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Abstract

Data representations can often be high-dimensional, whether it is due to the large

number of collected / recorded features or due to how the data sources (e.g. images, texts)

are processed. It is often the case that the main structure of the data can be summarised

well in a lower dimensional subspace or multiple lower dimensional subspaces. Sub-

space clustering addresses the problem of simultaneously uncovering multiple subspace

structures in the data and grouping the data according to their underlying subspace

structures.

The first contribution of this thesis is the development of a Subspace Clustering with

Active Learning (SCAL) framework that is designed for 𝐾-Subspace Clustering. This

framework allows clustering performance to improve in an effective and efficient manner

over time, with the need to query only a small amount of labelling information. It also

has the potential to be applied to more general subspace clustering methods, which has

been further explored and developed in our next methodological contribution.

The second contribution of this thesis is a unified active learning and constrained

clustering framework for spectral-based subspace clustering methods. In this work, we

propose a spectral-based subspace clustering methodology named Weighted Sparse Sim-

plex Representation (WSSR). It has been demonstrated to have favourable performance

against state-of-the-art spectral-based subspace clustering methods on both synthetic

and real data. We also propose a flexible weighting scheme that can incorporate exter-

nal information into the problem formulation, which leads to a constrained clustering

extension of WSSR. We show that it can be applied in conjunction with our previously

proposed SCAL strategy when labelling information can be queried sequentially.

The third contribution of this thesis is the development of an algebraic subspace

clustering methodology – Minimum Angle Clustering (MAC). It is motivated by the ap-

plication of clustering Amazon products based on their titles when represented using the

TF-IDF matrix, which is both sparse and high-dimensional. The proposed methodology

is composed of two stages. In the first stage, it identifies a large number of subspaces
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in the data through the Reduced Row Echelon Form technique. In the second stage,

we propose a new subspace proximity measure to construct an affinity matrix for the

formed subspaces before spectral clustering is applied to obtain the final cluster labels.

The proposed methodology has been shown to enjoy competitive performance against a

number of well-established subspace clustering and document clustering techniques on

the application of clustering Amazon product names.



III

Acknowledgements

This work would not have been made possible without the help and support of many

great people around me. First and foremost, I am mostly indebted to and tremendously

grateful for my main advisor Dr. Nicos Pavlidis, who played an absolutely essential and

hugely instrumental role in my PhD. Nicos, it was my great pleasure to work with you,

and have you as my mentor and mainstay throughout the whole journey. Thank you for

your thorough guidance with insightful questions and suggestions during our meetings,

which always led me to a deeper understanding of my work. Secondly, I would like to

thank my advisor Professor Idris Eckley. Thank you for always reminding me of the

importance of the big picture, for keeping me on track at times of need, and for providing

your words of wisdom on academic matters and otherwise.

I have been incredibly lucky and privileged to have had the opportunity to collaborate

with the Data Science Campus (DSC) within the Office for National Statistics (ONS). It

was a truly wonderful and unique experience that I relish very much. Special thanks to

Ian and Thanasis for introducing me to your interesting projects and for providing me

with helpful feedback throughout the whole process.

I would also like to thank all the directors and administrative team of STOR-i, for

creating and fostering such a fantastically vibrant and supportive community. Thank

you for providing me with the financial support and the opportunity to grow, I could not

imagine a better place to do my PhD. In particular, I cannot overstate my gratitude for

Professor Jonathan Tawn, who is not my official ‘advisor’, but fully fulfils every sense of

the word. Jon, thank you for your invaluable time and patience during all the one-to-one

tutoring sessions in the MRes year; thank you for being so extremely attentive, supportive

and personable throughout the whole time, despite how crazily busy you always are.

I have been incredibly lucky to cross paths with some truly wonderful people at

STOR-i and even more lucky to befriend them. I would like to thank my year group for

all the good times we have spent together. I am also grateful for the friends I have made

in other year groups. The list is long, but the following people cannot be omitted. Edwin



IV

– thank you for being the cohesive glue in our squad, and for your hospitality during all

the fun times we have had at yours. Georgia – thank you for being a tremendously caring

friend. I cherish our numerous cathartic complaining sessions as much as all our culinary

adventures. Livia – thank you for your support through all my driving related frustrations,

and for the much needed catch-ups during the crazy times this year. Srshti – thank you

for making me believe I am more qualified than I thought, for our joint endeavours to

attempt Kaggle challenges, attend PyData events, and take on responsibilities at RSS.

Thank you for helping me grow, and for growing with me. I would also like to thank my

special friends and family outside STOR-i,欢 and英英,所有和你们一起度过的平静

又美好的时光都让我如沐春风！ Having both of you as my friends has been a true

blessing in my life for the past few years. I cherish our countless hours of invigorating

conversations during so many lovely home-made meals and pleasant walks. Thank you

for making my days so much more bright and colourful than they would have been.

An extra special acknowledgement goes to Euan, for being the sunshine in my life.

I cannot stop wondering how lucky I am to have you by my side. Your love and belief

in me have made me a stronger person. Thank you for being my music curator, gig

organiser, film recommender, game teacher, quiz master, and thesis proofreader. Thank

you for reminding me how to have fun at times when I might have forgotten. Your sense

of humour always has the magic power to lighten my heart. This journey would not have

been anywhere near as good without your love and company, certainly not without all

the delicious, comforting, and homely meals you have made.

My final acknowledgement of gratitude goes to my parents, without whom I would

not have had the opportunity to undertake the path I have taken and become the person I

am today. I am immensely grateful for my mother, for always instilling in me endless

positive energy, and for constantly reminding me to be grateful for how much I have

achieved thus far. I owe my gratitude to my father, for always pushing me to test my

mettle and discipline myself; for teaching me how to persevere through difficult times,

and how to stay humble when the days are rosy.



V

Declaration

I declare that the work in this thesis has been done by myself and has not been

submitted elsewhere for the award of any other degree.

A version of Chapter 3 has been published as Peng, H., and Pavlidis, N. G. (2019).

Subspace Clustering with Active Learning. In 2019 IEEE International Conference

on Big Data (pages 135-144). IEEE.

A version of Chapter 5 has been published as Peng, H., Pavlidis, N. G., Eckley, I. A.,

and Tsalamanis, I. (2018). Subspace Clustering of Very Sparse High-Dimensional

Data. In 2018 IEEE International Conference on Big Data (pages 3780-3783). IEEE.

Hankui Peng



Contents

Abstract I

Acknowledgements III

Declaration V

Contents VI

List of Figures X

List of Tables XII

1 Introduction 1

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 𝐾-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Graph Partitioning Problem . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Similarity Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Graph Cut Objectives . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Graph Laplacians . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 The Ratio Cut Problem . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 The Normalised Cut Problem . . . . . . . . . . . . . . . . . . 19

2.3.4 Spectral Clustering - An Example . . . . . . . . . . . . . . . . 23

VI



CONTENTS VII

2.4 Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Spectral Methods . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.3 Algebraic Methods . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.4 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Clustering Performance Measures . . . . . . . . . . . . . . . . . . . . 48

2.5.1 Purity & Clustering Error . . . . . . . . . . . . . . . . . . . . 49

2.5.2 Adjusted Rand Index (ARI) . . . . . . . . . . . . . . . . . . . 50

2.5.3 Normalised Mutual Information (NMI) . . . . . . . . . . . . . 52

2.A Appendix: Connection between Graph Cuts and Graph Laplacians . . . 54

2.A.1 The Ratio Cut and the Un-normalised Graph Laplacian . . . . . 54

2.A.2 The Normalised Cut and the Normalised Graph Laplacians . . . 56

3 Subspace Clustering with Active Learning 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Active Learning Framework . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 𝐾-Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2 Query Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3 Update Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Extension to Spectral Clustering . . . . . . . . . . . . . . . . . . . . . 80

3.6 Conclusions & Future Work . . . . . . . . . . . . . . . . . . . . . . . 83

3.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.A.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . 84

3.A.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . 85

4 Weighted Sparse Simplex Representation 87



VIII CONTENTS

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Subspace Clustering . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.2 Constrained Clustering . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Weighted Sparse Simplex Representation (WSSR) . . . . . . . . . . . . 103

4.3.1 Sparse Simplex Representation (SSR) . . . . . . . . . . . . . . 103

4.3.2 Weighted Sparse Simplex Representation (WSSR) . . . . . . . 104

4.4 Properties of WSSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4.1 KKT Conditions for Optimality . . . . . . . . . . . . . . . . . 109

4.4.2 Solving the Full WSSR Problem . . . . . . . . . . . . . . . . . 110

4.4.3 Necessary Condition for the Trivial Solution . . . . . . . . . . 113

4.4.4 Sufficient Condition for the Trivial Solution . . . . . . . . . . . 114

4.5 Constrained Clustering and Active Learning with WSSR (WSSR+) . . . 116

4.5.1 Constrained Clustering . . . . . . . . . . . . . . . . . . . . . . 117

4.5.2 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 Experiments on Synthetic Data . . . . . . . . . . . . . . . . . . . . . . 120

4.6.1 Varying Angles between Subspaces . . . . . . . . . . . . . . . 121

4.6.2 Varying Noise Levels . . . . . . . . . . . . . . . . . . . . . . . 122

4.6.3 Varying Subspace Dimensions . . . . . . . . . . . . . . . . . . 125

4.7 Experiments on Real Data . . . . . . . . . . . . . . . . . . . . . . . . 127

4.7.1 WSSR Experiments on MNIST Data . . . . . . . . . . . . . . 127

4.7.2 WSSR Experiments on USPS Data . . . . . . . . . . . . . . . 132

4.7.3 WSSR+ Experiments . . . . . . . . . . . . . . . . . . . . . . . 133

4.8 Conclusions & Future Work . . . . . . . . . . . . . . . . . . . . . . . 136

4.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.A.1 WSSR+ Experiments on UCI Benchmark Data . . . . . . . . . 138

4.A.2 WSSR+ Experiments on Cancer Gene Data . . . . . . . . . . . 140

5 Clustering the Amazon Web-Scraped Text Data 143

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



CONTENTS IX

5.2 Vector Space Representation . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.1 Document Term Matrix (DTM) . . . . . . . . . . . . . . . . . 147

5.2.2 Term Frequency - Inverse Document Frequency (TF-IDF) . . . 148

5.3 Document Clustering Methods . . . . . . . . . . . . . . . . . . . . . . 151

5.3.1 Principal Direction Divisive Partitioning (PDDP) . . . . . . . . 151

5.3.2 Latent Dirichlet Allocation (LDA) . . . . . . . . . . . . . . . . 153

5.4 Minimum Angle Clustering (MAC) . . . . . . . . . . . . . . . . . . . 156

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.6 Conclusions & Future Work . . . . . . . . . . . . . . . . . . . . . . . 163

6 Conclusions & Future Work 165

Bibliography 169



List of Figures

1.2.1 A collection of points sampled in a three-dimensional ambient space

from a union of three subspaces. . . . . . . . . . . . . . . . . . . . . 4

2.1.1 An example of applying 𝐾-means clustering to two data sets both

with convex clusters. Also shown are the location updates of cluster

centres for a total number of 10 iterations. Left: 𝐾-means successfully

identifies three clusters that are of the same size. Right: 𝐾-means fails

when the cluster sizes are very imbalanced. . . . . . . . . . . . . . . . 9

2.1.2 Visualisation of 𝐾-means clustering results with varying 𝐾 applied to

two data sets with non-linearly separable clusters. . . . . . . . . . . . 10

2.3.1 Histograms of the degree distribution based on the affinity matrix. . . . 25

2.3.2 A visualisation of the two eigenvectors corresponding to the two small-

est eigenvalues of 𝐿sym (first and second row), and the data points

coloured in the assigned cluster labels (third row). . . . . . . . . . . . 26

2.4.1 Data points drawn from a union of two subspaces in R3. . . . . . . . . 40

3.4.1 Performance results measured by NMI on six motion segmentation data

sets with KSC initialisation. . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.2 Performance results measured by NMI on Yale Faces data sets with

KSC initialisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 An illustration of the effect of the data normalisation step, which pro-

vides the rationale for the use of the inverse cosine similarity. Left: The

original data points. Right: The data points that have been normalised

to lie on the unit sphere. . . . . . . . . . . . . . . . . . . . . . . . . . 105

X



LIST OF FIGURES XI

4.3.2 A geometric illustration of the necessity for stretching points in 𝑌 . . . 107

4.4.1 A geometric interpretation for when the trivial solution is obtained. . . 116

4.6.1 Three illustrations of data from two clusters under varying angles be-

tween the two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6.2 Three illustrations of data from two clusters with varying noise levels. 123

4.6.3 Visualisation of the affinity matrix in the noise-free scenario. . . . . . 124

4.6.4 Performance results of three methods across varying subspace dimen-

sions. For each subspace dimension 𝑞, 20 trials are conducted with

randomly chosen neighbourhood size 𝑘. . . . . . . . . . . . . . . . . 126

4.7.1 Median running times (in log-scale of seconds) of different algorithms

on the MNIST handwritten digits data. . . . . . . . . . . . . . . . . . 131

4.A.1 The clustering accuracy (min, median, max) of various constrained

clustering algorithms over 20 trials. . . . . . . . . . . . . . . . . . . . 140

5.2.1 Word clouds containing the most frequent words in the Amazon data. . 147

5.2.2 An illustration of the subspace structure of the US Amazon data. . . . 150

5.4.1 Histogram of the number of points in each subspace identified through

the Reduced Row Echelon Form (RREF) of the TF-IDF matrix. . . . . 158



List of Tables

2.1 Notation for comparing two set of labels on the same data set. . . . . . 51

3.1 The percentage of points queried before perfect cluster performance (as

evaluated by NMI) is reached on synthetic data sets. . . . . . . . . . . . 76

3.2 Cluster performance of various active learning strategies on motion

segmentation data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Cluster performance on Yale Faces data sets. . . . . . . . . . . . . . . . 81

4.1 Accuracy of various subspace clustering algorithms on synthetic data

with varying angles between subspaces. . . . . . . . . . . . . . . . . . 122

4.2 Accuracy of various subspace clustering algorithms on synthetic data

with varying noise levels. . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3 Accuracy of various subspace clustering algorithms on synthetic data

with varying subspace dimensions. . . . . . . . . . . . . . . . . . . . . 125

4.4 Median clustering accuracy along with the standard deviations on the

MNIST handwritten digits data across 20 trials with 𝑃 = 200. . . . . . 129

4.5 Median clustering accuracy along with the standard deviations on the

MNIST handwritten digits data across 20 trials with 𝑃 = 500. . . . . . 130

4.6 Median clustering accuracy along with the standard deviations on the

USPS data across 20 trials. . . . . . . . . . . . . . . . . . . . . . . . . 132

4.7 Clustering accuracy of various constrained clustering methods on the

MNIST data. The initial affinity matrix for all methods is produced by

WSSR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

XII



LIST OF TABLES XIII

4.8 Clustering accuracy of various constrained clustering methods on the

USPS data. The initial affinity matrix for all methods is produced by

WSSR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.9 A summary of the UCI benchmark data sets. . . . . . . . . . . . . . . . 138

4.10 Clustering accuracy of various spectral-based constrained clustering

methods on UCI benchmark data sets. . . . . . . . . . . . . . . . . . . 139

4.11 Summary information on the gene expression data sets. . . . . . . . . . 141

4.12 Performance comparison (using accuracy) with state-of-the-art (con-

strained) subspace clustering methods. . . . . . . . . . . . . . . . . . . 142

5.1 A summary of the five categories in the Amazon web-scraped data. . . . 146

5.2 A list of the ten most highly weighted words within each product category

according to the TF-IDF representation. . . . . . . . . . . . . . . . . . 149

5.3 A summary of notations for LDA. . . . . . . . . . . . . . . . . . . . . 154

5.4 Clustering performance and runtime comparison (in seconds) on the

Amazon data set using TF-IDF representation. . . . . . . . . . . . . . . 162



Chapter 1

Introduction

The early history of cluster analysis dates back to Driver and Kroeber (1932) where it was

first applied in anthropology. Clustering is the art of grouping a collection of unlabelled

data points (usually represented as a vector of measurements in a multidimensional space)

into a number of clusters, such that data points lie in the same cluster are more similar to

each other compared to data points in different clusters (Jain et al., 1999). Myriad appli-

cations of clustering can be found across many fields, for example biological sequence

analysis, medical imaging, social network analysis, and recommender systems (Guo,

2013).

Due to the growing computational capacity in recent years, many applications in

the aforementioned fields are able to collect and process data in gigantic amounts and

with a large number of features. Classical clustering methods such as 𝐾-means cluster-

ing (MacQueen, 1967) can still be applied to large-scale problems, whilst maintaining

a similar level of cluster performance. However when the number of features is much

larger than the number of data points, it becomes less straightforward and potentially

ineffective to directly apply the existing clustering methodologies due to the curse-of-

dimensionality (Bellman, 1966). It refers to the fact that the volume of space increases

exponentially as the dimensionality increases, which means that the amount of data

that can densely fill a low-dimensional space would become extremely sparse in higher

dimensions. As a result, the Euclidean distances among all pairs of points become more

and more similar to each other with the increase of dimensions.

1
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As such, it is desirable to have methods that can handle high-dimensional data ef-

fectively and efficiently. A large amount of research has emerged in recent years to

tackle the challenges of high-dimensionality in clustering, for example in gene sequenc-

ing (McWilliams and Montana, 2014), motion segmentation (Rao et al., 2010), and image

recognition (You et al., 2016). It has been observed that high-dimensional data often

lie in lower dimensional linear / affine subspaces or non-linear manifolds, rather than

uniformly distributed in a high-dimensional ambient space (Elhamifar and Vidal, 2013).

Some previous work have approached problems in motion segmentation and image

recognition with manifold clustering techniques (Saul and Roweis, 2003; Souvenir and

Pless, 2005; Goh and Vidal, 2007; Elhamifar and Vidal, 2011). Many of these methods

utilise the fact that points that lie in the same local neighbourhood of a manifold can be

well approximately by a low-dimensional affine subspace (Saul and Roweis, 2003). As

such, subspace properties can be used to obtain pairwise proximity between points and

to ultimately obtain the data segmentation. The type of methods that model a collection

of high-dimensional data as a union of lower dimensional subspaces is referred to as

subspace clustering (Vidal, 2011), which is the main focus of this thesis.

1.1 Notation

We aim to use a consistent notation throughout this thesis. However, it means that our

adopted notations may at times deviate from some of the conventions used in the related

literature. Scalars are denoted by lowercase letters, such as 𝑥 ∈ R. Vectors are denoted

by lowercase bold letters, such as 𝑥 ∈ R𝑃 . All vectors are assumed to be column vectors.

Mathematical sets are denoted by uppercase calligraphic letters, such as 𝒳 = {𝑥𝑖}𝑁𝑖=1.

Matrices are denoted by uppercase letters, such as 𝑋 = [𝑥1, . . . ,𝑥𝑁 ]T ∈ R𝑁×𝑃 . The

𝑖-th row of 𝑋 is denoted as 𝑋𝑖· (𝑖 ∈ {1, . . . , 𝑁}), and the 𝑗-th column of 𝑋 is denoted

as 𝑋·𝑗 (𝑗 ∈ {1, . . . , 𝑃}).

The 𝑃 by 𝑃 identity matrix is denoted by 𝐼𝑃 , which is abbreviated to 𝐼 when there

is no ambiguity about its dimensionality. We denote 1𝑃 = diag (𝐼𝑃 ) = [1, . . . , 1]T as

the 𝑃 -dimensional vector with all ones, which corresponds to the vector that contains
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the diagonal entries of 𝐼𝑃 . We abbreviate 1𝑃 to 1 when there is no ambiguity about its

dimensionality. We use 𝑒𝑖 to denote the basis vector with appropriate dimensionality, in

which it takes the value one at the 𝑖-th location and zero everywhere else.

1.2 Motivation

An example of clustering data that contain groups of points from varying subspaces is

shown in Figure 1.2.1. Some data points drawn from two one-dimensional subspaces

𝒮1 and 𝒮2, and other data points lie on a two-dimensional plane 𝒮3. In general, given

a collection of data points
{︀
𝑥𝑖 ∈ R𝑃

}︀𝑁
𝑖=1

drawn from a union of 𝐾 linear or affine

subspaces {𝒮𝑘}𝐾𝑘=1 with dimensions 𝑞𝑘 = dim(𝒮𝑘), 0 < 𝑞𝑘 < 𝑃 , a subspace 𝒮𝑘 can be

defined as follows (Vidal, 2011)

𝒮𝑘 =
{︀
𝑥 ∈ R𝑃 ,𝑥 = 𝜇𝑘 + 𝑉𝑘𝑦

}︀
, 𝑘 ∈ {1, . . . , 𝐾} . (1.2.1)

In Eq. (1.2.1), 𝜇𝑘 ∈ R𝑃 is an arbitrary point in 𝒮𝑘 that is chosen as 𝜇𝑘 = 0 for linear

subspaces. The columns of 𝑉𝑘 ∈ R𝑃×𝑞𝑘 are the orthonormal basis vectors for subspace

𝒮𝑘 which need not to be unique, and 𝑦 ∈ R𝑞𝑘 is the low-dimensional representation of 𝑥.

The goal of subspace clustering is to find the number of subspaces 𝐾, the displacements

{𝜇𝑘}𝐾𝑘=1, their subspace dimensions {𝑞𝑘}𝐾𝑘=1 and bases {𝑉𝑘}𝐾𝑘=1, along with the partition

of points according to the subspaces.

Two common dependence structures between subspaces are independent and disjoint

subspaces, which we provide the definitions for as follows (Soltanolkotabi and Candes,

2012).

Definition 1.2.1. A collection of subspaces {𝒮𝑘}𝐾𝑘=1 is said to be independent if the

dimension of the union of subspaces is equal to the sum of the subspace dimensions, i.e.

dim(⊕𝐾
𝑘=1𝒮𝑘) =

∑︀𝐾
𝑘=1 dim(𝒮𝑘), where ⊕ denotes the direct sum operator.

Definition 1.2.2. A collection of subspaces {𝒮𝑘}𝐾𝑘=1 is said to be disjoint if every pair

of subspaces 𝒮𝑖 and 𝒮𝑗 intersect only at the origin, i.e. dim(𝒮𝑖 ⊕ 𝒮𝑗) = dim(𝒮𝑖) +

dim(𝒮𝑗), ∀𝑖, 𝑗 ∈ {1, . . . , 𝐾}.
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S1 S2

S3

Figure 1.2.1: A collection of points sampled in a three-dimensional ambient space from
a union of three subspaces.

When 𝐾 = 1, the above quantities can be obtained through Principal Component

Analysis (PCA) (Jolliffe, 2011). The problem reduces to one of finding a few principal

components that can capture most of the variability in the data. However when 𝐾 > 1,

there are a number of challenges that make the subspace clustering problem difficult to

solve. Below are some of the well-known challenges (Vidal, 2011):

• It is often difficult to choose or design an appropriate measure of similarity /

distance among the high-dimensional data points.

• The existence of noise and potentially outliers in the data from many real world

applications require the development of robust subspace estimation techniques.

• The position and orientation of different subspaces can be arbitrary, and the

existence of dependence structure between subspaces makes the problem more

difficult to solve.

On top of all the aforementioned issues, a general challenge in clustering real world

data lies in the difficulty of validating the cluster performance due to the scarcity of

labelling information. In practice, it is often feasible to obtain some form of external

information either as labels, or in the form of ‘must-link’ and ‘cannot-link’ constraints

which indicate whether pairs of points belong to the same cluster or not. The model

performance could then be improved by both satisfying the constraints imposed by the
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external information, and taking advantage of the external information on the labelled

points to improve the cluster performance on the unlabelled points. The problem of

clustering while utilising a fixed amount of labelling information is called constrained

clustering (Basu et al., 2008).

However, randomly labelling a small amount of the data would not necessarily

guarantee that the cluster performance would improve the most if at all (Wagstaff, 2006).

This is because the information contained in partial labels or pairwise constraint set does

not necessarily get propagated to the unlabelled points. Setting the pairwise similarity to

zero for points that are known to have ‘cannot-link’ relationships does not mean that they

will definitely get assigned to different clusters (Li et al., 2009). Therefore, it is desirable

to query the external information in an active manner, so that the cluster performance

would improve effectively and efficiently over time. The problem of iteratively querying

informative and potentially misclassified data so as to maximally improve the model

performance is known as active learning (Settles, 2009).

1.3 Thesis Contributions

Our research creates a unified framework for subspace clustering, constrained clustering,

and active learning. This thesis contains three main methodological contributions.

In Chapter 3, we propose a Subspace Clustering with Active Learning (SCAL)

framework (Peng and Pavlidis, 2019) for the 𝐾-subspace clustering (KSC) algorithm

(Agarwal and Mustafa, 2004). KSC is a 𝐾-means-like iterative algorithm that alternates

between subspace estimation and cluster assignment. Although the algorithm usually

converges in a few iterations, it is only guaranteed to converge to a local optimum. Our

proposed framework consists of two stages that sequentially improve the performance of

KSC in an effective and efficient manner.

In the first stage, our proposed active learning strategy exploits the structure of the

current subspaces and queries the most informative and potentially misclassified points.

In the second stage, we propose a constrained subspace clustering algorithm which

updates the cluster labels and subspace structure based on the queried information whilst
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satisfying the constraints imposed by the queried points. The proposed framework is

designed for iterative subspace clustering methods. However, it can also be applied

to other types of subspace clustering methods, for example, spectral-based subspace

clustering.

In Chapter 4, we design a unified framework of active learning and constrained

clustering for spectral-based subspace clustering methods. We propose a spectral-based

subspace clustering methodology, named Weighted Sparse Simplex Representation

(WSSR). It has been shown to enjoy excellent performance in a range of synthetic and

real data sets. In the presence of a fixed amount of labelling information or pairwise

constraints, we show that our proposed methodology is flexible enough to incorporate

them into the problem formulation and satisfy the constraints, thus leading to effective

improvement in the cluster performance. Finally we show that our proposed active

learning strategy in Chapter 3 can be naturally incorporated in the spectral-based setting.

In Chapter 5, we develop an algebraic subspace clustering methodology named Mini-

mum Angle Clustering (MAC) (Peng et al., 2018). It is motivated by the application of

clustering Amazon product names, which are mostly composed of very short texts. The

resulting TF-IDF representation for the text data are both sparse and high-dimensional.

However, most of the variability for each category can be captured well with a much

lower dimensional subspace. MAC first utilises the Reduced Row Echelon Form (RREF)

technique to identify a large number of subspaces that each contains very few points.

We propose a subspace proximity measure based on principal angles (Drmac, 2000),

which is used to merge the large number of subspaces into meaningful clusters. On

the application of clustering Amazon product names, MAC has been shown to perform

favourably against other well-established document clustering and subspace clustering

methods.



Chapter 2

Background

In this chapter, we first provide a review of the two most fundamental algorithms in

clustering, which are the building blocks of our work in later chapters. In Section 2.1,

we introduce 𝐾-means clustering algorithm (Forgy, 1965; MacQueen, 1967), which

groups data points into a pre-specified number of clusters by assigning each data point

to its closest centroid in an iterative manner. However, 𝐾-means clustering can only

identify clusters with spherical shapes. One approach to overcome this limitation is by

first building a similarity graph of the data, and then solving a graph partitioning problem.

In Section 2.2, we discuss how to build a similarity graph of the data before introducing

two types of graph partitioning problems. These problems are NP-hard to solve, but

their relaxations can be solved via the eigen-decomposition of the graph Laplacian

matrices. We introduce two popular spectral clustering algorithms in Section 2.3, and

discuss their connections to graph cut problems. In Section 2.4, we review the relevant

literature for each of the four main categories of subspace clustering methods: algebraic,

iterative, spectral, and statistical methods. Finally, we introduce the most commonly

used external performance measures for clustering in Section 2.5 – Purity (Zhao and

Karypis, 2001), Adjusted Rand Index (ARI) (Hubert and Arabie, 1985), and Normalised

Mutual Information (NMI) (Cover and Thomas, 2012). When the ground truth labels are

available, these measures can be used to evaluate the agreement between the assigned

cluster labels and the ground truth labels.

7
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2.1 𝐾-Means Clustering

𝐾-means clustering is one of the most fundamental and well-known algorithms in

clustering. The term ‘𝐾-means’ is first used in MacQueen (1967), though it is also

known as Lloyd-Forgy since Forgy proposed essentially the same method (Forgy, 1965).

It groups data into a predefined number of clusters such that the points that lie in the

same cluster are closer to each other, most commonly in terms of the Euclidean distance,

as compared to points in different clusters. It is an iterative algorithm that alternates

between: (a) calculating the cluster centres given the cluster labels; and (b) updating

the cluster labels given the cluster centres. Given a data set 𝒳 = {𝑥1, . . . ,𝑥𝑁} with 𝑁

points, 𝐾-means clustering minimises the following objective function (See Section 9.1

in Bishop (2006)):

𝐿 (𝒳 , 𝛺) =
1

𝑁

𝐾∑︁
𝑘=1

∑︁
𝑥𝑖∈𝛺𝑘

‖𝑥𝑖 − 𝜇𝑘‖22 , (2.1.1)

where {𝜇1, . . . ,𝜇𝐾} denotes the set of 𝐾 cluster centres and 𝛺 = {𝛺1, . . . , 𝛺𝐾}

denotes a partitioning of the data into 𝐾 clusters. The aim is to minimise the sum of

squared Euclidean distances between all data points and their corresponding cluster

centres.

Finding a global minimum to the objective in Eq. (2.1.1) is NP-hard (Aloise et al.,

2009). 𝐾-means clustering is the most common algorithm to minimise the objective

through iterative refinement. The algorithm in procedural form is stated as follows:

1. Given the number of clusters 𝐾, randomly select 𝐾 distinct points as the initial

cluster centres 𝜇(0)
1 , . . . ,𝜇

(0)
𝐾 . 1

2. Assignment step: For each data point 𝑥𝑖, calculate the distance from 𝑥𝑖 to all

cluster centres. Assign 𝑥𝑖 to the cluster whose centre it is closest to

𝜔
(𝑡)
𝑖 = arg min

𝑘∈{1,...,𝐾}

⃦⃦⃦
𝑥𝑖 − 𝜇(𝑡−1)

𝑘

⃦⃦⃦2
2
, ∀ 𝑖 ∈ {1, . . . , 𝑁} , (2.1.2)

where 𝑡 (𝑡 = 1, 2, 3, . . .) is the iteration number.
1𝐾-means clustering is very sensitive to initialisation. Different initialisations can lead to very different

results.
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3. Update step: Recalculate the cluster centres by averaging over all data points that

lie in the same cluster

𝜇
(𝑡)
𝑘 =

1

𝑛
(𝑡−1)
𝑘

∑︁
𝑥∈𝛺(𝑡−1)

𝑘

𝑥, (2.1.3)

where 𝑛
(𝑡−1)
𝑘 = |𝛺(𝑡−1)

𝑘 | denotes the cardinality of cluster 𝑘 in iteration (𝑡− 1).

4. Iterate between step 2 and 3 until a stopping criterion is reached. The standard

criterion is to stop if there is no further change to the cluster labels.

Although 𝐾-means clustering monotonically decreases the objective in Eq. (2.1.1), it is

only guaranteed to converge to a local minimum.

(a) Balanced clusters. (b) Imbalanced clusters.

Figure 2.1.1: An example of applying 𝐾-means clustering to two data sets both with
convex clusters. Also shown are the location updates of cluster centres for a total number
of 10 iterations. Left: 𝐾-means successfully identifies three clusters that are of the same
size. Right: 𝐾-means fails when the cluster sizes are very imbalanced.

Figure 2.1.1 provides a visualisation of how 𝐾-means clustering updates the cluster

centres over iterations. Each figure shows the path of each cluster centre at every iteration

for a total number of 10 iterations for both data sets. The initial cluster centres of the

data example in (a) are randomly initialised, whereas the initial cluster centres of the

data example in (b) are chosen such that each cluster centre lies within their true class.

We see that 𝐾-means clustering fails to recover the correct cluster labels in data example

(b), in which one cluster is ostensibly larger than the other two. It is generally the case

that 𝐾-means algorithm tends to generate similar-sized clusters.
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In addition, 𝐾-means clustering is very sensitive to the locations of the initial cluster

centres. Hence, either multiple initial cluster centres should be used or a sensible

initialisation strategy should be adopted. There are numerous advanced initialisation

strategies. For example, 𝐾-means++ (Arthur and Vassilvitskii, 2006) picks points as

cluster centres in a sequential manner, which takes into account the Euclidean distance

between each point to all of the existing cluster centres. The main idea is that the initial

centroids should be far away from each other. It has been shown that this strategy

improves both the speed and accuracy of 𝐾-means clustering.

Another drawback of the classical 𝐾-means clustering is that it cannot handle non-

convex clusters. Shown in Figure 2.1.2 are the results of applying 𝐾-means to two

data sets with non-convex clusters. Since none of these clusters is linearly separable,

𝐾-means algorithm struggles to recover the correct grouping regardless of the chosen

number of clusters 𝐾.
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Figure 2.1.2: Visualisation of 𝐾-means clustering results with varying 𝐾 applied to two
data sets with non-linearly separable clusters.

In order to handle non-linearly separable clusters, one could use kernel 𝐾-means

clustering (Girolami, 2002; Dhillon et al., 2004; Filippone et al., 2008). It maps the

data to a higher-dimensional inner product feature space. The data vector in 𝐾-means
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is replaced with the projected data vector in kernel 𝐾-means. The distance from the

projected data to their corresponding cluster centroids can be calculated through the use

of kernel functions.

Another way of handling non-linearly separable clusters is by first building a suitable

similarity graph / matrix of the data, then solving a graph partitioning problem to obtain

the final cluster labels. This type of approach is called Spectral Clustering (Shi and

Malik, 2000; Ng et al., 2002). Dhillon et al. (2004) have shown that a generalisation

of the kernel 𝐾-means algorithm is equivalent to the normalised cut spectral clustering

algorithm proposed in Ng et al. (2002). In the next two sections, we will familiarise the

reader with graph partitioning problems, and provide a detailed introduction to spectral

clustering.

2.2 Graph Partitioning Problem

A similarity graph uses nodes and edges to conceptually represent data points and the

pairwise similarities between them. The problem of partitioning a graph mimics that of

clustering data points into groups. In clustering, the aim is to keep points that are similar

in the same group and points that are dissimilar in different groups. In graph partitioning,

the aim is to partition a graph such that the resulting sub-graphs are well-connected by

edges with high weights indicating high similarity between corresponding nodes. At

the same time, the edges between different sub-graphs should have low weights. In

this section, we first introduce different similarity graphs before introducing the graph

partitioning problem. A thorough discussion on this topic and spectral clustering can be

found in Von Luxburg (2007).

2.2.1 Similarity Graphs

Given a set of 𝑁 data points 𝒳 = {𝑥1, . . . ,𝑥𝑁} and the pairwise similarity values

𝑤𝑖𝑗 ∈ R+, we can represent a data set and the connectivity information among the

points through a similarity graph. A graph 𝐺 = (𝒱 , ℰ) is composed of a set of nodes
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𝒱 and edges ℰ . Each node 𝑖 corresponds to a data point 𝑥𝑖, and each edge represents

a connection between two data points. There are two types of graphs: directed and

undirected. Each edge in a directed graph is pointed towards a node, and the two edge

weights 𝑤𝑖𝑗 and 𝑤𝑗𝑖 between node 𝑖 and 𝑗 are not necessarily the same. Here we restrict

our attention to undirected graphs, with 𝑤𝑖𝑗 = 𝑤𝑗𝑖 for all pairs of 𝑖, 𝑗. The edge weights

correspond to the pairwise similarity values between data points, with a zero edge weight

indicating no connection. By default, we consider there is no connection between 𝑥𝑖 and

itself, i.e. 𝑤𝑖𝑖 = 0.

We introduce a few notions here to better characterise a similarity graph. An adja-

cency matrix 𝐴 is an 𝑁 ×𝑁 matrix in which 𝐴𝑖𝑗 denotes the edge weight / similarity

𝑤𝑖𝑗 between node 𝑖 and 𝑗. The connectivity of a node 𝑥𝑖 is formally called the degree, 𝑑𝑖,

which is calculated as the sum of all edge weights attached to the node, 𝑑𝑖 =
∑︀𝑁

𝑗=1𝑤𝑖𝑗 .

A degree matrix 𝐷 is an 𝑁 ×𝑁 diagonal matrix, in which the 𝑖-th diagonal entry 𝐷𝑖𝑖

represents the degree of node 𝑖. Given a subset of vertices 𝒮 ⊂ 𝒱 , the complement of the

subset is denoted as 𝒮 = 𝒱∖𝒮 .

A subset 𝒮 of a graph is connected if any pair of nodes in 𝒮 can be connected by

a sequence of edges whose corresponding nodes also lie in the set 𝒮. In graph theory,

a connected component of an undirected graph is a sub-graph in which there exists a

path between any pair of nodes that are connected by a sequence of edges. Additionally,

this sub-graph is connected to no additional nodes in the graph (Chung, 1997). For the

purpose of clustering, we first introduce a few ways of constructing a similarity graph

before discussing how to solve a graph cut problem.

The 𝜀 neighbourhood graph. This type of graph is constructed in such a way that

two nodes 𝑥𝑖 and 𝑥𝑗 are connected if the distance between them is less than a certain

threshold 𝜀. Similarly, there exists an edge between two nodes 𝑥𝑖 and 𝑥𝑗 if the pairwise

similarity is above a certain threshold 𝜀. In the 𝜀 neighbourhood graph, the pairwise

relationship between nodes are either connected or not connected, thus it is usually

considered as a type of unweighted graph.

The 𝑘 nearest neighbour (𝑘-NN) graph. The 𝑘-NN graph creates an edge between
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each node to its 𝑘 nearest neighbours. In particular, we call it a mutual 𝑘 nearest

neighbour graph if an edge exists only if both nodes are in each other’s 𝑘 nearest

neighbourhood. Another version of this graph is to allow an edge between a pair of data

points as long as one of the nodes is in the other’s 𝑘 nearest neighbourhood. In both

cases, a symmetric similarity matrix can be obtained. The 𝑘-NN graph is one of the most

commonly used graphs in spectral clustering.

The fully connected graph. All pairwise edge weights are non-zero in this type

of similarity graph. The edge weight is calculated either using a similarity function or

distance measure. A common choice for a similarity function is the Gaussian similarity

function: 𝑤𝑖𝑗 = exp
{︁

−‖𝑥𝑖−𝑥𝑗‖22
2𝜎2

}︁
, in which 𝜎 is called the bandwidth parameter that

controls the size of the neighbourhood. The choice of 𝜎 is crucial to the quality of

the resulting partitioning of the graph. We can consider the 𝜀 neighbourhood graph

as a pruned version of the fully connected graph, as it can be obtained from the fully

connected graph after a threshold level 𝜀 is specified.

2.2.2 Graph Cut Objectives

Once a similarity graph is constructed, the next problem to be addressed is how to

partition the graph into a number of sub-graphs. Ideally, one would want to cut through a

small number of edges with low weights in order to obtain a well-connected and balanced

partition. Well-connected in the sense that edges within each sub-graph should have

relatively high weights, and balanced in the sense that the sizes of different sub-graphs

are not too different from each other. Both of these are desirable properties in many real-

world applications. For example, parallel computing involves the problem of assigning

and processes evenly across processors whilst minimising communication (Andreev and

Racke, 2006).

This leads one to ask the following two questions: (a) How many edges should we

cut? (b) Which edges should we cut? To begin with, the cut for a 𝐾-partitioning on a set
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of nodes 𝒮 is defined as

cut(𝒮1, . . . ,𝒮𝐾) :=
1

2

𝐾∑︁
𝑘=1

𝑊 (𝒮𝑘,𝒮𝑘), (2.2.1)

where 𝑊 (𝒮𝑘,𝒮𝑘) :=
∑︀

𝑥𝑖∈𝒮𝑘,𝑥𝑗∈𝒮𝑘
𝑤𝑖𝑗 . Note that this is simply the sum of weights for

all edges that need to be cut in order to obtain the partition. It does not take into account

the sparsity of the cut, in that two different graph partitions that cut through different

number of edges could achieve the same value according to Eq. (2.2.1). Furthermore, it

also does not consider whether the sizes of the sub-graphs are similar or not.

We introduce two common graph cut objectives that include these two criteria: ratio

cut (Hagen and Kahng, 1992) and normalised cut (Shi and Malik, 2000). The main

difference between the two lies in how the size of a set is measured. Ratio cut measures

the size of a set 𝒮 through its cardinality, |𝒮|, and normalised cut measures the size of a

set through the total edge weights contained in a set, vol(𝒮) =
∑︀

𝑖∈𝒮 𝑑𝑖. Explicitly, these

two criteria can be expressed as follows

RatioCut(𝒮1, . . . ,𝒮𝐾) :=
1

2

𝐾∑︁
𝑘=1

𝑊 (𝒮𝑘,𝒮𝑘)

|𝒮𝑘|
=

𝐾∑︁
𝑘=1

cut(𝒮𝑘,𝒮𝑘)

|𝒮𝑘|
. (2.2.2)

NCut(𝒮1, . . . ,𝒮𝐾) :=
1

2

𝐾∑︁
𝑘=1

𝑊 (𝒮𝑘,𝒮𝑘)

vol(𝒮𝑘)
=

𝐾∑︁
𝑘=1

cut(𝒮𝑘,𝒮𝑘)

vol(𝒮𝑘)
. (2.2.3)

Both of these criteria can be optimised through minimising cut(𝒮𝑖,𝒮𝑖) and maximising

the size of each subset simultaneously. Algorithmically, these objectives that incorporate

both considerations are NP-hard to solve (Wagner and Wagner, 1993). One heuristic

approach that solves a relaxation of the graph cut problem guided by these two criteria is

spectral clustering, which we will introduce next in Section 2.3.

2.3 Spectral Clustering

In this section, we introduce different spectral clustering algorithms that solve a relaxed

version of the graph cut problem as discussed in Section 2.2. A relaxation of the graph
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cut problems can be solved through the eigen-decomposition of a graph Laplacian matrix,

which can be obtained from a similarity graph. Ideas are borrowed from spectral graph

theory (Chung, 1997) to circumvent the complexity of directly optimising the graph cut

objectives.

We first discuss the most common forms of graph Laplacians and their properties in

Section 2.3.1. We demonstrate the connection between spectral clustering and the graph

cut problem with ratio cut and normalised cut objectives in Section 2.3.2 and Section 2.3.3.

A working example is provided in Section 2.3.4 to illustrate the mechanism of spectral

clustering on a synthetic data set.

2.3.1 Graph Laplacians

A graph Laplacian matrix contains information about the connectivity within a graph.

Spectral graph theory (Chung, 1997) is a field that studies the properties of different

graph Laplacian matrices.

Un-normalised graph Laplacian. There are different forms of graph Laplacian ma-

trices. The most simple un-normalised graph Laplacian 𝐿 is defined as follows (Cvetković

et al., 1980)

𝐿 = 𝐷 − 𝐴, (2.3.1)

where 𝐷 ∈ R𝑁×𝑁 is the degree matrix and 𝐴 ∈ R𝑁×𝑁 is the weighted adjacency matrix,

as previously introduced in Section 2.2.1. The weighted adjacency matrix 𝐴 can also be

called the affinity matrix. We use these two terms interchangeably in this thesis.

