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Separating Mesoscale and Submesoscale Flows from

Clustered Drifter Trajectories

Sarah Oscroft1, Adam M. Sykulski2 and Jeffrey J. Early3

Abstract

Drifters deployed in close proximity collectively provide a unique observational data set with
which to separate mesoscale and submesoscale flows. In this paper we provide a principled ap-
proach for doing so by fitting observed velocities to a local Taylor expansion of the velocity
flow field. We demonstrate how to estimate mesoscale and submesoscale quantities that evolve
slowly over time, as well as their associated statistical uncertainty. We show that in practice the
mesoscale component of our model can explain much first and second-moment variability in
drifter velocities, especially at low frequencies. This results in much lower and more meaningful
measures of submesoscale diffusivity, which would otherwise be contaminated by unresolved
mesoscale flow. We quantify these effects theoretically via computing Lagrangian frequency
spectra, and demonstrate the usefulness of our methodology through simulations as well as
with real observations from the LatMix deployment of drifters. The outcome of this method is
a full Lagrangian decomposition of each drifter trajectory into three components that represent
the background, mesoscale, and submesoscale flow.

Keywords: Drifters; Mesoscale; Submesoscale; Diffusivity; Strain; Vorticity; Divergence; La-
grangian; Frequency Spectra; Bootstrap; Uncertainty Quantification; Splines

1 Introduction

Recent field experiments targeting submesoscale motions (100m–10km) include the deploy-
ment of dozens to hundreds of GPS tracked surface drifters in close proximity, e.g., ‘LatMix’ [1],
‘GLAD’ [2], ‘LASER’ [3] and ‘CALYPSO’ [4]. These deployments are designed to sample a nar-
row spatiotemporal window, but with high enough data density to resolve submesoscale mo-
tions. However, even when submesoscale motions are resolved, separating those motions from
the larger, more energetic mesoscale motions remains a significant challenge.

One approach to disentangling the submesoscales from the mesoscales with high resolution
drifter data is to use the results from turbulence theory. For example, Poje et al. [2] showed results
using two-particle statistics consistent with local dispersion at submesoscales. Beron-Vera and
LaCasce [5] found ambiguous results until inertial oscillations were filtered from the trajectories.
This suggests, not surprisingly, that realistic flow fields contain a combination of flow features that
can be linearly separated in some contexts. In a detailed modelling study, Pearson et al. [6] showed
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that, even with some filtering, these Lagrangian statistics are far more sensitive than similar Eule-
rian measures, and called into question the interpretation of previous studies that use variations
of two-particle statistics.

An alternative approach is to parameterise the energetic mesoscale flow features from the La-
grangian trajectories, in order to disentangle them from the unparameterised, possibly subme-
soscale, flows. The notion of accounting for, or parameterising, the mesoscale strain in order to
measure the submesoscale diffusivity, appears to originate with tracer release experiments [7, 8],
and is based on ideas introduced in Garrett [9]. The basic idea is that one axis of the tracer grows
exponentially with a rate proportional to the strain rate, σ, while the other axis reaches a steady
state balanced by the compressing effect of σ and the elongating effect of diffusivity, κ. In the
dye experiments, the mesoscale strain rate is determined by measuring the rate of elongation of
the patch, which is then used to deduce the diffusivity. The key idea to this approach is that
the mesoscale strain rate is parameterised, in order to separate its effect from the submesoscale
motions.

This manuscript extends the idea of parameterising mesoscale features, in order to disentan-
gle submesoscale flow, to a more principled and robust framework appropriate for Lagrangian
particles. Our work is complementary to, but distinct from, the recent works of [3, 10] who de-
veloped a method for projecting clustered drifter trajectories to reconstruct local Eulerian velocity
fields using Gaussian Process regression. The goal of our work is to disentangle the trajectory in
a Lagrangian sense, and explicitly separate each drifter trajectory into background, mesoscale and
sub mesoscale components—where each decomposed drifter can then be analysed further within
the Lagrangian framework. For example, our Lagrangian separation allows for the explicit esti-
mation of submesoscale diffusivity, which is not a topic directly covered in [3, 10]. On presentation
of our methods, we shall make some more remarks on how these works stand side-by-side in the
discussion section.

The structure of this paper is as follows. In Section 2 we first introduce a conceptual Lagrangian
flow model, and then show how this can be parameterised using a local Taylor expansion. Then
in Section 3 we show how these parameters can be estimated from clustered drifter deployments.
We pay particular focus to building a hierarchy of models, where each layer in the hierarchy adds
extra parameters (e.g. strain/vorticity/divergence) that represent additional flow features. We
provide novel methodology for selecting between hierarchies based on the evidence from the data.
In Section 4 we go further and incorporate nonstationary flow features, by allowing mesoscale
parameters to slowly evolve over time and space. We provide methodology for estimating this
evolution using splines, and then we provide techniques for quantifying the uncertainty of all pa-
rameter estimates using the bootstrap. We detail how this quantification of uncertainty provides
the ideal mechanism from which to select the key parameter of the smoothing window length.
Throughout Sections 3 and 4 we perform detailed simulation analyses to provide further insight
and motivation. Then in Section 5 we test and perform our novel methodologies on data collected
from drifters in the LatMix deployment, which reveals new insights and discovers previously hid-
den mesoscale and submesoscale structures. Discussion and conclusions can be found in Section 6.

Overall, the principle contribution of this paper is a general framework for analysing Lagrangian
data from clustered drifter deployments. Specifically, this methodology provides a tool to detect
for the presence of various mesoscale flow features and separate those features from the subme-
soscale flow—while allowing such features to evolve over space and time—together with provid-
ing quantified statistical uncertainty of output.
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2 Modelling Framework

The primary conceptual model used throughout this manuscript is that the total velocity of a
Lagrangian particle utotal can be decomposed into three components,

utotal = ubg + umeso + usm, (1)

where ubg is a large scale background flow, umeso is the mesoscale flow (> 10 km, > 10 days)
and usm is the submesoscale flow (100m–10km, 1 hr–10 days). The background flow is assumed
to be spatially homogeneous in some local region around the drifters, and thus includes motions
such as inertial oscillations and large scale currents. Mesoscale features are structures that be-
have non-locally across the drifters, and are thus the smoothly varying fluid structures that will be
parameterised, such as the constant strain rate used in the tracer release experiments [8]. The sub-
mesoscale currents are simply the residual motion, not captured by the background or mesoscale
flow. In practice, the scales captured by these three types of motion will vary depending on the
deployment details and the limitations of the data, as much as the actual physical processes them-
selves, as we shall show.

Surface drifter motion is constrained to a fixed depth near the ocean surface, where the two-
dimensional positions are measured in geographic coordinates longitude and latitude. For the
work here it is necessary to use map coordinates {x(t), y(t)} with a projection that locally pre-
serves area and shape. Following [11] we use the transverse Mercator projection with central
meridian placed between the minimum and maximum longitude of the drifter experiment and
add a false northing and easting to shift the origin to the southwest corner. The total velocity
utotal of a drifter is then two-dimensional and assumed to represent the velocity at the depth of
the drifter drogue. The work here will also be generally applicable to clustered deployments of
RAFOS floats with minor modification, but we will use the terminology of drifters throughout the
manuscript.

2.1 A local Taylor expansion

One of the simplest models for separating flow components is to perform a local Taylor expan-
sion of the velocity field. Suppose we have observations from K clustered drifters at time t, where
the position of drifter k (1 ≤ k ≤ K) in x and y orthogonal directions is given by {xk(t), yk(t)}, mea-

sured in metres, and the corresponding velocity is given by d
dt{xk(t), yk(t)}, measured in metres

per second. We then take a Taylor series expansion of the velocity field evaluated at the position
of drifter k, such that we model its velocity as

d

dt

[
xk(t)
yk(t)

]

︸ ︷︷ ︸
utotal

=

[
ubg(t)
vbg(t)

]

︸ ︷︷ ︸
ubg

+

[
u0 + u1t
v0 + v1t

]
+

1

2

[
σn + δ σs − ζ

σs + ζ δ − σn

] [
xk(t)− x0

yk(t)− y0

]

︸ ︷︷ ︸
umeso

+

[
usm

k (t)
vsm

k (t)

]

︸ ︷︷ ︸
usm

, (2)

where

• {xk(t), yk(t)} are observations from drifter k at time t,

• {ubg(t), vbg(t)} is the spatially homogeneous time-varying background flow,

• {u0, v0, u1, v1, σn, σs, ζ, δ} are the model parameters for the mesoscale flow,
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• {x0, y0} is the expansion location and has no consequence to the model, other than redefining
{u0, v0},

• {usm
k (t), vsm

k (t)} are the residual ‘submesoscale’ velocities for each drifter, assumed to be
zero-mean in time, but also zero mean in space across drifters.

The mesoscale parameters are simply re-definitions of the standard spatial gradients: the diver-
gence is δ = ux + vy, the vorticity is ζ = vx − uy, the normal strain rate is σn = ux − vy, and
the shear strain rate is σs = vx + uy. The normal and shear strain rates can be combined to a

scalar value for the strain rate σ =
√

σ2
n + σ2

s and rotation angle θ = arctan [σs/σn]/2, where
σn = σ cos(2θ), σs = σ sin(2θ).

Equation (2) therefore separates background, mesoscale, and submesoscale features in the data,
following the conceptual model of equation (1). For the moment, the eight mesoscale parameters
are assumed to be sufficiently slowly varying that we can treat them as constant over some time
window, although we will relax this restriction later. In practice, the mesoscale component of the
model will capture any coherent feature that has constant spatial gradient across the cluster of
drifters, whether that is a large scale more permanent feature like a Western boundary current
or a transient mesoscale eddy—or nothing at all. The spatially homogeneous time-varying ‘back-
ground’ flow will capture inertial and tidal oscillations, but may also erroneously include parts
of a time or spatially varying mesoscale flow. Finally, the residual ‘submesoscale’ velocity will
include any velocity contributions not captured by the other components.

