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Summary 14 

Induced polarization (IP) has been widely used to non-invasively characterize electrical 15 

conduction and polarization in the subsurface resulting from an applied electric field. Earth 16 

materials exhibit a lossy capacitance defined by an intrinsic negative phase in frequency-domain 17 

IP (FDIP) or positive intrinsic chargeability in time-domain IP (TDIP). However, error-free 18 

positive apparent phase or negative apparent chargeability (i.e., negative IP effects) can occur in 19 

IP measurements over heterogeneous media. While negative IP effects in TDIP datasets have been 20 

discussed, no studies have addressed this topic in detail for FDIP measurements. We describe 21 

theory and numerical modeling to explain the origin of negative IP effects in FDIP measurements. 22 

A positive apparent phase may occur when a relatively high polarizability feature falls into 23 

negative sensitivity zones of complex resistivity measurements. The polarity of the apparent phase 24 

is determined by the distribution of subsurface intrinsic phase and resistivity, with the resistivity 25 

impacting the apparent phase polarity via its control on the sensitivity distribution. A physical 26 

explanation for the occurrence of positive apparent phase data is provided by an electric circuit 27 

model representing a four-electrode measurement. We also show that the apparent phase polarity 28 

will be frequency dependent when resistivity changes significantly with frequency (i.e. in the 29 

presence of significant IP effects). Consequently, negative IP effects manifest themselves in the 30 

shape of apparent phase spectra recorded with multi-frequency (spectral IP) datasets. Our results 31 

imply that positive apparent phase measurements should be anticipated and should be retained 32 

during inversion and interpretation of single frequency and spectral IP datasets. 33 
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1. Introduction 36 

Induced polarization (IP), a non-invasive electrical geophysical technique for subsurface 37 

characterization, has been widely used in various fields including hydrogeology, engineering, 38 

mining exploration and environmental problems (e.g., Pelton et al. 1978; Slater & Lesmes 2002; 39 

Flores et al. 2012; Saneiyan et al. 2019). IP measures both electrical conduction (i.e., resistivity) 40 

and polarization in a porous medium, therefore providing additional information beyond the direct 41 

current resistivity method. The polarization is quantified by either a chargeability in time-domain 42 

IP (TDIP) or a phase in frequency-domain IP (FDIP) measurements (Binley & Kemna 2005). The 43 

intrinsic capacitive properties of Earth materials are characterized by a positive intrinsic 44 

chargeability (in TDIP) or a negative intrinsic phase when expressed in impedance or complex 45 

resistivity space (in FDIP). One would therefore expect a positive apparent (measured) 46 

chargeability, or equivalently a negative apparent (measured) phase, which we define here as the 47 

normal (or positive) recorded IP response (Ward 1988).  48 

In field data acquisition, a negative IP response, i.e., a negative apparent chargeability or a 49 

positive apparent phase, is sometimes observed in the measurements. Such negative IP 50 

measurements are often treated as errors and deleted during the data inversion or interpretation 51 

(e.g., Mary et al. 2016; Ntarlagiannis et al. 2016; Kelter et al. 2018; Garcia-Artigas et al. 2020). 52 

While negative IP responses may indeed reflect measurement artifacts, they can also result from 53 

the distortion of the electric field for certain types of heterogeneity close to the electrodes. Negative 54 

IP effects in TDIP measurements resulting from such effects have been investigated (Nabighian & 55 

Elliot 1976; Sumner 1976; Komarov 1980; Dahlin & Loke 2015). Dahlin & Loke (2015) conclude 56 

that negative apparent chargeability results when highly polarizable features fall within zones of 57 



 

 

 

negative resistivity measurement sensitivity for the utilized electrode configuration. They found 58 

that the resistivity distribution influences the occurrence and magnitude of negative apparent 59 

chargeability data. Such negative IP measurements provide information about the distribution of 60 

features in the subsurface and should not simply be removed during data processing (Binley 2015; 61 

Dahlin & Loke 2015).  62 

Negative IP effects in FDIP have seldom been reported and studied. Luo and Zhang (1998) 63 

presented analytical solutions that predict a positive apparent phase for a buried polarizable sphere 64 

measured by a dipole-dipole array. Some recent complex resistivity imaging studies (Flores 65 

Orozco et al. 2018; Liu et al. 2017) reported positive apparent phase measurements and included 66 

them in the inversion per recommendations of Dahlin & Loke (2015) for TDIP datasets. Although 67 

frequency and time domain signals are in principle equivalent via the Fourier transform when the 68 

frequency/time range is adequately large, the two commonly measured IP parameters, FDIP 69 

apparent phase and TDIP apparent chargeability, are not directly equivalent.  70 

The apparent chargeability equation developed by Seigel (1959), extended by V. Komarov 71 

and colleagues in Russia shortly after Seigel’s publication (Komarov 1960), provides a theoretical 72 

explanation for negative IP in TDIP measurements. To the knowledge of the authors, no equivalent 73 

formulation to explain the existence of negative IP in FD measurements has been presented. 74 

Considering the commonly established approximate proportionality between phase and 75 

chargeability (e.g., Van Voorhis et al. 1973; Lesmes & Frye 2001), we might expect similarities 76 

in the behavior of negative IP in FDIP measurements to that observed in TDIP reported by Dahlin 77 

& Loke (2015). However, the significance of negative IP effects in FDIP measurements remains 78 

poorly understood, especially with respect to spectral IP where the frequency dependence of IP 79 



 

 

