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Abstract

We examine the various machine learning methods to be adopted by Q-

PLUS, a data-driven smart building energy management system under develop-

ment by Qbots Energy. Q-PLUS aims to help commercial buildings to save on

electricity cost, as well as to generate extra income via the provision of ancillary

services, by shifting their electricity demand from the grid away from the peak

hours. It is a battery storage, heating, ventilation and air-conditioning (HVAC)

control system based on model predictive control (MPC), where machine learning

tools are used to predict i), the half-hourly electricity demand of the building and

ii), the response of the indoor environment to the HVAC controls. In this thesis,

we test and compare different machine learning algorithms to find the most suit-

able set of tools for the development of Q-PLUS. We also design a battery control

algorithm under the MPC framework and fully develop it in Python.
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Extended Abstract

We examine the various machine learning methods to be adopted by Q-

PLUS, a data-driven smart building energy management system under develop-

ment by Qbots Energy. Q-PLUS aims to help commercial buildings to save on

electricity cost, as well as to generate extra income via the provision of ancillary

services, by shifting their electricity demand from the grid away from the peak

hours. It is a battery storage, heating, ventilation and air-conditioning (HVAC)

control system based on model predictive control (MPC), where machine learning

tools are used to predict i), the half-hourly electricity demand of the building and

ii), the response of the indoor environment to the HVAC controls. In this thesis,

we test and compare different machine learning algorithms to find the most suit-

able set of tools for the development of Q-PLUS. We also design a battery control

algorithm under the MPC framework and fully develop it in Python.

The Q-PLUS battery control system relies on accurate electricity demand forecast

for the building, where the half-hourly demand is estimated from the datetime and

weather information. We compare two leading machine learning methods for this

application, namely random forest regressor and long-short term memory (LSTM),

for both short- (hours ahead) and long-term (weeks ahead) predictions. We find

that random forest models outperform LSTM models in terms of both accuracy

and training time. Thus with a representative set of training data and accurate

weather forecast, the random forest regressor can produce a sufficiently accurate,

computationally inexpensive and scalable demand prediction for any building.

The Q-PLUS smart HVAC control system can help buildings without battery

storage to shift their electricity demand. HVAC loads are flexible loads because

buildings have thermal inertia and natural ventilation. In order to exploit their

flexibility without violating the safety and comfort requirements though, it is cru-

cial for the system to be able to predict accurately how the indoor environment,

including the temperature and CO2 concentration, would change as a function

of the power levels of the HVAC systems. However, since conventional building

management systems (BMS) operate on simple feedback loops, existing data are

bounded within the tight setpoint range allowed by the BMS. Thus it is not possi-

ble for any machine learning algorithm to predict accurately what would happen

beyond this narrow range, which is where the flexibility comes about. We propose
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the use of the Gaussian Process, a Bayesian stochastic method which allows the

tracking of the uncertainty of the model. This way the system can probe progres-

sively outside the setpoint range, and with a controllable level of confidence that

safety and comfort are not compromised. We show that even with a sparse set

of data, the Gaussian Process model is capable of producing reasonably accurate

prediction for the zone temperature as a function of the heating coil power in the

air-handling unit, and is therefore a viable option for Q-PLUS. Nevertheless, fur-

ther research is yet to be done to fully integrate the Gaussian Process model into

the MPC system.
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Chapter 1

Introduction

1.1 Motivation

In a report published in 2016 [1], the UK Government’s National Infras-

tructure Commission estimated that a £2 billion worth of network savings can

be achieved by 2030 if sufficient levels of storage are installed. Thus instead of

building new power plants to meet the ever increasing peak demand for electricity,

storage systems can be used to store up energy when demand is low and release

it back to the network when demand is high. Storage systems essentially shift the

demand from generation away from the peak hours, and this has a number of ben-

efits: by smoothing out the demand, power plants can operate continuously closer

to their maximum capacity, which is much more efficient than ramping them up

and down to follow the demand. This in turn can drive not only the cost of gener-

ation down but also the CO2 emission level — gas peaking plants for instance can

ramp up very rapidly but at the expense of efficiency, hence their carbon emission

rates can be as much as 30% higher than the baseload gas plants. Furthermore, as

the penetration of wind and solar energy increases, due to their intermittent and

non-dispatchable nature, storage systems will play a crucial role in moderating

the supply and demand, storing up surplus generation for later use when demand

exceeds generation output.

In addition, the Association for Decentralised Energy reported that further savings

can be made if 16% (9.8GW) of the UK’s peak electricity demand can be reduced

by non-domestic customers, either by shifting demand away from peak periods or

using on-site generation [2]. Through the Energy Market Reforms, the UK gov-

ernment identified this as a more compelling option due to the lower investment

costs, as opposed to building new power plants which is projected to cost more

than £100 billion in the next decade.

Q-PLUS is a smart energy management system that aims to help commercial

buildings to shift their electricity demand from the grid away from the peak hours.

1
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By doing so, they can not only save on their electricity bills, but also generate

extra income by providing ancillary services for the network, as well as contribute

to the reduction of CO2 emissions. Most existing building management systems

(BMS) for controlling the heating, ventilation and air conditioning (HVAC) sys-

tems in commercial buildings are based on simple feedback loops: for example, the

BMS would activate the heating system when it detects the space temperature has

fallen below certain setpoint, and would turn it off when the desired temperature is

reached. As such system takes only current values into consideration and ignores

all important future factors such as weather forecast and electricity prices, it is

neither energy- nor cost-optimal. The aim of Q-PLUS is to develop a smart BMS

that takes into account all relevant factors that lie in the future and optimises the

HVAC (and battery) controls by minimising the total cost. The key to building

a “smart” BMS that makes cost and energy efficient control decisions is to use

data-driven methods to develop a control-oriented predictive model of the energy

system dynamics within the building. This thesis thus serves as a pilot study for

Q-PLUS, with the focus on identifying the most suitable machine learning tools

to help develop a novel data-driven model predictive control system for building

energy management.

In order to allow for real-time update of the energy system model, Q-PLUS is

developed based on the model predictive control (MPC) framework: with reliable

and up-to-date information about the weather and operation conditions, dynamical

models can be used to predict the energy demand of the building over a prediction

horizon; the HVAC controls can then be optimised over the prediction horizon

based on the prediction. The implementation of MPC in temperature control in

commercial buildings was previously studied in [3]; further investigation on finding

a suitable mathematical model for the MPC in the same application was carried

out in [4], and a cost-benefit analysis of adopting the MPC approach was performed

in [5], where the authors identified that although modelling building thermal dy-

namics is a costly exercise, with the increasing importance of demand side response

and rising energy prices, the benefits of an MPC system may outweigh the cost.

The aim of Q-PLUS is to bypass developing such costly physical models by adopt-

ing machine learning techniques to predict the micro-climate dynamics in the build-

ing from the BMS data. Machine learning methods have already been applied in

the literature to develop dynamical predictive models in MPC-based building en-

ergy management systems. For instance in [6], the authors proposed to use an

adapted random forest model to partition each observation into different equiva-
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lence classes (leaves) based on external factors such as outside temperature and

datetime information, and then predict the response of the indoor state parameters

as a linear function of the controls as inferred from the samples in the leaf. Each

leaf (or equivalence class) therefore has its own linear regression model. A crucial

point to note is that the control variables are not passed through the regression

trees; by separating out the control variables and not passing them as a feature

to train the random forest, it ensures that they are still free decision variables in

the MPC optimisation. The authors called this approach data predictive control

(DPC).

1.2 Structure of the thesis

The structure of this thesis is as follows: in the rest of this chapter, we

will be setting up the scene by reviewing MPC and showing how building energy

management in general can be treated as an MPC problem. As battery storage

will become a crucial and integrable part of the future energy system, the second

chapter of the thesis is dedicated to solving the optimal battery operation. We will

first cast it into an MPC problem mathematically and explore the suitable machine

learning tools for predicting the building’s electricity demand using weather and

datetime information, or features. We will compare the performance metrics of

the two leading machine learning methods for this kind of time series prediction,

namely the tree based, “white-box” random forest model and the neural network,

“black-box” Long-Short term memory (LSTM) model. We will implement the

battery control algorithm in Python and present some sample result.

We will then switch to the HVAC controls. As reliable BMS data that cover

at least one year are not readily available, in chapter three we will look closely at

the most complete set of data we could obtain and examine the potential flexibil-

ity — the ability to shift electricity demand — that can be delivered through the

HVAC controls. We will highlight the main challenge in developing a data-driven

smart BMS: the lack of comprehensive data that covers a wide enough range of

operation conditions and settings for the machine learning tools to “learn” from,

as existing BMS data are bounded within the tight setpoint range allowed by the

conventional, simple feedback loop system.

In light of this limitation, we then seek a machine learning tool that can ex-
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trapolate beyond the tight range of the existing data while allowing us to keep

track of the uncertainty of the model. Thus in chapter four, we will review the

Gaussian Process, which is a Bayesian stochastic machine learning method, and

discuss how it can be used in the smart HVAC control system. We will show

how to formulate mathematically a Gaussian Process model to predict the state

variables of the indoor environment as a function of the HVAC controls and the

current conditions. We will then demonstrate explicitly how everything fits in

with a step-ahead temperature prediction example. Finally, we conclude with a

summary and evaluation of our work, and suggestion for future research direction

in chapter five.

1.3 Model Predictive Control

The Q-PLUS system is designed following the Model Predictive Control

(MPC) framework. In this section we give an overview of MPC, which is also

known as Receding Horizon Control (RHC) in the literature. We follow closely

the formulation presented in [7]. MPC is a type of feedback control system, it

solves a local optimisation problem at each time step over a fixed time horizon

(i.e. N time steps) in the future, and determine an optimal plan of actions for

the fixed time frame, but with only the first input being executed in the system.

This processed is then repeated at the next time step, solving a new optimisa-

tion problem over the same fixed number of time periods in the future but with

the time horizon shifted one step forward. In solving the optimisation problem,

estimates of the quantities in the future based on the current measurements and

available data must be taken into account at each time step. These estimates

can be obtained in many different ways, such as specialist forecasting, statistical

models from historical data, or they can simply be known in some special cases.

In this thesis, we shall employ machine learning methods to obtain the required

estimates for the smart building energy management system Q-PLUS.

The first step in setting up an MPC problem is to define the system dynam-

ics. Let time be measured in discrete time steps t ∈ Z, and let xt ∈ Rn be the

vector of measurable state variables of the system; in our case xt would be the

battery state of charge or the indoor temperature and CO2 level; collectively they

are referred as the system state of the overall system. Let ut ∈ Rm be the vector

of control input variables such as the fan speed and schedule information of the

building, and let ct ∈ Rn denote the vector of additive Gaussian noise associated

with the state vector xt. Now let us consider a discrete-time linear dynamical
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system which can be written as

xt+1 = Atxt +Btut + ct , (1.1)

where At ∈ Rn×n is the dynamic matrix and Bt ∈ Rn×m is the input matrix.

This is called the state equation of the system; the state equation need not take

such form, but linear systems are easier to solve. The subscripts t signify the fact

that these quantities vary in time in general. Whenever the time step t lies in

the future, the quantities need to be estimated, but in some cases they could be

easily obtained from other sources (e.g. looking up weather forecast) or simply

take constant values over time. The state and control variables of our system are

subject to a certain set of constraints

(xt, ut) ∈ Ct ; (1.2)

for example the indoor temperature should be maintained within the comfort

range, and ventilation fans cannot operate beyond their full power.

At any time step t, the instantaneous objective or cost function is given by

`t(xt, ut), which is usually taken to be quadratic

`t = xTt Qxt + uTt Rut , (1.3)

with Q � 0 ∈ Rn×n and R � 0 ∈ Rm×m. The quadratic form guarantees convexity

and smoothness so that a unique minimum exists; in fact this kind of linear-

quadratic (LQ) control problems can be solved exactly by the linear-quadratic

regulator (LQR), or the linear-quadratic-Gaussian controller if Gaussian noise is

present (see Appendix A for a quick review of LQR). Hence the optimal control

plan u∗t is obtained by finding the global minimum of the average cost

J = lim
T→∞

1

T

T−1∑
t=0

`t(xt, ut) , (1.4)

given that the limit exists. However in practice, we can only minimise the average

cost over a finite number of time steps N from the current time step τ ; that is, to

solve for {ut, t ∈ [τ, τ +N ]} instead which minimises the total cost over the period

[τ, τ +N ]

Jτ =
τ+N∑
t=τ

`t(xt, ut) . (1.5)
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In general xt and ut, and therefore `t(xt, ut), are random variables which follow

some distributions; they are then replaced by their expectation values denoted by

E[X].

Since we are optimising over the next N time steps ahead in the future from

current time τ , the optimal control input sequence {uτ , ..., uτ+N} is determined

from information available at current time τ , including estimates for future quan-

tities which are not known at present. We shall denote estimates with hats, for

example X̂t|τ denotes the estimate of quantity X at time t given all the informa-

tion available at time τ with t ≥ τ , and if the current value of X is known, then

X̂τ |τ = Xτ .

As mentioned above, the system dynamics are usually described by a linear state

equation for the ease of finding a solution; however in most real-life situations, the

underlying physical equations governing the system dynamics are highly complex

and non-linear, and the same is true also for the constraints and the objective

function. Because we need to be able to solve the optimisation problem within a

reasonable time frame in order to enable feedback and control, we need to simplify

these equations as much as possible into the forms that can be handled easily by

standard solvers. Thus the first step in MPC involves building a simplified yet

accurate predictive model to forecast the values of the estimates

Ât|τ , B̂t|τ , ĉt|τ , Ĉt|τ , Q̂t|τ , R̂t|τ (1.6)

from all relevant information available such as building layout, historical data and

weather forecast. Conventionally for the purpose of building energy management

modelling, these estimates are obtained using white box, physical models made

with specialised software packages like EnergyPlus to capture all the physical pro-

cesses within the building, such as heat exchange between the air and the wall

and convection current inside the space. However, such models involve labour-

intensive surveying and are therefore very expensive and time consuming to build;

and since every building is unique, the modelling procedure has to be repeated for

every single building, rendering it highly non-scalable and non-economical. Thus

we shall follow the black box, data-driven modelling approach in this thesis — we

make prediction for the estimates using machine learning techniques based purely

on the data available, thereby bypassing all the expensive surveys and physical

modelling required, and making the modelling procedure scalable. Throughout

this thesis, we may use dt (standing for disturbances) to denote the vector of all
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the exogenous variables which the estimates in (1.6) depend on.