Many properties of the un-normalised graph Laplacian provide useful insights into

the graph partitioning problem. For example in a bi-partitioning problem, the data are

well separated when represented using the eigenvector corresponding to the second

smallest eigenvalue of the graph Laplacian matrix. In a graph partitioning problem

with 𝐾 connected components (clusters), the data points (nodes) represented using the

eigenvectors corresponding to the 𝐾 zero eigenvalues of the graph Laplacian matrix

are well separated in the 𝐾-dimensional eigen space. As such, the partitioning can be

trivially detected through a simple clustering algorithm such as the 𝐾-means clustering.
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We state the relevant properties here that will be useful for our illustration of spectral

clustering later. Firstly, the un-normalised graph Laplacian is a symmetric positive

semi-definite matrix, and its eigenvalues satisfy 0 = 𝜆1 6 𝜆2 6 . . . 6 𝜆𝑁 . Secondly, the

smallest eigenvalue is always zero and the corresponding eigenvector is 1.

Normalised graph Laplacian. There are two well-known forms of the normalised

graph Laplacian matrix (Chung, 1997). The first one is a symmetric matrix, which is

defined as

𝐿sym = 𝐷− 1
2𝐿𝐷− 1

2 = 𝐼 −𝐷− 1
2𝐴𝐷− 1

2 . (2.3.2)

The second one is closely related to a random walk on a graph, which is defined as

𝐿rw = 𝐷−1𝐿 = 𝐼 −𝐷−1𝐴. (2.3.3)

A random walk on a graph is a stochastic process which jumps from node to node. The

transition probability of jumping from node 𝑖 to 𝑗 can be expressed in terms of the edge

weight 𝑤𝑖𝑗 as 𝑝𝑖𝑗 =
𝑤𝑖𝑗

𝑑𝑖
. The transition matrix 𝑃 can thus be expressed as 𝑃 = 𝐷−1𝐴,

which is equivalent to 𝐼 − 𝐿rw.

Many properties of the normalised graph Laplacian matrix share with the properties

of the un-normalised version. For example, zero is an eigenvalue of both forms of

the graph Laplacian matrix with the constant one eigenvector 1 up to a multiplying

constant. In addition, both forms of the normalised graph Laplacian matrix are positive

semi-definite, and have eigenvalues 0 = 𝜆1 6 𝜆2 6 . . . 6 𝜆𝑁 .

2.3.2 The Ratio Cut Problem

Previously, we introduced the ratio cut objective in Section 2.2.2 Eq. (2.2.2). In this

section, we first restate the objective in terms of the un-normalised graph Laplacian

matrix 𝐿. In the case of bi-partitioning and more generally 𝐾-partitioning, we show how

a relaxation of the ratio cut problem can be solved, and demonstrate the equivalence of

this relaxation to un-normalised spectral clustering (Von Luxburg, 2007).

The aim of the ratio cut problem in the bi-partitioning setting is to find two subsets
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{𝒮1,𝒮2} that minimises

RatioCut (𝒮1,𝒮2) =
cut(𝒮1,𝒮2)
|𝒮1|

+
cut(𝒮2,𝒮1)
|𝒮2|

, (2.3.4)

such that 𝒮1 ∪ 𝒮2 = 𝒮 and 𝒮1 ∩ 𝒮2 = ∅. Let 𝑓 = [𝑓1, ..., 𝑓𝑁 ]T be an indicator vector

defined as

𝑓𝑖 =

⎧⎪⎪⎨⎪⎪⎩
√︁

|𝒮2|
|𝒮1| , 𝑥𝑖 ∈ 𝒮1,

−
√︁

|𝒮1|
|𝒮2| , 𝑥𝑖 ∈ 𝒮2,

(2.3.5)

for 𝑖 ∈ {1, . . . , 𝑁}. One can show that minimising the ratio cut objective in (2.3.4) is

equivalent to minimising 𝑓T𝐿𝑓 subject to some constraints, which can be expressed as a

discrete minimisation problem as follows

min
𝒮1,𝒮2⊂𝒮

𝑓T𝐿𝑓

s.t. 𝑓 ⊥ 1,

‖𝑓‖2 =
√
𝑁,

𝑓𝑖 as defined in (2.3.5),

𝒮1 ∪ 𝒮2 = 𝒮, 𝒮1 ∩ 𝒮2 = ∅.

(2.3.6)

The first two constraints follow from the definition of 𝑓 . A deduction for this equivalence

can be found in Appendix 2.A.1.

The discreteness in the entries of 𝑓 makes the problem in Eq. (2.3.6) NP-hard to

solve (Wagner and Wagner, 1993). One obvious relaxation of this problem is to allow

the entries in 𝑓 to take arbitrary values in R. Recall that the smallest eigenvalue is zero

that corresponds to the eigenvector with all ones, 1. The solution of this relaxed problem

𝑓 ⋆ is given by the eigenvector that corresponds to the second smallest eigenvalue of 𝐿,

which is orthogonal to 1 (Lütkepohl, 1996). Thus, (𝑓 ⋆)T 𝐿𝑓 ⋆ serves as an approximate

minimiser to the problem in Eq. (2.3.6).

In order to obtain a bi-partitioning of the graph 𝐺, we need to transform the real-

valued entries in 𝑓 ⋆ back to discrete-valued indicators. We can consider the entries in 𝑓 ⋆



18 CHAPTER 2. BACKGROUND

as points in R, and apply 𝐾-means clustering to 𝑓 ⋆ to obtain two clusters. This is exactly

the procedure for the un-normalised spectral clustering algorithm in the case of 𝐾 = 2.

For a general 𝐾-partitioning problem, we can re-express the ratio cut objective in

terms of the un-normalised graph Laplacian 𝐿 in the same vein as in the bi-partitioning

scenario. Given a partition of 𝒮 into 𝐾 sets {𝒮1, . . . ,𝒮𝐾}, the ratio cut objective can be

expressed as

RatioCut(𝒮1, ...,𝒮𝐾) =
𝐾∑︁
𝑘=1

cut(𝒮𝑘,𝒮𝑘)

|𝒮𝑘|
.

We denote 𝐻 ∈ R𝑁×𝐾 as an indicator matrix in which

𝐻𝑖𝑘 =

⎧⎪⎪⎨⎪⎪⎩
1√
|𝒮𝑘|

𝑥𝑖 ∈ 𝒮𝑘,

0 otherwise,
(2.3.7)

for 𝑖 ∈ {1, . . . , 𝑁} and 𝑘 ∈ {1, . . . , 𝐾}. Let ℎ𝑘 ∈ R𝑁 be the 𝑘-th column in 𝐻 , then we

have 𝐻 = [ℎ1, . . . ,ℎ𝐾 ]. One can show that the following holds

cut
(︀
𝒮𝑘,𝒮𝑘

)︀
|𝒮𝑘|

= (ℎ𝑘)T 𝐿ℎ𝑘 =
(︀
𝐻T𝐿𝐻

)︀
𝑘𝑘
, ∀ 𝑘 ∈ {1, . . . , 𝐾} . (2.3.8)

A deduction for this equivalence can be found in Appendix 2.A.1. As such, we have that

RatioCut(𝒮1, ...,𝒮𝐾) =
𝐾∑︁
𝑘=1

(︀
𝐻T𝐿𝐻

)︀
𝑘𝑘

= tr
(︀
𝐻T𝐿𝐻

)︀
. (2.3.9)

Therefore, we have transformed the ratio cut objective for general 𝐾 into the follow-

ing discrete trace minimisation problem involving the un-normalised graph Laplacian:

min
𝒮1,...,𝒮𝐾⊂𝒮

tr(𝐻T𝐿𝐻)

s.t. 𝐻T𝐻 = 𝐼,

𝐻 as defined in (2.3.7),
𝐾⋃︁
𝑘=1

𝒮𝑘 = 𝒮,

𝒮𝑖 ∩ 𝒮𝑗 = ∅, ∀𝑖, 𝑗 ∈ {1, . . . , 𝐾} .

(2.3.10)
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Again, we can relax the problem by allowing the entries in 𝐻 to take arbitrary values in R.

According to the Rayleigh-Ritz theorem (Lütkepohl, 1996), the solution of the relaxed

problem is given by 𝐻⋆, whose columns are the 𝐾 eigenvectors of 𝐿 that correspond

to its 𝐾 smallest eigenvalues. Since the entries in 𝐻⋆ are continuous approximations

of 𝐻 which encodes the exact partitioning information by construction, we can obtain

the final partitioning by applying 𝐾-means clustering to the rows of 𝐻⋆ instead. This

is the procedure for the un-normalised spectral clustering algorithm for general 𝐾. An

algorithmic form for un-normalised spectral clustering is shown in Algorithm 1.

Algorithm 1: Un-normalised Spectral Clustering
Input :Data affinity matrix 𝐴 ∈ R𝑁×𝑁

Number of clusters 𝐾

1. Compute the un-normalised graph Laplacian: 𝐿 = 𝐷 − 𝐴

2. Compute the eigen-decomposition of 𝐿

3. Let 𝑉 ∈ R𝑁×𝐾 be the matrix whose columns contain the eigenvectors
𝑣1, . . . ,𝑣𝐾 corresponding to the 𝐾 smallest eigenvalues

4. Apply 𝐾-means clustering to the rows of 𝑉 to obtain the final cluster labels
𝛺 = {𝜔1, . . . , 𝜔𝑁}

Output :Clusters {𝒮1, . . . ,𝒮𝐾} with 𝒮𝑘 = {𝑖|𝜔𝑖 = 𝑘} for 𝑘 ∈ {1, . . . , 𝐾}

It is worth pointing out that there is no guarantee on how close the solution obtained

from spectral clustering is to that of the optimal solution of the ratio cut objective.

In addition, the aforementioned relaxation approach is not unique. The popularity of

this relaxation approach is mainly due to the simplicity in the resulting linear algebra

problem (Von Luxburg, 2007).

2.3.3 The Normalised Cut Problem

In the previous section, we have demonstrated the connection between the ratio cut

problem and the un-normalised spectral clustering algorithm. In this section, we further

discuss the connection between the normalised cut problem (see Section 2.2.2) and

two well-known normalised spectral clustering algorithms (Shi and Malik, 2000; Ng
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et al., 2002). Both of these spectral clustering algorithms solve an approximation of

the normalised cut problem involving the use of different normalised graph Laplacians,

which we previously introduced in Section 2.3.1.

The normalised spectral clustering algorithm proposed in Shi and Malik (2000) uses

the random walk graph Laplacian matrix 𝐿rw. We refer to this algorithm as the random

walk spectral clustering algorithm. The other normalised spectral clustering algorithm

proposed in Ng et al. (2002) uses the symmetric graph Laplacian matrix 𝐿sym. We refer

to this version as the symmetric spectral clustering algorithm.

We first show how the normalised cut problem can be re-expressed as a discrete

optimisation problem involving the un-normalised Laplacian matrix 𝐿. Through change

of variables, we transform the optimisation problem into two different formulations in-

volving 𝐿rw and 𝐿sym respectively. We show that the relaxations of these two formulations

lead to the two different normalised spectral clustering algorithms.

In the bi-partitioning setting, the normalised cut objective can be expressed as follows

NCut (𝒮1,𝒮2) =
cut(𝒮1,𝒮2)

vol (𝒮1)
+

cut(𝒮2,𝒮1)
vol (𝒮2)

, (2.3.11)

such that 𝒮1 ∪ 𝒮2 = 𝒮 and 𝒮1 ∩ 𝒮2 = ∅. The entries in the indicator vector 𝑓 are defined

as

𝑓𝑖 =

⎧⎪⎪⎨⎪⎪⎩
√︁

vol(𝒮2)
vol(𝒮1)

, 𝑥𝑖 ∈ 𝒮1,

−
√︁

vol(𝒮1)
vol(𝒮2)

, 𝑥𝑖 ∈ 𝒮2.
(2.3.12)

for 𝑖 ∈ {1, . . . , 𝑁}. Similar to the ratio cut scenario, one can show that 𝑓T𝐿𝑓 =

vol (𝒮) · NCut(𝒮1,𝒮2), (𝐷𝑓)T 1 = 0, and 𝑓T𝐷𝑓 = vol (𝒮). A detailed deduction for

this can be found in Appendix 2.A.2. As such, we can restate the normalised cut problem

as a discrete minimisation problem involving the un-normalised graph Laplacian as

follows
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min
𝒮1,𝒮2∈𝒮

𝑓T𝐿𝑓

s.t. 𝐷𝑓 ⊥ 1,

𝑓T𝐷𝑓 = vol(𝒮),

𝑓 as defined in (2.3.12),

𝒮1 ∪ 𝒮2 = 𝒮, 𝒮1 ∩ 𝒮2 = ∅.

(2.3.13)

Again, we consider a relaxation of the above problem in which the entries in 𝑓

are allowed to take arbitrary values in R. Through a change of variable 𝑔 := 𝐷
1
2𝑓 ,

the relaxed problem can be restated using the symmetric normalised graph Laplacian

matrix 𝐿sym as

min
𝑔∈R𝑁

𝑔T𝐿sym𝑔

s.t. 𝐷
1
2𝑔 ⊥ 1,

‖𝑔‖22 = vol (𝒮) .

(2.3.14)

The solution to the above optimisation problem is given by the eigenvector of 𝐿sym that

corresponds to its second smallest eigenvalue. It is easy to check that 𝜆 is an eigenvalue

of 𝐿rw with eigenvector 𝑣 if and only if 𝜆 is an eigenvalue of 𝐿sym with eigenvector 𝐷
1
2𝑣.

Therefore, 𝑓 is the eigenvector of 𝐿rw that corresponds to its second smallest eigenvalue.

The discrete cluster labels can thus be found by applying 𝐾-means clustering to either 𝑔

or 𝑓 .

For a general 𝐾-partitioning problem, the entries in the indicator matrix 𝐻 ∈ R𝑁×𝐾

for the normalised cut problem is specified as follows

𝐻𝑖𝑘 =

⎧⎪⎪⎨⎪⎪⎩
1√

vol(𝒮𝑘)
, 𝑥𝑖 ∈ 𝒮𝑘,

0, otherwise,
(2.3.15)

for 𝑖 ∈ {1, . . . , 𝑁} and 𝑘 ∈ {1, . . . , 𝐾}. Following the same line of deduction as in the

ratio cut setting, one can show that the following holds

𝐻T𝐻 = 𝐼, 𝐻𝐷𝐻 = 𝐼,
cut
(︀
𝒮𝑘,𝒮𝑘

)︀
vol (𝒮𝑘)

= ℎT
𝑘𝐿ℎ𝑘,
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for 𝑘 ∈ {1, . . . , 𝐾}. A detailed deduction for this can be found in Appendix 2.A.2. We

now restate the normalised cut problem for general 𝐾 as the following discrete trace

minimisation problem

min
𝒮1,...,𝒮𝐾⊂𝒮

tr(𝐻T𝐿𝐻)

s.t. 𝐻T𝐷𝐻 = 𝐼,

𝐻 as defined in (2.3.15),
𝐾⋃︁
𝑘=1

𝒮𝑘 = 𝒮,

𝒮𝑖 ∩ 𝒮𝑗 = ∅, ∀𝑖, 𝑗 ∈ {1, . . . , 𝐾} .

(2.3.16)

Relaxing the discreteness condition on 𝐻 and apply the change of variable 𝑇 = 𝐷
1
2𝐻 ,

we obtain the following relaxed problem involving the symmetric normalised graph

Laplacian matrix 𝐿sym as

min
𝑇

tr(𝑇T𝐿sym𝑇 )

s.t. 𝑇T𝑇 = 𝐼.

(2.3.17)

Again, the solution to this problem is given by the matrix 𝑇 ⋆ whose columns contain

the 𝐾 eigenvectors that correspond to the 𝐾 smallest eigenvalues of 𝐿sym. Similarly,

𝐻 consists of the 𝐾 eigenvectors of 𝐿rw that correspond to its 𝐾 smallest eigenvalues.

The final cluster labels can be obtained by applying 𝐾-means clustering to the rows

of 𝐻 or 𝑇 . The use of 𝐻 corresponds to the symmetric spectral clustering algorithm

(Ng et al., 2002), and the use of 𝑇 corresponds to the random walk spectral clustering

algorithm (Shi and Malik, 2000). A summary for the procedures of both normalised

spectral clustering algorithms is provided in Algorithm 2 and 3.

A natural question that arises is: which of these two normalised graph Laplacians

should we use? Furthermore, should we use the un-normalised graph Laplacian or the

normalised graph Laplacians? To answer these questions, one can first check the degree

distribution of the affinity matrix. If the degrees are evenly distributed, then there should

not be a big difference in which graph Laplacian matrix is used. However if the opposite
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is true, then the normalised version is preferred over the un-normalised. This is because

both of these two normalised graph Laplacians take into account the size of clusters and

the within-cluster connectivity.

For both un-normalised and random walk spectral clustering, the eigenvectors of the

corresponding graph Laplacian 𝐿 and 𝐿rw are used as the input to 𝐾-means clustering.

Although this is also the case for symmetric spectral clustering, it is worth noting that

𝜆 is an eigenvalue of 𝐿rw with eigenvector 𝑣 if and only if 𝜆 is an eigenvalue of 𝐿sym

with eigenvector 𝐷
1
2𝑣. That is, the eigenvectors of 𝐿sym are obtained by multiplying the

eigenvectors of 𝐿rw with 𝐷
1
2 . This means that if some nodes have very small total edge

weights, then the corresponding entries in the eigenvectors are very small as well. The

arguments in Von Luxburg (2007) are in favour of the random walk spectral clustering for

this reason. However, this issue of having small values in the eigenvectors are resolved

by an additional row normalisation step in the symmetric spectral clustering algorithm.

In addition, if a point has very weak connections to the remaining points in a data set,

then there is reason to believe that it might be an outlier. Thus, the cluster label does not

matter that much after all.

Algorithm 2: Spectral Clustering (Shi and Malik, 2000)
Input :Data affinity matrix 𝐴 ∈ R𝑁×𝑁

Number of clusters 𝐾

1. Compute the normalised graph Laplacian: 𝐿rw = 𝐼 −𝐷−1𝐴

2. Compute the eigen-decomposition of 𝐿rw

3. Let 𝑉 ∈ R𝑁×𝐾 be the matrix whose columns contain the eigenvectors
𝑣1, . . . ,𝑣𝐾 corresponding to the 𝐾 smallest eigenvalues of 𝐿rw

4. Group the rows of 𝑉 with the 𝐾-means algorithm into 𝐾 clusters

Output :Clusters {𝒮1, . . . ,𝒮𝐾} with 𝒮𝑘 = {𝑖|𝜔𝑖 = 𝑘} for 𝑘 ∈ {1, . . . , 𝐾}

2.3.4 Spectral Clustering - An Example

In this section, we apply spectral clustering to the two data sets with non-convex clusters

that we used in Section 2.1 Figure 2.1.2. Previously, we have shown that 𝐾-means
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Algorithm 3: Spectral Clustering (Ng et al., 2002)
Input :Data affinity matrix 𝐴 ∈ R𝑁×𝑁

Number of clusters 𝐾

1. Compute the normalised graph Laplacian: 𝐿sym = 𝐼 −𝐷− 1
2𝐴𝐷− 1

2

2. Compute the eigen-decomposition of 𝐿sym

3. Let 𝑈 ∈ R𝑁×𝐾 be the matrix whose columns contain the eigenvectors
𝑣1, . . . ,𝑣𝐾 corresponding to the 𝐾 smallest eigenvalues of 𝐿sym

4. Normalise the rows in 𝑈 to have unit length under the ℓ2-norm

5. Group the normalised rows in 𝑉 with the 𝐾-means algorithm into 𝐾 clusters

Output :Clusters {𝒮1, . . . ,𝒮𝐾} with 𝒮𝑘 = {𝑖|𝜔𝑖 = 𝑘} for 𝑘 ∈ {1, . . . , 𝐾}

clustering struggles to find a good partitioning of the data regardless of the chosen

number of clusters. Here we show that spectral clustering is capable of finding the correct

partitioning of the data on both examples.

As a first step, we need to determine the similarity graph thus construct the data

affinity matrix. In Section 2.2.1, we discussed a few options for similarity graphs. On

these two data sets, we experiment with both the 𝑘-NN graph and the fully connected

graph with Gaussian similarity function. Both graphs have a tuning parameter: in 𝑘-NN

graph, 𝑘 controls the neighbourhood size; in Gaussian similarity function, 𝜎 controls

the neighbourhood size. When the Gaussian similarity function is used as the proximity

measure in the 𝑘-NN graph, we observe that both a 𝑘-NN graph with 𝑘 = 10 and a

fully connected graph with 𝜎 = 100 lead to the correct data partitioning. For illustration

purpose, we will continue our discussion using the 𝑘-NN graph with 𝑘 = 10.

Once the data affinity matrix is constructed, the next choice to make is which graph

Laplacian matrix to construct. We discussed un-normalised spectral clustering, random

walk spectral clustering, and symmetric spectral clustering in Section 2.3.2 and 2.3.3. We

mentioned that the decision between un-normalised and normalised spectral clustering is

dependent on the degree distribution. It does not make much of a difference when the

degrees are evenly distributed, otherwise normalised distribution is often preferred over

the un-normalised version (Von Luxburg, 2007). Histograms for the degree distribution
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of both data sets are shown in Figure 2.3.1. It is clear to see that the two histograms

exhibit a bell shape, which suggests that the degrees are far from evenly distributed.

Therefore, we narrow the options down to normalised graph Laplacians. Out of the two

normalised graph Laplacians 𝐿rw and 𝐿sym, we choose to use 𝐿sym as its eigenvectors

account for the degree distribution.
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Figure 2.3.1: Histograms of the degree distribution based on the affinity matrix.

We apply eigen-decomposition to each of the two symmetric graph Laplacians,

and obtain its 𝐾 = 2 smallest eigenvalues and their corresponding eigenvectors. A

visualisation of the first and second eigenvectors are provided in Figure 2.3.2. The points

are coloured in their true cluster labels. It can be seen that the data are clearly separable

in both data examples. We apply 𝐾-means clustering to the two eigenvectors after row

normalisation, and a visualisation of the data coloured in the assigned cluster labels can

also be found in the bottom row of Figure 2.3.2. We can see that spectral clustering has

correctly identified the clusters on both data examples.

2.4 Subspace Clustering

So far, we have introduced 𝐾-means clustering and spectral clustering, which are two

of the most fundamental approaches in clustering. However, the performance of these

methods suffers in the presence of high-dimensionality, as is previously mentioned in

Chapter 1. The curse-of-dimensionality, along with the exponential increase in the

amount of high-dimensional data in recent years, largely motivated an active research



26 CHAPTER 2. BACKGROUND

0 200 400 600 800 1000
Index of points

0.05

0.04

0.03

0.02

0.01

V
al

ue
s 

in
 t

he
 e

ig
en

ve
ct

or
1st eigenvector

0 200 400 600 800 1000
Index of points

0.045

0.040

0.035

0.030

0.025

0.020

V
al

ue
s 

in
 t

he
 e

ig
en

ve
ct

or

1st eigenvector

0 200 400 600 800 1000
Index of points

0.05

0.04

0.03

0.02

0.01

0.00

0.01

V
al

ue
s 

in
 t

he
 e

ig
en

ve
ct

or

1st eigenvector

0 200 400 600 800 1000
Index of points

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02
V

al
ue

s 
in

 t
he

 e
ig

en
ve

ct
or

2nd eigenvector

1.0 0.5 0.0 0.5 1.0 1.5 2.0
X[ : , 1]

0.50

0.25

0.00

0.25

0.50

0.75

1.00

X
[:

,2
]

K = 2

1.0 0.5 0.0 0.5 1.0
X[ : , 1]

1.0

0.5

0.0

0.5

1.0

X
[:

,2
]

K = 2

Figure 2.3.2: A visualisation of the two eigenvectors corresponding to the two smallest
eigenvalues of 𝐿sym (first and second row), and the data points coloured in the assigned
cluster labels (third row).

area called subspace clustering. Subspace clustering is motivated by the observation

that high-dimensional data can often be summarised well in a much lower-dimensional

subspace (Elhamifar and Vidal, 2013).
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Existing subspace clustering methods mainly fall under four different categories:

iterative methods, spectral methods, algebraic methods, and statistical methods. We

provide an overview of these different types of methods in the remainder of this section.

In particular, our methodological contributions from Chapter 3 to 5 are based upon

iterative, spectral, and algebraic methods respectively.

2.4.1 Iterative Methods

Iterative subspace clustering methods alternate between assigning points to subspaces

and estimating the corresponding subspaces given the cluster labels (Bradley and Man-

gasarian, 2000; Tseng, 2000; Agarwal and Mustafa, 2004; Wang et al., 2009). Note that

the general concept of iterative subspace methods resembles that of 𝐾-means clustering,

except that the cluster centroid is replaced by the subspace basis.

𝐾-Plane Clustering (KPC) (Bradley and Mangasarian, 2000) is a generalisation of

𝐾-means clustering from modelling the data as groups of spherical clusters to modelling

the data as drawn from multiple hyperplanes,

𝒫𝑘 =
{︀
𝑥 ∈ R𝑃 |𝑥T𝑣𝑘 = 𝛾𝑘

}︀
, ∀ 𝑘 ∈ {1, . . . , 𝐾} . (2.4.1)

The authors showed that the solution (𝑣𝑘, 𝛾𝑘) that gives the minimising hyperplane for a

group of points is given by the smallest eigenvalue and its corresponding eigenvector of

the following symmetric positive semi-definite matrix,

𝐵𝑘 = 𝑋T
𝑘

(︂
𝐼 − 1

𝑛𝑘

11T

)︂
𝑋𝑘, (2.4.2)

where the rows of 𝑋𝑘 ∈ R𝑛𝑘×𝑃 correspond to the 𝑛𝑘 points that are assigned to cluster 𝑘.

In Eq. (2.4.1), 𝑣𝑘 is given by the eigenvector that corresponds to the smallest eigenvalue

of 𝐵𝑘 as given in Eq. (2.4.2), and 𝛾𝑘 is given by 𝛾𝑘 = 1
𝑛𝑘
1T𝑋𝑘𝑣𝑘. Similar to 𝐾-means

clustering, the algorithm iterates between assigning each point to the closest hyperplane

and estimating the hyperplane for each cluster of points.

𝐾-Subspace Clustering (KSC) is one of the most popular iterative methods that
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has been invented and reinvented several times (Tseng, 2000; Agarwal and Mustafa,

2004; Wang et al., 2009). Tseng (2000) first generalised both 𝐾-means clustering which

considers the cluster centre as a point, and 𝐾-plane clustering which represents each

cluster as a hyperplane, to that of 𝐾-subspace clustering (KSC). Given that the data lie

in a 𝑃 -dimensional ambient space, KSC represents each cluster with a 𝑞-dimensional

subspace (0 6 𝑞 6 (𝑃 − 1)). It is easy to see that both 𝐾-means (𝑞 = 0) and 𝐾-planes

(𝑞 = 𝑃 − 1) are two special cases of this generic framework.

We present the base algorithm as described in both Agarwal and Mustafa (2004) and

Wang et al. (2009) as follows. Given the set of 𝑁 data points 𝒳 = {𝑥𝑖}𝑁𝑖=1, the aim is

to find a set of subspace bases 𝒱 =
{︀
𝑉𝑘 ∈ R𝑃×𝑞

}︀𝐾
𝑘=1

and cluster labels {𝜔𝑖}𝑁𝑖=1 such

that the overall reconstruction error is minimised. Concretely, the loss function can be

expressed as follows

𝐿(𝒳 ;𝛺) =
𝐾∑︁
𝑘=1

∑︁
𝑥𝑖∈𝛺𝑘

‖𝑥𝑖 − 𝑉𝜔𝑖
𝑉 T
𝜔𝑖
𝑥𝑖‖22, (2.4.3)

in which the number of subspaces 𝐾 is assumed to be known. Given a set of cluster

labels, the subspace bases 𝒱 = {𝑉1, . . . , 𝑉𝐾} can be obtained by applying Principal

Component Analysis (PCA) (Jolliffe, 2011) to each group of data points from the same

subspace such that the total reconstruction error in Eq. (2.4.3) is minimised. The columns

in 𝑉𝑘 are the top-𝑞 principal components for the 𝑘-th subspace. The basis matrix 𝑉𝑘

for each subspace 𝑘 can be obtained through the eigen-decomposition of its covariance

matrix as

(𝑋𝑘 − 1𝜇T
𝑘 )T(𝑋𝑘 − 1𝜇T

𝑘 ) = 𝑉 ⋆
𝑘 Λ⋆

𝑘(𝑉 ⋆
𝑘 )T, (2.4.4)

in which 𝑋𝑘 ∈ R𝑛𝑘×𝑃 is denoted as the data matrix that contains the 𝑛𝑘 points assigned

to cluster 𝑘, and 𝜇𝑘 as the column-wise mean vector of 𝑋𝑘. 𝑉 ⋆
𝑘 is a 𝑃 × 𝑃 matrix whose

columns correspond to the eigenvectors of the covariance matrix of 𝑋𝑘, and Λ⋆
𝑘 is a

diagonal matrix containing the 𝑃 eigenvalues.

Given the subspace bases 𝒱 = {𝑉1, . . . , 𝑉𝐾}, the cluster label 𝜔𝑖 for a point 𝑥𝑖 ∈ 𝒳
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can be obtained as

𝜔𝑖 = arg min
𝑘∈{1,...,𝐾}

⃦⃦
𝑥𝑖 − 𝑉𝑘𝑉

T
𝑘 𝑥𝑖

⃦⃦2
2
. (2.4.5)

KSC initialises with a set of randomly assigned cluster labels. The iterative process

alternates between estimating the subspaces basis vectors according to Eq. (2.4.4),

and updating the cluster labels according to Eq. (2.4.5). The algorithm terminates

when the loss function value in Eq. (2.4.3) stops decreasing, and it is guaranteed to

converge to a local optimum as is the case for the standard 𝐾-means clustering. It

is worth noting that the subspace dimensions are assumed to be known and equal in

the KSC base algorithm. However, this does not necessarily have to be the case. In

Agarwal and Mustafa (2004), the authors extend KSC by introducing a dimension

normalisation function for the determination of the corresponding subspace dimension

𝑞𝑘 for each subspace 𝑘 (𝑘 ∈ {1, . . . , 𝐾}). This function captures the trade-off between

the reconstruction error and the subspace dimension.

Median 𝐾-Flats (MKF) (Zhang et al., 2009) is an online iterative subspace cluster-

ing method that minimises the ℓ1 distance between a point to the corresponding subspace

as opposed to the ℓ2 distance used in KSC. It has been observed that using the ℓ1 distance

measure is more robust than its ℓ2 counterpart in the existence of a large number of

outliers in the data. As in KSC, MKF also requires that all subspace dimensions are

known and equal.

Instead of minimising the objective function in an iterative manner between subspace

estimation and cluster assignment, MKF uses stochastic gradient descent to minimise the

objective function (Christopher, 2006). The algorithm initialises with randomly allocated

points and their corresponding 𝐾 subspaces. At each iteration, a random point is chosen

and allocated to its closest subspace, then the subspace is updated with stochastic gradient

descent. The process repeats until some convergence criterion is met.

Although iterative methods are conceptually simple to implement and computation-

ally fast to converge, they are sensitive to initialisation just like 𝐾-means clustering (El-

hamifar and Vidal, 2013). An initialisation scheme called farthest insertion is proposed

in Zhang et al. (2009), which has been shown to improve the cluster performance when
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the data have little noise and few outliers. Based on the same idea as farthest insertion,

more recently He et al. (2016) proposed a robust algorithm for 𝐾-subspace recovery in

the existence of outliers. The initialisation scheme first generates 𝑄 candidate subspaces

(𝑄≫ 𝐾) using probabilistic farthest insertion (Ostrovsky et al., 2013). Then 𝐾 out of

these 𝑄 subspaces are selected based on a greedy algorithm.

Another approach to address the initialisation issue in iterative methods is to run the

algorithm multiple times and then aggregate the results. Lipor et al. (2017) proposed

Ensemble 𝐾-Subspaces (EKSS) which combines KSC with ensemble clustering. The

main idea therein is to run KSC with multiple random initialisations, and combine the

clustering results from multiple runs together. The development of EKSS is based on

the observation that even those bad initialisations of KSC yield some partially correct

cluster labels. As such, several KSC runs with bad initialisations may be combined to

form a more accurate partitioning. Given a set of 𝑁 data points, the EKSS algorithm

performs KSC for a number of times with random initialisation, then forms an 𝑁 by

𝑁 co-association matrix in which the (𝑖, 𝑗)-th entry of the matrix denotes the number

of times point 𝑖 and 𝑗 are assigned to the same cluster. This co-association matrix is

then modified by retaining only the top-𝑞 values from either each row or each column,

in which 𝑞 is a user-specified parameter. The purpose of this operation is to form a 𝑞

nearest neighbours graph, so that ideally each point is connected to points from the same

subspace (Heckel and Bölcskei, 2015). Spectral clustering is applied to the modified

co-association matrix to obtain the final cluster labels.

Lipor (2017) provides theoretical guarantees on the performance of EKSS. Given

EKSS with a specific choice of parameter values and by combining the clustering results

from many random initialisations of KSC, it can be shown that the entries in the co-

association matrix converge to a monotonically increasing function of the absolute value

of the inner product between pairs of points (Lipor et al. (2017, Lemma 1)). In addition,

it can cluster the points exactly under given conditions on the number of points per

subspace and the maximum affinity between subspaces. Specifically, the affinity between
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subspace 𝒮𝑖 and 𝒮𝑗 is defined as (Heckel and Bölcskei, 2015; Zhang and Balzano, 2016)

aff (𝒮𝑖,𝒮𝑗) =
1

min (𝑞𝑖, 𝑞𝑗)
‖𝑉 T

𝑖 𝑉𝑗‖𝐹 , (2.4.6)

where 𝑞𝑖 and 𝑞𝑗 denote the subspace dimensions for 𝒮𝑖 and 𝒮𝑗 , 𝑉𝑖 and 𝑉𝑗 denote the

subspace bases for 𝒮𝑖 and 𝒮𝑗 . The EKSS algorithm has been shown to perform well on a

number of benchmark data sets. Although it can be suitably parallelised due to its design,

it does require more computing power to counteract the effect of bad initialisations.

2.4.2 Spectral Methods

In this section, we provide a brief review of spectral-based subspace clustering methods.

A detailed discussion of state-of-the-art spectral-based methods will be provided in

Chapter 4 Section 4.2.1. For an extensive overview of this area, we refer the reader

to Vidal (2011). We will signpost more recent literature in the rest of this section.

Spectral-based methods are based upon the self-expressiveness model (Elhamifar and

Vidal, 2013). Given a data set 𝒳 =
{︀
𝑥𝑖 ∈ R𝑃

}︀𝑁
𝑖=1

, the main premise of this model is

that every point 𝑥𝑖 ∈ 𝒳 can be well approximated by a linear combination of a few other

points from the same subspace. In the noise-free case, each point can be reconstructed by

using exactly 𝑞 points from the same linear subspace or (𝑞+1) points from the same affine

subspace, in which 𝑞 is the subspace dimension. Concretely, the self-expressiveness

model can be expressed as the following optimisation problem for each point:

min
𝛽𝑖

‖𝜀𝑖‖𝜅 + 𝜌 ‖𝛽𝑖‖𝑙

s.t. 𝑥𝑖 = 𝑌−𝑖𝛽𝑖 + 𝜀𝑖,

(2.4.7)

where 𝑌−𝑖 = [𝑥1, . . . ,𝑥𝑖−1,𝑥𝑖+1, . . . ,𝑥𝑁 ] ∈ R𝑃×(𝑁−1), i.e. the data matrix without the

𝑖-th column for 𝑥𝑖 to prevent the trivial solution of self-representation, and 𝜌 is a penalty

parameter on the coefficient vector. Here 𝛽𝑖 denotes the coefficient vector of the linear

combination in representing 𝑥𝑖, and 𝜀𝑖 represents the difference between 𝑥𝑖 and the

linear combination 𝑌−𝑖𝛽𝑖, which is the reconstruction error term.
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Combining the coefficient vectors for all 𝑁 points together, we obtain the coefficient

matrix 𝐵 as follows

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 𝛽12 𝛽13 . . . 𝛽1𝑁

𝛽21 0 𝛽23 . . . 𝛽2𝑁

𝛽31 𝛽32 0 . . . 𝛽3𝑁

...
...

... . . . ...

𝛽𝑁1 𝛽𝑁2 𝛽𝑁3 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.4.8)

where 𝛽𝑖𝑗 in 𝐵 denotes the coefficient value in front of 𝑥𝑖 in the linear combination that

approximates 𝑥𝑗 . That is, the coefficient vectors are stored in the columns of 𝐵. Given

the coefficient matrix 𝐵, a common way to construct a non-negative symmetric affinity

matrix 𝐴 is through 𝐴 =
(︀
|𝐵|+ |𝐵|T

)︀
/2 (Huang et al., 2015; Li et al., 2017, 2018a).

The final clustering labels can then be obtained by applying a standard spectral clustering

algorithm (Shi and Malik, 2000; Ng et al., 2002) to the affinity matrix.

Most spectral-based methods differ in the choice of the norms ‖·‖𝜅 and ‖·‖𝑙. The

most influential work in the area of spectral-based subspace clustering is Sparse Subspace

Clustering (SSC) (Elhamifar and Vidal, 2009). SSC applies the ℓ1-norm to the coefficient

vectors to encourage sparse solutions. In addition, it treats the existence of noise and

sparse outlying entries with the ℓ2 and ℓ1-norm respectively. This is based on the fact

that the data are often more evenly affected by noise, whereas sparse outlying entries are

more local as is reflected in its name. Theoretical guarantee for the correctness of SSC is

provided in Elhamifar and Vidal (2009), which shows that the solution vectors of SSC are

subspace-preserving when the subspaces are independent (see Chapter 1 Section 1.2 for

definition of independent subspaces). Subspace-preserving refers to the scenario where

there is no connection between points from different subspaces, thus 𝛽𝑖𝑗 ̸= 0 only when

𝑥𝑖 and 𝑥𝑗 are in the same subspace (You et al., 2016; Li et al., 2018a). In Soltanolkotabi

and Candes (2012), the correctness of SSC is further extended to the more general case

where the subspaces could have non-trivial intersections (You, 2018).

Extensions of SSC. The success of SSC has led to the development of many other

subspace clustering methods that also exploit the self-expressiveness property. Inspired
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by SSC, You et al. (2016) proposed a sparse subspace clustering method based on

Orthogonal Matching Pursuit (OMP) (Pati et al., 1993). The proposed method is termed

SSC-OMP, for its kinship to the original SSC algorithm. It uses OMP to recursively

select one point at a time to minimise the ℓ2-norm of the reconstruction error term, until

a pre-specified 𝑘 points are selected to be included into the sparse representation. That

is, it applies the ℓ0-norm on the coefficient vector 𝛽𝑖 (𝑖 ∈ {1, . . . , 𝑁}). SSC-OMP is

computationally efficient, thus suitable to be applied to large-scale problems. As in SSC,

it has been shown that OMP gives a subspace-preserving representation of each data

point if the subspaces are independent. In addition, SSC-OMP has also been shown to

be subspace-preserving under certain conditions when the subspaces are not necessarily

independent.

Another subspace clustering method that is based upon SSC is called Structured

Sparse Subspace Clustering (S3C) (Li and Vidal, 2015; Li et al., 2017). A key difference

between S3C and other spectral-based methods is that it integrates the stage of learning

the representation matrix with the stage of spectral clustering. This results in an iterative

optimisation framework. The optimisation programme in the first stage incorporates

the results from spectral clustering through a new subspace structured ℓ1-norm on

the coefficient vector. This also paves the way for further incorporation of constraint

information if there is any (Li et al., 2017, 2018b), which we will discuss in further detail

in Chapter 4.

Dense representation models. Although certain conditions have been established

for both SSC and SSC-OMP to be subspace-preserving, they are not sufficient conditions

to produce correct clustering labels. Given that each point is represented by a few other

points from the same subspace, it does not mean that all points in the same subspace form

only one connected component. This may result in over-segmentation of points from

one subspace by spectral clustering, which is known as the graph connectivity problem

(Nasihatkon and Hartley, 2011; Wang et al., 2016).

To avoid this problem, one type of spectral-based method obtains the coefficient

vector by minimising the ℓ2-norm of the reconstruction error term in Eq. (2.4.7). For
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example, Least Squares Regression (LSR) (Lu et al., 2012) applies the ℓ2-norm to both

the reconstruction error term and the coefficient vector. The data affinity matrix obtained

from the coefficient vectors are dense. Similar to LSR, Smooth Representation Clustering

(SMR) (Hu et al., 2014) also minimises the least squares error on the reconstruction error

term. In addition, it computes the graph Laplacian matrix 𝐿 from a 𝑘-NN graph (See

Section 2.2.1), and then incorporate 𝐿 into the objective function. We provide more

detailed discussion of the problem formulation in Chapter 4.

These ℓ2-regularised problems have several nice properties. The objective of LSR

corresponds to that of ridge regression, and has a closed form solution (Hoerl and

Kennard, 1970). The objective of SMR is a smooth convex function, thus has a unique

solution. Setting the derivative of the objective with respect to the solution vector yields

the Sylvester equation, which can be solved by the Bartels-Stewart algorithm (Bartels

and Stewart, 1972).

Another well-known dense representation model is Low Rank Representation (LRR) (Liu

et al., 2010, 2012). It seeks a lowest rank representation of the data matrix with respect

to a dictionary, which is the data matrix itself. It is mentioned in Liu et al. (2010) that

the low rankness criterion is more suitable than the sparse representation one, as sparse

representation models do not necessarily capture the global structure of the data. LRR

solves a convex optimisation programme that applies the nuclear norm on the coefficient

matrix, and the ℓ2,1-norm on the reconstruction error. The nuclear norm can be defined as

the sum of all the singular values of a matrix. It is a convex envelop of the rank function,

thus can serve as a convex surrogate for it. The ℓ2,1-norm is the sum of the ℓ1-norms of

the columns of a matrix. It encourages the columns of the reconstruction error term to be

zero, which implies that the noise is specific to the data points.

Inclusion of an affine constraint. The aforementioned methods implicitly or explic-

itly deal with data that lie in linear subspaces. In general, data from affine subspaces can

also be considered as in the case of linear subspaces. This is because a 𝑃 -dimensional

affine subspace 𝒮aff can be considered as a (𝑃 + 1)-dimensional linear subspace that

includes 𝒮aff and the origin (Elhamifar and Vidal, 2013). However, there are potential
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side effects of ignoring the affine structure of the data. In particular, it may result in

indistinguishability between subspaces as a result of a potential increase in the dimension

of the intersection between two subspaces.

To explicitly handle data from affine subspaces, one can include a constraint which

requires that the coefficient vector sums up to one. This is based on the fact that any point

from a 𝑞-dimensional affine subspace can be expressed with a combination of (𝑞 + 1)

other points from the same subspace (Elhamifar and Vidal (2013, Section 3.3)). The

addition of an affine constraint to the SSC problem results in Affine Sparse Subspace

Clustering (ASSC) (Li et al., 2018a). It has been observed that the ℓ1-norm no longer

induces sparsity with the inclusion of an affine constraint. As a result, the affinity matrix

constructed from the coefficient matrix of ASSC is dense. It has been shown that ASSC

enjoys subspace-preserving property when the affine subspaces are independent.

There are other methods that include an affine constraint in the problem formulation,

but are not motivated by affine subspaces. Sparse Simplex Representation (SSR) is first

proposed in Huang et al. (2013) for the modelling of brain networks. It includes the

affine constraint as part of the simplex constraint to ensure that the resulting coefficient

vectors are between zero and one, which provides a probabilistic interpretation for the

coefficient values. In Sparse Manifold Clustering and Embedding (SMCE) (Elhamifar

and Vidal, 2011), the aim is to identify points that lie in the same manifold. SMCE uses

the geometrically motivated assumption that there exists a small neighbourhood for each

point, in which only the points that come from the same manifold lie approximately in the

same low-dimensional affine subspace. The proposed optimisation programme selects

a few neighbours of each data point that span a low-dimensional affine subspace near

that point. We will provide further details to these spectral-based subspace clustering

methods in Chapter 4.