The model of equation (2) was applied to drifter observations by [12] to obtain estimates of the
spatial gradient parameters, but with two key differences from the approach taken here. First, the
spatial gradients were allowed to vary at each observational time point, without any constraints
on the rate of fluctuation. Second, the expansion point {x0, y0} was chosen to be the time-varying
centre-of-mass of the cluster of drifters. The consequence of this choice is quite significant and
is worth considering in more detail. Defining the centre-of-mass (or first moment) as mx(t) ≡
1
K ∑

K
k=1 xk(t) and my(t) ≡ 1

K ∑
K
k=1 yk(t), it follows from equation (2) that the centre-of-mass velocity

includes contributions from both the homogeneous background as well as the spatial gradients,

d

dt

[
mx(t)
my(t)

]
=

[
ubg(t)
vbg(t)

]
+

[
u0 + u1t
v0 + v1t

]
+

1

2

[
σn + δ σs − ζ

σs + ζ δ − σn

] [
mx(t)− x0

my(t)− y0

]
, (3)

where no submesoscale is assumed to be present as we have defined 1
K ∑

K
k=1 usm

k (t) = 0. That the
mesoscale spatial gradients have a (potentially) significant impact on the velocity of the centre-
of-mass is evident in the top row of Figure 1, where the entire cluster of drifters is advected by
the linear flow. Now if the expansion point is taken to be the centre-of-mass, {x0(t), y0(t)} =
{mx(t), my(t)}, then equation (3) reduces the background velocity to the sample mean velocity,

such that ubg(t) ≈ d
dt mx(t). As a result, after subtracting equation (3) from (2), the velocities of the

individual particles in the centre-of-mass frame,

d

dt

[
xk(t)− mx(t)
yk(t)− my(t)

]
=

1

2

[
σn + δ σs − ζ

σs + ζ δ − σn

] [
xk(t)− mx(t)
yk(t)− my(t)

]
+

[
usm

k (t)
vsm

k (t)

]
, (4)

only depend on the spatial gradients and submesoscale flow. In some sense, the difference be-
tween equation (2) and equation (4) is quite remarkable: simply by changing to centre-of-mass
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Figure 1: Simulation of 9 drifters from equation (2) over 6.25 days, with starting positions, number
of drifters, and length of experiment taken to match LatMix Site 1. In each panel the submesoscale
velocities {usm

k (t), vsm
k (t)} follow a Wiener increment process with diffusivity equal to 0.1 m2/s.

The top row shows drifter positions, and the bottom row shows positions with respect to centre-
of-mass at each time step. From left to right we include the following model components. Left:
diffusivity only. Centre left: strain and diffusivity. Centre right: strain, vorticity, and diffusivity
(strain dominated). Right: strain, vorticity, and diffusivity (vorticity dominated). In each plot
where a parameter is present, it has been set as κ = 0.1m2/s, σ = 7 × 10−6/s, θ = 30◦, ζ = 6 ×
10−6/s (centre right), and ζ = 8 × 10−6/s (right). We have set u0 = v0 = u1 = v1 = ubg = vbg = 0.
The trajectories are simulated using the Euler-Maruyama scheme.

coordinates, the potentially complicated form of the background flow, {ubg, vbg}, is eliminated,
along with all the velocity variance associated with mesoscale advection of the centre-of-mass
from equation (3). With this choice of reference frame, the spatial gradients in the model now
only characterise the spreading of particles, i.e., the second moment, as shown in the second row of
Figure 1, along with any spreading caused by the submesoscale process.

2.2 Diffusivity

A key measure with which we evaluate our techniques is to measure the diffusivity of observed
and modelled velocities. We define the submesoscale diffusivity for each drifter k as in equation
(21) of [13], such that

κsm
k,x (t) =

1

2

d

dt
xsm

k (t)2 =
∫ t

0
usm

k (t)usm
k (τ)dτ, (5a)

κsm
k,y (t) =

1

2

d

dt
ysm

k (t)2 =
∫ t

0
vsm

k (t)vsm
k (τ)dτ, (5b)

where xsm
k (t) is calculated from the residual velocities, usm

k (t), such that xsm
k (t) =

∫ t
0 usm

k (t)dt,
and similarly for ysm

k (t). As in equation (10) of [13], a joint diffusivity measure across all drifters
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could be defined by averaging the positions/velocities before applying the derivatives/integrals
in equations (5a) and (5b); however, we choose to calculate diffusivity separately for each drifter
k to reflect the fact that drifters are spatially spread in a clustered deployment, and hence their
diffusivity values may depend on spatial scale within a spatially inhomogeneous flow field.

In general, it is also useful to consider the isotropic diffusivity as this is rotationally invariant,
and as such, does not depend on our our choice of coordinate system. The isotropic submesoscale
diffusivity for drifter k is defined as

κsm
k,z (t) =

1

4

d

dt
zsm

k (t)2 =
1

2

∫ t

0
wsm

k (t)wsm
k (τ)dτ, (6)

where zsm
k (t) = xsm

k (t) + iysm
k (t), wsm

k (t) = usm
k (t) + ivsm

k (t), and i ≡
√
−1. The isotropic diffusiv-

ity is the average of κsm
k,x (t) and κsm

k,y (t) such that κsm
k,z (t) =

1
2{κsm

k,x (t) + κsm
k,y (t)}.

The diffusivity is also related to the power spectral density of complex velocity wk(t) where

S(ω) ≡ 1

T

∣∣∣∣
∫ T

0
wk(t)e

−iωtdt

∣∣∣∣
2

. (7)

S(ω) is known as the Lagrangian frequency spectrum and is related the isotropic diffusivity in
equation (6) with

κk,z(T) =
1

4
S(0), (8)

as shown in [14]. Formally, diffusivity requires the process to be stationary and is defined in
the limit as T → ∞, but in practice we are always limited to finite observation times. The to-
tal variance of a complex particle velocity is conserved with the Lagrangian frequency spectrum,
1
T

∫
wk(t)

2dt =
∫

S(ω)dω, and in this sense it will be useful to think of how the model in equa-
tion (2) describes the distribution of variance in the frequency spectrum.

Equations (5), (6) and (7) are theoretical constructs as they require submesoscale velocities to
be observed continuously in time. In practice, drifter observations are only observed at discrete
time points. In Section 3 we will discuss how to estimate submesoscale diffusivity from clustered
drifter data using our modelling and estimation approach.

We note that diffusivities could also be calculated directly from raw velocities { d
dt xk(t),

d
dt yk(t)},

or from centre-of-mass velocities that have only had the background removed and still contain
mesoscale flow contribution (equation (4)), and such values of diffusivity will in general be much
larger than the submesoscale diffusivities. This highlights the scale-dependent nature of diffusiv-
ity, as well as the challenges in comparing different measurements of diffusivity.

2.3 Model solutions

The mesoscale component of equation (2) is a linear ordinary differential equation with tractable
analytical solutions [e.g. 15, 16]. However, the submesoscale component of equation (2) is assumed
unknown, and may represent a range of different phenomena. Thus, for our simulation analyses
that follow in this paper we generate the submesoscale process stochastically using trajectory paths
defined by

d

dt

[
xk(t)
yk(t)

]
=

[
u0

v0

]
+

1

2

[
σn + δ σs − ζ

σs + ζ δ − σn

] [
xk(t)− x0

yk(t)− y0

]
+
√

2κdWt, (9)

6



where the function dW represents an increment of a two-dimensional Wiener process (a random
walk in the discrete-time limit) and we have not included any time-dependence that affects the
centre-of-mass. The Lagrangian frequency spectrum of such a process is simply

S(ω) = 4κ. (10)

The frequency spectrum of internal waves (perhaps the best known submesoscale process) will
have either more or less variance, depending on the frequency. We thus consider the Wiener incre-
ment process to be a reasonably agnostic choice. Notably absent from equation (9) is the spatially
homogeneous background flow. In practice this contains a significant amount of power from iner-
tial and tidal oscillations, but it does not significantly impact the estimation of the mesoscale quan-
tities as we shall show. The particle trajectories shown in Figure 1 are sampled from equation (9),
where each column contains different choices for the mesoscale parameters, but the submesoscale
diffusivity κ is held constant (the first column has no mesoscale and hence the particles follow a
random walk).

In the absence of the stochastic submesoscale white noise process, the Lagrangian trajectories
from equation (9) are purely deterministic and thus their Lagrangian frequency spectra can be
computed exactly, as we shall now show. For the following analytical solutions we set δ = 0, but
make no such assumption in the estimation procedure that follows. To integrate equation (9) with
κ = 0, note that simply re-positioning a particle’s initial location can be used to redefine {u0, v0}.
Specifically, if the initial position of the particle is given by {x(0), y(0)} with nonzero {u0, v0}, the
{u0, v0} can be set to zero, so long as the initial position is set to {x(0)− xu, y(0)− yu} where

[
xu

yu

]
=

2

s2

[
σn σs − ζ

σs + ζ −σn

] [
u0

v0

]
, (11)

and the Okubo-Weiss parameter is defined by s2 ≡ σ2 − ζ2. Thus, without loss of generality, we
can simply take {u0, v0} and the expansion point to be zero.

