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Understanding of spatiotemporal transmission of infectious dis-
eases has improved significantly in recent years. Advances in
Bayesian inference methods for individual-level geo-located epidemi-
ological data have enabled reconstruction of transmission trees and
quantification of disease spread in space and time, while account-
ing for uncertainty in missing data. However, these methods have
rarely been applied to endemic diseases or ones in which asymp-
tomatic infection plays a role, for which novel estimation methods
are required. Here, we develop such methods to analyse longitudinal
incidence data on visceral leishmaniasis (VL), and its sequela, post-
kala-azar dermal leishmaniasis (PKDL), in a highly endemic commu-
nity in Bangladesh. Incorporating recent data on infectiousness of
VL and PKDL, we show that while VL cases drive transmission when
incidence is high, the contribution of PKDL increases significantly as
VL incidence declines (reaching 55% in this setting). Transmission is
highly focal: 85% of mean distances from inferred infectors to their
secondary VL cases were <300m, and estimated average times from
infector onset to secondary case infection were <4 months for 88%
of VL infectors, but up to 2.9yrs for PKDL infectors. Estimated num-
bers of secondary VL cases per VL and PKDL case varied from 0–6
and were strongly correlated with the infector’s duration of symp-
toms. Counterfactual simulations suggest that prevention of PKDL
could have reduced overall VL incidence by up to 25%. These re-
sults highlight the need for prompt detection and treatment of PKDL
to achieve VL elimination in the Indian subcontinent and provide
quantitative estimates to guide spatiotemporally-targeted interven-
tions against VL.
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Spatiotemporal heterogeneity in incidence is a hallmark of
infectious diseases. Insight into this heterogeneity has in-

creased considerably in recent years due to greater availability
of geo-located individual-level epidemiological data and the
development of sophisticated statistical inference methods for
partially observed transmission processes (1–6). These meth-
ods have been developed for epidemics, in which the immune
status of the population is known, and for diseases with a
short time course that are relatively easily diagnosed, such
as measles, influenza, and foot-and-mouth disease (3, 4, 7).
Here, we extend these methods to a slowly progressing endemic
disease of humans in which asymptomatic infection plays an
important role.

We analyse detailed longitudinal individual-level data on

incidence of visceral leishmaniasis (VL), and its sequela, post-
kala-azar dermal leishmaniasis (PKDL), in a highly endemic
community in Fulbaria, Bangladesh (8). VL, also known as
kala-azar, is a lethal sandfly-borne parasitic disease targeted
for elimination as a public health problem (<1 case/10,000
people/year at subdistrict/district level depending on the coun-
try) in the Indian subcontinent (ISC) by 2020 (9). It has a
disproportionate impact among the most vulnerable groups
in the population in the ISC (10). PKDL is a non-lethal skin
condition that occurs after treatment for VL in 5–20% of cases
in the ISC, and less frequently in individuals who report no
history of prior VL (8, 11). It is characterised by skin lesions
of differing severity and parasite load, ranging from macules
and papules (least severe, lowest load) to nodules (most severe,
highest load) (12). We estimate the relative contributions
of different disease states (VL, PKDL and asymptomatic in-
fection) to transmission, and quantify the rate of spread of
infection around infected individuals in space and time by re-
constructing transmission trees. Our analysis provides insight
into the spatiotemporal spread of visceral leishmaniasis as
well as quantitative estimates that can guide the targeting of
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interventions, such as active case detection and indoor residual
spraying (IRS) of insecticide, around VL and PKDL cases.

PKDL cases are believed to play a role in transmission of
VL as historical and recent xenodiagnosis studies have shown
that all PKDL forms are infectious towards sandflies (12–14),
and a 1992 study in West Bengal, India, suggested that PKDL
cases are capable of initiating a VL outbreak in a susceptible
community (15). Furthermore, PKDL cases typically have
long durations of symptoms before treatment and often go
undiagnosed as the disease is not systemic (16, 17). While
VL incidence has declined considerably throughout the ISC
since 2011 (by >85%, from ∼37,000 cases in 2011 to ∼4,700 in
2018) (18, 19), reported numbers of PKDL diagnoses increased
from 590 in 2012 to 2,090 in 2017 before falling to 1,363 in
2018 (19, 20). PKDL has therefore been recognised as a major
potential threat to the VL elimination programme in the ISC
(11), which has led to increased active PKDL case detection.
Nevertheless, the contribution of PKDL to transmission in
field settings still urgently needs to be quantified.

