−1,...,−J with L(z) = A−1J I(z), where the

J-dimensional matrix AJ := (Ajl)j,l=−1,...,−J ,

E (L(z)) = E
(
A−1J I(z)

)
= S(z) +O(T−1) ∀ z ∈ (0, 1), (3.2.4)

where S(z) := {Sj(z)}j=−1,...,−J . The raw wavelet periodogram is first smoothed

and then corrected to produce an asymptotically unbiased, consistent estimator.

There are several approaches to smoothing for consistency, for example via a run-

ning mean as in Nason (2013) or wavelet thresholding as in Nason et al. (2000).

The correction is performed by premultiplying the (smoothed) raw wavelet peri-

odogram by A−1J , as motivated by Equation (3.2.4). The operator A is shown to

have bounded inverse for all Daubechies compactly supported wavelets in Chapter

4.

The local autocovariance (LACV) function for an LSW process provides in-

formation about the covariance at a rescaled location z = k/T ∈ (0, 1). The

LACV, c(z, τ), of an LSW process with EWS {Sj(z)} is defined as c(z, τ) =∑−1
j=−∞ Sj(z)Ψj(τ), for τ ∈ Z, z ∈ (0, 1). The LACV can be thought of as a

decomposition of the autocovariance of a process over scales and rescaled time lo-

cations. The LACV is estimated by plugging in the smoothed, corrected estimate

for the EWS into the definition of the LACV. Using wavelet thresholding of the

EWS estimator, it is shown in Nason et al. (2000) that the LACV estimator is con-

sistent. The next section addresses the consistent estimation of these second-order

quantities in the presence of first-order nonstationarity.
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3.3 LSW Estimation in the Presence of Trend via

Differencing

In this section, we discuss methodology for estimation of the evolutionary wavelet

spectrum and local autocovariance function of a trend-LSW process. In order

to estimate these quantities, we employ the ubiquitous practice of differencing to

remove the trend, but crucially correct for the effect of this on the spectrum.

3.3.1 Using Differencing to Detrend a Time Series

One of the most common methods for removing the trend in a time series is

differencing, see for example Chan et al. (1977) and Shumway and Stoffer (2010).

The time series {Xt} can be, for example, first-differenced to obtain a new time

series, {∇Xt = Xt−Xt−1}, upon which inference is then performed. One advantage

of differencing is that no parameters are estimated in the differencing operation,

which is not always the case for general detrending. An n-th order difference is

capable of removing a polynomial trend of degree n from the data.

One of the consequences of differencing is that the second-order statistical prop-

erties of the time series in Model (3.2.1) will change, sometimes quite drastically.

Therefore, it is potentially problematic to directly use the differenced process for

inference on the original process. In the context of ARIMA modelling, differencing

is performed in order to induce stationarity, and estimation is then performed on

the differenced series. However, this reasoning does not hold within our setting: if

we difference a nonstationary LSW process, the result will still be a nonstationary

process. Due to the potentially complex structure of the LSW process, properties

of the differenced series are not necessarily representative of the original series.

However, in order to estimate the trend component in (3.2.1), we require an esti-

mate of the second-order structure of the original time series, not the differenced

series.

It is straightforward to produce an example where spectral behaviour can
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be completely altered as a consequence of detrending using, for example, first-

differencing. Consider the zero-mean LSW process of length T = 210 = 1024,

defined by the spectrum Sj(z) = 1 for j = −1, 0 otherwise. This time se-

ries is referred to as the scale −1 Haar moving average process, and can be

written as Xt = (εt − εt−1)/
√

2, where the εt are independent identically dis-

tributed (IID) random variables. Taking the first-difference, we obtain ∇Xt =

Xt−Xt−1 = (εt − 2εt−1 + εt−2) /
√

2. Computing the expectation of the raw wavelet

periodogram of the differenced time series, we find that for j = −1, E(I−1k ) = 5,

and for j < −1, E(Ijk) = 3× 2j+1. Therefore, for all z ∈ (0, 1), the expected value

of the LSW estimator at time z is E(L(z)) = E(A−110 I(z)), where A−110 is the inverse

of the 10-dimensional A-matrix.

Having differenced the time series, a problem arises since E(Ijk) 6=
∑

lAjlSl(k/T )+

O(T−1). In particular, the expectation of the EWS estimate at scale −2 at any

time point is given by E
(∑

lA
−1
−2,lI

l
k

)
= −0.79 < 0. Therefore, the expectation

of our estimate of the spectrum at level −2 is -0.79, while in the original time

series we had S−2(z) = 0 for all z ∈ (0, 1). In Figure 3.3.1 left, we see a plot of

the original spectrum, while on the right, we see the expectation of the corrected

periodogram estimate, showing a clear discrepancy.
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Figure 3.3.1: Left: original spectrum of the scale −1 Haar moving average process.
Right: expectation of spectral estimate of differenced time series.

Differencing can also cause a very non-sparse spectral structure to be altered

into a very sparse one. The white noise process Xt = εt, where the εt are IID

random variables, can be represented as an LSW process using Haar wavelets and
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a spectrum defined by Sj(z) = 2j for all z ∈ (0, 1). Differencing this time series

gives ∇Xt = Xt −Xt−1 = εt − εt−1, which is a Haar LSW process with spectrum

Sj(z) = 2 for j = −1, Sj(z) = 0 otherwise. This induces autocorrelation in the

time series at lag 1, which is similar to what is observed when over-differencing in

classical stationary time series. Therefore, it can be seen that we must take into

account the differencing of the time series if we wish to say something meaningful

about the original series.

3.3.2 Intuition Behind Estimation Procedure

Given that the trend component of the Model (3.2.1) is Lipschitz continuous, first-

differencing the time series yields

∇Xt = Xt −Xt−1 = µ

(
t

T

)
+ εt − µ

(
t− 1

T

)
− εt−1

= εt − εt−1 +O(T−1).

Hence, differencing the original series results in a differenced locally stationary

wavelet process that is asymptotically zero-mean. We wish to estimate the evo-

lutionary wavelet spectrum of the original time series {Xt} using the differenced

series {∇Xt}. Proceeding by using the standard estimation procedure of Nason

et al. (2000) by taking the squared wavelet coefficients and premultiplying by the

inverse of the A matrix, as in Equation (3.2.4), is not appropriate, as we have seen

in Section 3.3.1. Denote the empirical non-decimated wavelet coefficients of the

first-differenced series by

d̃j,k :=
∑
t

∇Xtψj,k−t.

We can compute the expectation of the raw wavelet periodogram Ĩjk := |d̃j,k|2,

which will yield an analogous result to Equations (3.2.2) and (3.2.3). Hence, our

estimation strategy will follow that of Nason et al. (2000). However, the correction

of the raw wavelet periodogram to achieve unbiasedness will require a different
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correction matrix, to account for the fact that the raw wavelet periodogram is

calculated on the differenced series.

Remark 1. It is not immediately obvious that if we first-difference an LSW pro-

cess, we obtain another LSW process. We can write the differenced process, in the

mean-square sense, as

εt − εt−1 =
∑
j

∑
k

wj,kψj,k−tξ̃j,k,

where ξ̃j,k = ξj,k − ξj,k−1. This process satisfies all of the required properties of

a standard LSW process exept one: the increments are no longer orthonormal.

Instead, we have that

Cov(ξ̃j,k, ξ̃l,m) =


2 for j = l, k = m,

−1 for j = l and k = m+ 1 or k + 1 = m,

0 otherwise.

Therefore, one must be careful to make a distinction between the observed time

series, which we assume to have LSW errors, and the differenced series, which

we do not. This is in contrast to existing approaches utilising differencing for

second-order estimation, such as ARIMA models, which instead assume that the

differenced series follows the model form rather than the original series.

3.3.3 Asymptotic Behaviour of the Differenced RawWavelet

Periodogram

As motivated by the discussion in the previous section, we estimate the spectrum

by calculating the raw wavelet periodogram of the first-differenced time series. We

return to the case of general n-th differencing in Section 3.3.6. For the purpose

of theoretical results, we assume that the {ξj,k} in Model (3.2.1) are Gaussian. In

practice, this assumption is not required, and in the simulation study in Section
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3.5 we also investigate the case where the {ξj,k} are exponential random variables.

Before obtaining the result of the expectation of the raw wavelet periodogram,

we define the following two operators, which involve the inner product of the

autocorrelation wavelets at lag 1.

Definition 3.3.1. Define the operator A1 = (A1
jl)j,l<0 by

A1
jl := 〈Ψj(τ),Ψl(τ − 1)〉 =

∑
τ

Ψj(τ)Ψl(τ − 1),

and the operator D1 = (D1
jl)j,l<0 by

D1
jl := 〈Ψj(τ)−Ψj(τ − 1),Ψl(τ)−Ψl(τ − 1)〉 = 2Ajl − 2A1

jl

= 2
∑
τ

Ψj(τ) (Ψl(τ)−Ψl(τ − 1)) .

Denote the J-dimensional matricesA1
J := (A1

jl)j,l=−1,...,−J andD1
J := (D1

jl)j,l=−1,...,−J .

Proposition 3.3.1. The matrix D1
J is invertible.

Intuitively, it is not surprising that the quantity D1 will appear when we cal-

culate the expectation of the squared wavelet coefficients of the first-differenced

series. Indeed, we have the following result for the asymptotic behaviour of the

raw wavelet periodogram of the first-differenced time series.

Proposition 3.3.2. Let Ĩjk = |d̃j,k|2 be the wavelet periodogram of the first-

differenced time series. Under the assumptions of Model (3.2.1),

E(Ĩjk) =
∑
l

D1
jlSl

(
k

T

)
+O(T−1),

Var(Ĩjk) = 2

(∑
l

D1
jlSl

(
k

T

))2

+O(2−jT−1).

Therefore, for the vector of periodograms I(z) := {I lbzT c}l=−1,...,−J , and the vec-
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tor of corrected periodograms L(z) := {LjbzT c}j=−1,...,−J with L(z) = (D1
J)−1I(z),

E (L(z)) = E
(
(D1

J)−1I(z)
)

= S(z) +O(T−1) ∀ z ∈ (0, 1),

where S(z) := {Sj(z)}j=−1,...,−J is the EWS of the original process. Thus we can

bias correct the raw wavelet periodogram of the first-differenced time series by

using the inverse of D1
J , instead of the inverse of AJ from Nason et al. (2000).

3.3.4 Bounded Invertibility of Haar and Shannon Operators

In order to achieve an asymptotically unbiased estimator of the EWS, we require

boundedness of the inverse operator used when performing the bias correction

step in the estimation procedure. In the original LSW work of Nason et al. (2000),

boundedness of the inverse of the operator A was shown in the case of the Haar

and Shannon wavelets. As noted in von Sachs et al. (1997), the Haar and Shan-

non wavelets can be viewed as the lower and upper “extremes” of the family of

Daubechies compactly support wavelets, and so proving bounded invertibility in

these two cases intuitively suggests that bounded invertibility should hold in the

case of all Daubechies’ compactly supported wavelets. It is for these two wavelets

that we prove bounded invertibility here; extensions to other wavelets are left for

future work.

Proposition 3.3.1 shows that the matrix D1
J is invertible with bounded inverse.

Asymptotically, however, the inverse operator is unbounded. This is due to the

decay properties of D1
J : the diagonal entries decay to zero, and thus so do the

eigenvalues. Intuitively this is expected, since the differencing operator itself is

asymptotically non-invertible. We can interpret the expectation result in Proposi-

tion 3.3.2 as a quantification of the “information lost” in the second-order structure

of the time series as a result of differencing.

We note that the problem of an unbounded inverse operator mirrors a result in

the setting of locally stationary Fourier time series (Roueff and von Sachs, 2011,
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Equation 5). Loosely speaking, the original spectrum at frequency ω is related

to the differenced one through multiplication of the term |1 − e−iω|−2. As ω → 0

(corresponding to low frequencies), |1 − e−iω|−2 → ∞. This is similar to our

scenario, where, as the correction matrix grows in size – and we consider coarse-

scale (low frequency) behaviour – the inverse matrix norm becomes larger.

We can account for this theoretical issue by proving bounded invertibility

for a related, rescaled operator P , where the entries of P are given by Pjl =

2−j/2D1
jl2
−l/2. Showing that P possesses a bounded inverse enables us to show the-

oretical consistency properties of the wavelet periodogram-based estimator. Hence,

we show for the Haar and Shannon wavelet families that P possesses a bounded

inverse, which enables consistent estimation of the EWS for Model (3.2.1). Note

that, in the practical implementation of the methodology, we still use the inverse

of the D1
J matrix for correcting the raw wavelet periodogram as it is an invertible

matrix (Proposition 3.3.1). To illustrate the above discussion, we compute the

entries of the Haar D1 and P matrices for J = 4, shown below.

D1 =



5 1.5 0.75 0.375

1.5 2.5 0.75 0.375

0.75 0.750 1.25 0.375

0.375 0.375 0.375 0.625


, P =



10 4.24 3 2.12

4.24 10 4.24 3

3 4.24 10 4.24

2.12 3 4.24 10


.

We see that for D1, the diagonal entries behave as O(2j), while for P the diagonal

entries are constant. Working with the operator P , which has more attractive

properties than D1, allows us to prove the necessary consistency results for the

EWS estimator. Theorem 3.3.3 below shows that for Haar and Shannon wavelets,

P possesses a bounded inverse.

Theorem 3.3.3. Let λmin(P ) denote the smallest eigenvalue of P , where the

entries of P are given by Pjl = 2−j/2D1
jl2
−l/2. Then, for the Haar and Shannon

wavelet families, there exists δ > 0 such that λmin(P ) ≥ δ and hence ||P−1|| <∞.
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That is, P is positive-definite and has a bounded inverse.

3.3.5 Smoothing and Estimation Theory

As in the original LSW model, the wavelet periodogram is not a consistent estima-

tor and must be smoothed. Smoothing to achieve consistency can be performed,

for example, via wavelet thresholding or a running mean. For brevity, we provide

theoretical results for wavelet thresholding, building on known results in the lit-

erature. Note that the results presented here require boundedness of the inverse

of the operator P , so are only applicable to the Haar and Shannon wavelets. We

conjecture that Theorem 3.3.3 can be extended to all Daubechies compactly sup-

ported wavelets, and therefore conjecture that the results in this section can also

be extended to all Daubechies compactly supported wavelets.

In order to utilise the result on boundedness of the operator P−1 in Theorem

3.3.3, we rewrite the formula for the expectation of the wavelet periodogram. We

can express the expectation in terms of P and a scaled version of Sj, given by

S̃j = 2j/2Sj, by rescaling the periodogram appropriately. Concretely, consider

the auxiliary process εt =
∑

j,k w̃jkψ̃j,k−tξlm, where w̃jk = 2j/4wjk and ψ̃j,k−t =

2−j/4ψj,k−t. Then, the expectation of the raw wavelet periodogram (with respect

to the rescaled wavelet ψ̃j,k−t) is given by

E(Ĩjk) =
∑
l

PjlS̃l(k/T ) +O(T−1),

where S̃j(k/T ) = 2j/2Sj(k/T ) and Pjl = 2−j/2D1
jl2
−l/2.

Then, to achieve consistency we take a similar approach to Nason et al. (2000).

For each fixed scale j, the rescaled periodogram Ĩjk of a Gaussian LSW process

(which is scaled χ2-distributed) is smoothed as a function of z = k/T using, for

example, discrete wavelet transform (DWT) shrinkage or translation invariant (TI)

denoising of Coifman and Donoho (1995). Using the DWT, smoothing is performed

with respect to an orthonormal wavelet basis {φ′r0,s(z), ψ′rs(z)} of L2([0, 1]). Here,
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ψ′rs(z) = 2r/2ψ′(2rz−s), where r0 is the coarsest scale analysed and s = 0, . . . , 2r−

1. Smoothing is achieved using non-linear thresholding of the empirical wavelet

coefficients v̂jrs of Ĩ
j
k.

Explicitly, as described in von Sachs et al. (1997), for levels j = −1, . . . ,−J ,

the wavelet expansion of the scaled periodogram can be written as

ĨjbzT c =
∑
r

∑
s

vjrsψ
′
rs(z),

where the “true” wavelet coefficients are given by vjrs =
∫ 1

0
ĨjbzT cψ

′
rs(z)dz. As in

von Sachs et al. (1997), we employ a slight abuse of notation, with ψ′r0−1,s = φ′r0,s,

in order to include the scaling coefficient at the coarsest scale r0 of the second

wavelet scheme. The empirical analogues of the wavelet coefficients are given by

v̂jrs = T−1
T−1∑
n=0

Ĩjn,Tψ
′
rs(n/T ), for r = r0, . . . , log2(T ), s = 0, . . . , 2r − 1.

Analogously, we can build non-decimated wavelet coefficients for TI denoising. Let

ψ′r(z) = 2r/2ψ′(2rz), and let

v̂jrs = T−1
T−1∑
n=0

Ĩjn,Tψ
′
rs((n− s)/T ), for r = r0, . . . , log2(T ), s = 0, . . . , T − 1.

Then, denoising is achieved by applying non-linear hard wavelet thresholding to

the wavelet coefficients v̂jrs. The resulting estimator is obtained by inverting the

wavelet transform using only the coefficients which remain after thresholding:

ÎjbzT c =
∑
r

∑
s

ṽjrsψ
′
rs(z), z ∈ (0, 1),

where ṽjrs = v̂jrsI(|v̂jrs| > λ) are the hard thresholded wavelet coefficients with

threshold λ. The particular threshold is specified in Theorem 3.3.4, as is the

appropriate set of indices r over which to perform the summation.

The theoretical argument to consistently estimate Sj(k/T ) is thus as follows.
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First, smooth the rescaled wavelet periodogram at each scale j using wavelet

thresholding. Next, use the (bounded) P -inverse matrix to correct the smoothed,

rescaled periodogram. Finally, multiply the estimate at each scale by 2−j/2, since

Sj(k/T ) = 2−j/2S̃j(k/T ), yielding the final estimator, Ŝ(k/T ), of Sj(k/T ). Us-

ing the hard threshold λ(j, r, s, T )2 = Var(v̂jrs) log2(T ) when smoothing the pe-

riodogram via wavelet thresholding, we can show that the smoothed, corrected

estimate Ŝj(z) is mean square consistent in the L2 sense.

Theorem 3.3.4. Denote by ψ′ the wavelet used in the thresholding procedure,

where ψ′ is of bounded variation. For the wavelet coefficients v̂jrs of the rescaled

periodogram Ĩjk, assume that 2r = o(T ) . For a Gaussian trend-LSW process and

using the hard threshold λ2(j, r, s, T ) = Var(v̂jrs) log2(T ), for each fixed j,

E
[∫ 1

0

(
Ŝj(z)− Sj(z)

)2
dz

]
= O

(
2−jT−2/3 log2(T )

)
. (3.3.1)

The appropriate threshold is obtained using the expressions for the asymptotic

expectation and variance of the wavelet coefficients, which is given in Lemma A.1.2

in the appendix. Roughly speaking, we would expect the variance of the wavelet

coefficients to decrease as j decreases, due to the effect of differencing. The rate

of error obtained in Equation (3.3.1) is a consequence of known results on wavelet

thresholding estimators, utilised in Neumann and von Sachs (1995), and the mul-

tiplication of 2−j/2 that occurs in the estimation procedure. The rate highlights

the fact that differencing the time series has resulted in an information loss, with

spectral estimation in coarser scale resulting in slower rates of convergence. As a

consequence, we can only consistently estimate the wavelet spectrum for a propor-

tion of the finest scales j. Next, we tackle estimation of the local autocovariance

via the EWS estimate.

Proposition 3.3.5. Define ĉ(z, τ) by replacing Sj(z) by Ŝj(z) in the equation for

the local autocovariance and replacing the lower limit in the sum from j = −∞ to
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j = −J0, i.e.

ĉ(z, τ) =
−1∑

j=−J0

Ŝj(z)Ψj(τ).

Let T → ∞ and let J0 = α log2 T for α ∈ (0, 1). Assume that Sj(z) ≤ D2γj for

some positive constant D, where γ = (3α)−1 − 1/2. Then,

E
[∫ 1

0

(ĉ(z, τ)− c(z, τ))2 dz

]
= O

(
Tα−2/3 log2(T )

)
,

i.e. ĉ(z, τ) is a consistent estimator of c(z, τ) for each fixed τ ∈ Z, provided that

Tα−2/3 log2(T )→ 0.

We reiterate that the rescaling argument used to achieve consistency in Theo-

rem 3.3.4 and Proposition 3.3.5 is performed purely for theoretical reasons; practi-

cal considerations for estimation are discussed at the end of the section. The results

in Theorem 3.3.4 and Proposition 3.3.5 show that in the case where the trend is

Lipschitz continuous, we can consistently estimate both the EWS and LACV of

the original process using first-order differences and a modified bias correction.

The assumption placed on the decay rate of the EWS in Proposition 3.3.5 is

a purely technical one, utilised in order to ensure mean square consistency of the

estimator. The assumption controls for the fact that the local autocovariance is

estimated using the finest J0 scales, instead of across infinite scales which are not

available in practice. The specific form of the decay rate is calculated in order to

balance with the error rate of the wavelet thresholding procedure.

3.3.6 n-th Order Differencing

In some cases, a first-difference may not be enough to remove a trend. Further

differencing can be performed, although it is usually only necessary to at most

second-difference a time series (Brockwell et al., 1991). If we assume that the

(n − 1)-th derivative of µ is Lipschitz, then the n-th difference of the time series

will be (asymptotically) free of trend. We denote the n-th difference of a time

series as {∇nXt}.
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To calculate the expectation of the squared non-decimated wavelet coefficients

of the n-th differenced series, we can argue in a similar fashion to the case of first-

differencing. Denote the operator An = (Anjl)j,l<0 by Anjl := 〈Ψj(τ),Ψl(τ − n)〉 =∑
τ Ψj(τ)Ψl(τ − n), and the J-dimensional matrix AnJ := (Anjl)j,l=−1,...,−J . The

entries of the matrix AnJ are given by the inner product of the autocorrelation

wavelet with the autocorrelation wavelet at lag n. If we difference a time series n

times, then the expectation of the squared wavelet coefficients will involve linear

combinations of inner product autocorrelation wavelet matrices from lag 0 (i.e. the

standard A-matrix) up to lag n (the matrix An). The result for the expectation

of the wavelet periodogram of the n-th differenced time series mirrors that of the

first-differenced series, and is given by the following proposition.

Proposition 3.3.6. Let d̃j,k =
∑

t∇nXtψj,k−t be the non-decimated wavelet co-

efficients of ∆Xt, and let Ĩjk := |d̃j,k|2. If the (n− 1)-th derivative of µ is Lipschitz,

then

E(Ĩjk) =
∑
l

Dn
jlSl(k/T ) +O(T−1),

where

Dn
jl =

(
2n

n

)
Ajl + 2

n∑
τ=1

(−1)τ
(

2n

n+ τ

)
Aτjl.

Corollary 3.3.7. For second differences,

E(Ĩjk) =
∑
l

(
6Ajl − 8A1

jl + 2A2
jl

)
Sl

(
k

T

)
+O(T−1).

Note that Proposition 3.3.6 generalises Proposition 4 in Nason et al. (2000),

in which n = 0. As in the case of first-differences, the bias operator Dn does not

possess a bounded inverse. Intuitively, for higher order differences, the eigenvalues

of Dn decay to 0 at increasingly faster rates. As such, correcting the estimation

in a similar fashion as was described in Theorem 3.3.4 yields much slower rates of

convergence.

For the remainder of the section, we focus on the situation where a second-

difference suffices to remove the trend. We can show that using first-differences



CHAPTER 3. TREND-LSW PROCESSES USING DIFFERENCING 59

suffices to obtain a consistent spectral estimate, even though the trend has not

been fully removed. The first-differences of the trend are Lipschitz continuous,

and as such the magnitude of the wavelet coefficients can be bounded using the

wavelet characterisation of Hölder spaces (Daubechies, 1992). Using this bound,

we can bound the error of the first-differenced estimator in terms of the error due to

estimation and error due to the squared wavelet coefficients of the first-differenced

trend. Using this argument we are able to show consistency of both the spectrum

and local autocovariance estimator as follows.

Theorem 3.3.8. Assume that the first derivative of µ is Lipschitz, and let J1 =

β log2 T for β ∈ (0, 1). Further assume that the smoothed raw wavelet periodogram

is corrected across the finest J1 scales only. Under the same conditions as Theorem

3.3.4, for each fixed j, Ŝj(z) is a consistent estimator of Sj(z), provided that

T 7β−4 → 0 as T →∞, since

E
[∫ 1

0

(
Ŝj(z)− Sj(z)

)2
dz

]
= O

(
2−jT 7β−4)+O (2−jT−2/3 log2(T )

)
+O

(
2−jT−β

)
.

Define ĉ(z, τ) by replacing Sj(z) by Ŝj(z) in the equation for the local autoco-

variance and replacing the lower limit in the sum from j = −∞ to j = −J0,

i.e.

ĉ(z, τ) =
−1∑

j=−J0

Ŝj(z)Ψj(τ),

where J0 = α log2 T for α < β ∈ (0, 1). Under the assumptions of Proposition

3.3.5, provided that Tα+7β−4 → 0 and Tα−2/3 log2(T ) → 0, ĉ(z, τ) is a consistent

estimator of c(z, τ), since for each fixed τ ∈ Z,

E
[∫ 1

0

(ĉ(z, τ)− c(z, τ))2 dz

]
= O

(
Tα+7β−4)+O

(
Tα−2/3 log2(T )

)
+O(Tα−β).

Hence, we can still consistently estimate the EWS and LACV via first-order

differences when the trend of the time series has a Lipschitz continuous first deriva-

tive. Therefore, we argue that in most practical scenarios, it is sufficient to only
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perform one difference in order to estimate the evolutionary wavelet spectrum and

local autocovariance in the presence of a trend.

In practice, the EWS is estimated by analysing the time series at the finest J0

scales. We smooth the wavelet periodogram at these scales and then correct the

estimate using the J0-dimensional matrix (D1
J0

)−1. We take the same approach for

estimation of the LACV, using only the finest J0 scales. Performing estimation in

this fashion ensures that the spectral estimate is well-behaved, and is an approach

commonly adopted in the LSW literature. We suggest using J0 = bα log2(T )c,

with α = 2/3, in agreement with other discussion in the literature; see for example

Sanderson et al. (2010). (Note that although this value for α does not satisfy the

required conditions of Proposition 3.3.5, in practice it performs well).

This choice of J0 is further justified by observing that, at coarser scales, the

wavelet coefficients are composed entirely of boundary values, and so estimates at

coarser scales are inherently artificial. For a concrete example, consider a time

series of length T = 1024. For the Daubechies least asymmetric wavelet with 4

vanishing moments, the length of the wavelet filter used to calculate the wavelet

coefficients at scale j is given by 7× (2−j − 1) + 1. The length of the filter at scale

−8 is 1786 > 1024, so all wavelet coefficients at this, and coarser scales, will be

calculated via boundary extensions of the time series. Therefore, we ague that we

are not neglecting informative scales by only using the finest J0 scales.

3.4 Trend Estimation Using the Spectral Estimate

In this section, we discuss a wavelet thresholding approach for the estimation of

the trend component of Model (3.2.1). If a first (or second) difference is capable

of removing the trend from a time series, we have shown that we can consistently

estimate the time-varying evolutionary wavelet spectrum using the smoothed, cor-

rected raw wavelet periodogram of the differenced time series. We now wish to use

this estimate in order to estimate the trend of the time series.
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3.4.1 Wavelet Thresholding Estimator

The approach we take is to use the spectral estimate directly within a wavelet

thresholding estimation procedure. In von Sachs and MacGibbon (2000), the au-

thors describe a wavelet thresholding methodology for consistent curve estimation

in the presence of locally stationary errors, subject to mild regularity conditions.

The authors propose to use a local median absolute deviation pre-estimate for the

variance of the wavelet coefficients, which is used in the threshold. We instead in-

corporate the consistent spectral estimate into the thresholding procedure, which

enables a more systematic method of thresholding. This yields an analogous ver-

sion of Theorem 1 in von Sachs and MacGibbon (2000), for the specific case of

Lipschitz continuous trend functions.

With a slight abuse of notation, denote the estimated wavelet coefficients of

the time series by v̂rs. The results in this section apply to the commonly used soft

and hard thresholding rules, given respectively by

v̂Srs = sgn(dr,s) (|dr,s| − λ)I(|dr,s| > λ) ,

v̂Hrs = dr,sI(|dr,s| > λ),

where λ = λ(r, s, T ) is the threshold, and I is the indicator function. Asymp-

totic normality of the empirical wavelet coefficients, established in von Sachs and

MacGibbon (2000), permits the use of a coefficient-dependent universal threshold

λ(r, s, T ) = σrs
√

2 log(T ), where σ2
rs is the variance of the wavelet coefficients.

This yields the following result for the wavelet thresholding estimator µ̂ obtained

using the threshold λ(r, s, T ), and either soft or hard thresholding.

Proposition 3.4.1. Let ψ̃ be a wavelet of bounded variation, with 2r = o(T ) for

wavelet coefficients v̂rs. For a trend-LSW process with Lipschitz continuous trend,

and using the threshold λ(r, s, T ) = σrs
√

2 log(T ), the estimator µ̂ satisfies

E
[∫ 1

0

(µ̂(z)− µ(z))2 dz

]
= O

((
log(T )

T

)2/3
)
.
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Note that this result is subject to mild regularity assumptions on the LSW

component of the model, all of which are satisfied. The innovations {ξj,k} are not

restricted to be Gaussian, and can for example be exponential, gamma, or inverse

Gaussian distributed. To estimate the variance σ2
rs, which is necessary to choose

the threshold λ(r, s, T ), we use an estimate of the variance of the empirical wavelet

coefficients. If the LSW process is generated by wavelet ψ0, and the wavelet used

for thresholding is denoted ψ1, the variance of the empirical wavelet coefficients

dj,k :=
∑

tXtψ
1
j,k−t is given by

Var(dj,k) =
∑
l

C1,0
jl Sl(k/T ) +O(T−1), (3.4.1)

where C(1,0)
jl =

∑
τ Ψ0

j(τ)Ψ1
l (τ), and where Ψ0

j(τ) and Ψ1
j(τ) are autocorrelation

wavelets with respect to wavelets ψ0 and ψ1. By plugging in the estimate Ŝj(z),

obtained in Section 3.3.5, into the expression (3.4.1), this yields the universal-type

threshold λ(r, s, T ) = σ̂r,s
√

2 log(T ), where σ̂2
r,s =

∑
l C

1,0
rl Ŝl(s/T ).

3.4.2 Practical Considerations

In alignment with discussion in von Sachs and MacGibbon (2000), in practice

we analyse approximately the finest 2/3 scales of the time series, the same as in

the spectral estimation procedure. In practice, we have found that applying hard

thresholding yields better performance. We recommend the use of translation

invariant thresholding over a standard discrete wavelet transform. We have found

that it offers stronger practical performance, in terms of the mean squared error of

the estimator. As noted in Nason (2008), use of a non-decimated transform ensures

that there is “more chance” of the wavelet coefficients picking up the signal of the

time series. Furthermore, note that it is possible to obtain negative estimates

of the variance of the wavelet coefficients. In this case we replace the negative

values by the nearest neighbouring positive value, which was found to have no

discernible impact on the trend estimation procedure. We recommend the use
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of the Daubechies Least Asymmetric wavelet with 4 vanishing moments, as we

have found empirically that it works well for estimation purposes and also helps to

minimise the number of negative variance estimates. Note that Proposition 3.4.1

holds for non-Gaussian time series, while theoretical results concerning the second-

order estimation require an assumption of normality. In practice, our approach still

performs well in the presence of non-Gaussian noise, as we show in the simulation

study.