The complex path z(t) = x(t)+ iy(t)with initial position given by {x(0), y(0)} = {r cos α, r sin α}
is

z(t) =





r
s eiα

(
s cosh

(
st
2

)
+

(
σei2(θ−α) + iζ

)
sinh

(
st
2

))
if σ2

> ζ2

r
s̄ eiα

(
s̄ cos

(
s̄t
2

)
+

(
σei2(θ−α) + iζ

)
sin

(
s̄t
2

))
if σ2

< ζ2
(12)

and the associated velocity w(t) = u(t) + iv(t) is given by

w(t) =





r
2 eiα

(
s sinh

(
st
2

)
+

(
σei2(θ−α) + iζ

)
cosh

(
st
2

))
if σ2

> ζ2

r
2 eiα

(
−s̄ sin

(
s̄t
2

)
+

(
σei2(θ−α) + iζ

)
cos

(
s̄t
2

))
if σ2

< ζ2
(13)

where we have defined the complementary Okubo-Weiss parameter by s̄2 ≡ ζ2 − σ2. The mean-
square distance of a particle from the origin is given by

1

T

∫ T

0
z(t)2 dt =





2r2

Ts3 sinh
(

sT
2

) [
σA cosh

(
sT
2

)
+ sB sinh

(
sT
2

)]
− r2

s2 ζC if σ2
> ζ2

2r2

Ts̄3 sin
(

s̄T
2

) [
−σA cos

(
s̄T
2

)
+ s̄B sin

(
s̄T
2

)]
+ r2

Ts̄2 ζC if σ2
< ζ2

(14)

and total velocity variance,

1

T

∫ T

0
w(t)2 dt =

{
r2

2sT sinh
(

s
2 T

) [
σA cosh

(
s
2 T

)
+ sB sinh

(
s
2 T

)]
+ r2ζC

4 if σ2
> ζ2

r2

2s̄T sin
(

s̄
2 T

) [
σA cos

(
s̄
2 T

)
− s̄B sin

(
s̄
2 T

)]
+ r2ζC

4 if σ2
< ζ2

(15)
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where
A = σ + ζ sin 2 (θ − α) , B = σ cos 2 (θ − α) , C = ζ + σ sin 2(θ − α), (16)

and T is the length of time that has passed since the particle has moved from its initial position.
The Lagrangian frequency spectrum of a particle in a linear velocity field can now be computed

using equations (13) and (7) which yields

S(ω) =





r2

T sinh2
(

sT
4

) [
σA cosh( s

2 T)+sB sinh( s
2 T)−ζC

ω2+ s2
4

+ s2C(ω+ζ/2)(
ω2+ s2

4

)2

]
if σ2

> ζ2

r2

T sin2
(

s̄T
4

) [
−σA cos s̄T

2 +s̄B sin s̄T
2 +ζC

ω2− s̄2
4

+ s̄2C(ω+ζ/2)(
ω2− s̄2

4

)2

]
if σ2

< ζ2

(17)

where the Lagrangian frequency spectra of complex-valued velocities are permitted to be asym-
metric in ω (see [17]), which will occur in equation (17) when ζ 6= 0. Asymmetric spectra arise
when the rotary spectra are unequal and there is a preferred direction of spin [18]. With no strain
and after sufficiently long observation time (T >> 1/ζ), equation (17) becomes a single frequency
delta function, reflecting the rotation of a particle from the vorticity. However, for the cases consid-
ered here, observation times are at most O(1/s, 1/s̄), and often much less. The result is a spectrum
that is generally very red (S(ω) ∼ ω−2), with total power increasing in observation time T.

The Lagrangian frequency spectrum in equation (17) would appear to indicate that particles
advected by a linear velocity field have a diffusivity, following equation (8). However, while it is
true that the linear velocity field causes particles to disperse, increasing their second moment with
T, this spreading is entirely deterministic with correlations between particles spatially and across
time, and thus does not formally meet the requirement that diffusivity results from a stationary
random velocity process. From the perspective of trying to isolate and estimate the diffusivity
of submesoscale processes (which may be stationary at these scales), the linear velocity field may
be viewed as contaminating the lowest frequencies in the spectrum, providing erroneously high
values of diffusivity if not removed correctly.

Figure 2 shows the one-sided Lagrangian frequency spectrum of a single particle simulated
using equation (9). The Lagrangian frequency spectrum thus has two distinguishing parts: the
white noise submesoscale process given by equation (10) and the deterministic red process given
by equation (17). In Figure 2 the observed particle spectrum is very nearly the linear addition of
the theoretical Lagrangian frequency spectra of the mesoscale and submesoscale models of equa-
tions (10) and (17) respectively. In terms of Figure 2, the objective of the methodology is to remove
the deterministic contribution of the mesoscale flow (in blue), in order to study the submesoscale
process that remains.

3 Estimation and Hierarchical Modelling

3.1 Parameter estimation

Estimates for the mesoscale parameters in equation (2) from observations will be obtained
using least squares regression, by minimising the sum of the squared residuals representing the
non-mesoscale flow, as we shall now show. This approach therefore fits as much of the data to
the mesoscale part of the model as possible. To perform the fits, we make the important step of
decomposing the K drifter velocities into K drifter velocities relative to the centre-of-mass, plus

8
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Figure 2: The one-sided frequency spectrum for a particle integrated with equation (9) is shown
in black. The particle is initially placed at {x(0), y(0)} = {1 km, 1 km} and integrated for 5 days
with simulation parameters set to κ = 0.1 m2/s and σ = 1 × 10−5/s. The theoretical spectrum of
the strain-only model, equation (17), is shown in blue, and the theoretical spectrum of the white
noise process, equation (10), is shown in red.

a centre-of-mass velocity, as represented in equations (3) and (4) respectively. In other words the
summation of equations (3) and (4) recovers equation (2). When put into matrix-vector notation
for observations these models can be jointly written as

U = XA + ǫ, (18)

where we have defined

U =
d

dt




x̄k(tn)
ȳk(tn)
mx(tn)
my(tn)




︸ ︷︷ ︸
2(K+1)N×1

, ǫ =




usm
k (tn)

vsm
k (tn)

ubg(tn)
vbg(tn)




︸ ︷︷ ︸
2(K+1)N×1

, (19)

and

X =
1

2




0KN 0KN 0KN 0KN x̄k(tn) ȳk(tn) −ȳk(tn) x̄k(tn)
0KN 0KN 0KN 0KN −ȳk(tn) x̄k(tn) x̄k(tn) ȳk(tn)

2 · 1N 0N 2tn 0N m̄x(tn) m̄y(tn) −m̄y(tn) m̄x(tn)
0N 2 · 1N 0N 2tn −m̄y(tn) m̄x(tn) m̄x(tn) m̄y(tn)




︸ ︷︷ ︸
2(K+1)N×p

, A =




u0

v0

u1

v1

σn

σs

ζ

δ




︸ ︷︷ ︸
p×1

. (20)
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In this notation, x̄k(tn) ≡ xk(tn)− mx(tn), ȳk(tn) ≡ yk(tn)− my(tn) are length KN column vectors
of the N observations at times t1 ≤ tn ≤ tN from each of the K drifters in a chosen time window
of width W = tN − t1. Similarly m̄x(tn) ≡ mx(tn) − x0, m̄y(tn) ≡ my(tn) − y0 are length N
column vectors of the moving centre-of-mass at times t1 ≤ tn ≤ tN . The particular ordering of
the observations within each vector in equations (19) and (20) does not matter, so long as it is
consistent, and in fact, there is no restriction that the drifter observations occur at the same time,
despite our choice of notation. We have defined 0KN and 1KN to be KN × 1 column vectors of
zeros and ones, respectively. Under each matrix we have given its size, where p is the number of
parameters, and in this case p = 8. The vector A contains model parameters which are estimated
using the least squares solution

A = (X′X)−1X′U. (21)

By combining equations (18) and (21) the residual submesoscale and background velocities can be
estimated by taking

ǫ = [1 − X(X′X)−1X′]U. (22)

The least-squares solution is equivalent to the optimal maximum likelihood solution when the
residuals are Gaussian and independent and identically distributed. In general, weighted least
squares solutions should be used if residuals are correlated or have unequal variance, and al-
though this will likely be the case here, weighted-least squares requires prior knowledge of the
distributional structure of the residuals which we do not wish to assume is known. Overall, we
found the (non-weighted) least squares solution of equations (21)–(22) to be robust in simulation
experiments and real data analysis, and to perform better than performing least squares directly
on the representation of equation (2) on raw velocities for each drifter without removing centre-
of-mass. This is due to the fact that the K drifter velocities in centre-of-mass coordinates, with
the addition of the centre-of-mass velocity, can be thought of as a collection of K + 1 drifters that
are more independent of each other than the K drifters in fixed-reference frame coordinates. This
leads to errors that are more uncorrelated over drifters yielding better least squares parameter fits.

3.2 Flow decomposition

Once the parameters have been estimated using equation (21), the constituent parts of the
conceptual model of equation (1) can be computed. The mesoscale contribution to each drifter is
computed using

[
umeso

k (tn)
vmeso

k (tn)

]
≡

[
u0 + u1t
v0 + v1t

]
+

1

2

[
σn + δ σs − ζ

σs + ζ δ − σn

] [
xk(tn)− x0

yk(tn)− y0

]
. (23)

The background is assumed to be spatially homogeneous, and thus can be recovered from the
residuals by averaging across drifters at each time,

[
ubg(tn)
vbg(tn)

]
≡ 1

K

K

∑
k=1

(
d

dt

[
xk(tn)
yk(tn)

]
−

[
umeso

k (tn)
vmeso

k (tn)

])
. (24)

Finally, the submesoscale contribution to each drifter is all that remains,
[

usm
k (tn)

vsm
k (tn)

]
≡ d

dt

[
xk(tn)
yk(tn)

]
−

[
umeso

k (tn)
vmeso

k (tn)

]
−

[
ubg(tn)
vbg(tn)

]
. (25)
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This accomplishes the conceptual decomposition of velocities proposed in equation (1). We
emphasise that the fits of equations (18)–(22) could be performed without the centre-of-mass ve-
locity by removing the bottom 2 rows of U, ǫ and X in equations (19) and (20). This is in effect
only fitting observations to the second-moment model of equation (4), as also proposed in [12].
While this fit still obtains estimates of mesoscale quantities {σ, θ, ζ, δ}, and disentangles the sub-
mesoscale {usm(t), vsm(t)}, the first-moment mesoscale parameters {u0, u1, v0, v1} and the back-
ground {ubg, vbg} can no longer be estimated directly (unless fitted a posteriori). This means a
full decomposition of the flow as performed in equations (23)–(25) is not directly accomplished
using the K drifters in centre-of-mass frame only. We shall refer to this reduced technique as the
second-moment fitting method. In contrast, we refer to the full estimation technique from equa-
tions (18)–(22) as the first and second-moment fitting method.