Although the incidence of asymptomatic infection is 4 to
17 times higher than that of symptomatic infection in the
ISC (21), the extent to which asymptomatic individuals con-
tribute to transmission is still unknown (22, 23). What is
clear is that asymptomatic infection plays a role in transmis-
sion through generating herd immunity, since a significant
proportion of asymptomatically infected individuals develop
protective cell-mediated immunity against VL following infec-
tion, as measured by positivity on the leishmanin skin test
(LST) (24–27). Several studies have shown that asymptomatic
infection is spatiotemporally clustered (25, 28), and therefore
immunity is also likely to be spatially clustered, but so far no
transmission models have accounted for this (23). Since most
surveillance data and data from epidemiological studies does
not contain information about numbers of asymptomatically
infected individuals over space and time (e.g. from longitudinal
serological testing), accounting for the role of asymptomatic
infection in transmission at the individual level represents a
substantial missing data problem. The endemic nature of the
disease and high asymptomatic infection potential mean that
it is necessary to infer initial infection statuses for individuals
without symptomatic disease, unlike for many epidemic dis-
eases where individuals can be assumed to be susceptible or
are known to have been vaccinated. Coupled with the long and
variable incubation period of VL (lasting anywhere between
weeks and years but typically 2-6 months (29)) and lack of
data on the flight range of the P. argentipes sandfly vector,
these factors make inference of spatiotemporal transmission
of VL particularly challenging.

By combining data from a recent xenodiagnosis study in
Bangladesh (12) with the geo-located data on incidence and
duration of symptoms of VL and different forms of PKDL
from the community study in Bangladesh, and fitting it to
an individual-level spatiotemporal VL transmission model,
this study provides the first detailed insight into the changing
roles of VL, PKDL, asymptomatic infection and immunity
in transmission over the course of an epidemic, and the first
estimates of numbers of secondary cases and infections gen-
erated by individual VL and PKDL cases. The Bayesian
data augmentation framework that we develop in order to
fit the model accounts for the unobserved infection times of
VL cases, the missing data on asymptomatic infections, in-

dividuals’ unobserved initial infection statuses, migration of
individuals and uncertainty in infection sources, and could
be readily adapted to analyse spatiotemporal transmission of
other endemic diseases in which asymptomatic infection plays
a hidden role.

Study Data. We analyse detailed demographic and disease data
on 24,781 individuals living in 5,118 households in 19 paras
(hamlets) situated in two large clusters in a 12km×12km area
in Fulbaria upazila, Mymensingh district, Bangladesh from
2002-2010 (Fig. 1A). The data from this study are fully de-
scribed elsewhere (8, 30). Briefly, month of onset of symptoms,
treatment, relapse, and relapse treatment were recorded for
VL cases and PKDL cases with onset between 2002 and 2010
(retrospectively for cases with onset before 2007), and year of
onset was recorded for VL cases with onset before 2002. There
were 1018 VL cases and 190 PKDL cases with onset between
January 2002 and December 2010 in the study area, and 413
VL cases with onset prior to January 2002.

Over the whole study area, VL incidence followed an epi-
demic wave, increasing from approximately 40 cases/10,000/yr
in 2002 to ∼90 cases/10,000/yr in 2005 before declining to <5
cases/10,000/yr in 2010 (Fig. 1B). PKDL incidence followed
a similar pattern but lagging VL incidence by roughly 2yrs,
peaking at 30 cases/10,000/yr in 2007. However, VL and
PKDL incidence varied considerably across paras (average
para-level incidences: VL 18–124 cases/10,000/yr, PKDL 0-
31 cases/10,000/yr, SI Appendix, Table S6) and time (range
of annual para-level incidences: VL 0–414 cases/10,000/yr,
PKDL 0–120 cases/10,000/yr, SI Appendix, Fig. S18).
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Fig. 1. (A) Map of the study area showing the households that had VL cases (red),
PKDL cases (blue), and no cases (white with grey outline) with onset between 2002
and 2010. Household locations jittered slightly to preserve patient anonymity. (B)
Observed incidence of VL and PKDL for the whole study area by month of onset,
2002-2010.
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Results

Model Comparison. Different versions of the spatiotemporal
transmission model described in Materials and Methods, in
which decrease in infection risk with distance from an infec-
tious individual is characterised by an exponentially decay-
ing spatial kernel function, were fitted to the data. These
comprised models with and without extra within-household
transmission (over and above that from being at zero dis-
tance from an infectious individual) and with different pre-
symptomatic and asymptomatic relative infectiousness. Mod-
els with additional within-household transmission fitted the
data significantly better than those without according to a
version of the Deviance Information Criterion (DIC) appro-
priate for missing data models (SI Appendix) (31). The range
of pre-symptomatic and asymptomatic relative infectiousness
tested (0–2% of that of VL cases) was chosen based on the
95% confidence interval of the probability that asymptomatic
individuals can transmit to sandflies (0,0.023) from a xen-
odiagnosis study in India in which 0 of 183 asymptomatic
individuals infected sandflies (32). Apart from the spatial
transmission rate constant, which decreased with increasing
pre-symptomatic/asymptomatic infectiousness, estimates of
the transmission parameters were highly consistent across
this pre-symptomatic/asymptomatic infectiousness range (SI
Appendix, Table S4). Here we present the results from the
model with 2% pre-symptomatic/asymptomatic infectiousness,
since there is evidence from outbreak investigations suggest-
ing that asymptomatic individuals can, at least on occasion,
infect sandflies (27, 33), and because it represents the most
conservative assumption in terms of our aim of estimating the
contribution of PKDL to transmission.

Parameter Estimates. We estimated the transmission model
parameters and unobserved data using the Markov Chain
Monte Carlo (MCMC) algorithm described in Materials and
Methods and SI Appendix. The posterior distributions obtained
for the model parameters are shown in SI Appendix, Fig. S6 and
the corresponding posterior modes and 95% credible intervals
(CI) are given in Table 1.