3.5 Simulation Study

In this section we illustrate the ability of our proposed methodology to jointly

estimate the mean and EWS of a trend-LSW process by performing a simulation

study. For each set of simulations, we use the three EWS shown in Figure 3.5.1,

which represent spectra with distinct characteristics. Spectrum S1, studied in

Nason (2008), displays coarse-scale, slowly-evolving sinusoidal behaviour with a

fine-scale burst in power at time point 800. Spectrum S2 is a concatenation of

moving average processes and contains power moving from fine to coarser scales,

and was examined in Nason et al. (2000). Spectrum S3 contains slowly-evolving

power at fine scales. The three evolutionary wavelet spectra are defined as

S1
j (z) =


sin2(4πz) for j = −5, z ∈ (0, 1),

1 for j = −1, z ∈ (800/1024, 900/1024),

0 otherwise,

S2
j (z) =



1 for j = −1, z ∈ (0/1024, 256/1024),

1 for j = −2, z ∈ (256/1024, 512/1024),

1 for j = −3, z ∈ (512/1024, 768/1024),

1 for j = −4, z ∈ (768/1024, 1),

0 otherwise,
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S3
j (z) =



1
2

+ 1
4

sin(πz)− 1
2

cos(3πz/2) for j = −1, z ∈ (0, 1),

1
2
− 1

8
sin(2πz)− 1

4
cos(πz/2) for j = −3, z ∈ (0, 1),

0 otherwise.
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Figure 3.5.1: Left: spectrum S1, sinusoid with “burst”. Centre: S2, concatenated
moving average process. Right: S3, slowly-evolving fine-scale power.

We simulate 100 realisations of time series {Xt}T−1t=0 of length T = 210 = 1024

from LSW processes with those spectra, with different additive trend functions.

The trends used in the simulation study are a linear, sinusoidal, logistic and piece-

wise quadratic trend, denoted in Figure 3.5.2 by µli, µs, µlo and µq respectively.

These functions are Lipschitz continuous with varying degrees of smoothness, with

µq also being non-differentiable at two time-points. The four trend functions used

in the simulation study are defined as

µli(z) = 4z,

µs(z) = −2 sin(2πz)− 3

2
cos(πz),

µlo(z) =
4

1 + exp(4− 7 log 4z)
,
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µq(z) =


12z2 + 2z for z ∈ (0, 300/1024),

1.81− 16z2 + 4z for z ∈ (300/1024, 800/1024),

4z − 7.94 for z ∈ (800/1024, 1),

where z = t/T . We report results where the LSW process are simulated using the

Daubechies Least Asymmetric wavelet with 10 vanishing moments (LA10), and

the Daubechies Extremal Phase wavelet with 4 vanishing moments (EP4). These

two wavelets were chosen as they have differing degrees of smoothness; similar

results were obtained with other wavelet choices. Example realisations from the

simulation study are shown in Figure 3.5.2. All simulations were performed in R

with estimation procedures implemented using modifications to code in the locits

(Nason, 2016a) and wavethresh (Nason, 2016b) packages.

3.5.1 Spectral Estimation Performance

In this simulation we show that by first-differencing to remove the trend, we can

obtain an unbiased EWS estimate, which in turn can be used to obtain a trend

estimate that performs well. For each realisation, the un-smoothed estimate of

the EWS was calculated, which was then used to obtain an averaged estimate for

the EWS across the 100 realisations. In alignment with the discussion in Section

3.3.5, we correct the raw wavelet periodogram across the finest 7 scales. Further

justification for using a reduced number of scales in estimation is due to the lengths

of the wavelet filters used. For the LA10 wavelet, the support of the wavelet is

smaller than the length of the time series at the finest 5 scales, while for the EP4

wavelet it is smaller for the finest 7 scales.

We report the mean squared error of the averaged spectrum compared with the

true spectrum in Table 3.5.1 for Daubechies LA10 wavelet, and in Table 3.5.2 for

the Daubechies EP4 wavelet. We compare theses values with the mean squared

error obtained by using the standard LSW estimation procedure of Nason et al.

(2000). In this case, no trend is present, the estimate is performed using the
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Figure 3.5.2: Example realisations from each trend and spectrum scenario. Dashed
line shows time series with true underlying trend shown in solid line. Left: spec-
trum S1, sinusoid with “burst” . Centre: S2, concatenated moving average process.
Right: S3, slowly-evolving fine-scale power.
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original A matrix inverse for bias correction, and no differencing is performed.

This is calculated using the ewspec3 command in the locits R package. This is

reported in the “None” row in the tables, and represents the ‘best-case’ performance

with which to compare.

We see that despite the presence of a trend, differencing enables us to approx-

imately remove it in order to accurately estimate the spectrum. For Table 3.5.1,

the estimation error for spectrum 1 is almost identical comparing to “None” using

our methodology with a trend present, while for spectrum 2 and 3 there is only

a marginal increase. In Table 3.5.2, we see that the estimation error is smaller

using our methodology than the “None” case for spectrum 2, while it is marginally

worse for the other two spectra. The results show that the method performs well

irrespective of the wavelet that generates the LSW process.

Trend Spectrum 1 Spectrum 2 Spectrum 3

None 1.25 3.32 1.30

Linear 1.29 4.09 2.34

Sine 1.29 4.09 2.34

Logistic 1.29 4.09 2.34

Piece. Quad. 1.29 4.11 2.34

Table 3.5.1: Mean squared error comparison for the averaged spectrum estimate,
multiplied by 103, across the spectrum and trend scenarios, for the Daubechies
LA10 wavelet.

Trend Spectrum 1 Spectrum 2 Spectrum 3

None 3.13 4.88 1.87

Linear 3.32 4.63 2.78

Sine 3.32 4.63 2.78

Logistic 3.32 4.63 2.78

Piece. Quad. 3.32 4.67 2.81

Table 3.5.2: Mean squared error, multiplied by 103, comparing across the spectrum
and trend scenarios, for the Daubechies EP4 wavelet.
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3.5.2 Trend Estimation Performance

We next assess the trend estimation procedure. The trend estimate is computed us-

ing the Daubechies Least Asymmetric wavelet with 4 vanishing moments, analysing

the finest 6 scales. The spectrum estimate used in the thresholding procedure is

smoothed with a running mean of bin width size 128. We compute the average

mean squared error across the 100 realisations, as well as the standard deviation

of the errors. For all simulations, a hard threshold of σ̂r,s
√

2 log(1024) is used.

We compare our method to three other trend estimation methods, two of which

are wavelet-based in nature. For comparison to the other wavelet-based methods,

we use the same hyper-parameters where applicable in order to make a fair com-

parison. Firstly, we compare to the standard wavelet thresholding method based

upon a stationary universal threshold, computed using the wavethresh package in

R. Secondly, we compare to the wavelet-based trend estimation procedure in von

Sachs and MacGibbon (2000). No code is publicly available for this method, and so

we have implemented the method utilising wavethresh and following the descrip-

tion of the computation of the threshold in Section 2.5 of von Sachs and MacGib-

bon (2000). Lastly, we compare to the estimate computed using smoothing splines,

where the smoothing parameter is chosen automatically via cross validation. This

is computed using the smooth.spline function in R. In the tables, the abbreviation

LSWT refers to our method of locally stationary wavelet thresholding, SWT refers

to stationary wavelet thresholding, MVSWT refers to the wavelet-based method

of von Sachs and MacGibbon (2000), and Splines refers to the smoothing splines

method.

For each of the two wavelets used to simulate the LSW processes, we repeat

this simulation twice; firstly using Gaussian innovations in the LSW process, and

secondly using exponentially distributed innovations. Table 3.5.3 reports the av-

erage mean squared error and standard deviation for the trend estimates where

the 100 LSW processes have been generated using Gaussian innovations and the

LA10 wavelet. Table 3.5.4 reports the average mean squared error and standard
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Trend Spectrum Method
LSWT SWT VSMWT Spline

Linear
1 0.019 (0.013) 0.516 (0.117) 0.275 (0.091) 0.436 (0.123)
2 0.038 (0.024) 0.746 (0.083) 0.207 (0.0644) 0.149 (0.091)
3 0.029 (0.027) 0.494 (0.042) 0.171 (0.039) 1.82× 10−5 (2.94× 10−5)

Sine
1 0.021 (0.012) 0.547 (0.130) 0.287 (0.111) 0.467 (0.132)
2 0.031 (0.016) 0.752 (0.077) 0.214 (0.067) 0.153 (0.090)
3 0.024 (0.018) 0.485 (0.045) 0.156 (0.040) 0.002 (5× 10−4)

Logistic
1 0.022 (0.013) 0.544 (0.112) 0.306 (0.107) 0.456 (0.113)
2 0.042 (0.028) 0.764 (0.088) 0.214 (0.066) 0.165 (0.089)
3 0.028 (0.025) 0.491 (0.038) 0.170 (0.041) 0.002 (1× 10−4)

Piece. quad.
1 0.025 (0.014) 0.537 (0.127) 0.280 (0.110) 0.452 (0.130)
2 0.041 (0.024) 0.736 (0.076) 0.211 (0.080) 0.154 (0.091)
3 0.034 (0.028) 0.414 (0.043) 0.162 (0.042) 0.005 (3× 10−4)

Table 3.5.3: Average mean squared error and standard deviation in brackets of
trend estimate over 100 realisations generated using Gaussian innovations.

deviation for the trend estimates where the 100 LSW processes have been gener-

ated using exponential innovations and the LA10 wavelet. Values in bold are the

lowest values for each trend and spectrum value across the four methods.

From the tables we observe that the performance of our estimator in the pres-

ence of exponentially distributed random innovations is comparable to the Gaus-

sian case. The error is consistent across the various time series scenarios, and the

standard deviation is low. We see that our method outperforms the two other

wavelet-based methods across all trend and spectrum scenarios. We also out-

perform splines for all spectra 1 and 2 scenarios, while splines outperforms our

method for all spectrum 3 scenarios. This is perhaps due to the fact that the

process defined by spectrum 3 possesses very weak autocorrelation that is close to

stationary.

Table 3.5.5 reports the average mean squared error and standard deviation

for the trend estimates where the 100 LSW processes have been generated us-

ing Gaussian innovations and the EP4 wavelet. Table 3.5.6 reports the average

mean squared error and standard deviation for the trend estimates where the 100

LSW processes have been generated using exponential innovations and the EP4

wavelet. Again, the error for our proposed method is consistent across the various

time series scenarios. We see that the trend estimate performs well irrespective of

the generating wavelet of the process. We observe similar behaviour to the pre-
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Trend Spectrum Method
LSWT SWT VSMWT Spline

Linear
1 0.027 (0.016) 0.547(0.140) 0.312 (0.107) 0.465 (0.139)
2 0.050 (0.028) 0.793 (0.113) 0.337(0.096) 0.159 (0.121)
3 0.040 (0.029) 0.529 (0.066) 0.311 (0.068 1.14× 10−5 (1.68× 10−5)

Sine
1 0.027 (0.014) 0.540 (0.138) 0.311 (0.121) 0.450 (0.136)
2 0.041 (0.021) 0.788 (0.118) 0.340 (0.103) 0.148 (0.099)
3 0.036 (0.019) 0.542 (0.059) 0.308 (0.067) 0.002 (5× 10−4)

Logistic
1 0.026 (0.017) 0.544 (0.143) 0.315 (0.118) 0.459 (0.134)
2 0.046 (0.026) 0.801 (0.112) 0.254 (0.091) 0.171 (0.099)
3 0.045 (0.030) 0.541 (0.053) 0.327 (0.059) 0.002 (2× 10−4)

Piece. quad.
1 0.032 (0.020) 0.515 (0.122) 0.296 (0.102) 0.426 (0.124)
2 0.044 (0.028) 0.774 (0.111) 0.347 (0.100) 0.160 (0.100)
3 0.042 (0.029) 0.473 (0.057) 0.319 (0.061) 0.005 (4× 10−4)

Table 3.5.4: Average mean squared error and standard deviation of trend estimate
over 100 realisations generated using exponential innovations.

Trend Spectrum Method
LSWT SWT VSMWT Spline

Linear
1 0.024 (0.012) 0.519 (0.112) 0.303 (0.100) 0.463 (0.117)
2 0.030 (0.019) 0.762 (0.078) 0.225 (0.068) 0.149 (0.095)
3 0.028 (0.024) 0.441 (0.040) 0.160 (0.038) 2× 10−5 (3× 10−5)

Sine
1 0.022 (0.010) 0.526 (0.110) 0.286 (0.109) 0.461 (0.113)
2 0.026 (0.014) 0.744 (0.075) 0.215 (0.068) 0.132 (0.090)
3 0.022 (0.017) 0.447 (0.043) 0.156 (0.037) 0.002 (0.001)

Logistic
1 0.023 (0.015) 0.494 (0.109) 0.261 (0.093) 0.437 (0.112)
2 0.033 (0.019) 0.753 (0.083) 0.226 (0.071) 0.172 (0.083)
3 0.027 (0.024) 0.449 (0.037) 0.164 (0.035) 0.002 (1× 10−4)

Piece. quad.
1 0.022 (0.012) 0.517 (0.127) 0.290 (0.105) 0.456 (0.129)
2 0.032 ( 0.018) 0.720 (0.087) 0.216 (0.072) 0.148 (0.093)
3 0.028 (0.024) 0.366 (0.046) 0.167 (0.039) 0.005 (2× 10−4)

Table 3.5.5: Average mean squared error and standard deviation in brackets of
trend estimate over 100 realisations generated using Gaussian innovations and the
Daubechies EP4 wavelet.

vious results, with our method consistently outperforming the two wavelet-based

methods. Again, the spline-based method outperforms our method in the case of

spectrum 3, while we outperform splines for spectra 1 and 2.

Finally, we also assess the performance of the trend estimation procedure in

the presence of non LSW-type error structures to highlight the versatility of our

methodology. In particular, we simulate 100 realisations of time series using the

previously defined trends, with (Gaussian) errors simulated from the following

models:

(A) Time-varying AR(2) model with parameters φ1(z) = 0.8 cos(1.5− cos(4πz)),

φ2(z) = −0.2 + 0.4z, z ∈ (0, 1).
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Trend Spectrum Method
LSWT SWT VSMWT Spline

Linear
1 0.030 (0.018) 0.521 (0.148) 0.305 (0.127) 0.460 (0.144)
2 0.035 (0.024) 0.779 (0.108) 0.328 (0.092) 0.174 (0.095)
3 0.040 (0.026) 0.497 (0.052) 0.318 (0.057) 2× 10−5 (3× 10−5)

Sine
1 0.027 (0.025) 0.520 (0.119) 0.308 (0.102) 0.456 (0.120)
2 0.033 (0.020) 0.782 (0.110) 0.322 (0.085) 0.162 (0.103)
3 0.037 (0.022) 0.495 (0.060) 0.309 (0.064) 0.002 (6× 10−4)

Logistic
1 0.030 (0.018) 0.508 (0.126) 0.291 (0.108) 0.447 (0.130)
2 0.036 (0.022) 0.788 (0.098) 0.332 (0.085) 0.166 (0.105)
3 0.044 (0.031) 0.506 (0.061) 0.327 (0.058) 0.002 (2× 10−4)

Piece. quad.
1 0.031 (0.016) 0.524 (0.116) 0.319 (0.106) 0.463 (0.109)
2 0.038 (0.022) 0.748 (0.098) 0.326 (0.100) 0.164 (0.095)
3 0.045 (0.031) 0.432 (0.055) 0.318 (0.055) 0.005 (4× 10−4)

Table 3.5.6: Average mean squared error and standard deviation in brackets of
trend estimate over 100 realisations generated using exponential innovations and
the Daubechies EP4 wavelet.

(B) AR(1) model with parameter φ = 0.6.

(C) Time-varying AR(1) model with parameter φ(z) = 0.7 for z ∈ (0, 600/1024),

φ(z) = −0.3 for z ∈ (600/1024, 1).

(D) ARMA(1,3) model with AR parameter φ = 0.4 and MA parameters θ1 = 0.8,

θ2 = −0.3, and θ3 = 0.4.

These scenarios represent some common stationary and nonstationary error struc-

tures. Model A is an AR(2) process with slowly-evolving autoregressive parame-

ters, and is a variant of a process studied in von Sachs and MacGibbon (2000).

Model C represents a piecewise stationary AR(1) process with a single changepoint

in the autoregressive parameter. The results of these simulations are given in Table

3.5.7, again with bold values showing the lowest reported mean squared error. We

see that our methodology is able to perform well across the four scenarios, working

well in both stationary and nonstationary second-order settings. It outperforms

the other three methods in all of the trend and error scenarios. Interestingly, the

stationary wavelet thresholding method outperforms the nonstationary methodol-

ogy of von Sachs and MacGibbon (2000). Perhaps most surprisingly, this includes

the case where the AR(1) parameter changes abruptly. One possible explanation

for this is that the maximum analysing scale may not be optimal, as we have set it
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Trend Model Method
LSWT SWT VSMWT Spline

Linear

A 0.140 (0.061) 0.376 (0.108) 0.482 (0.139) 0.264 (0.137)
B 0.147 (0.040) 0.265 (0.070) 0.500 (0.086) 0.617 (0.083)
C 0.129 (0.048) 0.435 (0.080) 0.532 (0.095) 0.564 (0.090)
D 0.216 (0.059) 0.349 (0.160) 0.840 (0.129) 1.029 (0.162)

Sine

A 0.124 (0.069) 0.389 (0.134) 0.494 (0.130) 0.273 (0.151)
B 0.134 (0.033) 0.241 (0.091) 0.499 (0.087) 0.625 (0.083)
C 0.122 (0.040) 0.421 (0.083) 0.516 (0.100) 0.560 (0.109)
D 0.174 (0.045) 0.256 (0.146) 0.806 (0.135) 1.020 (0.154)

Logistic

A 0.129 (0.048) 0.370 (0.091) 0.474 (0.100) 0.234 (0.106)
B 0.150 (0.033) 0.267 (0.077) 0.495 (0.092) 0.614 (0.083)
C 0.129 (0.047) 0.431 (0.093) 0.531 (0.098) 0.561 (0.105)
D 0.214 (0.051) 0.357 (0.147) 0.837 (0.143) 1.060 (0.145)

Piece. quad.

A 0.141 (0.051) 0.362 (0.094) 0.467 (0.115) 0.249 (0.112)
B 0.141 (0.040) 0.275 (0.073) 0.500 (0.099) 0.624 (0.091)
C 0.131 (0.046) 0.420 (0.084) 0.525 (0.098) 0.549 (0.104)
D 0.221 (0.057) 0.332 (0.138) 0.834 (0.145) 1.035 (0.130)

Table 3.5.7: Average mean squared error and standard deviation in brackets of
trend estimate over 100 realisations generated from Models A – D.

the same in all of the wavelet-based methods in order to make a direct comparison.

Overall, we see that our proposed methodology offers strong practical performance

across a variety of time series models.

3.6 Data Applications

Next, we discuss two data applications which highlight the benefits of our proposed

methodology. In the first example, we analyse a wave height data set collected

from a buoy in the Atlantic Ocean that was studied in Killick et al. (2012). In

the second, we re-analyse the baby electrocardiogram data set first examined in

Nason et al. (2000).

3.6.1 Canadian Wave Height Data

Here we examine publicly available wave height data for a location in the North

Atlantic. The data we use are obtained from Fisheries and Oceans Canada, East

Scotian Slop buoy ID C44137. The data measures wave heights collected at hourly

intervals, from approximately mid-June 2005 to mid-May 2006, giving a time series
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of length 213 = 8192, and is available in the changepoint package in R (Killick

and Eckley, 2014). Killick et al. (2012) also perform nonstationary analysis on

the series, using the first-differences of a longer version of the series to detect

changepoints in variance only. The data are plotted in Figure 3.6.1 left, from

which we see larger wave heights in the winter and smaller wave heights in the

summer, as well as increased variability in the winter. Figure 3.6.1 right shows the

first-differenced time series. Killick et al. (2012) take first-differences to remove

the trend, and we also find this is sufficient.
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Figure 3.6.1: Left: North Atlantic wave heights recorded hourly between June
2005 and May 2006. Right: first-differenced wave heights.

For the spectral estimate, we use the Daubechies Least Asymmetric wavelet

with 10 vanishing moments. For simplicity, the periodogram is smoothed using

a running mean with bin width 512, corresponding to a time length of roughly 3

weeks. The estimate is shown in Figure 3.6.2, where each level in the plot is scaled

individually for clarity. We can see strong nonstationarity in the spectrum, with

more variability during the winter months and less in the summer, as found in

Killick et al. (2012) using a changepoint approach.
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Figure 3.6.2: Smoothed spectral estimate for the wave height data in Figure 3.6.1,
performed using first-differencing of the data.

To estimate the trend of the series, we perform TI wavelet thresholding using

the Daubechies Least Asymmetric wavelet with 4 vanishing moments. In line with

previous discussion, we analyse the finest 9 scales of the series. We use a soft

universal threshold of σ̂r,s
√

2 log(8192) to account for possible non-Gaussianity,

where σ̂r,s is calculated using the spectral estimate in Figure 3.6.2. We see that

the estimated trend function is relatively smooth with occasional sharp changes,

with the mean wave height larger during the winter and smaller in the summer.
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Figure 3.6.3: Trend estimate for the North Atlantic wave data shown in solid line,
with data shown in dashed line.
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Next we describe additional plots that help to understand the second-order

structure of the wave height data. Using the spectral estimate in Figure 3.6.2,

we calculated the local autocovariance estimate of the series. In Figure 3.6.4, we

see in the solid line the estimate using our methodology for the local variance

function of the time series. The nonstationary nature of the variance is clear

to see, with the summer months containing low variability, while winter months

display much higher variability. As one way of determining the performance of

our method, we can compare the variance estimate with the estimate obtained by

using the detrended wave height data. The detrended wave height data is obtained

by subtracting the wavelet thresholding trend estimate from the data. We then

perform standard LSW inference on this series, using the same parameters as in

our approach. In dashed line, we see the local variance estimate obtained in this

way. We see that the two estimates agree, which is reassuring on two counts: first

that our spectral estimate obtained using the differenced data is accurate, and

secondly that the trend estimate obtained was accurate.
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Figure 3.6.4: Local variance estimate for the wave height data. Solid line: obtained
using our methodology. Dashed line: obtained from the detrended data.

Finally, we plot the autocorrelation function across 4 time points, which high-

lights the second-order nonstationary nature of the data, and showing how the

structure of the autocorrelation varies considerably over time. In Figure 3.6.5, we

see that estimate for the local autocorrelation function for the first observation

recorded in the months of July 2005, October 2005, January 2006 and April 2006.
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These are shown in the solid, dashed, dotted, and dashed and dotted lines respec-

tively. We see that in general the series exhibits strong autocorrelation, which we

may expect due to the observations being recorded at hourly intervals. Further-

more, we note that the shape of the autocorrelation function changes across the

four months plotted.
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Figure 3.6.5: Local autocorrelation function estimate for the wave height data, at
4 different time points. Solid: July, dashed: October, dotted: January, dotted and
dashed: April.

3.6.2 Baby Electrocardiogram Data

In this section, we re-analyse the baby electrocardiogram (ECG) data set that was

first analysed in Nason et al. (2000). In Figure 3.6.6 left, we see a time series for

the ECG reading of a 66-day-old infant. The series is available in the wavethresh

package and was collected by the Institute of Child Health at the University of

Bristol. The series can be seen to exhibit both nonstationary trend and second-

order behaviour. As Nason et al. (2000) note, one reason for the nonstationarity

is that the ECG varies considerably over time and changes significantly between

periods of sleep and waking. In Nason et al. (2000), the authors first-difference

the series to remove the trend, as shown in Figure 3.6.6 right, resulting in an

approximately zero-mean time series. Then, LSW analysis is performed on the

differenced series.
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Figure 3.6.6: Left: original ECG data. Right: first-differenced ECG data.

We instead perform analysis on the original series, and note the similarities and

differences to the original analysis in Nason et al. (2000). We use the Daubechies

Least Asymmetric wavelet with 10 vanishing moments to analyse both series and

the same bin width of size 128 for the running mean smoother, but as discussed

we use a different matrix to correct for bias. In Figure 3.6.7 left, we see our

analysis on the original series. The top plot is not scaled, while the bottom plot is

individually scaled at each level. On the right, we see (our version of) the original

analysis of Nason et al. (2000), again with top plot unscaled and bottom plot

scaled individually. In line with previous discussion, only the finest 7 scales were

used for analysis. From the top plots, we can see the effect that differencing has

had on the resulting spectral estimate. In our estimate based on the original time

series, we see that the power is spread fairly evenly across scales. However, in

the spectral estimate of the differenced series, power is concentrated in the finest

scales. From the bottom plots, we see that both estimates exhibit similar overall

behaviour, with both evolving over time in a similar fashion.
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Figure 3.6.7: Comparison of the spectral estimates. Top left: spectrum estimate
using our methodology, unscaled, bottom left: scaled individually. Top right: spec-
trum estimate of the differenced series, unscaled, bottom right: scaled individually.

Due to the difference in magnitude between the estimated spectra at different

scales, some features of the original series can be identified more easily in our

analysis. In Nason et al. (2000), an accompanying data set, the sleep state of the

observed infant, is also used in the analysis. The sleep state is judged by a trained

human observer, and is measured as either quiet (1), between quiet and active (2),

active (3), or awake (4). A strong association between sleep state and spectral

value is observed for scales −1 to −5 in Nason et al. (2000). However, using the

original series instead of the differenced series can allow this association to become

more apparent: in particular, consider the spectrum estimate at scale −4, enlarged

in Figure 3.6.8. In solid line is the spectral estimate of the original series, while the

dashed line shows the spectral estimate for the differenced series. The dotted line

shows the sleep state of the infant. Our estimate correlates strongly with the sleep

state, especially in highlighting periods of being awake (sleep state 4). In general,

the “signal” of variability appears stronger in our analysis, which is due to the
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differencing lowering the level of autocorrelation within the series. Furthermore,

our estimate contains fewer negative spectral values, perhaps suggesting that the

original time series is better represented as an LSW process as opposed to the

first-differenced series.
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Figure 3.6.8: Estimate of the EWS at scale −4: solid line is for the original series,
while the dashed line is for the differenced series. Sleep state shown in dotted line.

Lastly, we perform TI wavelet thresholding using the Daubechies Least Asym-

metric wavelet with 4 vanishing moments to estimate the trend of the Baby ECG

series. We analyse the finest 7 scales of the series, using a hard universal threshold

of σ̂r,s
√

2 log(2048), where σ̂r,s is calculated using the spectral estimate in Figure

3.6.7 left. The resulting estimate is shown in the solid line in Figure 3.6.9. We

see that in general the estimate is quite smooth, with more rapid changes in mean

occurring at approximately 23:00, 03:00, and 06:00, corresponding to changes in

sleep state.
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Figure 3.6.9: Trend estimate for the Baby ECG data shown in solid line, with data
shown in dashed line.

3.7 Concluding Remarks

In this chapter, we have considered the problem of jointly modelling time-varying

first and second-order properties of nonstationary time series. Our model employs

the locally stationary wavelet model of Nason et al. (2000), used for modelling

second-order nonstationarity, and adapts it to incorporate a nonstationary trend

component. Using the common statistical technique of differencing, we have shown

that we can consistently estimate the evolutionary wavelet spectrum and local

autocovariance of the original series. Using these results, we have proposed a

wavelet thresholding approach for the nonparametric estimation of the trend of

the time series. The trend estimation methodology benefits from the information

provided by the ability to consistently estimate the second-order structure of the

time series, despite the presence of the trend component.

The simulation study showed the strong performance of the method, outper-

forming other wavelet-based methods. Using our methodology, we have analysed



CHAPTER 3. TREND-LSW PROCESSES USING DIFFERENCING 81

two time series that highlight the strength of the method to provide information

about the original time series, which can become masked when only considering

the differenced time series. In particular, our analysis of the Baby ECG data set

highlights the benefit of modelling the stochastic component of the original series

for the purpose of identifying sleep states more readily.



Chapter 4

Trend Locally Stationary Wavelet

Processes with Applications to

Environmental Data

4.1 Introduction

In many contexts, it is common to encounter time series for which the mean and

autocovariance of the series vary over time. Examples of time series that exhibit

such nonstationary first and second-order behaviour span a broad range of appli-

cations, including financial time series (Fryzlewicz, 2005), climate data (Beaulieu

and Killick, 2018), and meteorology (Shen, 2015). Consequently, methodology

that can incorporate both first and second-order nonstationarity within the same

modelling framework is appealing in numerous practical scenarios. Often, how-

ever, (nonstationary) first and second-order properties are estimated in isolation,

rather than within a single framework. In this chapter, we propose a wavelet-based

framework to jointly estimate the trend – the smooth, long-term behaviour – and

the time-varying second-order structure of a time series.

Due to their many advantageous properties, wavelet methods have enjoyed

popularity for many years in time series analysis. In particular, wavelets’ localised

82
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nature can provide sparse location-scale signal decompositions; for an overview of

wavelet techniques, see for example Vidakovic (2009) or Nason (2008). Recently,

there has been much focus in the area of locally stationary wavelet (LSW) mod-

elling, introduced in the seminal work of Nason et al. (2000). The LSW framework

provides a modelling approach for time series whose second-order structure evolves

slowly over time. The model has been successfully applied in a number of areas in

time series analysis since, including forecasting (Fryzlewicz et al., 2003), change-

point analysis (Killick et al., 2013), and stationarity testing (Nason, 2013). A

comprehensive overview of second-order nonstationary time series modelling can

be found in Dahlhaus (2012).

Under the LSW framework a time series is assumed to have zero mean, and

so typically the time series is detrended prior to applying the model. This extra

step will have implications for data analysis, for example by introducing extra

uncertainty, and potentially a bias in estimation. Furthermore, the task of esti-

mating the mean function in the presence of nonstationary second-order structure

is highly challenging. In principle, most standard techniques from nonparametric

regression such as kernel or local polynomial estimates may be used. However, due

to the nonstationarity of the error structure, theoretical and practical performance

suffer.

There exists a body of work for mean estimation in the presence of time-varying

dependent error structures. For example, von Sachs and MacGibbon (2000) use

wavelet thresholding to estimate the first-order structure only. The threshold used

is data-driven and depends on the unknown second-order structure, and hence the

method can be difficult to implement in practice. In the semi-parametric setting,

Dahlhaus (2000) and Dahlhaus and Neumann (2001) establish results where the

mean function is time-varying and/or estimated. For literature on trend estimation

by wavelet thresholding, see for example Brillinger (1994), Donoho and Johnstone

(1995) or Donoho et al. (1995). For a review of other nonparametric regression

methods including kernel smoothing and splines, see Härdle (1990).
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Some techniques do consider mean estimation alongside parameters relating

to second-order nonstationarity, see for example Tunyavetchakit (2010) for time-

varying autoregressive processes. Beran and Feng (2002) propose parallel first and

second-order estimation, but the second-order structure follows a parametric model

and is assumed to be difference-stationary. However, for locally stationary series,

many authors acknowledge that the topic “needs more investigation” (Dahlhaus,

2012, p. 56), and thus a principled approach to this challenge remains open.