Regardless of fitting method, we estimate the isotropic submesoscale diffusivity κsm
k,z (t), defined

in equation (6), by measuring the implied square displacement of the submesoscale velocities within
the window. This yields

κ̂sm
k,z (tn) =

∆

4N

∣∣∣∣∣
tN

∑
t=t1

usm
k (t) + ivsm

k (t)

∣∣∣∣∣

2

, (26)

where ∆ is the sampling interval of drifter observations measured in seconds. Equation (26) is
equivalent to taking 1/4 of the periodogram of the velocities—or the absolute square of the Fourier
Transform—at frequency zero. This is consistent with the fact that the theoretical diffusivity of a
stationary complex-valued process is determined by 1/4 of the zero-frequency of the Lagrangian
frequency spectrum as per equation (8).

The above equations produce estimates of the background, mesoscale and submesoscale parts
of the flow over some choice of temporal window length W = tN − t1. A small value of W results
in a reduced number of data points in the regression causing potentially noisy estimates of the
parameters. Conversely, a large value of W incorporates more distant observations in time and
will smooth over this noise, but may also lead to poor estimates if the underlying mesoscale pa-
rameters are evolving over time. This is the classic bias-variance trade-off in statistical estimation.
In Section 4 we will address the issue of choosing an appropriate window length, and we will use
this to introduce a principled estimation method using splines that allow parameters to evolve
slowly over time, resulting in smoother and less variable estimates.

3.3 Hierarchical modelling

The Taylor series model of equation (2) specifies 8 mesoscale parameters {u0, v0, u1, v1, σ, θ, ζ, δ},
and these can be estimated from clustered drifter data using the machinery of Section 3.1. How-
ever, not every clustered set of drifters will necessarily experience all of these effects (as we il-
lustrated in Figure 1), or the data might not give statistically significant estimates of some of the
parameters even if they are truly present. Alternatively, we might already know the true values
of some of the parameters and so we do not wish to estimate these. Motivated by this, we now
introduce a simple method of removing certain parameters from the model, by either setting them
to be zero or a pre-specified fixed value, and then estimating only the remaining unspecified pa-
rameters. If we were to instead set parameters to zero (or fixed values) after estimation, we would
sub-optimally lose part of the data contained in the removed estimate.

11
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Figure 3: Hierarchy of mesoscale models using the second-moment fitting method where p indi-
cates the number of parameters. A model with increased complexity is used only if it explains
significantly more variance than the lower complexity model. Models with fewer parameters are
favoured when a choice must be made.

To remove a parameter from the model, one simply removes the parameter from the vector
A in equation (20) and the corresponding column from the matrix X. In a similar vein, multiple
parameters can be removed by repeating this procedure. Ultimately, depending on the number
of parameters removed, the matrix X will be sized 2(K + 1)N × p, and the column vector A, will
be sized p × 1, where p is the number of free parameters that remain in the model. If p = 8,
as presented in equation (19), then this represents the full mesoscale solution. If any parameter
values are known a priori then they should be inserted as fixed values into A and then multiplied
by the corresponding respective columns from X and then subtracted from the vector U, before
proceeding with the least squares minimisation of equation (21) to estimate remaining parameters.

We now consider the special case of only estimating the mesoscale quantities {σ, θ, ζ, δ} us-
ing the second-moment fitting method discussed in Section 3.2. If we estimate all quantities in
{σ, θ, ζ, δ} then p = 4. In contrast, if we remove all mesoscale parameters such that {σ, θ, ζ, δ} =
{0, 0, 0, 0}, then p = 0, and only submesoscale velocities remain in the centre-of-mass frame of
equation (4). If 0 < p < 4, this represents scenarios where some mesoscale components from
{σ, θ, ζ, δ} are present, and some are not, and we display this schematically in Figure 3. We con-
sider strain rate and strain angle (or equivalently shear and normal strain rates) to be either jointly
present or both missing. Overall, there are therefore eight possible models we might consider,
shown explicitly in Figure 3. Regardless of the choice of model choice, the remaining non-zero
parameters are estimated using equation (21) as before.

Figure 3 also shows that the eight models exist in a hierarchy. The simplest model, the null
hypothesis shown at the top of Figure 3, corresponds to velocities in a centre-of-mass frame that are
submesoscale only. There are three direct descendants of this model in the hierarchy, the addition
of vorticity or divergence, each of which requires one more parameter, or strain, which requires
two additional parameters. The central philosophy is that a descendent in the hierarchy should
only be used if it shows meaningful improvement in some relevant error metric, essentially
disproving the null hypothesis. Because adding parameters will always produce at most the same
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residual (which may itself be the error metric), this approach avoids using too many degrees-of-
freedom and producing meaningless or noisy parameter estimates.

It is worth noting that estimating all four mesoscale parameters {σ, θ, ζ, δ} at each time point (as
is often done in the literature) would benefit from this conceptual approach. With K drifters there
are 2K position observations at a given time point, from which 4 parameters must be estimated.
For modestly sized drifter deployments, this computation runs the risk of producing estimates
with no statistical significance.

In general, when picking between model hierarchies for all 8 mesoscale parameters, {σ, θ, ζ, δ}
and {u0, v0, u1, v1}, then we are faced with an increased complexity of selecting between reduced
permutations of the full specification. Motivated by this, in Section 4.3 we will introduce methodol-
ogy for estimating time-varying parameters using splines, which allows for a natural mechanism
from which to build a full hierarchy of first and second-moment candidate models, as we shall
show.

3.4 Selecting between hierarchies

We have provided a mixed background-mesoscale-submesoscale modelling framework in equa-
tion (2) and an estimation framework in Section 3.1. Then in Section 3.3 we discussed how to es-
timate parameters using different hierarchies of mesoscale components in the overall model. The
appropriateness of a chosen model in the hierarchy, for a given set of observational drifter data,
can be evaluated by estimating the error resulting from the fitted model at a given point in time.
We argue there is more than one meaningful way in which error can be computed—and in this
section we shall define two such ways that prove to be very useful in terms of model evaluation.

3.4.1 Fraction of Variance Unexplained (FVU)

The first method is perhaps the most intuitive. Here we calculate how much variance remains
in the ‘unexplained’ residual submesoscale velocities found in equation (25). This value in itself,
however, is not a meaningful quantity unless it is presented in reference to some other quantity.
Therefore, to provide a normalised and meaningful metric we introduce the notion of the Fraction
of Variance Unexplained (FVU), which is defined as

FVU =
∑

tN
tn=t1

∑
K
k=1

{
usm

k (tn)2 + vsm
k (tn)2

}

∑
tN
tn=t1

∑
K
k=1

{[
d
dt (xk(tn)− mx(tn))

]2
+

[
d
dt

(
yk(tn)− my(tn)

)]2
} , (27)

and hence quantifies the proportion of the variability remaining in the submesoscale model, as
compared to velocities that have only had the centre-of-mass removed (and will hence still contain
second-moment mesoscale effects present in equation (4)). The FVU will therefore in general be
some value between zero and one. An FVU value close to one occurs when there is little to no
mesoscale component estimated from the data. In contrast, an FVU value equal to zero means the
mesoscale model successfully explains all variability in the data after the background is removed,
and there is no residual submesoscale process left behind. For mixed mesoscale and submesoscale
flow the FVU will be somewhere between zero and one, and this will vary dependent on the
magnitude and number of mesoscale components present in the model fit.

In Figure 4, in the left column we display FVU values obtained from our simulation setup
shown in Figure 1. Specifically, we generate 100 replicated simulations of each of the four model
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scenarios shown in Figure 1—diffusivity only, strain+diffusivity, strain+vorticity+diffusivity (strain
dominated), strain+vorticity+diffusivity (vorticity dominated)—where the stochasticity between
replicates occurs from simulating submesoscale velocities from a Gaussian white noise process as
in (9). Again, as in LatMix Site 1, we simulate nine drifters within each simulation with matching
initial positions, but this time we just simulate half-hourly records for one day. We use the pro-
cedures described in Section 3.3 to fit four hierarchies of models to each simulation within each
scenario. Note that we perform a global fit by setting the window length W to be the full length
of the observations (one day). The FVU values are calculated from equation (27) and the resulting
spread of values across simulations are shown by box and whisker plots in Figure 4. We also pro-
vide the spread of observed FVU values in an oracle case where the true mesoscale parameters are
known.