 

measurements is recorded. In this study, we integrate theory, numerical modeling, equivalent 80 

electric circuits and laboratory measurements to comprehensively investigate negative IP effects 81 

in FDIP, including single frequency and spectral IP measurements. 82 

2. Theory of negative IP effects 83 

The intrinsic electrical properties of the subsurface are described by a complex resistivity 84 

(ρ*) or its inverse, the complex conductivity (σ*):  85 

𝜌∗ = |𝜌∗|𝑒"# =
1
𝜎∗ , (1) 

where |ρ*| is the complex resistivity magnitude, φ is the complex resistivity phase (φ ≤ 0) and i is 86 

the imaginary unit with i2 = −1. Both ρ* and σ* can also be presented in terms of real and imaginary 87 

components that are directly related to the physical (e.g., pore geometry) and chemical properties 88 

of the subsurface. 89 

Field scale FDIP data are most commonly acquired using a four-electrode arrangement at 90 

the Earth surface. Two electrodes inject a known sinusoidal alternating electrical current (Ĩ0) at 91 

various frequencies, while the other two electrodes record the resultant sinusoidal voltage (or 92 

potential difference, ΔŨ). According to Ohm’s Law, the measured impedance Z*app (with magnitude 93 

|Z*app| and φapp) is determined as,  94 

𝑍app∗ = (𝑍app∗ (𝑒"#app =
∆𝑈+
𝐼-&
=
(∆𝑈+( sin(𝜔𝑡 + 𝜑∆U)

(𝐼-&( sin(𝜔𝑡)
=
(∆𝑈+(
(𝐼-&(

𝑒"#∆U, 
(2) 

where ω is the angular frequency, t is time, |Ĩ0| is the current amplitude, |ΔŨ| is the voltage 95 

amplitude and φΔU is the phase shift of the voltage sinusoid relative to the current sinusoid Ĩ0 96 



 

 

 

(defined as the zero phase reference). The apparent complex resistivity ρ*app (with magnitude  |ρ*app| 97 

and the same phase φapp as that of Z*app) is determined using the geometric factor of the applied 98 

electrode array K, 99 

𝜌app∗ = (𝜌app∗ (𝑒"#app = 𝐾𝑍app∗ = 𝐾(𝑍app∗ (𝑒"#app . (3) 

ρ*app is the complex resistivity of a homogeneous space equivalent to the value of Z*app resulting 100 

from application of Eq. (3). Eqs. (2) and (3) show that ρ*app, Z*app, and ΔŨ are linearly related 101 

parameters with differing magnitude but the same phase value.  102 

For a heterogeneous subsurface with a two-dimensional distribution of intrinsic complex 103 

resistivity ρ* (i.e., ρ* varies in horizontal x and vertical z but constant in y direction), the potential 104 

U at coordinate (x, y, z) due to a point current source I is described by the Fourier transformed 105 

Poisson’s equation (e.g., Kemna 2000; Binley 2015),  106 

𝜕
𝜕𝑥
9
1
𝜌∗
𝜕𝑣∗

𝜕𝑥
: +

𝜕
𝜕𝑧
9
1
𝜌∗
𝜕𝑣∗

𝜕𝑧
: −

𝑣∗𝑘2

𝜌∗ = −𝐼𝛿(𝑥)𝛿(𝑧), 
(4) 

𝑈(𝑥, 𝑦, 𝑧) =
1
𝜋B 𝑣∗(𝑥, 𝑘, 𝑧)

)

&
cos(𝑘𝑦) 𝑑𝑘 , 

(5) 

where δ is the Dirac delta function, v* is the Fourier transformed complex voltage and k is the wave 107 

number. Eqs. (4) and (5) are solved numerically via discretization, for example using the finite 108 

element method. The superposition of calculated potentials at the potential (voltage recording) 109 

electrodes and application of Eqs. (2) and (3) yields the ρ*app of four-electrode measurements 110 

acquired over a heterogeneous ρ* subsurface.  111 



 

 

 

 To investigate the occurrence of negative IP in FDIP (i.e., a positive φapp), we consider a 112 

subsurface modeled by a number of small cells with each cell j (j = 1, 2, …, M) characterized by 113 

an intrinsic complex resistivity ρ*j (with magnitude |ρ*j| and phase φj). If we consider cells 114 

parameterized in terms of the logarithms, ln 𝜌j∗ , and measurements equivalently expressed as 115 

ln 𝜌app∗ , then for a single four-electrode measurement, the sensitivity to the cell j (S*j) quantifies how 116 

the change in ln 𝜌j∗ changes ln 𝜌app∗ ,  117 

𝑆j∗ =
𝜕 ln 𝜌app∗

𝜕 ln 𝜌j∗
=
𝜕 lnH(𝜌app∗ (𝑒#app"I
𝜕 lnH(𝜌j∗(𝑒#j"I

=
𝜕Hln(𝜌app∗ ( + 𝜑app𝑖I
𝜕Hln(𝜌j∗( + 𝜑j𝑖I

 
(6) 

Different from a conventional direct current (DC) resistivity measurement, S*j of the FDIP 118 

measurement is a complex number. As the derivatives of the complex functions in Eq. (6) satisfy 119 

the Cauchy-Riemann conditions (Kemna 2000), the following sensitivity components can be 120 

expressed as the real part of S*j: 121 

𝑆j =
𝜕 ln(𝜌app∗ (
𝜕 ln(𝜌j∗(

=
𝜕𝜑app
𝜕𝜑j

. 
(7) 

The imaginary part of S*j is, 122 

𝑆j,	im =
𝜕 ln(𝜌app∗ (
𝜕𝜑j

= −
𝜕𝜑app
𝜕 ln(𝜌j∗(

. 
(8) 