Based on the relative infectiousness of VL and the different
types of PKDL from the xenodiagnostic data (SI Appendix,
Table S1), in the absence of any other sources of transmission,
the estimated probability of being infected and developing
VL if living in the same household as a single symptomatic
individual for 1 month following their onset was 0.018 (95%
CI: 0.014, 0.026) for VL and ranged from 0.009 to 0.023
(95% CIs: (0.007,0.014)–(0.017, 0.033)) for macular/papular
PKDL to nodular PKDL. Living in the same household as a
single asymptomatic individual, the monthly risk of VL was
only 0.00037 (95% CI: 0.00027, 0.00053), if asymptomatic
individuals are 2% as infectious as VL cases.

The risk of infection if living in the same household as an
infectious individual was estimated to be more than 10 times
higher than that if living directly outside the household of
an infectious individual (hazard ratio = 11.6), with a 95%
CI well above 1 (7.3, 16.6). The estimated spatial kernel (SI
Appendix, Fig. S20) around each infectious individual shows a
relatively rapid decay in infection risk with distance outside
their household, the risk halving over a distance of 87m (95%
CI: 73, 101m).

The inferred prevalences of the different infection states

Table 1. Transmission parameter estimates from the spatiotemporal
model

Parameter Mode 95% CI∗

Risk of developing VL† if living for 1 month in
the same household as a:
- VL case 0.018 (0.014, 0.026)
- PKDL case:

- macular/papular 0.009 (0.007, 0.014)
- plaque‡ 0.017 (0.012, 0.023)
- nodular 0.023 (0.017, 0.033)

- asymptomatic individual 0.00037 (0.00027, 0.00053)
Risk of asymptomatic infection† if living for 1
month in the same household as a:
- VL case 0.099 (0.074, 0.140)
- PKDL case:

- macular/papular 0.053 (0.039, 0.074)
- plaque‡ 0.092 (0.067, 0.127)
- nodular 0.125 (0.095, 0.175)

- asymptomatic individual 0.0021 (0.0015, 0.0030)
Risk of developing VL from background trans-
mission each month

6.6 ×
10−5

(3.4 × 10−5,
10× 10−5)

Risk of asymptomatic infection from back-
ground transmission each month

3.7 ×
10−4

(1.9 × 10−4,
5.9× 10−4)

Decrease in risk of infection with distance
from an infectious individual (per 100m)§

57.7% (52.0%, 63.1%)

Hazard ratio for increase in infection risk from
living in the same household as an infectious
individual compared to living just outside

11.6 (7.3, 16.6)

∗ CI = credible interval, calculated as the 95% highest posterior density interval

† risk of subsequent VL/asymptomatic infection if susceptible

‡ based on assumed infectiousness

§ in the absence of background transmission and relative to living directly outside the

case household.

in the model illustrate the increasing level of immunity in
the population over the course of the epidemic generated by
asymptomatic infection (SI Appendix, Fig. S19).

Contribution of PKDL and Asymptomatic Infection to Trans-
mission. We assess the contribution of different infectious
groups to transmission in terms of their relative contribu-
tion to the transmission experienced by susceptible individuals
(Fig. 2A and SI Appendix, Fig. S21). The contribution of
VL cases was fairly stable at around 75% from 2002 to the
end of 2004 before decreasing steadily to 0 at the end of the
epidemic, while the contribution of PKDL cases increased
from 0 in 2002 to ∼75% in 2010 (95% CI: 63, 81%). Only a
small proportion of the total infection pressure on susceptible
individuals, varying between 8% and 15% over the course of
the epidemic, was estimated to have come from asymptomatic
and pre-symptomatic individuals.