In the figure we have also indicated the estimated theoretical FVU value obtained by com-
bining the mesoscale variance obtained from equation (15) for each drifter k (let us denote this
σ2

wmeso(k)) with the submesoscale variance of a white noise process given from the spectral form of
equation (10) yielding σ2

wsm = 4κ(1− 1/K), which is the same for each drifter, where the (1− 1/K)
rescaling is required to account for moving to a centre-of-mass reference frame. We can then obtain

an estimated theoretical FVU value, which we denote F̃VU, by taking

F̃VU =
σ2

wsm{
1
K ∑

K
k=1 σ2

wmeso(k)
}
+ σ2

wsm

. (28)

This an estimated theoretical FVU, rather than an exact solution, because we have ignored the
co-dependence between the mesoscale and submesoscale processes and assumed these variances
aggregate separately. The results however indicate remarkable agreement between theoretical and
observed quantities for FVU over all scenarios (except when insufficient mesoscale parameters are
proposed in the candidate model), suggesting equation (28) is an accurate approximation for the
spatial and temporal scale of the simulation performed.

Overall, the key finding of Figure 4 (left column) is that the FVU helps identify the correct
model in all true model scenarios considered, and correctly estimates how much of the variance is
explained by the mesoscale and submesoscale components in agreement with the theory. The ad-
dition of a mesoscale parameter which is truly present significantly reduces the FVU, but adding
further unnecessary mesoscale parameters (such as the divergence which is not present in any of
the scenarios) does not significantly reduce FVU. This diagnostic tool therefore shows utility as a
method for detecting the presence of mesoscale effects on drifter velocities, and for selecting be-
tween mesoscale model hierarchies. We shall scrutinise this further when we apply our procedures
to LatMix data in Section 5.

3.4.2 Fraction of Diffusivity Unexplained (FDU)

The FVU is a measure of how much of the variability of the data remains in the submesoscale
residuals. However, we argue this is not the only metric with which to ultimately select from a
model hierarchy. First of all, as the residual velocities are being directly minimised (along with
the background) in the least squares fits of equations (18)–(22), the more complex models will
generally have a lower FVU than nested simpler models with fewer or no mesoscale components
(as seen in Figure 4). This may lead to over-fitting models unless parameter penalisation meth-
ods are introduced. Secondly, mesoscale processes are primarily low frequency processes with
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Figure 4: FVU (left column) and FDU (right column) for candidate models fitted to trajectories
generated from the four model scenarios from Figure 1. Each subplot here is for a different true
model scenario (the y-axis), and each box and whisker within a subplot provides the spread of
FVU/FDU values from a fitted candidate model (the x-axis). The final box and whisker in each
subplot is using the true mesoscale parameter values. The spread of results is over 100 repeated
simulations using 9 drifters sampled every 30 minutes for one day. The estimated theoretical FVU,
obtained from equation (28), and the estimated theoretical FDU, obtained from equation (30), are
overlaid by a red horizontal line in each subplot. Parameters are estimated using the second-
moment fitting method, where results using the first and second-moment fitting method yield
near identical results as u0 = v0 = u1 = v1 = ubg = vbg = 0 in these simulations.
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decaying Lagrangian velocity frequency spectra, as we showed in Figure 2. Submesoscale pro-
cesses, on the other hand, will likely have Lagrangian velocity frequency spectra that are spread
across frequencies and concentrated away from frequency zero. For example, white noise sub-
mesoscale residuals will have a flat spectrum, and an internal wave process, represented by the
Garrett-Munk spectrum for instance, will have significant energy at the inertial frequency f , but
very small energy at frequency zero.

For these reasons, we now motivate a second metric with which to evaluate different model
hierarchies. Specifically, we measure the diffusivity of the residual process for each drifter, and com-
pare this with the implied total diffusivity of each drifter when no mesoscale is removed. In other
words, we compare the variability of the aggregated and submesoscale-only components in terms
of their respective diffusivities, with a view that submesoscale diffusivity should be much lower
than total diffusivity when even a mild mesoscale component is present (as mesoscale energy is
dominant at low frequencies in the velocity spectra).

To quantify this effect we introduce the notion of the Fraction of Diffusivity Unexplained (FDU),
which we define by

FDU =
∑

tN
tn=t1

∑
K
k=1 κ̂sm

k,z (tn)

∑
tN
tn=t1

∑
K
k=1 κ̂c.o.m.

k,z (tn)
, (29)

where κ̂sm
k,z (tn) has already been defined in equation (26). κ̂c.o.m.

k,z (tn) is the diffusivity for drifter k

with only centre-of-mass removed, which is defined by replacing usm
k (t) with d

dt (xk(tn)− mx(tn))

and vsm
k (t) with d

dt

(
yk(tn)− my(tn)

)
in equation (26). The FDU measures how much diffusivity is

present in the submesoscale residual after removing the mesoscale, as compared to the diffusivity
that is observed relative to the centre-of-mass when no mesoscale has been removed. An FDU
value of zero means that the submesoscale process has no diffusivity, and an FDU of one will
occur when either no mesoscale is present, or the mesoscale does not create any diffusive-type
behaviour on the particles.

We display observed FDU values across our simulations in the right column of Figure 4, mir-
roring the simulation setup used for FVU described in Section 3.4.1. The estimated theoretical FDU
values are overlaid by a red horizontal value from computing

F̃DU =
κsm

z{
1
K ∑

K
k=1 κmeso

k,z

}
+ κsm

z

, (30)

where the expected submesoscale diffusivity for all drifters is κsm
z = κ(1 − 1/K) where again the

(1 − 1/K) rescaling is required to account for moving to a centre-of-mass reference frame. We
obtain κmeso

k,z by taking 1/4 of the zero-frequency value from equation (17) (as per the definition of

equation (8)). Similarly to equation (28), equation (30) is an estimated theoretical FDU because we
are assuming independent dispersion caused by the mesoscale and submesoscale. Nevertheless,
Figure 4 indicates consistent agreement between observed and theoretical FDU values (when the
correct model is fitted), highlighting the accuracy of this approximation.

The main finding of the FDU analysis in Figure 4 is that the mesoscale explains significantly
more of the total diffusivity than the total variance. This is as expected because of the low-
frequency nature of mesoscale processes (see Figure 2) and highlights the usefulness of computing
FDU values to test for mesoscale presence. In all cases we can see that FDU analysis reveals the cor-
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rect generating mesoscale model even better than FVU does. We shall further use this diagnostic
method of assessing model fits with LatMix data in Section 5.

4 Uncertainty Quantification and Capturing Temporal Evolution

4.1 Uncertainty Quantification

In this section we first provide a method for estimating the uncertainty of parameter estimates
when applied to observational datasets. In a simulation setting, uncertainty estimates be obtained
by repeating experiments several times stochastically or with different initial conditions, but this
cannot be done in the real world where clustered drifter deployments are scarcely repeated in
the same region of the ocean, and will likely be measuring different mesoscale and submesoscale
features each time.

Instead, we resort to the bootstrap, which resamples the observed data in such a way as to
provide a population of different datasets with which to measure uncertainty. Specifically, the
bootstrap is implemented by taking a random sample of K trajectories from the K drifters with re-
placement, such that the same trajectories may be selected multiple times as if they were different
drifters. Then the mesoscale parameters are estimated for this random sample of trajectories. Let
us denote any one of these parameter estimates as p̂b. The process is then repeated B times, every
time randomly resampling a set of K trajectories with replacement, such that we obtain B param-
eter estimates { p̂1, . . . , p̂B}. These replicated bootstraps can be used to form quantiles which then
provide confidence intervals for the parameter of interest, often set to values such as 90% or 95%.

Alternatively, we can also estimate the standard error of p̂, the parameter estimate for p, by
measuring the sample standard deviation of p̂b given by

SEB( p̂) =

[
1

B − 1

B

∑
i=1

{
p̂(i)− p̂(·)

}2
]1/2

, (31)

where p̂(·) =
1
B ∑

B
i=1 p̂(i).

In Figure 5 we show a histogram of bootstrap parameter estimates for {σ, θ, ζ}, with a red
vertical line at the true value, and a blue vertical line showing the average bootstrap estimate. The
purpose of this simulation is simply to show that bootstrap parameter estimates are centred at their
true values and symmetrically distributed, despite the fact that drifter trajectories are sampled
with replacement. We found this to be a consistent feature across different true parameter values
and simulation settings.

Next we establish that the bootstrap estimate for the standard error of parameter estimates,
given in equation (31), agrees with standard errors of parameter estimates observed from repeated
simulations. In Table 1 we compare simulated and bootstrap standard errors for two experiments:
the strain-only and the strain-dominated simulations of Figure 1. The standard errors from sim-
ulations are across 100 repeated simulations, but the bootstrap standard error approximation is
just from 1 simulation of drifters each time (as we would have with real data). Despite this, the
average bootstrap standard error estimate is very close to the standard error from repeated simu-
lations (with the standard deviation of the bootstrap standard error accounting for any difference).
Notice also that the bootstrap standard error estimates are conservative, which is better than the
converse, and correctly increase when more parameters need to be estimated. This demonstrates
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Figure 5: Histogram of bootstrap parameter estimates for strain rate, strain angle, and vorticity,
over 100 repeated simulations where B = 100 for each simulation, thus obtaining 10,000 total boot-
strapped parameter values. The trajectories are generated as in Figure 1 in the strain-dominated
model, and the parameters are estimated using the second-moment fitting method. Any bootstrap
estimates outside the range of the x-axis are placed in the limiting visible bar in the histogram on
each side. The red vertical line is the true parameter value, and the blue vertical line is the average
bootstrap estimate.

σ (s−1)× 106 θ (◦) ζ(s−1)× 106

Strain-only Simulation
Simulated 1.17 6.68 N/A
Bootstrap 1.32± 0.365 6.29 ± 2.47 N/A

Strain-dominated Simulation
Simulated 1.22 6.78 1.61
Bootstrap 1.55± 0.459 8.08 ± 3.43 1.94± 0.572

Table 1: Observed standard errors from simulation, and average bootstrap standard error esti-
mates from equation (31) (where B = 100), over 100 repeated simulations, for both the strain-only
and strain-dominated simulations of Figure 1. We also provide the standard deviation of bootstrap
standard error estimates across the 100 simulations, as indicated after the ± symbol.

the accuracy of equation (31) in estimating the standard error of parameter estimates obtained
from equation (21). We will make repeated use of the bootstrap in the analysis of LatMix data in
Section 5.