The MPC policy then works as follows: at current time τ with the initial state

xτ , consider a fixed time interval extending N steps into the future i.e. I =

[τ, τ + 1, ..., τ +N ]. We then perform the following steps:

1. Build a predictive model: predict the values of all estimates (1.6) over

the time period I using data available at τ . x̂t and ût are the variables of

the problem.

2. Optimise: find the solution to ût ∀ t ∈ I which minimises the objective

function, subject to the system dynamics and constraints:

argmin
ût

τ+N∑
t=τ

ˆ̀
t|τ (x̂t, ût)

subject to x̂t+1 = Ât|τ x̂t + B̂t|τ ût + ĉt|τ

(x̂t, ût) ∈ Ĉt|τ
x̂τ = xτ

3. Execute: choose the solution sequence {ûτ , ûτ+1, ..., ûτ+N} as the optimal

plan of action for the next N time steps, but execute only the first control

input ûτ . At the next time step, the process is repeated with the updated es-

timates from the feedback of the new current state, pushing the time horizon

forwarded by one time step and setting the new current state as the initial

state.

It was shown in [8] and [9] that for time invariant (i.e. the quantities in (1.6) are

constants) linear-quadratic MPC problems, there exists a closed-from optimisa-

tion solution which can be written as a piecewise affine function of the state. Thus

the MPC controller can be treated as a collection of conventional linear controllers

which switches between the different controls depending on the current state. This

means that the set of linear controllers can be computed offline and stored, so that

the online algorithm reduces to a quick lookup table search followed by a linear

control evaluation.

The MPC controller is reminiscent of the traditional LQR or LQG state feed-

back controllers in the sense that both have a two-part architecture: an estimator

that predicts the future state based on the information available at present, and

an optimiser which finds an optimal control plan according to the estimator’s pre-

dictions. The main difference is, whereas LQR and LQG optimise in a fixed time
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horizon and provide a single optimal solution over the entire window, MPC opti-

mises in a smaller, receding time horizon and a new “locally optimal” solution is

computed at every time step forward. As a result, the MPC solution is not glob-

ally optimal in general, but is nevertheless a very good suboptimal approximation.

Another crucial difference is that MPC corrects any deviation between the pre-

dicted state and the actual state in the next time step by taking the actual state

as the new input and recompute for a new optimal solution, while in LQR and

LQG the feedback matrix1 and the solution control sequence stay fixed over the

entire horizon and cannot be updated along the way. In other words, even though

an estimator is used to predict the system dynamics in both types of controllers,

LQR and LQG are in fact open-loop controls without taking any feedback from

the actual state, as opposed to MPC which is a close-loop control by taking the

actual state as feedback. MPC also covers a wider class of control problems as

it makes no assumption on the linearity of the system dynamics or quadraticity

of the cost function in general, although a closed form solution is not guaranteed

then.

1The state feedback in LQR and LQG is merely a mathematical aspect of the controller, it
does not involve any measurement of the actual state being fed back.



Chapter 2

Battery Operation Plan

We shall employ the following notations throughout this chapter:

(continued on the next page)
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Nomenclature

Continuous decision variables

xGDt Energy flow from grid to demand [kWh]

xGRt Energy flow from grid to battery [kWh]

xRDt Energy flow from battery to demand [kWh]

xRGt Energy flow from battery to grid [kWh]

Binary decision variables - 0 for off and 1 for on

δGRt Whether the battery is charging

δRDt Whether the battery is discharging to demand

δRGt Whether the battery is discharging to grid

State variable

Rt State of charge of the battery [kWh]

Other system variables

Dt Energy demand from building [kWh]

Nt Number of partial charge/discharge cycles performed

System parameters

βc Cycle degradation coefficient [£/cycle]

βp Power degradation coefficient [£/kWh]

η Battery charging efficiency

Ḡ Contract capacity from the grid [kWh]

γ Flow capacity to and from battery [kWh]

N̄ Maximum number of charge/discharge cycles allowed per day

P b
t Energy buying price from the grid [£/kWh]

10
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P n
t Non-commodity charges [£/kWh]

P s
t Energy selling price to the grid [£/kWh]

R̄t, Rt Minimum and maximum state of charge of the battery [kWh]

The subscript t labels the half-hourly time step.

2.1 The System

Battery storage is the most straight-forward solution to shifting electricity

demand from the grid away from peak hours. As battery storage becomes more

affordable and accessible, more and more commercial complexes see it as a com-

pelling and cost effective move not just to save on electricity bills, but also to

generate extra income by providing ancillary services. Furthermore, as the UK

generation mix edges towards wind energy, storage systems will play a crucial

role in moderating the mismatch between the intermittent supply and the highly

variable demand. Thus in the first part of the Q-PLUS pilot study, we focus on

buildings equipped with battery storage system but without on-site generation.

The aim is to utilise the battery storage to shift the demand from the grid at

times when electricity prices are high to minimise the electricity cost, as well as to

maximise the revenue by selling electricity back to the electricity market and pro-

viding ancillary services to the electricity network (both the grid and Distribution

System Operators). At time step t, let Rt be the state of charge of the battery,

Dt be the total demand from the building, P b
t and P s

t be the buying and selling

prices of energy from and to the grid. Each time step is half hour long, in line

with the electricity market. We use Ḡ to denote the maximum amount of energy

the building can take from the grid at each time step, which is fixed by the user’s

contract with the provider1. Rt is bounded above and below i.e

Rt ≤ Rt ≤ R̄t , (2.1)

and the bounds change over the course of the day depending on whether buffer

charge or capacity is required in the battery for the services contracted for. Even

outside the contract hours, the battery should maintain a maximum and minimum

level of charge in order to preserve its lifespan; there may also be an upper bound

N̄ on the number of charge/discharge cycles the battery can perform in a day for

lifespan preservation.

1One can always go over the contract capacity at a penalty cost, but for simplicity we simply
cap it at Ḡ here.
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Among the grid (G), battery (R) and the building (D for demand of the building),

the flow of energy in the system at time step t is determined by the non-negative

control variables

xit = {xRGt , xGRt , xRDt , xGDt } ≥ 0 , (2.2)

where xRGt and xGRt are the flows of energy from the battery to the grid and vice

versa, xRDt is the amount of energy taken from the battery to feed the demand,

and xGD is the amount of energy drawn from the grid to supply the demand. At

any time t, energy balance must be achieved and the building’s electricity demand

Dt must be satisfied exactly with

Dt = xGDt + xRDt , (2.3)

and the total amount of electricity drawn from the grid at any given time t cannot

exceed the contracted maximum Ḡ

xGDt + xGRt ≤ Ḡ . (2.4)

Since the battery cannot charge and discharge at the same time, nor can it dis-

charge to both the grid and the building simultaneously, at any give time step t

only one of {xRGt , xGRt , xRDt } can be positive, or all of them are identically zero

with the battery being idle. This logic rule can be imposed linearly on the sys-

tem using the following inequality constraints with the binary decision variables

{δGRt , δRGt , δRDt } ∈ {0, 1}:

0 ≤ xGRt ≤ γδGRt

0 ≤ xRGt ≤ γδRGt

0 ≤ xRDt ≤ γδRDt

δGRt + δRGt + δRDt ≤ 1 , (2.5)

where γ is the maximum charge/discharge capacity of the battery, which depends

not only on the battery itself but also the circuitry.

There is always a loss whenever the battery charges or discharges. This is parametrised

by the efficiency η, where η < 1. η in general is a monotonically decreasing func-

tion in time because the resistance increases as the battery degrades, but for our

proof-of-concept pilot demonstration it is sufficient to use the constant approxima-

tion η = 0.95, and the discharging efficiency shall be taken to be simply the inverse
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1/η. There are two modes of degradation for the battery, one is calender ageing

with time and the other is cycle ageing with every charge/discharge cycle. Since

calendar ageing is independent of our control decisions, we will only take cycle

ageing into account when we calculate the objective function, which is defined by

the cost Ct at time step t. We shall model the cycle degradation as a monetary

cost, which is a linear function of the number of (partial) cycles Nt performed

and the energy flow into or out of the battery over the half hour, with constant

coefficients βc and βp respectively. The number of partial cycles performed over

the time step is give by

Nt =
1

2

∑
i

∣∣δit − δit−1

∣∣ , i = {GR,RG,RD} , (2.6)

if the user imposes a maximum number of cycles permitted per day in order to

prolong the battery’s lifespan, then Nt must also satisfy

t0+48∑
t=t0

Nt ≤ N̄ (2.7)

where t0 denotes the beginning of the day.

When buying electricity from the grid, on top of the price P b
t for the electric-

ity itself, there are also non-commodity charges P n
t added onto the bill, in fact

they make up on average 40% of the non-domestic energy bill. These compulsory

non-commodity charges are in force in order to cover the cost of delivering the

electricity and balancing the grid. They also include government taxes and levies

for supporting renewable energy development and carbon emission reduction. In

the UK non-domestic market, the main non-commodity costs are: transmission

network use of system (TNUoS), distributed use of system (DUoS), renewable

obligation (RO), climate change levy (CCL), contract for difference (CfD), feed in

tariff (FiT) and capacity market (CM). While some of the charges like CCL, RO

and FiT are fixed (subject to annual revision) and chargeable only per kWh of

electricity consumed regardless of when it is consumed, the tariffs of some charges

such as CM and DUoS change throughout the day by orders of magnitude. Hence

these time-dependent tariffs are the costs we are aiming to avoid on daily basis

by shifting the electricity demand with the help of the battery storage system.

For instance, during the winter period from 1/11/2018 to 28/2/2019, N-power

charged £89.87/MWh for CM during the peak hours between 4pm and 7pm but
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only £0.03/MWh outside the peak hours2. Similarly for the DUoS charges, there

are three tariff bands — green, amber and red (see figure 2.1), which cost for ex-

ample 0.641, 2.197 and 5.535p/MWh respectively in 2016/17 for the low voltage

half-hourly metered users with Scottish Hydro Electric Power Distribution3. Since

the tariffs vary from energy provider to energy provider, when and which tariff

applies also depends on the region; the table in figure 2.1 shows the time bands for

the half-hourly metered properties in South Wales as defined by Western Power

Distributions4:

S Wales

Time bands for half hourly metered properties

Time periods Red time band Amber time band Green time band

Monday to Friday 17:00-19:30
07:30-17:00
19:30-22:00

00:00-07:30
22:00-24:00

Weekends n/a
12:30-13:00
16:00-21:00

00:00-12:00
13:00-16:00
21:00-24:00

Notes All of the above times are in UK clock time

Figure 2.1: DUoS tariff time bands for low voltage half-hourly metered users in
South Wales.

2Source: https://www.npower.com/business-solutions/your-account/billing/charges/
3Source: https://www.ssen.co.uk/WorkArea/DownloadAsset.aspx?id=12511
4https://www.westernpower.co.uk/downloads/7028
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Another non-commodity charge that can be avoided via demand shift is

TNUoS. Although the TUNoS charge is calculated based on the consumption only

during the “Triad” periods — the three highest half hour periods of demand during

the winter months — at a forecasted rate of £54.59/kW for half-hourly metered

users in London in the winter of 2018/195, it can make up up to 10% of the annual

electricity cost. Thus it is important to be able to predict when the Triads will

be and include the TNUoS charges in the cost function accordingly, in order to

minimise the electricity demand from the grid through our battery planning algo-

rithm. Nevertheless, building managers can subscribe to Triad alerts from their

energy providers, therefore it is not necessary for our battery control system to

predict the triad dates.

The relationship between the state and control variables is summarised diagram-

matically in figure 2.2.

Grid Ḡ

Demand DtxRGt , δRGt xGRt , δGRt

xRDt , δRDt

xGDt
Prices P b

t , P s
t , P n

t

Storage battery
Rt ≤ Rt ≤ R̄t

γ, η, βc, βp

Nt, N̄

Figure 2.2: Energy flow in our building-battery system.

2.2 Problem Formulation

In order to cast our optimal battery operation plan as a MPC optimisation

problem, we need to first define an objective function. We shall define our objective

in terms of the monetary cost payable to the electricity supplier, and the control

objective is therefore to minimise this cost. In fact for our building-battery system,

the cost can be calculated straightforwardly by a linear function of the controls.

Let xt denote the vector of the control variables

xt =
[
xRGt , xGRt , xRDt , xGDt

]
(2.8)

5https://www.nationalgrideso.com/document/95911/download
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and St denote the vector of the prices and battery degradation coefficients (mea-

sured in terms of monetary cost)

St =
[
P b
t , P

s
t , P

n
t , β

c, βp
]
, (2.9)

the net cost at time t is then given by

Ct (St, xt) = P b
t ·
(
xGDt + xGRt

)
− P s

t · xRGt + P n
t

(
xGDt + xGRt

)
+βc ·Nt + βp ·

(
xRDt + xRGt + xGRt

)
, (2.10)

which is clearly linear in xt with the parameters given by St. The first two terms

are the total cost and revenue of buying and selling energy from and to the grid,

the third term is the non-commodity cost of buying energy from the grid, and the

last two terms take into account of the cost associated to the degradation of the

battery. Recall that the number of partial charge/discharge cycles Nt is derived

from δt and not an independent variable.

Next we need to define the system dynamics. In the control theory setting, there

is only one state variable in our system — the battery state of charge Rt, which

measures the charge level at the start of each time step, and the state equation of

the battery is simply determined by the charge and discharge operations

Rt+1 = Rt + η xGRt − 1
η
xRGt − 1

η
xRDt . (2.11)

As we pointed out in the previous section, the state and control variables must

satisfy various time-dependent and independent, equality and inequality bounds.