Fig. 2B shows the breakdown of the individual infection
pressures on VL cases at their infection times, and indicates
that the contribution of PKDL to these infection pressures
grew from 0% at the start of the epidemic to approximately
55% (95% CI: 2, 92%) for the cases with onset in 2010. Unsur-
prisingly, given the uncertainty in the infection times of the
VL cases, the credible intervals for the relative contributions
of each infection source to the infection pressures on the cases
at their infection times are very broad.
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Fig. 2. Contributions of background transmission, asymptomatic individuals, pre-
symptomatic individuals, VL cases and PKDL cases to (A) the total risk of new
infections, and (B) the individual infection pressures on VL cases at their infection
times (in relative terms). Note that time is non-linear in (B) since cases are ordered by
their onset time. Solid lines show modes in (A), medians in (B); shaded regions show
95% CIs. The relative contribution of PKDL to the infection pressures on the 7 VL
cases with onset in 2010 in (B) is lower than to the infection pressure on susceptible
individuals in 2010 in (A) since the 2010 VL cases all had onset before May and were
therefore most likely infected in 2009 when the relative contribution of VL was higher.
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Fig. 3. Inferred transmission tree in part of the south-east cluster of villages at different
stages of the epidemic: (A) December 2003, (B) December 2005, and (C) December
2009. Dots show individuals coloured by their infection state (see key). Arrows show
the most likely source of infection for each case infected up to that point in time over
1,000 sampled transmission trees, and are coloured by the type of infection source
and shaded according to the proportion of trees in which that individual was the most
likely infector (darker shading indicating a higher proportion). Asymptomatic infections
are not shown for clarity. S/A = susceptible or asymptomatic, E = pre-symptomatic, I =
VL, R = recovered, D = dormantly infected, P = PKDL (see SI Text). GPS locations of
individuals are jittered slightly so that individuals from the same household are more
visible. An animated version showing all months is provided in Movie S1.
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Reconstructing the Transmission Tree. By sampling 1,000
transmission trees from the joint posterior distribution of
the transmission parameters and the unobserved data (as de-
scribed in Materials and Methods), we can build a picture of
the most likely source of infection for each case and how infec-
tion spread in space and time. Fig. 3 shows the transmission
tree at different points in time in part of the south-east cluster
of villages. Early in the epidemic and at its peak (Figs. 3A–B),
most new infections were due to VL cases. Towards the end of
the epidemic, some infections were most likely due to PKDL
cases and there was some saturation of infection around VL
cases (Fig. 3C). The inferred patterns of transmission suggest
that disease did not spread radially outward from index cases
over time, but instead made a combination of short and long
jumps around cases with long durations of symptoms and
households with multiple cases.
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VL, R = recovered, D = dormantly infected, P = PKDL (see SI Text). GPS locations of
individuals are jittered slightly so that individuals from the same household are more
visible. An animated version showing all months is provided in Movie S1.
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Fig. 3. Inferred transmission tree in part of the south-east cluster of villages at different
stages of the epidemic: (A) December 2003, (B) December 2005, and (C) December
2009. Dots show individuals coloured by their infection state (see key). Arrows show
the most likely source of infection for each case infected up to that point in time over
1,000 sampled transmission trees, and are coloured by the type of infection source
and shaded according to the proportion of trees in which that individual was the most
likely infector (darker shading indicating a higher proportion). Asymptomatic infections
are not shown for clarity. S/A = susceptible or asymptomatic, E = pre-symptomatic,
I = VL, R = recovered, D = dormantly infected, P = PKDL (see SI Appendix). GPS
locations of individuals are jittered slightly so that individuals from the same household
are more visible. An animated version showing all months is provided in Movie S1.
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Transmission Distances and Times. Having reconstructed a
set of samples of the transmission tree as described above,
we can use them to calculate the mean distance from each
VL/PKDL infector to their VL-case infectees and the mean
times between their onset and the infections of their VL-
infectees, to assess how far and how quickly interventions need
to be performed around VL and PKDL cases.

Fig. 4A shows that the mean distances to VL-infectees for
VL and PKDL cases are mostly within 500m but tend to be
greater for PKDL cases (median 221m, inter-quartile range
(IQR): 163, 314m) than VL cases (median 167m, IQR: 106,
236m), reflecting the fact that around PKDL cases there has
typically already been considerable transmission from prior VL
and therefore development of immunity in asymptomatically
infected individuals. However, the mean times between infector
onset and VL-infectee infections are much greater for PKDL
cases (median 5.6 months, IQR: 3.0, 9.7 months) than VL cases
(median 1.9 months, IQR: 1.4, 2.7 months) (Fig. 4B). Thus,
whilst a similar intervention radius around new VL/PKDL
cases of ∼500m may be sufficient to capture most secondary
VL cases, the time window within which interventions need to
be performed to prevent secondary cases is much narrower for
VL cases than PKDL cases.

Numbers of Secondary Infections. Since we infer the unob-
served infection times of VL cases and asymptomatic indi-
viduals as part of the MCMC algorithm, we can calculate
the probability that each individual was infected by another
individual conditional on their estimated infection month. Us-
ing these probabilities, we can then estimate the numbers of
secondary infections generated by each infectious individual.

The mean numbers of secondary infections per VL case and
per PKDL case (Fig. 5A) show large variation, ranging from
0.4 to 28.6 for VL and 0.2 to 58.5 for PKDL (see SI Appendix,
Fig. S22 for the posterior distributions of the number of sec-
ondary infections generated by each VL and PKDL case), and
are overdispersed, with shape parameters for fitted gamma
distributions of 2.00 (95% confidence interval: 1.84, 2.17) and
1.21 (95% confidence interval: 1.01, 1.45) respectively. This
indicates that some cases generate far more secondary infec-
tions than others, a phenomenon known as ‘super-spreading’,
which has been observed for a variety of diseases (34, 35), and
hypothesised for VL (22, 36). The estimated mean numbers
of secondary infections for asymptomatic individuals are much
lower, ranging from 0 to 0.94. Whilst the numbers of secondary
infections for VL and PKDL may seem high, we note that they
are the number of new pre-symptomatic and asymptomatic
infections generated by each case, and that only approximately
1 in 7 new infections were estimated to have led to VL (29),
so the estimated numbers of secondary VL cases per case are
much lower (Fig. 4C).

As expected, the mean numbers of secondary infections
generated by infectious individuals are strongly positively
correlated with their durations of infectiousness (Fig. 5B).
In particular, many PKDL cases had very long durations of
symptoms (>1yr) and generated large numbers of secondary
infections (>5).