Although we mainly focus on the discussion of a single four-electrode measurement, it should be 123 

noted that a matrix comprising of Sj from a sequence of four-electrode measurements is the 124 

Jacobian matrix used, for example, in a gradient-based inverse problem. In Eq. (7), the sensitivity 125 



 

 

 

expressed in terms of complex resistivity magnitude is equivalent to that obtained for DC 126 

resistivity measurements, which can take either positive or negative values. An increase of |ρ*j| in 127 

a positive Sj zone will increase |ρ*app|, whereas an increase of |ρ*j| in a negative Sj zone will decrease 128 

 |ρ*app|. An equivalent pattern holds for the phase terms as shown in Eq. (7). To illustrate, assume 129 

that the subsurface space has zero phase (i.e., is non-polarizable), and thus φapp = 0. If the phase of 130 

an arbitrary cell φj decreases slightly to a negative value (i.e., becomes polarizable), φapp will 131 

decrease to be < 0 if this polarizable cell is located in a zone of positive 𝑆j. However, φapp may 132 

increase to be > 0 (i.e., negative IP signal) if this polarizable cell is in a zone of negative 𝑆j. This 133 

provides a theoretical basis for the presence of positive φapp (negative IP effects) in FDIP 134 

measurements, i.e., φapp > 0 is possible although all φj ≤ 0. The imaginary sensitivity (Eq. 8) plays 135 

a negligible role as shown later. 136 

 While the above arguments are based on the analysis of a single cell φj and Sj, a more 137 

generalized way is to consider the collective impacts from all the cells. Kemna (2000) exploited 138 

the expression in Eq. (7) by forming a “final phase improvement” in the inversion of complex 139 

resistivity data once satisfactory matching of the resistivity magnitudes was achieved. Building on 140 

this, consider an expression for the inversion of phase angles using the Gauss-Newton approach 141 

(neglecting any damping or regularization for simplicity) (e.g., Kemna 2000; Binley 2015),  142 

[𝑺/𝑺]∆𝒎 = 𝑺/[𝒅 − 𝐹(𝒎0)] (9) 

𝒎012 = 𝒎0 + ∆𝒎 (10) 

where S is the sensitivity matrix for a sequence of four-electrode measurements, d is a vector of 143 

measured data (φapp in this case), F is the forward modeling operator, m is a vector of the model 144 



 

 

 

parameters (φj in this case), mk and mk+1 are the model parameter set at iteration k and k+1, 145 

respectively, ∆m is the model parameter update at iteration k. Assuming that the inversion is 146 

achieved with only one step from a starting model with all φj = 0, we have mk =0, F(mk) = 0, mk+1 147 

= ∆m. We can then write Eq. (9) as, 148 

𝑺∆𝒎 = 𝒅. (11) 

In this simplified one-step inversion, ∆m is essentially the final model that matches d. Again, if 149 

we only consider a single four-electrode measurement, Eq. (11) gives, 150 

Q𝑆j

𝑀

j=1

𝜑j = 𝜑app. 
(12) 

This approximation describes the collective impacts of φj and Sj from all the cells. Eq. (12) 151 

explicitly shows that even when all φj ≤ 0 (j = 1, 2, …, M), φapp can be positive when relatively 152 

more negative φj cells concurrently have Sj < 0. The polarity of φapp will therefore depend on the 153 

relative values of intrinsic phase and the sensitivity, where the latter is affected by the quadrupole 154 

geometry and distribution of the intrinsic resistivity. 155 

A similar association between negative IP signals and the sensitivity distribution is 156 

recognized in TDIP data (Dahlin & Loke 2015). In TDIP, a unidirectional current is driven 157 

between the current electrodes for a period of time and then abruptly switched off. The voltage Vp 158 

recorded right before switching off is used to obtain the apparent DC resistivity 𝜌app
(DC) (assuming 159 

the current injection is long enough to approximate a DC condition). After switching off the current, 160 

Vp drops suddenly to a secondary voltage Vs, which then decays with time. Seigel (1959) defined 161 

the apparent chargeability (mapp) as the ratio of Vs to Vp to quantify the TDIP polarization strength. 162 



 

 

 

Considering the same scenario where the subsurface is modeled by M small cells with index j, the 163 

theoretical relationship between a single measure of 𝜌app
(DC) and mapp, and the intrinsic parameters 164 

𝜌j
(DC)and mj making up the subsurface is (Seigel, 1959), 165 

𝑚app =Q
𝜕 ln 𝜌app

(DC)

𝜕 ln 𝜌j
(DC)𝑚j

7

j82

=Q𝑆j
(DC)𝑚j

7

j82

. 
(13) 

where 𝑆j
(DC)	is the sensitivity to a cell j in terms of DC resistivity, being analogous to the sensitivity 166 

in terms of complex resistivity magnitude (Eq. (7)). Eq. (13) has essentially the same structure as 167 

Eq. (12). With all mj ≥ 0 (j = 1, 2, …, M) for Earth materials, the polarity of mapp is decided by the 168 

polarity of 𝑆j
(DC) and the relative values of mj. Eq. (13) predicts that negative mapp is possible when 169 

features with relatively high mj fall into negative sensitivity zones, providing theoretical support 170 

for the negative IP effects in TDIP. In practice, mapp defined by Seigel (1959) is difficult to measure 171 

and an integral chargeability is instead commonly measured (Binley 2015), which can exhibit 172 

equivalent negative IP effects (Dahlin & Loke 2015).  173 

We stress that laboratory measurements of intrinsic complex resistivity or chargeability on 174 

a core or soil sample (considered homogeneous at the measurement scale but in fact likely to 175 

contain small scale heterogeneity) can never exhibit negative IP effects when 1D current flow is 176 

maintained. Such negative IP effects sometimes reported in the literature (e.g., Abdulsamad et al. 177 