2.4.3 Algebraic Methods

Algebraic methods are mostly based on linear algebra, for example matrix factorisation;

or polynomial algebra, which models the union of subspaces with a set of homogeneous
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polynomials. We discuss a few factorisation-based methods in Section 2.4.3.1 that

are based on either the Singular Value Decomposition (SVD) or the Reduced Row

Echelon Form (RREF) (Golub and Van Loan, 2013). In Section 2.4.3.2, we introduce the

most influential work based on polynomial algebra – Generalised Principal Component

Analysis (GPCA) (Vidal et al., 2003, 2005), and discuss some of the recent extensions

based on GPCA.

2.4.3.1 Factorisation-based Methods

Methods that are based on matrix factorisation obtain the data segmentation from a low

rank factorisation of the data matrix 𝑋 ∈ R𝑁×𝑃 (Vidal, 2011; Elhamifar and Vidal,

2013). Assume that the data matrix 𝑋𝑘 which contains 𝑛𝑘 points in the 𝑞𝑘-dimensional

subspace 𝑘 (𝑘 ∈ {1, . . . , 𝐾}) is noise-free, then we can express 𝑋𝑘 in terms of its

subspace basis vectors as

𝑋𝑘 = 𝑌𝑘𝑉
T
𝑘 , (2.4.9)

where 𝑌𝑘 ∈ R𝑛𝑘×𝑞𝑘 is the low-dimensional representation of the data points in subspace 𝑘,

and the columns of 𝑉𝑘 ∈ R𝑃×𝑞𝑘 correspond to the basis vectors for its 𝑞𝑘-dimensional

subspace. If we order the rows of the full data matrix 𝑋 according to their subspace

labels as Γ𝑋 in which Γ ∈ R𝑁×𝑁 is a permutation matrix, then we can express the

ordered full data matrix Γ𝑋 as

Γ𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑌1

𝑌2

. . .

𝑌𝐾

⎤⎥⎥⎥⎥⎥⎥⎥⎦
· [𝑉1, . . . , 𝑉𝐾 ]T = 𝑌 𝑉. (2.4.10)

If the subspaces are independent from each other, then we have 𝑟 := rank(𝑋) =
∑︀𝐾

𝑘=1 𝑞𝑘,

𝑌 ∈ R𝑁×𝑟, and 𝑉 ∈ R𝑟×𝑃 . This idea of low rank matrix factorisation is the basis of a

number of algebraic methods. For example, Boult and Brown (1991) and Costeira and

Kanade (1998) rely on the Singular Value Decomposition (SVD) of 𝑋 , and Gear (1998)

utilises the Reduced Row Echelon Form (RREF) of 𝑋 .
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Most of these methods are motivated by the motion segmentation problem. The

main objective of the motion segmentation problem is to identify a number of objects

moving independently in three dimensions, captured by a sequence of two-dimensional

images of a scene (Gear, 1998). Each rigid moving object can be described by a group

of two-dimensional feature points {(𝑥1, 𝑦1) , (𝑥2, 𝑦2) , . . . (𝑥𝑁𝑘
, 𝑦𝑁𝑘

)}. The pair (𝑥𝑖, 𝑦𝑖)

(𝑖 ∈ {1, . . . , 𝑁𝑘}) contains the horizontal and vertical coordinates of the points in one

image, where 𝑁𝑘 denotes the total number of points for object 𝑘. The motion of each

object is captured by a sequence of of frames that each contains a group of these feature

points. These feature points corresponding to each object can be suitably modelled as a

set of linearly independent subspaces.

SVD-based factorisation methods. Boult and Brown (1991) uses a rank-𝑟 SVD to

approximate the data matrix, 𝑋 ≈ �̂�Σ̂𝑉 T, where �̂� ∈ R𝑁×𝑟, Σ̂ ∈ R𝑟×𝑟, and 𝑉 ∈ R𝑃×𝑟.

Given 𝐾 linearly independent motions, they observe that the rank 𝑟 is given by 3𝐾. This

is because the location of each object captured by a moving camera can be characterised

with three-dimensional location coordinates. Thus, they reside in a three-dimensional

affine space, or four-dimensional linear space under homogeneous coordinates. A

segmentation of the motions can be obtained by applying a clustering algorithm to the

rows of �̂� . It is worth noting that this is essentially equivalent to applying clustering on

the dimension reduced data as represented by the top-𝑟 principal component vectors.

The Costeira and Kanade algorithm (Costeira and Kanade, 1995, 1998) is also based

upon the SVD to address the motion segmentation problem. Let 𝑋 ≈ �̂�Σ̂𝑉 T be the

rank-𝑟 SVD approximation of the data matrix, then the pairwise affinity information can

be captured via 𝑄 = �̂� �̂�T ∈ R𝑁×𝑁 . In the noise-free scenario, 𝑄𝑖𝑗 ̸= 0 if point 𝑖 and 𝑗

are in the same subspace and zero otherwise. The cluster labels can be obtained either

by applying spectral clustering to 𝑄, or by sorting and thresholding the entries in 𝑄 and

forming a block-diagonal structure (Vidal, 2011). A main drawback of the algorithm is

that it is very sensitive to noise, and it is difficult to find a suitable threshold (Kanatani,

2001).

RREF-based factorisation methods. Another type of factorisation-based method
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relies on the Reduced Row Echelon Form (RREF). One of the earliest RREF-based meth-

ods is proposed in Gear (1994) and further developed in Gear (1998), and is motivated

by the motion segmentation application as well. A motion sequence is composed of

𝑓 image frames, and each image frame contains a number of two-dimensional points

that are associated with 𝐾 independently moving objects in a three-dimensional space.

The aim is to identify which points belong to which moving objects throughout these 𝑓

frames.

The locations of the points are recorded using homogeneous coordinates 𝑊 =

[𝑤1, . . . ,𝑤𝑁 ]T, where 𝑤𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 1]T is the location for point 𝑖 (𝑖 ∈ {1, . . . , 𝑁}).

Each frame is the result of a different transformation 𝑇𝑗 ∈ R2×4 of the coordinates in

𝑊 for 𝑗 ∈ {1, . . . , 𝑓}. Let 𝑇 = [𝑇1, . . . , 𝑇𝑓 ]T, then the data matrix can be obtained as

𝑋 = 𝑊𝑇T which is of size 𝑁 by 𝑃 in which 𝑃 = 2𝑓 . The pairs of columns in 𝑋

correspond to the horizontal and vertical coordinates of the projection of all 𝑁 points

in the image frames. In the noise-free scenario, 𝑋 would have rank no greater than 4𝐾.

The algorithm first obtains the reduced row echelon form based on the transpose of the

data matrix, 𝐹 = rref(𝑋T), with partial pivoting through the Gauss-Jordan elimination

process. An outline of the process can be found in Gear (1994, 1998), and is given below

in Algorithm 4.

At the end of the process, the reduced row echelon form 𝐹 would have the following

canonical form

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 𝐹1,(𝑟+1) . . . 𝐹1,𝑁

0 1 . . . 0 𝐹2,(𝑟+1) . . . 𝐹2,𝑁

...
... . . . ...

... . . .
...

0 0 . . . 1 𝐹𝑟,(𝑟+1) . . . 𝐹𝑟,𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2.4.11)

in which 𝑟 is the rank of 𝐹 . The first 𝑟 columns of 𝐹 is a 𝑟 by 𝑟 identity matrix, where

each row / column is called a pivot row /column. The rank tolerance parameter 𝑡𝑟 in

Algorithm 4 controls the resulting rank of 𝐹 . If it is too large, there would only be a few

pivot columns. If it is too close to zero, there would be more pivot columns than the rank

of the noise-free data.
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Algorithm 4: Reduced Row Echelon Form (RREF) with Partial Pivoting
Input: Transpose of the data matrix: 𝑌 = 𝑋T; rank tolerance parameter: 𝑡𝑟

Initialisation: 𝑖 = 1, 𝑗 = 1

while 𝑖 6 2𝑓 and 𝑗 6 𝑁 do

Switch rows so that max
𝑟∈{𝑖,...,2𝑓}

𝑌𝑟,𝑗 is in row 𝑖, where

𝑌𝑟,𝑗 denotes the entry in the 𝑟-th row and the 𝑗-th column of 𝑌

if 𝑌𝑖,𝑗 > 𝑡𝑟 then
Divide the 𝑖-th row by 𝑌𝑖,𝑗 (𝑌𝑖,𝑗 is the pivot)
for 𝑐 ∈ {1, . . . 2𝑓} and 𝑐 ̸= 𝑖 do

𝑌𝑐· ← 𝑌𝑐· − 𝑌𝑐,𝑗 × 𝑌𝑖·, where
𝑌𝑐· denotes the 𝑐-th row of 𝑌

end
𝑖← 𝑖 + 1

end
𝑗 ← 𝑗 + 1

end

The locations of the non-zero values in the reduced row echelon form provide the

grouping information. Any two columns in 𝐹 which have non-zero elements in the

same row are considered to belong to the same moving object, thus in the same cluster.

However, when the data matrix is not noise-free, the non-pivot columns 𝐹·,(𝑟+1) to 𝐹·,𝑁

are often filled with non-zero entries only. As such, another user-specified parameter

called the grouping tolerance parameter is introduced to set small entries in the non-pivot

columns to zero. These two parameters combined have been shown to be able to tolerate

a moderate amount of noise in the data (Gear, 1998). However, the success of the

algorithm is based on the assumption that the subspaces are independent (see Chapter 1

Section 1.2 for the definition of independent subspaces).

2.4.3.2 Generalised Principal Component Analysis (GPCA)

The main idea. Generalised Principal Component Analysis (GPCA) (Vidal et al.,

2003, 2005) is an algebraic-geometric method for clustering data lying in a union

of linear subspaces. It models a union of 𝐾 subspaces with a set of homogeneous

polynomials with degree 𝐾. We illustrate the main idea behind this with a simple example

shown in Figure 2.4.1, in which the union of two subspaces 𝒮1 = {𝑥|𝑥1 = 𝑥2 = 0} and
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𝒮2 = {𝑥3 = 0} lie in a three-dimensional space, with normal vectors 𝑏1, 𝑏2 ∈ R3

respectively.

S2

S1

x2
x1

Figure 2.4.1: Data points drawn from a union of two subspaces in R3.

The union of the two subspaces can be characterised with the following polynomial

𝑝(𝑥) =
(︀
𝑏T1𝑥

)︀ (︀
𝑏T2𝑥

)︀
= 0, (2.4.12)

where 𝑏1 and 𝑏2 are the normal vectors that are orthogonal to points lying in subspaces

𝒮1 and 𝒮2 respectively. Eq. (2.4.12) says that the point 𝑥 = [𝑥1, 𝑥2, 𝑥3]
T either belongs

to subspace 𝒮1 which gives 𝑏T1𝑥 = 0, or belongs to subspace 𝒮2 which has 𝑏T2𝑥 = 0.

As can be inspected visually, these two subspaces can also be characterised with two

separate second-order polynomials

𝑝1(𝑥) = 𝑥1𝑥3 = 0, 𝑝2(𝑥) = 𝑥2𝑥3 = 0. (2.4.13)

Let 𝑃 (𝑥) = [𝑝1(𝑥), 𝑝2(𝑥)] denote the set of two polynomials in Eq. (2.4.13), then the

partial derivatives of 𝑃 (𝑥) along all basis directions can be expressed as

∇𝑃 (𝑥) =

⎡⎢⎢⎢⎢⎣
𝜕𝑃 (𝑥)
𝜕𝑥1

𝜕𝑃 (𝑥)
𝜕𝑥2

𝜕𝑃 (𝑥)
𝜕𝑥3

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑥3 0

0 𝑥3

𝑥1 𝑥2

⎤⎥⎥⎥⎥⎦ . (2.4.14)
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Consider two points 𝑥1 = [0, 0, 1]T ∈ 𝒮1 and 𝑥2 = [1, 1, 0]T ∈ 𝒮2 from these two

subspaces respectively, the derivative of 𝑃 (𝑥) at these two points can be written as

∇𝑃 (𝑥1) =

⎡⎢⎢⎢⎢⎣
1 0

0 1

0 0

⎤⎥⎥⎥⎥⎦ , ∇𝑃 (𝑥2) =

⎡⎢⎢⎢⎢⎣
0 0

0 0

1 1

⎤⎥⎥⎥⎥⎦ . (2.4.15)

It can be seen the the columns of ∇𝑃 (𝑥1) span the orthogonal complement of 𝒮1,

which is denoted as 𝒮⊥
1 . Similarly, the columns of ∇𝑃 (𝑥2) span 𝒮⊥

2 . It is also worth

noting that the dimension of 𝒮𝑖, plus the rank of its orthogonal complement given by

the gradient of the set of polynomials, is equal to the ambient space dimension, i.e.

rank (∇𝑃 (𝑥𝑖)) + dim (𝒮𝑖) = 3 for 𝑖 ∈ {1, 2}. As such, if we can identify one point from

each subspace, we can obtain the subspace bases and their dimensions from the gradient

of 𝑃 (𝑥) at these points.

Identifying one point per subspace can be conducted in a sequential manner. In

the noise-free scenario, one can simply start by picking a random point from the data.

When the data are noisy, one can pick a point that is closest to an existing subspace.

The algebraic distance is used in Vidal et al. (2005), which is calculated as 𝑑(𝑥)2 =

𝑝1(𝑥)2 + 𝑝2(𝑥)2 = (𝑥2
1 + 𝑥2

2)𝑥
2
3 in our illustrative example. If we pick 𝑥1 ∈ 𝒮1 as the

first point, then the next point can be obtained by dividing 𝑏T1𝑥 from the polynomial

in Eq. (2.4.12). As such, we are left with 𝑝(𝑥) = 𝑏T2𝑥 = 0, which can alternatively be

expressed as the set of two polynomials 𝑃 (𝑥) = [𝑥1, 𝑥2]. The process of dividing one

polynomial by another is called polynomial division.

The procedural form of GPCA. To summarise, the overall subspace clustering

process of GPCA consists of three stages: polynomial fitting, differentiation, and division.

As a first step, one needs to construct the polynomial with order 𝐾 for a union of 𝐾

subspaces. In order to do this, note that we can rewrite Eq. (2.4.12) in a general second-

order polynomial as follows

𝑐1𝑥
2
1 + 𝑐2𝑥

2
2 + 𝑐3𝑥

2
3 + 𝑐4𝑥1𝑥2 + 𝑐5𝑥1𝑥3 + 𝑐6𝑥2𝑥3 = 0. (2.4.16)
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Although this polynomial is non-linear in 𝑥, it is linear in the coefficient vector 𝑐 =

[𝑐1, . . . , 𝑐6]
T.

In general the vector 𝑐 is of length 𝑀𝐾 (𝑃 ) =
(︀
𝐾+𝑃−1

𝐾

)︀
, which corresponds to the

number of monomials in the order-𝐾 polynomial. Let 𝜈 (𝑥𝑖) ∈ R𝑀𝐾(𝑃 ) denote the

vector of all monomials for 𝑥𝑖 ∈ 𝒳 , i.e. 𝜈 (𝑥𝑖) = [𝑥2
1, 𝑥

2
2, 𝑥

2
3, 𝑥1𝑥2, 𝑥1𝑥3, 𝑥2𝑥3]

T ∈ R6

for the second-order polynomial in Eq. (2.4.16). Then any point 𝑥𝑖 from the union of

subspaces satisfies the following homogeneous equation

𝑐T [𝜈 (𝑥1) , . . . , 𝜈 (𝑥𝑁)] = 𝑐T𝑉 (𝒳 ) = 0T, (2.4.17)

where 𝑉 (𝒳 ) ∈ R𝑀𝐾(𝑃 )×𝑁 is called the embedded data matrix. The space spanned by

the set of all coefficient vectors that satisfy the homogeneous polynomial can be obtained

from the SVD decomposition of the embedded data matrix.

Once this is done, the process proceeds by first picking a point that is closest to one

of the subspaces and calculate the gradient of the polynomial at this point. Then we use

polynomial division to characterise the union of the remaining (𝐾 − 1) subspaces. The

process iterates between these two stages until all 𝐾 subspaces are estimated and all

points are assigned to their corresponding subspaces.

Discussion. GPCA addresses the subspace clustering problem in the most general

case of an arbitrary number of subspaces with unknown and possibly different dimen-

sions, and with arbitrary intersections among pairs of subspaces. It has been shown to

perform favourably when compared to methods proposed in previous work. However, its

computational complexity increases with the number of subspaces and their dimensions,

and its performance deteriorates with the increase of the number of subspaces and their

dimensions. The GPCA model is also very sensitive to the existence of noise and outliers.

A robust extension to GPCA is proposed in Ma et al. (2008) which uses the Geometric

Information criterion (Kanatani, 1998).

GPCA is originally designed only for data that lie in a union of linear subspaces.

However, it can also be applied to data that are from affine subspaces by using homoge-

neous coordinates (Vidal, 2011). The homogeneous coordinates of 𝑥 ∈ R𝑃 are given by
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[︀
𝑥T, 1

]︀T ∈ R(𝑃+1). An affine subspace of dimension 𝑞 in an ambient space of dimension

𝑃 can be considered as a linear subspace of dimension (𝑞 + 1) in an ambient space of

dimension (𝑃 + 1). Tsakiris and Vidal (2017) established the correctness of GPCA when

applied to noise-free data lying in a union of affine subspaces.

2.4.4 Statistical Methods

Statistical methods make explicit assumptions about the distribution of the data and /

or the distribution of the noise (Vidal, 2011). This type of method defines a generative

model that is responsible for the observed data (Tipping and Bishop, 1999a; Gruber and

Weiss, 2004; Yang et al., 2006; Archambeau et al., 2008; Rao et al., 2010; Arias-Castro

et al., 2017).

2.4.4.1 Mixtures of Probabilistic Principal Component Analysers (MPPCA)

Principal component analysis (PCA) (Jolliffe, 2011) is one of the most widely used

methods for dimension reduction and visualisation. However, it does not consider the

data in a probabilistic framework, which makes it ad hoc to some extent. Probabilistic

Principal Component Analysis (PPCA) (Tipping and Bishop, 1999b) puts PCA in a

maximum-likelihood framework, which takes into account the probability density of

the observed data. PPCA can be considered as a special case of statistical factor analy-

sis (Bartholomew et al., 2011), which is one of the most popular latent variable models.

Given a data set 𝒳 = {𝑥𝑖}𝑁𝑖=1, a latent variable model builds a relationship between each

𝑃 -dimensional observed variable 𝑥 and 𝑞-dimensional latent (unobserved) variable 𝑦.

Factor analysis assumes this relationship is linear, which can be expressed as

𝑥 = 𝑉 𝑦 + 𝜇+ 𝜀, (2.4.18)

in which the columns of 𝑉 ∈ R𝑃×𝑞 are the factor loadings, 𝜇 is the feature-wise mean

vector of the data, and 𝜀 is the noise in the data. The latent variable 𝑦 is assumed to be

Gaussian with zero mean and unit variance, 𝑦 ∼ 𝒩 (0, 𝐼). The noise is also assumed to be
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Gaussian distributed 𝜀 ∼ 𝒩 (0,Ψ), in which the variance Ψ is a diagonal matrix. There is

no closed form solution for obtaining 𝑉 and Ψ, but an iterative Expectation-Maximisation

(EM) algorithm can be used to estimate them (Tipping and Bishop, 1999b).

When Ψ = 𝜎2𝐼 , i.e. all diagonal entries in Ψ are equal, PCA can be derived within

the framework of density estimation. The specific noise distribution 𝜀 ∼ 𝒩 (0, 𝜎2𝐼)

combined with Eq. (2.4.18) implies that the distribution of the observed variable 𝑥

conditioned on the latent variable 𝑦 is given by 𝑥|𝑦 ∼ 𝒩 (𝑉 𝑦 + 𝜇, 𝜎2𝐼). As such, we

can obtain the PPCA model which has the following probability density function for

any 𝑥 ∈ 𝒳 :

P(𝑥) =

∫︁
P(𝑥|𝑦)P(𝑦)𝑑𝑦

= (2𝜋)
𝑃
2 |𝐶|

1
2 exp

{︂
−1

2
(𝑥− 𝜇)T𝐶−1(𝑥− 𝜇)

}︂
,

(2.4.19)

where 𝐶 = 𝑉 𝑉 T + 𝜎2𝐼 . A detailed derivation for Eq. (2.4.19) can be found in Tipping

and Bishop (1999a) and Tipping and Bishop (1999b). Using Bayes’ rule, we can obtain

the conditional distribution of the latent variable 𝑦 given the observed variable 𝑥 as

follows

𝑦|𝑥 ∼ 𝒩
(︀
𝑀−1𝑉 T(𝑥− 𝜇), 𝜎2𝑀−1

)︀
, (2.4.20)

where 𝑀 = 𝑉 T𝑉 +𝜎2𝐼 . Note that 𝑀 ∈ R𝑞×𝑞, as compared to 𝐶 ∈ R𝑃×𝑃 . It can be seen

that when 𝜎 → 0, the posterior mean 𝑀−1𝑉 T(𝑥−𝜇) converges to (𝑉 T𝑉 )−1𝑉 T(𝑥−𝜇).

This represents an orthogonal projection onto the latent space, hence the conventional

PCA is recovered.

In the PPCA model Eq. (2.4.19), 𝑉 and 𝜎2 can be explicitly derived from maximum

likelihood estimation as

𝑉ML = 𝑉𝑞

(︀
Λ𝑞 − 𝜎2𝐼

)︀ 1
2 𝑅, (2.4.21)

𝜎2
ML =

1

𝑃 − 𝑞

𝑃∑︁
𝑗=𝑞+1

𝜆𝑗, (2.4.22)

where Λ𝑞 is the eigenvalue matrix whose diagonal entries contain the top-𝑞 eigenvalues



CHAPTER 2. BACKGROUND 45

𝜆𝑗s of the data, and 𝑉𝑞 is the eigenvector matrix whose columns correspond to the top-𝑞

eigenvalues. Here 𝑅 is an arbitrary 𝑞 × 𝑞 rotation matrix, which can be ignored for

simplicity (i.e. 𝑅 = 𝐼) (Tipping and Bishop, 1999b).

Mixtures of Probabilistic Principal Component Analysers (MPPCA) (Tipping

and Bishop, 1999a) extends PPCA into a mixture of local PCA models, in which all of

the model parameters may be estimated through the maximisation of a single likelihood

function. The log-likelihood of observing the data set under the MPPCA model can be

expressed as

ℒ =
∑︁
𝑥∈𝒳

log {P(𝑥)}

=
∑︁
𝑥∈𝒳

log

{︃
𝐾∑︁
𝑘=1

𝜋𝑘P(𝑥|𝑘)

}︃
,

(2.4.23)

where P(𝑥|𝑘) is a single PPCA model, and 𝜋𝑘 is the proportion of data that are in the

𝑘-th sub-model (cluster), where
∑︀𝐾

𝑘=1 𝜋𝑘 = 1. The model parameters can be found via

Expectation-Maximisation algorithm. The data points are first randomly allocated into

𝐾 clusters. In the E-step, we calculate the probabilities of assigning each point 𝑥𝑖 to

all clusters 𝑘 (𝑘 ∈ {1, . . . , 𝐾}), 𝑝𝑖𝑘. Then, we assign each point to the cluster with the

highest probability. In the M-step, 𝑝𝑖𝑘 is used to recompute the subspace parameters

using PPCA. These two steps are iterated until convergence to a local maximum of the

log-likelihood function.

The main advantage of MPPCA over iterative type of subspace clustering methods is

that it provides a probabilistic framework for the data generation process. MPPCA can

be considered as a probabilistic version of KSC, in which soft cluster assignments are

used instead of hard cluster assignments. However, the advantage of MPPCA comes at

the cost of a restrictive assumption that the distribution of the data and the noise have to

be Gaussian, which is often not realistic in practice. Similar to KSC, MPPCA suffers

from bad initialisations and is prone to converge to a local optimum.

In the same vein, Gruber and Weiss (2004) proposed a multi-body factorisation

algorithm that is also formulated as a variant of factor analysis, which can be solved

via the EM-algorithm. Unlike PPCA (and MPPCA), which has strict assumptions on
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the behaviour of the noise structure, the multi-body factorisation algorithm can handle

arbitrary noise structure as well as missing data. More recently, Archambeau et al. (2008)

proposed a robust version of PPCA and subsequently a mixture of robust PPCA models.

It extends the MPPCA model to also take into account the existence of outliers by means

of the Student’s 𝑡-distribution to replace the Gaussian distribution.

2.4.4.2 Random Sample Consensus (RANSAC)

Another statistical method that addresses the issue of a significant amount of outliers is

Random Sample Consensus (RANSAC) (Fischler and Bolles, 1981; Yang et al., 2006).

RANSAC assumes that the data are drawn from a union of linear subspaces, and that

the subspace dimensions must be known and equal (Yang et al., 2006). Unlike many

other subspace methods that fit one model or a set of sub-models to the data as a whole,

RANSAC fits one sub-model to a small number of points at a time.

RANSAC samples a small number of points at a time for enough times to reach a

certain confidence level that one of these subsets is outlier-free or has very few outliers.

This paradigm requires three parameters to be specified (Fischler and Bolles, 1981): (a)

an error tolerance threshold beyond which a point is considered as an outlier given the

model; (b) the total number of subsets of 𝑞 points to sample from the whole data set, in

which 𝑞 is the known subspace dimension; and (c) the number / proportion of compatible

points to suggest that the model is sound. The first subspace is estimated by repeatedly

sampling 𝑞 points from the data until (b) is violated or (c) is met. Otherwise, the sample

with the largest number / proportion of compatible points is chosen. RANSAC proceeds

in a greedy fashion by estimating one subspace at a time as follows:

(1) Estimate a new subspace, and assign a few points to the subspace. All remaining

points in the data set are considered as outliers to the current subspace model.

(2) Remove the inliers of the previous subspace model from the current data set.

Repeat step (1) to estimate the next subspace until all subspaces are estimated.

(3) Given the inliers in each subspace, use PCA to estimate the 𝑞 basis vectors of the
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subspace. Assign the points to the subspace that they have the smallest projection

distance to.

The main advantage of RANSAC is that it addresses the presence of outliers explicitly.

However, the performance of RANSAC deteriorates quickly with the increase in the

number of subspaces. In addition, the computational complexity of the algorithm also

increases exponentially with the dimension of the subspaces.

2.4.4.3 Agglomerative Lossy Compression (ALC)

Agglomerative Lossy Compression (ALC) is a simple clustering algorithm that mod-

els the data as a mixture of Gaussian distributions, which are allowed to be almost

degenerate (Ma et al., 2007). Degeneracy of the data means that some features may be

approximated by linear combinations of other features in the data. The original ALC

algorithm is proposed in Ma et al. (2007), and it has been further extended in Rao et al.

(2010) to solve the motion segmentation problem in the presence of outliers, missing

entries, and corrupted trajectories.

ALC is an agglomerative clustering algorithm that proceeds in a bottom-up approach,

hence the term “agglomerative” in its name. To begin with, each data point is treated as

a group of its own. Then, two groups are merged that leads to the biggest decrease in

the loss function. The algorithm terminates when the loss function cannot be decreased

further through additionally merging any two existing groups.

The coding length function is used as the loss function, which provides a measure

of goodness of the data segmentation. Coding length is the minimal number of bits

needed to represent the data, subject to a given distortion of the data as determined by

an allowable distortion parameter 𝜀. Given a set of data points 𝒳 =
{︀
𝑥𝑖 ∈ R𝑃

}︀𝑁
𝑖=1

,

let 𝑋𝑘 ∈ R𝑃×𝑛𝑘 denote the data matrix whose columns correspond to the data vectors

that are assigned to the 𝑘-th cluster. The loss (coding length) function for 𝑋𝑘 can be

expressed as follows

𝐿 (𝑋𝑘, 𝜀) =
𝑃 + 𝑛𝑘

2
log2

(︂
det

(︂
𝐼 +

𝑃

𝑛𝑘𝜀2
𝑋𝑘𝑋

T
𝑘

)︂)︂
, (2.4.24)
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which can be shown to be a smooth surrogate of rank(𝑋𝑘) (Rao et al., 2010). Therefore,

the objective in Eq. (2.4.24) can be considered as a surrogate for the rank minimisation

problem. The overall loss function of ALC can be expressed as follows

𝐿
(︁
{𝑋𝑘}𝐾𝑘=1 , 𝜀

)︁
=

𝐾∑︁
𝑘=1

[︁
𝐿(𝑋𝑘, 𝜀)− 𝑛𝑘 log2

(︁𝑛𝑘

𝑁

)︁]︁
, (2.4.25)

where the second term counts the number of bits needed to represent the labels of the

data.

The algorithm only depends on a single parameter, the allowable distortion 𝜀 of the

data. Once this is determined, the algorithm then automatically determines the number

of the clusters, which does not involve any parameter estimation. The smaller 𝜀 is, the

larger the number of clusters is, and vice versa. The optimal segmentation of the data

should ideally result in the shortest coding length subject to a given distortion of the data.

Although ALC has been shown to work well in a number of motion segmentation

examples, there is no systematic approach to choose the distortion parameter 𝜀. In Rao

et al. (2010), the authors propose to experiment with a range of 𝜀 values and pick the

ones that produce the number of clusters that agree with our prior knowledge of the

data set. This is in no way an efficient approach to determine the parameter value, as

the computational cost of ALC is 𝒪(𝑁3 + 𝑁2𝑃 2 + 𝑁𝑃 3). Furthermore, it is a greedy

descent algorithm that does not guarantee a global convergence to the optimum of the

loss function.

2.5 Clustering Performance Measures

In this section, we familiarise the reader with a few clustering performance measures

that we will use throughout the remainder of this thesis. Performance measures evaluate

how similar cluster assignment labels are to ground truth labels. It is often the case that

the numbering of cluster assignment labels 𝐾 do not match with that of the ground truth

labels 𝐽 . As long as all points that belong to the same cluster are assigned to the same

label, and points that belong to different clusters are assigned to different labels, a perfect
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clustering is obtained.

However, when the clustering result is not perfect, there are several ways of measuring

how close the cluster assignment labels are to the ground truth labels. The first two

measures that we will introduce in this section are purity (Zhao and Karypis, 2001) and

clustering error (Elhamifar and Vidal, 2013), which are two sides of the same coin. They

evaluate the percentage of correctly and incorrectly clustered points respectively. In

addition, we also introduce the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) and

Normalised Mutual Information (NMI) (Cover and Thomas, 2012). These two measures

are more advanced than the previous two, in that they also take into account the difference

in the number of clusters, in addition to the conditional and joint entropy of both the

ground truth labels and the cluster assignment labels.

2.5.1 Purity & Clustering Error

Purity (Zhao and Karypis, 2001) is one of the most straightforward measures to evaluate

the performance of classification / clustering tasks. By counting the occurrences of the

dominated label in each true class, it sums over the proportions of these occurrences

across all 𝐽 classes. Given a set of 𝑁 points {𝑥𝑖}𝑁𝑖=1, let 𝒞 = {𝑐1, 𝑐2, . . . , 𝑐𝑁} denote

the set of ground truth labels for the data, and 𝛺 = {𝜔1, 𝜔2, . . . , 𝜔𝑁} the set of cluster

assignment labels. Let us also denote 𝒞𝑗 as the set of class labels correspond to class

𝑗 (𝑗 ∈ {1, . . . , 𝐽}), and 𝛺𝑘 the set of cluster labels that correspond to cluster 𝑘 (𝑘 ∈

{1, . . . , 𝐾}). Concretely, purity is calculated as follows

Purity =
1

𝑁

𝐽∑︁
𝑖=1

max
𝑗
|𝒞𝑖 ∩𝛺𝑗|. (2.5.1)

It gives us an intuitive understanding of how well a clustering algorithm performs

given that the number of clusters 𝐾 is known. With that said, it is not necessarily the

case that the number of clusters 𝐾 specified by a clustering algorithm agrees with the

true number of classes 𝐽 . It is worth noting that purity does not penalise for the number

of clusters 𝐾. Consider the extreme case of assigning each data point to a cluster, this
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would produce a purity measure of 1. However, this in no way indicates that it is a perfect

clustering result. It is simply an artefact of an extreme case of over-clustering. This

would not happen for clustering methods that require the number of clusters to be known

a priori.

As opposed to purity, clustering error measures the proportion of points that a

clustering algorithm makes mistakes on. One can immediately obtain what the clustering

error is once the purity score is known. It is calculated by

Clustering error = 1− 1

𝑁

𝐽∑︁
𝑖=1

max
𝑗
|𝒞𝑖 ∩𝛺𝑗|. (2.5.2)

Both of these two measures are commonly used to compare the algorithmic performance

of different clustering algorithms.

2.5.2 Adjusted Rand Index (ARI)

Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) is namely an adjusted measure of

Rand Index (RI) (Rand, 1971). In order to introduce ARI, we need to first familiarise the

reader with RI. Rand Index compares, for each pair of points, whether they belong to the

same group or different groups according to the ground truth labels and according to the

cluster assignment labels. Each pairwise comparison can be classified into one of the

four scenarios as follows:

• 𝑎: the pair of points are classified into the same group both by the ground truth

labels and by the cluster assignment labels,

• 𝑏: the pair of points are classified into the same group by the ground truth labels

but into different groups by the cluster assignment labels,

• 𝑐: the pair of points are classified into the same group by the cluster assignment

labels but into different groups by the ground truth labels,

• 𝑑: the pair of points are classified into different groups both by the ground truth

labels and by the cluster assignment labels.
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We denote the number of pairwise comparisons that fall into each of the four scenarios

as 𝑛𝑎, 𝑛𝑏, 𝑛𝑐, and 𝑛𝑑 respectively, then the Rand Index (RI) between the ground truth set

𝒞 and the cluster assignment set 𝛺 is calculated as

RI (𝒞, 𝛺) =
𝑛𝑎 + 𝑛𝑑

𝑛𝑎 + 𝑛𝑏 + 𝑛𝑐 + 𝑛𝑑

. (2.5.3)

A drawback of RI is that the expected value is not constant between two random

partitions. To overcome this, Hubert and Arabie (1985) proposed the Adjusted Rand

Index (ARI), which takes into account the expected value of the Rand index in the

calculation. Table 2.1 summarises the pairwise comparisons between each true class 𝒞𝑗

(𝑗 ∈ {1, . . . , 𝐽}) and each assigned cluster 𝛺𝑘 (𝑘 ∈ {1, . . . , 𝐾}).

PPPPPPPPPPPPPPP
Clusters

Classes
|𝒞1| |𝒞2| . . . |𝒞𝐽 |

∑︀𝐽
𝑗=1 |𝒞𝑗|

|𝛺1| 𝑛11 𝑛12 . . . 𝑛1𝐽 𝑛1·

|𝛺2| 𝑛21 𝑛22 . . . 𝑛2𝐽 𝑛2·

...
...

...
...

...
...

|𝛺𝐾 | 𝑛𝑘1 𝑛𝑘2 . . . 𝑛𝐾𝐽 𝑛𝐾·∑︀𝐾
𝑘=1 |𝛺𝑘| 𝑛·1 𝑛·2 . . . 𝑛·𝐽 𝑛

Table 2.1: Notation for comparing two set of labels on the same data set.

Using the count data in Table 2.1, the Adjusted Rand Index (ARI) between the ground

truth set 𝒞 and the cluster assignment set 𝛺 is defined as

ARI (𝒞, 𝛺) =

∑︀
𝑘,𝑗

(︀
𝑛𝑘𝑗

2

)︀
−

∑︀
𝑘 (𝑛𝑘·

2 )
∑︀

𝑗 (𝑛·𝑗
2 )

(𝑛
2)∑︀

𝑘 (𝑛𝑘·
2 )+

∑︀
𝑗 (𝑛·𝑗

2 )
2

−
∑︀

𝑘 (𝑛𝑘·
2 )

∑︀
𝑗 (𝑛·𝑗

2 )
(𝑛
2)

. (2.5.4)

Note that the same term is subtracted from both the numerator and the denominator. This

common term is the expected value of the Rand index. The first term in the denominator

is the maximum index that can be obtained. Therefore, the expression for ARI can be

considered as a corrected-for-chance version of the Rand index (Nguyen et al., 2009).
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ARI takes a value between -1 and 1 that represents the amount of similarity in two

clusterings. A value of 0 indicates the result is equivalent to random assignment, and a

value close to 1 indicates strong agreement between the cluster assignment labels and the

ground truth labels. A negative value means that the number of pairs of points that the

cluster labels and the ground truth labels agree on is less than the expected number given

by random assignment. Although ARI is an improvement on RI, it can be easily verified

that two clustering results with the same purity score are likely to take on different ARI

values. Hence it is best not to rely solely on ARI to compare the quality of two clustering

results.

2.5.3 Normalised Mutual Information (NMI)

Normalised Mutual Information (NMI) (Cover and Thomas, 2012; Amelio and Pizzuti,

2015) is another commonly used measure to evaluate cluster performance. It is a

normalised version of Mutual Information (MI), with higher NMI values indicating

better clustering results. Following the notation in Table 2.1, the Mutual Information

(MI) between the set of ground truth labels 𝒞 = {𝑐1, 𝑐2, . . . , 𝑐𝑁} and the set of cluster

assignment labels 𝛺 = {𝜔1, 𝜔2, . . . , 𝜔𝑁} can be calculated as follows

MI(𝒞, 𝛺) = −
𝐽∑︁

𝑗=1

𝐾∑︁
𝑘=1

P(𝒞𝑗 ∩𝛺𝑘) log
P(𝒞𝑗 ∩𝛺𝑘)

P(𝒞𝑗)P(𝛺𝑘)
, (2.5.5)

where P(𝒞𝑗), P(𝛺𝑘), and P(𝒞𝑗 ∩ 𝛺𝑘) denote the proportions of points belonging to

class 𝑗, cluster 𝑘, and both, respectively. This measure suffers from the same drawback

as purity. That is, MI increases with the increase of the number of clusters 𝐾.

To resolve this problem, the improved NMI measure divides MI by the following

normalising term:
𝐻(𝒞) + 𝐻(𝛺)

2
, (2.5.6)
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where 𝐻(𝛺) is the entropy of the cluster assignment set 𝛺 defined as follows,

𝐻(𝛺) = −
𝐾∑︁
𝑘=1

P(𝛺𝑘) logP(𝛺𝑘). (2.5.7)

The entropy of the ground truth set 𝐻(𝒞) can be similarly obtained using the above

formula. The normalising term averages the entropies of the ground truth labels and the

cluster assignment labels. It penalises for the number of clusters, as the entropy is larger

for larger number of clusters. Thus NMI is a measure that is always between 0 and 1,

and we can also use it to compare clusterings with different number of clusters.
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2.A Appendix: Connection between Graph Cuts and

Graph Laplacians

2.A.1 The Ratio Cut and the Un-normalised Graph Laplacian

Given a general 𝐾-partitioning problem, the ratio cut objective is defined as follows

RatioCut(𝒮1, . . . ,𝒮𝐾) :=
1

2

𝐾∑︁
𝑘=1

𝑊 (𝒮𝑘,𝒮𝑘)

|𝒮𝑘|
=

𝐾∑︁
𝑘=1

cut(𝒮𝑘,𝒮𝑘)

|𝒮𝑘|
. (2.A.1)

We can show that the ratio cut objective can be expressed as a discrete minimisation

problem involving the graph Laplacian matrix.

For 𝐾 = 2, the ratio cut objective of a bi-partitioning composed of two subsets

{𝒮1,𝒮2}, in which 𝒮1 ∪ 𝒮2 = 𝒮 and 𝒮1 ∩ 𝒮2 = ∅, can be expressed as

RatioCut(𝒮1,𝒮2) =
2∑︁

𝑘=1

cut(𝒮𝑘,𝒮𝑘)

|𝒮𝑘|

=
cut(𝒮1,𝒮2)
|𝒮1|

+
cut(𝒮2,𝒮1)
|𝒮2|

= cut(𝒮1,𝒮2) ·
(︂

1

|𝒮1|
+

1

|𝒮2|

)︂
.

(2.A.2)

Multiplying both sides of Eq. (2.A.2) by the cardinality of the set |𝒮| = |𝒮1|+ |𝒮2|, we

obtain

|𝒮| · RatioCut(𝒮1,𝒮2)

=cut(𝒮1,𝒮2) ·
(︂
|𝒮1|+ |𝒮2|
|𝒮1|

+
|𝒮1|+ |𝒮2|
|𝒮2|

)︂
=cut(𝒮1,𝒮2) ·

(︂
|𝒮2|
|𝒮1|

+
|𝒮1|
|𝒮2|

+ 2

)︂

=cut(𝒮1,𝒮2) ·

⎡⎣(︃√︃ |𝒮2|
|𝒮1|

)︃2

+

(︃
−

√︃
|𝒮1|
|𝒮2|

)︃2

− 2 ·

√︃
|𝒮2|
|𝒮1|
·

(︃
−

√︃
|𝒮1|
|𝒮2|

)︃⎤⎦
=

1

2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)
2

=𝑓T𝐿𝑓 ,



CHAPTER 2. BACKGROUND 55

in which the entries of 𝑓 are defined as in (2.3.5). The last line from above follows by

the definition of the un-normalised graph Laplacian,

𝑓T𝐿𝑓 = 𝑓T𝐷𝑓 − 𝑓T𝐴𝑓

=
𝑁∑︁
𝑖=1

𝑓 2
𝑖 𝑑𝑖 −

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑓𝑖𝑓𝑗𝑤𝑖𝑗

=
1

2

(︃
𝑁∑︁
𝑖=1

𝑑𝑖𝑓
2
𝑖 − 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑓𝑖𝑓𝑗𝑤𝑖𝑗 +
𝑁∑︁
𝑗=1

𝑑𝑗𝑓
2
𝑗

)︃

=
1

2

(︃
𝑁∑︁
𝑖=1

𝑑𝑖𝑓
2
𝑖 − 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑓𝑖𝑓𝑗𝑤𝑖𝑗 +
𝑁∑︁
𝑗=1

𝑑𝑗𝑓
2
𝑗

)︃

=
1

2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)
2.

It is easy to verify that 𝑓 also satisfies the following conditions:

𝑁∑︁
𝑖=1

𝑓𝑖 =
∑︁
𝑖∈𝒮1

√︃
|𝒮2|
|𝒮1|
−
∑︁
𝑖∈𝒮2

√︃
|𝒮1|
|𝒮2|

= |𝒮1|

√︃
|𝒮2|
|𝒮1|
− |𝒮2|

√︃
|𝒮1|
|𝒮2|

= 0,

‖𝑓‖22 =
𝑁∑︁
𝑖=1

𝑓 2
𝑖 = |𝒮1|

|𝒮2|
|𝒮1|

+ |𝒮2|
|𝒮1|
|𝒮2|

= 𝑁.

(2.A.3)

Therefore, we can re-express the ratio cut objective for 𝐾 = 2 as the following discrete

optimisation problem:

min
𝒮1,𝒮2∈𝒮

𝑓T𝐿𝑓

s.t. 𝑓 ⊥ 1,

‖𝑓‖2 =
√
𝑁,

𝑓 as defined in (2.3.5),

𝒮1 ∪ 𝒮2 = 𝒮, 𝒮1 ∩ 𝒮2 = ∅.

