

- 1 Article
- 2 **Changes in ion selectivity following asymmetrical**
- ³ addition of charge to the selectivity filter of bacterial

4 sodium channels

5 Olena A. Fedorenko^{1,2*}, Igor Khovanov³, Stephen K. Roberts¹ and Carlo Guardiani^{4,5}

- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YE, UK;
 s.k.roberts@lancaster.ac.uk
- 8 ² Current affiliation: School of Life Sciences, University of Nottingham, NG7 2UH; UK; 9 olena.fedorenko@nottingham.ac.uk
- 10 ³ School of Engineering, University of Warwick, Coventry CV4 7AL, UK; i.khovanov@warwick.ac.uk
- 11 ⁴ Department of Physics, Lancaster University, Lancaster, LA1 4YW, UK
- ⁵ Current affiliation: Department of Mechanical and Aerospace Engineering, Sapienza University of Rome,
 Roma, Italy; carlo.guardiani@uniroma1.it
- 14 * Correspondence: olena.fedorenko@nottingham.ac.uk; Tel.: +44-7507-437847
- 15 Received: date; Accepted: date; Published: date

16 Abstract: Voltage-gated sodium channels (NaVs) play fundamental roles in eukaryotes but their 17 exceptional size hinders their structural resolution. Bacterial NaVs are simplified homologues of 18 their eukaryotic counterparts but their use as models of eukaryotic Na⁺ channels is limited by their 19 homotetrameric structure at odds with the asymmetric Selectivity Filter (SF) of eukaryotic NaVs. 20 This work aims at mimicking the SF of eukaryotic NaVs by engineering radial asymmetry into the 21 SF of bacterial channels. This goal was pursued with two approaches: co-expression of different 22 monomers of the NaChBac bacterial channel to induce the random assembly of heterotetramers, 23 and the concatenation of four bacterial monomers to form a concatemer that can be targeted by site-24 specific mutagenesis. Patch-clamp measurements and Molecular Dynamics simulations showed 25 that an additional gating charge in the SF leads to a significant increase of Na⁺ and a modest increase 26 in Ca²⁺ conductance in the NavMs concatemer in agreement with the behavior of the population of 27 random heterotetramers with the highest proportion of channels with charge -5e. We thus showed 28 that charge, despite being important, is not the only determinant of conduction and selectivity and 29 we created new tools extending the use of bacterial channels as models of eukaryotic counterparts.

- 30 **Keywords:** ion channel, selectivity, permeability, patch-clamp, computer simulations
- 31

32 1. Introduction

Voltage-gated sodium and calcium channels (NaVs and CaVs respectively) are involved in a
 multitude of processes including electrical signaling, secretion and synaptic transmission [1].
 Malfunction or dysregulation of NaVs and CaVs leads to a wide range of neurological, cardiovascular
 and muscular disorders including periodic paralysis [2], arrhythmia [3] and epilepsy [4] that
 highlight the importance of these molecules.

Eukaryotic NaVs and CaVs have similar structure and comprise a pore-forming α 1 subunit of approximately 190-250 kDa, which co-assembles with a number of auxiliary subunits. The α 1 subunit is organized in four domains each comprising a voltage sensor (encompassing helices S1-S4) and a pore domain (including helices S5-S6) [5-9]. The four domains arranged around the pore, are not identical resulting in a channel structure that is asymmetric and pseudo-tetrameric [10]. The atomic level resolution of the structure of these molecules is essential to understand their structure-function relationships, but this task is particularly challenging for eukaryotic NaV channels owing to them

Entropy 2020, 22, x; doi: FOR PEER REVIEW

being membrane integral proteins [11] and is exacerbated by their particularly large size.
Consequently, to date only the structure of a single eukaryotic NaV has been resolved at atomic level
(3.8 Å), but the channel was not electrophysiologically characterized [12].

48 Bacterial NaVs and CaVs are simplified homologues of eukaryotic channels. They are 49 homotetrameric channels formed by four identical monomers corresponding to the four domains of 50 the α 1 subunit of eukaryotic channels [13-16]. Their minimalist structure has enabled determination 51 of high-resolution atomistic structures, which has allowed extensive structure-functional 52 characterization with respect to their cation selectivity, gating and binding of anesthetics [e.g. 17-19]. 53 Although a complete understanding of selectivity has not been arrived at, the availability of high-54 resolution structures has provided detailed understanding of the atomistic level interaction of ions 55 in the Selectivity Filter (SF). Despite this, there is still no widely accepted predictive model for cation 56 selectivity, representing gaps in our knowledge of the molecular mechanism of ion permeation and 57 selectivity. Mutation studies suggest the fixed charge (Q_f) of the SF to be one of the major 58 determinants of selectivity and permeation [15, 20-32]. The Qf charge is at the core of many theoretical 59 models attempting to explain the physical origins of cation selectivity in ion channels. For example, 60 cation conduction has recently been modelled within the framework of Ionic Coulomb Blockade 61 (ICB) [24, 25], an electrostatic model with the aim of predicting Na⁺ and Ca²⁺ permeability based on 62 knowing the actual Qf value of the SF.