In this chapter we propose a wavelet-based framework to model time series

that exhibit time-varying first and second-order structure, inspired by the LSW

model of Nason et al. (2000). The trend is considered to be a deterministic smooth

function representing long-term (low frequency) patterns or systematic variations

in the time series. By making modest assumptions on the trend, we develop

rigorous theory to achieve consistent estimation of the key time-varying second-

order quantities of interest.

Crucially, this includes a proof that a key wavelet matrix, utilised in LSW es-

timation theory, has a bounded inverse for all Daubechies compactly supported

wavelets. Previously, this was only shown for the boundary cases of Haar and

Shannon wavelets. Our approach adapts techniques used in Cardinali and Nason

(2017), who investigate the properties of wavelet packet-based operators. Impor-

tantly, we correct a flaw in the author’s arguments by making a key alteration,

which enables a finer characterise of the properties of the wavelet matrix.

Furthermore, we propose a wavelet thresholding technique to consistently esti-

mate the trend term in the presence of second-order nonstationarity. In practice,

however, our estimators also work well for trends that depart from our assump-

tions. Finally, we provide new methodology for the boundary handling in the dis-

crete wavelet transform employed during the estimation of first and second-order

quantities. This is of particular interest when analysing first and second-order

nonstationary time series which are not of dyadic length, as standard techniques

can produce spurious artefacts at the boundaries of the time series.
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This chapter is organised as follows. In Section 4.2 we give a brief overview

of the LSW framework and propose the Trend Locally Stationary Wavelet Pro-

cess model, discussing the key assumptions. Sections 4.3 and 4.4 introduce the

methodology for estimating the second-order structure and trend in the model,

and describe a new technique for boundary handling which brings improvements

in both the first and second-order estimation procedures. In Section 4.5 we outline

comprehensive numerical experiments to assess the performance of our proposed

methodology. In Section 4.6, we examine the much-studied global mean sea tem-

perature data set, providing new insights and highlighting the potential uses of our

framework. Concluding remarks are given in Section 4.7, while proofs of results

are contained in Appendix B.

4.2 The Trend Locally Stationary Wavelet Process

Model

4.2.1 Background to LSW Processes

We begin by giving a brief overview of the original LSW modelling paradigm of

Nason et al. (2000), which has been widely used for the modelling of second-order

nonstationary – but first-order stationary – time series. This will form the basis

for our more general trend nonstationary time series model. A locally stationary

wavelet (LSW) process is defined as follows.

Definition 4.2.1. A triangular stochastic array {Xt,T}T−1t=0 for T = 2J ≥ 1 is in a

class of locally stationary wavelet (LSW) processes if there exists a mean square

representation

Xt,T =
−1∑

j=−∞

∑
k∈Z

wj,k;Tψj,k−tξj,k, (4.2.1)

where j and k ∈ Z are scale and location parameters respectively, {ξj,k} is a random

orthonormal increment sequence, {ψj,k−t}j,k is a set of discrete non-decimated

wavelets, and {wj,k;T} is a set of amplitudes. The quantities in representation
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(4.2.1) possess the following properties:

1. E(ξj,k) = 0 for all j, k.

2. Cov(ξjk, ξlm) = δjlδkm.

3. There exists, for each j ≤ −1, a Lipschitz continuous function Wj(z) for

z ∈ (0, 1) which satisfies the following properties:

−1∑
j=−∞

|Wj(z)|2 <∞ uniformly in z ∈ (0, 1);

the Lipschitz constants Lj are uniformly bounded in j and
∑−1

j=−∞ 2−jLj <

∞. There exists a sequence of constants Cj such that for each T ,

sup
k

∣∣∣∣wj,k;T −Wj

(
k

T

)∣∣∣∣ ≤ Cj
T
,

and where the sequence {Cj} satisfies
∑−1

j=−∞Cj <∞.

Since E(ξj,k) = 0 for all j and k, the process mean E(Xt,T ) = 0 for all t.

This means the LSW framework is only able to model time-varying second-order

structure. As with classical time series theory, the second-order structure of an

LSW process is encoded in the spectrum. The evolutionary wavelet spectrum

(EWS) of an LSW process is defined as Sj(z) := |Wj(z)|2 for rescaled time z =

k/T ∈ (0, 1) and measures the contribution to variance at a particular rescaled

time z and scale j. Since the Wj are Lipschitz continuous, the spectrum at level

j, Sj, is also Lipschitz continuous; however Fryzlewicz and Nason (2006) and

Van Bellegem and von Sachs (2008) extend the LSW model to consider piecewise

constant spectra and those of bounded total variation respectively.

The EWS is estimated via the empirical wavelet coefficients of the time series,

given by dj,k;T := 〈Xt,T , ψj,k−t〉 =
∑

tXt,Tψj,k−t. The raw wavelet periodogram,

defined by Ijk,T := |dj,k;T |2 is a biased, inconsistent estimator of the EWS (Nason
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et al. (2000), Proposition 4):

E
(
Ijk,T
)

=
∑
l

AjlSl(k/T ) +O(T−1), (4.2.2)

Var(Ijk,T ) = 2

(∑
l

AjlSl(k/T )

)2

+O(2−jT−1), (4.2.3)

where the operator A = (Ajl)j,l<0 is given by Ajl := 〈Ψj,Ψl〉 =
∑

τ Ψj(τ)Ψl(τ), and

the autocorrelation wavelets are defined by Ψj(τ) :=
∑

k∈Z ψj,kψj,k−τ , j < 0, τ ∈ Z.

The vector of periodograms I(z) := {I lbzT c,T}l=−1,...,−J can be bias-corrected

using the J-dimensional matrix AJ := (Ajl)j,l=−1,...,−J which is invertible. The

vector of corrected periodograms L(z) := {LjbzT c,T}j=−1,...,−J with L(z) = A−1J I(z)

satisfies

E (L(z)) = E
(
A−1J I(z)

)
= S(z) +O(T−1) ∀ z ∈ (0, 1), (4.2.4)

where S(z) := {Sj(z)}j=−1,...,−J . The raw wavelet periodogram is first smoothed

and then corrected by A−1J to produce an asymptotically unbiased, consistent es-

timator. Smoothing can be carried out using a number of techniques, for example

via a running mean as in Nason (2013) or using wavelet thresholding as in Nason

et al. (2000).

The local autocovariance (LACV) function for an LSW process provides in-

formation about the covariance at a rescaled location z = k/T ∈ (0, 1). The

LACV, c(z, τ), of an LSW process with EWS {Sj(z)} is defined as c(z, τ) =∑−1
j=−∞ Sj(z)Ψj(τ), τ ∈ Z, z ∈ (0, 1). The LACV can be thought of as a de-

composition of the autocovariance of a process over scale and rescaled time. The

process autocovariance arises as the asymptotic limit of the LACV. In practice,

the LACV is estimated by plugging in the smoothed, corrected estimate for the

EWS into the equation for the LACV, which results in a consistent estimator.
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4.2.2 Modelling Locally Stationary Time Series with Trend

In this section we introduce our proposed model which relaxes the zero mean

assumption inherited from Assumption 1 in Definition 4.2.1 above. We will show

that it is possible to incorporate a nonstationary polynomial trend term within the

context of a second-order nonstationary time series. Furthermore, we will show

that this polynomial assumption can be relaxed, facilitating modelling of time

series with more complex first-order structure within our paradigm. This allows

for self-contained, joint modelling of both first and second-order nonstationarity

of a time series. Hence, it is not necessary to remove the trend before estimating

second-order structure, and vice versa, we can obtain an estimate of first-order

structure in the presence of the nonstationary second-order behaviour. To this

end, we define the polynomial trend locally stationary wavelet process as follows.

Definition 4.2.2. A polynomial trend LSW process {Xt,T}, t = 0, . . . , T − 1, and

T = 2J is a doubly-indexed stochastic process with the following representation in

the mean square sense:

Xt,T = µ

(
t

T

)
+

−1∑
j=−∞

∑
k

wj,k;Tψj,k−tξj,k, (4.2.5)

where the quantities in representation (4.2.5) possess the same properties as in

Definition 4.2.1, and in addition the function µ is a polynomial of degree p, i.e.

µ

(
t

T

)
= Pp

(
t

T

)
=

p∑
i=0

ai
ti

T i
, ai ∈ R.

Our model imposes the same assumptions on the LSW component as in Nason

et al. (2000), allowing for locally stationary second-order structure, while also per-

mitting nonstationary first-order behaviour by incorporating a polynomial mean

function. Using the model defined in Equation (4.2.5), we build upon the rigor-

ous theory of Nason et al. (2000) in order to estimate the nonstationary first and

second-order structure of the time series. Note that the assumption that T = 2J
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is a theoretical one; in practice, using the boundary handling method described in

Section 4.4.4, we can analyse time series of any length.

4.3 Spectral Estimation Theory

Given the process model definition in Equation (4.2.5), we now turn to the ques-

tion of estimating the appropriate quantities of the model. In this section, we

discuss estimation of the evolutionary wavelet spectrum Sj(z) = |Wj(z)|2 and lo-

cal autocovariance function. In Nason et al. (2000), rigorous estimation theory

is provided for the case where the time series does not display a trend. We ex-

tend this work to allow for the inclusion of a trend by examining three separate

scenarios: firstly, we examine the case where the trend is a polynomial of degree

less than the order of the wavelet used in the LSW process (4.2.5); secondly, the

case where the trend is a higher degree than the wavelet; and lastly, the case of a

general Hölder continuous trend.

Using wavelets to model the second-order nonstationarity allows the incorpo-

ration of smooth trends due to the ability of the wavelet to ‘cancel out’ this trend.

This means we circumvent the problem of detrending the series first, which is chal-

lenging due to the second-order nonstationarity. In all three scenarios we provide

appropriate theoretical results to enable consistent estimation of both the EWS

and local autocovariance of the time series. Given that trends are usually assumed

to be slowly-varying, smooth functions, such as low-order polynomials (see e.g.

Priestley (1983); Craigmile et al. (2005); Kallache et al. (2005)), our model in

(4.2.5) is applicable to a wide range of data scenarios. In practice, this can serve

as a good approximation even when we depart from the given assumptions.

4.3.1 Spectral Estimation with Low-Order Polynomial Trends

First, we examine the case of a low-order polynomial trend. We show that we

can use the same estimation procedure as in Nason et al. (2000) to obtain an
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asymptotically unbiased, consistent estimator of the EWS. This can then be used

to obtain a consistent estimator of the LACV.

Recall that a function ψ ∈ L2(R) is said to have m vanishing moments if it

satisfies 〈xl, ψ(x)〉 =
∫
xlψ(x)dx = 0, for l = 0, 1, . . . ,m − 1. If a wavelet has

m vanishing moments, then all wavelet coefficients of any polynomial of degree

m − 1 or less will be zero. The commonly used extremal phase (EP) and least

asymmetric (LA) Daubechies wavelet families have k vanishing moments for a

filter of length 2k. For example, the Haar wavelet has one vanishing moment and

can only annihilate constant behaviour, while the Daubechies EP wavelet with 10

vanishing moments can annihilate polynomial behaviour up to degree 9.

Assume that the trend is a polynomial of degree p < m, where m is the

number of vanishing moments of the wavelet defined in the LSW process repre-

sentation (henceforth referred to as the generating wavelet) in Equation (4.2.5).

Since second-order estimation is performed using these wavelet coefficients, it will

be unaffected by the trend, and hence we can obtain an unbiased estimate of the

spectrum in the usual way.

Lemma 4.3.1. When the degree p of µ(t/T ) is less than m, the number of van-

ishing moments of the wavelet, the expectation and variance of the non-boundary

raw wavelet periodogram is unaffected by the trend, and given by Equation (4.2.2)

and Equation (4.2.3) respectively.

We can correct the raw wavelet periodogram estimator in the usual way with

A−1J as in Equation (4.2.4) to obtain an asymptotically unbiased estimator, just as

in the original LSW model. Hence, as long as the trend of the time series can be

represented by a low-order polynomial and we use a high enough order wavelet,

we can still apply the standard EWS estimation procedure without incurring any

additional bias.

Remark 2. In practice, only the non-boundary wavelet coefficients will be free

from trend, while the boundary wavelet coefficients will still contain the trend.

This is due to the way in which the non-decimated discrete wavelet transform
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(DWT) is computed at the boundary values of the time series, see for example

Section 4.11 of Percival and Walden (2006). In Section 4.4.4 we will address this

issue by modifying standard boundary handling methods for estimation at the

boundaries of the time series.

As in the original LSW model, resulting spectral estimates are inconsistent and

must be smoothed. To achieve consistency we can simply follow the smoothing

strategy taken in Nason et al. (2000): for each fixed scale j, the periodogram

Ijk,T (which is scaled χ2-distributed) is smoothed as a function of z = k/T using,

for example, DWT shrinkage or translation invariant (TI) denoising of Coifman

and Donoho (1995). This is analogous to the results described in Section 3.3.5 of

Chapter 3. The following results, which hold for Gaussian LSW processes (and

in turn polynomial trend Gaussian LSW processes), describe how consistency is

achieved through DWT shrinkage. Work in von Sachs et al. (1997) explains how

to smooth using an orthonormal second stage wavelet basis of L2([0, 1]), denoted

{ψ̃rs}.

Smoothing is achieved using nonlinear thresholding of the empirical wavelet

coefficients, v̂jrs, of I
j
bzT c and then inverting using the inverse matrix A−1 to give

the estimate Ŝj(z). Concretely, denote by ĨjbzT c the wavelet thresholding estimator

of the periodogram at scale j and rescaled time z, calculated using the threshold

λ2(j, r, s, T ) = Var(v̂jrs) log2(T ). Then, the estimator Ŝj(z) of the EWS Sj(z) is

given by

Ŝj(z) =
−1∑
l=−J

Ĩ lbzT cA
−1
lj .

In order to prove consistency for the estimator, we must investigate the properties

of the matrix A. In particular, since we consider the case where T → ∞, we are

interested in the properties of A, when viewed as an operator acting on the Hilbert

space `2(N). In the original work of Nason et al. (2000), the authors show that

A is invertible and possesses a bounded inverse, for the special cases of the Haar

and Shannon wavelets. This fact allows us to bound the error that arises when

performing the inversion step in the estimation procedure.
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In Cardinali and Nason (2017), the authors attempt to extend the result on

bounded invertibility of A to all operators arising from inner products of wavelet

packets. This more general result includes all Daubechies compactly supported

wavelets. Unfortunately, the proof contained in Cardinali and Nason (2017) con-

tains a flaw, which we correct here for the case of all Daubechies compactly sup-

ported wavelets. Crucially, we consider the related operator Bjl := 2j/2Ajl2
l/2,

rather than A directly, which leads to the following proposition.

Proposition 4.3.2. Let A be the autocorrelation wavelet inner product matrix

constructed using a compactly supported Daubechies wavelet. The semi-infinite

operator B, with entries given by Bjl = 2j/2Ajl2
l/2 is a bounded, invertible operator

on `2(N), with bounded inverse.

The proof of Proposition 4.3.2 follows the strategy of Cardinali and Nason

(2017), with one key modification, which we now outline. First, we show that

B is positive definite. Secondly, we show that the operator B possesses certain

decay properties, which is the crucial change to the original proof of Cardinali

and Nason (2017). This is because the operator A has unbounded entries on its

diagonal, which are of order O(2−j), and therefore does not satisfy the necessary

decay properties needed for the proof. By considering the related operator Bjl =

2j/2Ajl2
l/2 instead, we ensure that B does have bounded diagonal entries.

Next, we utilise the results of Goodman et al. (1995), to show that we can

construct a Cholesky factorisation of B which also satisfies decay properties. The

inverse of this Cholesky factorisation itself has decay properties, which allows us

to show that the inverse of B is bounded. Then, Proposition 4.3.2 immediately

gives rise to the following corollary.

Corollary 4.3.3. Let A be the autocorrelation wavelet inner product matrix as-

sociated to a Daubechies compactly supported wavelet. Then, for some positive

constant C,

|A−1jl | ≤ C2j/22l/2.
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Corollary 4.3.3 enables us to bound the entries of the A-inverse operator, which

can be used when bounding the error of the LSW process-based estimators. In fact,

it allows for a finer characterisation of the off-diagonal decay of the entries of A−1

in terms of the indices j and l. This is a stronger result than simply showing that

||A−1|| is bounded, allowing for improved rates of convergence in LSW estimators.

This leads to an extension of Theorem 4 and Proposition 5 of Nason et al. (2000) –

which are only applicable for Haar and Shannon wavelet zero-mean LSW processes

– to trend LSW processes generated by any wavelet in the Daubechies compactly

supported family.

Proposition 4.3.4. Let ψ̃ be a wavelet of bounded variation, with 2r = o(T ) for

wavelet coefficients v̂jrs. Suppose that Sj(k/T ) ≤ D25j/6 for some constantD. For a

polynomial trend Gaussian LSW process generated by any Daubechies compactly

supported wavelet, with threshold given by λ2(j, r, s, T ) = Var(v̂jrs) log2(T ), for

each fixed j,

E
[∫ 1

0

(
Ŝj(z)− Sj(z)

)2
dz

]
= O

(
2j log2(T )T−2/3

)
. (4.3.1)

Lastly, we can consistently estimate the LACV by using the EWS estimate.

Proposition 4.3.5. Suppose the assumptions of Proposition 4.3.4 hold, and define

ĉ(z, τ) by replacing Sj(z) with Ŝj(z) in the equation for the LACV, i.e.

ĉ(z, τ) =
−1∑

j=−J

Ŝj(z)Ψj(τ). (4.3.2)

Then, ĉ(z, τ) is a consistent estimator of c(z, τ), since for each fixed τ ∈ Z,

E
[∫ 1

0

(ĉ(z, τ)− c(z, τ))2 dz

]
= O

(
log2(T )T−2/3

)
.

With these results, we have shown that in the case of a low-order polynomial

trend, we can still consistently estimate the evolutionary wavelet spectrum and

local autocovariance on the non-boundary values of the wavelet periodogram. The
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assumption on the decay rate of the EWS that Sj ≤ D25j/6 is necessary for the

proof of Proposition 4.3.4, and hence Proposition 4.3.5 as well. This assumption is,

for example, satisfied for the white noise process where Sj = 2j. The assumption

is required in order to control the mean squared error in estimating the EWS using

the J available scales, as we do not have access to all (infinite) scales in practice.

This assumption is the weakest possible assumption that can be used, and is chosen

to balance the mean squared error rate (up to the log factor) of O(log2(T )T−2/3)

that arises from the wavelet thresholding procedure. Note that this is a slightly

weaker assumption than that of Fryzlewicz and Nason (2006) and Sanderson et al.

(2010), who instead assume that Sj ≤ D2j.

The extension of consistency results to all Daubechies compactly supported

wavelets is in itself an important contribution to the area of LSW analysis, and

is due Proposition 4.3.2. This result can be used to extend much of the current

theory of LSW processes – which previously was only valid for Haar and Shannon

wavelets – to all compactly supported Daubechies wavelets. This includes, for

example, the work on bivariate LSW processes of Sanderson et al. (2010), and the

extension of the LSW model to spectra of bounded total variation of Van Bellegem

and von Sachs (2008).

4.3.2 Spectral Estimation with High-Order Polynomial Trends

Next, we consider the case of higher-order polynomial trends with respect to the

generating wavelet, which allows for the modelling of less smooth trends. The

key idea is to use a smoother wavelet to analyse the series, which ensures that

the trend is removed from the wavelet coefficients. By calculating the bias that

this causes, we can correct the raw wavelet periodogram analogously to Equation

(4.2.4) to obtain an unbiased estimate.

If the polynomial trend of the time series is a higher degree than the wavelet

generating the LSW process, then the standard non-decimated wavelet transform

will not zero out the trend, causing bias in our estimation. For example, if the Haar
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wavelet is the generating wavelet, and the time series exhibits a linear trend, then

additional bias will be incurred in the computation of the raw wavelet periodogram,

since the Haar wavelet is only capable of annihilating constants. If we instead use

the Daubechies EP wavelet with 2 vanishing moments, the linear trend would be

removed by the wavelet. Then, the bias of the raw wavelet periodogram will be

quantified in terms of the mismatch between the generating wavelet and analysing

wavelet. The next result shows we can correct for this bias, and extends the work

of Gott and Eckley (2013), which examined the effect of wavelet misspecification

on EWS estimation.

Lemma 4.3.6. Suppose that the polynomial LSW process is generated by the

wavelet ψ0 with m0 vanishing moments, and let ψ1 be a Daubechies compactly

supported wavelet with m1 vanishing moments. Let p be the degree of the poly-

nomial trend, and suppose that m1 > p. Define the non-decimated wavelet coeffi-

cients to be dj,k =
∑

tXtψ
1
j,k−t. Let the matrix C1,0 be the inner product matrix

of autocorrelation wavelets whose j, l-th entry is given by

C1,0
jl =

∑
τ

Ψ1
j(τ)Ψ0

l (τ),

where the superscript denotes the fact that the underlying wavelet is different.

Then,

E(d2j,k) =
∑
l

C1,0
jl Sl (k/T ) +O(T−1),

Var(d2j,k) = 2

(∑
l

C1,0
jl Sl (k/T )

)2

+O(2−jT−1).

Provided C1,0 is invertible, Lemma 4.3.6 implies that, for the vector of pe-

riodograms I(z) := {I l[zT ],T}l=−1,...,−J , and the vector of corrected periodograms

L(z) := {Lj[zT ],T}j=−1,...,−J with L(z) = C1,0−1

J I(z),

E (L(z)) = E
(
C1,0−1

J I(z)
)

= S(z) +O(T−1) ∀ z ∈ (0, 1), (4.3.3)
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where S(z) = {Sj(z)}j=−1,...,−J . Hence, we do not have to restrict to assuming the

trend has a lower order than the wavelet that generates the LSW process. In this

scenario, we can perform the following altered estimation of the EWS. First, we

apply the non-decimated wavelet transform using a higher order wavelet, removing

the trend. Next, we form the periodogram and perform smoothing. Finally, we

correct the estimate by premultiplying by the appropriate inverse matrix (C1,0)−1.

Correcting in this fashion can be beneficial even when the time series contains

no trend. Smoother wavelets have a shorter support in the Fourier domain which

means they experience less spectral leakage, where power can leak into nearby

scales. For example, a Haar wavelet estimate will experience more leakage than

using a smoother wavelet like the EP10 wavelet.

If the LSW process is generated by a Haar wavelet and we use a Haar wavelet

to analyse the series, then the spectral estimate may be prone to leakage and the

accuracy of the estimate will suffer as a result. However, if the process is generated

by a EP10 wavelet and we use the EP10 wavelet to analyse, the estimate will

exhibit less leakage. This is due to the fact that the off-diagonal entries of the

Haar A matrix exhibit slower decay than that of the EP10 A matrix. Hence, the

off-diagonal entries of the corresponding C matrix will be smaller than those of

the less smooth wavelet. Therefore, it can be beneficial, in the case where the

generating wavelet is not very smooth, to use a smoother wavelet to analyse, and

then correct the estimate with the corresponding C-inverse matrix, rather than

using the generating wavelet to analyse and the usual A-inverse matrix. Using

the smoother wavelet to analyse helps to reduce leakage, while still achieving an

unbiased estimate by correcting in the appropriate way. This leads to a more

accurate spectral estimate: in Section 4.5.4 we provide numerical experiments to

verify this observation.

To further illustrate this point, we compute the entries of the A and C matrices

discussed above for the case where J = 4, where the entries are accurate to 3

decimal places. Denote by AH and AEP the A-matrices constructed using Haar
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and EP10 wavelets respectively, and let CEP,H denote the C-matrix computed

from a Haar generating and EP10 analysing wavelet. Note that C1,0 = (C0,1)T by

definition, and so CH,EP is omitted for brevity. From the matrices below, we see

that the Haar A matrix exhibits slower decay than the EP10 A matrix, while the

corresponding C matrix has a level of decay in between the two A matrices.

AH =



1.5 0.75 0.375 0.188

0.75 1.75 1.125 0.563

0.375 1.125 2.875 2.063

0.188 0.563 2.063 5.438


, AEP =



1.839 0.322 0.000 0.000

0.322 3.035 0.643 0.001

0.000 0.643 6.070 1.285

0.000 0.001 1.285 12.141


,

CEP,H =



1.621 0.653 0.184 0.047

0.605 2.106 1.164 0.357

0.226 0.967 3.828 2.264

0.121 0.308 1.834 7.479


.

Intuitively, there is strong evidence to suggest that the matrix C1,0 is invertible.

In Appendix B, we show that the inverse of the operator A is bounded for all

Daubechies compactly supported wavelets. The A-matrix is the Gram matrix of

the set {Ψj(τ)}j≤−1 of linearly independent autocorrelation wavelets. In our case,

the matrix C1,0 is the cross-Gram matrix of two sets of autocorrelation wavelets

{Ψ0
j}j≤−1 and {Ψ1

j}j≤−1. Intuitively, forming the cross-Gram matrix uses a mix of

two wavelet families, and we might expect that the properties of the cross-Gram

matrix are a ‘mixture’ or ‘average’ of the properties of the two Gram matrices

associated to the two wavelet families.

For example, when J = 10, the numerically calculated condition number of the

Haar A matrix is 860.47, while it is equal to 393.12 for the A matrix constructed

using the Daubechies extremal phase wavelet with 10 vanishing moments. For

the two C matrices (C1,0 and C0,1) constructed using a combination of these two

wavelets, the condition numbers are 596.97 and 610.97 respectively. These numbers
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are close to the average of the two A matrix condition numbers. This suggests that

the C matrices should also be invertible, with bounded inverse.

4.3.3 Spectral Estimation with Non-Polynomial Trends

A polynomial trend may not be an appropriate assumption for a given time series.

In this section, we investigate how we can modify the spectral estimation procedure

when we place a Hölder continuous smoothness assumption on the trend. Often,

wavelet methods for curve estimation (distinct from trend estimation where more

general mean functions are considered) assume that the mean function lies in some

Besov space (see for example von Sachs and MacGibbon (2000) and Neumann and

von Sachs (1995)), of which Hölder continuous functions are a special case.

Intuitively, the wavelet coefficients are calculated using difference operations,

and so if the trend function is sufficiently smooth, we expect that these wavelet

coefficients will be reasonably small. When using these coefficients to estimate

the EWS – in some of the finer scales at least – where we use less of the data

to calculate the wavelet coefficients, and where local changes are small, we could

expect the estimate to remain reasonably accurate.

Formally, consider the class of Hölder continuous functions with exponent β,

where 0 < β ≤ 1, in place of the polynomial trend assumption in Definition 4.2.2.

For example, µ(z) = zβ is Hölder continuous with exponent β, and an exponent of

β = 1 corresponds to Lipschitz continuity. Again, this seems a reasonable assump-

tion to make, given that trend functions are generally assumed to be smooth and

slowly-evolving – for example, sinusoids are Lipschitz continuous. As the following

lemma shows, we accumulate bias in the raw wavelet periodogram proportional

to the level of the wavelet transform and the smoothness of the trend, which is

governed by β.

Lemma 4.3.7. For any Hölder continuous trend LSW process with exponent β,
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the expectation of the raw wavelet periodogram is given by

E
(
Ijk,T
)

=
∑
l

AjlSl(k/T ) +O(2−j(2β+1)T−2β) +O(T−1).

Thus we introduce extra bias due to the trend, which we must account for

in our estimation procedure, i.e. when smoothing and correcting. To smooth the

wavelet periodogram, we propose to use a simple running mean, as in Nason (2013)

and Sanderson et al. (2010), with bin width size 2n + 1. The smoothed wavelet

periodogram is thus defined as

Ĩjk =
1

2n+ 1

n∑
m=−n

Ijk+m. (4.3.4)

For simplicity we use a running mean, but one could just as easily use wavelet

thresholding, and achieve similarly consistent estimation. We must now correct

the smoothed wavelet periodogram using the inverse matrix A−1. When we do

this, we alter the standard estimation procedure by only correcting across a certain

number of scales – in relation to T – in order to control for the bias caused by

the trend and the smoothing step. One can view this use of a reduced number of

scales as akin to a tapered estimator, which we utilise for both EWS and LACV

estimation. Based on the above observations, we can now state our results related

to the consistency of the smoothed estimators of the EWS and local autocovariance

in the presence of a Hölder continuous trend.

Theorem 4.3.8. Suppose that Sj(k/T ) ≤ D2j for some constant D, and µ is

Hölder continuous with exponent β, and let J0 = α log2(T ) for α ∈ (0, 1). The

EWS estimator Ŝj(k/T ), defined by

Ŝj(k/T ) =
−1∑

l=−J0

Ĩ lkA
−1
lj , (4.3.5)

is mean square consistent for each fixed scale j, provided that n−1Tα → 0, nT−1 →

0 and T 4β(α−1)+α → 0 as T →∞ and n→∞. The mean squared error of Ŝj(k/T )
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is given by

E
(
Ŝj(k/T )− Sj(k/T )

)2
= O(2jn−1Tα) +O(2jnT−1) +O(2jT 4β(α−1)+α).

Theorem 4.3.9. Suppose the assumptions of Theorem 4.3.8 hold. Let Ŝj(k/T )

be the estimator of the EWS defined in Equation (4.3.5). Then, for each fixed

τ ∈ Z, the estimator of the local autocovariance c(k/T, τ), defined by

ĉ(k/T, τ) =
−1∑

j=−J0

Ŝj(k/T )Ψj(τ) (4.3.6)

is mean square consistent, provided that n−1Tα → 0, nT−1 → 0 and T 4β(α−1)+α →

0 as T →∞ and n→∞.. The mean squared error of ĉ(k/T, τ) is given by

E (ĉ(k/T, τ)− c(k/T, τ))2 = O(n−1Tα) +O(nT−1) + T 4β(α−1)+α. (4.3.7)

Note that these results hold for all Daubechies compactly supported wavelets,

just as in Propositions 4.3.4 and 4.3.5. As in Propositions 4.3.4 and 4.3.5, we

require an assumption on the decay rate of the EWS, which is necessary to ensure

consistent estimation. In this case, we assume that Sj(k/T ) ≤ D2j in order to

utilise results from Sanderson et al. (2010), who make the same assumption.

The third error term in Equation 4.3.7, corresponding to the error caused by

the trend, will be asymptotically dominated by the first term, irrespective of the

bin width n, for β = 1 and α < 3/4. Therefore, the trend term can be seen to have

minimal impact on the spectral estimation, provided it is smooth enough. In the

presence of a smooth trend, we can still recover a consistent estimator of the EWS

and LACV. We simply alter the standard estimation procedure by only using the

finest J0 scales. Further, one could just as easily use a different analysing wavelet

to the generating wavelet as described in Section 4.3.2, and use the appropriate

C1,0−1 matrix for bias correction.



CHAPTER 4. TREND-LSW PROCESSES 101

Choice of contributing scales and bin width. When using the tapered esti-

mator, we must choose a value of α, the proportion of scales over which we correct.