(2.A.4)

For general 𝐾-partitioning problems, we can express the ratio cut between 𝒮𝑘 and its

complement 𝒮𝑘 (𝑘 ∈ {1, . . . , 𝐾}) as
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cut(𝒮𝑘,𝒮𝑘)

|𝒮𝑘|
=

1√︀
|𝒮𝑘|

cut(𝒮𝑘,𝒮𝑘)
1√︀
|𝒮𝑘|

=
1

2

∑︁
𝑖∈𝒮𝑖,𝑗∈𝒮𝑖

𝑤𝑖𝑗√︀
|𝒮𝑘|

√︀
|𝒮𝑘|

+
1

2

∑︁
𝑖∈𝒮𝑖,𝑗∈𝒮𝑖

𝑤𝑖𝑗√︀
|𝒮𝑘|

√︀
|𝒮𝑘|

=
1

2

𝑁∑︁
𝑖,𝑗=1

ℎT
𝑘ℎ𝑘𝑤𝑖𝑗

= ℎT
𝑘𝐿ℎ𝑘.

By aggregating the above term for all 𝒮𝑖 we obtain

RatioCut(𝒮1, . . . ,𝒮𝐾) =
𝐾∑︁
𝑘=1

ℎT
𝑘𝐿ℎ𝑘 =

𝐾∑︁
𝑘=1

(𝐻T𝐿𝐻)𝑘𝑘 = tr(𝐻T𝐿𝐻). (2.A.5)

It is easy to verify that the columns in 𝐻 are orthonormal to each other. Therefore, we can

express the ratio cut objective for general 𝐾 as the following discrete trace minimisation

problem:

min
𝒮1,...,𝒮𝐾⊂𝒮

tr(𝐻T𝐿𝐻)

s.t. 𝐻T𝐻 = 𝐼,

𝐻 as defined in (2.3.7),
𝐾⋃︁
𝑘=1

𝒮𝑘 = 𝒮,

𝒮𝑖 ∩ 𝒮𝑗 = ∅, ∀𝑖, 𝑗 ∈ {1, . . . , 𝐾} .

(2.A.6)

2.A.2 The Normalised Cut and the Normalised Graph Laplacians

Given a general 𝐾-partitioning problem, the normalised cut objective is defined as

follows

NCut(𝒮1, . . . ,𝒮𝐾) :=
1

2

𝐾∑︁
𝑘=1

𝑊 (𝒮𝑘,𝒮𝑘)

vol(𝒮𝑘)
=

𝐾∑︁
𝑘=1

cut(𝒮𝑘,𝒮𝑘)

vol(𝒮𝑘)
.

We can show that the normalised cut objective can be expressed as a discrete minimisation

problem involving the graph Laplacian matrix.

For 𝐾 = 2, using similar algebraic substitutions as in the ratio cut setting, we have
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vol(𝒮) · NCut(𝒮1,𝒮2) = vol(𝒮)
2∑︁

𝑘=1

cut(𝒮𝑘,𝒮𝑘)

vol(𝒮𝑘)

= cut(𝒮1,𝒮2)
[︂

vol(𝒮2)
vol(𝒮1)

+
vol(𝒮1)
vol(𝒮2)

+ 2

]︂
=

∑︁
𝑖∈𝒮1,𝑗∈𝒮2

𝑤𝑖𝑗 (𝑓𝑖 − 𝑓𝑗)
2

= 𝑓T𝐿𝑓 .

(2.A.7)

It is easy to verify that 𝑓 also satisfies the following conditions:

(1) (𝐷𝑓)T 1 = 0,

(2) 𝑓T𝐷𝑓 = vol(𝒮).

Condition (1) can be shown through the following deduction:

(𝐷𝑓)T 1 =
𝑁∑︁
𝑖=1

𝑑𝑖𝑓𝑖

=
∑︁
𝑚∈𝒮1

𝑑𝑚𝑓𝑚 +
∑︁
𝑛∈𝒮2

𝑑𝑛𝑓𝑛

= vol (𝒮1)

√︃
vol (𝒮2)
vol (𝒮1)

− vol (𝒮2)

√︃
vol (𝒮1)
vol (𝒮2)

= 0.

Condition (2) can be shown through the following deduction:

𝑓T𝐷𝑓 =
𝑁∑︁
𝑖=1

𝑑𝑖𝑓
2
𝑖

=
∑︁
𝑚∈𝒮1

𝑑𝑚𝑓
2
𝑚 +

∑︁
𝑛∈𝒮2

𝑑𝑛𝑓
2
𝑛

= vol (𝒮1)
vol (𝒮2)
vol (𝒮1)

+ vol (𝒮2)
vol (𝒮1)
vol (𝒮2)

= vol (𝒮) .

Therefore, we can re-express the normalised cut objective for 𝐾 = 2 as the following
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discrete optimisation problem:

min
𝒮1,𝒮2∈𝒮

𝑓T𝐿𝑓

s.t. 𝐷𝑓 ⊥ 1,

𝑓T𝐷𝑓 = vol(𝒮),

𝑓 as defined in (2.3.12),

𝒮1 ∪ 𝒮2 = 𝒮, 𝒮1 ∩ 𝒮2 = ∅.

(2.A.8)

For general 𝐾-partitioning problems, in the same vein to the deduction for the

ratio cut setting, we can express the normalised cut between 𝒮𝑘 and its complement 𝒮𝑘

(𝑘 ∈ {1, . . . , 𝐾}) as
cut
(︀
𝒮𝑘,𝒮𝑘

)︀
vol (𝒮𝑘)

= ℎT
𝑘𝐿ℎ𝑘. (2.A.9)

Thus the following equivalence can be built for the normalised cut objective:

NCut(𝒮1, . . . ,𝒮𝐾) =
𝐾∑︁
𝑘=1

ℎT
𝑘𝐿ℎ𝑘 =

𝐾∑︁
𝑘=1

(𝐻T𝐿𝐻)𝑘𝑘 = tr(𝐻T𝐿𝐻). (2.A.10)

The columns in 𝐻 are orthonormal to each other, and we have the following

ℎT
𝑘𝐷ℎ𝑘 =

𝑁∑︁
𝑖=1

ℎ2
𝑖𝑘𝐷𝑖𝑖

=
∑︁
𝑚∈𝒮𝑘

ℎ2
𝑚𝑘𝑑𝑚 +

∑︁
𝑛/∈𝒮𝑘

ℎ2
𝑛𝑘𝑑𝑛

=
∑︁
𝑚∈𝒮𝑘

1

vol(𝒮𝑘)
𝑑𝑚 +

∑︁
𝑛/∈𝒮𝑘

0× 𝑑𝑛

=
vol (𝒮𝑘)

vol (𝒮𝑘)

= 1,

for 𝑘 ∈ {1, . . . , 𝐾}. Thus we have 𝐻𝐷𝐻 = 𝐼 .



Chapter 3

Subspace Clustering with Active

Learning

Subspace clustering is a growing field of unsupervised learning that has gained much

popularity in the computer vision community. Applications can be found in areas such as

motion segmentation and face clustering. It assumes that the data points originate from

a union of subspaces, and clusters the data depending on the corresponding subspace.

In practice, it is reasonable to assume that a limited number of labels can be obtained,

potentially at a cost. Therefore, algorithms that can effectively and efficiently incorporate

this information to improve the clustering model are desirable. In this work, we propose

an active learning framework for subspace clustering that sequentially queries informative

points and updates the subspace model. The query stage of the proposed framework

relies on results from the perturbation theory of Principal Component Analysis (PCA) to

identify those influential and potentially misclassified points. A constrained subspace

clustering algorithm is proposed that monotonically decreases the objective function

subject to the constraints imposed by the labelled data. We show that our proposed

framework is suitable for subspace clustering algorithms, including iterative methods

and spectral methods. Experiments on synthetic data sets, motion segmentation data sets,

and Yale Faces data sets demonstrate the advantage of our proposed active strategy over

state-of-the-art methods.

59
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3.1 Introduction

In recent years, crowdsourcing (Su et al., 2012) for data annotation has drawn much

attention in the computer vision community, due to the need to make use of as much

data as possible and the lack of sufficiently labelled data. Clustering is commonly used

as an initial step to provide a coarse preliminary grouping in the absence of labelled

data. For example, there are plant recognition apps that allow one to take a photo of

a plant and identify its species. In video surveillance, one may wish to identify the

points corresponding to an object that exists in a sequence of frames, be it people or

cars etc. Usually some form of external information is available in these applications,

either through crowdsourcing websites, or through paid manual work to conduct a limited

amount of labelling. In either case, obtaining labels involves a cost which is either time,

money, or both. Therefore, effective and efficient ways of carrying out data annotation

are desirable.

The process of iteratively annotating the potentially misclassified data and subse-

quently updating the model is generally known as active learning (Settles, 2008). It is

a subfield of machine learning that aims to improve both supervised and unsupervised

algorithms. In supervised learning, points that are near the decision boundary are likely

to be misclassified. In unsupervised learning, the notion of potentially misclassified

points is less clear and is open for interpretation.

In subspace clustering, points are clustered according to their underlying subspaces.

There are different ways of measuring how likely a point is misclassified. One approach

is to consider points whose projection onto the associated subspace is large as potentially

misclassified (Lipor and Balzano, 2015). Alternatively, points that are almost equidistant

to their two nearest subspaces are likely to be misclassified (Lipor and Balzano, 2017).

Such ideas are based on the notion of the reconstruction error between the original point

and its projection to the subspace that defines the cluster. The total reconstruction error

is the objective function of the 𝐾-Subspace Clustering (KSC) algorithm (Agarwal and

Mustafa, 2004). We therefore argue that effective active learning strategies should explic-

itly associate the query procedure with the optimisation of this objective. However, as we
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will discuss in greater detail in the next section, the point with the largest reconstruction

error is not necessarily the most informative from the perspective of updating the entire

subspace clustering model.

Motivated by the connection between the reconstruction error and the KSC objective,

we consider a point to be influential if querying its true class thus updating the cluster

assignment can lead to a large decrease in the total reconstruction error. Given a set

of cluster labels, the optimal linear subspace for each cluster can be trivially estimated

through Principal Component Analysis (PCA) (Jolliffe, 2011). In particular, the basis for

each subspace (cluster) can be defined through the set of eigenvectors of the covariance

matrix of the points that are assigned to this cluster. We make use of ideas from the

perturbation analysis of PCA (Critchley, 1985) to evaluate efficiently how influential

each point is, and query the class of the most informative point(s). Once the true classes

of the influential points have been identified, our proposed 𝐾-subspace clustering with

constraints (KSCC) algorithm monotonically reduces the reconstruction error whilst satis-

fying all the constraints imposed by the labelled data. The active learning process iterates

between these two query and update procedures until the query budget is exhausted.

The rest of this chapter is organised as follows. We review related work in active

learning in Section 3.2, and introduce our proposed active framework in Section 3.3.

Experimental results on synthetic and real data are presented and discussed in Section 3.4.

The chapter finishes in Section 3.6 with conclusions and directions for future work.

3.2 Related Work

There are three main approaches to active learning (Settles, 2008): uncertainty sam-

pling (Balcan et al., 2007), query by committee (Seung et al., 1992), and expected model

change (Settles et al., 2008).

Uncertainty sampling queries the points the learning algorithm is least confident about.

Classic uncertainty sampling methods are generally ignorant to the data distribution, thus

prone to select outliers (Donmez et al., 2007). It is suggested in Melville and Mooney

(2004) to measure the informativeness of each point by the probability margin between
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the label it is assigned to and its second most likely label. Other versions of uncertainty

sampling have been proposed to balance the density of a region and the uncertainty in

that region (Nguyen and Smeulders, 2004). When building supervised models, one may

also choose the unlabelled points near the decision boundary.

Query by committee (QBC) is a type of active learning strategy designed for classifier

ensembles (Seung et al., 1992). It constructs a committee of models based on the labelled

training data, and chooses to query the unlabelled points upon which the predictions

of the classifiers in the ensemble disagree the most. It enables the training of accurate

classifiers using a small subset of the data. To use this strategy, one has to provide

both the type of classifier and a measure of disagreement among the classifiers. It has

been shown in Freund et al. (1997) that rapid decrease in the misclassification error is

guaranteed if the queries have high expected information gain.

Expected model change is an active learning framework that bases its query strategy

on the idea that a point is informative if knowing its true class can cause a big change

in the current model (Settles et al., 2008). This is mostly applied to discriminative

probabilistic modelling, in which the gradient of the model is used as an indicator

for the informativeness of a point. It is widely applied to image retrieval and text

classification (Roy and McCallum, 2001). The method we propose also adopts this

approach, but to the best of our knowledge, we are the first to consider updating an

unsupervised learning model describing all the data, rather than just the labelled data.

As is implied above, most active learning approaches have been developed for super-

vised learning. However, less attention has been paid to the unsupervised counterpart.

Only a few active learning strategies have been proposed for subspace clustering (Lipor

and Balzano, 2015, 2017). In Lipor and Balzano (2015), two active strategies MaxResid

and MinMargin for KSC are proposed. MaxResid queries points that have large recon-

struction error to their allocated subspaces. MinMargin queries points that are maximally

equidistant to their two closest subspaces. These two strategies are effective in identifying

the points that are most likely to be misclassified. However, the queried points are not

necessarily the most informative points in terms of updating the full clustering model.
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3.3 Active Learning Framework

In this section, we first formulate the subspace clustering problem and then present

the proposed active learning framework. There are two iterative procedures within this

framework. The first is to identify the most influential and potentially misclassified

points. The second is to update the cluster labels for all data points given the labelling

information.

3.3.1 𝐾-Subspace Clustering

A 𝑞-dimensional linear subspace 𝒮𝑘, 𝑘 ∈ {1, . . . , 𝐾}, can be defined through an or-

thonormal matrix 𝑉𝑘 ∈ R𝑃×𝑞 as

𝒮𝑘 =
{︀
𝑥 ∈ R𝑃 : 𝑥 = 𝑉𝑘𝑦

}︀
, (3.3.1)

where the columns of 𝑉𝑘 constitute a basis for 𝒮𝑘.

In subspace clustering, the overall objective is to find the set of optimal cluster labels

for all data points such that the total reconstruction error between each data point to their

corresponding subspaces is minimised. Given the set of 𝑁 data points 𝒳 = {𝑥𝑖}𝑁𝑖=1 and

their cluster labels 𝛺 = {𝜔𝑖}𝑁𝑖=1, the loss function value 𝐿(𝑥𝑖, 𝑉𝜔𝑖
) and the objective

𝑓(𝒳 ,𝒱) can be written as

𝐿(𝑥𝑖, 𝑉𝜔𝑖
) = ‖𝑥𝑖 − 𝑉𝜔𝑖

𝑉 T
𝜔𝑖
𝑥𝑖‖22, (3.3.2)

and

𝑓(𝒳 ,𝒱) = min
𝑉1,...,𝑉𝐾

𝑁∑︁
𝑖=1

min
𝜔𝑖∈{1,...,𝐾}

𝐿(𝑥𝑖, 𝑉𝜔𝑖
), (3.3.3)

where 𝒱 = {𝑉1, . . . , 𝑉𝐾} represents the set of all subspace bases. This objective can be

minimised through a 𝐾-means-like iterative algorithm by alternating between subspace

estimation and cluster assignment.

We need to obtain the set of subspace bases such that the total reconstruction error

in Eq. (3.3.3) is minimised. The basis matrix 𝑉𝑘 for each subspace 𝑘 can be obtained
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through the eigen-decomposition of its covariance matrix as

(𝑋𝑘 − 1𝜇T
𝑘 )T(𝑋𝑘 − 1𝜇T

𝑘 ) = 𝑉 ⋆
𝑘 Λ⋆

𝑘(𝑉 ⋆
𝑘 )T. (3.3.4)

We denote 𝑋𝑘 ∈ R𝑛𝑘×𝑃 as the data matrix in which the rows correspond to the 𝑛𝑘 data

points assigned to cluster 𝑘, and 𝜇𝑘 as the feature-wise mean vector of 𝑋𝑘. The columns

in 𝑉 ⋆
𝑘 = [𝑣1, . . . ,𝑣𝑃 ] correspond to the eigenvectors of the covariance matrix of 𝑋𝑘, and

Λ⋆
𝑘 is a diagonal matrix containing the set of 𝑃 eigenvalues {𝜆1, . . . , 𝜆𝑃}. We denote 𝑉𝑘

as the subset of eigenvectors in 𝑉 ⋆
𝑘 that correspond to the 𝑞 largest eigenvalues.

Given the subspace bases 𝒱 = {𝑉1, . . . , 𝑉𝐾}, the cluster label 𝜔𝑖 for each point

𝑥𝑖 ∈ 𝒳 can be obtained as

𝜔𝑖 = arg min
𝑘∈{1,...,𝐾}

⃦⃦
𝑥𝑖 − 𝑉𝑘𝑉

T
𝑘 𝑥𝑖

⃦⃦2
2
. (3.3.5)

The algorithm terminates when the loss function value in Eq. (3.3.3) stops decreasing,

which indicates that either a local or global optimum is reached.

3.3.2 Query Procedure

The first element in quantifying the influence of an unlabelled point is the reduction in

the reconstruction error that would be achieved if this point is removed from its currently

assigned cluster. It is important to note that removing a point from a cluster implies that

the basis for the associated linear subspace may change, because 𝑉𝑘 is a function of 𝑋𝑘

(see Eq. (3.3.4)). Explicitly, we define 𝑈1(𝑥𝑠, 𝑉𝜔𝑠) as the decrease in the reconstruction

error after removing the queried point 𝑥𝑠 from cluster 𝜔𝑠, which can be expressed as

𝑈1(𝑥𝑠, 𝑉𝜔𝑠) =
∑︁

𝑥∈𝒳𝜔𝑠

𝐿(𝑥, 𝑉𝜔𝑠)−
∑︁

𝑥∈𝒳𝜔𝑠∖{𝑥𝑠}

𝐿(𝑥, 𝑉𝜔𝑠), (3.3.6)

where 𝒳𝜔𝑠 denotes the set of points in cluster 𝜔𝑠, and 𝑉𝜔𝑠 denotes the basis matrix for

cluster 𝜔𝑠. We use 𝑉𝜔𝑠 to denote the potentially perturbed basis matrix after point 𝑥𝑠 is

removed from cluster 𝜔𝑠.
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The second element in quantifying the influence of an unlabelled point is to consider

the increase in the reconstruction error of the cluster that 𝑥𝑠 will be assigned to (after

being removed from its current cluster 𝜔𝑠). As before, adding a point to a cluster

implies that the associated basis for this cluster may change. Given that each point is

allocated to its closest subspace, it is thus sensible to assume the cluster that 𝑥𝑠 has the

second smallest reconstruction error to is where 𝑥𝑠 would be assigned next. This can be

expressed as

𝜔⋆
𝑠 = arg min

𝑘∈{1,...,𝐾}∖{𝜔𝑠}
𝐿(𝑥𝑠, 𝑉𝑘). (3.3.7)

Then we can define 𝑈2(𝑥𝑠, 𝑉𝜔⋆
𝑠
) as the increase in the reconstruction error after adding

𝑥𝑠 to cluster 𝜔⋆
𝑠 , which can be expressed as

𝑈2(𝑥𝑠, 𝑉𝜔⋆
𝑠
) =

∑︁
𝑥∈𝒳𝜔⋆

𝑠
∪{𝑥𝑠}

𝐿(𝑥, 𝑉𝜔⋆
𝑠
)−

∑︁
𝑥∈𝒳𝜔⋆

𝑠

𝐿(𝑥, 𝑉𝜔⋆
𝑠
). (3.3.8)

Here 𝑉𝜔⋆
𝑠
∈ R𝑃×𝑞 is the basis matrix of the points in the set

{︀
𝒳𝜔⋆

𝑠
∪ {𝑥𝑠}

}︀
, whose

columns correspond to the eigenvectors of its covariance matrix.

Combining the above two influence measures together, we determine the most

informative and potentially misclassified point 𝑥⋆
𝑠 as

𝑥⋆
𝑠 = arg max

𝑥𝑠∈𝒳𝑈

{︀
𝑈1(𝑥𝑠, 𝑉𝜔𝑠)− 𝑈2(𝑥𝑠, 𝑉𝜔⋆

𝑠
)
}︀
, (3.3.9)

where𝒳𝑈 denotes the set of unlabelled points. We also denote the set of labelled points as

𝒳𝐿. Eq. (3.3.9) gives the point that brings the largest decrease in the reconstruction error

once removed from its allocated cluster 𝜔𝑠, and the smallest increase in reconstruction

error upon being reallocated to its most probable cluster 𝜔⋆
𝑠 .

Although these two measures of influence can be quantified and calculated exactly,

the number of required SVD computations is 𝒪(𝑁2) throughout all iterations. Not to

mention that the computational complexity of SVD is min {𝑁2𝑃, 𝑃 2𝑁} (Golub and

Van Loan, 2013). Every time a point is removed from or added to a cluster, the subspace

bases would change and need to be recalculated through PCA. Hence the need to seek
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for an alternative approach, which could be pursued through the perturbation analysis of

PCA (Critchley, 1985).

We approximate the perturbed covariance matrix, the perturbed eigenvectors, and

the perturbed eigenvalues through power series expansions (Shi, 1997). As such, we can

obtain expressions for the updated reconstruction error without having to recompute all

the updated eigenvalues and eigenvectors after data deletion or addition. The algorithmic

form of our proposed query strategy is provided in Algorithm 5, before we provide the

details of how the two influence measures are calculated.

Algorithm 5: Query Strategy
Input :Data matrix: 𝑋 ∈ R𝑁×𝑃

Number of clusters: 𝐾
Initial cluster labels: 𝛺 = {𝜔1, . . . , 𝜔𝑁}

repeat

for 𝑥𝑠 ∈ 𝒳𝑈 do
Compute the influence 𝑈1(𝑥𝑠, 𝑉𝜔𝑠) of removing 𝑥𝑠 from its allocated
cluster 𝜔𝑠

Calculate 𝜔⋆
𝑠 = arg min𝑘∈{1,...,𝐾}∖{𝜔𝑠} 𝐿(𝑥𝑠, 𝑉𝑘)

Calculate 𝑈2(𝑥𝑠, 𝑉𝜔⋆
𝑠
) using Eq. (3.3.8)

end

Optimise Eq. (3.3.9) to query 𝑥⋆
𝑠 and its true class 𝑐𝑠 ∈ {1, . . . , 𝐾}

until Budget 𝑇 or desired performance is reached

The influence of data deletion. Let 𝑆 denote the sample covariance matrix for the

points that belong to the same cluster, 𝜆1, . . . , 𝜆𝑃 denote its eigenvalues in descending

order, and 𝑣1, . . . ,𝑣𝑃 denote its eigenvectors. Let 𝒟 denote a set of 𝑑 points to be

removed from the cluster. As a result, the covariance matrix, its eigenvectors and

eigenvalues will change by a certain amount. Under small perturbations (0 < 𝜀 < 1),

the perturbed covariance matrix 𝑆(𝜀), the 𝑘-th perturbed eigenvalue 𝜆𝑘(𝜀) and the

𝑘-th perturbed eigenvector 𝑣𝑘(𝜀) can be written as the following convergent power

series (Wilkinson, 1965; Bénasséni, 2018):
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𝑆(𝜀) = 𝑆 + 𝑆(1)𝜀 + 𝑆(2)𝜀2 + · · ·+ 𝑆(𝑚)𝜀𝑚 + · · · ,

𝜆𝑘(𝜀) = 𝜆𝑘 + 𝛼1𝜀 + 𝛼2𝜀
2 + · · ·+ 𝛼𝑚𝜀

𝑚 + · · · ,

𝑣𝑘(𝜀) = 𝑣𝑘 +𝜓1𝜀 +𝜓2𝜀
2 + · · ·+𝜓𝑚𝜀

𝑚 + · · · .

(3.3.10)

For sufficiently small 𝜀, the order of the eigenvalues is maintained, so are the signs within

the eigenvectors (Enguix-González et al., 2005).

The main interest lies in finding the coefficients in the power series approximations.

First, the perturbed sample covariance matrix 𝑆−
(𝒟) can be deduced from the basic

definition of a covariance matrix (Wang and Liski, 1993; Bénasséni, 2018),

𝑆−
(𝒟) = 𝑆 +

𝑑

𝑛− 𝑑

(︀
(𝑆 − 𝑆𝒟)− (�̄�𝒟 − �̄�)(�̄�𝒟 − �̄�)T

)︀
− 𝑑2

(𝑛− 𝑑)2
(�̄�𝒟 − �̄�)(�̄�𝒟 − �̄�)T.

(3.3.11)

In the above expression, 𝑛 denotes the original number of points in the cluster that

the set of points 𝒟 are removed from. We use �̄� ∈ R𝑃 to denote the feature-wise

mean vector of the data before the removal of 𝑑 points, and �̄�𝒟 the feature-wise mean

vector of the 𝑑 points to be removed. Lastly, we use 𝑆, 𝑆𝒟, and 𝑆−
(𝒟) to denote the

original covariance matrix, the covariance matrix of the set of deleted data points 𝒟,

and the covariance matrix of the perturbed data, respectively. We can associate 𝑑
𝑛−𝑑

and
(︀
(𝑆 − 𝑆𝒟)− (�̄�𝒟 − �̄�)(�̄�𝒟 − �̄�)T

)︀
with 𝜀 and 𝑆(1) as in Eq. (3.3.10). Similarly,

the correspondence can be made for the second order coefficients. We use a first order

approximation for our purpose from now on, as it has been shown to be sufficiently

accurate (Wang and Liski, 1993).

As for the coefficients in the approximations for the eigenvalues and eigenvectors,

Lemma 2 in Wang and Liski (1993) provides us with the following results

𝛼1 = 𝑣T𝑘 𝑆
(1)𝑣𝑘, 𝛼𝑚 = 𝑣T𝑘 𝑆

(1)𝜓𝑚−1, (3.3.12)
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and

𝜓1 = −(𝑆 − 𝜆𝑘𝐼)†𝑆(1)𝑣𝑘,

𝜓𝑚 = −(𝑆 − 𝜆𝑘𝐼)†

⎛⎝𝑆(1)𝜓(𝑚−1) −
(𝑚−1)∑︁
𝑖=1

𝛼𝑖𝜓(𝑚−𝑖)

⎞⎠ .
(3.3.13)

In the above expression, we have the Moore-Penrose inverse (Golub and Van Loan, 2013)

(𝑆 − 𝜆𝑘𝐼)† =
∑︁
𝑗 ̸=𝑘

𝑣𝑗𝑣
T
𝑗

(𝜆𝑗 − 𝜆𝑘)
.

Based on the above, we can deduce expressions for the perturbed eigenvalues, and the

influence of data deletion as expressed in Eq. (3.3.6).

We start with writing the first order approximation of the 𝑘-th (𝑘 ∈ {1, . . . , 𝑃})

perturbed eigenvalue as follows

𝜆𝑘(𝜀) = 𝜆𝑘 + 𝜀𝜆
(1)
𝑘 +𝒪(𝜀2)

≈ 𝜆𝑘 + 𝜀𝑣T𝑘 𝑆
(1)𝑣𝑘

= 𝜆𝑘 +
𝑑

𝑛− 𝑑
𝑣T𝑘

[︃
𝑆 − 𝑆𝒟 −

1

𝑑

∑︁
𝑠∈𝒟

(𝑥𝑠 − �̄�)(𝑥𝑠 − �̄�)T

]︃
𝑣𝑘

= 𝜆𝑘 +
𝑑

𝑛− 𝑑

[︃
𝜆𝑘 − 𝑣T𝑘 𝑆𝒟𝑣𝑘 −

1

𝑑

∑︁
𝑠∈𝒟

𝛼2
𝑘𝑠

]︃

=
𝑛

𝑛− 𝑑
𝜆𝑘 −

1

𝑛− 𝑑

∑︁
𝑠∈𝒟

𝛼2
𝑘𝑠 −

𝑑

𝑛− 𝑑
𝑣T𝑘 𝑆𝒟𝑣𝑘,

(3.3.14)

where 𝛼𝑘𝑠 = 𝑣T𝑘 (𝑥𝑠 − �̄�). Then using the expression in Eq. (3.3.6), we can write the

influence of removing a set 𝒟 of data 𝑋𝒟 ∈ R𝑑×𝑃 from cluster 𝑘 as

𝑈1(𝑋𝒟, 𝑉𝑘) =
∑︁
𝑥∈𝒳𝑘

𝐿(𝑥, 𝑉𝑘)−
∑︁

𝑥∈𝒳𝑘∖{𝑥𝑠: 𝑠∈𝒟}

𝐿(𝑥, 𝑉𝑘)

=
𝑃∑︁

𝑘=(𝑞+1)

𝜆𝑘 −
𝑃∑︁

𝑘=(𝑞+1)

𝜆𝑘(𝜀)

=
𝑃∑︁

𝑘=(𝑞+1)

(︃
1

𝑛− 𝑑

∑︁
𝑠∈𝒟

𝛼2
𝑘𝑠 +

𝑑

𝑛− 𝑑

(︀
𝑣T𝑘 𝑆𝒟𝑣𝑘 − 𝜆𝑘

)︀)︃
.

(3.3.15)



CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING 69

One can obtain the influence for the deletion of one point by plugging in 𝑑 = 1. The

deduction follows due to the equivalence between the reconstruction error and the sum

of the unused eigenvalues in representing the subspace (Jolliffe, 2011). Next, we also

need to find another cluster on which the deleted data have little influence if they were

added to the cluster.

The influence of data addition. In the previous section, we have shown the influence

of data deletion through perturbation analysis of the eigenvalues and eigenvectors. The

aim is to find influential points whose true classes might differ from their currently

allocated labels.

Now we assess the impact on the reconstruction error for the cluster to which the

removed points are added. Following the same line of analysis as before, and with a

slight abuse of notation, we now let 𝑋 denote the data matrix that the set of 𝑑 points are

to be added to, and 𝑛 the number of points in 𝑋 . We denote the data after the addition of

𝑑 points as 𝑋𝒟+ , and the corresponding sample covariance matrix 𝑆+
(𝒟) which combines

the original data 𝑋 and the data to be added 𝑋𝒟.

Proposition 3.3.1. The form of 𝑆+
(𝒟) can be expressed as follows,

𝑆+
(𝒟) = 𝑆 +

𝑑

𝑛 + 𝑑

(︀
(𝑆𝒟 − 𝑆) + (�̄�𝒟 − �̄�)(�̄�𝒟 − �̄�)T

)︀
− 𝑑2

(𝑛 + 𝑑)2
(�̄�𝒟 − �̄�) (�̄�𝒟 − �̄�)T .

(3.3.16)

The proof of Proposition 3.3.1 can be found in Appendix 3.A.1. It is easy to see

that this can be matched exactly with the first two orders of the power series expansion.

We further show the perturbed form of the covariance matrix for the case of single data

addition in Proposition 3.3.2, with the proof included in Appendix 3.A.2. It can be seen

that the expression for single data deletion can also be obtained directly by setting 𝑑 = 1

in Eq. (3.3.16).

Proposition 3.3.2. The perturbed covariance matrix in the case when 𝑑 = 1 can be

expressed as
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𝑆+
(𝑠) = 𝑆 +

1

𝑛 + 1

(︁
(�̄�− 𝑥𝑠) (�̄�− 𝑥𝑠)

T − 𝑆
)︁

− 1

(𝑛 + 1)2
(�̄�− 𝑥𝑠) (�̄�− 𝑥𝑠)

T ,
(3.3.17)

in which 1
𝑛+1

and
[︁
(�̄�− 𝑥𝑠) (�̄�− 𝑥𝑠)

T − 𝑆
]︁

correspond to 𝜀 and 𝑆(1) respectively.

Using the above expression for the perturbed covariance matrix and the results in

Eq. (3.3.12), we express the first order approximation of the 𝑘-th perturbed eigenvalue

for 𝑑 = 1 as

𝜆𝑘(𝜀) = 𝜆𝑘 + 𝜀𝜆
(1)
𝑘 +𝒪(𝜀2)

≈ 𝜆𝑘 + 𝜀𝑣T𝑘 𝑆
(1)𝑣𝑘

= 𝜆𝑘 +
1

𝑛 + 1
𝑣T𝑘

(︁
(�̄�− 𝑥𝑠) (�̄�− 𝑥𝑠)

T − 𝑆
)︁
𝑣𝑘

=
1

𝑛 + 1
𝛼2
𝑘𝑠 +

𝑛

𝑛 + 1
𝜆𝑘,

(3.3.18)

where 𝛼𝑘𝑠 = 𝑣T𝑘 (𝑥𝑠 − �̄�) as before. Hence, the change in the reconstruction error for

cluster 𝜔⋆
𝑠 after the addition of 𝑥𝑠 can be expressed as

𝑈2(𝑥𝑠, 𝑉𝜔⋆
𝑠
) =

∑︁
𝑥∈𝒳𝜔⋆

𝑠
∪{𝑥𝑠}

𝐿(𝑥, 𝑉𝜔⋆
𝑠
)−

∑︁
𝑥∈𝒳𝜔⋆

𝑠

𝐿(𝑥, 𝑉𝜔⋆
𝑠
)

=
𝑃∑︁

𝑘=𝑞+1

(𝜆𝑘(𝜀)− 𝜆𝑘)

=
𝑃∑︁

𝑘=𝑞+1

𝛼2
𝑘𝑠 − 𝜆𝑘

𝑛 + 1
.

(3.3.19)

Using the perturbation analysis results, the influence of data addition and deletion

can be calculated directly after computing SVD decompositions 𝐾 times per iteration.

This means that we only need to compute SVD decompositions (𝑇 · 𝐾) times for all 𝑇

iterations as compared to 𝒪(𝑇 · 𝑁2).
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3.3.3 Update Procedure

After the class memberships of some points are queried, we will know the pairwise

must-link and cannot-link relationships among them. However, we do not know to which

cluster label we should assign each of these points to. The next step is to update the

subspace model under the grouping constraints. That is, the queried points that belong

to the same class must be assigned to the same cluster label. Additionally, the queried

points that do not belong to the same class should be assigned to different cluster labels.

We can naturally extend KSC into an iterative constrained clustering algorithm with

three stages. The first two stages involve the estimation of subspace bases and the cluster

assignment of each point to the closest subspace. In the third stage, we satisfy the

grouping constraints as mentioned above. This gives us a new constrained clustering

objective, which is composed of two parts.

For the set of unlabelled data 𝒳𝑈 , the subspace clustering objective is to minimise

𝐿(𝒳𝑈 ,𝒱) =
∑︁

𝑥𝑢∈𝒳𝑈

{︂
min

𝑚∈{1,...,𝐾}

⃦⃦
𝑥𝑢 − 𝑉𝑚𝑉

T
𝑚𝑥𝑢

⃦⃦2
2

}︂
, (3.3.20)

where 𝑉𝑚 ∈ R𝑃×𝑞 is a basis matrix that is determined by the points that are currently

allocated to subspace 𝑚. Note that the basis matrix of the 𝑚-th cluster 𝑉𝑚 is determined

by points that are both labelled and unlabelled.

For the set of labelled data 𝒳𝐿, we need to minimise the reconstruction error without

violating any of the grouping constraints. Among 𝐾 groups of queried points, there

are 𝐾! ways of matching each group to a unique cluster label. This is a combinatorial

optimisation problem, and we can denote as 𝒫(𝐾) the set of all possible permutations.

Let 𝑃𝑛· be the 𝑛-th permutation in 𝒫(𝐾) that contains 𝐾 unique labels to be matched

with the queried points, and 𝑃𝑛𝑐 be the assigned cluster label in the 𝑛-th permutation that

corresponds to true class 𝑐. Then we can write the subspace clustering objective for the

labelled data 𝒳𝐿 as

𝐿(𝒳𝐿,𝒱) = min
𝑃𝑛·∈𝒫(𝐾)
𝑛∈{1,...,𝐾!}

{︃
𝐾∑︁
𝑐=1

⃦⃦
𝑋𝑐 − 𝑉𝑃𝑛𝑐𝑉

T
𝑃𝑛𝑐

𝑋𝑐

⃦⃦2
2

}︃
, (3.3.21)
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where 𝑋𝑐 is a 𝑛𝑐 × 𝑃 matrix that contains the 𝑛𝑐 queried points from class 𝑐.

When 𝐾 is small, it is easy to simply evaluate all 𝐾! permutations and choose the

one with the smallest overall cost. However, as the number of clusters grows, it is

computationally prohibitive to evaluate all combinatorial possibilities. This problem is

also known as the minimum weight perfect matching problem, which can be solved in

polynomial time through the Hungarian algorithm (Kuhn, 1955). We first construct a 𝐾

by 𝐾 cost matrix 𝑃 in which the (𝑖, 𝑗)-th entry 𝑃𝑖𝑗 denotes the total reconstruction error

of allocating data from class 𝑖 to cluster label 𝑗. An improved variant of the Hungarian

algorithm can achieve a computational cost of 𝒪(𝐾3) (Jonker and Volgenant, 1987).

Hence, we adopt it as an alternative approach to exhaustive search to our problem in

stage 3 when 𝐾! is larger than 𝐾3.

To combine both the unlabelled and labelled objectives together, we can express the

combined constrained objective function as

𝑔(𝒳 ,𝒱) =
∑︁

𝑥𝑢∈𝒳𝑈

{︂
min

𝑚∈{1,...,𝐾}

⃦⃦
𝑥𝑢 − 𝑉𝑚𝑉

T
𝑚𝑥𝑢

⃦⃦2
2

}︂
+

min
𝑃𝑛·∈𝒫(𝐾),
𝑛∈{1,...,𝐾!}

{︃
𝐾∑︁
𝑐=1

⃦⃦
𝑋𝑐 − 𝑉𝑃𝑛𝑐𝑉

T
𝑃𝑛𝑐

𝑋𝑐

⃦⃦2
2

}︃
.

(3.3.22)

The procedural form of KSC with Constraints (KSCC) is detailed in Algorithm 6.

This three-stage procedure ensures that the constrained subspace clustering objective

in Eq. (3.3.22) decreases monotonically whilst satisfying all of the grouping constraints.

A proof for this can be found in Theorem 3.3.1.

Theorem 3.3.1. The 𝐾-Subspace Clustering with Constraints (KSCC) algorithm de-

creases the objective in Eq. (3.3.22) monotonically throughout iterations.

Proof. Our proof borrows ideas from the proof for the monotonicity of the 𝐾-means

clustering algorithm. For initialisation, we have as input a set of cluster labels 𝛺(0) ={︁
𝜔
(0)
1 , . . . , 𝜔

(0)
𝑁

}︁
, the set of unlabelled data 𝒳𝑈 , and the set of labelled data 𝒳𝐿. Given

the input information, we can calculate an initial set of bases matrices 𝒱(0) for all

subspaces. Let 𝑔(𝒳 ,𝒱(0)) be the initial combined reconstruction error, then at iteration
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Algorithm 6: KSC with Constraints (KSCC)
Input :Labelled and unlabelled data: 𝒳𝐿, 𝒳𝑈

Initial cluster labels: 𝛺(0) =
{︁
𝜔
(0)
1 , . . . , 𝜔

(0)
𝑁

}︁
Subspace dimension: 𝑞

repeat
% Stage 1: fitting subspaces
for 𝑋𝑘 ∈ 𝒳 (𝑘 = 1, . . . , 𝐾) do

Calculate the eigen-decomposition on the covariance matrix of 𝑋𝑘:
cov(𝑋𝑘) = 𝑉𝑘Λ𝑘𝑉

T
𝑘

end
% Stage 2: updating labels
for 𝑥𝑖 ∈ 𝒳 (𝑖 = 1, . . . , 𝑁 ) do

Determine the cluster label for 𝑥𝑖:
𝜔𝑖 = arg min𝜔𝑖∈{1,...,𝐾}

⃦⃦
𝑥𝑖 − 𝑉𝑘𝑉

T
𝑘 𝑥𝑖

⃦⃦2
2

end
% Stage 3: satisfying constraints
Find the best vector 𝑃 ⋆

𝑛· ∈ 𝒫(𝐾) to match with the true classes by solving
Eq. (3.3.21):

𝑃 ⋆
𝑛· = arg min

𝑃𝑛·∈𝒫(𝐾),
𝑛∈{1,...,𝐾!}

{︃
𝐾∑︁
𝑐=1

⃦⃦
𝑋𝑐 − 𝑉𝑃𝑛𝑐𝑉

T
𝑃𝑛𝑐

𝑋𝑐

⃦⃦2
2

}︃

using the Hungarian algorithm

until Iteration number 𝑇 is reached or the total reconstruction error stops
decreasing

𝑡 (𝑡 = 0, . . . , 𝑇 ) we have

𝑔(𝒳 ,𝒱(𝑡)) =
∑︁

𝑥𝑢∈𝒳𝑈

⃦⃦⃦
𝑥𝑢 − 𝑉

(𝑡)

𝜔
(𝑡)
𝑢

[𝑉
(𝑡)

𝜔
(𝑡)
𝑢

]T𝑥𝑢

⃦⃦⃦2
2

+
𝐾∑︁
𝑐=1

⃦⃦⃦
𝑋𝑐 − 𝑉

(𝑡)

𝑃
(𝑡)
𝑛𝑐

[𝑉
(𝑡)

𝑃
(𝑡)
𝑛𝑐

]T𝑋𝑐

⃦⃦⃦2
2

>
∑︁
𝑥𝑖∈𝒳

⃦⃦⃦⃦
𝑥𝑖 − 𝑉

(𝑡+1)

𝜔
(𝑡)
𝑖

[𝑉
(𝑡+1)

𝜔
(𝑡)
𝑖

]T𝑥𝑖

⃦⃦⃦⃦2
2

=
∑︁

𝑥𝑢∈𝒳𝑈

⃦⃦⃦
𝑥𝑢 − 𝑉

(𝑡+1)

𝜔
(𝑡)
𝑢

[𝑉
(𝑡+1)

𝜔
(𝑡)
𝑢

]T𝑥𝑢

⃦⃦⃦2
2

+
𝐾∑︁
𝑐=1

⃦⃦⃦
𝑋𝑐 − 𝑉

(𝑡+1)

𝑃
(𝑡)
𝑛𝑐

[𝑉
(𝑡+1)

𝑃
(𝑡)
𝑛𝑐

]T𝑋𝑐

⃦⃦⃦2
2

>
∑︁

𝑥𝑢∈𝒳𝑈

⃦⃦⃦
𝑥𝑢 − 𝑉

(𝑡+1)

𝜔
(𝑡+1)
𝑢

[𝑉
(𝑡+1)

𝜔
(𝑡+1)
𝑢

]T𝑥𝑢

⃦⃦⃦2
2

+
𝐾∑︁
𝑐=1

⃦⃦⃦
𝑋𝑐 − 𝑉

(𝑡+1)

𝑃
(𝑡)
𝑛𝑐

[𝑉
(𝑡+1)

𝑃
(𝑡)
𝑛𝑐

]T𝑋𝑐

⃦⃦⃦2
2

≥
∑︁

𝑥𝑢∈𝒳𝑈

⃦⃦⃦
𝑥𝑢 − 𝑉

(𝑡+1)

𝜔
(𝑡+1)
𝑢

[𝑉
(𝑡+1)

𝜔
(𝑡+1)
𝑢

]T𝑥𝑢

⃦⃦⃦2
2

+
𝐾∑︁
𝑐=1

⃦⃦⃦
𝑋𝑐 − 𝑉

(𝑡+1)

𝑃
(𝑡+1)
𝑛𝑐

[𝑉
(𝑡+1)

𝑃
(𝑡+1)
𝑛𝑐

]T𝑋𝑐

⃦⃦⃦2
2

= 𝑔(𝒳 ,𝒱(𝑡+1)).
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The first line of the proof says that, at iteration 𝑡, we have a set of cluster labels for

the unlabelled data Ω
(𝑡)
𝑈 and for the labelled data Ω

(𝑡)
𝐿 that satisfy all constraints imposed

upon knowing the true classes of the points in 𝒳𝐿. When we proceed into the next step

of updating the set of bases 𝒱(𝑡+1) at iteration (𝑡 + 1), the new set of bases minimise the

reconstruction error within each cluster of points given the assignment Ω(𝑡) (as stated

in the second and third lines of the proof). Next, in the assignment update stage for

the unlabelled data, we obtain the fourth line of the proof. It states that the assignment

𝜔
(𝑡+1)
𝑢 in the (𝑡 + 1)-th iteration would only be different from 𝜔

(𝑡)
𝑢 if it gives a smaller

reconstruction error for 𝑥𝑢. Finally, in the last step of the KSCC algorithm, we update

the matching between the cluster labels and the true classes. It only gets updated if some

other matching has a smaller overall reconstruction error for the labelled data 𝒳𝐿, which

is reflected in the last two lines of the proof.