These bounds are described by: (2.1), (2.2), (2.3), (2.4), (2.5) and (2.7). Together

with the state equation (2.11), they form the set of constraints Ct which the op-

timiser is subject to. Thus over the time period 1 ≤ t ≤ T , the optimal battery

plan x∗ = {x∗t , 1 ≤ t ≤ T} is obtained by minimising the total cost, which can be

expressed as

x∗ = argmin
xt

T∑
t=1

(Ct (St, xt) : Ct) . (2.12)

In summary, the battery operation optimisation problem over the time period
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1 ≤ t ≤ T can be written as

argmin
xt

∑T
t=1

(
P b
t + P n

t

) (
xGDt + xGRt

)
− P s

t x
RG
t + βcNt + βp

(
xRDt + xRGt + xGRt

)
subject to Rt+1 = Rt + η xGRt − 1

η
xRGt − 1

η
xRDt ∀ t

Rt+1 ≤ Rt+1 ≤ R̄t+1

{xRGt , xGRt , xRDt , xGDt } ≥ 0

xGDt + xGRt ≤ Ḡ

Dt = xGDt + xRDt

0 ≤ xGRt ≤ γδGRt

0 ≤ xRGt ≤ γδRGt

0 ≤ xRDt ≤ γδRDt

δGRt + δRGt + δRDt ≤ 1 ∀ t ∈ [1, T ] . (2.13)

Observe that this is a linear optimisation problem: it consists of a linear objective

function along with a set of linear constraints. In addition, the battery state of

charge constraint (2.1) does not apply at t = 1 because we may start from a state

of charge outside the buffer charge/capacity bounds after ancillary service deliv-

ery. In other words the initial state R1 is just given and so it is not subject to the

constraints imposed on the optimiser.

In order to use this method to find an optimal battery operation plan, a number

of input parameters need to be defined beforehand. The user or building manager

should provide the battery parameters {βc, βp, η, γ R̄t, Rt, N̄}, the contract capac-

ity from the grid Ḡ, and the pricing information {P b
t , P

n
t , P

s
t }6. The only quantity

that the Q-PLUS system needs to estimate accurately, which is also arguably the

most important and non-trivial piece of information, is the electricity demand of

the building Dt. As the demand prediction is another central feature of Q-PLUS,

we shall discuss the methodology, namely the machine learning techniques we use,

in full details in the next section.

Since the delivery of ancillary service can make sudden change to the state of

the system Rt, we shall employ model predictive control (MPC) for the real time

battery control. While the optimiser finds an optimal control plan for the next T

time steps, where T may cover the next few hours or the coming 24 hours, only

6The spot market prices are highly volatile which requires a separate model to predict; this is
outside the scope of this thesis. Besides, users may opt for buying and selling with their energy
supplier, in which case all prices are fixed according to the contract.
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the first control input is executed. This allows the solver not only to update the

state of charge of the battery Rt, but also the demand prediction Dt — the further

ahead in time, the less accurate the prediction.

Building managers may also use the optimiser to look ahead and help them decide

on their monthly ancillary service bids. It can give them an idea of how the bat-

tery would operate over the course of the coming month with the required levels

of buffer charge and capacity in the battery, depending on the services, and from

this they can examine the feasibility and profitability of different ancillary service

provision contracts.

2.3 Demand Forecast

The building electricity demand prediction is one of the core services of

Q-PLUS. As the building’s demand must be met, we need an accurate prediction

of the demand in order to be able to optimise the battery operations. If the system

underestimates the demand during the peak hours and the battery is undercharged

prior to the peak hours, the building would then have to buy more than the least

possible electricity from the grid. Conversely, if the system overestimates the con-

sumption then the battery may undergo unnecessary charge and discharge cycles

and speed up the degradation process of the battery.

One way to forecast the demand is by developing a physical model of the building

using specialist software packages such as EnergyPlus to simulate the conduction

properties of all the walls and windows, heating and cooling of the whole building

due to solar and other thermal radiation, as well as the convection currents cir-

culating around the building. It requires a lot of surveying and calibration work

however, which is very costly and labour-intensive. More importantly, since every

building is unique, such a model is completely not scalable.

The Q-PLUS demand forecast algorithm on the other hand employs a black box,

data-driven approach using machine learning methods. Depending on the inter-

pretability, machine learning models can also be subdivided into black or white box

model. Simpler models like linear regression and decision tree are easy to grasp

but their predictive power is in general weaker, as they may not be capable of cap-

turing the inherent complexity of the data. For instance, linear regression model

assumes that all residuals are independently and identically distributed (iid), thus
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is not suitable for modelling datasets which exhibit auto-correlation or collinearity.

In contrast, complex black box models like neural networks and gradient boosting

models are more accurate in general but lack interpretability. In light of these

differences, we examine two of the most widely used forecasting machine learning

algorithms, namely the ‘white box’ regression tree and random forest, and the

‘black box’ long-short term memory (LSTM), by performing supervised learning

on the dataset for Building A in Manchester. The dataset was obtained privately

from the University of Manchester and consists of the total half-hourly demand of

the building in year 2015. The weather data for model training are obtained from

http://rp5.co.uk, using the historical data from the Manchester airport weather

station. We sough a machine learning model that can predict the building’s to-

tal half-hour demand according to the date, time and meteorological information

from the weather forecast. The half-hour demand is therefore our target and the

features on which the models are trained are: day of the week (d), whether the day

is a bank holiday (BH∈ {0, 1}, 1 for bank holiday = true), hour of the day (H),

outside air temperature (T), relative humidity (U) wind speed at 10-12m above

ground (Ff) and dew point temperature (Td).

2.3.1 Regression Tree and Random Forest Models

Let us begin with the ‘white box’ regression tree model [10]. It essentially

partitions the training samples into different leaves (end nodes) of equivalence

classes based on their similarities. Starting from the root node on the top with all

the training samples, at each node it determines a binary splitting rule across the

feature space which minimises, most commonly the L2 error (Euclidean distance),

from the mean values of the two descendant nodes. The impurity, a measure of

dissimilarity of node m containing the set of training data Xm (which is a subset of

the set of all training data) with cardinality Nm and target values yi (i = 1, ..., Nm)

is thus given by

H(Xm) =
1

Nm

∑
i∈Nm

(yi − ȳ)2 (2.14)

ȳm =
1

Nm

∑
i∈Nm

yi , (2.15)

and the tree finds a cut in one of the feature dimensions which produces the small-

est total entropy on both sides of the cut i.e. a splitting rule that minimises

Hleft + Hright of the descendent nodes. This process repeats until certain criteria
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are met, such as the maximum depth of the tree or the minimum sample size at a

node is reached (for instance, only one sample in each node would definitely be an

over-fit), then the node becomes a terminal or leaf node. Then in order to make a

prediction of the target variable given the values of the features, the model simply

passes the features down the tree of splitting rules until it reaches a leaf, where

the prediction is made and the predicted value of the target variable is simply the

mean of the target variable of the training samples in the leaf. Thus for Q-PLUS,

the weather data and datetime information features are passed down the tree and

the leaves give the value of the predicted demand.

A single tree is highly susceptible to over-fitting — it may learn too well from

the training data, including the noise, so that the model is not generalisable. This

is where random forest [11] comes in: it cures over-fitting by selecting random

samples with replacement of the training set, training a forest of regression trees

and making predictions by taking the average from individual trees. The random

sub-sample size is usually taken to be the same as the input sample size; hence if

the original training data consists of N observations, it randomly selects N obser-

vations but since it does so with replacement, the expected number of unique draws

is only N(1− 1/e) = N × 0.63 and the rest are duplicates. The trees are therefore

trained on different, uncorrelated training data, thus any noise from individual

trees is averaged out in the forest.

2.3.2 Neural Nets and Long-Short term memory models

An artificial neural network [12] [13] also consists of nodes, which contain

an ‘activation function’, but instead of having a straightforward tree like structure,

the nodes are highly interconnected and are organised in layers, resembling net-

work of neurons in the brain, and information is passed back and forth between the

nodes. There are three types of layers in each neural network: an input layer where

data enter the network, the patterns are then passed onto one or more ‘hidden’

layers which perform the actual processing via a network of weighted connections,

and an output layer to show the answer. A neural network ‘learns’ by updating

the weights of the connections according to some learning rule from the patterns

it is presented with; this is just like how a child learns to distinguish between a

bird and a cat, by seeing examples of birds and cats and updating the weights of

their distinctive features such as wings and whiskers.
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A neural network model can be seen simply as a function

f : X → Y ; (2.16)

which can be a distribution over X or both X and Y . The function at a neuron

is given by

f(x) = K

(∑
i

ωigi(x)

)
+ b , (2.17)

where gi denotes the output functions of its predecessor neurons indexed by i, ωi

is the weight, K is a predefined activation function which depends on the weighted

sum of the preceding neurons, and b is the bias which is added to the weighted

sum to shift the activation function K when needed. The activation function

K is usually taken to be a step-like function such as tanh, the sigmoid function

S(x) = 1/(1 + exp(−x)), the rectifier function K(x) = max(0, x), or the softmax

function for vector models, defined by

σ(~x)i =
exp(xi)∑

( j = 1)m exp(xj)
∀ i ∈ 1, ...,m , ~x = (x1, ..., xm) ∈ Rm . (2.18)

When input is fed into the neural network and output prediction is made, this

process is called a forward propagation. In supervised learning, a neural network

can learn from the error between its prediction and the actual output value through

back propagation. This is done by first defining a loss function E such as mean

square error, then differentiating the loss function with respect to each weight ωi,j

connecting nodes i and j , and finally updating the weights by descending along

the gradient with a step size η which is also called the learning rate; this process is

repeated until the error is below certain threshold to avoid over-fitting the training

data. Thus the n-th iteration of the gradient descent learning gives

ωnij = ωn−1
ij − η · ∂E

∂ωn−1
ij

. (2.19)

The simple, conventional neural networks with only feedforward connections are

limited to handle input vectors of fixed sizes. In order to train a model to handle

lists and sequences, we may add cycles and internal states to an acyclic feedfor-

ward network. Such neural networks containing cycles are called recurrent neural

networks (RNNs) [14]. In a RNN, the outputs are determined not only by the

weights assigned to the inputs but also the hidden internal state vector which

stores information about the previous inputs and outputs. Therefore, the same

input can result in different output depending on the previous input, This is why
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RNNs are extremely useful for natural language processing (NLP), as well as time

series modelling.

Long short term memory (LSTM) networks [15] are a special type of RNNs which

are capable of learning long and short term dependencies. A typical LSTM net-

work consists of four components: a cell which stores memory, and three regulators

or gates which control the flow of information inside the unit, namely the input,

output and forget gates. As the cell state passes down the unit, information can

be added or removed from it via interactions with the gates, which are themselves

sigmoid neural nets. These gates are powerful tools to select only the relevant

information to remember, thus enabling the model to learn from both short- and

long-term dependencies.

2.3.3 Empirical comparison

We compare the performances of the random forest and LSTM models for 1,

two weeks electricity demand prediction based only on datetime and weather (fore-

cast) information and 2, real-time five- and ten-step ahead autoregressive model

using datetime, weather and total demand information from the previous five time

steps as well as the datetime features and weather forecast for the following five

or ten time steps to be predicted, and 3, day ahead prediction analogous to 2,

but using information form 12 time steps back. The electricity demand dataset

for Building A was merged with the weather data. The period from 2015-9-14

00:00:00 to 2015-9-28 23:00:00 was cut out from the rest of the data for testing

purpose.

2.3.3.1 Offline two weeks ahead prediction

Let us first consider the offline, long-term half-hourly demand perdition

which is more relevant for the month ahead planning. Here the two-week forecast

horizon in our demonstration can easily be extended to arbitrarily long period —

as long as the weather forecast is reasonably accurate. First we trained a random

forest model to obtain the function

DRF
t = Dt (dt, BHt, Ht, Tt, Ut, Fft, Tdt) . (2.20)

We then added time-lag of order two to the model by including the outside and

dew point temperatures from the previous hour such that the lagged model gives
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the demand as a function of

DRF2
t = Dt (dt, BHt, Ht, Tt, Tt−1, Tt−2, Ut, Fft, Tdt, Tdt−1, Tdt−2) . (2.21)

Each forest consists of 500 trees with a maximum depth of 30 and the minimum

number of samples required to split an internal node set to 20. The forest mod-

els were trained with the RandomForestRegressor from scikit-learn. The relative

importance of the features are summarised below in table 2.1; it shows that the

datetime features are the dominating factors in both models. The relative impor-

tance of each feature is given by the weighted impurity decrease. At node m with

splitting rule sm that partitions Nm samples into mL and mR with cardinalities

NmL and NmR respectively, the decrease in impurity H is

∆i(m, sm) = i(m)− NmL

Nm

i (mL)− NmR

Nm

i (mR) . (2.22)

Thus the importance of a feature Xi for predicting Y in a random forest model is

computed by summing the weighted impurity decrease for all nodes where Xi is

used in the splitting s with the weight being the proportion of samples reaching

the node out of all N samples, and averaged over all NTr trees in the forest:

Importance(Xi) =
1

NTr

∑
Tr

∑
m∈Tr,m|s(Xi)

Nm

N
∆(m, sm) . (2.23)

The random forest models are then compared with the LSTM model with time

lag of order two over all features

DLSTM
t = DLSTM

t (Xt, Xt−1, Xt−2) (2.24)

where we denote the features collectively as Xt := {dt, BHt, Ht, Tt, Ut, Fft, Tdt}.
The LSTM model was obtained using the Keras Sequential LSTM model, with 25

epochs and batch size of 72.

The performance of the three models is summarised below in table 2.2 and figure

2.3. The random forest model which also takes the temperatures from the pre-

vious hour into account (RF2) produced the most accurate prediction out of the

three. Although the training time was almost twice as long, the RF2 model sig-

nificantly outperformed the straightforward RF model. This is expected, because

building has high thermal inertia and it takes time to reach thermal equilibrium.

The LSTM model not only took longer to train, it also systematically worsened

towards the end of the week giving it a much poorer accuracy than the RF models.
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Clearly, the RF2 model is the winner in this test.

Feature RF RF2
Ht 0.639231 0.632449
dt 0.303021 0.294082
BHt 0.035328 0.034858
Fft 0.004493 0.007629
Ut 0.004363 0.007447
Tt 0.009217 0.006443
Tdt 0.004347 0.003463
Tt−1 - 0.003135
Tdt−1 - 0.002337
Tt−2 - 0.004718
Tdt−2 - 0.003439

Table 2.1: Relative importance of the features for the random forest models.