4.2 Time-evolving parameters using rolling windows

To estimate the temporal evolution of mesoscale features across a drifter deployment we al-
low the mesoscale parameters to evolve over time. We first introduce a simple method for doing
so where we take a rolling time window of width W and estimate {δ(tn), ζ(tn), σn(tn), σs(tn)},
and possibly {u0(t), v0(t), u1(t), v1(t)}, in equation (20) over time using velocity observations con-

tained in the interval [ d
dt xk(tn − W/2), d

dt xk(tn + W/2)] and [ d
dt yk(tn − W/2), d

dt yk(tn + W/2)] us-
ing the exact approach outlined in Section 3.1 repeated at every observation time-step tn in the
experiment.

In general, the window width parameter W should be chosen to be large enough to ensure
we have reduced variance and statistically significant estimates of each mesoscale parameter, but
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Figure 6: Simulation of 9 drifters using the identical configuration of Figure 1 (strain only) except
that the strain rate changes linearly across time from σ = 1 × 10−5/s to σ = 1 × 10−6/s and
κ = 0.5m2/s. The left panel displays drifter positions. The right panel displays drifter positions
with respect to their centre-of-mass.
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Figure 7: The left panel shows rolling-time window estimates of the varying strain rate from the
data presented in Figure 6 over 3 choices of window lengths using the second-moment fitting
method. The right panel shows the standard error of these time-varying estimates over 100 re-
peated simulations, plotted against σ/2.

not so large that resolution is lost from over-smoothing and information is lost. To examine this
effect we display simulated trajectories in Figure 6 which exactly follows the strain-only simula-
tion from Figure 1 except that the strain rate parameter now decreases linearly by a factor of 10
across the length of the 6.25 day simulation, and we have increased κ to 0.5m2/s. We then fit the
second-moment fitting method with the strain-only model over rolling windows with 3 choices of
W (6-hours, 1-day, or 3-days). In Figure 7 we display the time-varying strain rate estimate over
time from the data in Figure 6, alongside the standard error of this estimate over time (obtained
over 100 repeated simulations). With this increased diffusivity, the inherent trade-off with the
rolling-window method becomes apparent. Long window lengths provide low uncertainty, but
the parameter estimates are only provided in the temporal centre of the experiment (and would be
biased if extended outwards). Short windows, on the other hand, provide variable estimates with
large standard errors that exceed half the parameter value, as we see on the right panel—meaning
such estimates cannot be statistically distinguished from zero in a ”two sigma” sense. A daily
window length is perhaps the most appropriate balance here.

Motivated by these challenges, we shall shortly provide a more principled approach to gen-
erating smoothly-evolving parameter estimates using splines in Section 4.3. Before doing so, we
present results of a large simulation analysis which we will use to guide our window length se-
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Figure 8: Estimated standard errors for the strain rate (in the units of the true strain rate) across a
dense grid of fixed strain rate values σ and window lengths W in a strain-only simulation mirror-
ing the setup in Figure 1. In the left panel we have set κ = 0.1 m2/s and in the right κ = 1 m2/s.
The strain rate estimates are obtained using the second-moment fitting method of a strain-only
model, and the standard errors are obtained using the jackknife (a variant of the bootstrap which
is computationally faster to implement and was found to perform similarly). The standard errors
in the heatmap are upper-bounded by 0.9 for representation purposes. We draw a red line (and
best fit regression line) where the standard error is half the true parameter value for each value of
the strain rate.

lection choices in the LatMix experiment (where this analysis will also be useful for the spline
methodology that shortly follows). Specifically, in Figure 8 we plot a heatmap of standard errors
in strain rate estimation, over a grid of values of true constant strain rate σ and estimation window
length W. We repeat the analysis for a low diffusivity κ = 0.1 m2/s and high diffusivity setting
κ = 1 m2/s. Otherwise the settings are the LatMix-type settings used in Figure 1, using 9 drifter
trajectories with matching starting locations. The standard errors are in units of the true strain rate,
and we have marked with a red line the point at which the standard error is equal to ”two sigma”
(along with a best line regression fit for ease of reading). The way in which this plot should be
interpreted is that for a given strain rate (and diffusivity), the window length should be at least as
long as the best-fit red line marking the point at which estimates become statistically significant.
For example, higher diffusivities, or lower strain rates, will require longer windows with which to
estimate the parameters significantly. We focus on strain in these simulations, as this was found
to be the most pronounced mesoscale effect in the LatMix analysis that follows, but this analysis
could be repeated with other mesoscale parameters to inform window length selection for other
drifter deployments.

4.3 Slowly-evolving parameters using splines

To generalise the idea of time windowing to estimate the mesoscale parameters, we represent
the parameters as coefficients as a finite sum of B-splines,

σ(t) =
M

∑
m=1

σ̂mBm(t), (32)
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where M is the total number splines over the experiment window and σ̂m are the M coefficients.
A B-spline (or basis spline) of degree S is a local piecewise polynomial that maintains nonzero
continuity across S knot points placed at times τi. These knot points define the extent of the B-
splines, and therefore let us choose an effective window length for parameter fluctuations. The
lowest degree (S = 0) splines are boxcar functions between the knot points, and are thus identical
to non-overlapping windows in Section 4.2. At degree S = 1 B-splines are triangle functions that
span two knot points, thus providing continuity in time as well as a piecewise first derivative.
This generalises to higher degrees, where a B-spline of degree S has S non-zero derivatives as
reviewed in [11]. The key benefit to this approach is that we can allow for time variation in the
parameters while simultaneously choosing an effective window length—all while adding only a
few coefficients to the model.

To extend the estimation method presented in Section 3.1, we now require M coefficients for
each of the p parameters, resulting in pM total coefficients to estimate. Rewriting vector A from
equation (20) we have that

A =




um
0

vm
0

σm
n

σm
s

ζm

δm




︸ ︷︷ ︸
pM×1

, (33)

where each coefficient, e.g., um
0 , is a column vector of the M B-spline coefficients (we will shortly

discuss why u1 and v1 can be dropped here). The data matrix X correspondingly expands from p
to pM columns,

X =
1

2




0KN 0KN x̄k(tn)Bm(tn) ȳk(tn)Bm(tn) −ȳk(tn)Bm(tn) x̄k(tn)Bm(tn)
0KN 0KN −ȳk(tn)Bm(tn) x̄k(tn)Bm(tn) x̄k(tn)Bm(tn) ȳk(tn)Bm(tn)

2Bm(tn) 0N m̄x(tn)Bm(tn) m̄y(tn)Bm(tn) −m̄y(tn)Bm(tn) m̄x(tn)Bm(tn)
0N 2Bm(tn) −m̄y(tn)Bm(tn) m̄x(tn)Bm(tn) m̄x(tn)Bm(tn) m̄y(tn)Bm(tn)




︸ ︷︷ ︸
2(K+1)N×pM

,

(34)
where each column is repeated for each of the M B-spline. Note that, because the B-splines are
local functions, the resulting matrix may be relatively sparse.

Parameter estimation is as before, but equation (23) for the mesoscale flow is replaced by,

[
umeso

k (tn)
vmeso

k (tn)

]
≡

M

∑
m=1

[
um

0 Bm(tn)
vm

0 Bm(tn)

]
+

1

2

[
σm

n + δm σm
s − ζm

σm
s + ζm δm − σm

n

] [
(xk(tn)− x0) Bm(tn)
(yk(tn)− y0) Bm(tn)

]
. (35)

The background flow and submesoscale flow are still recovered using equations (24) and (25),
respectively.

One of the advantages to using B-splines is that the fitting method model hierarchy is simpli-
fied. Figure 9 shows the complete model hierarchy that includes the first and second-moment
fitting method, unlike Figure 3 which only showed the hierarchy for the second-moment fitting
method. The key simplification is that with B-splines we can drop (u1, v1) from X when going
from equation (20) to (34), since time dependence is encoded in the B-spline estimates for (u0, v0).
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Figure 9: Hierarchy of first and second-moment mesoscale models where p indicates the number
of parameters. A model with increased complexity is used only if it explains significantly more
variance than the lower complexity model. Models with fewer parameters are favoured when a
choice must be made.

Choosing the appropriate model from Figure 9 proceeds exactly as in Section 3.3, but with the
additional caveat that one must choose the spline degree S and the number of splines M. With
the restriction that the spline degree S < M, a reasonable upper bound is S = 3, the cubic spline.
The number of splines M can be chosen by assuming a minimum window length (as discussed in
Section 4.2), treating the centre of each window as a data point, and then applying the formula for
the canonical interpolating spline in [11]. To compute this explicitly, assume a time series of length
T, with minimum window length W, then this results in a total of M = max(⌊T/W⌋, 1) evenly
sized windows of minimum length. Now apply equations (7) and (8) in [11] using pseudo points
at {t1, t1 + T/M(j − 1/2), tN} where j = 2, . . . , M − 1. When the drifters are evenly sampled in
time, this will result in M splines that each have support from the same number of data points,
and each data point will intersect S + 1 splines. As a result, there is really only one parameter to
adjust: the effective window length or, alternatively, the number of splines M. Because setting
M = 1 exactly reproduces the approach in Section 3.1 using fixed parameters, the freedom for
parameters to vary over time can be systematically increased by increasing M.