2016; Saneiyan et al. 2018; Bate et al. 2020) can only arise from measurement errors. 178 

 179 
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3. Numerical modeling 181 

To investigate the behavior of the φapp polarity, 2D forward modeling of synthetic intrinsic 182 

complex resistivity distributions was performed using cR2 183 

(http://www.es.lancs.ac.uk/people/amb/Freeware/cR2/cR2.htm) in its python wrapper ResIPy 184 

(Blanchy et al. 2020). The region of interest of the synthetic model contains 25 electrodes spaced 185 

2 m apart for a total length of 48 m and extends to 8 m depth (Figure 1). A quadrilateral mesh with 186 

each mesh cell of size 0.25 × 0.25 m (i.e., 8 nodes per electrode) was used for the computations. 187 

In this case, each mesh cell corresponds to a small cell j described in Section 2. This mesh extends 188 

a large distance beyond the region of interest and incorporates boundary conditions that 189 

approximate an infinitely large model space. Different intrinsic resistivity and phase values were 190 

assigned to different regions to illustrate specific aspects of negative IP effects predicted by theory. 191 

Forward models were run to determine  φapp of either a single four-electrode measurement or to 192 

construct a pseudosection from a sequence of measurements. The four electrodes include a pair of 193 

electrodes (positive C+ and negative C-) for current injection and a pair of electrodes (positive P+ 194 

and negative P-) for voltage (potential) measurements.  195 

The sensitivity distribution for a single four-electrode measurement on a selected synthetic 196 

model was computed using cR2, with a vector of S*j corresponding to each mesh cell in the 197 

modeling space as the output (Eq. 6). No noise was added to the forward modeling and sensitivity 198 

distribution calculation so as to avoid the complicating effects of random errors on the modeling 199 

results.  200 

3.1 Influence of sensitivity distribution 201 



 

 

 

The sensitivity distribution for a dipole-dipole array (E10=C+, E12=C-, E14=P-, E16=P+) 202 

and also for a Wenner array (E10=C+, E12=P+, E14=P-, E16=C-) was first computed for a 203 

homogeneous, low polarizability half-space (|ρ*| =100 W m, φ = –1 mrad) (Figure 2). The 204 

imaginary sensitivity (Eq. (8), Figure 2c and 2d) exerts a negligible control on the measurements 205 

as its values are many orders of magnitude less than the real sensitivity (Eq. (7), Figure 2a and 2b). 206 

A simulation on a homogenous, high polarizability half-space (|ρ*| =100 W m, φ = –100 mrad) 207 

results in similar negligible response in the imaginary sensitivity distribution, again being many 208 

orders of magnitude less than the real sensitivity. We therefore refer to the real sensitivity in all 209 

future discussion of sensitivity patterns. Different patterns of positive and negative sensitivity are 210 

observed for the dipole-dipole (Figure 2a) and Wenner arrays (Figure 2b). The sensitivity of zones 211 

away from the electrode array is close to zero, therefore having a negligible effect on the ρ*app 212 

measurement.  213 

To illustrate the influence of the sensitivity distribution on the polarity of the measured 214 

phase, new forward models were run where φapp of a single measurement using E10, E12, E14 and 215 

E16 was computed with a small polarizable cell (|ρ*| =100 W m and φ = –100 mrad) of the same 216 

size as a mesh cell (0.25 ´ 0.25 m) placed at various locations in a background non-polarizing half 217 

space (|ρ*| =100 W m, φ = 0 mrad) (Figure 3a). Starting from the first mesh cell, the polarizable 218 

cell was moved to the right and down one cell by one cell to cover the horizontal distance from 15 219 

to 24 m and the depth range from 0 to 6 m (containing the zone of enhanced sensitivity). With the 220 

polarizable cell at each mesh cell location, the apparent phase φapp of a dipole-dipole array 221 

(E10=C+, E12=C-, E14=P-, E16=P+) and a Wenner array (E10=C+, E12=P+, E14=P-, E16=C-) 222 



 

 

 

was computed. Figure 3 shows φapp plotted against the sensitivity of the location with the 223 

polarizable cell for the corresponding measurement array. The polarity of  φapp is the inverse of the 224 

polarity of the sensitivity, i.e., the polarizable cell placed in positive sensitivity zones results in 225 

negative  φapp and the polarizable cell placed in negative sensitivity zones results in positive φapp. 226 

The magnitude of the negative IP signal increases linearly with the magnitude of the negative 227 

sensitivity.  228 

 229 

3.2 Influence of heterogeneity 230 

We next investigate the effect of heterogeneity on the sensitivity and hence the  φapp 231 

polarity pattern. A 3 ´ 3 m polarizable block was located between 22.5 m and 25.5 m along the 232 

line and placed at a depth of 0 m to 3 m (Figure 4a). The background was set with φbgk = –1 mrad 233 

(low polarization) and  |ρ*bgk| =100 W m, while the polarizable block was assigned φblock = –100 234 

mrad and  |ρ*block| equal to either 50, 100 or 200 W m. For each  |ρ*block| scenario, a  φapp pseudosection 235 

was computed for a dipole-dipole array sequence with a = 4 m and n = 1, 2, 3 and 4 (i.e., electrodes 236 

placed in the order C+, C-, P-, P+ with spacing a, a´n and a between C+ and C-, C- and P-, and 237 