Model CPU time (s) Wall time (s) MAE RMSE
RF 9.97 9.98 2.8332 3.8163
RF2 17.9 18 2.3955 3.1776
LSTM 34.5 20 3.4179 4.6349

Table 2.2: Performance metric of the different models for two weeks ahead offline
long-term prediction.

Figure 2.3: Comparison of the outputs from the different models for the two-week
ahead prediction.
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2.3.3.2 Real-time autoregressive model

Let us now switch to the online predictive model for the real-time control

of the storage battery. In order to update the model with real-time information

as well as to ensure better continuity with the current observation i.e no unex-

pected big jump in the prediction, autoregressive (AR) models are considered.

Thus the previous observed values of the training target, which in our case here

is the demand, are also used to train the model as training features. Both the

autoregressive order (AR) and the prediction horizon (hr) are set to be five time

steps in the first examples, but the Q-PLUS end user is free to choose these pa-

rameters according to the characteristics of the building. Autoregression is done

by training a model that predicts the hr-dimensional demand vector as a function

F of its AR+ 1-dimensional history and (AR+ 1 + hr)-dimensional datetime and

weather features

[Dt+i] = F ([Xt−j], [Dt−j], [Xt+i]) i = 1, ..., hr j = 0, ..., AR (2.25)

where the square brackets denote time-indexed vectors, e.g.

[Dt+i] =


Dt+1

...

Dt+hr

 (2.26)

is a hr-dimensional vector. Since both input and output are time series, it is rea-

sonable to anticipate that the LSTM model would outperform the random forest

model.

For the first example, the test period was randomly chosen to be 11:00 - 13:00

(inclusive) on 2015-09-24, and both models were trained with all data prior to

2015-09-24 11:00:00. As in the previous case, the random forest consisted of 500

trees with a maximum depth of 30 and the minimum number of samples required

to split an internal node set to 20. The LSTM model was trained with 25 epochs

but this time with a batch size of 32. Table 2.3 summarises the performance of

the autoregressive RF and LSTM models. They are also compared against the

prediction from the offline non-autoregressive RF2 model from the previous sec-

tion, which serves as the baseline. In this test, both autoregressive models gave

comparable accuracy and both training times were well within the half-hour time

frame of the system’s requirement, but both were less accurate than the offline RF

model which took only weather and datetime information into account and not
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the previous values of the demand. Adding recent observations of the target into

the model did not improve the accuracy in this case. Figure 2.4 shows the output

of the different models with the actual target from the data. It shows that the

AR RF prediction was an overall overestimation whereas the AR LSTM prediction

was an overall underestimation for this particular period.

Model CPU time Wall time MAE RMSE
AR RF 1m50s 1m50s 2.7048 2.8745
AR LSTM 2m25s 1m55s 2.8564 3.0634
RF2 (baseline) 1.6147 1.9392

Table 2.3: Performance metric of autoregressive RF and LSTM models for the five
steps ahead demand prediction for the mid-day period 11:00 - 13:00 on 24-09-2015, as
compared to the previous RF2 model. The data used in both AR models are exactly

the same. Interestingly, the baseline RF2 model with no autoregression provided more
accurate prediction in this period.

Figure 2.4: Comparison of the five-step ahead predictions from the different models
for the mid-day period 11:00 - 13:00 on 24-09-2015.

As a comparison, let us consider a different period on the same day. In

this example, we repeat the same procedure as above but for the afternoon peak

hours of 16:00-18:00, the time period when the non-commodity charges are the

highest and the battery algorithm is expected to discharge the battery to supply the

building’s demand. The performance of the RF and LSTM models is summarised

in table 2.4 and figure 2.5. In this case, autoregression did reduce the error of

the model, with the AR RF model outperforming the AR LSTM model in terms

of both accuracy and training time. Taking the immediate past observations into

account during the hours of falling demand can boost the accuracy of the prediction
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precisely by making sure that the projected fall in the coming hours follows the

level and trend of the recent observations.

Model CPU time Wall time MAE RMSE
AR RF 1m59s 1m59s 2.3894 2.7196
AR LSTM 2m30s 1m58s 2.7301 3.0731
RF2 (baseline) 3.2895 4.0102

Table 2.4: Performance metric of the autoregressive RF and LSTM five steps ahead
models on the weekday afternoon peak hours from 4 to 6 pm on 2015-09-24.

Autoregression did improve accuracy in this case.

Figure 2.5: Comparison of the five-step ahead predictions from the different models
for the afternoon peak period 16:00 - 18:00 on 24-09-2015. The prediction from the

baseline offline RF2 model deviates the most from the data.

Now that we have seen how autoregression can make short-term projection

more accurate, what happens if we increase the prediction horizon? In the next

example, the autoregressive order remains at 5 time steps before but the prediction

horizon is now increased to 10 time steps ahead. Since MPC is only a very good

approximation to the optimal control, a longer prediction horizon in general results

in a better approximation to the global optimum. The test period considered here

is 14:30-19:00 on 24-09-2015, the same day as before. The performance of the AR

RF and LSTM models is summarised below in table 2.5 and figure 2.6, and they are

compared with the baseline RF2 model. In this case, including the autoregressive

orders also improved the accuracy of the random forest model. The training times

for both the AR RF and AR LSTM models were still just fractions of the 30-

minute time frame.
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Model CPU time Wall time MAE RMSE
AR RF 2m46s 2m46s 2.1909 2.5382
AR LSTM 3m28s 1m33s 3.7074 3.9302
RF2 (baseline) 2.3585 3.0254

Table 2.5: Performance metric of the different models for the 10-time step afternoon
period on 2015-09-24. The autoregressive random forest model gave noticeably more

accurate prediction than the non-autoregressive one.

Figure 2.6: Comparison of the different models for the afternoon period of 14:30 -
19:00 on 24-09-2015. Note that the RF2 model prediction was almost spot in the

second half.

2.3.3.3 Autoregressive day-ahead demand prediction

The day-ahead demand prediction is particular useful for building managers

who wish to participate in the day-ahead wholesale electricity market and avoid

price volatility. In this example we test the performance of the autoregressive

day-ahead model. Following the same principles as the autoregressive models dis-

cussed above, here we expanded the autoregressive order to 12 steps prior and the

prediction horizon to 48 steps (one day) ahead. The test period starts from 18:30

on 23-09-2015. The performance of the AR RF and LSTM models, as compared

with the baseline model is summarised below in table 2.6 and figure 2.7. Although

the two AR models show comparable level of accuracy, the random forest model

took almost twice as much CPU time to train as the LSTM model. However both

autoregressive models, which took O(minutes) to train, performed significantly

worse in this test than the baseline random forest model with no autoregression,

which took only O(seconds) to train. The inclusion of autoregressive and extra lag

features not only increased the complexity of the model, but actually deteriorated

the prediction accuracy, which is unexpected, since the learning algorithms should
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be able to identify the most relevant factors from redundant inputs to build an

accurate predictive model. This is particularly true for the AR LSTM model, as

its architecture is designed in particular to handle sequences.

Model CPU time Wall time MAE RMSE
AR RF 17m13s 17m14s 5.0157 5.4314
AR LSTM 9m41s 4m41s 4.7587 5.2366
RF2 (baseline) 3.5151 4.1140

Table 2.6: The training time for the random forest model was significantly longer
than the LSTM model for the day ahead prediction, although both models produced

results with similar level of accuracy. The non-autoregressive baseline model turns out
to be more accurate than the autoregressive models.

Figure 2.7: Comparison of the day-ahead predictions from the different models for
the 24-hour period starting from 23-09-2015 at 18:30. All three models slightly

underestimated the demand. The predictions from the AR models also produced
smoother curves than the baseline RF2 model.

2.3.4 Analysis and discussion

In this section, we tested the performance of different machine learning

models developed from the random forest and LSTM algorithms to predict the

half-hourly electricity demand of Building A in various settings. Our first observa-

tion is that, despite the common belief that “black box” neural net models perform

better then “white box” tree-type models due to their more complex architecture,

LSTM models did not outperform random forest ones in any of our tests. In fact

the offline LSTM model was very poor with a much higher RMSE than the ran-

dom forest models in the two-week ahead prediction, with a fall-off towards the
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end of each week which was not present in the data. Our second observation is

that autoregressive models perform better for short-term online predictions, which

makes sense because by taking into account the recent observations, it guarantees

better continuity and consistency with the recent history, for example if there is

a unexpected surge in the demand observed then the online autoregressive model

would produce a forecast that matches with this high level. However, this advan-

tage diminishes as the prediction horizon grows. It is evident from our test that

there is no advantage in including autoregression in the model for the day-ahead

prediction. Not only did the autoregressive models take much longer to train, the

errors were also larger than the baseline offline model. The extra features includ-

ing the autoregression actually made the prediction worse. Thus for the Q-PLUS

demand prediction, the AR RF model with a prediction horizon not longer than

10 to 20 time steps should be used for the real-time online prediction, and the RF2

model is more suitable for the offline prediction for any time periods that span one

day or longer.

The main caveat of our experiment is that because it has been conducted en-

tirely with historical data, the weather data used to produce the demand forecasts

were real records and not weather forecasts which would themselves be subject

to error. Thus the Q-PLUS demand prediction will not have the same level of

accuracy as demonstrated here; it will depend also on the accuracy of the weather

forecast being used. However, since we want to focus on the errors of the models

themselves here, we control for the weather forecast error by using real historical

record in our experiment. Another point to note is that like any other data-driven

model, the performance of the model does depend on the quality and characteristic

of the data. The dataset we have for Building A is an example of “high quality”

data in the sense that it covers the full year so there is a complete year for the

model to learn from, and also has no missing data. In the next chapter, we will

see how the characteristic of the training data could heavily restrict the predictive

power of a machine learning model — in particular, if the configuration space is

large but the available data only cover a small subset of the total space, then the

machine learning model cannot make any reliable prediction outside this subset as

there is nothing for it to learn from.

2.4 Optimal Battery Control

Before we conclude the chapter, let us go back to the battery control al-

gorithm and demonstrate an explicit example of optimal control decision. The
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optimisation algorithm (2.13) is a mixed integer linear programming (MILP) prob-

lem (recall that the δ’s in the battery charge and discharge constraints are binary

variables). MILP solvers are widely available and we shall use the GNU Linear

Programming Kit (GLPK) which is free and open source, to solve for the optimal

solution. Our solver is implemented in Python with Pyomo.

In order to demonstrate an example solution to the optimal battery control, let us

consider the following: take the actual demand of Building A from 1 to 8pm on

24-09-2015 (15 time steps) and assume that the building does not participate in

the spot market for simplicity i.e. different day and night rates only for the elec-

tricity prices. Thus T = 15 and Dt is copied from the dataset. Since it covers the

evening peak, we expect the battery to discharge during the peak hours to feed the

building’s electricity demand. In the absence of any actual battery characteristics

data, let us further assume the following for the battery parameters in the model:

T = 15 , γ = 100 , η = 0.9 , βc = 0.0001 , βp = 0.0002 , R1 = 200 ,

R̄t = 400 , Rt = 40 ∀ t ∈ {1, ..., T} .

Thus we assume the building is fitted with a 200kW/400kWh battery which is ini-

tialised to be half full, and the state of charge cannot fall below the 10% threshold

which is 40kWh. As for the pricing parameters, again in the absence of actual

data, we assume a constant selling price for electricity at GBP 0.001 per kWh,

and buying prices of GBP 0.2 and 0.1 per kWh for day and night rates. The

time series input parameters for the battery control demonstration are shown in

table 2.7 below. Note that since we are working at half-hour temporal granularity

γ = 200kW×0.5 hours = 100kWh. We have set the selling price to be very low so

that it is not favourable to sell electricity to the grid, as we are considering here

the case where the building is not participating in the spot market. The optimal

solution as given by the solver is summarised in figure 2.8 below; it took the solver

0.0178 seconds to solve. It shows battery does discharge at 16:00 and 17:00 to sup-

ply the building’s own demand as expected, but it turns out to be not favourable

to charge up the battery prior to the peak hours given these parameters.

2.5 Conclusion

In this chapter, we presented a battery control algorithm for Q-PLUS based

on the model predictive control framework and implemented it in Python. A cru-

cial element of the data-driven battery control system is the electricity demand
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t Dt P b
t P s

t P n
t

13:00 109.103 0.2 0.001 0.1
13:30 109.355 0.2 0.001 0.1
14:00 110.054 0.2 0.001 0.1
14:30 108.723 0.2 0.001 0.1
15:00 108.284 0.2 0.001 0.1
15:30 103.095 0.2 0.001 0.1
16:00 98.789 0.2 0.001 1
16:30 90.918 0.2 0.001 1
17:00 89.215 0.2 0.001 1
17:30 85.554 0.2 0.001 1
18:00 84.782 0.2 0.001 1
18:30 78.902 0.1 0.001 1
19:00 78.548 0.1 0.001 0.1
19:30 75.903 0.1 0.001 0.1
20:00 74.258 0.1 0.001 0.1

Table 2.7: Input demand and pricing time series for the battery control optimisation
example.

Figure 2.8: The optimal battery operation, showing the battery discharging during
the evening peak hours. But given the input parameter we have here, it is not

favourable for the battery to charge up prior to that.

forecast. We compared two leading machine learning tools fit for this purpose,

namely the “white box” random forest and the “black box” LSTM methods. We

found that the random forest model that accounted for the current datetime and

weather information as well as the weather conditions in the previous hour was

the most suitable for long-term offline forecast, whereas the autoregressive (i.e.

demand values from previous time steps are also considered) random forest model
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worked better for the real-time prediction provided that the prediction horizon

was sufficiently short — shorter than one day (48 time steps) in our case. We also

found that despite their sophisticated “black box” architecture, the LSTM models

did not outperform the random forest models in any of our settings, with or with-

out explicit autoregression. The offline LSTM model was particularly poor for the

2 weeks ahead forecast. Q-PLUS will therefore employ random forest models for

the demand prediction.