3.4 Experimental Results

In this section, we conduct a series of experiments with both synthetic and real data to

evaluate the performance of our proposed active learning strategies against three other

competing strategies1. The cluster performance is measured by the Normalised Mutual

Information (NMI) (Cover and Thomas, 2012).

In order to inspect the influence of data addition and deletion separately, we use three

versions of our proposed active learning strategy: SCAL-A and SCAL-D only take into

account the influence of data addition and data deletion respectively, and SCAL is the

combined strategy that takes into account both. We compare the performance of our

proposed active learning strategies with three alternative schemes: MaxResid, MinMargin

(Lipor and Balzano, 2015), and Random strategy. MaxResid selects data points that have

the largest reconstruction error to their corresponding subspaces. MinMargin selects data

points that are most equidistant to their two closest subspaces. Lastly as a benchmark,

1The code is available at: https://github.com/hankuipeng/SCAL.

https://github.com/hankuipeng/SCAL
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we compare to random sampling and satisfy the constraints using the KSCC algorithm.

3.4.1 Synthetic Data

For all synthetic experiments, we initialise the cluster labels with the best initialisation

(the one with the lowest reconstruction error) out of 50 runs of the KSC algorithm. We

set the total number of iterations 𝑇 of the active learning procedure to be 𝑁 , and query

one point at a time.

Experiment 1: Varying noise level (𝜎). We investigate the effectiveness of our

proposed active learning strategy under varying levels of additive noise. The effectiveness

of various strategies are also compared under various levels of additive noise. The data

corrupted by noise can be expressed as 𝑌 = 𝑋 + 𝐸, where 𝑋 is the noise-free data and

𝐸 the noise component.

In order to generate the noise-free data matrix 𝑋 ∈ R𝑁×𝑃 , we need to generate

each sub-matrix 𝑋𝑘 ∈ R𝑛𝑘×𝑃 (𝑘 ∈ {1, . . . , 𝐾}) for each subspace individually and

concatenate them to form 𝑋 . For each subspace 𝒮𝑘, we first generate a 𝑃 × 𝑞 matrix 𝐵⋆
𝑘

whose entries come from the standard Normal distribution with 𝒩 (0, 1). Then we

orthogonalise the columns of 𝐵⋆
𝑘 to obtain the matrix 𝐵𝑘 whose columns correspond to

the basis vectors for the subspace. The noise-free sub-matrix 𝑋𝑘 can thus be obtained as

𝑋𝑘 = (𝐵𝑘𝐶𝑘)T, (3.4.1)

where 𝐶𝑘 ∈ R𝑞×𝑛𝑘 is the coefficient matrix, whose entries are also sampled from the

standard Normal distribution. Each column of 𝐶𝑘 corresponds to the coefficient vector

of a point along the 𝑞 subspace dimensions. Each entry in the noise data matrix 𝐸 is

generated from standard Normal distribution 𝒩 (0, 𝜎2), with zero mean and variance 𝜎2.

We specify additive noise levels to be 𝜎 = 0.2, 0.4, and 0.6 respectively. Across all noise

levels, there are 5 clusters in each data set and each cluster contains 200 points from the

same subspace of dimension 10 out of the full dimension 20.

The performance of various strategies under all settings are shown in Table 3.1. In
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general, all strategies require a big proportion of points to be queried to reach perfection

as the noise level goes up. It seems most of the advantage of SCAL comes from the

influence of data addition SCAL-A, and it is difficult to say whether there is a difference

between SCAL and SCAL-A. It is worth noting that MinMargin has similar performance

to SCAL and SCAL-A when 𝜎 = 0.2.

Experiment 2: Varying angles between subspaces (𝜃). In order to fix a vector to

rotate the subspaces, we apply various active learning strategies on three 3-dimensional

examples with subspace dimension 𝑞 = 2. 600 points are generated in total from 3

clusters, and every cluster contains 200 points each. Noise with 𝜎 = 0.1 is added to

the data, and the between-subspace angle is specified to be 30, 50, and 70 degrees

respectively.

The performance results under all scenarios are shown in Table 3.1. Our proposed

active strategy SCAL and SCAL-A outperform all other strategies significantly. For these

two strategies, the proportion of data needed in order to achieve perfection decreases

as the between-subspace angle increases. Other strategies have to query almost all

points in order to achieve perfect performance apart from MinMargin, which is our close

competitor in the varying noise setting.

Parameters SCAL SCAL-A SCAL-D MaxResid MinMargin Random
𝜎 = 0.2 0.30% 0.40% 45.20% 19.20% 0.70% 23.00%
𝜎 = 0.4 43.10% 46.10% 99.00% 98.00% 83.10% 99.50%
𝜎 = 0.6 85.60% 85.40% 99.90% 99.10% 89.50% 99.50%
𝜃 = 30 41.67% 44.17% 98.67% 99.83% 96.00% 99.00%
𝜃 = 50 37.17% 36.83% 99.00% 98.17% 69.50% 99.50%
𝜃 = 70 32.17% 31.83% 98.83% 98.50% 77.67% 99.83%

Table 3.1: The percentage of points queried before perfect cluster performance (as
evaluated by NMI) is reached on synthetic data sets.

Again, SCAL-D strategy as part of our proposed SCAL strategy barely distinguishes

itself from Random strategy. This is within our expectations for two reasons. First,

misclassified points are most likely to belong to the nearest cluster that they have the

second least reconstruction error to. Secondly, those points whose deletion has a large

influence on their allocated subspaces are likely to be correctly classified in the first place
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due to the level of noise in the data.

3.4.2 Real Data

In this section, we conduct experiments on real-world data comparing SCAL to various

competing strategies. We demonstrate the advantage of our proposed active learning

strategy when the data exhibit subspace structure. Specifically, we experiment with data

sets in motion segmentation and face clustering which have been used previously to

demonstrate the effectiveness of subspace clustering (Elhamifar and Vidal, 2013).

For KSC-based experiments, we experiment with two initialisation schemes. First, we

initialise with the output given by KSC, which is the set of labels that gives the smallest

reconstruction error out of 50 runs each with randomly allocated initial labels. Secondly,

we initialise with the output from Sparse Subspace Clustering (SSC) (Elhamifar and

Vidal, 2013) under the default model parameters. Due to the excellent performance of

SSC, the aim is to investigate whether the correct initialisation of subspace bases would

help accelerate the performance improvement.

All results are presented in two measures: the first row presents the percentage of

data that needs to be queried before perfect clustering is reached; the second row presents

the percentage of the area under the plotted performance improvement curve over the

total area. The first measure focuses on the amount of queries needed to reach perfect

cluster performance, whereas the second measure reflects the overall effectiveness of a

query strategy.

Motion segmentation. In this set of experiments, we evaluate the performance of

all strategies on six motion segmentation data sets (Tron and Vidal, 2007). Motion

segmentation refers to the problem of separating the points in a sequence of frames that

compose one video after being combined consecutively. Each point can be represented by

a 2𝑓 -dimensional vector, in which 𝑓 is the number of frames in the video (Elhamifar and

Vidal, 2013). Following the parameter setting from Elhamifar and Vidal (2013), we set

the subspace dimension 𝑞 = 3, and query one point at each iteration. The performance

results are summarised in Table 3.2, and the number of moving objects (clusters) for
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each data application is also included in the table.

KSC update (KSC initialisation)
SCAL MinMargin MaxResid Random

truck2 4.53% 90.63% 99.70% 91.84%
(𝐾 = 2) 99.36% 95.46% 86.60% 89.75%

kanatani3 26.03% 31.51% 86.30% 91.78%
(𝐾 = 2) 86.05% 84.86% 72.10% 53.10%
1R2TCR 26.98% 43.35% 95.68% 88.13%
(𝐾 = 3) 94.89% 95.96% 85.44% 83.12%

three-cars 31.21% 60.12% 99.42% 72.25%
(𝐾 = 3) 94.18% 89.07% 86.73% 87.16%
2R3RTC 37.28% 52.51% 46.49% 99.20%
(𝐾 = 3) 96.68% 97.23% 95.37% 87.86%

two-cranes 71.28% 81.92% 89.36% 97.87%
(𝐾 = 3) 59.52% 58.09% 53.09% 58.49%

KSC update (SSC initialisation)

1R2TCR
26.98% 43.35% 95.68% 98.02%
94.89% 95.96% 85.44% 83.09%

three-cars
1.73% 83.82% 99.42% 84.39%

99.94% 97.61% 95.52% 97.49%

2R3RTC
9.82% 40.88% 59.92% 78.96%

99.76% 99.27% 98.21% 97.73%

two-cranes
73.40% 75.53% 98.94% 98.94%
64.38% 71.23% 45.72% 65.80%

Table 3.2: Cluster performance of various active learning strategies on motion segmenta-
tion data sets.

It is worth noting that SSC achieves perfect performance on ‘truck2’ and ‘kanatani3’,

thus there is no need for active learning. The performance improvement over iterations is

shown in Figure 3.4.1. We see that the performance of MinMargin is very similar to that

of SCAL most of the time. This is also reflected in the second row of the performance of

each data set in Table 3.2. However, SCAL always achieves perfect cluster performance

first, which is what we expect to see due to its ability to query potentially misclassified

points that are also informative. The performance of MaxResid also improves rapidly in

most scenarios, but it struggles to query the points that lead to perfect performance.

Face clustering. The original Extended Yale Face Database B (Lee et al., 2005)

consists of 64 images of 38 distinct faces under various lighting conditions. Each original

image is of size 192× 168, and have been downsampled to have size 48× 42 (Elhamifar
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Figure 3.4.1: Performance results measured by NMI on six motion segmentation data
sets with KSC initialisation.
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and Vidal, 2013). It has previously been shown that under the Lambertian assumption,

images of a subject lie close to a linear subspace of dimension 9 (Basri and Jacobs,

2003). Since the data are intrinsically low-dimensional, we preprocess the data by

projecting onto its first 5𝐾 principal components as has been done in (Balcan et al.,

2007). Following the experimental settings in Elhamifar and Vidal (2013), we experiment

with 𝐾 = 2, 3, 5, 8, and 10. The corresponding data sets are obtained from the SSC

package in MATLAB (Elhamifar and Vidal, 2013).

As before, we apply all active learning strategies with both KSC and SSC initiali-

sations. It is worth noting that SSC achieves perfect performance on the preprocessed

data when 𝐾 = 2, thus there is no need for active learning. From the results shown in

Table 3.3, we see that the percentage of data that needs to be queried goes up with the

increase of 𝐾. Although the proportion of area under the curve is very similar between

MinMargin and SCAL, MinMargin requires a much higher percentage of queries than

SCAL before perfect clustering is reached.

The performance improvement over time with KSC initialisation is shown in Fig-

ure 3.4.2. The initial performance decreases slowly as 𝐾 increases, and the performance

of various active strategies gets closer. With that said, the performance of SCAL and

MinMargin still stand out from the rest.

3.5 Extension to Spectral Clustering

Finally, we make an initial attempt to extend our active learning framework to the spectral

clustering setting. A large number of subspace clustering algorithms are spectral-based

methods. These methods construct a pairwise affinity matrix through various optimisation

schemes and solve the cluster assignment problem through spectral clustering (Elhamifar

and Vidal, 2013; Liu et al., 2010). We incorporate the queried information in the similarity

matrix and compare with other strategies in the spectral setting.

Using our proposed strategy, the points are queried in the same manner as before.

Upon receiving the class information of some points, the constraints are satisfied by

updating the affinity matrix. Following the update procedure in Lipor and Balzano
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KSC update (KSC initialisation)
Strategies 𝐾 = 2 𝐾 = 3 𝐾 = 5 𝐾 = 8 𝐾 = 10

SCAL
21.09% 19.79% 24.06% 63.48% 53.91%
96.10% 98.28% 93.80% 80.02% 86.45%

MinMargin
64.84% 36.46% 83.13% 98.44% 99.84%
90.30% 97.31% 91.83% 81.92% 88.95%

MaxResid
96.88% 95.31% 99.69% 99.81% 99.84%
77.19% 85.85% 77.43% 79.01% 82.22%

Random
97.66% 96.35% 99.69% 97.85% 97.97%
77.59% 88.08% 76.27% 77.77% 83.46%

KSC update (SSC initialisation)
Strategies 𝐾 = 3 𝐾 = 5 𝐾 = 8 𝐾 = 10

SCAL
10.94% 25.31% 28.52% 58.91%
99.06% 99.09% 98.24% 95.15%

MinMargin
16.15% 38.13% 92.58% 62.18%
98.59% 98.14% 98.00% 97.15%

MaxResid
93.23% 99.69% 99.81% 99.38%
91.50% 82.66% 89.75% 93.34%

Random
91.15% 76.25% 99.02% 91.88%
92.19% 94.40% 91.59% 94.75%

Spectral update (SSC initialisation)
Strategies 𝐾 = 3 𝐾 = 5 𝐾 = 8 𝐾 = 10

SCAL
10.94% 26.56% 40.62% 26.56%
98.91% 96.03% 91.08% 98.24%

SUPERPAC
14.06% 31.25% 40.62% 20.31%
98.39% 95.96% 90.03% 98.67%

MaxResid
90.62% 98.44% 98.44% 57.81%
93.23% 92.84% 86.81% 98.76%

Random
95.31% 98.44% 92.19% 96.88%
90.90% 92.65% 87.50% 96.06%

Table 3.3: Cluster performance on Yale Faces data sets.
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Figure 3.4.2: Performance results measured by NMI on Yale Faces data sets with KSC
initialisation.
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(2017), we set to ones for those labelled data that belong to the same class and zeros

for those that lie in different classes. Spectral clustering is then applied to the updated

affinity matrix to obtain labels for all points. As a final step, we apply KSCC to ensure

that all grouping constraints are satisfied for the labelled data.

The performance results are shown in the last section of Table 3.3. Note that the

authors that propose MinMargin have renamed it to SUPERPAC for the spectral setting.

SCAL outperforms other competing strategies in all scenarios apart from when 𝐾 = 10.

With that said, SCAL still enjoys the same level of rate of improvement as SUPERPAC

and MaxResid when 𝐾 = 10.

3.6 Conclusions & Future Work

We proposed a novel active learning framework for subspace clustering. Ideas from

matrix perturbation theory are borrowed to enable efficient estimation of the influence of

data deletion and data addition as measured by the change in the reconstruction error.

New results on the perturbation analysis of data addition are provided as a by-product

of our proposed active learning framework. In addition, we propose a constrained

subspace clustering algorithm called 𝐾-Subspace Clustering with Constraints (KSCC)

that monotonically decreases the constrained objective over iterations.

For future research, there are a few interesting directions we would like to pursue.

Firstly, we would like to extend our framework to be able to incorporate not only class

information, but also ‘must-link’ and ‘cannot-link’ constraints. Secondly, we would like

to consider extensions of our proposed framework in the spectral-based setting. Our initial

experimental results seem promising on the Faces data sets using the straightforward

spectral update on the affinity matrix. Finally, it would be interesting to explore the

scenario where multiple labellers exist, and the provided labels do not necessarily agree

with each other.
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3.A Appendix

3.A.1 Proof of Proposition 1

In this section, we provide the proof for Proposition 3.3.1 regarding the perturbed form

of the covariance matrix after data addition.

Proposition 1. The form of 𝑆+
(𝒟) can be expressed as,

𝑆+
(𝒟) = 𝑆 +

𝑑

𝑛 + 𝑑

(︀
(𝑆𝒟 − 𝑆) + (�̄�𝒟 − �̄�)(�̄�𝒟 − �̄�)T

)︀
− 𝑑2

(𝑛 + 𝑑)2
(�̄�𝒟 − �̄�) (�̄�𝒟 − �̄�)T .

(3.A.1)

Proof. The sample covariance matrices 𝑆, 𝑆𝒟, and 𝑆+
(𝒟) are given as
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(3.A.2)

in which 𝐼𝑛 is an identity matrix of size 𝑛×𝑛 and 1𝑛 is a vector of all ones with length 𝑛.

Starting from the expression for 𝑆+
(𝒟) above, we can write:
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from which the result follows.

3.A.2 Proof of Proposition 2

In this section, we provide the proof for Proposition 3.3.2 regarding the perturbed form

of the covariance matrix after the addition of one single point.

Proposition 2. Following the same line of analysis, we can show that the perturbed

covariance matrix in the case when 𝑑 = 1 can be expressed as,
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Chapter 4

Weighted Sparse Simplex

Representation

Subspace clustering methods that express each point as a linear combination of other

points have achieved great success in many real world applications, for example gene

sequencing, image recognition, and motion segmentation. In real-world applications,

it is not always easy to validate the cluster performance of these methods due to the

scarcity of available labelling information and the cost of obtaining them. Existing

literature addresses the problem of subspace clustering, the problem of obtaining useful

labels – active learning, and the problem of incorporating available labels – constrained

clustering, separately. In this work, we build a unified framework for spectral-based

subspace clustering and active learning.

The initial stage of this framework is to obtain a data partitioning. We develop a

spectral-based subspace clustering method named Weighted Sparse Simplex Representa-

tion (WSSR), which uses local neighbourhood information to represent each point as a

sparse linear combination of other points. Given a data partitioning, the main framework

is composed of two stages. In the first stage, we query the labels for the most informative

points given the current subspace structure. In the second stage, we propose an extension

to WSSR, named WSSR+, that incorporates available labelling information into the

WSSR problem formulation. Experiments on both synthetic and real data demonstrate

87
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the effectiveness of our proposed framework.

Keywords: Subspace clustering; Constrained clustering; Active learning.

4.1 Introduction

Data have been generated at unprecedented speed and quantity in recent years. High-

dimensional data, in particular, are ubiquitous in numerous application domains. For

example in genomics, microarray technologies provide high-dimensional gene expression

measurements that are used to identify sub-types of cancer (McWilliams and Montana,

2014). Recent technological advances have enabled people to take high-quality photos

with millions of pixels. This gives rise to problems such as image representation (Hong

et al., 2006), and motion segmentation (Rao et al., 2010) in computer vision. Due to

the rapid development of Natural Language Processing (NLP) in the past few years,

many sophisticated language models have been developed to represent text data. These

representations often come at hundreds and even thousands of dimensions (Devlin et al.,

2018; Yang et al., 2019b; Wang and Kuo, 2020).

In these applications where high dimensional data are abundant, it is often the case

that the main structure of the data can be well represented in much lower dimensional

subspaces. When the goal is to identify one common low dimensional structure in the data,

classical methods such as Principal Component Analysis (PCA) (Jolliffe, 2011) are often

used for dimension reduction. However more advanced techniques are needed if there are

multiple subspace structures in the data, where each structure represents data points from

a distinct group. The problem of simultaneously estimating the corresponding subspace

structure for each cluster and partitioning a group of points into a number of clusters

according to the underlying subspace structure is called subspace clustering (Elhamifar

and Vidal, 2013). An extensive survey of subspace clustering methods can be found in

Vidal (2011).

One type of subspace clustering methods that have gained much popularity in recent

years is spectral-based methods (Liu et al., 2012; Lu et al., 2012; Elhamifar and Vidal,

2013; Li and Vidal, 2015; Huang et al., 2015). Spectral-based subspace clustering
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methods have been shown to enjoy excellent performance in numerous real world

problems, including motion segmentation and face clustering. This type of methods solve

for the cluster labels through a two-stage procedure. An affinity matrix is constructed

in the first stage, and spectral clustering (Von Luxburg, 2007) is applied to the affinity

matrix to obtain the cluster labels in the second stage. The main difference of various

spectral-based methods lie in how the affinity matrix is constructed, but all of them use

the self-expressiveness model (Li and Vidal, 2015). It is based on the premise that each

point can be well represented as a linear combination of other points. As a result, the

coefficients are then used to form the affinity matrix.

Sparse Simplex Representation (SSR) (Huang et al., 2013, 2015) is one such self-

expressiveness model that minimises both the reconstruction error of the linear com-

bination and the ℓ1-norm of the coefficient vector. It imposes a simplex constraint on

the coefficient vector, which means that all coefficient values are non-negative and they

sum up to one. As a result of the simplex constraint, the ℓ1-penalty term in the objective

becomes constant, therefore does not play a role in the problem formulation.

To resolve this, we propose a modified version of SSR, named Weighted Sparse

Simplex Representation (WSSR), which introduces a weight matrix that encodes local

neighbourhood information. It also means that the penalty term is no longer a constant,

therefore it does exert an influence on the solution vector. The WSSR problem can be

expressed as a standard constrained quadratic programming problem, and we propose

two different approaches to solve it.

In practice, it is often time-consuming and expensive to validate the cluster perfor-

mance if there exists a large number of unlabelled points. A feasible alternative for

evaluating and thus improving the model performance is to obtain labels for a small

amount of data. The process of clustering the data in the presence of a small amount of

constraint information is called constrained clustering (Basu et al., 2008). We extend the

WSSR problem formulation into a constrained clustering framework termed WSSR+,

which involves a flexible weighting scheme that allows the WSSR problem formulation

to incorporate the available labelling information.
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Constrained clustering provides performance improvement on the labelled points,

and potentially leads to better partitioning of the unlabelled points. However, it is a

passive way of clustering in the sense that the labelling information is fixed and given a

priori. As such, it is not guaranteed that the points that we have constraint information

about are the most informative for clustering. In order to improve the cluster performance

more effectively and efficiently with a limited amount of labelling information, we can

resort to active learning (Settles, 2009).

Active learning explores the structures of the current clusters and queries informative

data labels that would lead to effective performance improvement. Existing active

learning methods mainly treat the development of active strategies and that of clustering

methods separately (Wang and Davidson, 2010a; Lipor and Balzano, 2017; Xiong

et al., 2017). In this work, we integrate these two components into one unified active

learning and constrained clustering framework. To summarise, we make the following

contributions:

• WSSR. We propose a weighted extension of the Sparse Simplex Representation

problem. We show that it performs favourably against state-of-the-art spectral-

based subspace clustering methods on both synthetic and real data.

• WSSR+. We extend the WSSR problem formulation to incorporate available

labelling information, thus provide a flexible constrained clustering framework.

• A unified active learning and constrained clustering framework. We build a unified

optimisation framework for subspace clustering that iteratively improves cluster

performance through constrained clustering and queries the labels for informative

points that would lead to effective performance improvement.

The rest of this chapter is organised as follows. In Section 4.2, we discuss some of

the existing work in the literature in the areas of subspace clustering and constrained

clustering. In Section 4.3 and 4.4, we propose the problem formulation of the Weighted

Sparse Simplex Representation (WSSR) and discuss its theoretical properties. We discuss

two approaches that can solve the problem, and present an integrated active learning and
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constrained clustering framework. We demonstrate the effectiveness of our proposed

methodology on synthetic and real data in Section 4.6 and 4.7, and provide concluding

remarks in Section 4.8.

4.2 Literature Review

This work is inspired by and built upon previous work in the fields of both subspace

clustering and constrained clustering. There are generally four types of subspace

clustering methods: iterative, spectral, algebraic, and statistical (Li et al., 2017). In

particular, the literature that we review in this section are within the realm of spectral-

based methods.

4.2.1 Subspace Clustering

We have previously provided motivation for why we will be focusing on spectral-based

methods in Section 4.1. Spectral-based methods involve constructing the affinity matrix

and applying spectral clustering to the affinity matrix to obtain the cluster labels. The

affinity matrix is built using the self-expressiveness model. Given a data set 𝒳 ={︀
𝑥𝑖 ∈ R𝑃

}︀𝑁
𝑖=1

, the main premise of this model is that every point 𝑥 ∈ 𝒳 can be well

approximated by a linear combination of a few other points from the same subspace.

Concretely, the self-expressiveness model can be expressed as the following optimisation

problem for each point:

min
𝛽

‖𝜀‖𝜅 + 𝜌 ‖𝛽‖𝑙

s.t. 𝑥 = 𝑌−𝑖𝛽 + 𝜀,

(4.2.1)

where 𝑌−𝑖 = [𝑥1, . . . ,𝑥𝑖−1,𝑥𝑖+1, . . . ,𝑥𝑁 ] ∈ R𝑃×(𝑁−1), i.e. the data matrix without the

𝑖-th column corresponding to 𝑥𝑖 to prevent the trivial solution of self-representation. For

the rest of this chapter, we simplify the notation of 𝑌−𝑖 to 𝑌 when there is no ambiguity.

Here 𝛽 denotes the coefficient vector of the linear combination in representing 𝑥; and

𝜀 represents the difference between 𝑥 and the linear combination 𝑌 𝛽, which is the

reconstruction error term. Different methods used different norms ‖·‖𝜅 and ‖·‖𝑙 on
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the coefficient vector and the reconstruction error, and 𝜌 is a penalty parameter on the

coefficient vector.

Combining the coefficient vectors for all 𝑁 points together, we obtain the coefficient

matrix 𝐵 as follows

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 𝛽12 𝛽13 . . . 𝛽1𝑁

𝛽21 0 𝛽23 . . . 𝛽2𝑁

𝛽31 𝛽32 0 . . . 𝛽3𝑁

...
...

... . . . ...

𝛽𝑁1 𝛽𝑁2 𝛽𝑁3 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.2.2)

where 𝛽𝑖𝑗 in 𝐵 denotes the coefficient value in front of 𝑥𝑖 in the linear combination that

approximates 𝑥𝑗 . That is, the coefficient vectors are stored in the columns of 𝐵.

The formulation in Eq. (4.2.1) can be transformed into matrix form as follows

min
𝐵

‖𝐸‖𝜅 + 𝜌 ‖𝐵‖𝑙

s.t. 𝑋 = 𝑋𝐵 + 𝐸,

diag(𝐵) = 0,

(4.2.3)

where 𝑋 ∈ R𝑃×𝑁 is the full data matrix, diag(𝐵) ∈ R𝑁 denotes the diagonal entries

of 𝐵, and 0 ∈ R𝑁 is a vector of all zeros. After a representation matrix 𝐵 is obtained,

a common way to construct a non-negative symmetric affinity matrix 𝐴 is through

𝐴 =
(︀
|𝐵|+ |𝐵|T

)︀
/2 (Huang et al., 2015; Li et al., 2017, 2018a). The final clustering

labels can then be obtained by applying a standard spectral clustering algorithm (Shi and

Malik, 2000; Ng et al., 2002) to the affinity matrix.

4.2.1.1 Sparse Subspace Clustering (SSC)

The difference of various spectral-based methods mainly lie in the choice of the regulari-

sation on the reconstruction term ‖ · ‖𝜅 and the coefficient values ‖ · ‖𝑙. For example,

in Sparse Subspace Clustering (SSC) (Elhamifar and Vidal, 2013), the data matrix

𝑋 is decomposed into three parts: the linear combination 𝑋𝐵, the noise 𝐸, and an

additional sparse outlying term 𝑍. The ℓ1-norm is applied to all the coefficient vectors
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in the columns of 𝐵 and the sparse outlying entries in 𝑍 to encourage sparseness. The

Frobenius norm is used on the noise matrix 𝐸, which is equivalent to applying the

ℓ2-norm to each of the columns of 𝐸. Concretely, the full SSC problem that takes into

account both noise and sparse outlying entries can be expressed as follows

min
𝐵

‖𝐵‖1 +
𝜌𝑒
2
‖𝐸‖2𝐹 + 𝜌𝑧 ‖𝑍‖1

s.t. 𝑋 = 𝑋𝐵 + 𝐸 + 𝑍,

diag(𝐵) = 0.

(4.2.4)

The noise-free vector-based representation of the SSC problem can be expressed as

follows
min
𝛽

‖𝛽‖1

s.t. 𝑥 = 𝑌 𝛽.

(4.2.5)

There exists a solution vector 𝛽 that is sparse, and its non-zero entries correspond to

the data points that are from the same subspace as 𝑥. Such a solution is referred to as a

sparse subspace representation. It has been shown in Elhamifar and Vidal (2013) that, in

the absence of noise and outlying entries, SSC can successfully recover sparse subspace

representations of data points that lie in a union of linear subspaces.

For independent subspaces, solving Eq. (4.2.5) always recovers the sparse subspace

representations of the data without any assumption on the data distribution within each

subspace, other than that the rank of the data within each subspace is known. For disjoint

subspaces, it can be shown that the the ℓ1-minimisation problem on 𝐵 recovers the sparse

subspace representations of the data under mild conditions.

4.2.1.2 Affine Sparse Subspace Clustering (ASSC)

Affine Sparse Subspace Clustering (ASSC) (Li et al., 2018a) is an adaptation of SSC

that models data as a union of affine subspaces instead of linear subspaces. Any point 𝑥

in an affine subspace of dimension 𝑃 can be written as an affine combination of (𝑃 + 1)

other points from the same subspace. To deal with affine subspaces, ASSC includes

an affine constraint which requires that the coefficient values in 𝛽 sum up to one for
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every point 𝑥 ∈ 𝒳 . It models the self-expressiveness problem using the vector-based

formulation in Eq. (4.2.1).

Similar to the vector-based formulation for SSC, the ℓ1-norm is applied to the

coefficient vector 𝛽 and the ℓ2-norm is applied to the noise vector 𝜀. Unlike SSC, ASSC

does not include a separate term for sparse outlying entries. The ASSC problem (see Eq.

(21) in Li et al. (2018a)) solves the following optimisation problem

min
𝛽𝑖

‖𝛽𝑖‖1 +
𝜌

2
‖𝜀𝑖‖22

s.t. 𝑥𝑖 = 𝑌 𝛽𝑖 + 𝜀𝑖,

1T𝛽𝑖 = 1,

(4.2.6)

for 𝑖 ∈ {1, . . . , 𝑁}.

4.2.1.3 Structured Sparse Subspace Clustering (S3C)

Structured Sparse Subspace Clustering (S3C) (Li and Vidal, 2015) is a unified opti-

misation framework that solves for the coefficient matrix 𝐵 and the data partitioning

simultaneously. It is an iterative procedure that alternates between feeding information

about the current data partitioning into the self-expressiveness model, and using the

coefficient matrix 𝐵 obtained from the model to obtain a better partitioning of the data.

The data partitioning is represented using a segmentation matrix 𝑄 ∈ R𝑁×𝐾 that

contains a list of segmentation vectors 𝑄 = [𝑞1, . . . , 𝑞𝑁 ]T, where 𝑄𝑖𝑘 = 1 if point 𝑥𝑖 is

assigned to cluster 𝑘 (𝑘 ∈ {1, . . . , 𝐾}), and 0 otherwise. Based on the matrix-based self-

expressiveness formulation in (4.2.3), S3C uses a subspace structured ℓ1-norm ‖ · ‖1,𝑄

on the coefficient matrix 𝐵 defined as follows

‖𝐵‖1,𝑄 = ‖𝐵‖1 + 𝛼‖𝐵‖𝑄

= ‖𝐵‖1 + 𝛼‖Θ⊙𝐵‖1

=
∑︁
𝑖,𝑗

|𝐵𝑖𝑗|
(︁

1 +
𝛼

2
‖𝑞𝑖 − 𝑞𝑗‖22

)︁
,

(4.2.7)

in which Θ ∈ R𝑁×𝑁 describes the agreement between pairwise cluster labels, and we
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have Θ𝑖𝑗 = 1
2
‖𝑞𝑖 − 𝑞𝑗‖22. The operator ⊙ is the Hadamard product (i.e. the element-wise

product), and 𝛼 is a user-defined trade-off parameter.

The above regularisation term on 𝐵 incorporates information on the current data

segmentation 𝑄 into the optimisation framework. It can be viewed as an ℓ1-norm on the

coefficient matrix 𝐵 with an additional penalty when two points are assigned to different

clusters according to the current segmentation matrix 𝑄. The regularisation term on the

reconstruction error ‖ · ‖𝜅 is chosen by the user, depending on the prior knowledge about

the noise pattern. The optimisation problem for S3C is expressed as follows:

min
𝐵,𝐸,𝑄

‖𝐵‖1,𝑄 + 𝜌 ‖𝐸‖𝜅

s.t. 𝑋 = 𝑋𝐵 + 𝐸,

diag(𝐵) = 0,

𝑄 ∈ 𝒬,

(4.2.8)

in which 𝒬 =
{︁
𝑄 ∈ {0, 1}𝑁×𝐾 : 𝑄1 = 1 and rank (𝑄) = 𝐾

}︁
.

The problem in Eq. (4.2.8) is solved iteratively by alternating between solving two

sub-problems. The first sub-problem is to solve for 𝐵 and 𝐸 given the segmentation

matrix 𝑄. This sub-problem can be solved using the Alternating Direction Method of

Multipliers (ADMM) (Boyd et al., 2011). The second sub-problem is to solve for the

segmentation matrix 𝑄 given 𝐵 and 𝐸. This sub-problem is solved by applying spectral

clustering to the data affinity matrix 𝐴 =
(︀
|𝐵|+ |𝐵|T

)︀
/2. This iterative process stops

either when a maximum iteration number is reached, or when the relative changes in Θ

or 𝐵 in two consecutive iterations is small enough.

4.2.1.4 Sparse Subspace Clustering by Orthogonal Matching Pursuit

(SSC-OMP)

Another well-known spectral-based method that exhibits excellent performance in prac-

tice is a combination of SSC and Orthogonal Matching Pursuit (OMP) (Pati et al., 1993),

named SSC-OMP (You et al., 2016). It has been shown to be both effective and efficient
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on digit recognition and face clustering applications. Recall that in the SSC objective,

the ℓ1-norm is applied to the columns of the coefficient matrix 𝐵 and the ℓ2-norm to

the columns of the error matrix 𝐸. It can be computationally prohibitive to solve 𝑁

self-expressiveness problems with (𝑁 − 1) variables.

To resolve this problem, a slightly different self-expressiveness model is used in

SSC-OMP for each point 𝑥 ∈ 𝒳 :

min
𝛽

‖𝜀‖22

s.t. 𝑥 = 𝑌 𝛽 + 𝜀,

‖𝛽‖0 6 𝑛.

(4.2.9)

Unlike in SSC, SSC-OMP applies an ℓ0-norm on the coefficient vector 𝛽. It restricts the

maximum number of non-zero values in 𝛽 by a non-negative integer 𝑛. It can be shown

that the above problem can be solved exactly using the OMP algorithm under certain

conditions (Tropp, 2004; Davenport and Wakin, 2010).

OMP solves the problem greedily by selecting one column in 𝑌 at a time, and

computes the coefficients for the selected column until 𝑛 columns are selected. As such,

it simultaneously chooses a subset of points for the sparse linear combination and solves

for the coefficients for the chosen points. Although it is not obvious how 𝑛 should be

chosen, SSC-OMP is much faster than SSC and has competitive performance against

state-of-the-art methods.

4.2.1.5 Least Squares Regression (LSR)

There are other methods that also base their formulations on the self-expressiveness

model, but do not necessarily encourage sparsity in the solution. For example, in Least

Squares Regression (LSR) (Lu et al., 2012), the Frobenius norm is used on both the

coefficient matrix 𝐵 and the reconstruction error 𝐸. This allows the problem to be solved

analytically and efficiently. The problem formulation of LSR with noise is stated as
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follows:
min
𝐵

𝜌 ‖𝐵‖2𝐹 + ‖𝐸‖2𝐹

s.t. 𝑋 = 𝑋𝐵 + 𝐸,

diag(𝐵) = 0.

(4.2.10)

It is worth noting that if the constraint that requires the diagonal entries of 𝐵 to be zeros

is removed, then the problem becomes that of ridge regression (Hoerl and Kennard, 1970)

which also has an analytical solution.

4.2.1.6 Smooth Representation Clustering (SMR)

Similarly, Smooth Representation Clustering (SMR) (Hu et al., 2014) is another

spectral-based method that also uses the Frobenius norm on the reconstruction error 𝐸.

Previously in LSR, the Frobenius norm is used on the coefficient matrix 𝐵 to encourage a

grouping effect among points from the same subspace. SMR enforces this grouping effect

explicitly by incorporating the prior information on the pairwise similarities between

points into the regularisation on the coefficient matrix 𝐵. The similarity information

can be encapsulated using the graph Laplacian 𝐿 = 𝐷 −𝑊 , where 𝑊 ∈ R𝑁×𝑁 is the

pairwise similarity matrix and 𝐷 is the diagonal degree matrix (Von Luxburg, 2007).

The 𝑘 nearest neighbours (𝑘-NN) graph is used in Hu et al. (2014) when constructing the

similarity matrix, which has been shown to perform well in the experiments. To avoid

numerical instability, 𝐿 is enforced to be strictly positive definite through �̃� = 𝐿 + 𝜀𝐼 ,

where 𝜀 is a small constant.

The matrix-based formulation of SMR can be expressed as follows

min
𝐵

𝜌 ‖𝐸‖2𝐹 + tr
(︁
𝐵�̃�𝐵T

)︁
s.t. 𝑋 = 𝑋𝐵 + 𝐸,

diag(𝐵) = 0.

(4.2.11)

It is worth noting that the term involving 𝐵 with the trace norm resembles that of

the objective in the normalised cut problem (See Eq. (2.3.16) in Section 2.3.3), whose
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solution can be approximated via spectral clustering. In the normalised cut objective, the

matrix that we solve for is an approximation of the segmentation matrix.

4.2.2 Constrained Clustering

Sometimes there is a limited amount of external information available to potentially help

improve the cluster performance. The external information is often given either in the

form of ‘must-link’ and ‘cannot-link’ constraints, or in the form of class labels. Clustering

with a limited amount of external information is called constrained clustering (Basu et al.,

2008). There exists a vast amount of work in constrained clustering (Chapelle et al.,

2006), and in particular, spectral-based constrained clustering (Kamvar et al., 2003; Li

et al., 2009; Wang and Davidson, 2010b; Liu et al., 2018).

4.2.2.1 Spectral Learning

An early constrained spectral clustering algorithm developed by Kamvar et al. (2003) is

called Spectral Learning (SL). It has been successfully applied to the clustering of text

data. Due to its motivation from document clustering, this model is called the “interested

reader” model. The goal of document clustering is to identify the main topics in a set

of documents. The main idea of this model is that, after an interested reader finishes

reading one interesting article, he or she would move on to the next article that is highly

similar to the article that has just been read.

The affinity matrix 𝐴 contains the prior information about the pairwise similarities

between articles. When there exists constraint information, it is proposed to modify

the affinity matrix 𝐴 such that 𝐴𝑖𝑗 = 𝐴𝑗𝑖 = 1 if two articles 𝑥𝑖 and 𝑥𝑗 are from the

same topic, and 𝐴𝑖𝑗 = 𝐴𝑗𝑖 = 0 otherwise. Given the affinity matrix 𝐴, it is proposed

to transform the similarities into transition probabilities. That is, the probabilities of

transitioning from one article to all remaining articles sum up to 1. The transition

probabilities define a Markov chain (Gagniuc, 2017). It is proposed to calculate the
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Markov transition matrix 𝑀 as follows

𝑀 =
1

𝑎max

(𝐴 + 𝑎max𝐼 −𝐷) , (4.2.12)

where 𝑎max is the maximum row sum of 𝐴, and 𝐷 is the degree matrix of 𝐴. To see how

this normalisation step transforms the entries in 𝐴 into transition probabilities, one can

show that the column sum for an arbitrary row 𝑖 (𝑖 ∈ {1, . . . , 𝑁}) in 𝑀 is equal to one.

This can be shown in the following:

𝑁∑︁
𝑗=1

𝑀𝑖𝑗 =
1

𝑎max

(︃∑︁
𝑗 ̸=𝑖

𝐴𝑖𝑗 −𝐷𝑖𝑖 + 𝑎max

)︃
=

𝑎max

𝑎max

= 1, ∀ 𝑖 ∈ {1, . . . , 𝑁} ,

(4.2.13)

in which the 𝑖-th diagonal entry in 𝐷 is equal to the sum of all edge weights attached to

𝑥𝑖 (i.e.
∑︀

𝑗 ̸=𝑖 𝐴𝑖𝑗 = 𝐷𝑖𝑖) by definition. SL applies the normalised cut spectral clustering

algorithm (Ng et al., 2002) to the 𝐾 eigenvectors of 𝑀 corresponding to its 𝐾 largest

eigenvalues.

4.2.2.2 Constrained Clustering via Spectral Regularisation (CCSR)

Unlike SL, which encodes constraint information by modifying the affinity matrix,

Constrained Clustering via Spectral Regularisation (CCSR) (Li et al., 2009) incorporates

pairwise constraint information by finding a better spectral embedding matrix 𝑉 ∈ R𝑁×𝐾 .

The spectral embedding matrix 𝑉 is composed of the 𝐾 eigenvectors 𝑉 = [𝑣1, . . . ,𝑣𝐾 ],

in which 𝑣𝑗 is the 𝑗-th column in 𝑉 that corresponds to the 𝑗-th smallest eigenvalue of

the graph Laplacian matrix. Ideally, the spectral embedding matrix 𝑉 should be as close

to the data segmentation matrix 𝑄 as possible. In an ideal scenario where the spectral

embedding matrix is the data segmentation matrix, the cluster labels can be trivially

obtained through 𝐾-means clustering.

Given the constraint information that is available, the goal of CCSR is to obtain a

better spectral embedding matrix than 𝑉 (Li et al., 2009). Let 𝑀 = [𝑚1, . . . ,𝑚𝑁 ]T be

the new spectral embedding matrix, in which𝑚𝑖 represents the new spectral embedding

vector for point 𝑥𝑖. The new spectral embedding matrix 𝑀 is of size 𝑁 by 𝑑, in which 𝑑
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is the desired dimension for representing the data. It is a user-defined parameter, which

has been set to 15 in all experiments in Li et al. (2009).

We first discuss how the quality of a spectral embedding matrix 𝑀 is measured.