The median effective reproduction number Re(t)—the av-
erage number of secondary infections generated by individuals
who became infectious in a given month t, which must remain
above 1 for the disease to persist—appears to have decreased
over the course of the epidemic (Fig. 5C), from being mostly

above 1 (range: 0.4, 3.7) in 2003–2006 to below 1 in 2007–2010.
We note though that in later years our estimate of Re(t) is
subject to some downward bias due to right censoring of onsets
of some VL cases infected towards the end of the study (see
Discussion).
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Fig. 4. (A) Mean distances from VL and PKDL infectors to their VL infectees. (B)
Mean times from symptom onset of VL and PKDL infectors to the infections of their
VL infectees. (C) Distributions of mean numbers of secondary VL cases per VL case
and PKDL case.
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Fig. 4. (A) Mean distances from VL and PKDL infectors to their VL infectees. (B)
Mean times from symptom onset of VL and PKDL infectors to the infections of their
VL infectees. (C) Distributions of mean numbers of secondary VL cases per VL case
and PKDL case.
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Fig. 5. (A) Distributions of mean numbers of secondary infections per VL and PKDL
case. (B) Relationship between mean number of secondary infections and onset-to-
recovery time for VL and PKDL cases and infection-to-recovery time for asymptomatic
individuals. (C) Effective reproduction number Re(t) with contributions from asymp-
tomatic individuals, VL and PKDL cases. Solid lines show medians, and shaded
bands 95% CIs.

(see Materials and Methods and SI Text for further details).296
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Fig. 5. (A) Distributions of mean numbers of secondary infections per VL and PKDL
case. (B) Relationship between mean number of secondary infections and onset-to-
recovery time for VL and PKDL cases and infection-to-recovery time for asymptomatic
individuals. (C) Effective reproduction number Re(t) with contributions from asymp-
tomatic individuals, VL and PKDL cases. Solid lines show medians, and shaded
bands 95% CIs.

Impact of Preventing/Limiting PKDL. To investigate the poten-
tial impact of stopping PKDL from occurring or reducing
the duration of infectiousness of PKDL cases on incidence
of VL, we created a simulation version of the transmission
model and used the parameter estimates and inferred initial
statuses of individuals obtained from the MCMC algorithm

to run counterfactual simulations of the epidemic in the study
area (see Materials and Methods and SI Appendix for further
details). Based on these simulations, if there had been no
PKDL, the total number of VL cases from 2002–2010 would
have been 25% lower (95% CI: 5, 43%) (see SI Appendix, Fig.
S23 and Table S7 for the para-level impact). This is the hy-
pothetical maximum proportion of VL cases that could have
been averted over the whole study period by preventing any
PKDL, e.g. if a vaccine had been available that prevented
progression to PKDL (37). However, even if the mean dura-
tion of infectiousness of PKDL had only been halved (from 18
months to 9 months)—which represents a more realistically
achievable target in the near future through improved active
case detection—the simulations suggest the total number of
VL cases would have been 9% lower (95% CI: -15, 29%). If we
consider only the last 4 years of the study—the period in which
PKDL cases became the dominant source of transmission—the
results suggest complete prevention of PKDL and halving the
duration of infectiousness of PKDL cases would have reduced
VL incidence by 46% (95% CI: 18, 70%) and 17% (95% CI:
-21%, 47%) respectively.

Discussion

This study represents the first attempt to estimate the contribu-
tion of PKDL to transmission of VL accounting for spatiotem-
poral clustering of VL and PKDL and unobserved asymp-
tomatic infection. It is also the first study to combine infec-
tiousness data from xenodiagnostic studies with geo-located
VL and PKDL incidence data, and to use this to reconstruct
transmission trees of the spread of VL through a community
and estimate individual-level numbers of secondary infections.

Our results support the conclusion that PKDL poses a
significant threat to the VL elimination programme in the
Indian subcontinent. Whilst VL cases drive transmission when
VL incidence is high during the peak years of an epidemic,
the contribution of PKDL to transmission increases as VL
prevalence decreases and PKDL prevalence increases in the
downward phase of an epidemic (SI Appendix, Fig. S19B). This
mirrors the current situation in Bangladesh and India, where
VL incidence has been decreasing since 2011 (18, 19), but
reported numbers of PKDL cases suggest PKDL prevalence is
higher than VL prevalence in some areas (19).

In the study area in Bangladesh the contribution of PKDL
(in terms of contribution to new symptomatic infections) grew
from close to 0% in the upward phase of the epidemic in 2002-
2005, to approximately 55% at the end of the epidemic in
2010. In light of the current low VL incidence and consider-
able numbers of PKDL cases being reported in much of the
Indian subcontinent, this suggests that measures need to be
taken to ensure all PKDL cases are detected and treated in
order to maintain reduced transmission. This will require im-
provements in both active PKDL case detection, e.g. through
comprehensive long-term follow-up of VL cases, and diagnos-
tic tests and algorithms and treatment regimens for PKDL
(11, 17).