Furthermore, our results also highlight the advantages of data-driven machine

learning models for electricity demand prediction over the conventional, costly

and highly complex physical models: given adequate demand data, the same ap-

proach can be applied to any building; the random forest models take only seconds

to minutes to build and can achieve high levels of accuracy, without the need to

conduct a full survey of the building or compute the numerous parameters that

are required by the physical modelling packages like EnergyPlus. Nevertheless,

machine learning models are not without any limitations. The validity of a ma-

chine learning model depends heavily on the training data. Here for the demand

prediction, we have had a sufficient set of half-hourly demand data to work with

that covers the full year and without any missing data, so it covers essentially the

full temperature range and operation conditions that one can expect to encounter.

However, this is not necessary the case for the HVAC control data. As we shall

see in the next chapter, BMS data usually cover only a small subset of the very

large configuration space consisting of all the possible temperature and control

combinations, due to the rigidity of the simple feed-back loop control system that

only allows the indoor conditions to vary within some tight setpoint ranges. This

clearly poses a huge hurdle for creating a data-driven smart energy management

system that exploits the HVAC demand flexibility by taking the indoor temper-

ature and CO2 level beyond the existing setpoint range at certain times of the

day.
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Flexibility

3.1 Demand shift without battery

The aim of Q-PLUS is to help commercial buildings shift their electricity

demand from the grid away from the peak hours, so they can pay less for elec-

tricity as well as generate extra income by providing ancillary services. In the

previous chapter, we demonstrated how this could be done with a battery. How-

ever, installing a battery storage system in a building a is a huge investment and

the expected payback period can easily exceed a decade, this is not a risk every

building manager is willing to take. Therefore in this chapter we investigate how,

if feasible, buildings without batteries may also shift their demand as if there were

a battery.

The idea behind this is straightforward: HVAC systems are flexible loads because

all buildings have thermal inertia and natural ventilation, just to different extents.

For instance, in the winter the building can be slightly overheated before the peak

hours so that the heating system can be turned down or even completely switched

off during the peak times, because it takes time for the heat to dissipate out of

the building. Similarly, the building can be ventilated and get the air exchanged

in advance, so that the ventilation system can be turned off during the peak hours

without too much CO2 building up inside as the air will still circulate naturally.

For those better built buildings which are very well insulated and with good natural

ventilation, The HVAC systems may provide sufficient flexibility for the building

to provide demand side responses and to generate extra income. Nevertheless, we

must ensure that the safety and comfort of the occupants inside are not compro-

mised by doing so. In particular, CO2 can build up to an unsafe level if the air

handling unit is switched off for too long and the building relies only on natural

convection. Rapid variations in the indoor temperature can also cause discomfort

even if the temperature is maintained within the acceptable comfort range; as a

rule of thumb, a change of ±0.5◦C per hour inside the comfort range can gener-

ally go unnoticed. Hence in order to make the most of the flexibility, we need to

34
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be able to predict accurately how the state variables of the indoor environment,

which include the temperature and carbon dioxide level, change with the controls

of the HVAC system, under different weather conditions and at different times.

Our task is then to find the most suitable machine learning tool to do so. How-

ever, since a data-driven model cannot be built without adequate data, we need

to first assess the characteristics and suitability of the available BMS data before

we proceed to model building. Moreover, by examining the BMS data closely, we

also want to obtain an estimate of how much potential flexibility we can really get

from the HVAC system and justify the idea of “demand shift without battery” for

commercial building blocks. This chapter is thus dedicated to the analysis of BMS

data.

3.2 A Newcastle case study

Comprehensive BMS data that cover a long enough period so that all the

important dynamics and seasonality can be captured are very difficult to find, as

most buildings do not keep the record. Fortunately, we have been able to obtain

the BMS data for Building B, a building located in the city of Newcastle upon

Tyne for our flexibility case study, courtesy of Newcastle University. Completed

recently, the building itself was also designed to serve as a big laboratory for smart

building experiments, and therefore has very detailed records of its BMS and in-

door environment data. The dataset covers one of the plant zones on the third

floor and the data runs from 01-01-2018 to 10-10-2018. A closer look at the orig-

inal technical drawings of Building B reveals that even this single plant zone has

very complex dynamics, with 19 data collection points across the whole space plus

16 sets of meter readings for the HVAC system serving the zone. Due to the com-

plexity of the HVAC system and the lack of transparency of the commercial BMS

currently being used in Building B, it is not an easy task to fully understand how

the individual subsystems interact with each other. Nevertheless, such challenge

also motivates exactly the use of data-driven models over physical models. With

sufficient data, we hope to be able to infer the interplay of the different subsys-

tems and the indoor environment by extracting meaningful patterns from the data.

Because we are interested in the flexibility and savings achievable from the chill

beam water pumps, heat pump and the air handling unit in the plant room that

serve the plant zone as a whole, rather than the potentials from individual offices

and areas, we shall first aggregate and average the temperature and carbon dioxide

readings from the raw data across the whole plant zone, and then compare them
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with the operation powers of the various HVAC subsystems.

3.3 Thermal flexibility

Throughout the entire period from 01-01-2018 to 10-10-2018, the average

zone temperature had been kept between 20.5 and 25.5 degrees; an example period

is shown in figure 3.1 for the month of February. This variation is rather small;

the setpoint range can be widened to facilitate higher flexibility, especially in a

well-insulated building like Building B. For instance, it is not necessary to keep

the building above 20.5 degrees in the evening. Then the office space can be

overheated to, for example, 28 degrees early in the morning before the peak hours

without causing discomfort to the occupants, as the occupancy is likely to be very

low. Depending on the outside temperature and how well the insulation is, the

heating systems can then be turned down or completely off for a certain duration

of time during the day when the prices are higher. The question is then for how

long and by how much we can turn the heating down.

Figure 3.1: Average zone temperature in February 2018. The indoor temperature
was kept between 21 and 23.5 all the time. This range can be widened to create more

flexibility for demand shifting.

3.3.1 Hot and chill water pumps

In order to identify flexible load and model it, we need to first identify

which part of the power consumption correlates to which element in the system.

As shown in the schematic in figure 3.2, heating and cooling of the indoor space

is done by water passing through the chill beam. The temperature of the two

circuits of hot and cold water is controlled by the heat pump. The circuits are not
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Figure 3.2: The aggregated schematic of the plant zone in Building B.
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closed within the zone; there is also hot and cold water coming from the core plant

room on the roof of Building B, for which we have no data. The data labels also

suggest that there are pumps in the plant room to circulate the water within the

zone in the chill beams. Let us first examine how the flow rates varies with the

power of the pumps. In order to get a better contrast and a better understanding,

we extract a winter period, a summer period and a fall period for the analysis.

As the flow rates and the water pump powers are measured in different units,

we need to first normalise the different time series with z-normalisation before

we make any comparison. We shall use the Keogh distance [16] to measure how

similar and closely related two time series are: the Keogh distance is the lower

bound distance for the dynamic time warping (DTW) of the two time series, thus

it takes into account both the shape and relative shift of the waveforms of the time

series. Here we employ a shape based approach that also allows varying shift in the

time domain because the response of the state of the system following a change in

the control is highly complicated, thus the response is not necessarily linear with

respect to the control and may take different amount of time to manifest under

different conditions.

Figure 3.3: The normalised flow rate of hot and cold water in the chill beam verses
the power of the pumps in February. The red and blue lines are the hot and chill water

flow rates whereas the orange and purple lines are the hot and chill water pump
powers. It shows a strong correlation for the cold water circuit but somewhat

unexpected behaviour for the hot water circuit.

Let us first look at the winter month of February. As shown in Figure 3.3,

there is a strong correlation between the cold water flow (blue) and the power of

the cold water pump (purple). Indeed, the z-score Keogh distance between the

two curves is 2.85. However, the hot water curves exhibit an rather unexpected

anti-correlation: while the hot water pump power (orange) went up during core

hours (8am-6pm), the hot water flow rate (red) actually decreased slightly over

these hours on most days. The z-score Keogh distance between the two curves is

31.61, showing a significant deviation between them. Although the hot water pump
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power time series exhibits the expected “5 high plus 2 low spikes” weekly pattern

(except for some weekends where there could be some events in the building), the

flow rate shows almost the opposite pattern. Figure 3.4 shows the normalised hot

water pump power and flow rate on the working days only. The power of the pump

does not seem to have any effect on the flow rate at all, which is unexpected. In

order to fully capture the heating dynamics of the building, we also need the data

from the central core plant as part of the heating energy must have come from

there.

Figure 3.4: Hot water chill beam pump power (orange) vs flow rate (red) on
February work days. The pump consumes more power during the core hours of

8am-6pm, but the flow rate remains more or less constant throughout the day, with a
slight dip over the core hours. Both sets of curves are z-normalised.

Let us now turn to the pumps and flow rates during the summer period
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of July and August (Figure 3.5). This time it is the hot water profiles that show

Figure 3.5: Flow rate vs pump power for the summer months; the hot water profiles
clearly follow matching patterns, except during the several periods when the flow rate

was zero but the hot water pump was still operating at considerable power.

matching pattern but the chill water profiles only match in the second half, with

Keogh scores of 18.0 and 74.6 respectively. The flow rate of chill water was some-

how very low in July, even though the chill water pump was working hard. This

puzzling phenomenon is analogous to what we have just observed above for the

hot water pump and hot water flow rate in the winter month of February. Some

setpoint was probably changed on July 27 for three weeks where the peaks coin-

cided but a high flow rate was maintained even at the after hours when the pump

was off. The main pump was probably pumping hard 24/7 over that period, with

some boost of the flow from our measured zone pump which gave the matching

spikes. Towards the end the two curves match very well with a z-score Keogh

distance of 4.57, suggesting that the main pump was turned down, or even off,

and the circulation was done mostly or solely by the zonal pump.

Building B began taking data at the start of 2018; as more and more data were

taken, the data quality also improved. Let us now turn to the comparison in fall,

towards the end of the data run. Both the hot and chill water flows and pump

powers show very strong correlation during this period, with Keogh distances of

6.95 and 17.5 respectively (Figure 3.6). The reason could be that during the tran-

sitional seasons of spring and autumn, the building’s main heating and cooling

systems were turned off or ran at low power, so that most of the temperature reg-

ulation in each zone was done locally by the secondary systems in the individual

zonal plants.

It is clear that the plant zone itself is not a closed system. There are cer-

tainly hidden dynamics coming from the building’s main heating system which are
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Figure 3.6: Both sets of curves for the hot and cold water circuits exhibit close
correlation in fall. It could be that during the transitional season, the core plant was
running at low power or maybe be even off, so that heating in cooling in the zone was

mostly provided by the zonal plant.

not covered by our data, and this is why the correlation between the hot and cold

water pump power and the flow rate varies through out the year. In the winter,

most of the heating was done by the main heating system and therefore the hot

water flow rate did not quite follow the hot water pump power, whereas cooling

demand was low so whatever cooling was needed in the plant zone, it was handled

by the zonal cold water pump, and vice versa in the summer. In order to make an

accurate model for the Q-PLUS control system though, we must take into account

these external factors coming from the main plant by including the relevant data in

our model, such as the incoming flow rate from the main hot water pipe, even if we

do not seek to fully understand the heat transfer and dynamics physically. Under

the MPC framework, these will be exogenous factors (dt) as we have no control

over the core pumps at the plant zone level. Without any data from the core plant,

it is not possible to infer anything meaningful for the hot and chill water pumps in

the plant zone. Thus at this stage we are not able to estimate how much flexibility

can be harnessed from the hot and chill water pumps that we have been looking at.

3.3.2 Heat pump

Apart from the hot and cold water pumps, there is also a heat pump in

the plant room. It is used to regulate the temperature of the hot and cold water

circulating in the zone by extracting heat from the cold water and transferring it

to the hot water via work. Let us define

heating = (supply temperature− return temperature)× hot water flow rate
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and similarly,

cooling = (return temperature− supply temperature)× chill water flow rate

where the supply and return temperatures of the heat pump are recorded in the

dataset, and the flow rates are taken to be the same as in the chill beams. Cooling

and heating are therefore measured in units of power which also incorporate the

specific heat capacity of water. We want to see how the amount of heating and

cooling done is related to the power of the heat pump.

As we can see from figure 3.7, in the winter period of February, there was essen-

tially no cooling (blue line). The peaks and troughs of the heating (red) and power

(black) curves do coincide although they do not have quite the same shape. Also

from the same level of power during the working hours, different levels of heating

could be achieved — significantly more heat was clearly being transferred at the

beginning and end of February than in the middle, although the heat pump oper-

ated at very similar daily profiles throughout this period. Of course, the efficiency

of the heat pump also depends on the temperature difference between the hot and

cold water; the coefficient of performance decreases with increasing temperature

difference. However, as illustrated by the grey curve in figure 3.7, the temperature

difference of the water also exhibited regular diurnal pattern with pretty much the

same amplitude on the weekdays, thus it wouldn’t explain why different amount

of heating was achieved by the same level of power. Figure 3.8 further highlights

the fact that different amount of heating could be achieved with the same power

of the heat pump, and the temperature difference of the water played little role.

When the power was around 5kW, any amount of heating across the board was

achievable with temperature difference ranging from 15 to 30 degrees. If we do not

take the temperature difference into account, the Pearson correlation coefficient

between power and heating in February was 0.73, which is not very strong. Indeed,

the efficiency of the heat pump is highly non-linear, and it might also be that the

water in the heat pump was mixed with the water coming from the main system,

whose effect has not been taken into account as we have no data for it. Therefore

it is hard to tell what the effect of changing just the power level of the zonal plant

heat pump would be on the space heating.

Things were even more bizarre in the summer months of July and August.

As shown in figure 3.9, a lot of cooling was done in the first half of August.

However, the cooling was done over night, when the temperature was lower and

the heat pump was essentially off (a non-zero power consumption suggests that
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Figure 3.7: The heating peaks mostly coincided but clearly various levels of heating
(red) could be achieved with the same level of power (black). The temperature

difference between the hot and cold water also played little role in affecting the amount
of heating being done.