The following cost function is the proposed measure of agreement between 𝑀 and the

constraint information

𝐿(𝑀) =
𝑁∑︁
𝑖=1

(︀
𝑚T

𝑖 𝑚𝑖 − 1
)︀2

+
∑︁

(𝑖,𝑗)∈𝒮𝑀

(︀
𝑚T

𝑖 𝑚𝑗 − 1
)︀2

+
∑︁

(𝑖,𝑗)∈𝒮𝐶

(︀
𝑚T

𝑖 𝑚𝑗 − 0
)︀2

,

(4.2.14)

in which 𝒮𝑀 denotes the set of ‘must-link’ constraints, and 𝒮𝐶 denotes the set of ‘cannot-

link’ constraints. Let 𝒮 = {(𝑖, 𝑗, 𝑐𝑖𝑗)} denote the set of all pairwise constraints, where

𝑐𝑖𝑗 = 1 corresponds to a ‘must-link’ constraint and 𝑐𝑖𝑗 = 0 corresponds to a ‘cannot-link’

constraint. It is assumed that (𝑖, 𝑖, 𝑐𝑖𝑖) ∈ 𝒮 where 𝑐𝑖𝑖 for 𝑖 ∈ {1, . . . , 𝑁}. As such, the

cost function in Eq. (4.2.14) can be rewritten in a succinct manner as follows

𝐿(𝑀) =
∑︁

(𝑖,𝑗,𝑐𝑖𝑗)∈𝒮

(︀
𝑚T

𝑖 𝑚𝑗 − 𝑐𝑖𝑗
)︀2

. (4.2.15)

We know that the eigenvectors in the columns of 𝑉 are orthonormal to each other,

thus constitute a basis for the spectral embedding space. It can be expressed as ℋ ={︀
𝑉𝑑𝐹 |𝐹 ∈ R𝐾×𝑑

}︀
, in which 𝑉𝑑 denotes the first 𝑑 columns of the spectral embedding

matrix 𝑉 . The problem is then to find the 𝑚𝑖 that minimises Eq. (4.2.15) within the

spectral embedding space. Let 𝑟𝑖 ∈ R𝐾 denote the 𝑖-th row in the spectral embedding

matrix 𝑉 , and we have 𝑉 = [𝑟1, . . . , 𝑟𝑁 ]T. Thus each row𝑚𝑖 in the modified spectral

embedding matrix 𝑀 can be obtained through𝑚𝑖 = 𝐹T𝑟𝑖. As such, Eq. (4.2.15) can be

rewritten as

𝐿(𝐹 ) =
∑︁

(𝑖,𝑗,𝑐𝑖𝑗)∈𝒮

(︀
𝑟T𝑖 𝐹𝐹T𝑟𝑗 − 𝑐𝑖𝑗

)︀2
. (4.2.16)

Thus, the problem of searching for a better spectral embedding matrix is transformed

into the above problem of searching for 𝐹 .

A relaxation of the above unconstrained minimisation problem can be solved via

a semi-definite programme. Once 𝐹 is obtained, we can obtain the modified spectral



CHAPTER 4. WEIGHTED SPARSE SIMPLEX REPRESENTATION 101

embedding matrix 𝑀 = 𝑉 𝐹 and apply 𝐾-means clustering to 𝑀 to obtain the final

cluster labels.

4.2.2.3 Constrained Spectral Partitioning (CSP)

Another spectral-based algorithm Constrained Spectral Partitioning (CSP) (Wang and

Davidson, 2010b; Wang et al., 2014) solves a modified version of the normalised cut

spectral clustering problem (Shi and Malik, 2000; Von Luxburg, 2007). It introduces

a pairwise constraint matrix Φ ∈ R𝑁×𝑁 in the problem formulation. Given the set of

‘must-link’ constraints 𝒮𝑀 and the set of ‘cannot-link’ constraints 𝒮𝐶 , Φ is defined as:

Φ𝑖𝑗 = Φ𝑗𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1, (𝑖, 𝑗) ∈ 𝒮𝑀 ,

−1, (𝑖, 𝑗) ∈ 𝒮𝐶 ,

0, no constraint information available.

(4.2.17)

When 𝐾 = 2, CSP solves the following optimisation problem:

arg min
𝑔∈R𝑁

𝑔T𝐿sym𝑔

s.t. 𝑔TΦsym𝑔 ≥ 𝛼,

𝑔T𝑔 = vol,

𝑔 ̸= 𝐷
1
21,

(4.2.18)

where 𝛼 is a threshold for how well the user would like the constraints to be satisfied.

Here 𝐿sym = 𝐷− 1
2𝐿𝐷− 1

2 is the normalised symmetric graph Laplacian matrix, Φsym =

𝐷
1
2 Φ𝐷

1
2 is the normalised constraint matrix, and vol =

∑︀𝑁
𝑖=1𝐷𝑖𝑖 is the sum of the

diagonal entries in the degree matrix.

The cluster labels can be easily determined by applying 𝐾-means clustering to the

solution vector to the generalised eigenvector problem in Eq. (4.2.18). It can be shown

that the cluster labels for 𝐾 > 2 can be obtained by applying 𝐾-means clustering to

the top 𝐾 generalised eigenvectors. When there is no constraint information available,

the CSP problem reduces to the normalised cut spectral clustering algorithm in Shi and
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Malik (2000).

4.2.2.4 Partition Level Constrained Clustering (PLCC)

Recently developed constrained clustering framework Partition Level Constrained

Clustering (PLCC) (Liu and Fu, 2015; Liu et al., 2018) is applicable to both 𝐾-means

clustering and spectral clustering. PLCC incorporates available constraints through a

side information matrix 𝑆 ∈ R𝑁×𝐾 , where 𝑆𝑖𝑘 = 1 if point 𝑥𝑖 belongs to cluster 𝑘 and

zero otherwise. After incorporating the constraint information, the spectral embedding

of the data can be obtained through eigen-decomposition of the following

𝐷
1
2𝑊𝐷

1
2 + 𝜆𝑆𝑆T, (4.2.19)

in which 𝑊 is the pairwise similarity matrix, and 𝜆 is a penalty term that indicates

how much belief we have on the side information matrix. In the experiments in Liu

et al. (2018), 𝜆 is set to be 100. The cluster labels can be obtained by applying 𝐾-

means clustering to the 𝐾 eigenvectors that correspond to the 𝐾 largest eigenvalues of

Eq. (4.2.19).

4.2.2.5 Constrained Structured Sparse Subspace Clustering (CS3C)

All of the aforementioned methods concern the general problem of constrained spectral

clustering. Recent research has been carried out on the combination of subspace cluster-

ing and constrained clustering specifically. Constrained Structured Sparse Subspace

Clustering (CS3C) (Li et al., 2017) is an adaptation of S3C, as introduced in Section

4.2.1.3, that modifies the subspace structured ℓ1-norm ‖𝐵‖1,𝑄 on the coefficient matrix

𝐵 to incorporate the side information as follows:

‖𝐵‖Ψ,𝑄 = ‖𝐵 ⊙Ψ‖1 + 𝛼‖𝐵‖𝑄

=
∑︁
𝑖𝑗

|𝐵𝑖𝑗|
(︂

Ψ𝑖𝑗 +
1

2
‖𝑞𝑖 − 𝑞𝑗‖22

)︂
,

(4.2.20)
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where Ψ is the side information matrix defined as follows:

Ψ𝑖𝑗 = Ψ𝑗𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
exp (−1) , (𝑖, 𝑗) ∈ 𝒮𝑀 ,

exp (0) , no constraint information available,

exp (1) , (𝑖, 𝑗) ∈ 𝒮𝐶 .

(4.2.21)

A further development in Li et al. (2018b), termed CS3C+, combines the stage of

obtaining the coefficient matrix with the spectral clustering stage. Apart from solving

the CS3C problem to obtain the coefficient matrix, CS3C+ also satisfies the constraints

in the spectral clustering stage by applying constrained 𝐾-means clustering (Wagstaff

et al., 2001) to the spectral embedding of the data.

4.3 Weighted Sparse Simplex Representation (WSSR)

In this section, we first provide a detailed introduction to Sparse Simplex Representation

(SSR) (Huang et al., 2015) in Section 4.3.1. We discuss some of the drawbacks of

SSR, and propose a modified version in Section 4.3.2 that addresses the drawbacks,

named Weighted Sparse Simplex Representation (WSSR). In Section 4.5, we present an

extension of WSSR, named WSSR+, that lends itself naturally in a constrained clustering

and active learning framework.

4.3.1 Sparse Simplex Representation (SSR)

The sparse simplex representation (SSR) model is first proposed in Huang et al. (2013)

for the purpose of modelling brain networks. It represents each data point as a convex

combination of other data points. The requirement that the coefficients have to be non-

negative allows for a probabilistic interpretation on the strength of links and can directly

play the role of pairwise similarities. The Sparse Simplex Representation (SSR) model

solves the following optimisation programme for each data point (Huang et al., 2015):
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min
𝛽

1

2
‖𝑥− 𝑌 𝛽‖22 + 𝜌 ‖𝛽‖1

s.t. ‖𝛽‖1 = 1,

𝛽 ⪰ 0,

(4.3.1)

in which the last line states that every entry in 𝛽 is greater than or equal to zero.

Given the objective function, the simplex constraint makes the coefficient vector shift

invariant. As a result, the ℓ1-penalty term on the coefficient vector does not influence

the solution of the problem. It is proposed in Huang et al. (2013) to use the accelerated

projected gradient method to solve the SSR problem in Eq. (4.3.1). It is a standard

quadratic programming problem that is also known as the constrained lasso (Gaines et al.,

2018).

4.3.2 Weighted Sparse Simplex Representation (WSSR)

In order to make the ℓ1-penalty term promote sparsity in the optimisation programme,

we introduce a diagonal weight matrix Γ ∈ R(𝑁−1)×(𝑁−1) within the ℓ1-term. The 𝑖-

th (𝑖 ∈ {1, . . . , (𝑁 − 1)}) diagonal entry in Γ, Γ𝑖𝑖, denotes the pairwise dissimilarity

between 𝑥 and 𝑥𝑖. The introduction of a weight matrix not only enables the ℓ1-term to

induce sparsity, but it also encourages more similar points to be favoured in the convex

combination.

The idea of incorporating proximity information into the optimisation problem

has been previously utilised in Elhamifar and Vidal (2011) in the setting of manifold

clustering. The authors introduce a proximity inducing matrix in which the weights

are calculated based on the pairwise Euclidean distance. There is a number of options

available for calculating the weight matrix. Elhamifar and Vidal (2011) first normalise

the points to unit length, and then calculate the weights based on the pairwise Euclidean

distance between points and normalise the weights to be between zero and one.

We use the inverse absolute cosine similarity to measure the pairwise proximity

between points, i.e. Γ𝑖𝑖 = 1
|𝑥T𝑥𝑖| (𝑥𝑖 ̸= 𝑥). The rationale behind this can be illustrated

with the synthetic data example in Figure 4.3.1, which shows a data set with three one-
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dimensional subspaces before and after the data points are normalised to unit length.

Firstly, when the data points are normalised to lie on the unit sphere, the points that

are from the same cluster are condensed into two opposite regions on the sphere. This

ensures that the locations of the non-zero entries in 𝛽 do not depend on whether the

points are close to or far away from 𝑥 (Elhamifar and Vidal, 2011; You et al., 2016).

Secondly, it is clear that points that are from the same cluster have very small absolute

cosine similarity to each other. Therefore, the inverse absolute cosine similarity is an

appropriate measure for evaluating the dissimilarity between points across different

clusters. We remove any point 𝑥𝑖 that has zero cosine similarity with 𝑥, so that points

that are not similar to 𝑥 at all are not considered.

Figure 4.3.1: An illustration of the effect of the data normalisation step, which provides
the rationale for the use of the inverse cosine similarity. Left: The original data points.
Right: The data points that have been normalised to lie on the unit sphere.

Although the ℓ1-term now plays an active role in the problem, there are several

drawbacks with this formulation. Firstly, the ℓ1-penalty term in (4.3.1) is not a strictly

convex function and the solution is not always unique (Zou and Hastie, 2005). Secondly,

the lasso chooses one point to have non-zero coefficient among a set of correlated points.

This implies that if there exists a few correlated points (points that are from the same

subspace as 𝑥), only one of them might be selected to have non-zero coefficient. This is

undesirable, as it would lead to an overly sparse coefficient matrix thus over-segmentation

of the data. Ideally, we would like each point to be represented as a convex combination

of a few points from the same subspace.
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We can resolve these issues by adding an additional ℓ2-penalty in the objective. The

combination of the ℓ1 and ℓ2 penalty is called an elastic net penalty (Zou and Hastie,

2005). The elastic net penalty form in Eq. (4.3.2) makes the WSSR problem strictly

convex, thus yielding a unique solution. It also encourages a grouping effect, which

means that it either chooses groups of variables (in our case ‘data points’) together that

are correlated or not at all. This property is especially useful in the clustering setting,

as the purpose in using sparse regression is to choose those points that potentially come

from the same cluster as the response variable 𝑥 (Zou and Hastie, 2005; Segal et al.,

2003). The ℓ2-term in the objective helps to improve both computational efficiency and

effectiveness, as has been noted previously in Tibshirani (2011). Concretely, we propose

to solve the following problem for every point 𝑥 ∈ 𝒳 :

min
𝛽

1

2
‖𝑥− 𝑌 𝛽‖22 +

𝜀

2
‖Γ𝛽‖22 + 𝜌 ‖Γ𝛽‖1

s.t. 𝛽T1 = 1,

𝛽 ⪰ 0.

(4.3.2)

We name this problem formulation the Weighted Sparse Simplex Representation (WSSR).

The problem formulation in Eq. (4.3.2) can be rewritten in the following quadratic pro-

gramming form:

min
𝛽

1

2
𝛽T
(︀
𝑌 T𝑌 + 𝜀ΓTΓ

)︀
𝛽 +

(︀
𝜌𝛾 − 𝑌 T𝑥

)︀T
𝛽

s.t. 𝛽T1 = 1,

𝛽 ⪰ 0,

(4.3.3)

in which 𝛾 = diag (Γ) ∈ R(𝑁−1) is called the weight vector, whose entries correspond

to the diagonal values of Γ. The value of 𝜀 is generally chosen to be very small, e.g.

10−4 (Gaines et al., 2018). The problem can be solved by a standard constrained quadratic

programming solver.

Stretching the columns in 𝑌 . There are two main goals that we want to achieve in

the WSSR problem. One is to encourage sparsity of the solution vector 𝛽, that is, to
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select a few columns in 𝑌 . Another is to reduce the reconstruction error, ‖𝑥 − 𝑌 𝛽‖2.

So far, the only preprocessing step we do is to normalise the data points that are not

orthogonal to 𝑥 to unit length. However, this normalisation step has certain implications

on the WSSR problem.

Firstly, when choosing more than one point from the probability simplex into the

convex combination, the reconstructed point is unavoidably shorter than the original

point. This effect can be illustrated in Figure 4.3.2 below. As we can see, if we use the

H =

{

y|xT

i
y = 1

}

xi

x1

x
(i)
1

x2

x
(i)
2

Figure 4.3.2: A geometric illustration of the necessity for stretching points in 𝑌 .

convex combination of 𝑥1 and 𝑥2 to reconstruct 𝑥𝑖 which lies on the unit sphere, then the

potential reconstructed point can only touch the dotted line connecting 𝑥1 and 𝑥2 instead

of on the unit sphere. Secondly, as we incrementally include more points (ordered by

their dissimilarity to 𝑥𝑖) into the convex combination, the length of the reconstructed

vector is non-increasing. Since we want to pursue the goals of both inducing sparsity

and reducing reconstruction error, we extend both 𝑥1 and 𝑥2 such that the potential

reconstructed point lies anywhere on the perpendicular hyperplane of 𝑥𝑖. Let us denote

𝑥
(𝑖)
𝑗 as a point on the perpendicular hyperplaneℋ of 𝑥𝑖, which is obtained by stretching

𝑥𝑗 . We have that

𝑥T
𝑖

(︁
𝑥
(𝑖)
𝑗 − 𝑥𝑖

)︁
= 0. (4.3.4)

If we let 𝑥(𝑖)
𝑗 = 𝑡𝑗𝑥𝑗 where 𝑡𝑗 is the stretching constant for 𝑥𝑗 , then 𝑡𝑗 =

(︀
𝑥T
𝑖 𝑥𝑗

)︀−1.
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Subspace Clustering by WSSR. Collating the above discussion, we summarise the

whole procedure of subspace clustering using WSSR in Algorithm 7. In the last step

of the algorithm, we adopt a common and simple approach to obtain the data affinity

matrix 𝐴, which has been used in a few previously proposed subspace methods (Huang

et al., 2015; Li et al., 2017, 2018a). There are several other ways of transforming the (not

necessarily non-negative) coefficient matrix 𝐵 into a non-negative symmetric data affinity

matrix 𝐴. For example, we can simply add up |𝐵| and |𝐵|T as is done in (Elhamifar and

Vidal, 2013), or we can explore the merit of grouping effect by multiplying the individual

coefficient vectors as is done in (Hu et al., 2014).

Algorithm 7: Weighted Sparse Simplex Representation (WSSR)
Input :Set of data points: 𝒳

Number of clusters: 𝐾
Neighbourhood size: 𝑘

For 𝑥 ∈ 𝒳 :
1. Compute the weight vector 𝛾 ∈ R𝑘 for the 𝑘 nearest neighbours of 𝑥
2. Normalise and stretch each column vector in 𝑌
3. Solve the WSSR problem in (4.3.3) to obtain the coefficient vector 𝛽
End
- Combine all 𝛽s to obtain the coefficient matrix 𝐵 ∈ R𝑁×𝑁 according to

Eq. (4.2.2)
- Apply normalised cut spectral clustering (Ng et al., 2002) to the affinity matrix
𝐴 = 1

2

(︀
|𝐵|+ |𝐵|T

)︀
to obtain 𝐾 clusters

4.4 Properties of WSSR

In this section, we first study the optimality conditions for the WSSR problem in Sec-

tion 4.4.1. It provides us with further information on the characteristics of the optimal

solution vector. In Section 4.4.2, we present an analytical solution to a sub-problem of

WSSR without the non-negativity constraint. In addition, we also propose a projected

gradient descent approach to solve the full WSSR problem. In Section 4.4.3 and 4.4.4,

we investigate the necessary and sufficient conditions under which the trivial solution is

obtained. That is, only the most similar point is chosen and has coefficient one.
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4.4.1 KKT Conditions for Optimality

One of the constraint qualifications one can use to guarantee strong duality is Slater’s

condition (Boyd and Vandenberghe, 2004). A problem satisfies Slater’s condition if there

exists a point that is strictly feasible in the optimisation programme (i.e. all constraints are

satisfied and the inequality constraints are satisfied with strict inequalities). In the WSSR

problem as stated in Eq. (4.3.3), Slater’s condition says that strong duality holds if there

exists a 𝛽 with 𝛽 ≻ 0 and 𝛽T1 = 1. This is indeed satisfied, which can be shown with a

trivial example in which 𝛽 =
[︀

1
𝑁−1

, . . . , 1
𝑁−1

]︀
where 𝛽 ∈ R(𝑁−1). For any optimisation

problem with differentiable objective and constraint functions for which strong duality

holds, the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient conditions

for obtaining the optimal solution (Boyd and Vandenberghe, 2004).

Firstly, the stationarity condition in the KKT conditions states that when optimality

is achieved, the derivative of the Lagrangian with respect to 𝛽 is zero. The Lagrangian

𝐿 (𝛽;𝜆,𝜇) associated with the WSSR problem in Eq. (4.3.3) can be expressed as

𝐿(𝛽;𝜆,𝜇) =
1

2
𝛽T
(︀
𝑌 T𝑌 + 𝜀ΓTΓ

)︀
𝛽 +

(︀
𝜌𝛾 − 𝑌 T𝑥

)︀T
𝛽 − 𝜇T𝛽 + 𝜆

(︀
𝛽T1− 1

)︀
,

(4.4.1)

in which 𝜆 is a scalar and 𝜇 is a vector of non-negative Lagrange multipliers. Thus, the

stationarity condition gives the following

∇𝐿(𝛽;𝜆,𝜇) =
(︀
𝑌 T𝑌 + 𝜀ΓTΓ

)︀
𝛽 − 𝑌 T𝑥+ 𝜌𝛾 + 𝜆1− 𝜇 = 0, (4.4.2)

which can be simplified to

𝛽 =
(︀
𝑌 T𝑌 + 𝜀ΓTΓ

)︀−1 (︀
𝑌 T𝑥+ 𝜇− 𝜌𝛾 + 𝜆1

)︀
. (4.4.3)

Since all diagonal entries in Γ are positive, we have that the matrix
(︀
𝑌 T𝑌 + 𝜀ΓTΓ

)︀
is

full rank thus invertible. Secondly, the KKT conditions state that any primal optimal 𝛽

must satisfy both the equality and inequality constraints in Eq. (4.3.3). In addition, any
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dual optimal 𝜆 and 𝜇 must satisfy the dual feasibility constraint 𝜇 ⪰ 0. Thirdly, the

KKT conditions state that the following holds

𝜇𝑖𝛽𝑖 = 0, ∀ 𝑖 ∈ {1, . . . , (𝑁 − 1)} ,

for any primal optimal 𝛽 and dual optimal 𝜇 when strong duality holds. This is called

the complementary slackness condition.

To put everything together, when strong duality holds, any primal optimal 𝛽 and any

dual optimal 𝜆 and 𝜇 must satisfy the following KKT conditions:

Stationarity: 𝛽 =
(︀
𝑌 T𝑌 + 𝜀ΓTΓ

)︀−1 (︀
𝑌 T𝑥+ 𝜇− 𝜌𝛾 + 𝜆1

)︀
,

Equality constraint: 𝛽T1 = 1,

Inequality constraint: 𝛽 ⪰ 0,

Dual feasibility: 𝜇 ⪰ 0,

Complementary slackness: 𝜇𝑖𝛽𝑖 = 0 ∀ 𝑖 ∈ {1, . . . , (𝑁 − 1)} .

4.4.2 Solving the Full WSSR Problem

As a first step, we consider the sub-problem of WSSR without the non-negativity con-

straint:
min
𝛽

1

2
𝛽T
(︀
𝑌 T𝑌 + 𝜀ΓTΓ

)︀
𝛽 +

(︀
𝜌𝛾 − 𝑌 T𝑥

)︀T
𝛽

s.t. 𝛽T1 = 1.

(4.4.4)

Setting the derivative of the Lagrangian for (4.4.4) to zero and satisfying the equality

constraint give us the following linear system of equations:

⎡⎢⎣𝑌 T𝑌 + 𝜀ΓTΓ 1

1T 0

⎤⎥⎦
⎡⎢⎣𝛽
𝜆

⎤⎥⎦ =

⎡⎢⎣𝑌 T𝑥− 𝜌𝛾

1

⎤⎥⎦ . (4.4.5)

Solving the set of linear equations gives the optimal primal and dual variables for

Eq. (4.4.4). It is worth noting that the solution vector of the sub-problem does not induce
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sparsity, and we obtain real values in the solution vectors. We refer to this version as the

Weighted Smooth Representation (WSR).

If we project the solution vector of Eq. (4.4.4) to the probability simplex, then both

of the constraints in the full WSSR problem would be satisfied. However, the projected

solution vector might not be the best one in the probability simplex in terms of minimising

the original objective. In the rest of this section, we detail a projected gradient descent

algorithm that solves the full problem iteratively.

We can cast the WSSR problem as an unconstrained minimisation problem

min
𝛽∈R(𝑁−1)

𝑓(𝛽) + 1Δ(𝑁−1)(𝛽), (4.4.6)

where 𝑓(𝛽) is the WSSR objective as stated in Eq. (4.3.3), and 1Δ(𝑁−1)(𝛽) is the indicator

function in which ∆(𝑁−1) denotes the (𝑁 − 1)-dimensional probability simplex given by

the constraints. We can express 1Δ(𝑁−1)(𝛽) as follows

1Δ(𝑁−1)(𝛽) =

⎧⎪⎪⎨⎪⎪⎩
0, 𝛽 ∈ ∆(𝑁−1),

+∞, otherwise.

Problem Eq. (4.4.6) can be solved via the proximal gradient method (Parikh and Boyd,

2014) as

𝛽𝑡+1 = prox1
Δ(𝑁−1)

(︀
𝛽𝑡 − 𝜂𝑡∇𝑓(𝛽𝑡)

)︀
, (4.4.7)

where 𝜂𝑡 is the step size for iteration 𝑡 (𝑡 = 1, 2, 3, . . .). The derivative of the objective

function at 𝛽𝑡 is given by

∇𝑓(𝛽𝑡) =
(︀
𝑌 T𝑌 + 𝜀ΓTΓ

)︀
𝛽𝑡 − 𝑌 T𝑥+ 𝜌𝛾. (4.4.8)

The proximal operator in Eq. (4.4.7) reduces to the Euclidean projection onto the unit

simplex

𝛽𝑡+1 = arg min
𝛽∈Δ(𝑁−1)

1

2

⃦⃦
𝛽 −

(︀
𝛽𝑡 − 𝜂𝑡∇𝑓(𝛽𝑡)

)︀⃦⃦2
2
. (4.4.9)
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Projection onto the probability simplex can be achieved via a simple algorithm,

see for example Chen and Ye (2011) and Wang and Carreira-Perpinán (2013). We

adopt the projection algorithm proposed in Wang and Carreira-Perpinán (2013), which

has a computational complexity of 𝒪 (𝑑 · log (𝑑)), with 𝑑 being the dimension of the

probability simplex which is upper bounded by (𝑁 − 1). In our case, 𝑑 is equal to the

length of the solution vector 𝛽. One of the inputs we require is the step size for the

gradient update step. There are many ways of determining the step size, one can either

use a constant step size or diminishing step size. We use a diminishing step size that is

square summable but not summable, 𝜂𝑡 = 1/(𝑏 + 𝑡), where 𝑏 is a user-defined parameter.

The algorithmic form of the projected gradient descent algorithm to find the coefficient

vector 𝛽 for any point 𝑥 ∈ 𝒳 can be found in Algorithm 8.

Algorithm 8: Weighted Sparse Simplex Representation - Projected Gradient
Descent (WSSR-PGD)

Input :Set of data points: 𝒳
Number of clusters: 𝐾
Neighbourhood size: 𝑘
Step size parameter: 𝑏
Stopping criterion: 𝛿

Initialisation:
• Obtain the analytical solution 𝛽0 to the sub-problem in Eq. (4.4.4)

• Project 𝛽0 to the probability simplex to obtain 𝛽1

For 𝑡 = 1, 2, 3, . . . repeat
1. Gradient update step: 𝜑𝑡+1 = 𝛽𝑡 − 𝜂𝑡∇𝑓(𝛽𝑡), where
∇𝑓(𝛽𝑡) =

(︀
𝑌 T𝑌 + 𝜀ΓTΓ

)︀
𝛽𝑡 − 𝑌 T𝑥+ 𝜌𝛾

2. Euclidean projection onto the probability simplex:
𝛽𝑡+1 = arg min𝛽∈Δ(𝑁−1) ‖𝛽 − 𝜑𝑡+1‖22
3. Diminish the step size: 𝜂𝑡+1 = 1

𝑏+𝑡

until 𝑓 (𝛽𝑡+1)− 𝑓 (𝛽𝑡) 6 𝛿
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4.4.3 Necessary Condition for the Trivial Solution

Consider the WSSR problem formulation in Eq. (4.3.3) for a given 𝑥 ∈ 𝒳 , which we

restate below:

min
𝛽

1

2
𝛽T
(︀
𝑌 T𝑌 + 𝜀ΓTΓ

)︀
𝛽 +

(︀
𝜌𝛾 − 𝑌 T𝑥

)︀T
𝛽

s.t. 𝛽T1 = 1,

𝛽 ⪰ 0.

(4.4.10)

Without loss of generality, we assume that 𝑌 =
[︀
𝑥(1),𝑥(2), . . . ,𝑥(𝑁−1)

]︀
where 𝑥(𝑘) (𝑘 ∈

{1, 2, . . . , (𝑁 − 1)}) is the 𝑘-th nearest neighbour of 𝑥. Similarly 𝛾 = diag(Γ) =[︀
𝛾(1), 𝛾(2), . . . , 𝛾(𝑁−1)

]︀T. Let 𝛽⋆ denote the optimal solution to Eq. (4.4.10), we establish

the necessary condition for the trivial solution ‖𝛽⋆‖∞ = 1 in Proposition 4.4.1.

Proposition 4.4.1. Assume the nearest neighbour of 𝑥 is unique, i.e. 𝑥(1) ̸= 𝑥𝑗 for

𝑗 ̸= (1). If the solution of the WSSR problem in Eq. (4.4.10) is given by 𝛽⋆ = 𝑒1 =

[1, 0, . . . , 0]T ∈ R(𝑁−1), then the following holds

𝜌 > max

{︃
0, max

𝑗∈{2,...,(𝑁−1)}

(𝑥(1) − 𝑥(𝑗))
𝑇 (𝑥(1) − 𝑥) + 𝜀𝛾2

(1)

𝛾(𝑗) − 𝛾(1)

}︃
. (4.4.11)

Proof. To establish the above claim, it suffices to show that the directional derivative

of the objective function at 𝑒1 is positive for all feasible directions in the unit sim-

plex ∆(𝑁−1). We start by denoting the objective function value in Eq. (4.4.10) as 𝑓(𝛽).

The derivative of the objective function is

∇𝑓(𝛽) = (𝑌 T𝑌 + 𝜀ΓTΓ)𝛽 + 𝜌𝛾 − 𝑌 T𝑥 = 𝐻𝛽 + 𝜌

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝛾(1)

𝛾(2)
...

𝛾(𝑁−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥T
(1)𝑥

𝑥T
(2)𝑥

...

𝑥T
(𝑁−1)𝑥

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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where

𝐻 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥T
(1)𝑥(1) + 𝜀𝛾2

(1) 𝑥T
(1)𝑥(2) . . . 𝑥T

(1)𝑥(𝑁−1)

𝑥T
(2)𝑥(1) 𝑥T

(1)𝑥(2) + 𝜀𝛾2
(2) . . . 𝑥T

(2)𝑥(𝑁−1)

...
... . . . ...

𝑥T
(𝑁−1)𝑥(1) 𝑥T

(𝑁−1)𝑥(2) . . . 𝑥T
(𝑁−1)𝑥(𝑁−1) + 𝜀𝛾2

(𝑁−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore∇𝑓(𝑒1) is equal to

∇𝑓(𝑒1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥T
(1)𝑥(1) + 𝜀𝛾2

(1)

𝑥T
(2)𝑥(1)

...

𝑥T
(𝑁−1)𝑥(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝜌

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝛾(1)

𝛾(2)
...

𝛾(𝑁−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥T
(1)𝑥

𝑥T
(2)𝑥

...

𝑥T
(𝑁−1)𝑥

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The directional derivative of 𝑓 at point 𝛽 in the direction 𝑒𝑗 is given by∇𝑓(𝛽)T𝑒𝑗

for 𝑗 ∈ {1, 2, . . . , (𝑁 − 1)}. To ensure that the directional derivative of 𝑓 at 𝑒1 towards

any feasible direction (that is any direction that retains 𝛽 within the unit simplex ∆(𝑁−1))

is positive, it suffices to ensure that

∇𝑓(𝑒1)
T(𝑒𝑗 − 𝑒1) > 0, ∀ 𝑗 ∈ {2, . . . , (𝑁 − 1)} . (4.4.12)

The above condition holds if the following holds

𝜌 > max
𝑗∈{2,...,(𝑁−1)}

(𝑥(1) − 𝑥(𝑗))
T(𝑥(1) − 𝑥) + 𝜀𝛾2

(1)

𝛾(𝑗) − 𝛾(1)
. (4.4.13)

Eq. (4.4.11) is obtained by combining the above inequality with the requirement that

𝜌 ≥ 0.

4.4.4 Sufficient Condition for the Trivial Solution

Next, we show that Eq. (4.4.13) is a sufficient condition for the trivial solution 𝛽⋆ = 𝑒1.

Proposition 4.4.2. Assume that the nearest neighbour of 𝑥 is unique, i.e. 𝑥(1) ̸= 𝑥(𝑗)
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for 𝑗 ̸= 1. If the following holds

𝜌 > max
𝑗∈{2,...,(𝑁−1)}

(𝑥(1) − 𝑥(𝑗))
T(𝑥(1) − 𝑥) + 𝜀𝛾2

(1)

𝛾(𝑗) − 𝛾(1)
, (4.4.14)

then the solution to Eq. (4.4.10) is given by 𝛽⋆ = 𝑒1. In addition, if for all 𝑗 ∈

{2, . . . , (𝑁 − 1)}we have
(︀
𝑥(𝑗) − 𝑥(1)

)︀T (︀
𝑥− 𝑥(1)

)︀
6 0, then the solution to Eq. (4.4.10)

is given by 𝛽⋆ = 𝑒1 for all 𝜌 > 0.

Proof. For the first part of the proposition, if Eq. (4.4.14) holds, then for all 𝑗 (𝑗 ∈

{2, . . . , (𝑁 − 1)}) we have

𝜌 >
(𝑥(1) − 𝑥(𝑗))

T(𝑥(1) − 𝑥) + 𝜀𝛾2
(1)

𝛾(𝑗) − 𝛾(1)

⇔ 𝑥T
(𝑗)

(︀
𝑥(1) − 𝑥

)︀
+ 𝜌𝛾(𝑗) > 𝑥

T
(1)

(︀
𝑥(1) − 𝑥

)︀
+ 𝜀𝛾2

(1) + 𝜌𝛾(1)

⇔ ∇𝑓(𝑒1)
T𝑒𝑗 > ∇𝑓(𝑒1)

T𝑒1

⇔ ∇𝑓(𝑒1)
T (𝑒𝑗 − 𝑒1) > 0.

The last line from above means that the directional derivative at 𝑒1 towards any other

feasible direction within the unit simplex ∆(𝑁−1) is positive. Thus the solution to

Eq. (4.4.10) is given by 𝛽⋆ = 𝑒1.

For the second part of the proposition, we first provide a geometric interpretation in

Figure 4.4.1 for the meaning of the statement. In Figure 4.4.1, 𝑥 is the point to be approx-

imated and 𝑥(1) is its nearest neighbour on the unit sphere. The bold black line is the per-

pendicular hyperplane of
(︀
𝑥− 𝑥(1)

)︀
, which is denoted byℋ =

{︀
𝑦|𝑦T

(︀
𝑥− 𝑥(1)

)︀
= 0
}︀

.

Assume that all points apart from 𝑥 and 𝑥(1) lie on one side of the hyperplane ℋ,

opposite the side which 𝑥 resides in. That is,
(︀
𝑥(𝑗) − 𝑥(1)

)︀T (︀
𝑥− 𝑥(1)

)︀
6 0 for all

𝑗 ∈ {2, . . . , (𝑁 − 1)}. We can see thatℋ is a supporting hyperplane for conv(𝒳∖ {𝑥}).

Consider for an arbitrary point 𝑦 = 𝑌 𝛽 ∈ conv(𝒳∖𝑥), we have

(︀
𝑥− 𝑥(1)

)︀T (︀
𝑌 𝛽 − 𝑥(1)

)︀
=
(︀
𝑥− 𝑥(1)

)︀T [︃𝑁−1∑︁
𝑗=1

𝛽𝑗

(︀
𝑥(𝑗) − 𝑥(1)

)︀]︃
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x

x(1)

x(j)

H =

{

y|yT

(

x− x(1)

)

= 0

}

Figure 4.4.1: A geometric interpretation for when the trivial solution is obtained.

=
𝑁−1∑︁
𝑗=1

𝛽𝑗

(︀
𝑥− 𝑥(1)

)︀T (︀
𝑥(𝑗) − 𝑥(1)

)︀
60.

That is, all points apart from 𝑥 and 𝑥(1) lie on one side of the supporting hyperplane

ℋ =
{︀
𝑦|𝑦T

(︀
𝑥− 𝑥(1)

)︀
= 0
}︀

. That is,
(︀
𝑥(𝑗) − 𝑥(1)

)︀T (︀
𝑥− 𝑥(1)

)︀
6 0. In this case, any

linear combination of the column vectors in 𝑌 would be further away from 𝑥 than using

𝑥(1) itself as the approximation.

Therefore, the proposition says if
(︀
𝑥(𝑗) − 𝑥(1)

)︀T (︀
𝑥− 𝑥(1)

)︀
6 0 is satisfied for

all 𝑗 ∈ {2, . . . , (𝑁 − 1)}, then the trivial solution can be obtained for any 𝜌 > 0. In

general, for any data set 𝒳 , a trivial solution can be obtained for any 𝜌 that satisfies

Eq. (4.4.14).

4.5 Constrained Clustering and Active Learning with

WSSR (WSSR+)

In this section, we discuss how we can take full advantage of any available side informa-

tion to improve the performance of WSSR. Depending on the type of side information,

they can usually be divided into two categories: (a) the side information is given in
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the form of class labels; and (b) the side information is given in the form of pairwise

‘must-link’ and ‘cannot-link’ constraints. The former type can always be translated into

the latter. For spectral-based subspace clustering methods in general, a good clustering

result relies crucially on the quality of the affinity matrix. Given that it is natural to

incorporate pairwise constraints into the affinity matrix, we translate all side information

into pairwise ‘must-link’ and ‘cannot-link’ constraints.

We first discuss how to incorporate the constraint information into the WSSR problem

formulation when the constraints are fixed and given, which corresponds to the setting

of constrained clustering. Then we proceed to formulate an integrated constrained

clustering and active learning framework when the labelling information of various

points are queried sequentially over time.

4.5.1 Constrained Clustering

Our goal is to not only respect the constraints imposed by the side information, but

also to use them as a guide to effectively uncover the correct cluster assignments of the

unlabelled points. As is discussed in Section 4.2.2.5, Li et al. (2017) introduced a new

subspace structured norm that encodes the constraint information into the optimisation

objective. The constraint information is expressed in terms of the set of ‘must-link’

constraints 𝒮𝑀 , and the set of ‘cannot-link’ constraints 𝒮𝐶 . Inspired by their work, we

modify the weight vector 𝛾 in Eq. (4.3.3) by incorporating the following information:

• Ψ: the 𝑁 by 𝑁 side information matrix where

Ψ𝑖𝑗 = Ψ𝑗𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
exp (−1) , (𝑖, 𝑗) ∈ 𝒮𝑀 ,

exp (0) , no constraint information available,

exp (1) , (𝑖, 𝑗) ∈ 𝒮𝐶 ,

(4.5.1)

• 𝑄: the 𝑁 ×𝐾 segmentation matrix 𝑄 = [𝑞1, 𝑞2, . . . , 𝑞𝑁 ]T, where 𝑄𝑖𝑘 takes value

one if 𝑥𝑖 is assigned to cluster 𝑘, and zero otherwise. The matrix 𝑄 can be obtained

from an initial data segmentation given by WSSR.



118 CHAPTER 4. WEIGHTED SPARSE SIMPLEX REPRESENTATION

For each point 𝑥𝑖, we obtain its updated weight vector 𝛾⋆ in Eq. (4.3.3) as follows

𝛾⋆
𝑗 = 𝛾𝑗Ψ𝑖𝑗 +

𝛼

2
‖𝑞𝑖 − 𝑞𝑗‖22 . (4.5.2)

The first term in Eq. (4.5.2) says that if the pairwise relationship between 𝑥𝑖 and 𝑥𝑗 is

known, then their pairwise dissimilarity gets reduced or increased depending on whether

they have a ‘must-link’ or ‘cannot-link’ relationship. The second term in Eq. (4.5.2)

is a measure of the agreement between the cluster labels of 𝑥𝑖 and 𝑥𝑗 , in which 𝛼 is a

penalty parameter between zero and one that reflects the level of faith we have in the

segmentation matrix 𝑄. A simple heuristic to determine 𝛼 is to set it to be the percentage

of points that have been queried so far. When the pairwise relationship between 𝑥𝑖 and

𝑥𝑗 is ‘must-link’, the second term in Eq. (4.5.2) vanishes. When the pairwise relationship

between 𝑥𝑖 and 𝑥𝑗 is ‘cannot-link’, the second term becomes 𝛼.

By solving the WSSR problem with this updated weight vector 𝛾⋆, we can obtain an

updated data affinity matrix. However, there is no guarantee that all constraints would be

respected by solely applying spectral clustering to the updated affinity matrix. We ensure

the satisfaction of all constraints by additionally applying the 𝐾-Subspace Clustering

with Constraints (KSCC) algorithm that is introduced in Peng and Pavlidis (2019). We

call this constrained version of WSSR as Weighted Sparse Subspace Representation plus

(WSSR+). The procedural form of WSSR+ can be found in Algorithm 9.

4.5.2 Active Learning

So far, we have discussed how to incorporate the constraint information when they are

already given. However, there is no guarantee that the given set of constraints are the

most informative as compared to a different set of constraints. We consider the scenario

where we are able to sequentially query the labels for certain informative points, then use

the queried information to assist clustering. This iterative process of querying external

information and improving the cluster performance is called active learning (Settles,

2009).
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Algorithm 9: WSSR with Constraints (WSSR+)
Input :Initial cluster labels obtained from WSSR

The set of ‘must-link’ and ‘cannot-link’ constraints: 𝒮𝑀 ,𝒮𝐶
Penalty parameter: 𝛼
Number of nearest neighbours: 𝑘

For 𝑥 ∈ 𝒳 :
1. Compute the updated weight vector 𝛾⋆ according to Eq. (4.5.2)

2. Normalise and stretch each column vector in 𝑌

3. Solve the WSSR problem in Eq. (4.3.3) to obtain the coefficient vector 𝛽
End

- Combine all 𝛽s to obtain the coefficient matrix 𝐵 ∈ R𝑁×𝑁 according to
Eq. (4.2.2)

- Apply normalised cut spectral clustering (Ng et al., 2002) to the data affinity
matrix 𝐴 = 1

2

(︀
|𝐵|+ |𝐵|T

)︀
to obtain 𝐾 clusters

- Enforce the constraint information using KSCC and obtain the updated cluster
labels

We further propose a unified framework that is composed of two iterative stages. In

the first stage, the class labels of a few informative points are queried according to the

active strategy proposed in Peng and Pavlidis (2019). Then we translate the class labels

into sets of pairwise ‘must-link’ constraints 𝒮𝑀 and ‘cannot-link’ constraints 𝒮𝐶 . In

the second stage, the constraints are satisfied and the cluster labels are updated using

WSSR+. We provide the procedural form for this unified framework in Algorithm 10.

Algorithm 10: WSSR+ with Active Learning (WSSR++)
Input :Initial cluster labels

Penalty parameter: 𝛼

repeat
1. Query informative points using the proposed active query strategy in Peng

and Pavlidis (2019)

2. Transform the queried class labels into pairwise constraints 𝒮𝑀 and 𝒮𝐶
3. Solve the constrained clustering problem using WSSR+ (as detailed in
Algorithm 9)

until A query budget is reached
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4.6 Experiments on Synthetic Data

Previously, we have shown that the WSSR sub-problem without the non-negativity

constraint (WSR) can be solved analytically by solving a system of linear equations. In

this section, we conduct experiments on synthetic data to evaluate the performance of

both WSR and WSSR under various subspace settings. We compare to the following

state-of-the-art spectral-based subspace clustering methods: SSC (Elhamifar and Vidal,

2013), S3C (Li and Vidal, 2015), ASSC (Li et al., 2018a), SSC-OMP (You et al., 2016),

LSR (Lu et al., 2012), and SMR (Hu et al., 2014).

The data matrix can be expressed as 𝑌 = 𝑋 + 𝐸, where 𝑋 is the noise-free data

and 𝐸 the noise component. In order to generate the noise-free data matrix 𝑋 ∈ R𝑁×𝑃 ,

we need to generate each sub-matrix 𝑋𝑘 ∈ R𝑛𝑘×𝑃 (𝑘 ∈ {1, . . . , 𝐾}) for each subspace

individually and concatenate them to form 𝑋 . To generate the basis vectors for each

subspace 𝒮𝑘, we first generate a 𝑃 × 𝑞 matrix 𝐵⋆
𝑘 whose entries come from the standard

Normal distribution with 𝒩 (0, 1). Then we orthogonalise the columns of 𝐵⋆
𝑘 to obtain

the matrix 𝐵𝑘 whose columns correspond to the basis vectors for the subspace. The

noise-free sub-matrix 𝑋𝑘 can thus be obtained as

𝑋𝑘 = (𝐵𝑘𝐶𝑘)T, (4.6.1)

where 𝐶𝑘 ∈ R𝑞×𝑛𝑘 is the coefficient matrix, whose entries are also sampled from the

standard Normal distribution. Each column in 𝐶𝑘 corresponds to the coefficient vector

of a point along the 𝑞 subspace dimensions. Each entry in the noise data matrix 𝐸 is

generated from standard Normal distribution 𝒩 (0, 𝜎2), with zero mean and variance 𝜎2.