Higher values of α ensure a decomposition over a larger number of scales. In prac-

tice, not all scales will be informative, and the number of informative scales will

depend on both the data and choice of wavelet, as noted in Sanderson et al. (2010).

In our experiments we have observed no significant bias incurred by using most

scales, and propose using the proportion α = 2/3. This is motivated by results

in the next section on trend estimation and is in alignment with Sanderson et al.

(2010).

The choice of the bin width parameter n in Equation (4.3.4) will also affect the

quality of the estimate. We can choose to use level-dependent smoothing of the

periodogram, and so a larger bin width is used in coarser scales. Choosing a bin

width in this way will still ensure consistent estimation, and further is natural as

coarser scales will experience stronger autocorrelation.

The results in this section establish that we can still consistently estimate the

nonstationary second-order structure in the presence of a trend, provided that

the trend function is smooth. In practice, using a smoother wavelet to analyse

the series is recommended, as it is able to better remove the trend of the series,

whilst also helping to reduce leakage. Smoothing of the wavelet periodogram

can be carried out using wavelet thresholding or a running mean smoother. We

advocate the latter due to its simplicity and because only one parameter needs to

be specified.

Finally, we note that many existing methods that utilise the LSW framework

immediately extend to our new model. For example, the extension of the LSW

model to spectra of bounded total variation in Van Bellegem and von Sachs (2008)

is valid within our model. Furthermore, the test of second-order stationarity of

Nason (2013) will still be applicable, provided the wavelet used is smooth enough

to remove the trend of the time series. Similarly, locally stationary wavelet models

for multivariate time series, such as Sanderson et al. (2010) and Park et al. (2014)
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will be valid for any trend scenario described above.

4.4 Trend Estimation

Having described the necessary methodology for estimating the nonstationary

second-order structure of the time series, we now address the question of esti-

mating the trend of the series. If we assume that the trend function is smooth, a

natural method for estimating it is to use wavelets, given that polynomial functions

can be exactly represented using wavelet scaling functions (Vidakovic (2009)). Us-

ing a wavelet-based approach enables us to obtain a simple intuitive estimator

from which we can derive appropriate confidence intervals.

4.4.1 Trend Estimation Theory

We follow the same strategy as Craigmile et al. (2004) and Craigmile et al. (2005),

who apply wavelet thresholding in the long memory time series setting. Our prob-

lem can be posed as the following. The observed data vectorX = (X0, . . . , XT−1)
T

is given by

X = µ+ ε,

where µ is the trend component and ε is the LSW process term. If we use a wavelet

that has a high enough order with respect to the trend, the wavelet transform of

the time series will decompose it into a trend and noise component. This is because

the non-boundary wavelet coefficients of a polynomial are zero due to the vanishing

moments property, and so since the increments in an LSW process are zero mean,

these coefficients have expectation zero. The boundary wavelet coefficients and

the scaling coefficients will contain a contribution due to the trend alone.

Motivated by this observation, we can estimate the trend using a type of wavelet

thresholding estimator. We perform the wavelet transform on the time series,

choosing the coarsest scale j0 to which we analyse the series. Then, we set the

non-boundary wavelet coefficients to zero. Then, we perform the inverse wavelet
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transform in order to obtain the estimator of the trend. This estimator captures

the long-term behaviour of the time series (trend), but will also contain short-scale

variability at the boundaries due to the inclusion of boundary wavelet coefficients.

Formally, let us write the wavelet transform of the time series in matrix form,

from which we can derive the matrix form of the estimator. Given the time series

is of length T = 2J , the total number of (decimated) wavelet coefficients at each

level j is given by Nj = T2j. Then, the Bj = d(2m − 2)(1 − 2j)e boundary

coefficients are given by the outer coefficients, where m is the number of vanishing

moments of the wavelet. If p is the order of the polynomial trend, then we can

zero out this trend so long as p < m. The number of non-boundary coefficients is

denoted byMj = Nj−Bj. Denote by diag(x) the diagonal matrix with x along the

main diagonal, and let 0n and 1n denote a vector of n zeros or ones respectively.

Let A = diag(1B1 ,0M1 ,1B2 ,0M2 , . . . ,1BJ
,0MJ

,1NJ
), and let IT denote the T × T

identity matrix. Using Daubechies wavelets ensures the DWT is orthogonal, and

so we can partition the data vector x into a trend component and noise component,

as

X = WTWX = WTAWX +WT(IT − A)WX := µ̂+ ε̂.

Analogously to Proposition 1 of Craigmile et al. (2004), the wavelet-based trend

estimator is unbiased, and further we can show that the estimator is mean square

consistent, in the case of both polynomial and Hölder continuous trend functions.

Proposition 4.4.1. For a polynomial trend of degree p, and using a wavelet with

m > p vanishing moments, E(µ̂) = µ.

Proposition 4.4.2. Let j0 be the coarsest scale of the wavelet decomposition,

where j0 = α log2 T for some α ∈ (0, 1). Assume that Sj(z) ≤ D2j for all z ∈ (0, 1)

and some constant D. Let m denote the number of vanishing moments of the

wavelet used, and let p be the degree of the polynomial trend. Then, provided

p < m, ignoring boundary effects, the trend estimator is consistent in the mean
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square sense, that is:

1

T

T−1∑
t=0

E
(
(µ(t/T )− µ̂(t/T ))2

)
= O(T−α).

Proposition 4.4.3. If µ is Hölder continuous with exponent β, then under the

same conditions on α and Sj as Proposition 4.4.2, the trend estimator is mean-

square consistent:

1

T

T−1∑
t=0

E
(
(µ (t/T )− µ̂ (t/T ))2

)
= O(T−α) +O(T 2β(α−1)).

For a Lipschitz continuous trend, balancing the rates in Proposition 4.4.3 leads

to taking α = 2/3. We use this for both trend and second-order estimation in

practice for simplicity. Under the conditions of Proposition 4.4.2 and subject to

some mild regularity conditions, the trend estimate is multivariate Gaussian, with

mean µ and covariance RCov(ε)RT := RΣRT, where R = WTAW , following

from asymptotic normality of the wavelet coefficients (Stevens, 2013, Theoerem

3.1.1). Full discussion of the appropriate assumptions can be found in Stevens

(2013). LSW processes with random innovations from the exponential, gamma,

inverse-Gaussian and F-distribution families all satisfy these assumptions.

4.4.2 Pointwise Confidence Intervals

Using the results of the previous section we can derive pointwise confidence inter-

vals (CIs) for a polynomial trend. Let qα denote the α-th quantile of the standard

normal distribution, then a pointwise 100(1 − α)% CI for the trend estimate is

given by

µ̂

(
t

T

)
± q1−α/2

√
Var

(
µ̂

(
t

T

))
, t = 0, . . . , T − 1.

In practice we do not know the true variance. Instead, we have access to a con-

sistent estimate of it on the non-boundary values of the trend estimate, since we

have a consistent estimate of the local autocovariance of the time series. Thus
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we can construct confidence intervals for the trend using this estimate in a rather

straightforward manner. This is in contrast to nonlinear wavelet thresholding tech-

niques, for which construction of confidence intervals is far from straightforward.

In practice, we may need to regularise the covariance matrix to ensure positive-

definiteness. This can be achieved straightforwardly using the method of Rothman

(2012), for example, which is explained in more detail in Section 5.3.2 of Chapter

5.

Thus, within our framework we can straightforwardly calculate an estimate and

confidence intervals for the trend. In turn this could be used for hypothesis testing

of the presence of trend. Although we have assumed a low-order polynomial for the

trend, we shall see in the simulation results in Section 4.5 that even if we depart

from this assumption, the trend estimator is still able to perform well. This is due

to the fact that a polynomial can serve as an accurate approximation to a more

complicated trend function, and the ability of smooth wavelets to zero out the

trend, as explained in Section 4.3.3.

4.4.3 Simultaneous Confidence Intervals

We can also compute simultaneous 100(1−α)% confidence intervals for the trend

estimate. Denote the vector of standard errors of the trend estimate by v, i.e.

v =
(√

Var(µ̂0),
√

Var(µ̂1), . . . ,
√

Var(µ̂T−1)
)T

.

Recall that the critical value is calculated as the value δ that satisfies

1− α = Pr (µ̂− δv ≤ µ ≤ µ̂+ δv) = 1− 2Pr (µ− µ̂ > δv) ,

using the symmetry and continuity properties of the multivariate normal distribu-

tion. Therefore, δ is calculated to satisfy

Pr (µ− µ̂ > δv) = α/2.
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Assuming that the true spectral structure is known (in practice we have an asymp-

totically unbiased, consistent estimate), then

µ− µ̂ ∼ N (0, RΣRT).

Hence we calculate δ as the value such that the probability of this multivariate

normal random variable exceeding δv is equal to α/2, for which implementation

is readily available (for example within the mvtnorm package in R).

4.4.4 Boundary Handling

Using the results from Section 4.3, we can obtain an unbiased, consistent spectral

estimator for the non-boundary coefficients when the time series exhibits a smooth

trend. However, this will not be true for the boundary coefficients as they will

still contain the trend of the time series. This behaviour is not bias but simply a

consequence of the way the boundary coefficients are handled when performing the

non-decimated wavelet transform. The two most common methods for boundary

handling are either to reflect the data at the boundaries or to periodise it – see

Section 2.8 of Nason (2008) or Section 4.11 of Percival and Walden (2006) for more

discussion. These two methods can be used effectively in a zero-mean time series,

but are less suitable when the time series displays a trend.

We can adapt the reflective boundary handling in order to produce better

estimates of the EWS in the coarser scales. We use reflection of the time series

as this ensures that the spectral properties of the time series in the reflected part

evolve slowly as we move from the end of the time series past into the reflected,

extended part. This is more appealing than periodising the time series, as spectral

properties at one boundary of the series may not be as similar to those at the

other boundary, due to the nonstationarity of the time series. Starting with a

time series of length T , we form a time series of length 4T , whereby the original

data is centred within the extended time series. That is, we add 3T/2 data points
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to the beginning, and end, of the original series.

We note that in most applications, the standard practice of boundary handling

involves repeating the series half of the length in each direction, giving a series of

length 2T . However, we have found in our empirical analysis that using a series of

length 4T offers stronger practical performance. One of the reasons for this is that

in the coarser scales of the wavelet transform, the wavelet filter is often already

longer than the length of the time series. Hence, in these coarse scales, the wavelet

coefficients are formed only using boundary handling, which causes issues due to

the trend of the time series. Therefore, extending the time series to length 4T

ensures that a larger number of wavelet coefficients are not affected by the trend.

This enables more accurate estimation in the coarser scales for the evolutionary

wavelet spectrum.

We illustrate the boundary handling procedure for the right-hand boundary of

the data with Figure 4.4.1. An analogous procedure is used to add data to the

beginning of the series, and so here we focus on an illustration of adding data to

the end of the series. In (a) we see a polynomial trend of length T = 1024 (in

the example we use a deterministic series for illustrative purposes). We wish to

extend the data at the right boundary in such a way that we continuously extend

the trend in order to minimise the boundary effect caused when calculating the

boundary non-decimated wavelet coefficients. To achieve this, we first (b) reflect

the entire time series at the boundary, given by the dashed vertical line, motivated

by the reasoning above, obtaining a series of length 2T = 2048. Next, we multiply

the boundary series (data points 1025 to 2048) by −1, to ensure that the gradient

of the reflected trend part is similar to that at the edge of the time series (c).

Finally in (d), we must add some value, c, to this reflected part, in order to align

the edge of the time series with the boundary part. The value c used to align the

boundary part with the original series is calculated using a simple pre-estimate of

the trend function, obtained via a polynomial regression. From this we obtain a

pre-estimate for the value of the trend at the boundary. The value c is given by
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2 times this value, as this reverses the effect caused by multiplying the boundary

series by −1, realigning the series.

Having performed this step, we can repeat this again to add another T/2 = 512

data points on the right side, giving a series of length 5T/2 = 2560. We then repeat

the whole procedure for the left side boundary, adding 3T/2 = 1536 data points to

the start of the series, giving the final series of length 4T = 4096. In practice, we

can apply the procedure when performing trend estimation, in order to produce

a more reliable estimate at the boundaries of the time series. In this case, we no

longer have strictly valid confidence intervals at the boundary locations. However,

we have found that performing the boundary handling step significantly improves

estimation at the boundaries by reducing the variability of the estimate.

Finally, we observe that this procedure can be easily adapted to time series

whose length is non-dyadic. A time series of general length n is extended to one of

dyadic length d, where d = 4× 2blog2 nc. Indeed, the data example used in Section

4.6 is non-dyadic.
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Figure 4.4.1: Boundary handling process for an example trend.
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4.5 Simulation Study

To illustrate the ability to incorporate a smooth trend within the LSW framework,

we perform a simulation study. In the simulation we define three different evo-

lutionary wavelet spectra, shown in Figure 4.5.1. Spectrum S1, studied in Nason

(2008), displays coarse-scale, slowly-evolving sinusoidal behaviour with a fine-scale

burst in power at time point 800; spectrum S2 is a concatenation of moving av-

erage processes and contains power moving from fine to coarser scales, and was

examined in Nason et al. (2000); spectrum S3 contains slowly-evolving power at

fine scales. The three spectra used in the simulations are explicitly defined as:

S1
j (z) =


sin2(4πz) for j = −5, z ∈ (0, 1),

1 for j = −1, z ∈ (800/1024, 900/1024),

0 otherwise,

(4.5.1)

S2
j (z) =



1 for j = −1, z ∈ (0/1024, 256/1024),

1 for j = −2, z ∈ (256/1024, 512/1024),

1 for j = −3, z ∈ (512/1024, 768/1024),

1 for j = −4, z ∈ (768/1024, 1),

0 otherwise,

(4.5.2)

S3
j (z) =



1
2

+ 1
4

sin(πz)− 1
2

cos(3πz/2) for j = −1, z ∈ (0, 1),

1
2
− 1

8
sin(2πz)− 1

4
cos(πz/2) for j = −3, z ∈ (0, 1),

0 otherwise.

(4.5.3)

We simulate time series {Xt}T−1t=0 of length T = 210 = 1024 from LSW processes

with those spectra, using Gaussian innovations. Depending on the simulation,

different wavelets were used, in order to highlight the observations from Section 4.3.

The simulations were performed in R (R Core Team (2019)) using the wavethresh

package of Nason (2016b). For each spectrum, 100 LSW processes with different
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trends added on were simulated.
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Figure 4.5.1: Spectra used in the simulation study. Left: S1, sinusoid with “burst”;
centre: S2, concatenated moving average process; right: S3, slowly-evolving fine-
scale power.

We examine the effects of including a trend across three scenarios, correspond-

ing to Sections 4.3.1, 4.3.2 and 4.3.3 of this chapter. In the first scenario, we add

low-order trends to LSW processes simulated using a Daubechies EP wavelet with

4 vanishing moments, which corresponds to the setting of Section 4.3.1. In the

second, we add low-order trends to LSW processes simulated using Haar wavelets,

which corresponds to Section 4.3.2. In the final set of simulations, we add non-

polynomial trends to LSW processes simulated using the Daubechies EP4 wavelet,

corresponding to Section 4.3.3.

To assess the spectral estimation performance, for each realisation, the un-

smoothed estimate of the EWS was calculated, which was then used to obtain an

averaged estimate for the EWS across the 100 realisations. In alignment with the

discussion in Section 4.3.3, we correct the EWS across the finest 7 scales and use

the boundary handling procedure, which ensures that the boundary effects of the

trend are minimised.

In each of the three scenarios, we also assess the trend estimation performance

by reporting the averaged mean squared error of the trend estimate across the 100

realisations. The trend estimate is calculated using the Daubechies LA4 wavelet,

with boundary handling applied. Our linear wavelet thresholding method is re-
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ferred to as LWT in the comparison tables. We compare our method to three other

trend estimation methods, two of which were used in the numerical comparisons

in Chapter 3. We first compare to the wavelet-based method of von Sachs and

MacGibbon (2000), which utilises a local MAD estimator in a wavelet threshold-

ing procedure. As mentioned in Chapter 3, no code is available for the method,

therefore we have implemented the method utilising wavethresh and following

the description of the computation of the threshold in Section 2.5 of von Sachs

and MacGibbon (2000). This method is referred to as MVSWT in the compar-

ison tables. Secondly, we also compare to the spline-based method using the R

function smooth.spline, where the smoothing parameter is chosen via cross vali-

dation. Lastly, we compare to a local polynomial regression estimator, calculated

using the loess function in R. We use the default settings and a local quadratic

polynomial for fitting the trend.

4.5.1 Low-Order Polynomial Trend, High-Order Generating

Wavelet

In this section we add various low-order polynomial trends to LSW processes

generated by the three different spectra. In particular, we use three different

trends µ1
t , µ2

t , and µ3
t (where µt = µ(t/T )); polynomials of degree 1, 2, and 3 given

by

µ1
t = 4t, µ2

t = 12t2 − 12t, µ3
t = 32t3 − 48t2 + 22t− 3. (4.5.4)

A plot of example realisations from each trend and spectrum scenario is shown

in Figure 4.5.2. We use the EP4 wavelet to analyse the series, the same wavelet

that generates the LSW processes, which is a high enough order to remove the

polynomial trends.

In each of the simulations, we compare the estimates of the EWS obtained

when trends are added, to the estimate of the EWS obtained in the absence of any

trend (“None” in Table 4.5.1), obtained in the standard way using the ewspec3
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command within the R package locits. Table 4.5.1 contains the mean squared

error across the four trends and three spectra, which shows that the trend has

negligible impact. In fact, for the third spectrum, the sum of squared error is

actually lower when a trend is added. From the simulation results, we see that

there is no discernible difference in the estimation quality between the no trend

case, and the case when a trend is added.
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Figure 4.5.2: Example realisations from each trend and spectrum scenario. Dashed
line shows time series with true underlying trend shown in solid line. Left: spec-
trum S1, sinusoid with “burst” . Centre: S2, concatenated moving average process.
Right: S3, slowly-evolving fine-scale power.

Trend Spectrum 1 Spectrum 2 Spectrum 3

None 3.13 4.88 1.87

Linear 3.13 5.50 1.79

Quadratic 3.13 5.50 1.79

Cubic 3.13 5.50 1.79

Table 4.5.1: Mean squared error (in units ×10−3) of the averaged spectral estimate
over 100 realisations.
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In Figure 4.5.3 we see a comparison across the four trend scenarios for the

averaged spectral estimate of spectrum S1. From the figure we can see that the

plots are nearly identical by eye, and no bias is incurred when estimating the

spectrum in the presence of a polynomial trend.
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Figure 4.5.3: Averaged EWS estimate comparisons using realisations from the
spectrum S1.

In Table 4.5.2, we report the average mean squared error for the trend esti-

mates, calculated over 100 realisations, with standard deviation given in brackets.

Bold values in the table indicate the lowest mean squared error for each trend and

spectrum combination. From the table, we see that our method performs well and

gives a low mean squared error across the various scenarios. The method consis-

tently outperforms the competing methods, with only one scenario in which it does

not give the lowest mean squared error. In particular, we vastly outperform the

wavelet-based method of von Sachs and MacGibbon (2000), which is in part due to

the lack of proper boundary handling. As we might expect, the local polynomial

method also performs well. The spline-based method performs well for spectrum

3, which is likely due to the fact this process contains only weak autocorrelation.
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Trend Spectrum
Method

LSWT VSMWT Spline Loc. Poly.

Linear

1 7.10× 10−4 (4.66× 10−4) 0.273 (0.094) 0.438 (0.115) 1.59× 10−3 (1.75× 10−3)

2 5.32× 10−4 (7.71× 10−4) 0.226 (0.064) 0.154 (0.087) 7.32× 10−4 (6.45× 10−4)

3 1.01× 10−4 (1.31× 10−4) 0.161 (0.041) 2.26× 10−5 (2.99× 10−5) 4.63× 10−4 (3.37× 10−4)

Quadratic

1 7.05× 10−4 (4.50× 10−4) 0.284 (0.101) 0.453 (0.118) 1.51× 10−3 (1.48× 10−3)

2 4.61× 10−4 (6.91× 10−4) 0.208 (0.061) 0.154 (0.086) 6.79× 10−4 (7.77× 10−4)

3 9.69× 10−5 (1.13× 10−4) 0.157 (0.039) 1.55× 10−3 (8.81× 10−5) 4.87× 10−4 (4.15× 10−4)

Cubic

1 7.18× 10−4 (4.49× 10−4) 0.285 (0.098) 0.466 (0.122) 9.07× 10−3 (3.14× 10−3)

2 6.77× 10−4 (8.41× 10−4) 0.228 (0.070) 0.161 (0.092) 6.79× 10−3 (1.52× 10−3)

3 1.07× 10−4 (1.41× 10−4) 0.177 (0.044) 2.57× 10−3 (8.17× 10−4) 6.85× 10−3 (1.25× 10−3)

Table 4.5.2: Average mean squared error and standard deviation of trend estimate
over 100 realisations.

We next plot example trend estimates for each of the three trend scenarios for

processes generated with spectrum S1, shown in Figure 4.5.4. The estimate is given

by the solid line, with the truth shown in dotted line. A 95% pointwise confidence

interval is shown in dotted lines. The boundary handling method from Section

4 was used for these estimates, which can result in a slightly biased estimate at

the endpoints. As previously discussed, confidence intervals near the boundary

are not strictly valid due to the boundary handling, and will be larger. However,

we believe this to be an acceptable trade-off as the boundary handling greatly

improves the trend estimate itself near the boundaries. This is reflected in the

consistently low mean squared error observed in Table 4.5.2.
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Figure 4.5.4: Example trend estimates (solid line) with 95% pointwise confidence
intervals (dashed lines) for the three polynomial trend scenarios (dotted line), using
realisations from spectrum S1.
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4.5.2 Low-Order Polynomial Trend, Low-Order Generating

Wavelet

Here we consider a similar scenario to that in Section 4.5.1, however we use Haar

wavelets to simulate the LSW processes rather than EP4 wavelets. In this case,

using a Haar wavelet to analyse the series will cause bias as the Haar wavelet only

has 1 vanishing moment and cannot zero out non-constant polynomial trends.

Instead, we use the EP4 wavelet to analyse the series, and correct the estimates

using the C-inverse matrix, motivated by the discussion in Section 4.3.2. In the no

trend case, the estimate is calculated in the standard way with the Haar wavelet

using the ewspec3 function in locits.

We see from the results that we can still obtain an unbiased estimate of the

spectrum in this scenario. Figure 4.5.5 shows the estimation comparisons for

spectrum S3 across the trend scenarios, while Table 4.5.3 reports the mean squared

error for the averaged spectral estimates across the polynomial trend and spectrum

scenarios. For the first spectrum S1, the no trend estimate does have a lower

mean squared error. However, for the other two spectra, the mean squared error

is significantly lower when a trend is included. This is due to the ability of a

smoother wavelet to provide a better estimate, which was discussed in Section

4.3.2. Further simulation results demonstrating this are provided in Section 4.5.4.

Trend Spectrum 1 Spectrum 2 Spectrum 3
None 9.45 17.05 6.40
Linear 10.41 13.11 4.11

Quadratic 10.41 13.10 4.11
Cubic 10.41 13.11 4.11

Table 4.5.3: Mean squared error (in units ×10−3) of the averaged spectral estimate
over 100 realisations.

In Table 4.5.4, we report the average mean squared error for the trend es-

timates, calculated over 100 trend estimates, with standard deviation given in

brackets. Bold values indicate the lowest recorder mean squared error for a partic-

ular trend and spectrum combination. We see that our proposed trend estimator



CHAPTER 4. TREND-LSW PROCESSES 116

Translate

S
c
a

le

-1
-3

-5
-7

-9

0 256 512 768 1024

(a) No trend

Translate

S
c
a

le

-1
-3

-5
-7

-9

0 256 512 768 1024

(b) Linear trend

Translate

S
c
a

le

-1
-3

-5
-7

-9

0 256 512 768 1024

(c) Quadratic trend

Translate
S

c
a

le

-1
-3

-5
-7

-9

0 256 512 768 1024

(d) Cubic trend

Figure 4.5.5: Averaged EWS estimate comparisons using realisations from the
spectrum S3.

performance is not significantly affected by the wavelet used to generate the LSW

process, with similar results to those in Table 4.5.2. Our method is generally the

best or second-best performing, with the local polynomial method also performing

well. Lastly, we plot example trend estimates for each of the three polynomial

trend scenarios for LSW processes generated using spectrum S3, shown in Figure

4.5.6. The estimate is given by the solid line, with the truth shown in dotted line.

A 95% pointwise confidence interval is shown in dotted lines.
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Figure 4.5.6: Example trend estimates (solid line) with 95% pointwise confidence
intervals (dashed lines) for the three polynomial trend scenarios (dotted line), using
realisations from spectrum S3.
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Trend Spectrum
Method

LSWT VSMWT Spline Loc. Poly.

Linear

1 2.56× 10−3 (1.77× 10−3) 0.286 (0.079) 0.383 (0.083) 2.48× 10−3 (1.83× 10−3)

2 1.67× 10−3 (1.39× 10−3) 0.220 (0.063) 0.116 (0.089) 9.02× 10−4 (9.34× 10−4)

3 2.96× 10−4 (2.38× 10−4) 0.166 (0.031) 3.94× 10−5 (5.22× 10−5) 6.07× 10−4 (4.86× 10−4)

Quadratic

1 2.26× 10−3 (1.41× 10−3) 0.287 (0.073) 0.384 (0.088) 2.63× 10−3 (2.11× 10−3)

2 1.98× 10−3 (1.48× 10−3) 0.211 (0.056) 0.127 (0.095) 1.05× 10−3 (9.11× 10−4)

3 3.13× 10−4 (1.97× 10−4) 0.158 (0.037) 1.58× 10−3 (1.23× 10−4) 5.36× 10−4 (4.05× 10−4)

Cubic

1 3.20× 10−3 (2.10× 10−3) 0.269 (0.072) 0.383 (0.091) 9.43× 10−3 (3.09× 10−3)

2 1.87× 10−3 (1.64× 10−3) 0.228 (0.057) 0.118 (0.094) 7.22× 10−3 (1.82× 10−3)

3 3.32× 10−4 (3.16× 10−4) 0.177 (0.033) 2.62× 10−3 (1.09× 10−3) 6.83× 10−3 (1.05× 10−3)

Table 4.5.4: Average mean squared error and standard deviation of trend estimate
over 100 realisations.

4.5.3 Non-Polynomial Trend, High-Order AnalysingWavelet

Lastly, we show simulation results when the trend is less smooth. In this simu-

lation, the spectra are simulated using the Daubechies EP4 wavelet, and we add

three non-polynomial trends to the series. The three trends are a sinusoidal, lo-

gistic, and exponential trend, defined as follows:

µst = sin(2πt) + cos(πt), µlt =
4

1 + exp(4− 7 log 4t)
, µet = 2 exp(3t).

(4.5.5)

The sinusoidal and logistic trends are Lipschitz continuous; however, the exponen-

tial trend is not, and further it is not Hölder continuous. We use a EP10 wavelet

to compute the spectral estimate, which is the smoothest available wavelet in this

family within wavethresh and will therefore be the best at removing the effect

of the trend. In Figure 4.5.7, we see example realisations from each of the non-

polynomial trend and spectrum scenarios.
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Figure 4.5.7: Example realisations of time series with the three non-polynomial
trends defined in Equation (4.5.5) and three spectra shown in Figure 4.5.1.

Trend Spectrum 1 Spectrum 2 Spectrum 3

None 2.60 5.00 1.80

Sine 2.93 4.34 1.53

Logistic 2.94 4.35 1.54

Exponential 2.94 4.35 1.54

Table 4.5.5: Mean squared error (in units ×10−3) of the averaged spectral estimate
over 100 realisations, with trend scenarios in Equation (4.5.5).

In Table 4.5.5 we compare the mean squared error for the averaged spectral es-

timates, and find similar results to that in Section 4.5.1. The error when including

a trend is higher for spectrum S1, while lower for the other two spectra. These re-

sults confirm the finding in Section 4.3.3, that including a smooth non-polynomial

trend will cause little bias to the estimate of the EWS. They also serve to highlight

that using a smoother wavelet can achieve a more accurate spectral estimate. In

Figure 4.5.8 we see a comparison across the four trend scenarios for the averaged
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spectrum estimate of spectrum S2. Again we see that the plots are similar, and

the incorporation of a non-polynomial trend has negligible impact on the estimate

of the spectrum.
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Figure 4.5.8: Averaged EWS estimate comparisons using realisations from the
spectrum S2.

Finally, we assess the trend estimation performance. In Table 4.5.6, we report

the average mean squared error for the methods calculated over 100 realisations,

with standard deviation given in brackets. Despite the fact that the trends are

non-polynomial, the wavelet-based estimator still performs well. Our method is

consistently the best performing across all of the trend and spectrum scenarios.

Overall, the simulation results show that the linear wavelet thresholding estimator

can perform well in a variety of trend settings in the presence of locally stationary

errors. In particular, we observe that the linear wavelet thresholding estimator

outperforms the non-linear thresholding method of von Sachs and MacGibbon

(2000).
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Trend Spectrum
Method

LSWT VSMWT Spline Loc. Poly.

Sine

1 7.17× 10−4 (4.93× 10−4) 0.289 (0.108) 0.467 (0.127) 3.26× 10−3 (2.49× 10−3)

2 6.35× 10−4 (8.61× 10−4) 0.201 (0.064) 0.152 (0.097) 1.88× 10−3 (9.37× 10−4)

3 1.19× 10−4 (1.57× 10−4) 0.157 (0.0387) 1.49× 10−3 (5.76× 10−4) 1.65× 10−3 (5.47× 10−4)

Logistic

1 2.63× 10−3 (1.08× 10−3) 0.284 (0.110) 0.451 (0.124) 1.58× 10−2 (3.65× 10−3)

2 2.52× 10−3 (1.73× 10−3) 0.214 (0.061) 0.148 (0.085) 1.41× 10−2 (1.37× 10−3)

3 2.15× 10−3 (7.56× 10−4) 0.158 (0.039) 2.32× 10−3 (1.41× 10−4) 1.38× 10−2 (7.94× 10−4)

Exponential

1 9.45× 10−4 (4.91× 10−4) 0.386 (0.088) 0.446 (0.098) 2.99× 10−2 (6.36× 10−3)

2 8.61× 10−4 (9.94× 10−4) 0.347 (0.072) 0.154 (0.084) 2.27× 10−2 (3.62× 10−3)

3 2.54× 10−4 (1.54× 10−4) 0.294 (0.040) 3.61× 10−3 (8.57× 10−4) 2.29× 10−2 (1.85× 10−3)

Table 4.5.6: Average mean squared error and standard deviation of trend estimate
over 100 realisations.

In Figure 4.5.9, we see example trend estimates for each of the three non-

polynomial trend scenarios for processes generated with spectrum S2. The es-

timate is given by the solid line, with the truth shown in dotted line. A 95%

pointwise confidence interval is shown in dotted lines.
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Figure 4.5.9: Example trend estimates (solid line) with 95% pointwise confidence
intervals (dashed lines) for the three non-polynomial trend scenarios (dotted line),
using realisations from spectrum S2.