There is considerable heterogeneity in the estimated contri-
bution of individual VL cases and PKDL cases to transmission
in terms of the numbers of secondary infections they generate,
which is chiefly driven by variation in their onset-to-recovery
times (Fig. 5B). As expected, individuals with long onset-to-
recovery times contribute most to new infections, acting as
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super-spreaders who generate many times more infections than
the average case. These individuals play an important role in
maintaining transmission of VL—keeping the effective repro-
duction number above 1—as the average number of secondary
VL cases (the main drivers of transmission) generated by each
VL/PKDL case is typically less than 1 (Fig. 4C). The times
after onset of symptoms in the infector at which secondary VL
cases become infected are typically longer for PKDL infectors
than for VL infectors (Fig. 4B), due to their longer durations of
infection and generally lower infectiousness, so there is greater
opportunity to intervene to prevent onward transmission from
PKDL cases. Model simulations suggest that incidence of VL
could be reduced by faster detection and treatment of PKDL
cases. Depending on the relative prevalence of VL and PKDL,
the reduction could be anywhere in the range of 9–17% if
the average duration of PKDL infectiousness were halved and
25–46% if PKDL were completely prevented.

The spatiotemporal patterns of transmission inferred from
reconstructing the transmission tree suggest that infection
makes both short and long jumps in space within each infec-
tion generation (SI Appendix, Fig. S15). This is consistent
with findings from a spatial analysis of occurrence of VL cases
around index cases in Muzaffarpur, Bihar, India (38), which
found a combination of short and long distances (from tens to
hundreds of metres) from the closest index case for secondary
VL cases diagnosed close together in time. The inferred trans-
mission distances are also consistent with limited available data
on the flight range of the P. argentipes sandfly vector, which
suggests a short-term (0.5–2.5 day) flight range of around
300m (39), and with the flight range of fed females of a species
in the same genus of a few hundred metres (up to a maximum
of nearly 1km) (40). Considering that index cases are often
detected after a longer delay than subsequent cases and there
will be some delay in mounting reactive interventions, such as
active case detection and/or targeted IRS around the index
case(s), interventions will need to be applied in a large radius
(up to 500m) around index cases to be confident of capturing
all secondary cases and limiting transmission.

Our results demonstrate the importance of accounting for
spatial clustering of infection and disease when modelling
VL transmission. Previous VL transmission dynamic models
(23, 41) have significantly overestimated the relative contri-
bution of asymptomatic infection to transmission (as up to
80%), despite assuming asymptomatic individuals are only
1-3% as infectious as VL cases, by treating the population
as homogeneously mixing, such that all asymptomatic indi-
viduals can infect all susceptible individuals via sandflies. In
reality, asymptomatic individuals do not mix homogeneously
with susceptible individuals as they are generally clustered
together around or near to VL cases (25, 28), who are much
more infectious and therefore more likely to infect suscepti-
ble individuals around them, even if they are outnumbered
by asymptomatic individuals. Asymptomatic infection also
leads to immunity, and therefore local depletion of suscep-
tible individuals around infectious individuals. Hence, for
the same relative infectiousness, the contribution of asymp-
tomatic individuals to transmission is much lower when spatial
heterogeneity is taken into account.

The spatiotemporal data on incidence and duration of
symptomatic infection used in this study provided insufficient
information to estimate the relative infectiousness of asymp-

tomatically and pre-symptomatically infected individuals, so
we tested the sensitivity of model parameter estimates to the
uncertainty in their estimated infectiousness from a xenodi-
agnostic study in India (32), and found high consistency in
all but the spatial transmission rate constant. Although the
failure of asymptomatic individuals to infect sandflies in the
Indian xenodiagnosis study seems to suggest that they are
not infectious (32), historical (13, 42) and experimental (43)
data show that provision of a second blood meal and opti-
mal timing of sand fly examination are critical to maximizing
xenodiagnostic sensitivity. These data suggest that recent
xenodiagnosis studies (12, 32), in which dissection occurred
within 5 days of a single blood meal, may underestimate the
potential infectiousness of symptomatic and asymptomatic in-
fected individuals. Occurrence of VL in isolated regions where
there are asymptomatically infected individuals, but virtually
no reported VL cases (27, 33), also seems to suggest that
asymptomatic individuals may occasionally generate VL cases.
However, it is also possible that some individuals who devel-
oped VL during the study went undiagnosed and untreated,
and that we have inferred transmissions from asymptomatic
individuals in locations where cases were missed. The potential
role of under-reporting will be investigated in future work.