Performance results of various methods are compared in terms of the following three

aspects: angles between subspaces, noise level, and dimension of the subspaces. We have

the following hypotheses regarding these three aspects. First, cluster performance from

different algorithms should improve with the increase in the angles between subspaces.

Similarly, performance usually suffer with the increase of noise levels whilst everything

else remains the same. Given a fixed full data dimension, the clusters are more likely to
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overlap with each other with the increase of subspace dimensions. Thus performance are

likely to decrease as a result. Finally, we test how sensitive the performance of WSSR is

to the key parameter – neighbourhood size 𝑘.

4.6.1 Varying Angles between Subspaces

In this set of experiments, we generate data from two one-dimensional subspaces embed-

ded in a three-dimensional space. Each cluster contains 200 data points drawn from one

of the subspaces. In addition, additive Gaussian noise with standard deviation 𝜎 = 0.01

is added to the data uniformly. We vary the angles between the two subspaces 𝜃 to be

between 10 and 60 degrees, and evaluate the performance of various algorithms under

each setting. Three illustrations of the data with varying angles between subspaces are

shown in Figure 4.6.1.

(a) 20 degrees. (b) 40 degrees. (c) 60 degrees.

Figure 4.6.1: Three illustrations of data from two clusters under varying angles between
the two.

The default settings are adopted for all subspace clustering algorithms that we provide

comparisons to. For WSSR and WSR, we use 𝑘 = 10 and 𝜌 = 0.01, which is the same

as SSC-OMP and SMR. Both of these algorithms have a parameter that controls the

maximum number of points to consider in the sparse representation. Performance results

as evaluated by clustering accuracy are reported in Table 4.1. We highlight the best

results in bold, and underline the second best results.

It can be seen that WSSR achieves the best performance across all settings, whilst

increasing its performance steadily with the increase of the angles between subspaces.
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Despite the lack of the non-negativity constraint, WSR also has a relatively close perfor-

mance to that of WSSR. SSC and S3C achieve strong performance across all scenarios

as well. It is worth noting that the performance of ASSC is noticeably worse than other

algorithms, which could be explained by the fact that all clusters come from linear sub-

spaces. The performance of SMR is a close second to WSSR in five out of six scenarios.

This could be attributed to its affinity to WSSR, as SMR applies the Frobenius norm on

the error matrix and it also makes use of 𝑘 nearest neighbours.

𝜃 = 10 𝜃 = 20 𝜃 = 30 𝜃 = 40 𝜃 = 50 𝜃 = 60
WSSR 0.978 0.973 0.993 0.993 0.990 0.993
WSR 0.965 0.918 0.990 0.973 0.988 0.978
SSC 0.943 0.815 0.990 0.950 0.985 0.993
S3C 0.963 0.973 0.990 0.970 0.983 0.993

ASSC 0.520 0.570 0.570 0.568 0.510 0.555
SSC-OMP 0.863 0.893 0.848 0.823 0.528 0.813

LSR 0.898 0.878 0.900 0.873 0.940 0.930
SMR 0.968 0.960 0.990 0.975 0.978 0.988

Table 4.1: Accuracy of various subspace clustering algorithms on synthetic data with
varying angles between subspaces.

4.6.2 Varying Noise Levels

Next, we explore the effect of various noise levels on cluster performance. Again we

generate data from two subspaces, each containing 200 data points. The angle between

two subspaces is set to be 60 degrees, so that the angle between subspaces does not play a

big role in determining the cluster performance. One of the subspaces is one-dimensional,

and the other is two-dimensional. This difference to the previous set of experiments is to

increase the intersection between the two subspaces as the noise level increases. Additive

Gaussian noise with zero mean and standard deviation 𝜎 is added to the data uniformly,

in which 𝜎 ranges from 0.0 to 0.5. A visualisation of the data under three noise levels

can be seen in Figure 4.6.2.

The parameter settings for all algorithms remain the same as before, and the per-

formance results are reported in Table 4.2. Firstly, clustering accuracy of almost all
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(a) Noise-free. (b) Noise level 𝜎 = 0.2. (c) Noise level 𝜎 = 0.5.

Figure 4.6.2: Three illustrations of data from two clusters with varying noise levels.

algorithms decreases with the increase of noise levels. Secondly, most algorithms have

close to or exactly perfect clustering accuracy in the noise-free scenario. Very poor

performance from ASSC can be observed across all noise levels, for reasons explained

in the previous set of experiments.

𝜎 = 0.0 𝜎 = 0.1 𝜎 = 0.2 𝜎 = 0.3 𝜎 = 0.4 𝜎 = 0.5
WSSR 1.000 0.970 0.945 0.883 0.815 0.745
WSR 1.000 0.845 0.690 0.558 0.633 0.505
SSC 1.000 0.633 0.503 0.513 0.508 0.555
S3C 0.980 0.685 0.575 0.608 0.523 0.593

ASSC 0.605 0.530 0.553 0.558 0.503 0.543
SSC-OMP 1.000 0.730 0.575 0.510 0.518 0.530

LSR 1.000 0.943 0.900 0.838 0.788 0.735
SMR 0.980 0.935 0.868 0.810 0.775 0.705

Table 4.2: Accuracy of various subspace clustering algorithms on synthetic data with
varying noise levels.

When we compare the performance between WSSR and WSR, we see that the gaps

here are much larger that what have been observed in the previous set of experiments.

Indeed, the gap gets wider as the noise level increases. This demonstrates the advantage

of WSSR over WSR in the presence of noise. It is also worth noting that all SSC-based

methods (SSC, S3C, ASSC, SSC-OMP) yield poor performance in the presence of

varying levels of noise. In comparison, the two methods (LSR and SMR) that both use

the Frobenius norm on the error matrix have favourable performance. However, neither

of them have a sparsity inducing term in the objective function. That is, the same reason

for why the performance of WSR is inferior to WSSR can also be applied to these two
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methods.

Next, we further investigate the reason behind the slightly less than perfect perfor-

mance of S3C and SMR, and the poor performance of ASSC in the noise-free scenario.

Shown in Figure 4.6.3 are the affinity matrices for WSSR, S3C, SMR, and ASSC. It

is clear to see that the entries in the affinity matrix of WSSR are sparse yet the block-

diagonal structure is very clear. The affinity matrix of S3C also exhibits a block-diagonal

structure and is very sparse. However, the majority of the non-zero entries are con-

centrated on a few key data points. Such an unbalanced affinity matrix can lead to

undesirable spectral clustering performance. The affinity matrix of both SMR and ASSC

are very dense. However the block diagonal structure can still be easily detected in

the affinity matrix of SMR, whereas the entries in ASSC are more evenly spread out.

Therefore, it is not surprising that the performance of ASSC is much worse than that of

the other methods.

(a) WSSR. (b) S3C.

(c) SMR. (d) ASSC.

Figure 4.6.3: Visualisation of the affinity matrix in the noise-free scenario.
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4.6.3 Varying Subspace Dimensions

Another aspect we would like to investigate is how clustering performance changes

with the increase of subspace dimensions 𝑞 under a fixed ambient space dimension 𝑃 .

Intuitively, one would expect the performance to get worse as 𝑞 increases. This is because

the intersection among clusters is likely to increase as the subspace dimension grows.

In this set of experiments, we fix the ambient space dimension to be 20 and allow the

subspace dimension to vary between 2 and 16. Data are generated from 4 subspaces, and

all subspaces have equal subspace dimension. Additive noise with 𝜎 = 0.01 is added to

the data uniformly. We set the neighbourhood size 𝑘 in WSSR and WSR to be 50, and

keep 𝜌 = 0.01. The default parameter settings are adopted for all other methods. The

performance results of various methods are reported in Table 4.3.

𝑞 = 2 𝑞 = 4 𝑞 = 6 𝑞 = 8 𝑞 = 10 𝑞 = 12 𝑞 = 14 𝑞 = 16
WSSR 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.874
WSR 1.000 1.000 1.000 0.998 0.995 0.953 0.688 0.363
SSC 1.000 1.000 1.000 1.000 1.000 1.000 0.964 0.728
S3C 0.999 1.000 1.000 1.000 1.000 1.000 0.991 0.809

ASSC 0.845 0.998 1.000 1.000 1.000 0.994 0.954 0.599
SSC-OMP 0.414 1.000 0.999 0.993 0.966 0.913 0.475 0.321

LSR 0.861 0.999 1.000 1.000 0.995 0.986 0.936 0.518
SMR 0.999 0.998 0.968 0.981 0.823 0.469 0.335 0.323

Table 4.3: Accuracy of various subspace clustering algorithms on synthetic data with
varying subspace dimensions.

We observe that WSSR achieves the best performance across all settings, though the

accuracy worsens when 𝑞 is greater than 12. As for WSR, we observe a more obvious

downward trend in the clustering accuracy as 𝑞 increases. The gap in the performance

between WSSR and WSR also gets larger with the increase of 𝑞. This agrees with

our previous interpretation that WSR is not as resilient as WSSR in the presence of

noise. As previously mentioned, the increase of subspace dimensions likely increases the

intersection between subspaces hence induces more noise.

When we move our focus to the performance of SSC-based methods, we see that

both SSC and S3C also have near perfect clustering accuracy for 𝑞 up to 12. Then the
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results get slightly worse for higher values of 𝑞. For 𝑞 less than 16, the results of ASSC

are much better than in the previous set of varying noise experiments. This shows that

ASSC has the subspace recovery ability when the noise level is small. This ability does

not seem to be as good as that of WSR, which shares a similar formulation with ASSC.

SSC-OMP has worse accuracy than its base method SSC, which could be attributed to its

default neighbourhood size. LSR and SMR maintain fairly good performance throughout,

with the same decreasing trend of clustering accuracy.

To make a fair comparison, we further inspect the sensitivity of WSSR, SSC-OMP,

and SMR to the choice of neighbourhood size 𝑘, a key parameter that all methods rely

on. For each value of 𝑞 from 2 to 20, we conduct 20 random trials for each of the three

methods. Within each random trial, the neighbourhood size 𝑘 is randomly chosen from

the range [2, 100]. Figure 4.6.4 visualises the median clustering accuracy for each method

in solid lines. In addition, the range between minimum and maximum accuracy are

coloured in shaded areas.
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Figure 4.6.4: Performance results of three methods across varying subspace dimen-
sions. For each subspace dimension 𝑞, 20 trials are conducted with randomly chosen
neighbourhood size 𝑘.

From the performance results of WSSR, we can see that the accuracy stays strong



CHAPTER 4. WEIGHTED SPARSE SIMPLEX REPRESENTATION 127

and stable for 𝑞 up to 10. That is, there is barely any variability in the clustering accuracy

irrespective of the choice of 𝑘. However, an increase in the performance variability can

be seen with the increase of 𝑞. With that said, it is worth noting that the line for median

clustering accuracy stays very much towards the upper end within the range of accuracy

values. Whereas the opposite phenomenon can be observed for SSC-OMP, in which the

median performance always stays at the lower end within the range of accuracy values.

Compared to WSSR, a smaller range of variability can be seen for SSC-OMP when 𝑞 is

large. However, the performance variability is extremely large when 𝑞 is smaller than

6. Finally when we move our focus to the performance of SMR, we observe the widest

range of variability across all three methods for large values of 𝑞. Though when 𝑞 is

small, the performance is fairly stable under varying choices of the neighbourhood size.

4.7 Experiments on Real Data

In this section we discuss the experimental performance of WSSR with and without

side information. We will evaluate the following aspects of our proposed constrained

subspace clustering framework:

• In the absence of any side information, how does WSSR compare with other

state-of-the-art subspace clustering methods?

• When there is a fixed amount of side information, how does the performance of

WSSR+ compare with other constrained clustering methods?

• When the side information can be actively queried sequentially over time, do we

see any performance improvement as compared to the previous scenario?

4.7.1 WSSR Experiments on MNIST Data

In this section, we conduct experiments comparing WSSR with other state-of-the-art

subspace clustering algorithms on the MNIST handwritten digits data (LeCun et al.,

1998). This database contains greyscale images of handwritten digits numbered from 0
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to 9. It has been previously used in You et al. (2016) to demonstrate the effectiveness of

the proposed SSC-OMP subspace clustering algorithm. It is one of the best performing

algorithms in subspace clustering. As such, SSC-OMP is one of the algorithms we

provide comparisons to in our experiments. In addition, we also compare to other state-

of-the-art subspace clustering algorithms including SSC (Elhamifar and Vidal, 2013),

ASSC (Li et al., 2018a), S3C (Li and Vidal, 2015), LSR (Lu et al., 2012), SMR (Hu

et al., 2014), and FGNSC (Yang et al., 2019a).

The original MNIST data set contains 60,000 points from 10 clusters (digits 0 to

9), with the full data dimension 𝑃 = 3472. We conduct two sets of experiments on

the data. One set of experiments investigates the effects of number of clusters 𝐾 on

the cluster performance of various algorithms. We randomly select 𝐾 ∈ {2, 3, 5, 8, 10}

clusters out of the 10 digits. Each cluster contains 100 randomly sampled points, and

the full data are projected to dimension 200 using PCA. Another set of experiments

follows the same experimental design in You et al. (2016), and explores the effects of

the total number of data points 𝑁 on the cluster performance. In this set of experiments,

the data are processed in the same way as in You et al. (2016). We randomly select

𝑁𝑘 ∈ {50, 100, 200, 400, 600} points from each cluster out of all 10 clusters. The full

data are then projected onto dimension 500 using PCA.

We follow the default parameter settings for SSC ASSC, and SSC-OMP. There

are two versions of LSR: LSR-1 is the standard version of the LSR problem with the

constraint requiring the diagonal entries of the coefficient matrix have to be zero; and

LSR-2 is the unconstrained version of LSR. We use LSR-1 in our experiments, as LSR-2

does not include the constraint that the diagonal entries of the representation matrix

have to be zeroes. The default parameter setting for SMR uses 𝑘 = 4 for the 𝑘-nearest

neighbour graph. We adopt the default setting of FGNSC, which uses SMR as the base

algorithm to obtain the initial affinity matrix. In WSSR, we set 𝑘 = 10 and 𝜌 = 0.01.

That is we consider a 10-nearest neighbourhood for each data point, which is the same as

the default setting in SSC-OMP.

We conduct 20 trials for each method that we experiment with, and the performance



CHAPTER 4. WEIGHTED SPARSE SIMPLEX REPRESENTATION 129

𝐾 = 2 𝐾 = 3 𝐾 = 5 𝐾 = 8 𝐾 = 10
Med Std Med Std Med Std Med Std Med Std

WSSR 1.00 0.01 1.00 0.01 0.99 0.01 0.98 0.01 0.98 0.02
WSR 1.00 0.05 0.98 0.02 0.81 0.08 0.79 0.05 0.81 0.02
SSC 0.99 0.03 0.91 0.05 0.80 0.08 0.78 0.03 0.81 0.02
S3C 0.99 0.02 0.97 0.08 0.79 0.08 0.82 0.04 0.81 0.03
ASSC 0.99 0.01 0.97 0.02 0.95 0.05 0.87 0.06 0.84 0.04
SSC-OMP 0.98 0.01 0.97 0.02 0.95 0.04 0.90 0.04 0.86 0.03
LSR 0.98 0.11 0.68 0.11 0.86 0.07 0.82 0.04 0.78 0.02
SMR 0.99 0.04 0.98 0.02 0.95 0.06 0.86 0.05 0.83 0.03
FGNSC 0.99 0.06 0.98 0.03 0.83 0.09 0.84 0.04 0.85 0.04

Table 4.4: Median clustering accuracy along with the standard deviations on the MNIST
handwritten digits data across 20 trials with 𝑃 = 200.

results as measured by both the median clustering accuracy and the standard deviation

are reported in Table 4.4. It can be seen that WSSR achieves the best performance across

all settings. In particular, it achieves perfect clustering accuracy for both 𝐾 = 2 and 3.

It is also worth noting that the performance variability is relatively small as compared

to other methods. As is expected, WSR has similar performance to WSSR when 𝐾 is

small. However the gap between these two enlarges with the increase of 𝐾.

For the competing algorithms, we see that a few algorithms have excellent perfor-

mance when 𝐾 is small. However the performance degrades in general with the increase

of 𝐾. Both SSC and S3C have very similar performance to each other, with S3C having

slightly higher accuracy scores on two scenarios. The performance of ASSC is higher

than both of the previous two, and has similar performance to that of SSC-OMP. However,

SSC-OMP has an obvious edge over the other SSC-based methods when 𝐾 is large. This

gives favourable evidence to the benefit of focusing on a nearest neighbourhood.

The median performance of LSR seems to be the worst out of all methods, and is

the most variable especially when 𝐾 is small. SMR and FGNSC have the same level of

performance when 𝐾 = 2 and 3, which is not surprising given that the affinity matrix of

FGNSC is adapted from that of SMR. However the performance of FGNSC is less stable

for larger values of 𝐾. It has been observed in our experiments that the performance of

FGNSC is highly sensitive to the parameter values.
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𝑁 = 500 𝑁 = 1000 𝑁 = 2000 𝑁 = 4000 𝑁 = 6000
Med Std Med Std Med Std Med Std Med Std

WSSR 0.96 0.03 0.98 0.00 0.98 0.00 0.99 0.00 0.99 0.00
WSR 0.74 0.03 0.79 0.04 0.83 0.02 0.85 0.02 0.86 0.01
SSC 0.78 0.04 0.81 0.03 0.82 0.02 0.83 0.01 0.84 0.01
S3C 0.78 0.04 0.82 0.04 0.82 0.03 0.83 0.02 0.83 0.02
ASSC 0.82 0.04 0.85 0.04 0.83 0.02 0.82 0.01 0.83 0.01
SSC-OMP 0.83 0.04 0.88 0.03 0.91 0.02 0.92 0.03 0.92 0.04
LSR 0.66 0.04 0.74 0.03 0.78 0.02 0.79 0.01 0.80 0.01
SMR 0.76 0.03 0.82 0.05 0.88 0.04 0.86 0.04 0.92 0.04
FGNSC 0.77 0.03 0.85 0.03 0.87 0.04 0.87 0.04 0.97 0.02

Table 4.5: Median clustering accuracy along with the standard deviations on the MNIST
handwritten digits data across 20 trials with 𝑃 = 500.

The performance results for the second set of experiments with varying 𝑁 are

reported in Table 4.5. WSSR is again the best performing algorithm across all settings,

and indeed the most stable of all as well. It can be seen that SSC-OMP is the algorithm

with the second best performance in most settings. The performance of SSC-OMP

reported here is consistent with what is reported in (You et al., 2016). In general, the

cluster performance improves with increasing number of points. At the same time the

performance for SSC, ASSC, and LSR also become more stable as 𝑁 increases, which

is not the case for SMR. With that said, FGNSC provides performance improvement in

addition to the performance of SMR in most scenarios.

All of the above experiments are run on a cloud computing machine with 5 CPU cores

and 15GB of RAM. For each of the two sets of experiments, we present a comparison

of the median computational times in log-scale for different algorithms in Figure 4.7.1.

When comparing the computational times between Figure 4.7.1 (a) and 4.7.1 (b), it

can be seen that the times in (a) when 𝐾 = 10 is at about the same level as those

in (b) when 𝑁𝑘 = 100. This is to be expected because both scenarios involve the

use of 1000 points. When comparing the computational times within each figure, it

is clear that S3C is the most computational intensive out of all methods. SSC and

ASSC have similar computational times because they are based on the same optimisation

framework. SSC-OMP and LSR are the most efficient out of all methods. SSC-OMP is
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suitable for large-scale problems, and LSR has a closed-form solution. With that said,

the computational times of both WSSR and WSR are favourable as compared to other

competing methods.
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Figure 4.7.1: Median running times (in log-scale of seconds) of different algorithms on
the MNIST handwritten digits data.
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4.7.2 WSSR Experiments on USPS Data

In this experiment, we evaluate the cluster performance of difference subspace clustering

methods on the USPS digits data (Hull, 1994). It is another popular benchmark data

set that has been used to demonstrate the effectiveness of several subspace clustering

methods (Hu et al., 2014; Yang et al., 2019a). There are 9298 images of handwritten

digits that range from 0 to 9, and each image contains 16×16 pixels. We follow the exact

same experimental settings as in Hu et al. (2014), which uses the first 100 images from

each digit.

𝐾 = 2 𝐾 = 3 𝐾 = 5 𝐾 = 8 𝐾 = 10
Med Std Med Std Med Std Med Std Med Std

WSSR 1.00 0.01 0.99 0.01 0.98 0.01 0.97 0.00 0.97 0.00
WSR 0.98 0.02 0.97 0.08 0.78 0.07 0.81 0.05 0.83 0.02
SSC 0.96 0.03 0.85 0.12 0.63 0.14 0.60 0.05 0.51 0.00
S3C 0.97 0.02 0.83 0.13 0.69 0.09 0.62 0.05 0.51 0.01
ASSC 0.97 0.02 0.83 0.12 0.61 0.14 0.62 0.06 0.58 0.00
SSC-OMP 0.95 0.04 0.74 0.11 0.42 0.09 0.41 0.09 0.35 0.01
LSR 0.71 0.14 0.63 0.13 0.65 0.05 0.55 0.04 0.53 0.01
SMR 0.99 0.04 0.98 0.02 0.95 0.06 0.86 0.05 0.83 0.03
FGNSC 0.99 0.02 0.98 0.05 0.95 0.06 0.83 0.05 0.85 0.02

Table 4.6: Median clustering accuracy along with the standard deviations on the USPS
data across 20 trials.

We investigate the performance of various algorithms under varying number of

clusters 𝐾. All experiments are conducted for 20 trials, and we report both the median

and standard deviation of the clustering accuracy. For 𝐾 from 2 to 8, we randomly sample

data from 𝐾 digits out of 10. Therefore the variability in the cluster performance comes

from both the variability in the subset of the data, and the variability of the corresponding

algorithm. For 𝐾 = 10, we use the same data set with 1000 images across all trials. In

this case, the standard deviation reflects only the variability of the algorithms.

The performance behaviours of WSSR and WSR on the USPS data are similar to their

performance on the MNIST data. It can be seen that the performance of WSR is much

more variable than that of WSSR for 𝐾 = 3, 5, and 8. The performance of SSC , AS3C,

and ASSC are fairly similar to each other. Similar to WSR, these three methods also have
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very variable performance results in most cases. It is worth noting that the performance

results of SSC-OMP are much worse than its three SSC-based counterparts in most

scenarios. This could be due to its sensitivity to the neighbourhood size parameter 𝑘, as

we have demonstrated before in Section 4.6.3. The accuracy scores of LSR are mediocre

across all settings, and it also seems to have a much higher performance variability

when 𝐾 is small. Both SMR and FGNSC have excellent performance when 𝐾 is small,

however the supposedly additional benefit of FGNSC is not exhibited here.

4.7.3 WSSR+ Experiments

In this section, we evaluate the additional performance improvement that our proposed

WSSR+ constrained clustering and active learning framework could bring. Constrained

clustering and active learning experiments are conducted on both the MNIST data and

the USPS data. For each data set with varying number of clusters 𝐾, we first compare

the performance of various constrained clustering methods under varying proportions of

available class information. Each experiment is repeated across 20 trials where a certain

proportion 𝑝% of class information is sampled at random.

Alongside this, we also report the performance under the same proportion 𝑝% where

the class information is actively queried over time using the strategy as proposed in Peng

and Pavlidis (2019). This active strategy queries the most informative point according

to the underlying subspace structure. An informative point is not only potentially

misclassified, but can also lead to the correct labelling assignment of other points upon

being queried. The active learning framework is composed of three stages. In the first

stage, we utilise the active strategy to query labelling information sequentially. In the

second stage, we apply WSSR+ to the data with the incorporation of side information to

obtain the cluster assignments. Finally, we use the 𝐾-subspace clustering with constraints

(KSCC) algorithm as proposed in Peng and Pavlidis (2019) to enforce the constraint

satisfaction. We compare WSSR+ with two other state-of-the-art constrained clustering

methods: Constrained Spectral Partitioning (CSP) (Wang et al., 2014) and Partition Level

Constrained Clustering (PLCC) (Liu et al., 2018).
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Experimental settings. The initial clustering performance without any side informa-

tion is produced by WSSR. For fair comparison, we use the affinity matrix 𝐴 produced

by WSSR as the initial input for all competing constrained methods. There is one tuning

parameter 𝜆 in PLCC which controls how much weight should be put on the side infor-

mation. Although it is recommended in Liu et al. (2018) to set 𝜆 to be above 10,000 for

stable performance, we have found in our experiments that this has a detrimental influ-

ence on the resulting clustering performance. As such, we conduct 20 random searches

for 𝜆 in the range (0,1) and choose the value that gives the best clustering accuracy for

PLCC. No extra parameter needs to be set for CSP. The constrained clustering and active

learning results on both the MNIST data and the USPS data are reported in Table 4.7 and

Table 4.8 respectively.

Since we provide comparison across all three methods under varying number of

clusters, under varying percentage of side information, and under both active learning

and constrained clustering, it is difficult to highlight the best performing result for each

scenario. Instead, we provide sufficient discussion of the results in the remainder of the

section.

𝐾 Pct. WSSR
WSSR+ PLCC CSP

AL Med Std AL Med Std AL Med Std

2
10%

1.00
1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

20% 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
30% 1.00 1.00 0.00 0.94 1.00 0.00 1.00 1.00 0.00

3
10%

1.00
1.00 1.00 0.00 1.00 1.00 0.00 0.68 0.99 0.00

20% 1.00 1.00 0.00 1.00 1.00 0.00 0.68 1.00 0.00
30% 1.00 1.00 0.00 1.00 0.52 0.01 0.68 1.00 0.00

5
10%

1.00
1.00 1.00 0.00 1.00 0.99 0.00 0.79 0.44 0.17

20% 1.00 1.00 0.00 1.00 0.99 0.00 0.80 0.64 0.12
30% 1.00 1.00 0.00 0.98 0.45 0.01 0.80 0.99 0.07

8
10%

0.98
0.99 0.98 0.00 0.86 0.62 0.06 0.97 0.44 0.17

20% 0.99 0.98 0.00 0.86 0.55 0.05 0.99 0.65 0.11
30% 0.99 0.99 0.00 0.85 0.80 0.05 0.99 0.89 0.09

10
10%

0.98
0.98 0.98 0.00 0.79 0.78 0.05 0.97 0.38 0.13

20% 0.99 0.99 0.00 0.77 0.82 0.06 0.98 0.52 0.11
30% 0.99 0.99 0.00 0.80 0.46 0.02 0.88 0.78 0.10

Table 4.7: Clustering accuracy of various constrained clustering methods on the MNIST
data. The initial affinity matrix for all methods is produced by WSSR.
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𝐾 Pct. WSSR
WSSR+ PLCC CSP

AL Med Std AL Med Std AL Med Std

2
10%

1.00
1.00 1.00 0.00 1.00 1.00 0.00 1.00 0.99 0.01

20% 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
30% 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

3
10%

0.99
0.99 0.99 0.00 1.00 0.99 0.00 0.99 0.98 0.13

20% 0.99 0.99 0.00 1.00 0.99 0.00 1.00 0.99 0.00
30% 1.00 0.99 0.00 1.00 0.52 0.02 1.00 0.99 0.00

5
10%

0.97
0.98 0.97 0.00 0.97 0.97 0.00 0.98 0.35 0.11

20% 0.98 0.97 0.00 0.98 0.98 0.01 0.70 0.52 0.10
30% 0.98 0.98 0.00 0.89 0.45 0.01 0.98 0.80 0.13

8
10%

0.97
0.97 0.97 0.00 0.82 0.54 0.07 0.80 0.31 0.12

20% 0.98 0.97 0.00 0.81 0.50 0.04 0.96 0.47 0.11
30% 0.98 0.98 0.00 0.79 0.75 0.03 0.97 0.73 0.08

10
10%

0.97
0.97 0.97 0.00 0.65 0.85 0.05 0.97 0.35 0.13

20% 0.97 0.97 0.00 0.73 0.85 0.06 0.96 0.49 0.11
30% 0.98 0.98 0.00 0.73 0.48 0.01 0.88 0.74 0.10

Table 4.8: Clustering accuracy of various constrained clustering methods on the USPS
data. The initial affinity matrix for all methods is produced by WSSR.

In Table 4.7, we can see that the initial cluster accuracy for 𝐾 from 2 to 5 without

any available class information is already 1. In this case, we would like to inspect

whether various constrained clustering algorithms would retain the perfect clustering

given additional class information. As it can be seen, WSSR+ is able to retain the perfect

clustering accuracy irrespective of the level of side information available. Whereas we

see a performance drop in some cases for PLCC and CSP. In general, we can see the

benefit of active learning as opposed to random sampling when acquiring the additional

class information. Most methods exhibits higher clustering accuracy under the active

learning scheme.

Similar behaviours can be observed in Table 4.8 where various methods are applied

on the USPS data. Perfect clustering accuracy is achieved when 𝐾 = 2, we further test

the stability of various methods with additional class information. It can be seen that all

methods maintain perfect cluster performance when active learning is used. However, the

accuracy of CSP with 10% randomly sampled labelling information is slightly less than

1. For the results corresponding to larger values of 𝐾, we can see a slight improvement

in the performance of WSSR+ in the setting of both active learning and constrained
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clustering. The improvement brought by active learning is much larger, which can be

observed on the performance of both PLCC and CSP as well. This demonstrates the

advantage of incorporating informative points as compared to points that are randomly

sampled.

4.8 Conclusions & Future Work

In this work, we first propose a sparse subspace clustering method that constructs the data

affinity matrix by expressing each point as a linear combination of a subset of other points.

The sparse coefficients can be found by solving a convex optimisation problem that has

an elastic net objective and simplex constraint. We term the full optimisation problem

as Weighted Sparse Simplex Representation (WSSR). We show that one sub-problem of

WSSR can be solved analytically via setting a system of linear equations. We also detail

two possible approaches for solving the full problem: one approach is to solve it through

a standard quadratic programming solver; another is through projected gradient descent.

In the presence of available side information, we also introduce a constrained clus-

tering version termed WSSR+, that achieves effective performance improvement. In

the scenario where the class information can be queried sequentially over time, we

demonstrate how WSSR+ can fit smoothly into an active learning framework to query the

points that can be the most beneficial for cluster performance improvement. Experiments

are conducted on both synthetic data and real data to demonstrate the effectiveness of our

proposed methodology in the following three scenarios: (a) subspace clustering without

any side information; (b) constrained subspace clustering with a fixed amount of side

information; and (c) constrained subspace clustering in an active learning framework in

which the class labels can be queried sequentially over time.

We outline a few directions for future research. Firstly, we would like to strengthen

our proposed methodology by exploring more principled approaches for choosing the

neighbourhood size. Secondly, the absolute cosine similarity is only a natural affinity

measure for points lying in linear subspaces. It would be interesting to explore other

affinity measures that can potentially be used for data from either linear or affine sub-
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spaces. Thirdly, we model each point as a linear combination of other points that lie in

its local neighbourhood. This idea is also utilised in manifold clustering setting, thus

it would be interesting to compare the performance of our method with other manifold

clustering methods when the data exhibit manifold structure. Finally, it is worth pointing

out that what we propose is a general framework that can potentially be embedded in

other settings, for example deep learning (Goodfellow et al., 2016), where data are abun-

dant in applications such as image analysis and text mining. Exploring the possibility

of either applying our proposed method to learned deep features with Convolutional

Neural Networks (CNN) (LeCun et al., 1998) or embedding our proposed WSSR self-

expressiveness model into an Antoencoder (AE) (Goodfellow et al., 2016) architecture

would be yet another interesting direction for future research.
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4.A Appendix

4.A.1 WSSR+ Experiments on UCI Benchmark Data

In this section, we conduct further experiments to compare WSSR+ with other state-

of-the-art constrained clustering methods on data sets that do not exhibit subspace

structure. The experiments are conducted on four UCI benchmark data sets (Dua and

Graff, 2017), which have been used previously to demonstrate the effectiveness of

constrained spectral clustering methods (Wang et al., 2014; Liu et al., 2018). A summary

of the data characteristics can be found in Table 4.9.

Data sets No. of points (𝑁 ) No. of features (𝑃 ) No. of clusters (𝐾)
iris 150 4 3

wine 178 13 3
ecoli 336 343 8
glass 214 9 6

Table 4.9: A summary of the UCI benchmark data sets.

Performance results in terms of clustering accuracy are reported in Table 4.10 under

varying proportions of side information. For each proportion 𝑝% of side information, we

run all experiments for 20 trials and report the median clustering accuracy along with

the standard deviation. For each data set, the best performance results are highlighted in

bold, and the second best performance results are underlined.

It is worth noting that all the initial clustering accuracy scores achieved by WSSR

here are significantly better than that produced by spectral clustering as reported in Liu

et al. (2018). As a result, the performance results for all three competing methods are

much better than what have been previously reported. With that said, it can be seen that

extra side information can have a negative impact on the resulting accuracy. For example,

this is the case for PLCC on both ecoli and glass data sets, in which the performance

degrades with the increase of side information.

Overall, WSSR+ has a favourable performance against all three competing methods.

In particular, it enjoys the best performance across all side information levels on the

wine data set and remains one of the top two performers on the remaining data sets. As
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Data Pct. WSSR
WSSR+ PLCC CSP LCVQE

Med Std Med Std Med Std Med Std

iris
10%

0.97
0.97 0.00 0.97 0.00 0.94 0.14 0.90 0.01

20% 0.97 0.00 0.98 0.01 0.98 0.07 0.92 0.02
30% 0.98 0.01 0.99 0.01 0.98 0.12 0.93 0.01

wine
10%

0.83
0.86 0.02 0.85 0.01 0.68 0.06 0.71 0.02

20% 0.88 0.02 0.86 0.01 0.75 0.07 0.73 0.03
30% 0.88 0.02 0.87 0.04 0.85 0.05 0.71 0.04

ecoli
10%

0.78
0.77 0.01 0.67 0.06 0.76 0.03 0.77 0.03

20% 0.80 0.01 0.82 0.02 0.76 0.02 0.80 0.05
30% 0.81 0.02 0.71 0.05 0.76 0.02 0.80 0.03

glass
10%

0.68
0.69 0.01 0.67 0.04 0.65 0.09 0.58 0.02

20% 0.69 0.01 0.66 0.01 0.69 0.04 0.60 0.04
30% 0.70 0.01 0.60 0.03 0.72 0.04 0.61 0.04

Table 4.10: Clustering accuracy of various spectral-based constrained clustering methods
on UCI benchmark data sets.

opposed to the adverse effects that have been observed in the competing methods, the

performance of WSSR+ improves consistently with the increase of side information. The

performance of PLCC appears to be similarly competitive to that of WSSR+. However

the standard deviation from PLCC can be comparatively big on data sets such as ecoli

and glass. The performance variability in PLCC undermines its reliability and seemingly

high median clustering accuracy.

To further investigate the stability of various methods, we provide detailed perfor-

mance visualisations for all methods on all data sets in Figure 4.A.1. Each plot presents

the minimum, median, and maximum performance of each constrained clustering method

across 20 trials. The proportion of known class labels 𝑝% range from 0.1 to 1.0, with 1.0

being all class labels are known. High variability can be observed from the performance

of CSP (on iris data set) and LCVQE (on wine and glass data sets). It also becomes

obvious that even for methods that have relatively small variability, such as PLCC and

WSSR+, consistent performance improvement is not always achieved on all data sets. In

particular, the clustering accuracy of PLCC decreased when the available side informa-

tion increased to 40% on the iris data. Taking into account both consistent and stable

performance improvement, WSSR+ is competitive against these state-of-the-art methods.
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Figure 4.A.1: The clustering accuracy (min, median, max) of various constrained cluster-
ing algorithms over 20 trials.

4.A.2 WSSR+ Experiments on Cancer Gene Data

In the previous section, we have demonstrated the effectiveness of WSSR+ in the setting

of constrained clustering on generic benchmark data that do not necessarily have subspace

structure. Next we inspect the performance of WSSR+ in an active learning framework,

where the additional side information are being acquired sequentially over time to enable

effective performance improvement. Experiments are conducted on gene expression data,

which have been shown to enjoy subspace structure (McWilliams and Montana, 2014).

Each subtype of gene expression data forms a subspace of its own. The following three

data sets have been previously experimented with (Li et al., 2017, 2018b) to demonstrate

the effectiveness of subspace clustering: St. Jude Leukemia, Lung Cancer, and Novartis
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BPLC. A summary of the basic data characteristics can be found in Table 4.11.

Data sets No. of points (𝑁 ) No. of features (𝑃 ) No. of clusters (𝐾)
St. Jude Leukemia 248 985 6

Lung Cancer 197 1000 4
Novartis BPLC 103 1000 4

Table 4.11: Summary information on the gene expression data sets.

When there is no side information available, we compare the cluster performance

of WSSR with state-of-the-art subspace clustering methods SSC (Elhamifar and Vidal,

2013) and S3C (Li and Vidal, 2015). We have briefly introduced SSC in Section 4.6,

and S3C is a generalisation of SSC that simultaneously solves for the affinity matrix

and the cluster assignment. In addition, we compare the performance of WSSR+ with

varying proportion of side information against that of CS3C (Li et al., 2017) and CS3C+

(Li et al., 2018b). Both of these constrained methods have shown excellent performance

on the three gene expression data sets as compared to several other subspace methods.

For all competing algorithms, we use the active strategy proposed in Peng and Pavlidis

(2019) to query points based on the current cluster assignment.

The parameters for all SSC-based methods are tuned to each data set to produce the

best results, as reported in Li et al. (2017). For WSSR, we use 𝜌 = 0.01 and tune the

number of nearest neighbours 𝑘 for each data set. We use the hard version of S3C, as

we are certain about the validity of the side information. The performance results for all

methods with varying levels of side information are reported in Table 4.12.

When comparing the performance without side information, we observe that WSSR

yields the best accuracy in two out of three cases. Although both S3C and WSSR achieve

the same level of accuracy on the Leukemia data set. It is worth noting that WSSR

achieves perfect clustering accuracy on the Novartis data, whereas the two constrained

methods CS3C and CS3C struggle to make any improvement with up to 30% of side

information. On the other two data examples, it can be seen that WSSR+ is able to make

effective performance improvement with the increase of available side information. Both

CS3C and CS3C+ are able to make some improvement on the Cancer data, but struggle
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Data Pct. WSSR WSSR+ SSC S3C CS3C CS3C+

Leukemia
10%

0.98
0.98

0.97 0.98
0.98 0.98

20% 0.98 0.98 0.98
30% 0.99 0.98 0.98

Cancer
10%

0.92
0.94

0.95 0.96
0.97 0.96

20% 0.98 0.97 0.97
30% 1.00 0.99 0.99

Novartis
10%

1.00
1.00

0.97 0.97
0.98 0.98

20% 1.00 0.98 0.98
30% 1.00 0.98 0.98

Table 4.12: Performance comparison (using accuracy) with state-of-the-art (constrained)
subspace clustering methods.

to benefit from the additional side information on the other two data sets.

The percentage of side information here refers to the percentage of points whose

class memberships are known to us. This is different from the notion as used in Li et al.

(2017) and Li et al. (2018b). In the experiments therein, 10% side information would

mean that 10% of the entries in the side information matrix Ψ are known. Whereas in

our case, 10% of side information would translate into only about 1% of filled entries of

the side information matrix Ψ. This makes the performance of WSSR+ more notable

given how little additional information it requires to reach perfect clustering accuracy.



Chapter 5

Clustering the Amazon Web-Scraped

Text Data

The success of various types of subspace clustering methods have been demonstrated

through a wide range of applications from motion segmentation to image recognition.

What these applications have in common is that the feature representation for both

the image data and the video (image frames) data are high-dimensional. Nevertheless,

the movement of an object captured through different images / videos can be well

summarised in a much lower dimensional subspace. This motivated us to explore the

potential of applying subspace clustering methods to other data types that also enjoy such

subspace properties. The problem of clustering text data has been studied extensively in

the document clustering literature. However less attention has been paid to addressing

the problem within the strand of subspace clustering techniques.

In this chapter, we first study and apply a number of clustering techniques on a

US Amazon web-scraped data set with product names. We show that the data set

represented using the TF-IDF matrix enjoys subspace structure as a whole and within

each product category. Finally, we propose a simple subspace clustering algorithm that

relies on principal angles to cluster the data. Experimental results on identifying product

categories from product names indicate that the algorithm can be competitive against

state-of-the-art clustering algorithms.

143
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5.1 Introduction

In many countries, the inflation and deflation rates as reflected by the price indices

indicate the general service and product price fluctuations in the market, and serve as

indicators for the national economic dynamics. Consumer Price Index (CPI) is the official

price index in the UK, which is published on a regular basis by the Office for National

Statistics (ONS). Traditionally, national price indices are published based on a basket

of product prices that are manually collected. Such a data collection procedure is not

only time consuming but also limited in the amount of data that can possibly be obtained.

Since early 2014, the ONS set up the Big Data Project to investigate the benefits and

challenges of using novel data sources such as web-scraped data to improve the current

price index generating procedure.

Web-scraped data are more advantageous than traditionally collected data from the

perspective that they can be easily scraped in a huge amount and at a high frequency

with a low monetary cost. However, the use of web-scraped data in the index generating

procedure is not straightforward. First, the size and frequency of the web-scraped

data require large computational power for processing. Secondly, the categorisation

on many retail websites from which the data are scraped do not necessarily match the

categorisation adopted by the ONS for index generation purposes. Thirdly, product

information (names, prices, etc.) might not be correctly scraped due to the quality of the

web-scrapers and the occasional out-of-stock products.

Some of these challenges can be suitably tackled via clustering techniques. For

example, in order to map the website product categorisation into the categorisation used

by the ONS for price index generation, it is important to identify the main categories

of the web-scraped data. This task fits naturally into the goal of clustering, which is to

identify the main groups in a data set such that the data points in the same group are

more similar to each other compared to data points in different groups.

The main types of information that come with the web-scraped data are the product

names and the price information. However, it would not be reasonable to conduct

clustering based on the price information. This is because products from different
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categories can have similar prices. Instead, a human would be able to identify the general

category of a product based on the semantic meaning of the title.

The fact that most product names are composed of short texts has two important

implications. Firstly, each word within each product name is likely to appear only once.

Secondly, the vast majority of pairs of product names have no words in common. These

properties of the data pose challenges to established text mining algorithms. It also

makes it difficult for statistical methods that employ generative models such as Latent

Dirichlet Allocation (Blei et al., 2003), which requires long document length to achieve

reliable parameter estimates.

If one uses the standard Term Frequency–Inverse Document Frequency (TF-IDF)

representation (Salton and Buckley, 1988), the resulting data matrix for such document

collections would be both sparse and high-dimensional. In this setting, it is sensible

to argue that texts that share even a few number of words are very similar to each

other. Therefore, associating clusters with linear combinations of the features (i.e. linear

subspaces) is reasonable. We propose a simple subspace clustering algorithm called

Minimum Angle Clustering (MAC) that is motivated by the characteristics of short

texts. It first identifies a large number of subspaces that contain few but very similar

observations. Then an appropriate dissimilarity measure is used to merge these subspaces

into meaningful clusters.