P- and P+, respectively) (Figure 4b). The results show that the resistivity of the polarizable block 238 

has a significant influence on the polarity and magnitude of  φapp within the zones indicated by the 239 

dashed triangles. These φapp values increase from negative to positive (i.e. negative IP effect) as 240 

 |ρ*block| increases from 50 to 100 W m. Higher positive values of φapp (i.e., enhanced negative IP 241 

effects) are observed for  |ρ*block| equal to 200 W m.  242 



 

 

 

This control of the resistivity of the heterogeneity on the polarity of  φapp results from how 243 

the presence of the heterogeneity modifies the sensitivity distribution relative to a homogeneous 244 

resistivity medium. To illustrate this, a single φapp measurement using E10=C+, E12=C-, E14=P-, 245 

E16=P+ (pointed out by arrows in Figure 4b) is used as an example.  The corresponding sensitivity 246 

distribution for the three synthetic models with different  |ρ*block| values is shown in Figure 4c. As 247 

 |ρ*block| increases from 50 to 100, and then to 200 W m, φapp increases from –14 mrad to 9 mrad for 248 

the 100 W m block and to 33 mrad for the 200 W m block. This increase of φapp toward more 249 

positive values with increasing  |ρ*block| can be explained by the expansion of the negative sensitivity 250 

zones within the polarizable block boundary as  |ρ*block| increases (Figure 4c). This change in the 251 

sensitivity pattern is highlighted by the difference in sensitivity referenced to the sensitivity for the 252 

 |ρ*block| =100 W m scenario, where  |ρ*block| = 50 W m and  |ρ*block| = 200 W m highlights increased 253 

and decrease sensitivity respectively within the block boundary (Figure 4d). This confirms that the 254 

resistivity heterogeneity has a significant influence on the polarity of  φapp by changing the 255 

sensitivity distribution.  256 

So far, we have shown that the polarity of φapp is determined by three major factors: (1) the 257 

location of polarizable objects relative to positive/negative sensitivity zones; (2) the intrinsic phase 258 

of the polarizable objects relative to the surrounding subsurface; (3) the subsurface resistivity 259 

heterogeneity that changes the sensitivity patterns. To illustrate the collective impacts of the 260 

intrinsic resistivity and intrinsic phase, we computed φapp for a dipole-dipole array (E10=C+, 261 

E12=C-, E14=P-, E16=P+) using the same model structure and background settings as shown in 262 

Figure 4a, but with  |ρ*block| varying from 20 to 200 W m and φblock varying from –5 to –120 mrad 263 



 

 

 

(Figure 5a). When  |ρ*block| =20, 40 or 60 W m, all φapp are negative and become more negative with 264 

φblock changing from –5 to –120 mrad. When  |ρ*block| =80, 100, 120 or 140 W m, φapp is negative 265 

when φblock is small (–5 mrad), but becomes positive when φblock is more negative. At  |ρ*block| above 266 

140 W m, all φapp are positive even when φblock is only –5 mrad; again, φapp becomes more positive 267 

as φblock becomes more negative. A clear transition from negative φapp to positive φapp can be 268 

observed in Figure 5a, which shows that a higher  |ρ*block| relative to  |ρ*bgk| tends to result in positive 269 

φapp. The φapp pattern will also be affected by other factors, for example the background phase φbgk. 270 

Figure 5b presents the φapp change when φbgk is set to be –10 mrad. In this situation, more points 271 

show negative φapp with positive φapp only occurring when  |ρ*block| is sufficiently large and φblock is 272 

sufficiently negative.  273 

 The shape of the polarizable block also determines the φapp change under various  |ρ*block| 274 

and φblock conditions. Figure 5c shows the simulation with the same model settings as that in Figure 275 

5a except that the vertical extent of the polarizable block is reduced to be between 0 to 1 m. In this 276 

case, most of the points show positive φapp due to the increased portions of negative sensitivity 277 

zone in the polarizable block. For example, in the case of  |ρ*block| = 100 W m in Figure 4c, when 278 

the vertical extent of the polarizable block is reduced to be between 0 to 1 m, most of the regions 279 

within the block would have negative sensitivity. In this situation, positive φapp is more likely as 280 

per Eq. (12).  281 

The above results were obtained from simple, heterogenous synthetic models. For a real 282 

subsurface, the interactions between complicated structures and zones may result in various φapp 283 

patterns, making it difficult to generalize about what situations will result in negative IP effects. 284 



 

 

 

One important observation from Figure 5 is that even weakly polarizable objects (e.g., φblock = –5 285 

and –10 mrad) may produce negative IP signals, especially when the objects have high resistivity 286 

relative to the background (e.g., polarizable objects characterized by low water content, low 287 

porosity or high electrical resistivity pore fluids). 288 

4. A physical explanation of negative IP effects using an electrical circuit 289 

We have so far explained the occurrence of negative IP signals using theory and numerical 290 

modeling. Next, we seek a more physical explanation as a positive phase implies that the electrical 291 

current lags the voltage, which is considered to be non-physical in the presence of IP effect. We 292 

use a simplified electrical circuit model to provide a physical explanation for negative IP effects. 293 

We consider a subsurface represented by a resistor/impedance network circuit (Figure 6a). A 294 

sinusoidal current Ĩ0 with fixed amplitude |Ĩ0| and zero reference phase is injected between C+ and 295 