The analysis presented here is not without limitations. As
can be seen from the model simulations (SI Appendix, Fig.
S23), the model is not able to capture the full spatiotempo-
ral heterogeneity in the observed VL incidence when fitted
to the data from the whole study area, as it underestimates
the number of cases in higher-incidence paras (e.g. paras 1,
4 and 12). There are various possible reasons why the inci-
dence in these paras might have been higher, including higher
sandfly density, lower initial levels of immunity, variation in
infectiousness between cases and within individuals over time,
dose-dependence in transmission (whereby flies infected by VL
cases are more likely to create VL cases than flies infected
by asymptomatic individuals (22)), and variation in other
unobserved risk factors (such as bed net use). It was not
possible to include sandflies explicitly in the model due to
an absence of data on sandfly abundance and gaps in under-
standing of P. argentipes bionomics (10). We were unable
to incorporate variation in infectiousness between individuals
in the same disease state and over time within disease states
due to the relatively limited xenodiagnostic data available on
infectiousness of VL and PKDL and lack of data on variation
in infectiousness of individuals over time (e.g. from serial para-
site load measurements or serial xenodiagnosis). We were also
not able to consider the role of HIV-VL co-infected individu-
als in transmission as there was no data on HIV infection in
the study population, but other data suggests they may con-
tribute significantly with prevalences of HIV co-infection of up
to 6% in India (44) and higher infectiousness towards sandflies
(45). Further laboratory and field studies are needed to quan-
tify these sources of heterogeneity to be able to parameterise
variation in transmission intensity between locations.

Another limitation of our analysis is that it does not account
for the fact that some VL cases infected before the end of
the study may not have developed symptoms until after the
study finished and therefore not been observed. Adapting
our MCMC algorithm to infer infection times of such cases is
non-trivial and would require incorporating reversible jumps
for adding and removing ‘hidden’ infections (4), so we defer
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this to future work. Our estimate of the effective reproduction
number towards the end of the study, and in particular the
contribution of PKDL cases to transmission, as the main
drivers of transmission at the end of the epidemic, are thus
likely to be biased downward. However, our approach does
account for unobserved asymptomatic infections up to the end
of the study and these constitute the vast majority (∼85%) of
infections, so the bias in the effective reproduction number is
likely to be relatively small. There were also only 7 VL cases
with onset in 2010, all of whom had onset before May, despite
intensive follow-up up to the end of December 2010, suggesting
that transmission had substantially declined by 2010 and
that the number of right-censored VL onsets may have been
small. The overall contribution of PKDL to transmission, and
therefore the potential impact of PKDL control, may still
be underestimated, however, as 51 PKDL cases (27%) were
untreated and still had unresolved lesions in December 2010,
so may have infected other individuals after the end of the
study.

We cannot discount the possibility of inaccuracy in our
estimates due to recall bias, given some data was collected
retrospectively and complete house-to-house searches were
only conducted annually. However, the villages in the study
area were visited continuously on a roving schedule over the
prospective part of the study and participants were encouraged
to self-report lesions and febrile illness (8), which should have
mitigated some of this bias.

Despite these limitations, our analysis provides unique
insights into how visceral leishmaniasis spreads in space and
time and the role played by PKDL and asymptomatic infection
in this process. We have developed a novel MCMC data
augmentation framework to account for the endemic nature
of the disease and high proportion of asymptomatic infection,
and used it to generate quantitative estimates for guiding
targeted interventions around VL and PKDL cases. In future
work we will predict the impact of different spatiotemporally-
targeted interventions on VL incidence using the simulation
model developed here.

Materials and Methods

Data Collection. The data used in this study was collected in a
highly VL-endemic community in Fulbaria upazila, Mymensingh
district, Bangladesh, through a combination of 4 household surveys
conducted between July 2007 and December 2010 and continuous
follow-up by fieldworkers (for full details of the study protocol and
case definitions see (8, 30)). Each survey consisted of a complete
house-to-house search for new (and past, in the case of the baseline
survey) VL and PKDL cases over the whole of study area, along with
a census update to record any births, deaths, and migration into/out
of/within the study area. 138 of the 190 PKDL cases identified
during the study were examined by an experienced physician to
determine lesion extent and severity (see SI Appendix for further
details). The GPS coordinates of all households were recorded using
a Garmin 76 GPS receiver.

Transmission Model. We developed a discrete-time individual-level
spatial kernel transmission model for VL by extending our previ-
ous individual-level model (46) to explicitly include asymptomatic
infection and PKDL. In the model, the infection pressure on suscep-
tible individual i in month t is given by the sum of the individual
infection pressures on them from surrounding infectious individ-
uals (j ∈ Inf (t)), which are a function of their distance dij from
i and their relative infectiousness (compared to VL cases) hj(t),
plus a background transmission rate ε to account for unexplained

infections:

λi(t) =
∑

j∈Inf (t)

(βK(dij) + δ1ij)hj(t) + ε, [1]

where K(d) ∝ e−d/α is the spatial kernel function that determines
how transmission risk decreases with distance (with distance de-
cay rate 1/α), β is the spatial transmission rate constant, δ is
the extra within-household transmission rate, and 1ij is an indi-
cator function that is 1 if i and j share the same household and
0 otherwise. A proportion pI of infections lead to VL following a
negative-binomially-distributed NB(r, p) incubation period, while
the remaining infections are asymptomatic with geometric Geom(p2)
duration. We use pI = 0.15, r = 3 and p2 = 1/5 based on previ-
ous analyses (29, 46), and estimate p along with the transmission
parameters.