The rest of this chapter is organised as follows. In Section 5.2, we first provide

a description for the US Amazon web-scraped data that we will be using throughout

the rest of this chapter. We then introduce two document processing techniques that

transform text data into vector space representations. In Section 5.3, we review document

clustering approaches that we later apply to the US Amazon web-scraped data. A simple

subspace clustering algorithm is proposed in Section 5.4, which exhibits favourable

performance on the data as compared to other competing algorithms as shown in the

experimental results in Section 5.5. Finally, we conclude the chapter in Section 5.6 and

discuss a few routes for future research.
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5.2 Vector Space Representation

The data that we use in this chapter is a publicly available data set that contains the US

Amazon web-scraped electronic product information. It is obtained from the Billion

Prices Project (BPP) website, which is an academic initiative founded in 2008 that

uses web-scraped prices for economic research (Cavallo, 2017). They use their own

web-scrapers to collect data from hundreds of online retailers around the world on a daily

basis. The Amazon web-scraped data set contains the following features:

• Date: the date on which the product information is scraped;

• Product name: the name of the product that is shown on Amazon website;

• Product price: the listed price of the product;

• Product URL: the website link to the product;

• Product category: the assigned category label for the product.

A summary of the product category information is shown in Table 5.1.

Electronics Home and
appliances

Mix Office prod-
ucts

Pharmacy
and health

804 389 1490 111 127

Table 5.1: A summary of the five categories in the Amazon web-scraped data.

From now on, we will refer to the Amazon web-scraped data as the Amazon data.

In order to develop a machine-level understanding for language modelling tasks, it

is important to first represent the text data numerically. Vector space representations

are algebraic models for representing text documents as vectors, and they serve as the

building blocks for various language models. In this section, we introduce the reader to

two types of representations in which each dimension in the vector space representation

corresponds to a unique term in the text.

http://www.thebillionpricesproject.com/
http://www.thebillionpricesproject.com/
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5.2.1 Document Term Matrix (DTM)

The most straightforward way to transform text data into vector space representation is

through the Document Term Matrix (DTM) (Larson, 2010). It is a word count matrix

that describes for every document the number of times that each word has occurred in

a specific document. The number of rows in the matrix corresponds to the number of

documents 𝑁 , and the number of columns corresponds to the number of unique terms 𝑃 .

The DTM representation 𝑋 is an 𝑁 × 𝑃 matrix, in which 𝑥𝑖𝑗 represents the number of

times term 𝑗 (𝑗 ∈ {1, . . . , 𝑃}) has appeared in document 𝑖 (𝑖 ∈ {1, . . . , 𝑁}).

DTM representation does not take into account the fact that documents may have

different lengths. As a result, certain words may appear more often in some documents

than others because the lengths those documents are relatively long. In addition, DTM

representation does not take into account the possibility that some common words may

appear frequently across many documents. Such words may carry less information than

those words that appear less often but only in a selected few documents. This can be

shown in the two word clouds in Figure 5.2.1, which contains the top-50 and top-100

most frequent words in the Amazon data. It can be seen that words such as ‘black’ and

‘color’ are among the top-50 most frequent words, but they could potentially occur in

multiple documents from different categories.

(a) Top-50 most frequent words. (b) Top-100 most frequent words.

Figure 5.2.1: Word clouds containing the most frequent words in the Amazon data.

To address these issues, various weighting schemes have been proposed in the
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literature to improve upon DTM. One of the most commonly used weighting scheme is

the Term Frequency - Inverse Document Frequency (TF-IDF) (Larson, 2010), which we

will introduce in the next section.

5.2.2 Term Frequency - Inverse Document Frequency (TF-IDF)

In this section, we introduce the Term Frequency - Inverse Document Frequency (TF-

IDF) weighting scheme (Salton and Buckley, 1988), which incorporates two weight

measures that address the aforementioned issues with the DTM representation. The

first measure is term frequency – it is the proportion of the number of times that word 𝑗

appears in document 𝑖, 𝑥𝑖𝑗 , out of the total number of words in document 𝑖. The term

frequency is defined as

TF𝑖𝑗 =
𝑥𝑖𝑗∑︀𝑃
𝑗=1 𝑥𝑖𝑗

. (5.2.1)

The second measure is inverse document frequency, which measures how often a term

appears across all documents. The inverse document frequency is defined as

IDF𝑗 = log

(︃
𝑁∑︀𝑁

𝑖=1 1{𝑥𝑖𝑗>0}

)︃
, (5.2.2)

in which 1{𝑥𝑖𝑗>0} is an indicator function defined as:

1{𝑥𝑖𝑗>0} =

⎧⎪⎪⎨⎪⎪⎩
1, 𝑥𝑖𝑗 > 0,

0, otherwise.
(5.2.3)

According to the IDF measure, the more documents that a word appears in, the less im-

portant it is. By combining the TF and IDF measures together, the TF-IDF representation

is obtained as

TF-IDF𝑖𝑗 = TF𝑖𝑗 × IDF𝑗, ∀ 𝑖, 𝑗. (5.2.4)

In practice, the TF-IDF representation vectors are often normalised to have unit ℓ2-norm

so as to retain only the direction of the document vectors (Dhillon and Modha, 2001).

The resulting TF-IDF representation for the US Amazon data contains 2921 rows
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(product names) and 2106 columns (unique terms). For each product category, a summary

of the 10 most highly weighted words in the TF-IDF matrix is shown in Table 5.2. It is

clear to see that many of these words are indeed indicative of the category that they come

from. For example, one can easily tell that ‘printer’, ’usb’, and ’xbox’ are terms from the

‘Electronics’ category; ‘colgate’, ‘toothpaste’, and ‘toothbrush’ are clearly terms from

‘Pharmacy and Health’ category.

Electronics Home and
Appliances

Mix Office Prod-
ucts

Pharmacy
and Health

black loreal amp file oz
wireless cream dewalt folders colgate
printer lock sander hanging white
allinone shine corded pendaflex toothpaste
white hansen hitachi positions coffee
usb sally orbital reinforced maker
epson coppertop volt surehook pk
one master saw size count
xbox duracell cc letter toothbrush
canon assorted speed blendngo whitening

Table 5.2: A list of the ten most highly weighted words within each product category
according to the TF-IDF representation.

We further explore the structure of the TF-IDF matrix as a whole and within each

category by inspecting the corresponding eigenvalues. Figure 5.2.2 (a) shows the eigen-

values of the full TF-IDF matrix in descending order. It can be seen that less than half of

the 2106 eigenvalues are greater than zero. This indicates that the variability of the data

as a whole can be captured within a much lower dimensional subspace.

In addition, we divide the full TF-IDF matrix into five sub-matrices with each sub-

matrix corresponding to one of the five product categories. In Figure 5.2.2 (b), we plot

the eigenvalues for each sub-matrix in descending order. The upper limit of the 𝑥-axis is

500, as the number of eigenvalues that are significantly different from zero is far smaller

than 500 for all categories. This observation confirms that the TF-IDF representation for

each product category lies in a much lower dimensional subspace as compared to the

original dimension.
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(a) The eigenvalues of the full TF-IDF matrix (in descending order).
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(b) The eigenvalues of the TF-IDF matrix for each product category (in descending order).

Figure 5.2.2: An illustration of the subspace structure of the US Amazon data.
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5.3 Document Clustering Methods

In this section, we review two document clustering techniques: Principal Direction

Divisive Partitioning (PDDP) (Boley, 1998), and Latent Dirichlet Allocation (LDA) (Blei

et al., 2003). PDDP is a top-down hierarchical document clustering technique that treats

each document as a vector in the Euclidean space. LDA is a probabilistic topic modelling

technique that assigns labels to words, and the document labels are obtained using the

dominant word label in the document.

5.3.1 Principal Direction Divisive Partitioning (PDDP)

Principal Direction Divisive Partitioning (PDDP) (Boley, 1998) is a top-down hierar-

chical document clustering technique. PDDP considers the data to be a collection of

text documents 𝒳 = {𝑥𝑖}𝑁𝑖=1. Each text document is first transformed into a vector

space representation 𝑥𝑖 ∈ R𝑃 , where 𝑃 denotes the dimension of the vector space

representations for the text documents, i.e. the size of the vocabulary. Either of the vector

space representations previously discussed in Section 5.2 can be used here.

As an initial step, the algorithm divides the whole data set into two groups. Then

each of these two groups will be iteratively divided into smaller groups. This process

continues progressively, which results in a hierarchical tree representation of the data.

The main questions to be addressed within this divisive hierarchical clustering framework

include the following:

(1) How to split a group of data points into two?

(2) Which group among the existing groups should be split first?

(3) When should the process terminate?

We will address each of these questions in the rest of this section.

As is reflected in the name Principal Direction Divisive Partitioning, the algorithm

uses the first principal component direction to split a group of points. Take the initial

split of the full data matrix 𝑋 ∈ R𝑁×𝑃 as an example, the principal components of the
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data can be obtained from the eigen-decomposition of its covariance matrix 𝑆, which

can be calculated as

𝑆 =
(︀
𝑋 − 1𝜇T

)︀T (︀
𝑋 − 1𝜇T

)︀
, (5.3.1)

where 𝜇 = 1
𝑁
𝑋T1 is the feature-wise mean vector. The eigen-decomposition can be

expressed as 𝑆𝑉 = Λ𝑉 , in which the columns of 𝑉 = [𝑣1, . . . ,𝑣𝑃 ] are the principal

component vectors, and the diagonal entries of Λ correspond to the eigenvalues.

PDDP splits the data 𝑋 into two groups according to the projected values along the

first principal component direction as follows

(︀
𝑋 − 1𝜇T

)︀
𝑣1. (5.3.2)

It can be shown that Eq. (5.3.2) can equally be expressed in terms of the Singular Value

Decomposition (SVD) of the data, 𝑋 = 𝑈Σ𝑉 T, as

(︀
𝑋 − 1𝜇T

)︀
𝑣1 = 𝜎1𝑢1, (5.3.3)

in which 𝜎1 is the largest singular value of 𝑋 , and 𝑢1 ∈ R𝑁 is the first column vector in

the left singular matrix 𝑈 . The Lanczos algorithm can be used for efficient computation

of 𝜎1𝑢1, which takes advantage of the sparsity in the data (Golub and Van Loan, 2013).

The division of the points into two groups relies on the sign of Eq. (5.3.2). That is,

entries in Eq. (5.3.2) with positive values are assigned to one group and entries with

negative values are assigned to another group. Entries with zero values are assigned

randomly into either of the two groups. In order to decide which group to split first, a

cluster quality measure is required. For a sub-matrix 𝑋𝑘 that contains a subset of the

points in 𝑋 , a measure of cluster cohesiveness is defined in Boley (1998) as

‖𝑋𝑘 − 1𝜇T
𝑘 ‖𝐹 , (5.3.4)

where 𝜇𝑘 is the feature-wise mean vector for 𝑋𝑘. This measure reflects the overall

distance between each document vector to its cluster centre. The algorithm selects the
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group with the highest value when evaluated with Eq. (5.3.4), which is the least cohesive

among all groups. The algorithm terminates either when a maximum number of splits is

reached, or when all existing groups reached a certain level of cohesiveness.

The main advantage of PDDP lies in its efficiency in handling high-dimensional

data. However, the criterion of splitting the data along the first principal direction by

the sign of the projected points is not always optimal, as it is possible that a sub-group

of points span both the negative and positive regions along the first principal direction.

Other splitting criteria have been proposed in the literature, for example, the variant

iPDDP (Tasoulis and Tasoulis, 2008) splits the data on the first projection at where the

largest gap is. However, it does not seem to perform very well when the noise level is

high. Density-based PDDP (dePDDP) (Tasoulis et al., 2010) splits the cluster by the

lowest density point.

5.3.2 Latent Dirichlet Allocation (LDA)

Topic modelling algorithms use statistical methods to discover the thematic structure that

pervades a large unstructured collection of text documents (Blei, 2012). Latent Dirichlet

Allocation (LDA) is a probabilistic topic modelling technique which assumes that an

underlying generative process is accountable for producing the words that are observed

in the text documents (Blei et al., 2003). The generative process is governed by a joint

probability distribution which includes both observed and hidden variables. Given the

generative process, the words in a document are generated in the following steps:

(1) Randomly choose a distribution over topics (per document),

(2) Randomly choose a topic from the distribution of topics (per word),

(3) Randomly choose a word from the distribution over words.

This process reflects the fact that each document contains multiple topics with different

proportions. The main task of LDA is to use the observed variables (text documents) to

infer the hidden variables that are responsible for the topic structure. The problem of

inferring the hidden variables is the problem of computing its posterior distribution given
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the observed variables. Next, we provide a more formal description of LDA using the

notations summarised in Table 5.3.

Symbol Meaning
𝑁 The total number of documents.
𝐾 The total number of topics.
𝑘 The index for the 𝑘-th topic (𝑘 ∈ {1, . . . , 𝐾}).
𝑉 The size of the vocabulary, i.e. the total number of unique terms in the

text documents.
𝑉𝑖 The number of terms in the 𝑖-th document.

𝑤𝑖 ∈ R𝑉 The observed words in the 𝑖-th document, in which 𝑤𝑖𝑗 denotes the
presence of the 𝑗-th term in the 𝑖-th document (𝑖 ∈ {1, . . . , 𝑁} and
𝑗 ∈ {1, . . . , 𝑉 }).

𝑧𝑖 ∈ R𝑉 The topic labels for the 𝑖-th document, in which 𝑧𝑖𝑗 denotes the topic of
the 𝑗-th term in the 𝑖-th document (𝑖 ∈ {1, . . . , 𝑁}, 𝑗 ∈ {1, . . . , 𝑉 }).

𝜃𝑖 ∈ R𝐾 The topic proportions for the 𝑖-th document, in which 𝜃𝑖𝑘 denotes the
proportion of words that belong to topic 𝑘 in document 𝑖. We have that
‖𝜃𝑖‖1 =

∑︀𝐾
𝑘=1 𝜃𝑖𝑘 = 1.

𝜑𝑘 ∈ R𝑉 The probabilities of drawing words from a given topic 𝑘, in which 𝜑𝑘𝑗

denotes the probability of drawing the 𝑗-th word in the vocabulary from
topic 𝑘.

Table 5.3: A summary of notations for LDA.

Dirichlet distribution is suitable for modelling prior beliefs on more than two pro-

portions. Its probability density function for the distribution over topics of an arbitrary

document can be written as follows

P(𝜃|𝛼) =
1

𝐵(𝛼)

𝐾∏︁
𝑘=1

𝜃𝛼𝑘−1
𝑘 , (5.3.5)

where 𝐵(𝛼) is the multivariate Beta function

𝐵(𝛼) =

∏︀𝐾
𝑘=1 𝛼𝑘

Γ
(︁∑︀𝐾

𝑘=1 𝛼𝑘

)︁ . (5.3.6)

The LDA model assumes the Dirichlet distribution for both the distribution over top-

ics Dir(𝜃|𝛼), and the distribution over words Dir(𝜑|𝛽) under each topic. In Eq. (5.3.5),

𝜃 = [𝜃1, . . . , 𝜃𝐾 ]T denotes the vector of topic proportions, and 𝛼 = [𝛼1, . . . , 𝛼𝐾 ]T is the

vector of concentration parameters that reflect the prior belief on the distribution over
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topics. For the distribution over words Dir(𝜑|𝛽), 𝜑 = [𝜑1, . . . , 𝜑𝑉 ]T denote the vector

of probabilities for sampling words from the topic, and 𝛽 = [𝛽1, . . . , 𝛽𝑉 ]T reflects the

prior belief on the distribution over words. Note that same word could potentially be

drawn from more than one topic, but the probability of the same word being drawn from

different topics is dependent on the specific topic.

The generative process first determines the distribution over topics in a document.

Once the topic distribution is determined, words will then be generated from each topic

accordingly. The probability of drawing the 𝑗-th word from the 𝑖-th document, 𝑤𝑖𝑗 , from

any of the 𝐾 topics can be calculated as

P(𝑤𝑖𝑗) =
𝐾∑︁
𝑘=1

P(𝑤𝑖𝑗|𝑧𝑖𝑗 = 𝑘)P(𝑧𝑖𝑗 = 𝑘), (5.3.7)

in which P(𝑤𝑖𝑗|𝑧𝑖𝑗 = 𝑘) denotes the conditional probability of drawing word 𝑤𝑖𝑗 given

that it is from topic 𝑘, and P(𝑧𝑖𝑗 = 𝑘) is the probability that the word 𝑤𝑖𝑗 is drawn from

topic 𝑘. Practically, it is given by the proportion of words that are assigned to topic 𝑘 in

document 𝑖 divided by the total number of words in the document. It is worth noting that

this is different from the proportion of words that belong to topic 𝑘 divided by the total

number of distinct words, as the same word can appear in multiple topics.

Combining the probabilities for obtaining all words in all documents, we obtain the

joint probability distribution for the generative process as follows (Blei et al., 2003)

P(𝑤; 𝑧,𝜃,𝜑;𝛼,𝛽) =
𝑁∏︁
𝑖=1

P(𝜃𝑖;𝛼)
𝐾∏︁
𝑘=1

P(𝜑𝑘;𝛽)

𝑉𝑖∏︁
𝑗=1

P(𝑧𝑖𝑗|𝜃𝑖)P(𝑤𝑖𝑗|𝜑𝑧𝑖𝑗). (5.3.8)

For each document 𝑖 (𝑖 ∈ {1, . . . , 𝑁}), P(𝜃𝑖;𝛼) gives the document-topic distribution.

For each topic 𝑘 (𝑘 ∈ {1, . . . , 𝐾}), P(𝜑𝑘;𝛽) gives the topic-word distribution. For each

word 𝑗 (𝑗 ∈ {1, . . . , 𝑉𝑖}) in document 𝑖, first a topic 𝑧𝑖𝑗 is chosen according to P(𝑧𝑖𝑗|𝜃𝑖),

then a word 𝑤𝑖𝑗 is chosen within topic 𝑧𝑖𝑗 with probability P(𝑤𝑖𝑗|𝜑𝑧𝑖𝑗). The goal is to

infer the topic labels of all words such that Eq. (5.3.8) is maximised.

The actual model inference procedure for the model parameters can be done in

various ways. Following a Frequentist approach, the model parameters can be obtained
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via the Expectation-Maximisation (EM) procedure. Following a Bayesian approach,

Gibbs Sampling (GS) can be used to estimate the parameter values. The final label of

each document can thus be determined by the majority label out of all topic labels for all

words in the document.

5.4 Minimum Angle Clustering (MAC)

In this section, we propose a simple algebraic subspace clustering technique called

Minimum Angle Clustering (MAC) (Peng et al., 2018), which is motivated by the

problem of clustering short product names in the Amazon data set. Given 𝑁 product

names, the goal is to identify a pre-specified 𝐾 main product categories. The algorithm

first merges very similar points (product names) together to form 𝑁𝑐 groups / subspaces,

where 𝑁𝑐 > 𝐾. Then, a subspace dissimilarity measure is used to merge these subspaces

into 𝐾 meaningful clusters.

We first transform the product names into vector space representations using the Term

Frequency–Inverse Document Frequency (TF-IDF) representation, which is previously

introduced in Section 5.2.2. Since each product name is very short, and different product

names contain different words, the TF-IDF representation is both sparse and high-

dimensional. We denote the TF-IDF matrix as 𝑋 ∈ R𝑁×𝑃 , in which the rows correspond

to the product names and the columns correspond to the unique words.

Subspace clustering assumes the set of data points 𝒳 = {𝑥𝑖}𝑁𝑖=1 are drawn from a

union of 𝐾 subspaces. Each point 𝑥𝑖 ∈ 𝒳 is assumed to lie on (or close to) a relatively

low-dimensional subspace. Recall from Chapter 1 Section 1.2, a 𝑞𝑘-dimensional linear

subspace 𝒮𝑘 is defined as

𝒮𝑘 =
{︀
𝑥𝑖 ∈ R𝑃 : 𝑥𝑖 = 𝑉𝑘𝑦𝑖

}︀
, (5.4.1)

where 𝑉𝑘 ∈ R𝑃×𝑞𝑘 is an orthonormal matrix defining the basis for subspace 𝒮𝑘, and

𝑦𝑖 ∈ R𝑞𝑘 is the representation of 𝑥𝑖 in terms of the column vectors of 𝑉𝑘. The goal of

subspace clustering is to both identify the 𝐾 subspaces, and to identify the subspace



CHAPTER 5. CLUSTERING THE AMAZON WEB-SCRAPED TEXT DATA 157

allocations for all points.

In the context of our problem, features of the TF-IDF representation correspond to

the unique words. It is therefore reasonable to assume that texts that share a combination

of words are similar to each other. Reduced row echelon form (RREF) can provide useful

grouping information based on linear combinations of the features (Gear, 1994, 1998).

We thus propose to first transform the transpose of the TF-IDF matrix 𝑋T into its reduced

row echelon form, which can be achieved by applying the well-known Gauss-Jordan

elimination (Golub and Van Loan, 2013). In this process, a sequence of row operations

are performed to bring 𝑋T into a form that satisfies 1:

1. the leftmost non-zero entry of each row is 1;

2. the leftmost non-zero entry of each row is the only non-zero entry in the corre-

sponding column;

3. for any two different leftmost non-zero entries, one located in row 𝑖, column 𝑗 and

the other in row 𝑠, column 𝑡: if 𝑠 > 𝑖, then 𝑡 > 𝑗;

4. rows in which every entry is zero are beneath all rows with non-zero entries.

Let 𝐹 denote the reduced row echelon form of 𝑋T. The columns of 𝐹 that have a single

non-zero element are called pivot columns. The first column of 𝐹 is always a pivot

column. Moreover, column 𝑗 (𝑗 > 1) is a pivot column if and only if the 𝑗-th column of

𝑋T (i.e. 𝑥𝑗) cannot be expressed as a linear combination of the previous columns (i.e.

columns 1 to (𝑗 − 1)). If the 𝑗-th column is a non-pivot column of 𝐹 , then the non-zero

elements in this column specify the coefficients of the linear combination of the previous

pivot columns that yield the 𝑗-th column vector.

Since points that can be written as linear combinations of each other belong to the

same linear subspace, 𝐹 provides valuable information to identify clusters spanning

different subspaces. A simple approach to identify subsets of points that belong to the

same linear subspace through 𝐹 is the following. Define the matrix 𝑌 ∈ {0, 1}𝑃×𝑁

1See Golub and Van Loan (2013) for numerically stable algorithms to perform this operation.
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in which 𝑌𝑖,𝑗 = 1{𝐹𝑖,𝑗 ̸=0}, where 1{·} is the indicator function that returns one if its

argument is true and zero otherwise. That is, 𝑌𝑖,𝑗 indicates whether a point 𝑥𝑗 is in the

linear combination to approximate 𝑥𝑖, or the other way around. As such, the adjacency

matrix, 𝐴 = 𝑌 T𝑌 , provides pairwise connectivity information between points which

can then be used to obtain a graph 𝐺 whose 𝑁𝑐 connected components are subsets of

points that can be expressed as linear combinations of each other.

For the problem of clustering very short texts, the graph 𝐺 has a very large number of

connected components, many of which contain only a single point. Texts that belong to

the same connected component are very similar, hence this partitioning is very accurate

in terms of purity. However, it is of no practical use because it fails to capture the main

groups. Figure 5.4.1 provides the histogram of the number of points in each connected

component of 𝐺 for the Amazon data set. As the figure shows, the vast majority of

connected components contain less than ten points, while the mode of this distribution is

at one.
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Figure 5.4.1: Histogram of the number of points in each subspace identified through the
Reduced Row Echelon Form (RREF) of the TF-IDF matrix.

Next, we need an appropriate affinity measure that would allow us to merge the

previously identified 𝑁𝑐 connected components into 𝐾 meaningful clusters. In this work,

we utilise the concept of principal angles, which is first introduced in Jordan (1875).
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Definition 5.4.1 (Principal Angles). Let 𝒮𝑖 and 𝒮𝑗 be two linear subspaces of an inner

product space with 1 6 dim (𝒮𝑖) = 𝑞𝑖 6 dim (𝒮𝑗) = 𝑞𝑗 . The principal angles,

0 6 𝜃1 6 𝜃2 6 . . . 6 𝜃𝑞𝑖 6
𝜋

2
,

between 𝒮𝑖 and 𝒮𝑗 can be defined recursively for 𝑙 = 1, . . . , 𝑞𝑖 as,

cos(𝜃𝑙) = max
𝑢∈𝒮𝑖

max
𝑣∈𝒮𝑗

cos(𝑢T𝑣), (5.4.2)

subject to

‖𝑢‖2 = ‖𝑣‖2 = 1,

and

𝑢T𝑢𝑚 = 𝑣T𝑣𝑚 = 0, ∀ 0 < 𝑚 < 𝑙,

in which 𝑢𝑚 and 𝑣𝑚 are the corrseponding principal vectors that yields Eq. (5.4.2).

Applying Principal Component Analysis (PCA) (Jolliffe, 2011) to the subset of points

assigned to each connected component of 𝐺, one readily obtains an orthonormal basis

for each subspace. Let the columns of matrices 𝑄𝑖 ∈ R𝑃×𝑞𝑖 and 𝑄𝑗 ∈ R𝑃×𝑞𝑗 constitute

orthonormal bases for two linear subspaces 𝒮𝑖 and 𝒮𝑗 , respectively. The principal angles

between 𝒮𝑖 and 𝒮𝑗 can be obtained from Singular Value Decomposition (SVD) (Björck

and Golub, 1973; Drmac, 2000), 𝑄T
𝑖 𝑄𝑗 = 𝑈Σ𝑉 T, as follows

𝜃𝑙 = arccos(Σ𝑙,𝑙), 𝑙 ∈ {1, . . . , 𝑞𝑖} . (5.4.3)

Principal angles ignore the difference in dimensionality between the two subspaces,

which for our purposes is very important. To accommodate for this, we assume that 𝒮𝑖

and 𝒮𝑗 have maximum dissimilarity along the dimensions (𝑞𝑗 − 𝑞𝑖). As such, we define

the dissimilarity between two linear subspaces, 𝒮𝑖 and 𝒮𝑗 as,

𝐷𝑖,𝑗 =
1

𝑞𝑗

(︃
𝑞𝑗 − 𝑞𝑖 +

𝑞𝑖∑︁
𝑙=1

(1− cos(𝜃𝑙))

)︃
,
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= 1− 1

𝑞𝑗

𝑞𝑖∑︁
𝑙=1

cos(𝜃𝑙). (5.4.4)

To obtain the final set of 𝐾 clusters, we apply the spectral clustering algorithm proposed

in Ng et al. (2002). To obtain the similarity matrix 𝑊 , one can use the local scaling rule

proposed in Zelnik-Manor and Perona (2005) to calculate the pairwise similarity matrix

𝑊 as follows

𝑊𝑖,𝑗 = exp

{︂
−
𝐷2

𝑖,𝑗

𝑠𝑖𝑠𝑗

}︂
, (5.4.5)

where 𝑠𝑖 (𝑠𝑗) is the dissimilarity between the 𝑖-th (𝑗-th) point and its 𝑘-th nearest neigh-

bour (the default 𝑘 is set to be 8). Alternatively, one could also calculate the entries in

the similarity matrix 𝑊 as the average cosine of the principal angles as

𝑊𝑖,𝑗 =
1

𝑞𝑖

𝑞𝑖∑︁
𝑙=1

cos(𝜃𝑙). (5.4.6)

All the points allocated to a given subspace are assigned to the same cluster label as the

subspace. Algorithm 11 outlines the steps of our proposed approach.

5.5 Experimental Results

In this section, we compare the performance of our proposed method2 against state-of-

the-art subspace clustering and standard clustering algorithms on the Amazon product

names data set obtained from Harvard Dataverse website (Cavallo, 2017). This data set

contains five broad product categories: Electronics, Home and appliances, Mix, Office

products, and Pharmacy and health. The product names are represented using the TF-IDF

representation, which contains 2921 rows (product names) and 2106 columns (unique

terms).

We compare the performance of MAC with the following clustering algorithms:

𝐾-Subspace Clustering (KSC) (Agarwal and Mustafa, 2004), Low Rank Representation

(LRR) (Liu et al., 2010, 2012), Sparse Subspace Clustering (SSC) (Elhamifar and Vidal,

2The code is available at: https://github.com/hankuipeng/MAC.

https://github.com/hankuipeng/MAC
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Algorithm 11: Minimum Angle Clustering (MAC)
Input :TF-IDF matrix: 𝑋 ∈ R𝑁×𝑃

Number of clusters: 𝐾
Output :Cluster labels: 𝛺 = {𝜔1, . . . , 𝜔𝑁}
- Compute the Reduced Row Echelon Form (RREF):

𝐹 = rref(𝑋T) = [𝑓1, . . . ,𝑓𝑁 ]

- Define matrix 𝑌 through 𝑌𝑖,𝑗 = 1{𝑓T
𝑖 𝑓𝑗 ̸=0}, ∀ 𝑖, 𝑗

- Construct graph: 𝐺 from adjacency matrix 𝐴 = 𝑌 T𝑌

- Compute connected components of 𝐺: {𝒞1, . . . , 𝒞𝑁𝑐}
for 𝑖 = 1 to 𝑁𝑐 do

Apply PCA to the data points in 𝒞𝑖 to obtain an orthonormal basis for the 𝑖-th
subspace 𝑄𝑖 ∈ R𝑃×𝑞𝑖

for 𝑗 = 1 to (𝑖− 1) do
Estimate proximity with previous subspaces through Eq. (5.4.5) or
Eq. (5.4.6)

end
end

- Apply spectral clustering on 𝑊 to obtain cluster labels for the subspaces

- Assign the same label to all the points in the same connected component as that
of the associated subspace

2013), Principal Component Divisive Partitioning (PDDP) (Boley, 1998), Latent Dirichlet

Allocation (LDA) (Blei et al., 2003), and Spectral Clustering (SC) (Ng et al., 2002).

KSC, LRR, and SSC are all subspace clustering algorithms, and PDDP is included

as it has been developed for the purpose of partitioning documents that are embedded

in high-dimensional Euclidean space. LDA is a popular topic modelling technique

has been widely applied in text mining applications. Spectral clustering is a generic

clustering methodology that has been successfully applied to numerous high-dimensional

applications, most notably image segmentation. A further reason for including spectral

clustering is that SSC, LRR, and MAC all employ SC as the last step. Thus, it is worth

investigating whether the performance of these methods can be attributed to spectral

clustering. We denote as SC(𝑋) for the result obtained by appling spectral clustering to

the data matrix. It is also important to check whether the information contained in the

adjacency matrix 𝑎 formed using RREF suffices to correctly identify the clusters. We
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denote as SC(𝐴) for the result obtained by applying spectral clustering to 𝐴.

We assess the cluster performance through three external cluster evaluation measures:

Purity (Zhao and Karypis, 2004), Adjusted Rand Index (ARI) (Hubert and Arabie, 1985),

and Normalised Mutual Information (NMI) (Strehl and Ghosh, 2002). We also report the

computational times (in seconds) for each algorithm. All experiments are run on a DELL

machine with 8 CPU cores and 8 GB of RAM. The LDA algorithm is run in Python, and

the remaining algorithms are run in MATLAB. Table 5.4 reports the performance of all

algorithms on the Amazon data set. The best performing results are highlighted in bold,

and the second best performing results are underlined.

Method MAC SSC LRR KSC
Purity 0.78 0.52 0.64 0.51
ARI 0.39 0.02 0.20 0.01
NMI 0.40 0.05 0.31 0.03
Runtime 157.71 413.86 534.16 40.29
Method SC(𝑋) SC(𝐴) LDA PDDP
Purity 0.51 0.73 0.51 0.76
ARI 0.04 0.24 0.02 0.39
NMI 0.03 0.42 0.05 0.40
Runtime 157.97 82.18 2.15 14.33

Table 5.4: Clustering performance and runtime comparison (in seconds) on the Amazon
data set using TF-IDF representation.

As is shown in the table, MAC achieves the best performance in terms of Purity and

ARI and second best performance in terms of NMI. With that said, the performance

of PDDP is also on par with that of MAC. It is important to note that the performance

of MAC is substantially better than that of SC(𝑋), which uses the original TF-IDF

matrix. Meanwhile we can see only a small performance improvement in MAC when

compared to SC(𝐴), which uses as similarity matrix the adjacency matrix 𝐴 obtained

after transforming the TF-IDF matrix into the reduced row echelon form. This means

that the advantageous performance of MAC mainly comes from the RREF step. The

third best performing algorithm is LRR with an NMI score that is above 0.3. This is not

surprising, as it also utilises the low rank structure of the data. It is worth noting that its

computational time is substantially higher than MAC and most other algorithms.
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5.6 Conclusions & Future Work

We propose a simple algorithm for subspace clustering that is effective in clustering

collections of very short texts. The algorithm is designed to exploit the properties of

the very sparse and high-dimensional TF-IDF representation of such data sets. It first

identifies a large number of low-dimensional linear subspaces that contain small clusters

of texts which share common words. To merge them into meaningful clusters, we use

principal angles to quantify the proximity between linear subspaces. Experimental results

on the US Amazon data set show that this simple approach compares favourably with

standard and subspace clustering methods.

In future work, we aim to identify the hierarchical structure of product categories. We

also plan to investigate active learning approaches to assist the cluster validation process.

Active learning aims to learn the true relationship between data objects and their labels

using as least queries as possible, and involving as few data objects as possible (Settles,

2008). While there have been extensive research in active learning for classification

problems (Tong and Koller, 2001; Nigam et al., 1998), active learning for clustering is

an area that has been much less touched upon.





Chapter 6

Conclusions & Future Work

In this thesis, we have studied different aspects of and made contributions to subspace

clustering, constrained clustering, and active learning. In closing, we present a summary

of our work, based upon which we discuss a few potential avenues for future work.

Subspace Clustering with Active Learning (SCAL). In Chapter 3, we proposed a

subspace clustering with active learning framework, within which we presented both an

active strategy for querying informative points and a constrained clustering algorithm

for incorporating the imposed constraints. The proposed framework is designed in

the context of 𝐾 Subspace Clustering, but the experiments on real data have shown

promising results of the proposed framework when applied to spectral-based subspace

methods as well.

In the proposed framework, there are two factors that are accountable for evaluating

the informativeness of a point. Firstly, we evaluate the decrease in the reconstruction

error if a point is removed from its assigned cluster. Secondly, we choose one out of the

remaining clusters that the point has the smallest reconstruction error to, and evaluate the

increase in the reconstruction error if the point is being added to the cluster. Here, picking

the cluster that the chosen point has the smallest reconstruction error to is a heuristic.

One principled approach could be to evaluate the influence of adding the chosen point to

each of the remaining clusters, and pick the one that it has the smallest influence to.

Additionally, it would also be interesting to explore the scenario where the queried

information are given in terms of pairwise ‘must-link’ and ’cannot-link’ constraints. One

165
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way to achieve this could be through the use of a certain-sample set (Xiong et al., 2017).

A certain-sample set contains points that are known to belong to the same class. In Xiong

et al. (2017), the proposed algorithm first picks an informative point and then queries a

sequence of pairwise relationships between the informative point to a point in each of

the existing certain-sample sets. Once the certain-sample sets are formed, we could still

apply our proposed constrained clustering algorithm to update the current subspaces and

satisfy the constraints.

Another interesting direction of research is to explore the scenario where multiple

external labellers are available, and the labels or pairwise relationships that they provide

do not necessarily agree with each other. Donmez et al. (2009) studied the problem of

jointly learning the reliability of different labellers and choosing the most informative

labels to improve the model performance in the setting of supervised learning. In the

unsupervised setting, we could utilise the same idea and potentially construct a confidence

score for the labellers and obtain the final label as a weighted majority vote across all

labellers.

Weighted Sparse Simplex Representation (WSSR). In Chapter 4, we built a uni-

fied framework that combines subspace clustering, constrained clustering, and active

learning together for spectral-based subspace clustering methods. To begin with, we

proposed a spectral-based subspace clustering methodology – Weighted Sparse Simplex

Representation (WSSR). It solves a quadratic programming problem that approximates

each point as a convex combination of a few other points. We have also shown that

a sub-problem of WSSR can be solved analytically and efficiently, which can achieve

similar performance as WSSR when the noise level in the data is low. Experimental

results show that WSSR is competitive against state-of-the-art spectral-based subspace

clustering methods. In the unified framework, WSSR interacts with and improves upon

the queried labelling information. In the first stage, the labels of the most informative

point(s) are queried according to our proposed query strategy in Chapter 3. In the second

stage, the constraint information are incorporated into the WSSR problem formulation

through a flexible weighting scheme.
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In WSSR, we used the inverse absolute cosine similarity measure for computing the

entries in the weight matrix. This is a reasonable choice of proximity measure for data

lying in a union of linear subspaces, and has been previously used in Heckel and Bölcskei

(2015). However, as mentioned earlier, different measures need to be considered in the

setting of affine subspaces.

Another interesting direction would be to explore and understand the suitability and

limitations of our proposed framework in the manifold learning and clustering setting.

A similar idea of approximating each point as a linear combination of its neighbouring

points have been proposed in Elhamifar and Vidal (2011) for the manifold clustering

setting. This is motivated by the fact that every local region on a manifold can be

suitably approximated with a subspace. Therefore, there is reason to believe that our

framework can lend itself naturally into the manifold learning and clustering setting with

an appropriate choice of the neighbourhood size parameter.

In recent years, the development of Graphical Processing Units (GPUs) and the

availability of an ever-growing amount of data have largely facilitated the rise of deep

learning techniques. A number of neural network architectures have been developed and

successfully applied in various application domains, most noticeably in computer vision

and natural language processing (Goodfellow et al., 2016). Since what we propose is

a general framework that does not depend on the data embeddings per se, it would be

interesting to combine the process of training deep features with neural networks and

applying our proposed method to the learnt features. In particular, it is worth exploring

the possibility of training embeddings that enjoy subspace structure thus facilitating the

subsequent clustering process.

Minimum Angle Clustering (MAC). In Chapter 5, we studied the problem of

clustering short texts through the application of the US Amazon web-scraped text data.

The data represented using the TF-IDF representation is both sparse and high-dimensional.

Through exploratory data analysis, we have discovered that the variability of each sub-

matrix corresponding to each product category can be summarised well in a much lower

dimensional subspace. We studied and experimented with different document clustering
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and topic modelling techniques on the data. Additionally, we also proposed a simple

subspace clustering algorithm that exploits the subspace structure that we observe in the

data. The algorithm first utilises the Reduced Row Echelon Form (RREF) technique from

linear algebra to first identify a large number of subspaces. To merge these subspaces

into a pre-specified number of clusters, we further propose a subspace proximity measure

based on the notion of principal angles.

To continue along this line of research, it would be interesting to explore other

low rank matrix factorisation techniques that could potentially replace and improve the

role of RREF in the first stage. For example, Liu et al. (2012) also exploits the low

rankness of the data matrix through a nuclear norm minimisation programme. However,

the authors directly use the coefficients of the low rank representation to form a data

affinity matrix without an initial grouping. One underlying assumption of our proposed

methodology is that the text data lie in a union of linear subspaces, thus the pairwise

proximity can be suitably measured through principal angles. However, it may no longer

be a suitable subspace proximity measure in the setting of affine subspaces. Therefore,

it would be desirable to design a measure that takes into account both the angles and

the displacement between subspaces (Shirazi et al., 2015). We also assumed maximum

dissimilarity along the difference in the dimensions between two subspaces, which is a

simple heuristic. The work of Ye and Lim (2014) provides an extensive and theoretical

treatment on the dissimilarity between linear and affine subspaces with either equal or

different dimensions.

To summarise, this thesis has explored in the realm of subspace clustering, and

the interplay of subspace clustering with constrained clustering and active learning.

Our work finds its applications in document clustering, image recognition, and motion

segmentation among others. We believe that developing methodologies that are able

to determine which data points are worth being queried thus validated in the model is

of equal importance as designing effective and efficient algorithms in the context of

clustering.



Bibliography

Agarwal, P. K. and Mustafa, N. H. (2004). 𝐾-means projective clustering. In Proceedings

of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, pages 155–165. ACM.

Aloise, D., Deshpande, A., Hansen, P., and Popat, P. (2009). NP-hardness of Euclidean

sum-of-squares clustering. Machine Learning, 75(2):245–248.

Amelio, A. and Pizzuti, C. (2015). Is normalized mutual information a fair measure for

comparing community detection methods? In Proceedings of the 2015 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining, pages

1584–1585.

Andreev, K. and Racke, H. (2006). Balanced graph partitioning. Theory of Computing

Systems, 39(6):929–939.

Archambeau, C., Delannay, N., and Verleysen, M. (2008). Mixtures of robust probabilis-

tic principal component analyzers. Neurocomputing, 71(7-9):1274–1282.

Arias-Castro, E., Lerman, G., and Zhang, T. (2017). Spectral clustering based on local

PCA. Journal of Machine Learning Research, 18(1):253–309.

Arthur, D. and Vassilvitskii, S. (2006). k-means++: The advantages of careful seeding.

Technical report, Stanford.

Balcan, M.-F., Broder, A., and Zhang, T. (2007). Margin based active learning. In

International Conference on Computational Learning Theory, pages 35–50. Springer.

169



170 BIBLIOGRAPHY

Bartels, R. H. and Stewart, G. W. (1972). Solution of the matrix equation 𝐴𝑋+𝑋𝐵 = 𝐶.

Communications of the ACM, 15(9):820–826.

Bartholomew, D. J., Knott, M., and Moustaki, I. (2011). Latent variable models and

factor analysis: A unified approach, volume 904. John Wiley & Sons.

Basri, R. and Jacobs, D. W. (2003). Lambertian reflectance and linear subspaces. IEEE

Transactions on Pattern Analysis and Machine Intelligence, pages 218–233.

Basu, S., Davidson, I., and Wagstaff, K. (2008). Constrained clustering: Advances in

algorithms, theory, and applications. CRC Press.

Bellman, R. (1966). Dynamic programming. Science, 153(3731):34–37.
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Cvetković, D. M., Doob, M., and Sachs, H. (1980). Spectra of graphs: Theory and

application. VEB Deutscher Verlag der Wissenschaften.

Davenport, M. A. and Wakin, M. B. (2010). Analysis of orthogonal matching pursuit

using the restricted isometry property. IEEE Transactions on Information Theory,

56(9):4395–4401.



172 BIBLIOGRAPHY

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of

deep bidirectional transformers for language understanding. arXiv:1810.04805.

Dhillon, I. S., Guan, Y., and Kulis, B. (2004). Kernel 𝑘-means, spectral clustering and

normalized cuts. In Proceedings of the 10th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 551–556. ACM.

Dhillon, I. S. and Modha, D. S. (2001). Concept decompositions for large sparse text

data using clustering. Machine Learning, 42(1-2):143–175.

Donmez, P., Carbonell, J. G., and Bennett, P. N. (2007). Dual strategy active learning. In

European Conference on Machine Learning, pages 116–127. Springer.

Donmez, P., Carbonell, J. G., and Schneider, J. (2009). Efficiently learning the accuracy

of labeling sources for selective sampling. In Proceedings of the 15th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 259–268.

Driver, H. and Kroeber, A. (1932). Quantitative expression of cultural relationships.

University of California Publications in American Archaeology and Ethnology.

Drmac, Z. (2000). On principal angles between subspaces of Euclidean space. SIAM

Journal on Matrix Analysis and Applications, 22(1):173–194.

Dua, D. and Graff, C. (2017). UCI Machine Learning Repository.

Elhamifar, E. and Vidal, R. (2009). Sparse subspace clustering. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 2790–2797.

IEEE.

Elhamifar, E. and Vidal, R. (2011). Sparse manifold clustering and embedding. In

Advances in Neural Information Processing Systems, pages 55–63.

Elhamifar, E. and Vidal, R. (2013). Sparse subspace clustering: Algorithm, theory,

and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence,

35(11):2765–2781.



BIBLIOGRAPHY 173
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