63 Although prokaryotic and eukaryotic channels show the same general architecture along the 64 axis of the pore (an outer vestibule and an inner water filled cavity separated by a narrow SF), the 65 use of prokaryotic channels as models of their eukaryotic counterparts is limited by their lack of radial 66 asymmetry. In the case of the homotetrameric bacterial NaVs, four identical monomers form the 67 channel pore; in contrast, their eukaryotic counterparts are composed of four non-identical domains 68 which introduce significant radial asymmetry [14, 26-31]. This difference becomes evident at the level 69 of the SF where conduction and selectivity are controlled by a DEKA ring ($Q_f = -1e$) in eukaryotic 70 NaVs and EEEE ring ($Q_f = -4e$) in prokaryotic NaVs. Another puzzling fact is that the EEEE locus is 71 typical of bacterial sodium selective channels but also characterizes calcium selective eukaryotic 72 channels [16, 32-34], thus leading to NaChBac being initially predicted to be Ca²⁺ selective. The 73 existence of disparate sequences indicates that bacterial and eukaryotic channels enforce their ion 74 preferences through different molecular strategies [15, 34, 35]. As a result, the selectivity and 75 conduction mechanisms discovered in prokaryotes are not readily transferable to eukaryotes.

76 The puzzling functional similarity between bacterial NaVs and eukaryotic CaVs has been 77 termed the "EEEE paradox" [36]. The paradox arises as a result of the violation of the assumption 78 that Q_i is the main driving force of cation selectivity. A possible resolution of the paradox is related 79 to the existence of a conserved D residue in domain 2 of CaVs, in the neighborhood of the EEEE ring. 80 Monte Carlo simulations predicted this D residue (termed D2p51 in [37]) to occupy a position in close 81 proximity to the EEEE locus. This observation led to the hypothesis that the locus imparting Ca²⁺ 82 permeability is actually EEEED with a Q_f value of -5e [25, 37]. Moreover, when this conserved D 83 residue in domain 2 of Cav1.2 (referred to as D707 in [29]) was replaced with neutral residues, a 84 striking reduction of Ca²⁺ binding to the SF was measured [29]. These results suggest D707 to be an 85 important cation binding determinant of eukaryotic channels.

86 The different behavior of prokaryotic and eukaryotic voltage-gated sodium and calcium 87 channels highlights the importance of incorporating radial asymmetry in SF of prokaryotic channels. 88 In our previous work [38] we reported the creation of a concatenated bacterial NaV, in which four 89 NavMs monomers were covalently linked to form a stable single polypeptide chain, resembling the 90 general structure of a eukaryotic NaV. This allowed targeted mutagenesis of individual domains 91 introducing radial asymmetry in the bacterial channel with the aim to gain further insight on the role 92 of Qf as a determinant of ion selectivity. In the present study, we report the first attempt to mutate 93 the concatemer and generate a bacterial sodium channel with radial asymmetry in the SF. In order to 94 obtain atomistic level details of selectivity and permeation, the electrophysiological characterization 95 was integrated with Molecular Dynamics (MD) simulations of wild type NavMs ($Q_f = -4e$) and a 96 mutant with an additional negative charge in the SF ($Q_f = -5e$).

97 In the present study, we have also employed an independent yet complementary approach to 98 introduce radial asymmetry into the SF of a bacterial sodium channel. Namely, a number of 99 combinations of NaChBac monomers (differing in their amino acid composition and Q_f value of the 100 SF) were transfected into CHO cells to generate a random population of heterotetrameric channels

101 with radial asymmetry in the SF. The mixed monomer approach using NaChBac monomers showed

102 that Ca^{2+} conduction is increased in channels with a $Q_f > -4e$ (consistent with the proposed explanation

- 103 for the EEEE paradox). Our data confirm the key role of the SF charge as the major determinant of
- 104 conduction and selectivity. However, the failure to completely overturn the sodium selectivity of the
- 105 NavMs concatemer to Ca^{2+} selectivity (with much smaller relative Ca^{2+} permeability exhibited by the 106 -5*e* mutant NavMs concatemers compared to that for eukaryotic CaVs) suggests the existence of fine
- 100 -se mutant Navivis concatements compared to that for eukaryotic CaVs) su
- 107 tuning mechanisms of structural origin.

108 2. Materials and Methods

109 2.1. Materials Generation of mutant bacterial channels

cDNA constructs encoding NaChBac (GenBank accession number BAB05220) and NavMs
(GenBank accession number WP_011712479) bacterial sodium channels were synthesized by EPOCH
Life Science (www.epochlifescience.com). NavMs concatemer was subcloned into pTRACER-CMV2
(Invitrogen) downstream of CMV promoter as described previously [38].