4.5.4 Using Smoother Wavelets for Improved EWS Estima-

tion

Numerical results show the improved performance of using a smoother wavelet in

the estimation procedure. In particular, they highlight the ability of the smoother

wavelet to reduce the mean squared error of the spectral estimate. We simulated

100 realisations of Haar wavelet LSW processes of length 210 = 1024, using the
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Spectrum Haar LA10 LP250
S1, burst 0.85 0.32 0.19

S2, moving average 1.18 0.54 0.53
S3, slowly-evolving 0.55 0.26 0.27

Table 4.5.7: Average mean squared error comparisons between Haar, LA10, and
LP250 wavelets, across the three defined spectra.

three spectra defined previously, without adding any trend term. We compared the

average mean squared error of the un-smoothed spectral estimates in the case when

a Haar wavelet, a Daubechies Least Asymmetric wavelet with ten vanishing mo-

ments (LA10), and the Littlewood-Paley wavelet with filter number 250 (LP250)

were used to analyse the series. The raw wavelet periodograms were corrected

using the standard A-inverse matrix for the Haar wavelet, and the appropriate C-

inverse matrices for the LA10 and LP250 wavelets. The Littlewood-Paley wavelet

can be thought of as an approximation to the Shannon wavelet; a larger filter

number gives a closer approximation. The Haar wavelet is not smooth, while the

Littlewood-Paley wavelet is the smoothest of the three.

The results of the simulation are shown in Table 4.5.7. The Littlewood-Paley

estimate is the best for the first two spectra, while the LA10 wavelet is the best

for the third spectra. The Haar wavelet struggles due to the leakage of power to

nearby scales, which is characterised by the slow decay in the off-diagonal entries

of the Haar A matrix. Performance is particularly poor for spectrum S2, since

this spectrum contains power transferring from fine to coarser scales so one can

expect more leakage to occur during estimation. Although the Littlewood-Paley

wavelet performs best overall, we recommend using a smooth wavelet within the

Daubechies extremal phase or least asymmetric family. This is because the length

of the Littlewood-Paley (or Shannon) wavelet filter is large and hence causes more

pronounced boundary effects than that of wavelet filters with shorter length. The

LA10 wavelet, for example, provides a good compromise between smoothness,

which lowers leakage and removes trend, and filter length, which causes boundary

effects.
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However, we note that there will still be some spectral structures which are

better estimated using a less smooth analysing wavelet. Intuitively, the Haar

wavelet is piecewise constant and so should be better at estimating spectra whose

behaviour is piecewise constant, whereas a smoother wavelet may struggle. We

may still have higher leakage into nearby scales, but the estimate should perform

better when the spectral structure has many jumps only at one scale. In general,

when the wavelet used to generate the process is not smooth, the simulation results

show that it can be better to use a smoother wavelet in the spectral estimation in

order to reduce leakage and obtain a more accurate estimate.

4.6 Global Mean Sea Temperature Data Applica-

tion

We now highlight the ability to model time series with time-varying first and

second-order structure on the monthly global mean sea temperature dataset (GMST)

version 4.6 from the Goddard Institute for Space Studies (GISS) Surface Temper-

ature Analysis (GISTEMP). The GISTEMP dataset combines land and sea sur-

face temperatures from the Global Historical Climatology Network, version 3.3.0

(GHCNv3.3.0) and the Extended Reconstructed Sea Surface Temperature, version

4 (ERSST.v4; Huang et al. (2015); Liu et al. (2015)). It also includes the Scien-

tific Committee on Antarctic Research (SCAR) stations over Antarctica (Hansen

et al. (2006). The data are available at http://data.giss.nasa.gov/gistemp,

and are shown in Figure 4.6.1. The GMST time series exhibits periods of warm-

ing separated by a long pause from approximately the mid-1940s to the mid-1970s

(Kellogg, 1993) and possibly a second, shorter one, since the late 1990s/early 2000s,

although this is highly debated (Karl et al., 2015; Trenberth, 2015; Beaulieu and

Killick, 2018). The series should be well-suited to our methodology, as it appears

to contain both long-term trends and short-term variability that may be nonsta-

tionary.

http://data.giss.nasa.gov/gistemp
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Figure 4.6.1: Global average monthly sea temperature data.

In general the series exhibits an upward trend therefore using a high-order

wavelet should remove the trend from the wavelet coefficients, and allow us to

obtain an estimate for the spectrum. In addition, we might reasonably expect

there to be strong dependency within the data: as with many environmental time

series this may be a result of certain physical phenomena.

In Figure 4.6.2, we see the spectral estimate for the GMST time series. This is

estimated using the Daubechies LA10 wavelet, while the raw wavelet periodogram

is smoothed using a running mean smoother with bin width 120, corresponding to

10 years. Each level is scaled individually for clarity. Additionally, we have used

the boundary handling procedure outlined in Section 4.4.4 to properly handle the

endpoints of the series. Motivated by the discussion in Section 4.3.3, we only

calculate the EWS estimate across the finest 7 scales, which corresponds to 70%

of the scales. We see that the spectral behaviour is generally slowly-evolving with

peaks at various locations: for example note the burst of power that occurs in scale

−4 around 1910. We also see an appearance of power in scale −7 at approximately

1940 and scale −6 slightly later, corresponding to the proposed period of pause in

warming.
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Figure 4.6.2: EWS estimate of the GMST series. Each level is scaled individually
for clarity.

In Figure 4.6.3, we see the estimate for the trend shown in the solid line,

with the 95% pointwise confidence interval shown in the dashed lines. This was

calculated with the Daubechies EP10 wavelet, using the methodology described

in Section 4.4, using the boundary extension from Section 4.4.4. Note that the

estimate near the endpoints is therefore dependent on this boundary handling and

inference should be carefully considered. Overall, our estimate agrees with many

previous analyses of the series: we see a long pause between approximately the

1940s and 1970s, as well as a sustained period of warming post-1970 to the early

2000s.

Lastly, we investigate the autocorrelation structure of the GMST time series.

A common assertion in the Climate literature is that the autocorrelation within

the Global Mean Sea Temperature Data is constant across time. Here we use

the estimate of the spectrum to look at the autocorrelation function at different

periods in the series.
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Figure 4.6.3: Global average monthly sea temperature with trend estimate (solid
line) and 95% pointwise confidence intervals (dashed lines).

In Figure 4.6.4, we see a plot of the autocorrelation function of the time series

at 6 different time-points across 25-year intervals, starting at 1890 and ending at

2015. Note that the estimate of the autocorrelation is dependent on the choice

of wavelet. However, we have found empirically that using other wavelets within

the Daubechies LA and EP family that possess several vanishing moments yield

almost identical results. Commonly, the error structure of climate change data is

modelled using a low-order AR process, for example Beaulieu and Killick (2018),

Karl et al. (2000) and Rodionov (2004). In similar analyses on gridded datasets,

Lenton et al. (2017) find an increase in variance and autocorrelation in global

surface sea temperature data, while Boulton and Lenton (2015) find a “reddening”

- a gradual increase in autocorrelation - in North Pacific surface sea temperature

data.

Our analysis suggests that overall, the low-order AR assumption may be ap-

propriate at certain time points, however the degree of autocorrelation changes

over time, and the assumption of a stationary AR model may not be appropriate.

From the plot, the nonstationary nature of the second-order structure can be seen.
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Figure 4.6.4: Autocorrelation of the GMST series across 6 time-points, up to lag
400.

In 1890, 1915, 1965, 1990 and 2015, the autocorrelation exhibits a similar decay

behaviour, falling within the upper and lower confidence lines after approximately

lag 60, corresponding to a time period of 5 years. However at time 1940, given by

the dark solid line, we see much stronger autocorrelation, exhibiting a shape that

is not well represented by a low-order AR model. This increase in autocorrelation

can be attributed to the appearance of power at the coarsest scale of the spectrum,

as seen in Figure 4.6.2. Moreover, our analysis shows that in the period between

2005 – 2020 – which is debated to be another warming pause – the variance of

the series increases by roughly 63% from 0.0153 to 0.0240. This may explain the

appearance of a pause due to increased variability, as many methods assume the

series to be second-order stationary. Note that the trend estimate does suggest

the appearance of a pause in this time period, however since this occurs at the

boundary the estimate should be used with caution.

4.7 Concluding Remarks

In this chapter we have addressed the commonly encountered problem of modelling

time series that display first and second-order nonstationarity. Our model extends

the locally stationary wavelet model of Nason et al. (2000), used for modelling
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second-order nonstationarity, to include a nonstationary, smooth mean structure.

Within our framework we can model both smooth deterministic trends and slowly-

evolving second-order behaviour, allowing for a flexible model that can be appli-

cable to time series in many applications.

We have established results concerning the theoretical properties of the estima-

tors of the first and second-order quantities of interest, which are shown to have

good consistency properties and strong practical performance. Furthermore, we

have found using a smoother wavelet to be useful even in the case of a zero-mean

time series. In order to ensure the applicability of our methodology, we propose

a new method for handling the boundary of a time series when computing the

discrete non-decimated wavelet transform, which incorporates data of any length

and is suitable for data that display trend behaviour. In our framework, the results

and methodology are suitable for polynomial and smooth trends; however, a poly-

nomial or smooth function is a good approximation to many trends of practical

interest. In practice, the techniques described here will work well when we depart

from the assumptions of the model, as evidenced within the simulation study.

We demonstrated our methodology on a data example that shows that our

model can be successfully applied to a variety of data sets that exhibit time-

varying first and second-order structure. In our analysis of the global mean sea

temperature dataset, we find that the second-order structure of the series varies

over time, while observing similar findings as previously described of a general

increasing trend of global mean sea temperature.

A number of interesting research questions arise from our work, such as how to

incorporate other LSW-based work within this framework, for example forecasting

as in Fryzlewicz et al. (2003) or changepoint analysis as in Killick et al. (2013).

Another potential avenue is to incorporate the more recent work of Cardinali and

Nason (2017) on locally stationary packet processes into the methodology. We

leave these as areas for future work.



Chapter 5

Detecting Changes in Mean in the

Presence of Time-Varying

Autocovariance

5.1 Introduction

In this chapter, we consider the problem of detecting changes in the mean of

a univariate time series that exhibits a non-trivial, unknown, time-varying au-

tocovariance structure. The study of changepoint problems dates back to Page

(1954, 1955), and continues to be a highly active area of research, with applica-

tions including genetics (Hocking et al., 2013), cyber security (Adams and Heard,

2016), and climatology (Carr et al., 2017). A survey of changepoint methods

can be found in Tartakovsky et al. (2014). State-of-the-art methods for identify-

ing multiple changepoints in univariate data include Pruned Exact Linear Time

method (PELT) (Killick et al. (2012)), Wild Binary Segmentation (WBS) (Fry-

zlewicz (2014)), and Simultaneous Multiscale Changepoint Estimator (SMUCE)

(Frick et al. (2014)). In the case of detecting changes in mean, most state-of-the-

art methods focus their attention on the case where the error structure is IID with

known variance.

128
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There is comparatively little attention given to the problem of detecting changes

in mean while the second-order structure is unknown, non-trivial and must be es-

timated. Further still, there is even less attention given to the case where this

second-order structure is allowed to vary over time. One approach for dealing

with autocorrelation when testing for changes in mean is to increase the threshold

above which changes are detected, see Lavielle (1999) for example. However, it is

difficult to systematically choose the threshold without performing some sort of

pre-estimation of the autocovariance, which is highly challenging in the presence of

mean changes (Lund and Shi, 2020). If one simply raises the threshold, then there

will be a trade-off between a decreased false positive rate and a decreased true posi-

tive rate. Further, using standard autocovariance estimation techniques will result

in bias, and subsequent use of these biased estimates can significantly reduce the

efficiency of changepoint estimators, as described in Section 3 of Jandhyala et al.

(2013).

One can estimate the autocovariance structure and incorporate it within the

changepoint detection algorithm: for example, Dette et al. (2018) consider modi-

fications to the SMUCE algorithm for dependent, not necessarily Gaussian data.

Tecuapetla-Gómez and Munk (2017) estimate the autocovariance structure using

a difference-based approach under the assumption of m-dependent errors, which

is then used in order to estimate a piecewise constant signal. Chakar et al. (2017)

studies the problem of estimating mean changes with an underlying AR(1) process.

Lavielle (1999) considers dependent processes and shows that the least-squares es-

timators of the changepoint locations and of the parameters of each segment are

consistent under mild conditions, however the number of changepoints is assumed

to be known. The narrowest-over-threshold (NOT) approach of Baranowski et al.

(2019) is shown to be consistent in the presence of short memory dependence,

however the autocorrelation is assumed known. Kokoszka and Leipus (1998) use a

cumulative sum approach to detect changes in mean with dependent errors, while

Bücher and Kojadinovic (2016) use a nonparametric bootstrap approach to detect
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changepoints in structures including the mean. All of the above approaches make

the assumption of second-order stationarity.

In practice, the autocovariance structure of a time series may be time-varying,

and is not known a priori. Failure to take into account this autocovariance can

lead to serious errors in the changepoint detection procedure. In particular, the

presence of autocorrelation may lead to overfitting of mean changes. Our approach

enables the detection of changes in mean while allowing for unknown, possibly

time-varying second-order structure, by modelling the error process of the time

series as a locally stationary wavelet (LSW) process (Nason et al., 2000). The

LSW model enables the modelling of a zero-mean time series with slowly evolving,

time-varying second-order structure: an overview of the necessary concepts can be

found in Section 5.2.2. The LSWmodel is a flexible framework that can incorporate

a wide variety of error processes – both stationary and nonstationary – for example

ARMA and GARCH models.

In this chapter, we describe a likelihood-based test, in which the test statis-

tic incorporates the unknown and potentially time-varying autocovariance of the

time series. In order to utilise the theory of LSW processes, which is designed for

zero-mean processes, we adapt the estimation procedure of Nason et al. (2000) to

our piecewise constant mean structure. This is used in a standard likelihood ratio

framework to test for changes in mean in the observed time series. By including

the autocovariance information, we can both lower the false discovery rate by accu-

rately distinguishing between mean changes and patterns due to autocorrelation,

and increase the accuracy of true change detection. Furthermore, we demonstrate

that allowing for the possibility of non-trivial autocovariance does not significantly

lower the power of the likelihood ratio test when the underlying noise in the time

series is in fact independent. This approach provides practitioners with a sim-

ple yet flexible alternative to assuming an IID error structure without incurring

significant loss of power.

The remainder of the chapter is organised as follows. Section 5.2 recalls the like-
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lihood ratio test for detecting single changes in mean and introduces the paradigm

for our methodology. Section 5.3 describes the method for estimating the autoco-

variance of the time series, and discusses our final likelihood-based test for mean

changepoint detection. The performance of the method is tested and compared

via a simulation study in Section 5.4, and applied to two data examples in Section

5.5. Concluding remarks are given in Section 5.6.

5.2 Background

In this section we give the necessary background on changepoint detection and

locally stationary wavelet process modelling, which will form the basis of our ap-

proach.

5.2.1 Detecting a Single Change in Mean

We aim to detect a finite number of changes in mean within a time series of length

T . We begin by considering the problem of detection a single change in mean,

using a likelihood-based framework. The likelihood-based approach is one of the

most common and well studied methods used within the changepoint literature:

for a thorough review see for example Chen and Gupta (2011). Assume that the

time series is given by

Xt = µt + εt (5.2.1)

for t = 0, . . . , T − 1. The mean function is given by µt and the error terms εt

are Gaussian, zero-mean random variables with variance-autocovariance matrix

Σ. The hypothesis to test for a single change in mean at time p is

H0 : µ0 = µ1 = · · · = µT−1

H1 : µ0 = · · · = µp 6= µp+1 = · · · = µT−1.
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Using this formulation we can derive the likelihood ratio test for a single change

in mean. Let X = (X0, . . . , XT−1)
T be the observed time series. Under the

assumption that the εt are Gaussian, the log-likelihood of the time series under

the null hypothesis is given by

l(µ,Σ|X) =
T

2
log 2π − 1

2
log |Σ| − 1

2
(X − µ0)

TΣ−1(X − µ0),

where the superscript T denotes the transpose, µ0 = (µ0, . . . , µ0)
T is the (constant)

mean vector of the series and Σ is the variance-autocovariance matrix, with entries

given by Σts = Cov(Xt, Xs). The log-likelihood under the alternative hypothesis

is given by

l(µ,Σ, p|X) =
T

2
log 2π − 1

2
log |Σ| − 1

2
(X− µ1)

TΣ−1(X− µ1),

where µ1 = (µ0, . . . , µ0, µT−1, . . . , µT−1)
T is the mean vector with change at time

p. Note that Σ is the same under both hypotheses. Hence the likelihood ratio test

statistic for a single change in mean, after plugging in estimators for the unknown

µ0, µ1 and Σ, is given by

λ ∝ max
1<p<T−2

{
(X − µ̂0)

TΣ̂−1(X − µ̂0)− (X − µ̂1)
TΣ̂−1(X − µ̂1)

}
. (5.2.2)

Using (5.2.2), a changepoint is detected when λ > c, where c is a constant. If a

change is detected, then the location of the changepoint, p̂, is estimated as the

value of p that maximises λ. Note that a similar test statistic was applied to the

problem of detecting changes in a piecewise constant autocovariance function, in

Killick et al. (2013). Under the simplifying assumption of IID Gaussian errors

with known variance, this reduces to the standard likelihood test for a change in

mean, equivalent to the cumulative sum (CUSUM) test statistic. The appropriate

threshold c can be chosen using the asymptotic distribution of (5.2.2).

In our more general scenario we must estimate the unknown autocovariance
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matrix Σ. Under the null hypothesis, this is straightforward; however under the

alternative hypothesis this becomes highly challenging as any standard estimation

procedure will be biased due to the presence of the mean change. This is why

several authors have assumed a known (autoco)variance, as once we have a sensible

estimate we can then calculate λ and test for a change in mean in the time series

in the standard way.

5.2.2 Modelling Series with Time-Varying Autocovariance

As discussed in Section 5.2.1, in order to use the likelihood-based framework we

must estimate the unknown autocovariance of the time series. To this end, we

represent the εt in Equation (5.2.1), the error component of the time series, as

a locally stationary wavelet (LSW) process. The LSW model was introduced in

Nason et al. (2000) and provides methodology for modelling time series whose

second-order structure evolves slowly over time. Wavelets are useful in estimating

time varying quantities as they are compactly-supported oscillatory functions that

can be translated and dilated efficiently to provide location-scale decompositions.

For an overview of wavelet techniques, see for example Nason (2008) or Vidakovic

(2009).

In the remainder of this section, we give a brief overview of the LSW framework.

Following Nason et al. (2000), a triangular stochastic array {εt,T}T−1t=0 for T =

1, 2, . . . , is in a class of locally stationary wavelet (LSW) processes if there exists

a mean-square representation

εt,T =
−1∑

j=−∞

∑
k

wj,k;Tψj,k−tξj,k, (5.2.3)

where j and k ∈ Z are scale and location parameters respectively, and the ξj,k are

zero-mean, orthonormal identically distributed random variables. The {ψj,k−t}j,k

are a set of discrete non-decimated wavelets, and the {wj,k;T} are a set of time-

varying amplitudes. There exists, for each j ≤ −1, a Lipschitz continuous function
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Wj(z) for z ∈ (0, 1) which satisfies
∑

j |Wj(z)|2 <∞ uniformly in z ∈ (0, 1). The

Lipschitz constants Lj are uniformly bounded in j and
∑

j 2−jLj < ∞. There

exists a sequence of constants Cj such that for each T

sup
k
|wj,k;T −Wj(k/T )| ≤ CjT

−1, (5.2.4)

where for each j ≤ −1 the supremum is over k = 0, . . . , T − 1, and where the

sequence {Cj} satisfies
∑

j Cj <∞.

We further assume that the increment sequence {ξj,k} is Gaussian, which en-

sures that εt,T is Gaussian. As with classical time series theory, the second-order

structure of an LSW process is encoded in the spectrum. The evolutionary wavelet

spectrum (EWS) of an LSW process is defined as Sj(z) = |Wj(z)|2 for rescaled

time z = k/T and measures the contribution to variance at a particular rescaled

time z and scale j. Since the Wj are Lipschitz continuous, the spectrum at level

j, Sj, is also Lipschitz continuous. However, Fryzlewicz and Nason (2006) and

Van Bellegem and von Sachs (2008) extend the LSW model to consider piecewise

constant spectra and those of bounded total variation respectively. No further

assumptions are required on the dependence structure of the time series, beyond

the requirements of the LSW model.

Note that LSW processes include the class of stationary processes with abso-

lutely summable autocovariance
∑

τ |cX(τ)| < ∞. Hence, this modelling frame-

work can account for a large variety of classes of short memory stationary process,

such as ARMA and GARCH models. Conversely, any LSW process with a spec-

trum independent of time is stationary, provided that the additional assumption∑
j 2−jSj(z) <∞ is satisfied (Nason et al., 2000).

In Nason et al. (2000), rigorous estimation theory for the EWS and time-

varying autocovariance of a zero-mean series are outlined, which we will now briefly

describe here. The EWS is estimated via the empirical wavelet coefficients of

the time series, given by dj,k;T := 〈εt,T , ψj,k−t〉 =
∑

t εt,Tψj,k−t. As with Fourier

approaches, the raw wavelet periodogram Ijk;T := |dj,k;T |2 is a biased, inconsistent
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estimator of the EWS (Nason et al. (2000), Proposition 4):

E
(
Ijk;T
)

=
∑
l

AjlSl(k/T ) +O(T−1), (5.2.5)

Var(Ijk;T ) = 2

(∑
l

AjlSl(k/T )

)2

+O(2−jT−1), (5.2.6)

where the operator A = (Ajl)j,l<0 is given by Ajl := 〈Ψj,Ψl〉 =
∑

τ Ψj(τ)Ψl(τ), and

the autocorrelation wavelets are defined by Ψj(τ) :=
∑

k∈Z ψj,kψj,k−τ , j < 0, τ ∈ Z.

The vector of periodograms I(z) := {I lbzT c,T}l=−1,...,−J , J = blog2(T )c is bias-

corrected using the curtailed J-dimensional matrix AJ := (Ajl)j,l=−1,...,−J which is

shown to be invertible in Nason et al. (2000). The raw wavelet periodogram is

first smoothed and then corrected by A−1J to produce an asymptotically unbiased,

consistent estimator. Smoothing can be carried out using a number of techniques,

for example via a running mean as in Nason (2013) or using wavelet thresholding

as in Nason et al. (2000).

The local autocovariance (LACV) function, c(z, τ), of an LSW process with

EWS {Sj(z)} is defined as c(z, τ) =
∑−1

j=−∞ Sj(z)Ψj(τ), for τ ∈ Z, z ∈ (0, 1). The

LACV can be thought of as a decomposition of the autocovariance of a process

over scales and rescaled time locations. In practice, the local autocovariance is

estimated by plugging in the smoothed, corrected estimate for the EWS into the

LACV definition; this results in a consistent estimator of the LACV (Nason et al.,

2000).

5.3 Method for Detecting Mean Changes in the

Presence of Time-Varying Autocovariance

In this section, we discuss our proposed methodology for estimating the time-

varying autocovariance in the presence of mean changes, and the likelihood-based

test for mean changepoint detection.
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5.3.1 Autocovariance Estimation in the Presence of Mean

Changes

Having assumed that the error process of the time series is LSW, we now discuss

the methodology for estimating the autocovariance of this process. In Section

5.2.2 we recalled the standard estimation procedure for estimating the EWS, and

hence the autocovariance, however this method is only valid in the case where the

time series has a constant mean. A key ingredient in our approach is providing

methodology to estimate the nonstationary second-order structure of a time series

under the relaxed assumption of a piecewise constant mean signal.

Under the alternative hypothesis, the overall model for Xt is not LSW due

to changes in mean. Wavelet coefficients informally describe weighted localised

changes in average, therefore changes in mean will cause the raw wavelet peri-

odogram to become contaminated with information about the mean, rather than

purely information about the spectrum. This will cause additional bias in the raw

wavelet periodogram. If we were to use, for example, a running mean to smooth

the wavelet periodogram – as is standard in LSW spectral estimation to achieve

consistency – this would result in a biased estimator.

To illustrate this phenomenon, in Figure 5.3.1 left, we see the empirical Haar

wavelet periodogram of a piecewise constant function of length 512 with a single

jump in value at time point 300, without noise. Coefficients localised around the

jump contain information about the change, which propagates through to coarser

scales in a cone of influence. In time locations where the coefficients are localised

entirely within one of the two piecewise constants, the coefficients are unaffected

by the jump and are exactly zero. Hence, for a fixed scale, the empirical wavelet

periodogram will be contaminated with the jump in a fixed number of coefficients,

localised around the jump’s location. All other coefficients in that scale will be

unaffected. In particular, ignoring boundary effects, for the Haar wavelet, at scale

j, 2−j coefficients will be affected by a single jump.



CHAPTER 5. MEAN CHANGEPOINT DETECTION 137

Translate

S
ca

le

−
1

−
2

−
3

−
4

−
5

−
6

−
7

−
8

−
9

0 128 256 384 512

Translate

S
ca

le

−
1

−
2

−
3

−
4

−
5

−
6

−
7

−
8

−
9

0 128 256 384 512

Figure 5.3.1: Left: empirical wavelet periodogram of a piecewise constant signal
with one jump. Right: median smoothed version.

As described in Nason et al. (2000), asymptotically, as T → ∞, we observe

more data at an increasingly finer level on the interval (0, 1). Therefore, as T →

∞, we do not consider an increasing number of jumps in the mean, but rather

we are observing a (finite) fixed number of jumps and observe more information

about their structure as T increases. Suppose there are m changes in mean within

the series. If we consider a fixed scale j∗, then a maximum number of wavelet

coefficients, Cm2−j
∗ , for some constant C, will be affected by the finite number of

jumps in the mean of the series, due to the compact support of the wavelet. (For

the Haar wavelet, C = 1). As T increases, an increasing number of the coefficients

will contain information about the wavelet spectrum that is uncontaminated by

the jumps.

Therefore, we wish to use these coefficients as an estimator for the wavelet

spectrum. Provided the number of contaminated coefficients is small relative to

the number of time points, a natural alternative to the running mean smoother

– which would be affected by the jumps of the time series – is to use a running

median instead. This is analogous to robust estimation of the variance using a

median absolute deviation (MAD) estimator – by taking a median we can reduce

the influence that the jumps have on the spectrum estimator. The running median
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smoothed wavelet periodogram, with bin width 2n+ 1, is given by

Ĩjk = Median
(
Ijk−n, I

j
k−n+1, . . . , I

j
k+n−1, I

j
k+n

)
. (5.3.1)

In Figure 5.3.1 right, we see the running median smoothed version of Figure 5.3.1

left, with a bin width of size 201. We see that the median smoothing is able to

negate the effect of the change in mean of the signal on the raw wavelet peri-

odogram, at least in the finer scales.

The above discussion motivates the following autocovariance estimation proce-

dure. First, compute the raw wavelet periodogram Ijk of the time series. Then, for

each scale of interest j, obtain the smoothed wavelet periodogram by computing

a running median of the Ijk. Next, we must correct this median estimate to ensure

unbiasedness. The raw wavelet periodogram is distributed asymptotically as a

scaled χ2
1 random variable, so we divide the smoothed wavelet periodogram by a

suitable scale factor. This is analogous to the scale factor multiplication that oc-

curs when using an MAD estimator. In our case, we divide the median smoothed

estimate by (7/9)3 ≈ 0.471, as the mean of a χ2
1 random variable is equal to 1,

while the median is equal to 0.471. Denote the scaled, median smoothed estimate

of Ijk by Îjk. Next, we correct this estimate using the inverse of the A matrix to

give the final estimate of the EWS:

Ŝj(k/T ) =
−1∑

l=−J0

A−1jl Î
l
k, (5.3.2)

for some J0 = α log2 T < J , where α ∈ (0, 1). Lastly, we estimate the autocovari-

ance by plugging in the EWS estimate into the equation for the local autocovari-

ance of an LSW process, i.e.

ĉ(k/T, τ) =
−1∑

j=−J0

Ŝj(k/T )Ψj(τ). (5.3.3)

Choice of contributing scales and bin width. We must decide on a value
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of α, the proportion of scales over which we correct. Higher values of α ensure a

decomposition over a larger number of scales. In practice, not all of the scales will

be informative. We propose using the proportion α = 3/5. This is slightly less

than the proportion 2/3 discussed in Sanderson et al. (2010), reflecting the fact

that the time series may display mean changes.

The choice of the bin width parameter n in Equation (5.3.1) will also affect

the quality of the estimate. We can choose to use level-dependent smoothing of

the periodogram, and so a larger bin width is used in coarser scales. Choosing

a bin width in this way is natural for two reasons: coarser scales will experience

stronger autocorrelation, and coarser scales have larger number of coefficients af-

fected by potential mean changes. If, instead, we assume second-order stationarity,

we can drop the dependence on k in the estimation equations (5.3.2) and (5.3.3).

In this case we can use a global scale-wise median when smoothing the wavelet

periodogram, obtaining a time-independent estimate of the EWS and autocovari-

ance.

5.3.2 Mean Change Detection

Having discussed our estimator of the autocovariance of the time series in the

presence of mean changes, we now return to the problem of detecting the mean

changes within a likelihood-based framework.

5.3.2.1 Likelihood-Based Test Statistic

Recall that the likelihood ratio test statistic for a single change in mean is given

by

λ = max
1<p<T−2

{
(X − µ̂0)

TΣ̂−1(X − µ̂0)− (X− µ̂1)
TΣ̂−1(X− µ̂1)

}
.

In our approach, we also use sample means for the mean estimates µ0 and µ1.

The sample mean is asymptotically consistent, provided that the LSW process

satisfies supz∈(0,1)
∑

τ |c(z, τ)| < ∞, which can be thought of as a short memory

assumption. The entries of the variance-autocovariance matrix Σ are estimated
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using Equation (5.3.3).

The consistency of likelihood methods for detecting changepoints has been

shown in Csörgö and Horváth (1997). It is well known that plug-in estimates that

are consistent possess the same properties as maximum likelihood estimates, there-

fore the proof of consistency for identifying changepoints using plug-in estimates

follows directly provided the estimates used are consistent. In our case, the sam-

ple means are consistent if we assume that the process has absolutely summable

autocovariance. The mean smoothed estimate of the autocovariance is consistent,

so intuitively we would expect the median to be also, although we give no formal

proof of this here.

In practice, the variance-autocovariance matrices can be ill-conditioned and

cause the test statistic to become numerically unstable. To combat this issue, we

regularise the covariance matrix estimate using the approach of Rothman (2012),

one of many possible regularisation methods. Denote by R the correlation matrix

calculated using the initial covariance matrix estimate Σ̂, and let θ � 0 indicate

that θ is symmetric and positive definite. Let θ+ be the diagonal matrix with

the same diagonal entries as θ. The method utilises a lasso-type procedure and

computes an estimate of the correlation matrix θ given by

θ̂ = arg min
θ�0

{
||θ −R||F/2− τ log |θ|+ γ|θ+ − θ|1

}
, (5.3.4)

where the subscript F denotes the Frobenius norm, τ = 10−4 is a fixed constant,

and γ ≥ 0 is a tuning parameter. We recommend choosing γ as low as possible

while still ensuring positive-definiteness, in order to capture the largest amount of

autocovariance information within the series.