Quantifying uncertainty with spline solutions requires a modification to the approach in Sec-
tion 4.1. This is because the resulting bootstrapped parameter estimates are no longer pointwise
estimates of each parameter, but rather time-varying global solutions. This means that computing
the mean of each mesoscale parameter at each instant in time will not, in general, result in a valid
solution since each solution is a global fit to the data. As a result, rather than considering a mean
value from bootstrap solutions, as in Figure (5), we must establish the most likely bootstrap solu-
tion. Applying the bootstrap B times results in B continuous time varying model solutions of the
parameters. Thus, we compute the most likely solution (of the B solutions) from an estimated joint
probability distribution function (PDF). Specifically, for each estimated parameter in the model, we
use a kernel density estimator to estimate a PDF from the bootstrap replicates for each parameter
at each point in time using the methodology in [19]. For example, at time tn we estimate a one-
dimensional PDF P̂ζ(tn, ζ̂) using the B bootstrap parameter estimates for ζ and a two-dimensional

22



PDF P̂σn,σs(tn, σ̂n
b(tn), σ̂s

b(tn)) for σn, σs. The likelihood of each path is then found with

L(σ̂n
b, σ̂s

b, ζ̂b) =
N

∏
n=1

P̂σn,σs(tn, σ̂n
b(tn), σ̂s

b(tn)) · P̂ζ(tn, ζ̂b(tn)), (36)

where, in practice, we include probabilities from all estimated parameters. The most likely solu-
tion is that with maximum L and confidence intervals are similarly calculated by including the Y
percent of the B most likely solutions.

5 Application to the LatMix Experiment

The lateral mixing (LatMix) field campaign of 2011 [1, 20] deployed drifters and dye with the
aim of understanding what causes mixing at the submesoscale, and how this varies both spatially
and temporally. The experiment consisted of two drifter deployments in the Sargasso Sea, where
the drifters were deployed in a cluster. The first deployment, which we refer to as ’Site 1’, consisted
of 9 drifters tracked for 6.1 days in an area of low strain, and the second deployment, ’Site 2’,
consisted of 8 drifters tracked for 6.3 days in an area of moderate strain. There has been a large
amount of interest and research from the experiment, e.g. [21].

In Figure 10 we plot the drifter trajectories for each site both in terms of their {x, y} positions,
but also with respect to the time-varying centre-of-mass across drifters. The effect of the mesoscale,
especially strain, can already be seen visually by inspecting this plot, both in the absolute and
centre-of-mass reference frames. There are also possible signs of divergence in Site 1 (the drifters
spreading in a non-random way), and vorticity in Site 2. We will inspect this in more rigorous
statistical detial using the methodology of this paper.

5.1 Fixed mesoscale parameter estimates

We first fit fixed (non-time-varying) mesoscale parameters to equation (4) using the second-
moment fitting method described in Section 3. We present the results for each site in the top half
of Table 2 using several model hierarchies. For each model hierarchy we present the estimated
mesoscale quantities, and the resulting submesoscale diffusivity. We also present FVU and FDU
values (equations (27) and (29) respectively) to assess model fit. To select the best model we use
the conceptual approach illustrated earlier in Figure 3.

For Site 1 we see reasonable evidence for adding the parameters {σ, θ} ahead of vorticity ζ or
divergence δ, as this creates the lowest FDU values thereby creating low submesoscale diffusivities
of κ ≈ 0.2m2/s, as reported in [1]. Next, we follow the hierarchy and consider adding vorticity or
divergence to the strain. Here we see little evidence for vorticity, but some for divergence, with
a marginal reduction in the FDU value for the latter. Finally, just for completion, we show the
full hierarchy. While this full hierarchy will always yield the lowest FVU compared to all simpler
models (as this is the objective function being minimised)—the FVU value does not appear to drop
significantly, and the FDU value has in fact increased, suggesting this to be an overfitted choice if
we are only selecting among fixed mesoscale parameters.

For Site 2 we see mixed evidence for either initially adding divergence or strain, but the vor-
ticity only fit performs poorly and in fact adds diffusivity as compared to raw centre-of-mass
velocities As divergence is only one parameter (vs two for strain), we would normally proceed
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Figure 10: LatMix trajectories of Site 1 (9 drifters) and Site 2 (8 drifters). Top row are the
positions in {xk(t), yk(t)}, bottom row relative to centre-of-mass {x̄k(t), ȳk(t)} = {xk(t) −
1
K ∑

K
k=1 xk(t), yk(t) − 1

K ∑
K
k=1 yk(t)}. The black and red star in the top row of plots indicate the

respective starting and ending centre-of-mass positions. {0, 0} in the {x, y} components corre-
sponds to {−73.0234, 31.7424} degrees longitude-latitude for Site 1 and {−73.6776, 32.2349} de-
grees longitude-latitude for Site 2.
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Fixed estimates (Site 1)
model σ ( f0) θ (◦) ζ ( f0) δ ( f0) κ (m2/s) FVU FDU
{ζ} 0 0 -0.000137 0 0.974 1.000 1.001
{δ} 0 0 0 0.0493 0.361 0.983 0.371
{σ, θ} 0.0591 -27.8 0 0 0.188 0.976 0.193
{σ, θ, ζ} 0.0785 -15.3 -0.0443 0 0.229 0.971 0.235
{σ, θ, δ} 0.0489 -25.6 0 0.0137 0.174 0.976 0.179
{σ, θ, ζ, δ} 0.0711 -12.2 -0.0443 0.0137 0.216 0.971 0.221

Fixed estimates (Site 2)
model σ ( f0) θ (◦) ζ ( f0) δ ( f0) κ (m2/s) FVU FDU
{ζ} 0 0 0.00613 0 4.011 0.999 1.000
{δ} 0 0 0 0.0125 1.886 0.997 0.470
{σ, θ} 0.0131 -67.0 0 0 1.906 0.996 0.475
{σ, θ, ζ} 0.0642 78.0 0.0650 0 1.950 0.985 0.486
{σ, θ, δ} 0.0107 -67.9 0 0.00258 1.874 0.996 0.467
{σ, θ, ζ, δ} 0.0637 77.0 0.0650 0.00258 1.919 0.985 0.478

Rolling estimates (Site 1) Rolling estimates (Site 2)
model κ (m2/s) FVU FDU κ (m2/s) FVU FDU
{ζ} 0.995 0.992 1.022 2.924 0.872 0.729
{δ} 0.325 0.974 0.334 2.341 0.838 0.584
{σ, θ} 0.183 0.961 0.188 1.680 0.710 0.419
{σ, θ, ζ} 0.282 0.937 0.290 0.825 0.675 0.206
{σ, θ, δ} 0.147 0.966 0.151 1.753 0.704 0.437
{σ, θ, ζ, δ} 0.248 0.941 0.255 0.722 0.669 0.180

Spline estimates (Site 1) Spline estimates (Site 2)
model κ (m2/s) FVU FDU κ (m2/s) FVU FDU
{ζ} 1.742 1.025 1.791 3.059 0.973 0.697
{δ} 0.342 0.983 0.352 3.438 0.831 0.783
{σ, θ} 0.178 0.976 0.183 2.118 0.837 0.483
{σ, θ, ζ} 1.433 0.997 1.473 1.041 0.808 0.237
{σ, θ, δ} 0.159 0.974 0.163 2.501 0.783 0.570
{σ, θ, ζ, δ} 1.446 0.996 1.487 1.466 0.770 0.334

Table 2: LatMix submesoscale diffusivity estimates and associated FVU and FDU, estimated over
candidate models in the hierarchy at each site using either fixed, rolling window, or spline param-
eter estimates. For fixed estimates we also show the mesoscale parameter estimates. The fixed
and rolling-window methods use the second-moment fitting methods, whereas the spline method
uses the first and second-moment fitting method.
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this way down the hierarchy using Figure 3. However, as we shall see when we account for time-
variation in the mesoscale parameters, there will be more evidence for a strain-only model than a
divergence-only model, therefore for comparison we follow this route down the hierarchy. When
considering adding vorticity or divergence, then now there is interestingly more evidence for vor-
ticity, with reduced FVU and FDU values. Overall however, we note that diffusivity values are
much larger at Site 2 using fixed parameters, with κ ≈ 2m2/s. This is likely due to the presence of
time-varying mesoscale features not being account for, as we shall now explore.

5.2 Time-evolving parameters using rolling windows

We now apply the rolling-window estimates using the second-moment fitting method, as dis-
cussed in Section 4.2. To pick a suitable window length W, we see from Table 2 that diffusivity
scales as order 0.1− 1 m2/s, and the strain rate when converted to days is approximately 1/3 days.
Therefore, using Figure 8 as a guide we choose a window length of W = 1 day (corresponding to
49 observations over 30-minute sampling intervals for each drifter). This choice also coincides
approximately with the inertial and diurnal periods meaning inertial oscillations and tides will
be relatively close to zero mean within the window, thus being closer to satisfying the zero-mean
assumption of the average submesoscale residuals across drifters made in equations (2)–(4).

Within Table 2 we provide the estimated submesoscale diffusivity, and FVU and FDU error
metrics, using rolling one-day windowed mesoscale parameter estimates for each hierarchy. As
expected, the FVU decreases everywhere (as more parameters are being fitted) in comparison to
the fixed-parameter fits. The FDU values, on the other hand, decrease in some but not all cases,
providing mixed evidence for time-variation at this stage. We notice the reductions in FVU and
FDU are most pronounced for Site 2, indicating this is the site most likely to have a time-evolving
mesoscale. Overall, there is now evidence for a time-varying strain-vorticity model. Including
divergence is now a less favourable choice than with the earlier analysis with fixed estimates.