C-, while the resultant sinusoidal voltage ΔŨ (with amplitude |ΔŨ| and phase φΔU) is measured 296 

between P+ and P- in the same manner as a dipole-dipole array. Comparing the relative locations 297 

of the circuit components in Figure 6a with Figure 2a, Z*1 (with magnitude |Z*1| and phase φ1) and 298 

Z*2 (with magnitude |Z*2| and phase φ2) represent impedance components located in the positive and 299 

negative sensitivity zones, respectively. We next evaluate how changes of Z*1 or Z*2 alter the 300 

apparent measured impedance Z*app (i.e., ΔŨ/ Ĩ0).  301 

To make the analysis simple, we set all other circuit components to be pure resistors 302 

(represented by symbol ‘R’). According to Figure 6a, Ĩ0 exits the network via ‘C-’ by passing Z*1, 303 

Z*2, R3, R4 and R5, which gives Ĩ0 = Ĩ1 + Ĩ4 + Ĩ2 with Ĩ2 = Ĩ3 + Ĩ5, where Ĩ1 to Ĩ5 are the currents flowing 304 

through the corresponding impedance/resistors. We simplify this network circuit to an equivalent 305 



 

 

 

linear circuit that is easier to analyze (Figure 6b). In Figure 6b, R3s, R4s and R5s represent the 306 

equivalent total resistances of the current path prior to R3, R4, and R5 respectively, while other 307 

components are identical to those shown in Figure 6a. The total impedance of this circuit is, 308 

𝑍tot∗ =
𝑈+&
𝐼-&
=

1
1
𝑍2∗
+ 1
𝑅4s + 𝑅=

+ 1
(𝑅5s + 𝑅?)(𝑅3s + 𝑅A)
(𝑅5s + 𝑅?) + (𝑅3s + 𝑅A)

+ 𝑍B∗

=
1

1
𝑍2∗
+ 𝑎 + 1

𝑏 + 𝑍B∗
, 

(14) 

where Ũ0 is the total voltage between C+ and C- and a and b are real number constants as 309 

resistances R3s, R3s, R4s, R4, R5s and R5 do not change. According to the voltage divider rule,  310 

Δ𝑈+

𝑈+&
=

𝑅A
(𝑅3s + 𝑅A)

𝑏
𝑏 + 𝑍B∗

= 𝑐
𝑏

𝑏 + 𝑍B∗
, 

(15) 

where c is again a real number constant representing a constant resistance term. Combining Eq. 311 

(2), Eq. (14) and (15) gives, 312 

(𝑍app∗ (𝑒#app" =
Δ𝑈+
𝐼-&
=

𝑏𝑐
𝑏 + 𝑍B∗
𝑍2∗

+ 𝑎𝑍B∗ + 𝑎𝑏 + 1
. 

(16) 

Considering that the intrinsic phase shifts of the earth materials are small negative values (−0.2 < 313 

φ <0), cos φ ≈ 1 and φ ≈ sin(φ) ≈ tan(φ) ≈ tan−1(φ). Any impedance term Z* can then be written in 314 

rectangular form as Z* = |Z*|cos(φ) + i|Z*|sin(φ) ≈ |Z*| + i|Z*|φ. When Z*1 (located in the positive 315 

sensitivity zone of the array) is polarizable (i.e., φ1 <0) and Z*2 (located in the negative sensitivity 316 

zone) is non-polarizable (i.e., φ2 = 0), Eq. (16) gives, 317 



 

 

 

𝜑app ≈ 𝜑2
𝑏 + |𝑍B∗|

𝑏 + |𝑍B∗| + 𝑎|𝑍2∗||𝑍B∗| + 𝑎𝑏|𝑍2∗| + |𝑍2∗|
, 

(17) 

which explicitly shows that φapp <0, being a measurement signal with normal polarity. On the 318 

contrary, if Z*2 is polarizable (i.e., φ2 < 0) and Z*1 is non-polarizable (i.e., φ1 = 0), Eq. (16) results 319 

in, 320 

𝜑app ≈ −𝜑B
|𝑍B∗| + 𝑎|𝑍2∗||𝑍B∗|

𝑏 + |𝑍B∗| + 𝑎|𝑍2∗||𝑍B∗| + 𝑎𝑏|𝑍2∗| + |𝑍2∗|
, 

(18) 

which gives φapp > 0, being a measurement signal with negative IP polarity. It can be concluded 321 

that the negative IP signals originate from the fact that the impedance is determined from dividing 322 

the recorded voltage ΔŨ by the input current Ĩ0 instead of by the current flowing through the 323 

impedance across which ΔŨ is recorded, i.e., Ĩ3 in our case. It is the phase difference between Ĩ3 324 

and measured Ĩ0 that gives the non-physical impression of the current lagging the voltage as 325 

implied by a positive phase. The circuit model analogy also explains the impact of sensitivity on 326 

the resistivity measurements (i.e., resistance measurement in the circuit model). Considering Z*1 327 

and Z*2 as pure resistors (i.e., zero phase), Eq. (16) shows that |Z*app| increases with the increase of 328 

|Z*1|, whereas it decreases with the increase of |Z*2|.  329 

5. Frequency dependence 330 

The influence of resistivity and phase variability on the polarity of  φapp also has important, 331 

hitherto unrecognized, implications for the interpretation of spectral IP datasets. The  φapp polarity 332 

can vary with frequency if the resistivity of polarizable features changes significantly with 333 

frequency, e.g., as observed for electronically conducting materials (e.g., Pelton et al. 1978; Wong 334 



 

 

 