5.3.2.2 Detecting Multiple Changes in Mean

In the previous sections we have focussed on the single change in mean case, how-

ever often one is interested in detecting multiple changes. The likelihood ratio

test statistic is consistent when estimating a single changepoint in the presence of
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multiple changepoints, as shown in Vostrikova (1981). There are many proposed

methods in the changepoint literature which tackle the multiple changepoint prob-

lem, for example Scott and Knott (1974); Bai and Perron (2003); Killick et al.

(2012); and Fryzlewicz (2014).

In our work, we implement the Binary Segmentation algorithm of Scott and

Knott (1974). Binary Segmentation is a technique for multiple changepoint de-

tection where initially the entire data set is searched for a changepoint. If a

changepoint is detected, the data are split into two subsegments defined by the

detected changepoint. This procedure is then recursively repeated on subsequent

subsegments until no further changepoints are detected. The algorithm is outlined

in detail in Algorithm 1 below.

Algorithm 1: Binary Segmentation algorithm.
Input: A set of data of the form X = {X0, X1, . . . , XT−1}.
A test statistic λ(·) dependent on the data.
An estimator of the changepoint location p̂(·).
A rejection threshold (penalty) c.
Initialise: Let C = ∅, and S = {[0, T − 1]}
while S 6= ∅ do

1. Choose an element of S, denoted [s, t].
2. If λ(Xs:t) < c, remove [s, t] from S
3. If λ(Xs:t) ≥ c, then:

1. remove [s, t] from S;

2. calculate r = p̂(Xs:t) + s− 1, and add r to C;

3. if r 6= s add [s, r] to S;

4. if r 6= t− 1 add [r + 1, t] to S.

Output: the set of changepoints recorded C.

5.3.2.3 Choice of Threshold/Penalty

In changepoint problems, it is common practice to use a penalty term to protect

against overfitting, i.e. fitting too many changepoints. In the multiple changepoint

setting, the penalty is usually a function of the number of changepoints; for ex-
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ample see Harchaoui and Lévy-Leduc (2010). We outline two possible approaches

for the selection of the appropriate penalty/threshold c.

First, one option is to use the asymptotic distribution of the test statistic

to inform an appropriate value for c. If the autocovariance matrix was known,

then an appropriate choice of penalty would be 2 log T . However, in our scenario

the autocovariance is unknown and must be estimated. We therefore propose

that a practical choice of threshold is given by 3 log T , which is motivated by the

modified Bayesian information criterion as used in Zhang and Siegmund (2007). As

remarked in Fisch et al. (2018), we utilise an inflated penalty in order to reflect the

uncertainty of the unknown parameters. We have found in our empirical analysis

that this threshold works well in practice, allowing for a low false discovery rate

and a high detection rate.

In the second approach, we choose the threshold c via a Monte Carlo procedure.

Using the estimate of the evolutionary wavelet spectrum of the time series, Monte

Carlo simulations allow us to compute an appropriate (100−α)%-quantile, which

we choose to be c. We then detect a change if the test statistic of the observed

series is greater than c.

The Monte Carlo approach works well in practice, and provides a fully auto-

mated method for detecting changes. However, it may become prohibitively slow,

due to the need to calculate an inverse covariance matrix for each simulated series.

To address this problem, we can instead use a modified test statistic, in which no

inverse calculation is required. We use the alternative test statistic

λ = max
1<p<T−2

{
1

σ̂2
L(p)

(
(X − µ̂0)

T(X − µ̂0)− (X− µ̂1)
T(X− µ̂1)

)}
,

where σ̂2
L(p) is an estimate of σ2

L(p) =
∑

τ c(p/T, τ), the possibly time-varying

long run variance of the time series. We estimate this via the estimate of the

local autocovariance and weighting via a kernel approach, in a similar fashion to
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Tecuapetla-Gómez and Munk (2017). The estimator is given by

σ̂2
L(p) = ĉ(p/T, 0) + 2

2J0∑
τ=1

(
1− τ

2J0 + 1

)
ĉ(p/T, τ).

The kernel approach is a common technique for estimation of the long run variance

(Newey and West, 1986) and helps to ensure positive-definiteness of the resulting

estimate. This approach enables faster implementation of the Monte Carlo thresh-

old choice, while still taking the autocorrelation of the time series into account in

the procedure. The approach of using the long run variance estimate in a change-

point detection procedure is also used, for example, in Dette et al. (2018) and

Dette and Wu (2019).

Collecting the above ideas together, Algorithm 2 describes our LSW likelihood-

based method which we henceforth refer to as LSWL. The output of Algorithm 2

is then used as the input for Binary Segmentation (Algorithm 1) in order to detect

multiple changes in mean.

Algorithm 2: LSWL algorithm
Input: A set of data of the form X = {X0, X1, . . . , XT−1}.
An estimate of the LACV, ĉ
Number of simulations, nsim, if using Monte Carlo method
Significance level, α, if using Monte Carlo method.
if Method = Monte Carlo then

Calculate σ̂2
L

Calculate λ, p̂
for n ∈ {1, ..., nsims} do

Simulate Xn

Calculate σ̂2
L,n

Calculate λn,

λ = {λ1, . . . , λnsims}
c = q1−α(λ)

else
c = 3 log T

Calculate Σ̂
Calculate λ, p̂

Output: test statistic λ, threshold c, estimated change location p̂.
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5.4 Simulation Study

In this section we assess the performance of LSWL via a simulation study. We

simulate time series, with and without changes in mean, under a variety of error

structures. In all simulations the results were obtained using Haar wavelets, and

where applicable Haar wavelets were used to simulate from wavelet spectra. Other

wavelet families yield similar results. In all simulations, 100 realisations were

simulated, all of length 512. In each of the scenarios listed below the innovations

εt are standard normal random variables.

If the estimated autocovariance matrix is numerically stable and can be regu-

larised using the penalty value γ = 0.4, we utilise the standard version of LSWL,

otherwise we use the Monte Carlo version with 100 replications, at a significance

level of 5%. In alignment with the discussion in Section 5.3.1, we estimate the EWS

at the finest J0 = 5 scales, and hence the autocovariance up to lag τ = 25 = 32.

For the second-order stationary scenarios in the simulation study, we utilise global

scale-wise median smoothing for spectral estimation. For the nonstationary sce-

narios, we use a running median of bin width 151 at each scale for simplicity. Our

implementation of LSWL utilises the R package wavethresh (Nason, 2016b) in

order to fit the LSW model.

Where applicable, we compare our method to the AR1Seg method of Chakar

et al. (2017) and the NPCP method of Bücher and Kojadinovic (2016), whose

implementations are readily available in R (Chakar et al., 2014; Kojadinovic, 2015).

AR1Seg can detect multiple mean changes in the presence of (stationary) AR(1)

errors. The method robustly estimates the autocorrelation parameter of the AR(1)

process, which is then plugged in to a dynamic programming algorithm in order

to detect multiple changes. NPCP can detect a single change in the presence of

stationary autocorrelation subject to mild technical assumptions. NPCP utilises

a multiplier bootstrap in order to derive critical values for hypothesis testing in

the single change case. In our simulations the significance level for NPCP is set

at 5%. For illustrative purposes, we also compare to the performance of NOT,



CHAPTER 5. MEAN CHANGEPOINT DETECTION 145

implemented in the R package not (Baranowski et al., 2016), to highlight the

effect of not incorporating the autocorrelation within the changepoint method.

NOT detects multiple changepoints by applying a generalised likelihood ratio test

to randomly selected subsamples of the data. NOT is shown to be consistent

in the presence of autocorrelated errors, however there is no option for including

autocorrelation information within the implementation.

5.4.1 Null Hypothesis Performance

We first assess the performance of the method under the null hypothesis of a

constant mean (without loss of generality equal to zero) of the time series. We

simulate a variety of stationary and nonstationary error structures, that highlight

the ability of LSWL to successfully account for autocorrelation in order to maintain

a low false positive rate. In each simulation, a false positive is recorded if the

method detected any changes, and we record the proportion of the 100 simulations

resulting in a false positive.

5.4.1.1 No Changepoint, Various AR(1) Parameters

We investigate the effect of varying AR(1) parameter values on the false positive

rate of the methods. Data sets are simulated from

Xt = φXt−1 + εt,

where φ is given by the values in Table 5.4.1. Included is the case of white noise

where φ = 0. The values underlined indicate performance where the type 1 error

is clearly not controlled. We see from Table 5.4.1 that negative values for the

AR(1) parameter do not hamper the performance of the methods, while large

positive values do. Furthermore, the results show that LSWL compares similarly

or favourably with AR1Seg and NPCP. AR1Seg has a high false positive rate when

the AR parameter is equal to 0.9. As expected, NOT confuses changes in mean
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with strongly autocorrelated errors.

False Discovery Rate AR(1) Parameter

Method -0.9 -0.6 -0.3 0 0.3 0.6 0.9

LSWL 0.00 0.00 0.00 0.00 0.08 0.09 0.05

AR1Seg 0.01 0.02 0.01 0.02 0.05 0.03 0.45

NPCP 0.01 0.02 0.02 0.05 0.07 0.05 0.03

NOT 0.00 0.00 0.00 0.01 0.34 0.99 1.00

Table 5.4.1: False discovery rates across different AR(1) scenarios with constant
mean equal to zero.

5.4.1.2 No Changepoint, Various Autocorrelation Scenarios

Next, we investigate a variety of autocorrelation scenarios, representing some of

the most common time series models. Data sets are simulated from models A –

H, as described below:

(A) AR(2) model with parameters φ1 = 0.5 and φ2 = 0.3.

(B) ARCH(3) model with parameters α1 = 1, α2 = 0.5, α3 = 0.4.

(C) Stationary LSW model with S−4 = S−5 = 1, Sj = 0 otherwise.

(D) ARMA(1,6) model with AR parameter φ = 0.5, MA parameters θ1 = 1,

θ2 = −1, θ3 = 0.5, θ4 = 0.5, θ5 = 1, θ6 = 0.5.

(E) Time-varying AR(1) model where the AR(1) parameter moves from 0.7 to

0.3 linearly, i.e.

Xt = φtXt−1 + εt, φt =
0.4(1− t)

511
+ 0.7.
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(F) Nonstationary LSW model with spectrum given by

Sj(z) =


1/5 + sin2(2πz) for j = −5, z ∈ (0, 1),

1 for j = −1, z ∈ (100/512, 200/512),

0 otherwise.

(G) Nonstationary LSW model with spectrum given by

Sj(z) =



1 for j = −1, z ∈ (0, 100/512),

1 for j = −2, z ∈ (100/512, 300/512),

1 for j = −3, z ∈ (300/512, 1),

0 otherwise.

(H) Xt = σtεt, where

σt =


24(t/512)2 + 4(t/512) + 4 for t ∈ [0, 299],

−32(t/512)2 + 8(t/512) + 7.62 for t ∈ [300, 511].

The scenarios (A) – (D) represent second-order stationary time series, while sce-

narios (E) – (H) are second-order nonstationary. The results are reported in Table

5.4.2, again with underlined values indicating uncontrolled type 1 error. We see

that LSWL is able to maintain a low false positive rate in all scenarios, comparing

similarly or favourably to NPCP. Whilst we expect our method under models C,

F and G to perform well, it is reassuring to find good performance in the cases

where the error structure is not simulated using an LSW process. AR1Seg per-

forms poorly in the case of an AR(2) model and ARCH(3) model, and model F. As

expected, NOT generally performs poorly due to autocorrelation, while performing

well in the presence of nonstationary IID errors (model H).
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False Discovery Rate Scenario

Method A B C D E F G H

LSWL 0.02 0.07 0.00 0.01 0.09 0.00 0.00 0.00

AR1Seg 0.97 0.96 0.11 0.08 0.14 0.94 0.05 0.15

NPCP 0.07 0.03 0.00 0.06 0.05 0.00 0.00 0.07

NOT 1.00 0.60 1.00 1.00 0.92 1.00 0.14 0.03

Table 5.4.2: False discovery rates across different autocorrelated error scenarios,
with constant mean equal to zero.

5.4.2 Alternative Hypothesis Assessment

Next, we assess the method’s performance in detecting changes in mean. We use

the same error structure scenarios defined in the previous section, and examine the

performance of the method in both the single and multiple changepoint settings.

5.4.2.1 Single Changepoint, Various Stationary Autocorrelation Sce-

narios

In these scenarios there is a single change in mean at time 300, with the size of

the change, δ, chosen so that that δ/σ = 1, where σ is the standard deviation

of the time series. We investigate the performance of the methods for the IID

model, AR(1) model with parameter φ = 0.6, and models (A) – (D), by reporting

the number of detected changepoints of each method. We also report the average

mean squared error (MSE) of the estimated signal µ̂ across the 100 simulations,

where the MSE is given by

MSE =
1

T

T−1∑
t=0

(µt − µ̂t)2 .

The MSE is an alternative comparison to examine how well each method estimates

the mean function in the model. The results are given in Table 5.4.3, with the

correct number of changepoints in the top row in bold and the modal value for
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Model Method No. of changepoints MSE0 1 2 ≥ 3

IID

LSWL 0 98 2 0 0.010
AR1Seg 0 94 4 2 0.012
NPCP 0 100 - - 0.010
NOT 0 96 4 0 0.011

AR(1) 0.6

LSWL 0 95 5 0 0.070
AR1Seg 27 64 7 2 0.165
NPCP 4 96 - - 0.056
NOT 0 2 4 94 0.441

A

LSWL 12 76 12 0 0.291
AR1Seg 0 2 5 93 1.652
NPCP 35 65 - - 0.174
NOT 0 0 0 100 1.040

B

LSWL 0 71 27 2 0.180
AR1Seg 0 5 1 94 2.044
NPCP 0 100 - - 0.061
NOT 0 40 2 58 1.013

C

LSWL 2 85 12 1 0.060
AR1Seg 61 22 8 9 0.374
NPCP 0 100 - - 0.034
NOT 0 0 0 100 1.26

D

LSWL 6 80 14 0 0.616
AR1Seg 49 40 5 6 1.226
NPCP 9 91 - - 0.363
NOT 0 0 1 99 3.415

Table 5.4.3: Method performance comparisons for the single changepoint and sta-
tionary second-order scenarios, reporting number of changepoints detected and
average mean squared error of the estimated mean.

each method also in bold. The table indicates that LSWL performs well across

all considered scenarios. Surprisingly, LSWL outperforms AR1Seg in the case of

AR(1) errors. Departure from an AR(1) error structure results in poor performance

for AR1Seg. LSWL also performs well in the IID case, in part due to the ability

to obtain an accurate estimate of the trivial autocovariance. Note that NPCP is

capable of detecting only a single change: running the simulations for at-most-

one-change LSWL gives similar results to NPCP.
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Model Method No. of changepoints MSE0 1 2 ≥ 3

E

LSWL 0 78 15 7 0.059
AR1Seg 17 59 7 17 0.160
NPCP 0 100 - - 0.037
NOT 0 8 2 90 0.292

F

LSWL 0 89 7 4 0.026
AR1Seg 3 3 3 91 0.302
NPCP 0 100 - - 0.010
NOT 0 0 0 100 0.519

G

LSWL 0 100 0 0 0.004
AR1Seg 62 34 3 1 0.162
NPCP 0 100 - - 0.004
NOT 0 88 3 9 0.012

H

LSWL 0 100 0 0 0.375
AR1Seg 0 68 14 18 0.508
NPCP 0 100 - - 0.388
NOT 0 94 1 5 0.721

Table 5.4.4: Method performance comparisons for the single changepoint and non-
stationary second-order scenarios, reporting number of changepoints detected and
average mean squared error of the estimated mean.

5.4.2.2 Single Changepoint, Time-Varying Autocorrelation Scenarios

In these scenarios there is again a single change in mean at time 300, with the size

of the change, δ, chosen so that that δ/σ = 1, where σ is the maximum standard

deviation of the time series. We investigate the performance of the methods for

models (E) – (H), with the results reported in Table 5.4.4. We see that LSWL

performs well in general, with a high proportion of simulations identifying the

correct number of changepoints. NPCP also performs well, despite the fact that

it is not designed to handle nonstationary second-order structure.

5.4.2.3 Multiple Changepoints, Various Stationary Autocorrelation Sce-

narios

Next, we analyse the performance of the methods in the case where there are mul-

tiple changepoints, with the error structures the same as in the single changepoint

case. In these simulations, the signal contains 3 changepoints, at times p = 100,

180 and 380. For the IID and AR(1) case, the mean within each segment alternates
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Model Method No. of changepoints MSE≤ 1 2 3 4 ≥ 5

IID
LSWL 8 0 92 0 0 0.054
AR1Seg 4 0 98 1 1 0.026
NOT 0 0 99 1 0 0.025

AR(1) 0.6
LSWL 22 7 55 14 2 0.271
AR1Seg 48 3 36 5 8 0.346
NOT 0 0 4 1 95 0.471

A
LSWL 3 0 71 21 5 0.661
AR1Seg 2 0 4 3 91 1.122
NOT 0 0 0 0 100 1.393

B
LSWL 0 0 66 20 14 1.018
AR1Seg 0 0 1 3 96 3.388
NOT 0 0 28 6 66 2.037

C
LSWL 40 0 59 1 0 0.554
AR1Seg 75 1 5 2 17 1.037
NOT 0 0 0 0 100 1.303

D
LSWL 2 0 70 25 3 1.688
AR1Seg 45 2 39 4 10 3.670
NOT 0 0 0 1 99 3.381

Table 5.4.5: Method performance comparisons for the multiple changepoint and
stationary second-order scenarios, reporting number of changepoints detected and
average mean squared error of the estimated mean.

between 0 and δ, where δ is calculated so that δ/σ = 1.25. For cases (A) – (D), δ

is calculated so that δ/σ = 2, to reflect the difficulty of the scenarios. Note that

this up, down, up pattern is not favourable to the Binary Segmentation algorithm,

and represents a “worst case" scenario. The results of the simulation are reported

in Table 5.4.5. We see that, for all but the IID scenario, LSWL offers the strongest

performance, both in terms of detecting changepoints and mean squared error. In

the IID case, LSWL is still able to achieve good performance. As in the single

changepoint case, LSWL outperforms AR1Seg in the case of AR(1) errors.

5.4.2.4 Multiple Changepoints, Time-Varying Autocorrelation Scenar-

ios

Finally we examine the multiple changepoint setting with nonstationary second-

order structure. We use the same signal from the previous section, where the

mean within each segment alternates between 0 and δ, where δ is calculated so
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Model Method No. of changepoints MSE≤ 1 2 3 4 ≥ 5

E
LSWL 13 4 68 14 1 0.219
AR1Seg 28 3 59 8 2 0.282
NOT 0 0 10 18 82 0.300

F
LSWL 35 0 56 8 1 0.269
AR1Seg 1 0 6 5 88 0.484
NOT 0 0 0 0 100 0.543

G
LSWL 0 0 99 1 0 0.017
AR1Seg 79 3 15 2 1 0.281
NOT 0 0 83 1 16 0.026

H
LSWL 0 0 99 1 0 1.232
AR1Seg 0 0 73 13 14 1.057
NOT 0 0 89 9 2 0.832

Table 5.4.6: Method performance comparisons for the multiple changepoint non-
stationary second-order scenarios, reporting number of changepoints detected and
average mean squared error of the estimated mean.

that δ/σ = 1.25 for maximum standard deviation σ. Error structures are again

simulated from models (E) – (H) as in the single changepoint case. The results

of the simulation are shown in Table 5.4.6. We see that LSWL has the strongest

performance in terms of detected changepoints, and has the lowest MSE for all

but one scenario. Therefore, we find that LSWL performs well in both single

and multiple changepoint scenarios, as well as in the presence of stationary and

nonstationary second-order structure.

5.5 Data Applications

In this section we demonstrate the potential uses of LSWL with analysis of two

data sets. Firstly, we perform changepoint analysis on historical Ebay stock price

data, and secondly we examine UK house price index data that was previously

analysed in, amongst others, Baranowski et al. (2019). Accurate segmentation

of these data sets is crucial to ensure an informed interpretation and analysis –

falsely detecting too many changes in mean may lead to false assertions about

the underlying series. False detection of changes in stock price data may lead to

incorrect investing decisions, while inaccurate assessment of the house price index



CHAPTER 5. MEAN CHANGEPOINT DETECTION 153

may detrimentally inform housing policy.

5.5.1 Ebay Stock Price Data

Shown in Figure 5.5.1 is the historic daily closing stock price in dollars for Ebay

over a roughly 4 year time period from approximately April 2013 to April 2017,

with corresponding fitted changepoints. One obvious changepoint is apparent in

mid-July of 2015: this is due to Ebay and Paypal splitting into separate public

companies at this time, roughly 12 years after Ebay had acquired Paypal in 2003.

It is clear that we will detect this change using our methodology, as will any

multiple changepoint detection method. However, it is not immediately obvious

how many subsequent changes there are: one might expect that a financial time

series of this sort may exhibit strong autocorrelation, with stock prices close in

time being highly correlated. Therefore, we may take the view that this time

series has a small number of changes, with a strong level of autocorrelation, as

opposed to possessing many mean changes with relatively low autocorrelation.
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Figure 5.5.1: Ebay closing stock price over roughly 4 year period. Fitted mean
function in solid line.

In this example we have used a global scale-wise median smoothing and anal-
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ysed the finest J0 = 6 scales in the spectrum (and hence autocovariance) estimate.

We detect three total changes in mean, with locations shown by the vertical dot-

ted lines in Figure 5.5.1. The fitted estimate for the mean is shown in the red

solid line. We detect the change associated to the Ebay-Paypal split, and detect

two subsequent changes that occur at times close to the release of Ebay quarterly

results. Therefore, we can interpret the LSWL segmentation as saying that any

other large fluctuations in the data that are noticeable by eye can be attributed

to serial autocorrelation.

In our analysis of the Ebay data, we used a global scale-wise estimate of the

wavelet spectrum when estimating the autocovariance, i.e. we assumed the second-

order structure is stationary. Having fitted our changepoint model to the series,

we now validate this assumption. Running a test for second-order stationarity on

the mean removed series (for example using the work of Nason (2013) or Bücher

and Kojadinovic (2016)), we find that we fail to reject the null hypothesis of

second-order stationarity. This is reassuring on two counts: firstly that the series

can be considered second-order stationary, and secondly that our segmentation

of the series was able to identify all mean changes. Furthermore, estimating the

autocorrelation of the series highlights the large levels of autocorrelation present

in the series. In Figure 5.5.2 we see the estimated autocorrelation of the mean

removed series. We can see that autocorrelation persists into very high lags in the

series, with significant positive autocorrelation at lag τ = 1 to approximately at

least lag 25.

Running standard multiple changepoint detection methods on this series will re-

sult in detecting a large number of changes. Under default settings, PELT obtains

a total of 35 detected changepoints, however setting a penalty value of approxi-

mately 610 ≈ 88 log(1024) yields the exact 3 changepoints that LSWL detected.

(Choosing this penalty value in a principled manner is in practice extremely chal-

lenging). This result however is reassuring, as PELT uses the standard Gaussian

likelihood for a cost function when fitting changepoints. Similarly, WBS fits 48
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changepoints, NOT fits 25, and AR1Seg fits 12 changepoints.
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Figure 5.5.2: Estimate of the autocorrelation of the mean subtracted Ebay stock
price data.

5.5.2 UK House Price Index

In this example we analyse the monthly percentage changes in UK house price

index (HPI) data set, that provides insight into the estimated overall changes in

house prices across the UK. The data are available to download online (https://

www.gov.uk/government/statistical-data-sets/uk-house-price-index-data-

downloads-march-2020), while a detailed description for the calculation of the

HPI is also given online from the UK Land Registry (2020).

Fryzlewicz (2018) and Baranowski et al. (2019) analyse the percentage changes

in the HPI for three London boroughs; Hackney, Newham and Tower Hamlets, all

of which are in East London. In both of the analyses, the authors do not allow

for the possibility of autocorrelated errors, which could potentially cause spurious

changepoints to be detected. Baranowski et al. (2019) allow for changepoints in

the variance of the time series, while Fryzlewicz (2018) does not. We analyse

the Newham HPI data as an illustrative example, since it is this series for which

Fryzlewicz (2018) and Baranowski et al. (2019) detect the most changepoints out

https://www.gov.uk/government/statistical-data-sets/uk-house-price-index-data-downloads-march-2020
https://www.gov.uk/government/statistical-data-sets/uk-house-price-index-data-downloads-march-2020
https://www.gov.uk/government/statistical-data-sets/uk-house-price-index-data-downloads-march-2020
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of the three boroughs.

Figure 5.5.3 shows monthly percentage changes in the HPI for the Newham

borough, and the corresponding fitted changepoints obtained using LSWL. In this

example we have used a bin width of size 71 for the running median smoothing and

analysed the finest J0 = 5 scales in the spectrum estimate. The autocovariance

matrix is regularised using γ = 0.45. We see that there are few changepoints fitted

to the series. This is in contrast to Fryzlewicz (2018), whose methodology estimates

at least 10 changepoints, and Baranowski et al. (2019) who find 5 changepoints

in the series. We believe that the most likely explanation for this is the presence

of significant autocorrelation within the series, which may cause the methods to

overfit the number of changepoints, as noted in Lund and Shi (2020). To illustrate

this point, in Figure 5.5.4, we plot the estimated autocorrelation for the mean

removed Newham series, at lags 1, 2 and 3. We see that there is significant

(time-varying) autocorrelation within the series at these lags, which can inhibit

the performance of a changepoint detection algorithm if the autocorrelation is not

taken into account.

1995 2000 2005 2010 2015 2020

-6
-4

-2
0

2
4

Time

M
on

th
ly

 P
er

ce
nt

ag
e 

C
ha

ng
e

Figure 5.5.3: Newham HPI series with fitted changepoints (solid lines).
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Figure 5.5.4: Estimated lag 1 (solid line), lag 2 (dashed line), and lag 3 (dotted
line) autocorrelation of the Newham HPI series.

5.6 Concluding Comments

Time series can be commonly modelled using changepoint methods whereby the

mean function is assumed to be piecewise constant. It is often the case that mean

changepoint detection methods make the assumption that the observations are

independent, when in reality this may not be true. The work presented in this

chapter addresses this problem by introducing a likelihood-based test under the

LSW framework to detect changes in the mean of time series whose unknown,

non-trivial autocovariance can vary over time. The proposed approach is shown

to work well on simulated data, and compares similarly or favourably with other

methods in the literature. The potential uses of the method are shown on two

data examples, which highlight the ability to account for highly autocorrelated

time series.

LSWL performs well in both single and multiple changepoint scenarios, as

well as in the presence of stationary and nonstationary second-order structure.

We note, however, that LSWL is likely to be less effective in the very frequent

changepoint setting. Firstly, this is due to the limitations of Binary Segmentation
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itself, which is effectively a greedy method for locating changepoints, as described

in Fryzlewicz (2014). Secondly, in the case of frequent changepoints, the estimate of

the EWS is likely to become increasingly contaminated by the changepoints. This

will cause inaccurate estimation of the autocovariance, which will impact the power

of LSWL. Lastly, we remark that the procedure may become prohibitively slow for

large sample sizes. This is due to the high computational cost of the autocovariance

matrix inversion and regularisation procedure, which are bothO(T 3). In situations

where the sample size is very large, it may be advantageous to employ the Monte

Carlo version of LSWL, which has computational cost O(mT log T ), where m is

the number of Monte Carlo replications performed.

One interesting avenue for future investigation is the incorporation of the ‘ro-

bust’ autocovariance estimate within more sophisticated changepoint algorithms.

For example, the NOTmethod of Baranowski et al. (2019) is shown to be consistent

in the presence of a stationary short memory process, however this is achieved as-

suming a known variance and given pre-estimate of the autocorrelation. We could

use the wavelet-based autocovariance estimate described in this chapter within

NOT or similar changepoint detection algorithms, which could enable the estima-

tion of changepoints under unknown autocorrelation.



Chapter 6

Conclusions and Further Work

In this thesis, we have considered wavelet-based methodology for the modelling of

time series that exhibit both first and second-order nonstationary structure. In

this final chapter, we summarise the main contributions made in Chapters 3 –

5. Furthermore, we outline some potential avenues for future research that have

arisen as a result of the work undertaken for this thesis.

6.1 Contributions ad Discussion

In Chapter 3, we considered the problem of modelling first and second-order non-

stationary time series, which are often observed in practice. We employed the

method of differencing in order to remove the trend; a commonly used technique

in classical time series analysis. We derived a wavelet-based method for estimating

the nonstationary second-order structure of the original series using differencing,

and provided theoretical results related to the asymptotic behaviour of the estima-

tor. We developed a wavelet thresholding-based estimator of the trend of the time

series, in which the threshold is set by incorporating the difference-based estimate

of the second-order structure.

We performed a simulation study that highlighted the strong performance of

the methodology. We showed that, in the presence of a trend, the difference-based

wavelet estimator of the spectrum is able to perform similarly to the standard

159
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spectrum estimator in the absence of a trend. Furthermore, we showed that our

proposed trend estimator compared favourably to both a stationary wavelet thresh-

olding approach, and the local MAD-based wavelet thresholding approach of von

Sachs and MacGibbon (2000). The trend estimator was shown to work well for a

variety of trends and both stationary and nonstationary error structures.

Lastly, we demonstrated the utility of the method by analysing two data exam-

ples. In the first example we analysed North Atlantic wave height data, showing

wave height and wave height variability to be larger in the winter than the summer.

In the second example, we re-analysed the baby electrocardiogram data set that

was examined in the original LSW work of Nason et al. (2000). In the authors’

work, analysis of the first-differenced series was performed, however in our work

we performed analysis on the original series using our proposed methodology. This

enabled us to gain a greater insight into the second-order structure of the data,

and revealed a more apparent link between the electrocardiogram data and the

accompanying sleep state of the baby.

In Chapter 4, we also considered the problem of modelling first and second-

order nonstationary time series, but approached the problem from a different angle.

In this chapter, we considered different assumptions on the trend function of the

time series to those of Chapter 3. To tackle this problem, we developed wavelet-

based techniques that expand upon the work on locally stationary wavelet (LSW)

process modelling of Nason et al. (2000). We removed the restrictive zero-mean

assumption of locally stationary wavelet processes, and extended the applicability

of the LSW model to include a trend component. We developed an associated

estimation theory for both first and second-order time series quantities and showed

that our estimators achieve good properties in isolation of each other by making

appropriate assumptions on the series trend.

We illustrated the strong performance of the proposed methodology via a sim-

ulation study. We demonstrated that the spectral estimate in the presence of a

smooth trend displays similar performance to the standard spectral estimate in
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the absence of a trend. We showed that using a smoother wavelet for spectral

estimation can result in a more accurate estimate. Moreover, we showed that the

linear wavelet thresholding trend estimator offers strong performance in a variety

of scenarios and compared favourably to competing methods. We demonstrated

the potential uses of the method by analysing the global mean sea temperature

time series. In doing so, we provided new insights into the data set, whilst aligning

with other aspects of analyses in the literature.

Furthermore, we proposed a new way to perform boundary handling of the

discrete wavelet transform in the case where a trend is present. This method

enables one to perform a discrete wavelet transform of a time series whose length is

not dyadic, ensuring wider applicability for our methodology. Finally, we provided

an important theoretical contribution to the LSW literature. We showed that,

for all Daubechies compactly supported wavelets, the wavelet-based operator B,

with entries given by Bjl = 2j/2Ajl2
l/2, possesses a bounded inverse. This result

is of general interest to the LSW literature as it extends many results, that were

only shown to hold for Haar (and Shannon) wavelets, to all wavelets within the

Daubechies compactly supported wavelet family.