In Figure 11 we display some examples of the time-varying parameter estimates using this ap-
proach. In the top panels we show strain rate over time at each respective site using a strain-only
model, where the evidence for more temporal evolution at Site 2 is clear. We overlay bootstrap tra-
jectories of these time series (as well as the fixed parameter estimates from Table 2) which indicates
this variation appears significant at Site 2, but largely not at Site 1. Also, the low values for strain
rate of ≈ 0.01 f0 in the fixed-parameter estimate appears to be a misfit due to model misspecifica-
tion from not allowing time-variation. The values are now larger than Site 1 when allowing time
evolution, as expected. In the bottom panels we show the time-varying strain rate and vorticity
estimates using a strain-vorticity model. Again there is evidence for time-variation which we will
explore further with spline fitting.

Although the parameter estimates obtained using rolling windows are overfitted and not slowly
varying, these fits however provide an extremely useful lower bound, in terms of interpreting esti-
mated submesoscale diffusivities and FVU/FDU values. This will help guide the implementation
for modelling time-variation more smoothly using significantly fewer parameters in the spline
methodology that follows. In contrast, the fixed parameter estimates provide a useful upper bound
on diffusivities and FVU/FDU values, as this approach is the most parsimonious.
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Figure 11: Fixed (red) and time-varying (blue) parameter estimates, where the latter are generated
with a one-day rolling window using the second-moment fitting method. Top-Left: strain rate
estimates with the strain-only model (Site 1). Top-Right: strain rate estimates with the strain-only
model (Site 2). Bottom-Left: strain rate estimates with the strain-vorticity model (Site 2) Bottom-
Right: vorticity estimates with the strain-vorticity model (Site 2). 100 bootstrapped time-varying
trajectories are shown in grey in each subplot.
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Figure 12: Distribution of strain rate parameters estimated for the first two days of the LatMix
experiment at Site 1. Contours indicate the percentage of samples enclosed. The left panel shows
estimated strain rate parameters using only the second-moment fitting method, where the right
panel shows estimates using the first and second-moment fitting method.

5.3 Slowly-evolving parameters using splines

We continue our analysis of the LatMix data by fitting time-evolving mesoscale parameters
using the splines approach defined in Section (4.3). We will use the full first and second-moment
fitting method allowing us to make a complete decomposition of the flow at both sites into back-
ground, mesoscale, and submesoscale components.

First, in Figure 12 we compare estimates of strain rate between the second-moment and the
first and second-moment fitting methods during the first two days of the LatMix Site 1 experiment.
This particular window has relatively low strain rates that may not be distinguishable from zero, as
seen in the top-left panel of Figure 11. Using the bootstrap estimates and a kernel density estimator,
the left panel of Figure 12 shows the distribution of strain rates using the second-moment fitting
method. While the peak of the distribution is consistent with the strain rate estimated over the
entire six day experiment, the 90% contour of the distribution includes an enormous range of strain
rates, including zero. In contrast, by including the first-moment as part of the fitting method, the
right-panel of Figure 12 shows a narrower range of strain rates that do not include zero. Thus, at
least in this example, the combined first and second-moment fitting method provides more robust
estimation than the second-moment fitting method by including extra information in the fit.

In Figure 13 we display the time-evolving parameter estimates at Sites 1 and 2 using a strain-
only and strain-vorticity model respectively. We overlay confidence intervals obtained using the
bootstrap procedure outlined in Section 4.3. The time evolution of the strain-vorticity parameters
is clear at Site 2, where all 3 mesoscale parameters {σ, θ, ζ} are seen to change in a smooth fashion
across the 6 days. In contrast, at Site 1, evidence of time variability for the strain rate is less clear,
as the estimate of constant strain rate (dashed-line) fits entirely within the confidence intervals.
Figure 13 also shows estimates of {u0, v0}, but their particular values are not directly interpretable,
as they depend on the location of the expansion point, {x0, y0}. Instead, from equation (3), it can
be seen that they contribute to the mesoscale description of the flow at the location of the centre-
of-mass.

We include the submesoscale diffusivity estimates, as well as FVU and FDU values, in the
bottom portion of Table 2, along with comparison values from a hierarchy of models at each site.
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Figure 13: Parameters of the spline based strain model fits to Site 1 (left panel) and strain-vorticity
model fits to Site 2 (right panel) using the first and second-moment fitting method. The most
likely solution is highlighted, with 90% and 68% most likely solutions shown in grey and dark
grey, respectively. The models are fit using four degrees of freedom per parameter with the splines
shown in the bottom row.

What we observe is quite remarkable: we can achieve FVU and FDU values that are very close
to the rolling window estimates, despite using significantly fewer parameters to describe the evo-
lution of the mesoscale velocity field. The evidence from Table 2 continues to support the choice
of a strain model at Site 1 (with minor evidence for the additional presence of divergence), and
a strain-vorticity model at Site 2. The estimated submesoscale diffusivities after performing the
fits are around κ = 0.2 m2/s at Site 1 and κ = 1.0 m2/s at Site 2, nearly an order-of-magnitude
difference.

Finally, we complete our analysis of the LatMix data by using the spline fits of Figure 13 to de-
compose the flow into the three components of our conceptual model of equation (1)—background,
mesoscale, and submesoscale—and then integrate over time to construct an implied set of drifter
trajectories for each component. This is displayed in Figures 14 and 15 for Site 1 and Site 2 re-
spectively. We have also included the mesoscale component in centre-of-mass coordinates. We
observe that the mesoscale components meander in the fixed reference frame and follow the ob-
served particle paths explaining most of their displacement and explain some of the spreading
in the centre-of-mass frame. This can be seen by directly comparing Figures 14 and 15 with Fig-
ure 10. The submesoscale components are random-walk like and broadly resemble a diffusive
process. The background components contain inertial oscillations and tides which create looping
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Figure 14: Decomposition of the flow at LatMix Site 1 using the strain-only model fitted with
splines using the first and second-moment fitting method. The left panel shows the the mesoscale
solution in the fixed coordinate reference frame (compare to the upper-left panel of Figure 10). The
centre panel shows the same solution in the centre-of-mass frame (compare to the lower-left panel
of Figure 10). The top-right and bottom-right panels show the path-integrated background and
submesoscale flow, respectively.

trajectories with roughly daily periodicity.

6 Discussion and Conclusion

The separation in equation (1) is a compelling conceptual model, based on the ideas of non-
local spreading in turbulence theory—but is the separation actually doing something useful in
practice? This idea can be tested by considering the cross-terms in the total energy of the model,
as was done in [22]. Specifically, the cross terms in the kinetic energy equation,

u2
total = u2

bg + u2
meso + u2

sm + 2
(

ubgumeso + umesousm + ubgusm

)
, (37)

should remain small if this is truly an orthogonal linear decomposition. To assess this quantity
we compute the coherence between the complex submesoscale signal and the complex mesoscale
signal in the centre-of-mass frame, as shown in Figure 16. The results show remarkably low coher-
ence (O(0.1)) at Site 1, across all frequencies, suggesting no relation between the two signals. In
contrast, Site 2 does show more coherence between the two signals, likely reflecting the challenges
of the separation in time-varying conditions. Despite this, the average coherence across frequency
bands is ≈ 0.2, suggesting the decomposition is successfully separating two mostly distinct sig-
nals.

One of the key strengths of this methodology is how few parameters are needed to estimate the
mesoscale parameters and perform the decomposition. For example, at Site 1 there are N = 294
observations of position from K = 9 drifters, resulting in 2NK degrees-of-freedom. The second-
moment fitting method uses 2N degrees-of-freedom to remove the centre-of-mass. Using a single
window across the entire time series to estimate the 2 parameters in the strain model, such as Site
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1 which is well described by a single set of strain rate parameters across the entire window, leaves
2N(K− 1)− 2 degrees-of-freedom to describe the submesoscale flow. In contrast, daily rolling win-
dows with NW = 49 points (corresponding to one day) that estimate strain rate parameters at each
of the N − NW time points, leaves only 2N(K − 2) + 2NW degrees-of-freedom to describe the sub-
mesoscale flow. As is evident in Figure 11, these extra degrees of freedom capture time-variability
in the parameters that may not be appropriate. Finally, the spline fits require estimating M coeffi-
cients per mesoscale parameter, and thus the spline based time-varying fits leave 2N(K − 1)− 2M
degrees-of-freedom to describe the submesoscale flow using the second-moment fits. With M = 4
sufficient to capture any time variability at Sites 1 and 2, this approach uses remarkably few pa-
rameters to perform this estimation. The benefit of which is that the decomposed submesoscale
trajectory will contain rich statistical information with which to do further Lagrangian analysis.

As discussed in the introduction, we view this works as complementary to that of [3, 10] who
recently developed a method for projecting clustered drifter trajectories to local Eulerian velocity
fields using Gaussian Process regression. The ultimate goal of [10] was to compute horizontal ve-
locity gradients with which to better understand vertical transport. The method was applied to the
CALYPSO an LASER drifter deployments. Applying our method to these datasets is a natural av-
enue for further investigation. More broadly speaking, what our method provides to complement
[3, 10], is not the Eulerian velocity field, but rather the Lagrangian decomposition of the trajecto-
ries into various components. This allows us to extract the specific submesoscale component from
the trajectory for further analysis within the Lagrangian setting. This allows for the estimation of
submesoscale diffusivity, which is not a topic covered in [3, 10]. However there is certainly scope
to merge and compare our methodologies, particular because the constructed Eulerian velocity
field can be directly compared with the mesoscale parameters we estimate locally over time (and
hence space) using our slowly-evolving spline fitting. Again, this is certainly a topic that warrants
further investigation. We also see potential for our work to naturally follow-on from the recent
methodology developed in [23] who identify clusters of drifter trajectories that share coherent
structures. For example, such clustering could be used to divide larger deployments into smaller
clusters, after which our method can then be applied to each cluster to separate flow components
within coherent structures.
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