1979). We examine this effect using the same synthetic model structure shown in Figure 4a but 335 

assigning various values of frequency independent  |ρ*bgk|, φbgk and frequency-dependent  |ρ*block| 336 

and φblock. We define the frequency dependence of the polarizability of the block using a Cole-337 

Cole type model (Cole & Cole 1941; Pelton et al. 1978) with parameters previously found to fit 338 

laboratory experimental data obtained on a zero valent iron-sand mixture (50% iron by volume) 339 

(Slater et al. 2005) (Figure 7a). The spectra cover frequencies from 10–3 to 104 Hz, with  |ρ*block| 340 

decreasing from 41 to 14 W m (from low to high frequency). The φblock ranges from –21 mrad to –341 

174 mrad, with the peak occurring at ~1 Hz. The frequency independent background half-space 342 

was assigned φbgk = –1 mrad, with the  |ρ*bgk| set to either 10, 30 or 55 W m in order to simulate 343 

scenarios with  |ρ*bgk| lower, close to or higher than  |ρ*block| (Figure 7a).  344 

Figure 7b shows the apparent parameters  |ρ*app| and φapp from the single measurement for a 345 

dipole-dipole array (E10=C+, E12=C-, E14=P-, E16=P+) at various frequencies. Three 346 

simulations result in completely different shapes of  φapp curves when only the resistivity contrast 347 

between the target and the background changes between the simulations. For the highest 348 

background resistivity,  |ρ*bgk| = 55 W m, the φapp spectra are negative and display a negative peak 349 

similar to the φblock spectrum. When  |ρ*bgk| is reduced to 30 W m, φapp is negative at high frequencies 350 

but increases to be positive below around 20 Hz. Peaks are observed in both positive and negative 351 

apparent phase domains. For the lowest background resistivity  |ρ*bgk| = 10 W m, all  φapp values 352 

become positive and a peak of  φapp toward more positive values is observed.  353 

The differences among the three  φapp curves can be explained by the difference in 354 

resistivity of  |ρ*block| relative to  |ρ*bgk| and how this difference affects the sensitivity distribution, as 355 



 

 

 

demonstrated in Section 3.2. Positive  φapp values are found when  |ρ*block|/|ρ*bgk| is relatively high, 356 

being the case when  |ρ*bgk| = 10 W m for all frequencies and when  |ρ*bgk| = 30 W m at low frequencies. 357 

The  |ρ*app| spectra also differ between the three simulations, exhibiting a frequency dependence 358 

consistent with the polarity of  φapp. The percentage frequency effect (PFE = ( |ρ*app|L– |ρ*app|H) / 359 

 |ρ*app|L, where subscripts H and L refer to a high and low measurement frequency, respectively) is 360 

another measure of the IP effect that was popular in mineral exploration (Ward 1988). Figure 7b 361 

shows that a negative PFE (i.e., increasing  |ρ*app| with increasing frequencies) is always observed 362 

when  φapp is positive. Just as with positive φapp values, a negative PFE is non-physical from the 363 

perspective of IP mechanisms and another representation of negative IP effects in frequency 364 

domain IP measurements.  365 

In summary, this simulation of frequency dependent data demonstrates the possibility of a 366 

wide range of  φapp spectra, which can be very different from the spectra of an intrinsic polarizable 367 

target. This has significant implications with respect to the interpretation of field-measured phase 368 

curves. 369 

6. Sandbox experiments 370 

Laboratory sandbox experiments were conducted to verify the observations from numerical 371 

modeling (Figure 8a). A sandbox 36 cm wide, 15 cm high and 55 cm long was filled with sand 372 

fully saturated with tap water (resistivity of 40 W m at 25 oC). Four electrodes were deployed in 373 

the central area of the sandbox with a 5 cm spacing. The distance between the electrodes and the 374 

box wall was large enough to ignore boundary effects on the measurements. FDIP (from 0.1 to 375 

100 Hz) and TDIP data (1 Hz waveform) were measured using an Ontash & Ermac PSIP 376 



 

 

 

instrument and an IRIS Syscal Pro instrument, respectively.  φapp and Mapp of the background sand 377 

was –2 mrad and 2 mV/V respectively, providing a low polarizability background matrix. 378 

To simulate a scenario similar to the synthetic model in Section 5, a piece of the iron 379 

mineral magnetite (dimensions approximately 8 cm length, 4 cm height and 5 cm width) was 380 

buried between the middle two electrodes at 2 cm depth. The  φapp collected using the dipole-dipole 381 

array is negative at high frequencies and then increases to positive values below 4 Hz (Figure 8b). 382 

The spectral shape of φapp in Figure 8b is similar to the shape of the 0.1-200 Hz segment of the 383 

simulated blue φapp curve ( |ρ*bgk| = 30 W m) in Figure 7b. The Mapp measured with the dipole-dipole 384 

array is –42.5 mV/V, also indicating a negative IP response. Its polarity is consistent with the φapp 385 

polarity at low frequencies. For the Wenner array measurement, a conventional negative φapp 386 

spectrum is observed (Figure 8c) as the polarizable magnetite falls within the positive sensitivity 387 

zones of this array (Figure 2b). The Mapp measured by the Wenner array is positive (27.8 mV/V), 388 

being consistent with the negative φapp recorded in the frequency domain. These laboratory 389 

experiments therefore confirm the observations from numerical modeling and theory.  390 

7. Conclusions 391 

In a heterogenous polarizable subsurface the apparent phase φapp recorded in surface four-392 

electrode FDIP measurements may be positive. The polarity of φapp is associated with the 393 

sensitivity distribution of a four-electrode measurement layout and is determined by the intrinsic 394 

phase and resistivity of the subsurface. Considerations of the sensitivity patterns of complex 395 

resistivity measurements theoretically confirm the occurrence of positive φapp, i.e., for a non-396 

polarizable subsurface, placing a small, highly polarizable object in the negative and positive 397 