Due to the similarities between Chapters 3 and 4, it is helpful to now comment

on the relations and differences between the chapters. Ultimately, both chapters

tackle the problem of modelling and estimation of time series that are both first

and second-order nonstationary. The work in the chapters are in the same vein,

although the two chapters attack the problem from different angles. The work in

Chapter 3 can be viewed as a rigorous investigation into the uses of differencing in

the case of locally stationary time series. Differencing is an ubiquitous practice in

time series analysis: the work here shows that one should be wary of the potential

effects differencing has on the spectral properties of a nonstationary time series.

The work in Chapter 3 may be useful for analysing the effect of differencing on

the second-order properties of the time series, and as an exploratory data analysis

tool to inform whether differencing is appropriate in a given context.
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The work in Chapter 4 can be viewed as more of a complete modelling frame-

work within the locally stationary time series setting. We have shown that the

well-known wavelet-based methods that are used for modelling first or second-

order nonstationary time series can be adapted to account for first and second-

order nonstationarity. In particular, trend estimation can be carried out through

linear wavelet thresholding, avoiding the difficult problem of incorporating the

second-order properties in the procedure. Spectral estimation can make use of the

LSW process construction and vanishing moments property of wavelets to incur

minimal additional bias in the presence of a trend. The methodology allows for

simultaneous modelling of first and second-order quantities, enabling the estima-

tion of these quantities in isolation of one another, through the use of a simple,

intuitive procedure.

For very smooth trends, it is likely that the linear wavelet thresholding tech-

nique in Chapter 4 will produce stronger practical performance. For polynomial

trends, and trends that can be well approximated by polynomials, the methods

described in Chapter 4 are recommended. In the case of more complex trends, it

is recommended to use the trend estimator proposed in Chapter 3, as it is adap-

tive to the trend. For example, the piecewise continuous quadratic trend which is

non-differentiable at two points, used in the simulation study in Chapter 3, is one

setting where the use of the methods in Chapter 3 would be preferred.

We also stress that, with respect to the modelling of the mean function, the

emphasis in these chapters has been on modelling smooth trends. Therefore, it

should be expected that the performance of the methods will suffer when the

trend present in the time series is not smooth, or is discontinuous. For example,

we would expect the methods to perform worse in the presence of trends like the

“Doppler” and “Bumps” signals that were introduced by Donoho and Johnstone

(1994). This fact is one of the motivations behind the work in Chapter 5, in which

we consider a piecewise constant mean function instead. The effect of a very non-

smooth trend would be detrimental to both the spectral and trend estimation. For
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example, in the work of Chapter 3, if the trend is not sufficiently smooth, then

the differencing will not remove the trend, which causes the spectral estimate to

be positively biased. This in turn causes the threshold for the trend estimator to

be artificially inflated, resulting in too many coefficients being thresholded.

It may therefore be beneficial to perform some empirical checks when using

the techniques in practice, such as those carried out in the first data example in

Chapter 3. One can compare the spectral estimate obtained using the difference-

based method, to the one obtained after detrending the series using the trend

estimate. One could also compare to the spectral estimate obtained by analysing

the original series without detrending or differencing. Indeed, in the case of a more

abruptly changing smooth trend, one possible workaround is an iterative approach

to spectrum and trend estimation, by iterating between the two estimates until

some sort of convergence is reached. Another possible approach is to vary the

coarsest scale analysed in the trend estimation procedure. This could perhaps

be chosen in a more systematic fashion using a cross validation approach as in

Nason (1996). Finally, one could use a median smoother for the spectral estimate,

instead of a running mean, in a similar fashion to the work in Chapter 5, to further

improve practical performance.

In Chapter 5, we considered the scenario where the mean function of the time

series is given by a piecewise constant function. There has been much attention in

the literature to the problem of detecting changes in mean in a piecewise constant

time series. However, many such methods only consider the case where the error

structure of the time series is independent, identically distributed Gaussian noise.

We developed methodology for detecting the location of mean changepoints in

a time series that exhibits nonstationary second-order behaviour. We proposed a

likelihood-based method (LSWL) using wavelets to detect changes in mean in time

series that can display a much more general error structure than simply IID errors.

Our proposed technique was shown to work well for time series with a variety of

error structures through the use of a simulation study. The method was applied
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to two financial time series data sets, which highlighted the proposed method’s

ability to work well in the presence of significant autocorrelation.

In practice, LSWL will work well in distinguishing between strong autocorre-

lation and changepoints, as shown by the simulation results under the null hy-

pothesis. The method is also able to detect multiple changepoints in the presence

of both stationary and time-varying autocorrelation, while also performing well in

the simple case of IID errors. Practical performance of the method is likely to

suffer in the presence of frequent changepoints. This is due to the inherent limita-

tions of binary segmentation as a ‘greedy’ algorithm, and the increasing effect of

the changepoints on the EWS estimate. Finally, we note that the computational

cost of the autocovariance matrix-based version of LSWL scales poorly with the

sample size T . Therefore, we recommend using the faster Monte Carlo version in

the case where the computational speed is of concern.

6.2 Further Work

We conclude this thesis by considering a few possible areas for future research,

arising from the work undertaken in Chapters 3 – 5. A natural avenue for future

research, stemming from the work of Chapters 3 – 4, is to incorporate other work on

LSW process modelling within our framework. In the literature, there are a number

of applications of the LSW model to classical time series problems, however these

works all rely on the zero-mean assumption of the original LSW model. Applying

our framework, which can model time-varying first and second-order behaviour,

could allow for new approaches to these classical problems.

For example, we could research the problem of forecasting as in Fryzlewicz

et al. (2003). This would allow for the forecasting of time series that display a

trend behaviour. Another possibility is the application to changepoint analysis as

in Killick et al. (2013). This approach would involve the detection of changes in

the second-order structure of the time series in the presence of a smooth trend.

Another potential direction is to incorporate the more recent work of Cardinali
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and Nason (2017) on locally stationary packet processes into our methodology.

This would allow for a wider class of time series models to be considered within

our proposed work.

Furthermore, developing a statistical test for trend is another possible extension

of the work in Chapters 3 – 4 concerning wavelet-based trend estimation. One

possible approach in this regard is to adopt a similar strategy to that of Nason

(2013). In this work, the author uses the Haar wavelet transform of the raw

wavelet periodogram to test for nonstationarity of the second-order structure. If

the time series is second-order stationary, then the raw wavelet periodogram will

be a constant function, and so the Haar wavelet coefficients should be zero. In

our scenario, the null hypothesis would be that the trend is constant across time,

which would mean the Haar wavelet coefficients would be zero also. We should

be able to derive appropriate critical values for testing for a nonstationary trend

using the Haar wavelet coefficients. This would be achieved using asymptotic

normality of the wavelet coefficients, along with the estimators we developed for

the nonstationary second-order structure of the time series.

In Chapter 3 we proved that the operator P possessed a bounded inverse for the

Haar and Shannon wavelets; the two wavelets that can be viewed as the extreme

ends of the Daubechies family. It would be of interest to extend this result to all

wavelets within the compactly supported Daubechies wavelet family. This could

perhaps be achieved by modifying the proof strategy of the result on bounded in-

vertibility of A used in Chapter 4. In this case, the difficulty lies in showing linear

independence for the family of vectors given by {2−j/2[Ψj(τ) − Ψj(τ − 1)]}j≤−1,

for all compactly supported Daubechies wavelets. This problem could be ap-

proached using similar techniques from Nason et al. (2000), who show that the

family {Ψj(τ)}j≤−1 is linearly independent for all Daubechies compactly supported

wavelets. Such a rigorous investigation into the properties of P was beyond the

scope of the work in Chapter 3.

Further interesting research questions emanate from the work of Chapter 3.
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We provided theoretical results describing the effect of differencing has on the

asymptotic behaviour of the raw wavelet periodogram. This work complements

the work of Roueff and von Sachs (2011), who propose a class of locally stationary

long memory processes. An interesting avenue for further research is to develop a

similar modelling framework with LSW long memory processes, which one could

think of as integrated LSW processes. An integrated LSW process of order n

could be defined as a process whose n-th order difference is given by an LSW

process. This would be akin to an ARIMA process whereby the differenced series

is represented as an ARMA process. Within this framework, another exciting idea

is to investigate the possibility of developing formal model selection procedures,

which is an often neglected aspect of LSW modelling. Cardinali and Nason (2017)

propose methodology for basis selection for LSW packet processes. This approach

could be adapted into a model selection procedure that yields the order of the

integrated LSW process, as well as the correct wavelet family and selection of

basis functions for modelling the time series.

Finally, the work of Chapter 5 also lends itself to a number of future research

questions. For example, it may be of interest to implement our methodology,

for estimating the nonstationary second-order structure in the presence of mean

changepoints, within the work of other authors. There are many algorithms and

approaches for detecting mean changes in the presence of IID Gaussian noise –

it would be interesting to investigate a way to incorporate our estimate of the

nonstationary second-order structure within these more sophisticated methods.

This may help overcome some of the shortcomings of our binary segmentation-

based approach for detecting multiple changes. For example, the Narrowest-Over-

Threshold method of Baranowski et al. (2019) is shown to be consistent in the

presence of autocorrelated errors. However, this approach requires a pre-estimate

of the autocorrelation of the time series, which could be achieved using our method

employing the median-smoothed wavelet spectrum estimate. Similarly, a challeng-

ing research question would be how to incorporate our second-order estimator
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within dynamic programming-based changepoint algorithms, such as the Pruned

Exact Linear Time (PELT) method of Killick et al. (2012).



Appendix A

Appendix for ‘Modelling

Time-Varying First and

Second-Order Structure of Time

Series via Wavelets and Differencing’

A.1 Proofs of Results

In this section we provide proofs of all results stated in Chapter 3.

A.1.1 Proof of Proposition 3.3.1

The matrix D1
J is symmetric and positive semi-definite, since it can be expressed

as a Gram matrix of vector inner products. The matrix DJ is invertible, since the

family of vectors {Ψj(τ)−Ψj(τ−1)}−1j=−J is linearly independent. This follows from

observing that this family of vectors can be expressed as {∇Ψj(τ)}−1j=−J , where ∇

is the invertible first-differencing matrix with diagonal entries 1, above the main

diagonal entries equal to −1, and all other entries equal to zero.

168
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A.1.2 Proof of Proposition 3.3.2

The expectation is given by

E(Ĩjk) = E

(∑
t

[
εt − εt−1 +O(T−1)

]
ψj,k−t

)2


= E

(∑
t

εtψj,k−t

)2
+ E

(∑
t

εt−1ψj,k−t

)2


− 2E

(∑
s

∑
t

εtεs−1ψj,k−tψj,k−s

)
+O(T−1)

:= I + II + III +O(T−1),

where the remainder term can come out of the inner bracket since, for fixed j,

the sum is finite as the wavelet is compactly supported. Now we evaluate each

expectation individually. The term I is simply the expectation of the raw wavelet

periodogram of the original LSW model. Hence,

I =
∑
l

AjlSl

(
k

T

)
+O(T−1).

Next, observe that the term II is equal to E(Ijk−1), since dj,k−1 =
∑

s εsψj,k−1−s,

and by substituting s = t − 1, we obtain
∑

t εt−1ψj,k−t =
∑

s εsψj,k−1−s. Next,

setting u = k − 1, we obtain

E(Iju) =
∑
l

∑
m

w2
lm

(∑
t

ψj,k−tψj,u−t

)2

.

Now, following a similar argument to Nason et al. (2000), we obtain

II =
∑
l

Sl

(
u+ 1

T

)∑
n

∑
t

∑
s

ψj,−sψj,−tψl,n−sψl,n−t +O(T−1)

=
∑
l

AjlSl

(
k

T

)
+O(T−1).
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Finally,

III = −2E

(∑
s

∑
t

εtεs−1ψj,k−tψj,k−s

)

= −2
∑
s

∑
t

ψj,k−tψj,k−sE(εtεs−1)

= −2
∑
s

∑
t

ψj,k−tψj,k−s
∑
l

Sl

(
t+ s− 1

2T

)
Ψl(s− t− 1) +O(T−1),

since

E(εtεs−1) = c

(
t+ s− 1

2T
, s− t− 1

)
+O(T−1).

The remainder of the proof is similar to that of the proof of Theorem 1 of Nason

(2013). Let u = k − t and v = k − s, substituting into the above to obtain

III = −2
∑
l

∑
u

∑
v

ψj,uψj,vSl

(
k

T
− u+ v − 1

2T

)
Ψl(u− v − 1) +O(T−1)

= −2
∑
l

∑
u

∑
v

ψj,uψj,v

[
Sl

(
k

T

)
+O

(
|u+ v − 1|

2T

)]
Ψl(u− v − 1) +O(T−1).

The remainder term in the above expression can be shown to be O(T−1) (A.2.1 in

Nason (2013)). Hence, we are left with

III = −2
∑
l

Sl

(
k

T

)∑
u

∑
v

ψj,uψj,vΨl(u− v − 1) +O(T−1).

Finally, substituting r = u− v, we obtain

C = −2
∑
l

Sl

(
k

T

)∑
u

∑
r

ψj,uψj,u−rΨl(r − 1) +O(T−1)

= −2
∑
l

Sl

(
k

T

)∑
r

Ψj(r)Ψl(r − 1) +O(T−1)

= −2
∑
l

A1
jlSl

(
k

T

)
+O(T−1).
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Hence, we obtain

E(Ĩjk) = I + II + III

=
∑
l

AjlSl

(
k

T

)
+
∑
l

AjlSl

(
k

T

)
− 2

∑
l

A1
jlSl

(
k

T

)
+O(T−1)

= 2
∑
l

(
Ajl − A1

jl

)
Sl

(
k

T

)
+O(T−1).

For the variance part, we follow the same argument as in the proof of Proposition

4 of Nason et al. (2000). The wavelet coefficients of the differenced series are

asymptotically Gaussian. Hence, the wavelet periodograms are asymptotically

scaled χ2-distributed, and hence the variance is asymptotically proportional to

the expectation squared.

A.1.3 Proof of Theorem 3.3.3

(Proof for the Haar wavelet). The proof follows the same strategy to that of the

proof of Theorem 2 in Nason et al. (2000). We show that there exists δ > 0 such

that λmin(P ) ≥ δ, by using the following property from Toeplitz matrix theory. Let

T be Toeplitz (and Hermitian) with elements {t0, t1, . . .}. Let f(z) =
∑∞

n=−∞ tnz
n

for z ∈ C be the symbol of the operator associated with T . If
∑

n |tn| < ∞, then

f(z) is analytic in the open unit disc D in the complex plane and continuous in

the closed unit disc ∆ = D ∪ S, where S denotes the unit circle. The spectrum Λ

of the (Laurent) operator T is Λ(T ) = f(S). If T is symmetric then an estimate

of the smallest eigenvalue of T is

min
|z|=1
{f(z)} = min

|z|=1

{
t0 + 2Re

(
∞∑
n=1

tnz
n

)}
.

(Reichel and Trefethen (1992), Theorem 3.1 (i)). For ease of notation, indices will

now run from 1 to ∞ instead of −1 to −∞. Using straightforward algebra, we

can derive explicit formulae for the entries of P , which are given by the following

lemma.
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Lemma A.1.1. In the case of the Haar wavelet, the elements of the matrix P are

given by

Pjj = 10,

Pj,j+m = 6× 2−m/2, for l = j +m,m > 0.

Proof. In general, we can derive the discrete autocorrelation wavelets Ψj(τ) by

discretising the continuous wavelet autocorrelation function Ψ(τ), using the rela-

tionship

Ψj(τ) = Ψ

(
|τ |
2j

)
.

For Haar wavelets, the continuous wavelet autocorrelation function is given by

Ψ(τ) =

∫ ∞
−∞

ψH(x)ψH(x− τ)dx =


1− 3|τ | for |τ | ∈ [0, 1/2],

|τ | − 1 for |τ | ∈ (1/2, 1],

where ψH(x) is the Haar mother wavelet. The discretisation formula holds for

τ = −(2j − 1), . . . , 0, . . . , (2j − 1), and is equal to zero for all other values of τ . By

Nason et al. (2000), we have that the elements of A are given by

Ajj =
1

3
2j +

5

3
2−j, Ajl = 22j−l−1 + 2−l, l > j > 0.

We must therefore calculate the elements of A1, from which we can obtain the

elements of D1, and hence P . Note that replacing the (τ − 1) terms with (τ + 1)

results in an equivalent definition of the operators A1 and D1. When l = j, we

have that

A1
jj =

2j−1∑
τ=−(2j−1)

Ψj(τ)Ψj(τ + 1)

= 2

2j−1−1∑
τ=1

Ψj(τ)Ψj(τ + 1) +
2j−1∑

τ=2j−1+1

Ψj(τ)Ψj(τ + 1)

− 2−j−1 +
1

4
− 2−j−1 +

1

4
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= 2

2j−1−1∑
τ=1

(
1− 3τ

2j

)(
1− 3(τ + 1)

2j

)
+

2j−1∑
τ=2j−1+1

( τ
2j
− 1
)(τ + 1

2j
− 1

)− 2−j +
1

2

=
1

3
2j − 10

3
2−j.

Hence D1
jj = 2Ajj−2A1

jj = 10×2−j, and therefore Pjj = 10. When j 6= l, without

loss of generality assume l > j. We have that

A1
jl =

2j−1∑
τ=−(2j−1)

Ψj(τ)Ψl(τ + 1) =
2j−1∑

τ=−(2j−1)

Ψj(τ)

(
1− 3|τ + 1|

2l

)

= 1− 3× 2−l +
−1∑

τ=−(2j−1)

Ψj(τ)

(
1− 3|τ + 1|

2l

)
+

2j−1∑
τ=1

Ψj(τ)

(
1− 3(τ + 1)

2l

)
,

since the value of |τ + 1| is always less than or equal to 1/2, and so we use the

1− 3|τ | part of the autocorrelation wavelet formula. The first sum is equal to

−2j−1−1∑
τ=−(2j−1)

Ψj(τ)

(
1 +

3(τ + 1)

2l

)
+

−1∑
τ=−2j−1

Ψj(τ)

(
1 +

3(τ + 1)

2l

)

=
−2j−1−1∑
τ=−(2j−1)

(
−1− τ

2j

)(
1 +

3(τ + 1)

2l

)
+

−1∑
τ=−2j−1

(
1 +

3τ

2j

)(
1 +

3(τ + 1)

2l

)

=

(
−2j−l−2 − 2j−3 + 2−l−1 +

1

4
− 2j−l−1 + 22j−l−2

)
+

(
3× 2j−l−2 + 2j−3 − 3× 2−l−1 − 3

4

)
= 22j−l−2 − 2−l − 1

2
.

The second sum is given by

2j−1∑
τ=1

Ψj(τ)

(
1− 3(τ + 1)

2l

)
+

2j−1∑
τ=2j−1+1

Ψj(τ)

(
1− 3(τ + 1)

2l

)

=
2j−1∑
τ=1

(
1− 3τ

2j

)(
1− 3(τ + 1)

2l

)
+

2j−1∑
τ=2j−1+1

( τ
2j
− 1
)(

1− 3(τ + 1)

2l

)

=

(
2j−3 + 3× 2−l − 3

4

)
+

(
22j−l−2 − 2j−3 − 2−l +

1

4

)
= 22j−l−2 + 21−l − 1

2
.
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From this, we finally obtain that

A1
jl =

(
22j−l−2 − 2−l − 1

2

)
+

(
22j−l−2 + 21−l − 1

2

)
+
(
1− 3× 2−l

)
= 22j−l−1 − 21−l.

Therefore, we have that D1
jl = 2Ajl−2A1

jl = 6×2−l, from which the required form

for P follows.

Returning to the main proof, we have that P is symmetric, however the formula

above only refers to the upper triangular portion of the matrix P . Now, P is a

Toeplitz matrix with p0 = 10 and pm = 6 × 2−m/2. We can now show that

λmin(P ) ≥ δ > 0. Substituting in the formula for the symbol of the symmetric

Toeplitz P , we obtain

min
|z|=1
{f(z)} = min

|z|=1

{
10 + 2Re

(
∞∑
n=1

6× 2−n/2zn

)}

= 10 + 12 min
|z|=1

{
Re

(
−
√

2z√
2z − 2

)}

= 10 + 12 min
|z|=1

{
2
√

2Re(z)− 2

6− 4
√

2Re(z)

}
.

This function is strictly monotonically increasing on −1 ≤ Re(z) ≤ 1, therefore it

follows that min|z|=1{f(z)} = f(−1). Hence,

λmin(P ) ≥ f(−1) = 10 +
12(−2

√
2− 2)

6 + 4
√

2
=

18 + 8
√

2

3 + 2
√

2
> 0.

(Proof for the Shannon wavelet). Note that the indices now run over the negative

integers. We can compute the entries of P using a variant of the Fourier domain

formula shown in Equation (A.1.1) below, which is a consequence of Parseval’s

relation.

Ajl =
∑
τ

Ψj(τ)Ψl(τ) =
1

2π

∫
Ψ̂j(ω)Ψ̂l(ω)dω, (A.1.1)
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where Ψ̂j(ω) denotes the Fourier transform of Ψj(τ), which is equal to the squared

modulus of the Fourier transform of the non-decimated wavelet coefficients, ψ̂j(ω).

Explicitly,

Ψ̂j(ω) =
∣∣∣ψ̂j(ω)

∣∣∣2 = 2−j
∣∣m1

(
2−(j+1)ω

)∣∣2 −(j+2)∏
l=0

∣∣m0

(
2lω
)∣∣2 , (A.1.2)

where m0(ω) = 2−1/2
∑

k hk exp(−iωk) is the transfer function; {hk} is is the high-

pass quadrature mirror filter with
∑

k h
2
k = 1 and

∑
k hk = 21/2; and |m1(ω)|2 =

1− |m0(ω)|2.

The formula for the Fourier transform of the non-decimated wavelets given in

Equation (A.1.2) and the corresponding formulae for m0(ω) and m1(ω) for the

Shannon wavelet can be found using the Fourier transform of the continuous time

mother and father wavelets, which can be found in Chui (1997), pages 46 and 64.

Define the set Cj, for j < 0, to be

Cj =
[
− π

2−j−1
,− π

2−j

]
∪
[ π

2−j
,

π

2−j−1

]
.

As in Nason et al. (2000), the Fourier transform of the non-decimated Shannon

wavelets is given by

ψ̂j(ω) = −2−j/2 exp(−2−j−1iω)ICj
(ω),

where ICj
is the indicator function on the set Cj. From this the Fourier transform

of the autocorrelation wavelets can be obtained as

Ψ̂j(ω) =
∣∣∣ψ̂j(ω)

∣∣∣2 = 2−jICj
(ω).

Using Parseval’s relation and the shifting property of the Fourier transform, we
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have that

D1
jl = 2

∑
τ

Ψj(τ)(Ψl(τ)−Ψl(τ+1)) =
1

2π

∫
Ψ̂j(ω)Ψ̂l(ω)dω− 1

2π

∫
e−iωΨ̂j(ω)Ψ̂l(ω)dω.

The first term in the sum is exactly the entries of the original A-matrix which are

given by Ajj = 2−j for j < 0, Ajl = 0 for j 6= l. When j 6= l, the second term

is equal to zero since the supports of different Ψ̂j(ω) do not overlap. Thus, the

matrix is diagonal, and when j = l, the second term is given by

−
∑
τ

Ψj(τ)Ψj(τ + 1) = − 1

2π

∫
e−iωΨ̂j(ω)2dω

= −2−2j−1

π

∫
e−iωICj

(ω)dω

= −2−2j−1

π

(∫ −2jπ
−2j+1π

e−iωdω +

∫ 2j+1π

2jπ

e−iωdω

)

= −2−2j−1

π

([
ie−iω

]−2jπ
−2j+1π

+
[
ie−iω

]2j+1π

2j1π

)
= −2−2j−1i

π

(
exp(2jπi)− exp(2j+1πi) + exp(−2j+1πi)− exp(−2jπi)

)
.

Now, expanding the complex exponential terms into trigonometric functions, we

obtain

−
∑
τ

Ψj(τ)Ψj(τ + 1) = −2−2j−1i

π

{
cos(2jπ) + i sin(2jπ)− cos(2j+1π)− i sin(2j+1π)

+ cos(−2j+1π) + i sin(−2j+1π)− cos(−2jπ)− i sin(−2jπ)
}
.

After much simplification in which the cosine terms will vanish, we obtain

−
∑
τ

Ψj(τ)Ψj(τ + 1) =
2−2j

π

(
sin(2jπ)− sin(2j+1π)

)
.

Hence, the diagonal entries of the matrix D1 are given by

D1
jj = 2−j+1 +

2−2j+1

π

(
sin(2jπ)− sin(2j+1π)

)
.
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Hence, Pjj = 2−2j+1 + 2−3j+1 [sin(2jπ)− sin(2j+1π)] /π, while the off-diagonal

terms are zero. Next, approximate the diagonal terms using a Maclaurin series:

Pjj ≈ 2−2j+1 +
2−3j+1

π

(
2jπ − (2jπ)3

6
− 2j+1π +

(2j+1π)3

6

)
= 2−2j+1 + 2−2j+1 − 2−2j+2 − π2

3
+

8π2

3

=
7π2

3
.

Therefore, the matrix is diagonal, with all diagonal entries being uniformly bounded

away from 0, with Pjj ≥ P−1,−1 ≈ 13.09 for all j. Hence, we have shown that there

exists some δ > 0 such that λmin(P ) ≥ δ.

A.1.4 Proof of Theorem 3.3.4

As T → ∞, the eigenvalues of D1 tend to zero and hence, when viewed as an

operator acting on the sequence space `2(N), its inverse is unbounded. In the lo-

cally stationary Fourier time series setting, a similar relationship is found, as given

in Equation (5) of Roueff and von Sachs (2011). Loosely speaking, the original

spectrum at frequency ω is related to the differenced one through multiplication of

the term |1 − e−iω|−2. As ω → 0 (corresponding to low frequencies) the equation

blows up. This mirrors our scenario, where, as the correction matrix grows in

size – and we consider coarse-scale (low frequency) behaviour – the inverse matrix

norm becomes larger.

We can account for the unboundedness of the inverse of D1 by using a rescaling

of the LSW process itself. Consider the auxiliary process εt =
∑

j,k w̃jkψ̃j,k−tξlm,

where w̃jk = 2j/4wjk and ψ̃j,k−t = 2−j/4ψj,k−t. Then, the expectation of the raw

wavelet periodogram (with respect to the rescaled wavelet) is given by

E(Ĩjk) =
∑
l

PjlS̃l(k/T ) +O(T−1), (A.1.3)

where S̃j(k/T ) = 2j/2Sj(k/T ) and Pjl = 2−j/2D1
jl2
−l/2. We can therefore use
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the (bounded) P -inverse matrix to correct the smoothed, rescaled periodogram,

and then multiply by 2−j/2, since Sj(k/T ) = 2−j/2S̃j(k/T ). To determine the

appropriate threshold for the wavelet-based estimator, we use the following lemma:

Lemma A.1.2. For a Gaussian trend LSW process and using a wavelet ψ′ of

bounded variation, the wavelet coefficients v̂jrs of the rescaled wavelet periodogram

Ĩjk, with 2r = o(T ), obey uniformly in s,

E(v̂jrs)−
∫ 1

0

∑
n

PjnS̃n(z)ψ′rs(z)dz = O
(
2r/2T−1

)
,

and

Var(v̂jrs) = 2T−1
∫ 1

0

(∑
n

PjnS̃n(z)

)2

ψ′2rs(z)dz +O
(
2rT−2

)
.

Lemma A.1.2 is analogous to Theorem 3 of Nason et al. (2000). The result

of mean square consistency follows due to a combination of Equation (A.1.3) and

Theorem 4 of Nason et al. (2000). The mean squared error of the smoothed,

corrected wavelet periodogram is given by

E
[∫ 1

0

(
Ŝj(z)− Sj(z)

)2
dz

]
= 2−jE

[∫ 1

0

(
ˆ̃Sj(z)− S̃j(z)

)2
dz

]

≤ 2−j+1E

∫ 1

0

(
−1∑
l=−J

(
Î lbzT c − Λl(z)

)
P−1jl

)2

dz

+ 2−j+1

∫ 1

0

(∑
l<−J

Λl(z)P−1jl

)2

dz,

where Î lbzT c is the smoothed estimate of the rescaled raw wavelet periodogram and

Λl(z) =
∑

n PnlS̃n(z). The first term can be bounded as

I ≤ 2−j+1

(
−1∑
l=−J

P−1jl

(
E
[∫ 1

0

(
Î lbzT c − Λl(z)

)2
dz

])1/2
)2

≤ 2−j+1

(
−1∑
l=−J

P−1jl O
(
T−2/3 log2(T )

)1/2)2

= O
(
2−jT−2/3 log2(T )

)
,

which follows since P possesses a bounded inverse with exponentially decaying

entries, and using the rate of convergence of the mean squared error of the wavelet
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thresholding estimator derived in Neumann and von Sachs (1995), Theorem 3.1 A.

The second term is asymptotically dominated by the first, since it can be bounded

as

II ≤ 2−j+1

(∑
l<−J

Λl(z)P−1jl

)2

≤ 2−j+1

(∑
l<−J

P−1jl

−1∑
n=−∞

2−l/2D1
lnSn(z)

)2

≤ 2−j+1

(∑
l<−J

O(2l/2)
−1∑

n=−∞

Sn(z)

)2

= O(2−j × 2−J) = O(2−jT−1),

which follows since P−1jl is bounded, D1
ln = O(2l),

∑
n Sn(z) < ∞, and T = 2J .

Hence, the mean squared error is given by O
(
2−jT−2/3 log2(T )

)
.

A.1.5 Proof of Proposition 3.3.5

We can write the mean squared error as

E
[∫ 1

0

(ĉ(z, τ)− c(z, τ))2 dz

]
≤ 2E

∫ 1

0

(
−1∑

j=−J0

(
Ŝj(z)− Sj(z)

)
Ψj(τ)

)2

dz

+2RJ0 ,

where RJ0 can be bounded as

RJ0 =

( ∑
j<−J0

Sj(z)Ψj(τ)

)2

≤

( ∑
j<−J0

Sj(z)

)2

≤

( ∑
j<−J0

O(2γj)

)2

= O(2−2γJ0) = O(T−2γα) = O(Tα−2/3).

For the first term, we obtain

E

∫ 1

0

(
−1∑

j=−J0

(
Ŝj(z)− Sj(z)

)
Ψj(τ)

)2

dz


≤

(
−1∑

j=−J0

Ψj(τ)

(
E
[∫ 1

0

(
Ŝj(z)− Sj(z)

)2
dz

])1/2
)2

≤

(
−1∑

j=−J0

O
(
2−jT−2/3 log2(T )

)1/2)2
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= O
((
Tα−2/3 log2(T )

)1/2)2
= O

(
Tα−2/3 log2(T )

)
,

by using the mean squared error of the EWS estimator, and using that Ψj(τ) ≤ 1

for all j and τ . Hence, provided that Tα−2/3 log2(T )→ 0 as T →∞, the estimator

is mean square consistent.