Figure 3.8: Scatter plot of heat pump power vs heating done in February. The
correlation coefficient is a moderate 0.73. The temperature difference of the water in

the hot and cold water circuits is shown in colour scale.

it was on standby mode). The scatter plot of heat pump power versus cooling

in figure 3.10 also indicates that, irrespective of the temperature difference of

the water in the heat pump, a wide range of cooling was done when the heat

pump was operating at the minimum power level; alternatively, zero cooling could

happen even when the heat pump was operating at high power. If we ignore the

temperature difference factor, the correlation coefficient between cooling and the

power was -0.19 during that period. Thus we cannot find any explicit relationship

between cooling and the heat pump power either. It is not possible to estimate how

much flexibility one can get from the heat pump from this kind of intuitive analysis

of just the plant zone BMS data, without knowing all the other components in



44

play and having their data taken into consideration.

Figure 3.9: Over the summer, most cooling (blue) was done when the heat pump was
operating at minimum level in the first half of August. The dip in mid August is most

likely due to be some residual error in the data after data cleaning.

Figure 3.10: Scatter plot of heat pump power vs cooling done in the summer. Any
level of cooling was achievable when the heat pump was not operating, whereas any
power level could give zero cooling, irrespective of the temperature difference of the
water in the heat pump. If we ignore these irregularities, then there is a moderate

positive correlation of 0.41 between cooling and heat pump power.

3.4 Air Handling Unit

In order to be able to model how the space state variables change with the

control variables accurately using machine learning methods, we need to have a

large number of data points covering the entire target range of the state variables

and spreading across the full range of allowed controls. However, since the inside

temperature of Building B was always kept inside a narrow 5 degrees band between
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20.5 and 25.5 degrees, no data-driven model would be able to provide a reliable

prediction on how the indoor temperature well outside this range — all the way

down to 15 degrees and up to 30 degrees in order to increase the flexibility for

demand shift — would change with the HVAC power levels.

Fortunately during the data run, the air handling unit (AHU) was operating at ap-

proximately 20% lower power from 11/09/2018 until the end of the run, as shown

in figure 3.11, possibly due to some setpoint change. We can therefore compare

the carbon dioxide level in this 4.5 weeks period with the month before and see

what the effect was, assuming that all other variables like weather and occupancy

were more or less the same throughout the entire two-month period so they had

negligible effect on the change in the CO2 level.

Figure 3.11: The AHU operated at a lower power level after 11/09/18. The CO2
concentration clearly peaked at higher levels on the weekdays after the change.

Let us take a closer look at how the CO2 level responded to a reduced AHU

power. Let us focus on the weekdays as it is a matter of safety when the occupants

are in; the AHU was already set to off over the weekends anyway. Figure 3.12 shows

the daily average of the AHU power and the CO2 level before and after the change.

There was a clear increase of about 20ppm in the peak CO2 level after the average

power of the AHU was reduced by about 300W, which would translate to around

600kWh of saving per year. The increased level of CO2 was still well within the

safety bound of 1000ppm; thus there is still room for further savings. This saving

is however not the same as flexibility. In order to provide demand side response, a

flexible load may be turned off completely for a time period ranging from minutes

to several hours, and this is likely to happen during the peak hours of 4-7pm.

This is fundamentally different from simply running the system at lower power

continuously over the course of the day to save energy. According to the data, the

AHU was only turned off at 7pm on working days; we cannot estimate from the

data how the indoor CO2 level would build up if we were to turn off the AHU
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at 4pm instead in order to provide demand side response, because 7pm and 4pm

mean completely different operation conditions: at 4pm most occupants would

still be inside the building and exhaling CO2 and be affected by its concentration;

in fact the occupancy also has an impact on the zonal temperature because people

have body heat, but not at 7pm when most of them would have left. Therefore in

order to capture how CO2 would build up when people are in, it is necessary to

experiment and turn the power down or completely off during the working hours.

Without knowing the rate at which CO2 builds up at different power levels of the

AHU, it is not possible to estimate by how much its energy consumption can be

shifted safely.

Figure 3.12: As the average AHU power reduced from 1.88kW to 1.52kW during the
office hours, the average peak CO2 concentration increased from 526ppm to 548ppm.
A concentration of 1000ppm starts causing drowsiness. We can also see that after the
AHU was turned off (standby mode, this is why the power is above 0) at 7pm, CO2
concentration started increasing up until around 9pm, as some people could still be

working in the building, then it diffused away naturally over night.

3.5 Discussion

In this chapter, we examined carefully the BMS data from a plant zone in

a building in Newcastle, in attempt to estimate how much of the HVAC load could
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be shifted. We looked for correlations between the power levels of various HVAC

units and different state variables of the system, but could not find any consistent

inference for the heating or cooling system. We believe this is due to the main

heating and cooling systems of the building also contributing to the temperature

regulation of the zone, which we have not accounted for as we do not have the

data. For the ventilation system, we found that when the mean AHU power was

reduced by 19% from 1.88kW to 1.52kW over the working hours, the peak CO2

concentration only increased by 4.2 % from 526ppm to 548ppm, and was still well

inside the safety threshold. However, this is just energy saving and not the flexi-

bility we are looking for — we want to see by how much we would need to crank

up the AHU before the peak hours so that we can turn it down, or perhaps off

from 4pm. In order to estimate this, we need some data to show how the CO2

level would build up if the AHU were to be turned down during the working hours

when the occupants are in, and not at 5-7pm as it was always done in the data

run, because the building would be mostly empty by then.

Indeed this case study highlights the biggest challenge in developing a data-driven

MPC-based smart building energy management system — there is insufficient data

to learn and build the predictive model from. Conventional BMS that runs on sim-

ple feedback loops are bounded to keep the indoor environment to be within the

measurement error and some small tolerance of the setpoints. The rigidity of the

system means there is barely any data outside this small range of the state space.

However, shifting the HVAC load away from the peak hours without a battery

relies on the relaxing the indoor environment requirement as written on the set-

points. Therefore without sufficient data that cover more corners of the overall

configuration space, it is not possible to harness the flexibility of the HVAC load

in a safe and “smart” manner.

Our study also lays bare the deficiency in relying only on the BMS data to un-

derstand the dynamics between the HVAC system and indoor environment, in

hope that the data will reveal all, especially when the available data do not even

represent the full system. Our data only cover one of the many plant zones in

Building B and we do not know how the main system serving the entire building

interacts with it; so at best we can only account for a subset of all the relevant

factors affecting that particular zone. This is why we have not been able to find

any meaningful conclusion from the data regarding the potential flexibility. We

also lack the engineering knowledge of HVAC system itself — we were hoping that

the data would tell how the different subsystems interact with each other, which
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turned out to be extremely challenging.

All these observations seem to cast doubt on whether the data-drive modelling

approach really is more advantageous than the physical engineering approach in

terms of reliability, efficiency and scalability for developing the predictive model

for a smart energy management system. While the expert knowledge from en-

gineers are no doubt crucial for building a reliable predictive model, as we shall

see in the next chapter, machine learning can serve as a very useful, efficient and

scalable complement.



Chapter 4

Temperature prediction with Gaus-

sian Process

As we discussed in the previous chapter, the data collected by existing

BMS usually cover only a very narrow range of the state space. In order to fully

exploit the flexibility from the HVAC system, ideally we need a model that can

extrapolate into the part of the state space where data points are not yet present.

However, one cannot expect any data-driven model to give an accurate prediction

in regions of the state space not covered by data, therefore it is important to be

able to address how confident we are about the predictions before we pass them

onto the control optimisation algorithm. Thus we need a machine learning tool

that predicts not only how the state variables respond to the controls, but also the

error associated with the predictions, i.e.

xt+1 = f (xt, ut, dt) + ε , (4.1)

where f is the prediction and ε is the error. One way to do this is via a Bayesian

stochastic regression method, namely the Gaussian Process, which can be treated

as a distribution over random functions. Originally developed by Krige [17], it

was reintroduced to the machine learning community by [18], and was first applied

within the MPC context in [19]. We shall review the mathematics of the powerful

Gaussian Process model and illustrate how to apply it in the Q-PLUS smart HVAC

control system in this chapter. We follow closely the formulation and notation used

in [20] in our review.

4.1 Bayesian Regression

In regression problems, we learn a map from the input space X ∈ Rn of

n-dimensional vectors to an output space Y ∈ R of real valued targets. In a fre-

quentist setting, one would attempt to identify the “best-fit” model of the data

to make “best guess” predictions for new inputs, with the assumption that there

exists true values of the model parameters. This is done by finding model param-

49
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eters that maximise the likelihood of the data given the model. The linear least

square method is an example of a maximum likelihood estimation (MLE) method.

In a Bayesian setting however, only the data are faithful and the aim is to find the

probability distributions that characterise the model parameters. In other words,

there are no “true” values of the parameters, just that some values are more prob-

able than the others.

To illustrate the key difference between the two approaches, let D denote ob-

served data and let θ ∈ Θ be some model or hypothesis of interest characterised

by parameters θ. The Bayes’ theorem states that

p (θ|D) =
p (D|θ) p (θ)

p (D)

where p (θ|D) is the posterior probability of obtaining the model θ given the ob-

servations D, p (D|θ) is the likelihood of obtaining D under the model θ, p (θ) is

the prior probability distribution of the model θ which quantifies our prior be-

liefs about the reality before making observations, and p (D) is the probability of

obtaining the observations D, which is effectively a scaling constant. The goal

of Bayesian analysis is to find the posterior probability distribution, which then

allows one to estimate the output y given some input x and with an error bar.

The likelihood p (D|θ) is the quantity which a frequentist model maximises, where

the best fit model is given by the maximum likelihood estimate1

θ̂MLE = argmax
θ

p (D|θ) .

Since the posterior is proportional to the multiple of the likelihood and prior,

there is also a semi-Bayesian method, namely the maximum a posteriori proba-

bility (MAP) estimation which is closely related to MLE, but with an augmented

optimisation objective which incorporates our prior knowledge of the problem.

MAP estimation thus finds the model that best fits the data by finding the mode

(maximum) of the posterior distribution, i.e.

θ̂MAP = argmax
θ

p (θ|D) .

Note that if the prior distribution is uniform, then MAP and MLE are then the

same.

1We assume for simplicity there exists a unique solution, which is not always the case.
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For a fully Bayesian treatment, let us write D := {(x(i), y(i)}mi=1 where x(i) ∈ X
and y(i) ∈ Y be a training set of m i.i.d samples from some distribution. Given

the prior p(θ), the parameter posterior can be found using Bayes’ theorem

p(θ|D) =
p(D|θ)p(θ)∫

θ′
p(D|θ′)p(θ′)dθ′

=
p(θ)

∏m
i=1 p(y

(i)|x(i), θ)∫
θ′
p(θ′)

∏m
i=1 p(y

(i)|x(i), θ′)dθ′
, (4.2)

where we have explicitly written out p(D) by integrating over the parameters. Let

us denote the test input by x∗ and the test output we are after y∗. A Bayesian

method gives a distribution for y∗, known as the posterior predictive distribution,

instead of a single guess for the value of y∗ as in the frequentist case. Assuming

the distribution of noise (random fluctuation) does not change so that it is the

same for both the training and testing sets, the posterior predictive distribution is

therefore given by

p(y∗|x∗,D) =

∫
θ

p(y∗|x∗, θ)p(θ|D) dθ . (4.3)

In general however, the integrals in (4.2) and (4.3) are very difficult to compute.

Clearly, the complexity of the model is related to the number of dimensions of

the parameter space Θ. A nonparametric model does not mean there are no

parameters. A parametric model assumes a fixed, finite dimensional parameter

space Θ; given the parameters (or the distribution of parameters), future pre-

dictions of output y∗ from input x∗ are independent of the observed data i.e

p (y∗|θ, x∗,D) = p (y∗|θ, x∗), as the finite set of parameters encode all the infor-

mation inferred from the data. This greatly restricts the complexity of the model:

the complexity is bounded by the fixed dimension of Θ even though the sample

size can be unbounded. A nonparametric model on the other hand, allows the

dimension of the parameter space to grow with the dataset by starting with an

infinite-dimensional parameter space, and invoking a finite subset of parameters

on any given finite dataset, hence giving the model much greater flexibility and

the ability to capture more structures as more observations are made.

4.2 Bayesian Linear Regression

Let us demonstrate the principles of parametric Bayesian methods with an

example. The standard probabilistic interpretation of linear regression from m
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samples is that

y(i) = θ · x(i) + ε(i) ∀ i ∈ [1,m]

where θ ∈ Rn is the vector of parameters and ε(i) ∈ R is the i.i.d. noise which

follows ε ∼ N (0, σ2
ε) . Let us explicitly write

X :=


(
x(1)
)T(

x(1)
)T

...(
x(n)
)T

 ∈ Rm×n , Y :=


y(1)

y(2)

...

y(m)

 ∈ Rm , ε :=


ε(1)

ε(2)

...

ε(m)

 ∈ Rm .

To begin with, we need to choose a prior distribution over the model parameters.

This is typically chosen to be Gaussian θ ∼ N (0,Λ−1), where Λ is called the

precision matrix or inverse covariance. A common choice for the precision matrix

is Λ = λIn×n with λ ∈ R+ quantifying our prior belief on the concentration of the

model parameters θ. In this case the parameter posterior (4.2) and the posterior

predictive distribution (4.3) are actually tractable. A good few lines of algebra

reveals that, defining A := 1
σ2
ε
XTX + λI

θ|D ∼ N
(

1
σ2
ε
A−1XTY,A−1

)
y∗|x∗,D ∼ N

(
1
σ2
ε
x∗TA−1XTY, x∗A−1x∗ + σ2

ε

)
.

Hence the test output y∗ follows a Gaussian distribution, with the uncertainty2

arising from both the random fluctuations ε∗ and the uncertainty around the pa-

rameters θ.