 

 

 

sensitivity zones will result in positive and negative φapp, respectively. This is consistent with a 398 

simplified electric circuit model, which physically explains the negative IP (i.e., the paradox of 399 

current appearing to lag voltage) to result from the measured voltage drop across the potential 400 

electrodes being divided by the input current at the current electrodes instead of the current flowing 401 

through the impedance across the potential electrodes.  402 

Numerical modeling shows the φapp polarity is dictated by the relative values of both the 403 

intrinsic phase and the intrinsic resistivity of a polarizable heterogeneity compared to the 404 

background medium. The control of the relative strength of the intrinsic resistivity on φapp results 405 

from its influence on the sensitivity distribution of a measurement. In the case that the intrinsic 406 

resistivity varies significantly with frequency, the φapp polarity can vary with frequency in FDIP 407 

measurements, which results in φapp spectra that are very different from the intrinsic phase 408 

spectrum. This finding is confirmed by laboratory sandbox experiments where φapp of a dipole-409 

dipole array on a buried piece of magnetite is negative from 100 to 4 Hz and then becomes positive 410 

below 4 Hz. Our results emphasize the need to accurately quantify error sources in FDIP 411 

measurements as positive φapp measurements should be expected, are likely to be common in 412 

heterogeneous systems and should not simply be discarded prior to further data processing e.g. 413 

inversion. This observation is consistent with previously studied negative apparent chargeability 414 

data in TDIP measurements.  415 
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 508 

Figure 1. Numerical modeling set up with 25 electrodes (E1 to E25) on a model space using 0.25 509 

× 0.25 m mesh cells.  510 
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 512 

 513 

Figure 2. Sensitivity distribution of complex resistivity measurements using electrodes E10, E12, 514 

E14 and E16 for a 100 W m and –1 mrad homogeneous half space. (a) Real sensitivity of dipole-515 

dipole array (E10=C+, E12=C-, E14=P-, E16=P+). (b) Real sensitivity of Wenner array (E10=C+, 516 

E12=P+, E14=P-, E16=C-). (c) Imaginary sensitivity of dipole-dipole array. (d) Imaginary 517 

sensitivity of Wenner array. 518 
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 520 

 521 

Figure 3. Numerical modeling of the influence of sensitivity polarity on the φapp polarity. (a). 522 

Illustration of the model configuration; a polarizable cell (blue) moves to the right and down one 523 

cell by one cell (in the zoomed in figure) to cover the region of 15 to 24 m distance and 0 to 6 m 524 

depth (meshed region in the zoomed out figure); with the polarizable cell in each location, φapp for 525 

a dipole-dipole array (E10=C+, E12=C-, E14=P-, E16=P+) and a Wenner array (E10=C+, E12=P+, 526 

E14=P-, E16=C-) were computed; (b) and (c). φapp for a dipole-dipole (b) and Wenner (c) array 527 

versus the sensitivity Sj (unitless) of the single cell containing the polarizable cell (blue cell in 3a); 528 

Grey shaded quadrants highlight the negative IP responses. 529 



 

 

 

 530 

Figure 4. Influence of resistivity heterogeneity on the φapp polarity. (a). Synthetic model settings. 531 

(b). Pseudosection of φapp at various values of  |ρ*block| ( |ρ*block| =100 W m is the homogeneous 532 

resistivity condition); data within the dashed triangles are influenced by  |ρ*block|. (c). Sensitivity 533 

distribution of the single four-electrode measurement pointed out by the arrow in (b) with various 534 

 |ρ*block| corresponding to the pseudosections. (d). Sensitivity difference relative to that of  |ρ*block| 535 

=100 W m. 536 



 

 

 

 537 

Figure 5. Impacts of  |ρ*block| and φblock on the modeled  φapp under various conditions. (a) and (b).  538 

φapp modeled using a dipole-dipole array (E10=C+, E12=C-, E14=P-, E16=P+) for the synthetic 539 

structure shown in Figure 4a under various background settings (indicated by dotted and dashed 540 

lines). (c). φapp modeled with the same settings as (a) but with vertical extent of polarizable block 541 

in Figure 4a reduced to be between 0 and 1 m. 542 
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 544 

Figure 6. (a). Electrical conduction through the subsurface modeled as a resistor/impedance 545 

network circuit; grey arrows illustrate idealized current flow directions in a real subsurface space 546 

for comparison; (b) A simplified equivalent linear electrical circuit of the circuit conceptualized in 547 

(a). 548 
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 550 

Figure 7. Simulation based on a polarizable block with frequency-dependent complex resistivity 551 

using model structure shown in Figure 4a (a). Intrinsic resistivity and phase spectra of the 552 

polarizable block and the selection of frequency-independent background resistivity (colored 553 

dashed lines); black dashed line represents φblock = 0 mrad; (b).  |ρ*app| and  φapp spectra under 554 

different  |ρ*bgk| conditions; black dashed line represents φapp = 0 mrad. 555 
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 557 

Figure 8. Sandbox experiments. (a) Schematic diagram of sandbox experimental set-up. (b).  |ρ*app| 558 

and φapp spectra measured by dipole-dipole array; black dashed line represents φapp = 0 mrad (c) 559 

 |ρ*app| and φapp spectra measured by Wenner array; black dashed line represents φapp = 0 mrad. 560 