A.1.6 Proof of Proposition 3.3.6

In order to derive the formula for the expectation of the squared wavelet coefficients

of a general n-th difference, we require the formula the n-th difference itself, which

is a well-known result. Denote by ∇nXt the n-th difference of the time series {Xt}

at time t. Then,

∇nXt =
n∑
k=0

(−1)k
(
n

k

)
Xt−k =

n∑
k=0

(−1)k
(
n

k

)
εt−k +O(T−1), (A.1.4)

which follows from the differentiability assumption of the trend µ. Now, observe

that, for an n-th difference, the expectation will involve the sum of the spectrum

over all scales, multiplied by a linear combination of lagged inner product A-matrix

entries, denoted Aτ , from lag 0 to lag n. To calculate the coefficient in front of

each of the Aτ , we simply calculate the sum of the coefficients of the {εtεs} for

each particular lag in the expansion obtained by squaring the n-th difference of

the time series, for which we can use Equation (A.1.4).

For example, to calculate the coefficient of A, we add together the coefficients

of the squared terms in the square of the differenced series, i.e. add the coefficients

of ε2t , ε2t−1, . . . ε2t−n. For the coefficient of A1, we add together the coefficients of the

terms in the square of the difference that differ in index by 1, i.e. we add the

coefficients of εtεt−1, εt−1εt−2, εt−1εt, . . . , εn−1εn. In particular, if we were interested

in the third difference, then the coefficient in front of A would be 1 + 9 + 9 + 1,

and the coefficient in front of A1 would be −3− 3− 9− 9− 3− 3 = −30, and so
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on. Hence the formula for the coefficient in front of A is given by

n∑
r=0

(
n

r

)2

=

(
2n

n

)
,

and similarly, the formula for the coefficient in front of Aτ , for τ ≥ 1, is given by

2(−1)τ
n−τ∑
r=0

(
n

r

)(
n

r + τ

)
= 2(−1)τ

(
2n

n+ τ

)
,

where the multiplication by 2 arises due to symmetry (for example we must add

both the coefficients of εt−1εt−2 and εt−2εt−1). The equality on the right follows

from a counting argument. The number of ways to choose n + τ objects from

2n choices is the same as the number of ways of choosing r objects from the first

n and choosing r + τ from the remaining n objects, for 0 ≤ r ≤ n − τ . The

expectation is accurate up to order O(T−1) by the same argument as in the proof

of Proposition 3.3.2. Hence, the squared expectation of the wavelet coefficients of

the n-th differenced series are given by

E(Ĩjk) =
∑
l

Sl

(
k

T

)[(
2n

n

)
Ajl + 2

n∑
τ=1

(−1)τ
(

2n

n+ τ

)
Aτjl

]
+O(T−1).

A.1.7 Proof of Theorem 3.3.8

By the Daubechies characterisation of Hölder spaces, rescaling of the LSW process,

and Proposition 3.3.2, the expectation of the rescaled raw wavelet periodogram of

the differenced time series is given by

E(Ĩjk) =
∑
l

PjlS̃l(k/T ) +O(2−7j/2T−2) +O(T−1). (A.1.5)

Hence, the mean squared error of the smoothed wavelet periodogram is given by

E
[∫ 1

0

(
Ŝj(z)− Sj(z)

)2
dz

]
= 2−jE

[∫ 1

0

(
ˆ̃Sj(z)− S̃j(z)

)2
dz

]
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≤ 2−j+1E

∫ 1

0

(
−1∑

l=−J1

(
Î lbzT c − Λl(z)

)
P−1jl

)2

dz

+ 2−j+1

∫ 1

0

(∑
l<−J1

Λl(z)P−1jl

)2

dz

where Î lbzT c is the smoothed estimate of the raw wavelet periodogram and Λl(z) =∑
n PnlS̃n(z). The first term can be bounded as

I ≤ 2−j+1

(
−1∑

l=−J1

P−1jl

(
E
[∫ 1

0

(
Î lbzT c − Λl(z)

)2
dz

])1/2
)2

≤ 2−j+1

(
−1∑

l=−J1

P−1jl

(
O
(
2−7lT−4

)
+O

(
T−2/3 log2(T )

))1/2)2

= O
(
2−jT 7β−4)+O

(
2−jT−2/3 log2(T )

)
,

which follows since P possesses a bounded inverse with exponentially decaying

entries, and using Equation (A.1.5). The second term can be bounded in the same

fashion as in the proof of Theorem 3.3.4, and is of order O(2−jT−β), which gives

the stated consistency result. Similarly, the mean squared error of the LACV

estimator is calculated as

E
[∫ 1

0

(ĉ(z, τ)− c(z, τ))2 dz

]
≤ 2E

∫ 1

0

(
−1∑

j=−J0

(
Ŝj(z)− Sj(z)

)
Ψj(τ)

)2

dz

+2RJ0 ,

where RJ0 is asymptotically negligible by the argument in Proposition 3.3.5. For

the first term, we obtain

E

∫ 1

0

(
−1∑

j=−J0

(
Ŝj(z)− Sj(z)

)
Ψj(τ)

)2

dz


≤

(
−1∑

j=−J0

2−j/2
(
O
(
T 7β−4)+O

(
T−2/3 log2(T )

)
+O(T−β)

)1/2)2

=
(
O
(
T 7β−4)+O

(
T−2/3 log2(T )

)
+O(T−β)

)( −1∑
j=−J0

2−j/2

)2

= O
(
Tα+7β−4)+O

(
Tα−2/3 log2(T )

)
+O(Tα−β).
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A.1.8 Proof of Proposition 3.4.1

The appropriate threshold is derived by using an analogous result to Lemma A.1.2,

from which we obtain

E(v̂rs)−
∫ 1

0

µ(z)ψ′rs(z)dz = O
(
2r/2T−1

)
,

and

Var(v̂rs) = T−1
∫ 1

0

∑
n

Sn(z)ψ′2rs(z)dz +O
(
2rT−2

)
.

The mean squared error rate is obtained by using Theorem 1 of von Sachs and

MacGibbon (2000), with the specific case of a Lipschitz continuous trend.



Appendix B

Appendix for ‘Trend Locally

Stationary Wavelet Processes with

Applications to Environmental

Data’

B.1 Proofs of Results

In this appendix, we provide proofs of the results described in Chapter 4.

B.1.1 Proof of Lemma 4.3.1

For simplicity, let

d̃j,k =
∑
t

ψj,k−t
∑
l

∑
m

wl,m;Tψl,m−tξlm,

i.e. d̃j,k is the non-decimated wavelet transform of the LSW process part of the

model. Then,

dj,k =
∑
t

µ

(
t

T

)
ψj,k−t + d̃j,k = d̃j,k.

184
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The last equality holds due to the vanishing moments property of the wavelet.

Hence,

E
(
Ijk,T
)

= E(d2j,k) = E(d̃2j,k) =
∑
l

AjlSl(k/T ) +O(T−1),

where the last part follows from Proposition 4 of Nason et al. (2000). The proof

for the form of the variance is also obtained using Proposition 4.

B.1.2 Proof of Proposition 4.3.2

The proof of the proposition takes a similar approach to Cardinali and Nason

(2017), but our approach crucially enables us to bound the entries of the A-inverse

operator, which can be used when bounding the error of LSW process-based es-

timators. We follow the strategy of the proof of Theorem 1 of Cardinali and

Nason (2017), who show that the autocorrelation wavelet packet inner product

has bounded inverse. Firstly, we show that B is positive definite. Recall that the

indices j run from −1 onwards. We can write

B = DADT = DΨΨTDT = (DΨ)(DΨ)T,

where Ψ is constructed from the autocorrelation wavelets, and D is a diagonal

matrix with entries given by Djj = 2j/2. Hence, for any x ∈ `2(N),

xTBx = xT(DΨ)(DΨ)Tx = ((DΨ)Tx)T((DΨ)Tx) := yTy ≥ 0.

Finally, the family {2j/2Ψj(τ)}−1j=−∞, which induces the Gram matrix B, is linearly

independent since {Ψj(τ)}−1j=−∞ is. If xTBx = 0 for some x, then

∑
τ

[∑
j

xj2
j/2Ψj(τ)

][∑
l

xl2
l/2Ψl(τ)

]
= 0.

Therefore, ∑
τ

[∑
j

xj2
j/2Ψj(τ)

]2
= 0,
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and hence ∑
j

xj2
j/2Ψj(τ) =

∑
j

x̃jΨj(τ) = 0,

for all τ , where x̃j = 2j/2xj. Hence, x̃j = 0 for all j since {Ψj(τ)}−1j=−∞ is linearly

independent. Therefore, if xTBx = 0, then xj = 0 for all j. Thus B is positive

definite. Next, we require the following definition.

Definition B.1.1. A matrix A = (Aij)i,j∈J decays exponentially if there exist

constants c > 0 and 0 < λ < 1 such that |Aij| ≤ cλ|i−j| for all i, j ∈ J .

In our situation the set J is equal to N. Observe that B has exponential decay

on the off-diagonal entries, because

|Bjl| = |2j/2Ajl2l/2| ≤ |Ajl|,

and since the off-diagonal entries of A are shown to be exponentially decaying in

Cardinali and Nason (2017). Now, for the diagonal entries j = l, we have that

|Bjj| = 2j|Ajj| = 2j

∣∣∣∣∣∑
τ

Ψj(τ)2

∣∣∣∣∣ ≤ 2j
∑
τ

1,

since |Ψj(τ)| ≤ 1 for all τ . The autocorrelation wavelets are compactly supported,

with the length of the support given by 2Lj− 1, where Lj = (2−j− 1)(Nh− 1) + 1,

where Nh is the length of the high-pass quadrature mirror filter associated to the

given wavelet. Hence, Lj ≤ K2−j for some positive constant K which will depend

on the choice of wavelet. Therefore,

|Bjj| ≤ 2j
∑
τ

1 ≤ 2jK2−j = K.

Hence, B is exponentially decaying. By Lemma 2.1 of Goodman et al. (1995),

which states that exponentially decaying matrices are bounded, B is a bounded

operator. We next utilise Theorem A from Goodman et al. (1995), which states

that any bounded, positive definite matrix B possesses a unique Cholesky fac-
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torisation B = LLT, where L is lower triangular with positive diagonal entries, is

invertible, and has inverse L−1 which is also lower triangular. We can use Theorem

A for the operator B, since we have shown above that the operator B is bounded

and positive definite. This is a key difference to the proof in Cardinali and Na-

son (2017), and why we consider B, since the operator A is not bounded as the

diagonal entries diverge.

Furthermore, from Corollary 1 of Krishtal et al. (2015), we have that the

Cholesky factor L of the exponentially decaying B is itself exponentially decay-

ing. Next, we note that L−1 is also exponentially decaying, by well-known results

on matrix inverse localisation, see for example Theorem 1 of Baskakov (1990) or

Proposition 2 of Jaffard (1990). Note that the rate of exponential decay of the

inverse is not necessarily the same as for the original matrix.

Lemma 2.2 of Goodman et al. (1995) states that the product of exponentially

decaying matrices is also exponentially decaying, and hence we have that B−1 =

(L−1)TL−1 decays exponentially. Finally, we again use Lemma 2.1 of Goodman

et al. (1995), and hence we have that B−1 is bounded in `2(N).

B.1.3 Proof of Corollary 4.3.3

This follows from Proposition 4.3.2 which shows that B has bounded inverse, and

the fact that A−1jl = 2j/2B−1jl 2l/2.

B.1.4 Proof of Proposition 4.3.4

To determine the appropriate threshold in the estimator we use the following

corollary:

Corollary B.1.1. For a polynomial trend Gaussian LSW process and using a

wavelet ψ̃ of bounded variation, the wavelet coefficients v̂jrs of IjbzcT c, with 2r =
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o(T ), obey uniformly in s,

E(v̂jrs)−
∫ 1

0

∑
n

AjnSn(z)ψ̃rs(z)dz = O
(
2r/2T−1

)
, (B.1.1)

and

Var(v̂jrs) = 2T−1
∫ 1

0

(∑
n

AjnSn(z)

)2

ψ̃2
rs(z)dz +O

(
2rT−2

)
. (B.1.2)

Now, the mean squared error of the smoothed, corrected wavelet periodogram

is given by

E
[∫ 1

0

(
Ŝj(z)− Sj(z)

)2
dz

]
≤ 2E

∫ 1

0

(
−1∑
l=−J

(
Î lbzT c − βl(z)

)
A−1jl

)2

dz

+ 2RJ ,

where Î lbzT c is the smoothed estimate of the raw wavelet periodogram and βl(z) =∑
nAnlSn(z). The remainder RJ can be bounded as

RJ =

(∑
l<−J

βl(z)A−1jl

)2

≤

(∑
l<−J

A−1jl

−1∑
n=−∞

AnlSn(z)

)2

≤ D2

(∑
l<−J

A−1jl

−1∑
n=−∞

Anl2
5n/6

)2

,

since Sj(z) ≤ D25j/6 by assumption. This can be further bounded as

RJ ≤ D2

(∑
l<−J

A−1jl

[∑
n<l

Anl2
5n/6 + All2

5l/6

−1∑
n=l+1

Anl2
5n/6

])2

≤ D2

(∑
l<−J

A−1jl

[∑
n<l

O(2n−l)25n/6 +O(2−l)25l/6

−1∑
n=l+1

O(2l−n)25n/6

])2

≤ D2

(∑
l<−J

A−1jl

[∑
n<l

O(211n/6−l) +O(2−l/6) +
−1∑

n=l+1

O(2l−n/6)

])2

≤

(∑
l<−J

A−1jl O(2−l/6)

)2

= 2j

(∑
l<−J

O(2l/3)

)2

= 2jO(2−2J/3) = 2jO(T−2/3).
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We have used that the off-diagonal entries of Ajl are of order O(2−|j−l|), while

Ajj = O(2−j). Further, we have used that A−1jl = 2j/2B−1jl 2l/2, where B−1 is

bounded by Proposition 4.3.2. The first term can be bounded as

I ≤ 2

(
−1∑
l=−J

A−1jl

(
E
[∫ 1

0

(
Î lbzT c − βl(z)

)2
dz

])1/2
)2

≤ 2

(
−1∑
l=−J

2j/2B−1jl 2l/2O
(
T−2/3 log2(T )

)1/2)2

= 2jO
(
T−2/3 log2(T )

)
,

by a similar argument, and using the rate of convergence of the mean squared error

of the wavelet thresholding estimator in Nason et al. (2000). Hence, the stated

mean square consistency result follows.

B.1.5 Proof of Proposition 4.3.5

We can write the mean squared error as

E
[∫ 1

0

(ĉ(z, τ)− c(z, τ))2 dz

]
≤ 2E

∫ 1

0

(
−1∑

j=−J

(
Ŝj(z)− Sj(z)

)
Ψj(τ)

)2

dz

+2RJ ,

where RJ can be bounded as

RJ =

(∑
j<−J

Sj(z)Ψj(τ)

)2

≤

(∑
j<−J

Sj(z)

)2

≤

(∑
j<−J

O(25j/6)

)2

= O(2−5J0/3) = O(T−5/3).

The first term can be bounded as

E

∫ 1

0

(
−1∑

j=−J

(
Ŝj(z)− Sj(z)

)
Ψj(τ)

)2

dz


≤

(
−1∑

j=−J

Ψj(τ)

(
E
[∫ 1

0

(
Ŝj(z)− Sj(z)

)2
dz

])1/2
)2
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≤

(
−1∑

j=−J

2jO
(
T−2/3 log2(T )

)1/2)2

= O
(
T−2/3 log2(T )

)
,

which proves the result.

B.1.6 Proof of Lemma 4.3.6

The proof is the analogous result of Proposition 4 of Nason et al. (2000), where in

that proof ψ0 = ψ1. The wavelet coefficients are given by

dj,k =
∑
t

µ

(
t

T

)
ψ1
j,k−t +

∑
t

∑
l

∑
m

wlmψ
0
l,m−tξlmψ

1
j,k−t

=
∑
t

∑
l

∑
m

wlmψ
0
l,m−tξlmψ

1
j,k−t,

where the last equality holds due to the vanishing moments property of the wavelet.

Then, it follows from Proposition 3.1 of Gott and Eckley (2013) that

E(d2j,k) =
∑
l

Sl

(
k

T

)
C1,0
jl +O(T−1).

B.1.7 Proof of Lemma 4.3.7

For simplicity let µt = µ(t/T ). We have that

E(Ijk) =
∑
l

AjlSj(k/T ) +

(∑
t

µtψj,k−t

)2

+O(T−1).

Using the characterisation of Hölder spaces in terms of wavelet coefficients (Daubechies,

1992, page 299), we have that for any Hölder continuous function µ with exponent

β defined on rescaled time z ∈ (0, 1), and any Daubechies compactly supported

wavelet ψ, ∣∣∣∣∣∑
t

µtψj,k−t

∣∣∣∣∣ = O
(
2−j(β+1/2)T−β

)
,

and hence ∣∣∣∣∣∑
t

µtψj,k−t

∣∣∣∣∣
2

= O
(
2−j(2β+1)T−2β

)
.
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The result follows by plugging this term into the expression for the expectation.

B.1.8 Proof of Theorem 4.3.8

First, the expectation and variance of the smoothed wavelet periodogram are de-

scribed by the following lemma.

Lemma B.1.2. Suppose that Sj(z) ≤ D2j for all z ∈ (0, 1) and some constant

D and µ is Hölder continuous with exponent β. The expectation of the smoothed

wavelet periodogram is given by

E
(
Ĩjk

)
=
∑
l

AjlSl(k/T ) +O(nT−1) +O(2−j(2β+1)T−2β).

The asymptotic variance is given by

Var
(
Ĩjk

)
= O(2−2jn−1) +O(2−jnT−1),

and hence

E
(
Ĩjk − I

j
k

)2
= O(2−2jn−1) +O(2−jnT−1) +O(2−2j(2β+1)T−4β).

Proof.

E
(
Ĩjk

)
= E

(
1

2n+ 1

k+n∑
t=k−n

Ijt

)
=

1

2n+ 1

k+n∑
t=k−n

E
(
Ijt
)

=
1

2n+ 1

k+n∑
t=k−n

(∑
l

AjlSl(t/T ) +O(2−j(2β+1)T−2β) +O(T−1)

)

=
1

2n+ 1

(
k+n∑
t=k−n

∑
l

AjlSl(t/T )

)
+O(2−j(2β+1)T−2β) +O(T−1)

=
∑
l

AjlSl(k/T ) +O(nT−1) +O(2−j(2β+1)T−2β),



APPENDIX B. APPENDIX FOR CHAPTER 4 192

which follows as an analogous result to Lemma A1 of Sanderson et al. (2010), as

well as using the fact that Sj is Lipschitz with constant Kj = O(Lj), where Lj is

the Lipschitz constant of Wj, and where the Lj satisfies
∑

j 2−jLj <∞, and that∑
j 2jAjl = 1. The expression for the variance can be derived via Lemma A1 of

Sanderson et al. (2010). The variance can be written as

Var
(
Ĩjk

)
=

1

(2n+ 1)2

n∑
m=−n

∑
τ

Cov
(
Ijk+m, I

j
k+m+τ

)
, (B.1.3)

where τ = m′ − m. By expanding the expectation, using Isserlis theorem and

Lemma A1, the covariance term is given by

Cov
(
Ijk+m, I

j
k+m+τ

)
= 2E

(
d̃j,k+md̃j,k+m+τ

)2
+

= 2

(∑
l

Sl(k/T )Aτlj

)2

+O(2−j|m|T−1),

where Aτjl =
∑

s Ψl,j(s)Ψl,j(s + τ). Substituting this into Equation (B.1.3), we

obtain

Var
(
Ĩjk

)
=

2

(2n+ 1)2

n∑
m=−n

∑
τ

[(∑
l

Sl(k/T )Aτlj

)2

+O(2−j|m|T−1)

]
.

Using Park et al. (2014), examining the term

∑
τ

(∑
l

Sl(k/T )Aτlj

)2

≤

(∑
τ

∣∣∣∣∣∑
l

Sl(k/T )Aτlj

∣∣∣∣∣
)(∑

τ

∣∣∣∣∣∑
m

Sm(k/T )Aτmj

∣∣∣∣∣
)

≤

(∑
τ

|c(k/T, τ)|
∑
n

|Ψj(n+ τ)|

)2

= O(2−2j),

where we have assumed that supz∈(0,1)
∑

τ |c(z, τ)| <∞. Hence, we have that

Var
(
Ĩjk

)
=

2

(2n+ 1)2

n∑
m=−n

(
O(2−2j) +

∑
τ

O(2−j|m|T−1)

)
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= O(2−2jn−1) +O(2−jnT−1).

Therefore, the mean squared error is given by

MSE
(
Ĩjk

)
= O(2−2jn−1) +O(2−jnT−1) +O(2−2j(2β+1)T−4β).

Finally, the expectation of the estimator is given by

E
(
Ŝj(k/T )

)
=

−1∑
l=−J0

E
(
Ĩ lk

)
A−1lj

=
−1∑

l=−J0

[∑
p

AplSp(k/T ) +O(2j/2nT−1) +O(2−l(2β+1)T−2β)

]
A−1lj

= Sj(k/T ) +O(nT−1) +O(2j/2Tα(2β+1/2)−2β),

which follows since A−1jl ≤ C2l/22j/2, J0 = α log2 T , and Lemma B.1.2. The mean

squared error is given by

MSE
(
Ŝj(k/T )

)
= E

(
−1∑

l=−J0

Ĩ lkA
−1
lj −

−1∑
l=−∞

βl(k/T )A−1lj

)2

,

where βl(k/T ) =
∑

n Sn(k/T )Anl. As in Sanderson et al. (2010), we split this into

two terms to obtain

MSE
(
Ŝj(k/T )

)
≤ 2E

(
−1∑

l=−J0

(
Ĩ lk − βl(k/T )

)
A−1lj

)2

+ 2

(∑
l<−J0

βl(k/T )A−1lj

)2

:= I + II.

The first term is

I ≤ 2
−1∑

l=−J0

E
(
Ĩ lk − βl(k/T )

)2 (
A−1lj

)2
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≤ O(2jn−1Tα) +O(2jnT−1) +O(2jT 4β(α−1)+α).

The result follows since J0 = α log2 T , A
−1
lj ≤ C2l/22j/2, and using Lemma B.1.2.

For the second term, we use the assumption that Sj ≤ D2j, as in Sanderson et al.

(2010) and Fryzlewicz and Nason (2006). From this we obtain that βl(k/T ) ≤ D,

and hence II = O(2−J0) = O(T−α). Therefore, the estimator is consistent for each

fixed scale j, provided that n−1Tα → 0, nT−1 → 0 and T 4β(α−1)+α → 0 as T →∞

and n→∞.

B.1.9 Proof of Theorem 4.3.9

The mean squared error is given by:

MSE (ĉ(k/T, τ)) = E

(
−1∑

j=−J0

Ŝj(k/T )Ψj(τ)−
−1∑

l=−∞

Sj(k/T )Ψj(τ)

)2

,

which again we split into two terms to obtain

MSE (ĉ(k/T, τ)) ≤ 2E

(
−1∑

j=−J0

(
Ŝj(k/T )− Sj(k/T )

)
Ψj(τ)

)2

+ 2

( ∑
j<−J0

Sj(k/T )Ψj(τ)

)2

:= I + II.

The first term is

I ≤ 2
−1∑

j=−J0

E
(
Ŝj(k/T )− Sj(k/T )

)2
Ψj(τ)2 ≤ 2

−1∑
j=−J0

E
(
Ŝj(k/T )− Sj(k/T )

)2
≤ 2

−1∑
j=−J0

(
O(2jn−1Tα) +O(2jnT−1) +O(2jT 4β(α−1)+α)

)
= O(n−1Tα) +O(nT−1) +O(T 4β(α−1)+α),

which follows using the mean squared error of the EWS estimator, and that

Ψj(τ)2 ≤ 1 for all j, τ . The second term is II = O(T−2α), since we have that∑
j<−J0 Sj(k/T )Ψj(τ) = O(2−J0) = O(T−α). Hence, the estimator is consistent,
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provided that n−1Tα → 0, nT−1 → 0 and T 4β(α−1)+α → 0 as T →∞ and n→∞.

B.1.10 Proof of Proposition 4.4.1

The non-boundary wavelet coefficients have expectation zero, since the LSW pro-

cess is zero mean and the wavelet zeroes out the polynomial trend. Therefore, a

linear combination of the non-boundary wavelet coefficients such as in the estimate

µ̂ is also zero mean. Therefore,

E(µ̂− µ) = E((x− ε̂)− (x− ε)) = E(ε− ε̂) = 0.

B.1.11 Proof of Proposition 4.4.2

Using Parseval’s relation, the mean squared error can be written as

1

T

T−1∑
t=0

E

[(
µ

(
t

T

)
− µ̂

(
t

T

))2
]

=
1

T

∑
j,k

E
[(
θ̂j,k − θj,k

)2]
,

where θ̂j,k = dj,kI(j < −j0), θj,k are the wavelet coefficients of µ(t/T ), dj,k are the

wavelet coefficients of the observed time series. Then,

E
[(
θ̂j,k − θj,k

)2]
= E(θ̂2j,k) = E(d2j,k)I(j < −j0).

Assume that the process is generated with wavelet ψ0, and we use wavelet ψ1 for

trend estimation. From Lemma 4.3.6, we have that

E(d2j,k) =
∑
l

C1,0
jl Sl (k/T ) +O(T−1),

and hence

1

T

∑
j,k

E
[(
θ̂j,k − θj,k

)2]
=

1

T

∑
j<−j0

∑
k

(∑
l

C1,0
j,l Sl(k/T ) +O(T−1)

)

=
1

T

∑
j<−j0

∑
k

∑
l

C1,0
j,l Sl(k/T ) +O(T−2)

∑
j<−j0

∑
k

O(1)
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=
1

T

∑
j<−j0

∑
k

∑
l

C1,0
j,l Sl(k/T ) +O(T−2)

∑
j<−j0

O(2jT ),

where the second term is at least O(T−1), since
∑

j<−j0 2j = O(2−j0). Next, we

require the following lemma:

Lemma B.1.3. ∑
j

2jC1,0
j,l = 1.

Proof. The result is analogous to Lemma 8 of Fryzlewicz et al. (2003). Using the

fact that
∑

j 2jΨj(τ) = δ0(τ), we have that

∑
j

2jC1,0
j,l =

∑
j

2j
∑
τ

Ψ1
j(τ)Ψ0

l (τ) =
∑
τ

Ψ0
l (τ)

∑
j

2jΨ1
j(τ) =

∑
τ

Ψ0
l (τ)δ0(τ) = 1.

By assumption, Sj(k/T ) ≤ D2j, from which we obtain that
∑

l C
1,0
j,l Sl(k/T ) ≤

D using the above lemma. Hence, we obtain:

1

T

∑
j,k

E
[(
θ̂j,k − θj,k

)2]
=

1

T

∑
j<−j0

∑
k

∑
l

C1,0
j,l Sl(k/T ) +O(T−1)

≤ 1

T

∑
j<−j0

∑
k

∑
l

C1,0
j,l D2l +O(T−1)

≤ 1

T

∑
j<−j0

∑
k

D = O(2j0) = O(T−α).

B.1.12 Proof of Proposition 4.4.3

Using Parseval’s relation,

1

T

T−1∑
t=0

E

[(
µ

(
t

T

)
− µ̂

(
t

T

))2
]

=
1

T

∑
j,k

E
[(
θ̂j,k − θj,k

)2]
=

1

T

∑
j,k

E
[(
θ̂j,k − θj,kI(j < −j0) + θj,kI(j < −j0)− θj,k

)2]
≤ 1

T

∑
j,k

2E
(
θ̂j,k − θj,kI(j < −j0)

)2
+ 2E (θj,kI(j < −j0)− θj,k)2
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= I + II.

The first term can be bounded as:

I ≤ 2

T

∑
j,k

E (dj,kI(j < −j0)− θj,kI(j < −j0))2

=
2

T

∑
j,k

I(j < −j0)E (dj,k − θj,k)2

=
2

T

∑
j<−j0

∑
k

Var(dj,k) =
2

T

∑
j<−j0

∑
k

(∑
l

C1,0
jl Sl

(
k

T

)
+O(T−1)

)

= O(T−α),

where the last line follows from the proof of Proposition 4.4.2. The second term

can be bounded as

I ≤ 2

T

∑
j,k

E (θj,kI(j < −j0)− θj,k)2 =
2

T

∑
j,k

I(j ≥ −j0)θ2j,k

= O(T−1)
∑
j≥−j0

∑
k

θ2j,k = O(T−1)
∑
j≥−j0

∑
k

O(T−2β2−j(2β+1))

= O(T−1)
∑
j≥−j0

O(T 1−2β2−2jβ) = O(T 2β(α−1)),

since θj,k = O(T−β2−j(β+1/2)) by the wavelet characterisation of Hölder spaces on

rescaled time.



Bibliography

Adams, N. M. and Heard, N. (2016). Dynamic Networks and Cyber-Security,

volume 1. World Scientific.

Andersen, T. G., Davis, R. A., Kreiß, J.-P., and Mikosch, T. V. (2009). Handbook

of Financial Time Series. Springer Science & Business Media.

Bai, J. and Perron, P. (2003). Computation and analysis of multiple structural

change models. Journal of Applied Econometrics, 18(1):1–22.

Baranowski, R., Chen, Y., and Fryzlewicz, P. (2016). not: Narrowest-over-

threshold change-point detection. R Package Version 1.0.

Baranowski, R., Chen, Y., and Fryzlewicz, P. (2019). Narrowest-over-threshold

detection of multiple change points and change-point-like features. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 81(3):649–672.

Baskakov, A. G. (1990). Wiener’s theorem and the asymptotic estimates of the el-

ements of inverse matrices. Functional Analysis and Its Applications, 24(3):222–

224.

Beaulieu, C. and Killick, R. (2018). Distinguishing trends and shifts from memory

in climate data. Journal of Climate, 31(23):9519–9543.

Benedetti, J. K. (1977). On the nonparametric estimation of regression functions.

Journal of the Royal Statistical Society: Series B (Methodological), 39(2):248–

253.

198



BIBLIOGRAPHY 199

Beran, J. and Feng, Y. (2002). Semifar models – a semiparametric approach to

modelling trends, long-range dependence and nonstationarity. Computational

Statistics & Data Analysis, 40(2):393–419.

Boulton, C. A. and Lenton, T. M. (2015). Slowing down of north pacific climate

variability and its implications for abrupt ecosystem change. Proceedings of the

National Academy of Sciences, 112(37):11496–11501.

Brillinger, D. R. (1994). Some river wavelets. Environmetrics, 5(3):211–220.

Brockwell, P. J., Davis, R. A., and Fienberg, S. E. (1991). Time Series: Theory

and Methods. Springer Science & Business Media.

Bücher, A. and Kojadinovic, I. (2016). Dependent multiplier bootstraps for non-

degenerate U-statistics under mixing conditions with applications. Journal of

Statistical Planning and Inference, 170:83–105.

Cai, T. T. and Brown, L. D. (1998). Wavelet shrinkage for nonequispaced samples.

The Annals of Statistics, 26(5):1783–1799.

Cai, T. T. and Silverman, B. W. (2001). Incorporating information on neigh-

bouring coefficients into wavelet estimation. Sankhyā: The Indian Journal of
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