4.3 Multivariate Gaussian Distribution

Gaussian random variables are extremely useful not only because of the

central limit theorem and that noise often exhibits Gaussian distribution, there

are many desirable analytical properties of the Gaussian distribution which sig-

nificantly simplify the calculations, as we have already seen in the previous sec-

tion. Consider a random vector x ∈ Rn with multivariate Gaussian distribution

x ∼ N (µ,Σ), i.e.

p (x;µ,Σ) =
1

(2π)n |Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
2Recall that y∗ is a distribution over the target and the spread in the distribution offers a

natural measure of uncertainty.
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with the assumption that the covariance matrix Σ is nondegenerate; this clearly

reduces to the usual Gaussian distribution

p
(
x;µ, σ2

)
=

1√
2πσ2

e−
(x−µ)2

2σ2

for n = 1. Now let us consider partitioning Rn into two subspaces, so that the vari-

ables in the random vector x ∈ Rn are partitioned into two sets xA = [x1...xr]
T ∈

Rr and xB = [xr+1...xn]T ∈ Rn−r, such that µ and Σ are partitioned accordingly:

x =

[
xA

xB

]
, µ =

[
µA

µB

]
and Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
,

where ΣBA = ΣT
AB as ΣT = Σ. It follows that:

1. Marginalisation. The marginal densities, i.e.

p(xA) =
∫
xB
p(xA, xB;µ,Σ) dxB

p(xB) =
∫
xA
p(xA, xB;µ,Σ) dxA

are also Gaussian

xA ∼ N (µA,ΣAA)

xB ∼ N (µB,ΣBB) .

2. Conditioning. The conditional densities, i.e.

p(xA|xB) = p(xA,xB ;µ,Σ)∫A
x p(xA,xB ;µ,Σ)dxA

p(xB|xA) = p(xA,xB ;µ,Σ)∫B
x p(xA,xB ;µ,Σ)dxB

are also Gaussian

xA|xB ∼ N
(
µA + ΣABΣ−1

BB(xB − µB),ΣAA − ΣABΣ−1
BBΣBA

)
xB|xA ∼ N

(
µB + ΣBAΣ−1

AA(xA − µA),ΣBB − ΣBAΣ−1
AAΣAB

)
.

The fact that the probability density normalises∫
x

p(x;µ,Σ)dx = 1

can be handy in computing some complicated integrals which look not too dissim-

ilar to the probability density function of the Gaussian distribution, such as those
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of the form ∫
x

exp

(
−1

2
xTAx− xT b− c

)
dx

by “completing the square”. Furthermore, if y ∼ N (µy,Σy) and z ∼ N (µz,Σz)

are two independent vector-valued Gaussian random variables of the same dimen-

sionality, the their sum is also Gaussian with

y + z ∼ N (µy + µz,Σy + Σz) .

4.4 Gaussian Process

As the system dynamics between the indoor environment and the HVAC

systems are highly non-linear, Bayesian linear regression would be over restrictive

for our purpose. Since we do not know the functional form of f in our sough after

state equation (4.1), we would like to consider all possible functions in our prior

and examine the most likely ones.

How are probability distributions parametrised over functions? Let us first con-

sider a finite set of m elements X = x1, ..., xm and let H be the set of all possible

functions mapping X to R. In this case we may represent an example function

f1 (X ) ∈ H as a m-dimensional vector ~f1 and specify a probability density over

each ~f . For instance, if ~f ∼ N (~µ, σ2Im×m), then the probability distribution over

the random functions f is given by

p(f) =
m∏
i=1

1√
2πσ

exp

(
− 1

2σ2
(f(xi)− µi)2

)
. (4.4)

Observe that after a random function f0 is drawn from H probabilistically, f0 is a

deterministic mapping f0 : X → R. It is not the output of f0 that is probabilistic,

but the drawing of f0. Here the domain of the functions f has finite size, so how

can we extend the domain size to be infinite?

Recall that a stochastic process is a set of random variables {f(x) : x ∈ X}
indexed by the elements x from some index set X . We denote the random variable

by f(x) because in regression problems, the index set is often taking to be the

d-dimensional input space i.e. X = Rd. A Gaussian process is a stochastic process

such that any finite sub-collection of random variables has a multivariate Gaussian

distribution: if the collection {f(x) : x ∈ X} is said to be drawn from a Gaussian
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Process with mean function m(x) and covariance function k(x, x′) , denoted by

f(x) ∼ GP (m(x), k(x, x′)) , (4.5)

then for any finite set of elements x1, ..., xm ∈ X , the corresponding set of random

variables f(x1), ..., f(xm) follows the distribution
f (x1)

...

f (xm)

 ∼ N


m (x1)

...

m (xm)

 ,

k (x1, x1) · · · k (x1, xm)

...
. . .

...

k (xm, x1) · · · k (xm, xm)


 . (4.6)

Just like the multivariate Gaussian, the mean function and covariance function

have the interpretations

m(x) = E [f(x)] (4.7)

k (x, x′) = E [(f(x)−m(x)) (f(x′)−m(x′))] . (4.8)

Thus a function f(x) drawn from a Gaussian process can be treated as a very

high-dimensional vector representing f(x) drawn from a very high dimensional

multivariate Gaussian, each dimension corresponding to an index x in the index

set X . Due to the nice marginalisation property of multivariate Gaussians, the

marginal distribution of any sub-collection of f(x) is also a multivariate Gaussian.

This is the key for making predictions in Gaussian processes, as we shall see below.

Supposed we have a training dataset of m i.i.d samplesD := (X, Y ) = {x(i), y(i)}mi=1

where x(i) ∈ Rn and y(i) ∈ R (thus X ∈ Rm×n and Y ∈ Rm). For computational

convenience, let us further assume that the training set is already z-transformed,

so it is zero-meaned and dimensionless. We want to fit a regression model

y(i) = f
(
x(i)
)

+ ε(i) (4.9)

where ε(i) ∼ N (0, σ2) is some i.i.d. noise which follows an independent Gaussian

distribution. Now instead of specifying a prior distribution for the model param-

eters θ of some given functions as in the Bayesian linear regression model, in a

Gaussian process regression model, we specify the prior distribution of the random

function f(x) to be a Gaussian process

f(x) ∼ GP(0, k(x, x′)) (4.10)
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for some appropriate covariance function k(x, x′). We shall come back to what

makes a covariance function appropriate after deriving the Gaussian process pre-

dictions.

Let X∗ = {x∗(j)}lj=1 ∈ Rl×n be a set of l test inputs and Y ∗ = {y∗(j)}lj=1 ∈ Rl be

the corresponding test outputs. We may assume that the test set T = (X∗, Y ∗)

and the data D are mutually independent. Our goal is thus to find the poste-

rior predictive distribution p(Y ∗|X∗,D), and this is where the nice partitioning

property of multivariate Gaussian comes into play: since any function f(x) drawn

from a Gaussian Process prior over any set of input points x belonging to the

index set X must follow a joint multivariate Gaussian, the same must also be true

for the composite set of inputs X + X∗. Furthermore, since X + X∗ is naturally

partitioned, we have[
f

f ∗

]∣∣∣∣∣X,X∗ ∼ N
(

[0],

[
K (X,X) K (X,X∗)

K (X∗, X) K (X∗X∗)

])
, (4.11)

where

f =
[
f(x(1)) · · · f(x(m))

]T ∈ Rm

f ∗ =
[
f(x∗(1)) · · · f(x∗(l))

]T ∈ Rl

(K(X,X))i,j = k(x(i), x(j)) , K(X,X) ∈ Rm×m

(K(X,X∗))i,j = k(x(i), x∗(j)) , K(X,X∗) ∈ Rm×l

(K(X∗, X))i,j = k(x∗(i), x(j)) , K(X∗, X) ∈ Rl×m

(K(X∗, X∗))i,j = k(x∗(i), x∗(j)) , K(X∗, X∗) ∈ Rl×l . (4.12)

Similarly for the i.i.d. noise, we have the decomposition[
ε

ε∗

]
∼ N

(
[0],

[
σ2Im×m [0]m×l

[0]l×m σ2I l×l

])
, (4.13)

with ε ∈ Rm and ε∗ ∈ Rl. Then by the summing property of multivariate Gaussian,

we have[
y

y∗

]∣∣∣∣∣X,X∗ =

[
f

f ∗

]
+

[
ε

ε∗

]
∼ N

(
[0],

[
K (X,X) + σ2Im×m K (X,X∗)

K (X∗, X) K (X∗X∗) + σ2I l×l

])
.

(4.14)
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Last but not least, using the conditioning property, the posterior predictive distri-

bution can be found straightforwardly:

y∗|X∗, X, y ∼ N (µ∗,Σ∗) (4.15)

with

µ∗ = K(X∗, X)
(
K (X,X) + σ2Im×m

)−1
y

Σ∗ = K(X∗, X∗) + σ2I l×l −K(X∗, X)
(
K (X,X) + σ2Im×m

)−1
K(X,X∗) .(4.16)

Although the derivation of Gaussian process regression is nice and neat, the main

computation challenge lies in the matrix inversion (K (X,X) + σ2Im×m)
−1

. As it

is a m×m matrix, its inverse is of O(m3) complexity.

While the prior mean can be taken logically and straightforwardly from the train-

ing sample, we still need to specify an appropriate covariance function k(x, x′),

also known as the kernel, which plays a central in the Gaussian Process. In fact,

it encodes all the information about how different points in the input space co-

vary with each other in the output (or target) space, thus completely defines the

behaviour of the Gaussian process. As it specifies the covariance matrix of the

multivariate Gaussian, it must be positive semidefinite. The positive semidefinite-

ness also ensures that the Gaussian process can be represented as an infinite linear

combination of orthogonal functions by the Karhunen–Loève theorem, analogous

to the Fourier series decomposition of a function on a bounded interval. Kernels

can be multiplied and combined to make new ones, which is extremely useful in

regressing different types of features in the input space. For our purpose, we ex-

pect the state equation to be smooth such that nearby points in the input space

should be mapped to nearby points in the output space. Other properties to be

considered include stationarity, isotropy and periodicity. A covariance function is

stationary if k(x, x′) = k(x − x′), isotropic if k(x, x′) = k(|x − x′|), and periodic

if k(x, x′) = k(sin(x − x′)). The most commonly used covariance function is the

square-exponential (SE) kernel, also known as the radial based function (RBF)

kernel,

kSE(x, x′) = exp

(
− 1

2`2
||x− x′||2

)
(4.17)

where ` is the characteristic length scale of variation. The square-exponential

kernel is smooth, stationary and isotropic. In fact most of the standard kernels
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are stationary; the simple linear kernel

kL(x, x′) = x · x′ (4.18)

alone is just Bayesian linear regression but it is nevertheless non-stationary, there-

fore it can be useful in introducing non-stationarity in combined kernels.

Coming back to our specific problem of HVAC control, by comparing the state

equation (4.1) and the general regression model (4.9), it is easy to see that we

can apply Gaussian process regression to obtain (4.1) by taking the regression

output y to be the state at the next time step, and the model input to be the

state, control and external disturbance at the current time step, i.e. y = xt+1 and

x = {xt, ut, dt}.

4.5 Step-ahead temperature model

Building C is another building in Manchester. Unlike Building B, as shown

in figure 4.1, Building C’s HVAC system is rather simple, which is more suitable

for a proof-of-concept demonstration of the application of Gaussian process re-

gression in data-driven building energy modelling. The data also has a temporal

granularity of 15 minutes, which is more suitable for HVAC control than the half-

hour temporal steps the electricity market operates in.

Figure 4.1: Schematic of the HVAC system in Building C (courtesy of the University
of Manchester).

We shall focus on the flexibility of AHU1, and treat the boiler and underground

heat exchange systems on the left hand side of figure 4.1 as external factors. In

fact we only need to take into account the supply and return temperatures in the

buffer vessel on the supply side as the all the effects of the boiler and GSHP loops
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manifest in the buffer vessel. The raw time series data we obtained privately from

the University of Manchester are indeed synthetic data generated with Energy-

Plus, based on the weather and some other relevant data in the year of 2002. The

dataset has been validated by engineering experts, therefore we may treat it as the

ground truth even though it was simulated.

Our task is therefore to come up with a regression model that predicts how the

temperature in zone 1 responds to the power of the AHU1, thus the state we want

to predict is simply the one-dimensional scalar zone temperature, the control u is

just the power of AHU1 heating coil, and the disturbances d will account for all

other relevant factors such as outside temperature, humidity and the temperatures

in the buffer vessel loop.

Since detailed records (or in this case, simulation) of BMS data are hard to obtain,

before we set off and draw up a list of features to be fed into the Gaussian Process,

let us first look at what is available from the data. It is clear that not all the

features recorded in the raw data file are relevant to our problem of finding the

flexibility of AHU1. As illustrated in figure 4.1, the AHUs act as a temperature

boost to the buffer vessel demand loop. We may think of the part of heat transfer

done by the buffer vessel being proportional to the temperature difference between

the supply and return temperatures and treat it as one of the external factors in

d. The weather data is however not present. We therefore use the 2002 weather

data from Manchester airport as this is geographically the closest weather station

to Building C where the 2002 data are publicly available. The weather data is

taken from the website https://www.wunderground.com. In order to capture the

effect of day-time factors, with which the occupancy, a very important feature for

building energy model but is unfortunately usually unavailable, is strongly corre-

lated, we also input the extra engineered feature of whether or not the data point

is in the working hours.

Thus the input we use for the Gaussian Process (GP) model are: zone 1 air temper-

ature Z, AHU1 heating coil power P , buffer vessel supply and return temperatures

S and R, their difference ∆ = S − R outside temperature T , dew point temper-

ature D, humidity h, wind speed W , pressure p and weather condition C (fair,

cloudy, windy). The direct sum of these 11 features defines the 11-dimensional

input space X , and the output is simply the zone 1 air temperature at the next
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time step denoted by Z ′, which is a scalar, given by the Gaussian Process

Z ′(x) ∼ GP (m(x), k(x, x′)) (4.19)

where the kernel is chosen to be the composite kernel k = kC · kSE, the multi-

ple of the constant kernel and the square exponential kernel for its smoothness.

Note that the time index in the original time series plays no part here — in this

formulation we only want to obtain the zone temperature for the next time step,

therefore it is the underlying physical conditions that matter.

In order to illustrate how well the Gaussian Process model works and how it

fits into the MPC problem, let us focus on a small region of the ‘exogenous’ in-

put space X ′, the subspace of the input space X without the control input P .

This small region thus contains the very similar instances, and ideally they would

spread across the P dimension so that the Gaussian Process gives a nicely fitted

regression when these exogenous dimensions are collapsed onto the P -Z ′ plane (i.e.

each point on the P -Z ′ plane is 10-dimensional), which can then be treated simply

as the function Z ′ = Z ′(P ) with just one variable P , if all points are close enough

in X ′. Then when we encounter an instance with similar inputs in X ′, we can just

look up this function Z ′ = Z ′(P ) and use it as the state equation for the MPC.