We assume lifelong immunity for individuals who recover from
infection, regardless of whether they have recovered from VL, PKDL
or asymptomatic infection. Whilst there is some uncertainty about
whether individuals can be reinfected, particularly asymptomati-
cally infected individuals, available evidence suggests that repeat
episodes of VL are relatively rare and are due to relapse not reinfec-
tion (47) and that in highly endemic settings a high proportion of
asymptomatically infected individuals develop long-term protective
cell-mediated immunity following infection (24, 26). This assump-
tion is therefore not unrealistic and makes it feasible to infer the
model parameters and missing data, which would be considerably
more challenging if it was necessary to account for the possibility
of multiple infections for asymptomatic individuals.

We assume individuals’ relative infectiousnesses hj(t) remain con-
stant in each infection state and parameterise those of VL and PKDL
cases using data from a recent xenodiagnosis study in Bangladesh
(12), and those of asymptomatic and pre-symptomatic individuals
based on an estimate from a xenodiagnosis study in India that
the probability of an asymptomatic individual infecting a sand-
fly is at most 2.3% (32) and estimates from previous modelling
studies (23, 41). Given the uncertainty in the infectiousness of
asymptomatic and pre-symptomatic individuals and the absence of
experimental data on their infectiousness relative to each other, we
assume they are equally infectious and test the sensitivity of the
model parameter estimates to values of their infectiousness (relative
to VL cases) of 0 to 2% (SI Appendix). We also compare the fit
of models without and with additional within-household transmis-
sion (δ = 0 vs δ > 0) using a version of the Deviance Information
Criterion designed for latent variable models (SI Appendix).

Bayesian Data Augmentation. We estimated the parameters in the
transmission model, θ = (β, α, ε, δ, p), the unobserved infection
times of VL cases and infection and recovery (seroreversion) times
of asymptomatic individuals, and individuals’ unobserved initial
statuses by sampling from the joint posterior distribution of θ and
the missing data X given the observed data Y (months of birth,
migration, and death; VL and PKDL onset and recovery times;
etc.), P(θ,X|Y) ∝ L(θ; Y,X)P(θ), where L(θ; Y,X) denotes the
complete data likelihood and P(θ) is the prior distribution for θ,
using a Bayesian data augmentation framework (see SI Appendix
for full details). Markov chain Monte Carlo (MCMC) methods
were used to obtain the joint posterior distribution by iteratively
sampling from the posterior distribution of the parameters given
the observed data and current value of the missing data, P(θ|Y,X),
and the posterior distribution of the missing data given the observed
data and the current values of the parameters, P(X|Y, θ). Relatively
uninformative gamma distributions were used for the priors for the
transmission parameters (β, α, ε and δ), and a relatively informative
conjugate beta prior was used for the incubation period distribution
parameter p based on a previous estimate of the mean incubation
period and its uncertainty (29) (see SI Appendix for further details).
To validate the inference procedure we simulated data for part of
the study area using known parameter values and verified that
the MCMC algorithm could recover the true parameter values
and unobserved data (SI Appendix). Code is available online at
https://github.com/LloydChapman/VLSpatiotemporalModelling.

Once the posterior distribution of the parameters and missing
data had been obtained from the MCMC, 1,000 samples were
drawn from the posterior distribution and the posterior predictive
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distributions of infection sources for all infectees derived for each
sample. These were used to draw an infector for each infectee
to reconstruct the transmission tree. Thus we obtained a set of
1,000 possible transmission trees that accounted for uncertainty
in the parameter values, infection times, infection sources and
individuals’ initial statuses. The mean distance from each infector
to their infectees and time from their onset to the infections of their
infectees was calculated for each tree, and then averaged over all
trees in which that individual was an infector to obtain distributions
of mean distances and times to infectees across all infectors (Figs.
4A–B). The posterior predictive distributions of infection sources
were also used to estimate the number of secondary infections for
each asymptomatic individual, VL case and PKDL case (Figs. 5A–
B and SI Appendix, Fig. S22), and the time-dependent effective
reproduction number (Fig. 5C).

Model Simulations. We implemented a simulation version of the
transmission model (full details in SI Appendix) to assess the ability
of the model to reproduce the observed data and to investigate the
counterfactual impact of different hypothetical interventions against
PKDL on VL incidence. One hundred samples of the parameters
and individuals’ infection statuses in December 2002 were drawn
from the posterior distribution obtained from the MCMC and 100
simulations of the model run for each sample starting from January
2003 (at which point all but one of the paras had had at least
1 VL case since January 2002), to give 10,000 realisations of the
epidemic under “normal” interventions. This process was then
repeated with PKDL infectiousness set to zero (to simulate no
development of PKDL), and then again with the mean duration
of PKDL infectiousness halved (to simulate more rapid detection
and treatment of PKDL), and the percentage difference in the total
number of cases in each “alternative-intervention” simulation from
that in each “normal-intervention” simulation calculated.

Ethical Approval. The study was approved by the institutional review
boards of the International Centre for Diarrhoeal Disease Research,
Bangladesh (protocol #2007-003) and the Centers for Disease Con-
trol and Prevention (protocol #5065), and informed consent was
obtained from all participants or parents/guardians in the case of
children. The analysed data contains personally identifiable infor-
mation and so cannot be made freely available. Individuals who
wish to access the data should contact aahmed@icddrb.org.
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