Since the dimensionality of the input space is high and we only have one year

of data, we cannot look too closely into any specific region or else there would be

no data point to work with. Let us focus on the peak hours between 4 and 7 pm

on the weekdays; these are the time periods when we want to turn down or off

the AHU to avoid the high prices. Because we are controlling the heating coil in

the AHU which acts as a boost to the supply air temperature, the control should

be highly dependent on the temperature difference in the buffer vessel ∆ and the

outside dew point temperature D. Let us divide each of these two dimensions in

to 10 equidistant bins and select the 5th bin. By further selecting the data points

when the weather condition was ‘cloudy’, we are already left with just 22 data

points, with D ranging from 2.22 to 3.89 degrees, ∆ from 15.78 to 19.4 degrees,

P from 0 to 68W, and Z, Z ′ ranging from 18.91 to 21.75 degrees. By taking the

22nd point as the test point and the rest to train the Gaussian Process, we obtain

model shown in figure 4.2. Despite the fact that we only have 21 data points to

train the 11 dimensional model, the target is within 3 standard deviations from

the prediction. Note that the observations (red dots) are not expected to sit on

the mean function (black line) as they are projected onto the P -Z ′ plane with
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the other 10 dimensions taking the values of the target. In other words the mean

function shown here is the prediction for the zone temperature as a function of the

power of the AHU when all other conditions, including the outside temperature

and buffer vessel loop temperatures are the same as the blue target data point.

The mean model function in figure 4.2 is almost flat, which means that there is

Figure 4.2: Gaussian Process model for one step ahead (15 minutes) zone
temperature prediction as a function of the power of AHU1. The shaded region is the 3

standard deviations uncertainty range. The rainbow lines are posterior sample
functions. Note that only half of the sample functions are increasing in the P -Z ′ plane

as one would expect (i.e. the higher the power, the warmer). The model was
implemented using sklearn.gaussian process.GaussianProcessRegressor. The optimised

kernel used for prediction was 1.21 ·RBF (` = 4.53).

huge flexibility from the AHU1 under these operating conditions. The predicted

zone temperature stays very close to 19.25 deg no matter what the AHU1 power

is. This is not so surprising as this is just one-step, 15 minutes ahead model but

the building has huge thermal inertia; however, this is still a promising start for

future work on extension to multi-step ahead prediction for the Q-PLUS system.

4.6 Discussion and future work

In this chapter, we reviewed the mathematical properties of the Gaussian

Process model and demonstrated how it can be used to predict the zone tem-

perature as a function of an HVAC control parameter given different operation

conditions. We showed that even with only 21 data points (in a 11-dimensional
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input space, which makes the training dataset sparse), the model can make good

in-sample prediction with error within 3 standard deviations, thus the Gaussian

Process model looks to be a promising option for predicting the indoor state in

the Q-PLUS system. Of course, this really only is a starting point because we

have only considered a one-step ahead model and the time step is only 15 minutes

long. Further work is still needed to look into expanding the prediction horizon to

multiple-step ahead, covering at least the coming hour, as well as the integration

into the MPC framework. Another avenue for further research is to find the most

suitable covariance function or kernel for the specific purpose of smart HVAC con-

trol. Here we have only considered a simple composite kernel, and we observed

that the mean function in the example was not monotonically increasing in the

P -Z ′ as we had expected. One may therefore try and emphasise the positive cor-

relation between P and Z ′ by modifying the covariance function accordingly.

Going back to the basic question of whether machine learning models are indeed

less complex to build and more scalable than physical models, several aspects need

to be addressed. First of all, the complexity of Gaussian process notoriously scales

cubically with the number of samples because of the matrix operations involved.

In our example, we have only considered some very specific operation conditions

and so there were only 21 training samples for the model. It will take further re-

search to investigate how best to select a subset of all the available data points for

model training in order to balance the trade off between accuracy and complexity.

Secondly, the real test lies in the out-of-sample prediction — extrapolation into

the regions of the state space forbidden by the current control system — which

requires actual experimentation inside a building. Until then, it is not possible to

fully assess the accuracy of either approach. Nevertheless, since machine learning

models can be updated easily with new observations, their accuracy can always

improve over time. Thus machine learning clearly holds advantage over physical

modelling in terms of scalability and flexibility.



Chapter 5

Conclusion and future work

In this thesis, we conducted a pilot study for Q-PLUS, a data-driven model

predictive control smart building energy management system for commercial build-

ings. In particular, we looked at several machine learning algorithms and exam-

ined their applications in the various functions of Q-PLUS. In the first chapter, we

presented the optimal battery control as a model predictive control problem and

implemented the optimisation algorithm in Python. Using the historical demand

data as well as the corresponding weather and datetime information, we trained

and compared various random forest and LSTM models for the half-hourly elec-

tricity demand prediction for the MPC. We tested their performances on both

long-term (2 weeks plus) and short-term (up to one day ahead) forecasts. We

found that for the long-term demand forecast, the random forest model that took

into account the current datetime and weather information, as well as the weather

conditions in the hour before (i.e. two previous time steps), gave the most accurate

prediction, much better than its LSTM counterpart despite the more sophisticated

architecture of the latter; the LSTM model also took almost twice as long to train.

On the other hand, autoregressive random forest models were shown to be the

most suitable for short-term demand prediction of up to 10 steps (5 hours) ahead

for the real-time control. Interestingly, we also found that as we increased the

forecast horizon to 48 steps (one day) ahead, autoregressive models gave less ac-

curate predictions than the baseline non-autoregressive random forest model used

for offline long-term forecast.

Autoregressive models that take also the immediate past observations of the de-

mand into account can give more accurate demand predictions in the near future

by making sure that the projected demand follows the same trend and level as

in the previous few hours, so that there is better continuity with the “reality” as

opposed to an offline model which cannot be updated. For example, a conference

event being held in the building would cause a sudden surge in the electricity de-

mand. An offline model that has learnt mostly from normal operation days would

fail to predict this surge, whereas autoregression allows an online model to cor-

rect for the higher than usual demand on the go. Of course, special events are

63
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usually scheduled in advance and the building manager usually has some idea of

the number of attendees, so even an offline model should be able to capture such

spikes by including occupancy as a training feature. However, it is actually a very

challenging task to count the occupancy in a building accurately; this is why we

have not been able to include it in any of our models. In fact, it is an active area

of research to estimate the occupancy inside a building by using various proxy in-

dicators such as CO2 level or the number of devices connected to the WiFi system.

We then investigated the possibility of shifting a building’s HVAC demand with-

out a battery in chapter two. Using the data from a building in Newcastle, we

attempted to quantify the amount of flexibility the HVAC system could provide

by exploiting the thermal inertia and natural ventilation in the building. However,

due to the fact that conventional BMS only allows the indoor temperature and

CO2 level to vary within some narrow setpoint range, we did not have sufficient

data to cover a diverse enough set of operation conditions to estimate the flexi-

bility. Indeed, the lack of data to “learn” or “train” from is the main obstacle

to developing a machine learning predictive model for the smart building energy

management system. Our analysis also highlighted the limitations of a purely

data-driven approach to modelling the indoor climate as a function of the HVAC

controls. Without expert engineering knowledge of the full system, there is little

one could infer about the dynamics between the various subsystems and the indoor

environment just from the data.

To remedy the lack of diverse enough data to learn from and to address the need

to extrapolate the model into unprobed region of the state space, we proposed the

application of Gaussian Process model in chapter three. Treating the sought after

function as a high-dimensional vector where any finite collection of its samples fol-

lows a multivariate Gaussian distribution, the Bayesian stochastic method allows

us to keep track of the uncertainty of its prediction. Thus we may take the indoor

state gradually outside the existing setpoint range, and be confident at the level as

reflected by the uncertainty range that the comfort and safety requirements would

not be violated. Then as more data points are collected, especially in regions of

the state space not covered previously, the accuracy of the model improves pro-

gressively. We demonstrated how to apply the Gaussian Process in the context of

temperature control with a step-ahead example and showed that it gave promising

result. However, further work needs to be taken to expand it into a multi-step

ahead model as well as to fully incorporate it into the MPC framework. Compu-

tational cost is another issue that needs addressing as the complexity of Gaussian
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Process models grows cubically with the training sample size; kernel engineering

to find the most suitable covariant function for our specific application would be

another interesting and important research problem. Furthermore, a real experi-

ment in an actual building is the only way to assess the out-of-sample prediction

of the Gaussian Process model. Hence a lot more work is yet to be done along this

line of research both theoretically and empirically; what we have achieved in the

thesis is only a promising starting point.

Before we close our discussion, let us revisit the fundamental question of whether

machine learning approach is really better than physical modelling approach for

developing the predictive model in an MPC based smart building energy manage-

ment system. According to this study, the answer is an affirmative yes for the

electricity demand forecast of the whole building, which is useful in optimising

the control of the battery storage system for buildings fitted with batteries. We

showed that machine learning methods such as random forest regressor can pro-

duce highly accurate predictive models that are simple, interpretable, scalable,

and computationally inexpensive to run. On the other hand, much research is yet

to be done for a smart HVAC control system. Without sufficient data that cover a

diverse set of operation conditions, it is very challenging to develop a reliable and

accurate machine learning predictive model. One clear advantage of a machine

learning model though is that it can be updated easily with the new incoming

data, thus the accuracy will always improve over time. On the contrary, physical

models rely on first principles and are therefore highly complex to build and not

scalable; any update of even a single parameter is likely to require much more hu-

man intervention and a comparatively expensive re-run of the whole complicated

model; although relying on first principles also means that a physical model is

much more likely to be correct than a machine learning model in regions of the

state space not covered by data. All in all, as we illustrated in the Newcastle case

study, one cannot go far with just the data and without the full knowledge of the

dynamics of the HVAC system itself. In order to make the most of the existing

BMS data via machine learning, it is crucial to first formulate the right question

to ask with expert engineering insight. Thus until a full scale experiment can be

conducted to enable pure data-driven modelling, the way forward to develop a re-

liable smart HVAC control system is by exploiting in combination the robustness

of a physical model, as well as the adaptability, flexibility and scalability offered

by the machine learning tools.



Appendix A: Linear-Quadratic Reg-

ulator

In this appendix we review the linear quadratic regulator, one of the most

fundamental problems in control theory. Consider the general continuous time

control problem starting from initial time t0 and finishing at a fixed termination

time tf :

minimise J = ψ (x (tf )) +
∫ ft
f0
L (x(t), u(t), t) dt (5.1)

subject to ẋ = f (x(t), u(t), t) (5.2)

x (t0) = x0

where ψ (x (tf )) is the termination cost and x0 is the initial state which is known.

In addition, we assume that L is non-negative. The general procedure for solving

for an optimal control solution is by applying the calculus of variations. Using a

Lagrange multiplier λ(t) associated with the state equation constraint (5.2), which

is also called the costate, the cost is augmented into

J̄ = ψ (x (tf )) +

∫ tf

t0

(
L+ λT (f − ẋ)

)
dt , (5.3)

and so

δJ̄ = ψx (x (tf )) δx (tf )

+

∫ tf

t0

(
Lxδx+ Luδu+ λTfxδx+ λTfuδu− λT δẋ

)
dt . (5.4)

Using integration by parts, the last term can be rewritten as

−
∫ tf

t0

λT δẋ dt = λT (t0) δx (t0)− λT (tf ) δx (tf ) +

∫ tf

t0

λ̇T δx dt , (5.5)

which gives

δJ̄ =
[
ψx (x (tf ))− λT (tf )

]
δx (tf ) +

∫ tf

t0

(
Lu + λTfu

)
δu dt

+

∫ tf

t0

(
Lx + λTfx + λ̇T

)
δx dt+ λT (t0) δx (t0) . (5.6)
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The last term has to vanish because the initial state is fixed; as we can vary

u, x and x (tf ) independently, the remaining three components must also vanish

independently. Hence

λ̇ = −
(
Lx + λTfx

)
λT (tf ) = ψx (x (tf )) (5.7)

Lu + λTfu = 0 .

Note that the costate λ evolves in reverse time — it propagates backwards from

the final state.

Now let us consider explicitly the linear time-invariant convex optimal control

problem with linear dynamics

ẋ = Ax+Bu (5.8)

and quadratic cost

L = 1
2
xTQx+ 1

2
uTRu Q,R � 0 (5.9)

and let us consider the case where there is no terminal cost i.e. ψ = 0 for simplicity.

Then (5.8) becomes

λ̇ = −Qx− ATλ (5.10)

λ (tf ) = 0 (5.11)

Ru+BTλ = 0 . (5.12)

Let us try λ = Px, then λ̇ = Ṗ x+ Pẋ. (5.11) thus becomes

0 = Ṗ x+ Pẋ+Qx+ ATPx . (5.13)

Substituting for ẋ using (5.8) gives

0 = Ṗ x+ PAx+ PBu+Qx+ ATPx . (5.14)

Finally, we can use (5.12) to substitute for u so that we have

Ṗ x+ PAx− PBR−1BTPx+Qx+ ATPx . (5.15)
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Since this must hold for all x, it reduces to

0 = Ṗ − PBR−1BP + PA+ ATP +Q (5.16)

which is a matrix Riccati equation for P . Thus P is solved by integrating back-

wards from the boundary condition P (tf ) = 0.

For a steady state solution, Ṗ = 0 and (5.16) becomes the algebraic matrix Riccati

equation

0 = −PBR−1BP + PA+ ATP +Q . (5.17)

Finally by back substituting λ into (5.12), the optimal control solution is therefore

given in feedback gain form by

u = −R−1BTPx , (5.18)

where the matrix K := R−1BTP is called the feedback gain matrix.



Bibliography

[1] National infrastructure Commission, “Smart power.” https:

//assets.publishing.service.gov.uk/government/uploads/system/

uploads/attachment_data/file/505218/IC_Energy_Report_web.pdf,
2016. Accessed June 2019.

[2] The Association for Decentralised Energy, “Flexibility on demand - Giving
customers control to secure our electricity system.”
https://www.theade.co.uk/assets/docs/resources/Flexibility_on_

demand_full_report.pdf, 2016. Accessed June 2019.
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