Site-directed mutagenesis was performed using specific primers containing the sequence for the desired amino acid substitutions (according to Q5® Site-Directed Mutagenesis Kit; New England BioLabs Inc.). For generation LEDWAS mutant from wild-type NaChBac we used the forward primer CACGCTAGAGgatTGGGCGAGCG and the reversed primer ACCACTTGGAACAATGTTAAC, for LASWAS mutant – the forward primer GGTCACGCTAgccTCATGGGCGAGcggc and the reversed primer ACTTGGAACAATGTTAACAAACtaagc.

120 $Q_f = -5e$ NavMs mutants were generated from NavMs concatemer, which was designed with 121 restriction sites delimiting each domain (Supp. Fig. 3A). Domain I (KpnI/EcoRI) and Domain II 122 (EcoRI/EcoRV) were excised by restriction digest. The domain fragments were re-amplified by PCR 123 using primer pairs to regenerate the restriction site prior to subcloning into vector pCR Blunt II-TOPO 124 (Invitrogen): primers Kpn1_NavMs_F are 125 (CCCGGTACCAGCCGCCACCATGTCACGCAAAATAAG)/EcoRI NavMs_R EcoRI_ 126 (CCCGAATTCGGGCTCGTCCTCCCAGATG) for Domain and Ι NavMs_F 127 (CCCGAATTCATGTCTAGGAAGATCC)/EcoRV NavMs_F 128 (CCCGATATCGGGCTCGTCCTCCCAGATG) for Domain II. Site directed mutagenesis (for S179D; 129 according to NavMs monomer residue nomenclature) was performed on each domain using primers 130 LEDWSM NavMs F (GACCTTAGAGgatTGGTCTATGGGC) and LEDWSM NavMs_R 131 (ATCACCTGAAATAGTGTG) prior to restriction enzyme-mediated excision and ligation (T4 DNA 132 ligase; NEB) of the Domain DNA fragment in the NavMs concatemer at sites KpnI/EcoRI (for 133 Domain I) and EcoRI/EcoRV (Domain II).

All clones were sequenced to check for correct construction and to ensure that no unwanted PCRinduced mutations had been introduced. DNA for transfection of cells was prepared using Midi

- 136 Plasmid Kit (Qiagen).
- 137 2.2. Cell culture and transfection

138 Chinese hamster ovary (CHO) and human embryonic kidney (HEK293T) cell lines were 139 obtained from Dr. Stephen K. Roberts. Cells were cultured in DMEM high glucose with L-glutamine 140 (Lonza), supplemented with 10% Fetal Bovine Serum (Thermo scientific) with addition of 50 U/ml 141 Penicillin and 50 μ g/ml Streptomycin (Sigma). Cells were maintained in T25 flask (Thermo Scientific) 142 **at 37 °C** in a 5% CO₂ incubator and passaged twice a week. 24 hours before transfection, cells were 143 seeded in 6-well plates (Corning) containing No.1 coverslips (Scientific Laboratory Supplies). 10 μ l 144 of transfection reagent (Mirus) and 5 μ g of plasmid DNA or a mixture of DNAs in defined proportions 145 were aquilibrated constraints in 250 μ l of Litra/MEMIM Reduced Serum Medium (Lonza) at room

145 were equilibrated separately in 250 µl of UltraMEM[™] Reduced Serum Medium (Lonza) at room

- 146 temperature for 5 minutes and then mixed and incubated at room temperature for 20 minutes to form 147 the DNA-reagent complex. Treated cells (at 80% confluency) were supplemented with DNA-reagent
- 148 complex and incubated in $37 \degree C$ and $5\% CO_2$ for 24 48 hours before experiments.

149 2.3. Electrophysiology

150 Whole-cell voltage clamp recordings were performed at room temperature (20 °C) using an 151 Axopatch 200A (Molecular Devices, Inc.) amplifier. Patch-clamp pipettes were pulled from 152 borosilicate glass (Kimax, Kimble Company, USA) to resistances of 2–3 MOhm. Shanks of the pipettes 153 tip were coated with bee's wax to reduce pipette capacitance. The pipette solution contained (in mM) 154 15 Na-gluconate, 5 NaCl, 90 NMDG, 10 EGTA, and 20 HEPES, pH 7.4 adjusted with 3 mM HCl). To 155 record Na⁺ influx currents the bath solution was (in mM) 140 Na-methanesulfonate, 5 CsCl, 10 HEPES 156 and 10 glucose (pH 7.4 adjusted with 4.8 mM CsOH); for measurement of Ca²⁺ influx currents 140 157 mM Na-methanesulfonate was replaced with 100 mM Ca-methanesulfonate.

158 Data collection was initiated 3 minutes after obtaining whole cell configuration to ensure 159 complete equilibration of the pipette solution and cytosol. The bath solution was grounded using a 3 160 M KCl agar bridge; liquid junction potential determined experimentally (as described by [39]) agreed 161 with that calculated (using JPCalc program, Clampex, Axon Instruments, Inc.) and was negligible. 162 To ensure complete exchange of bath solution, electrophysiological recordings were initiated after >4 163 minutes of solution change. The rate of the gravity-fed perfusion system for bath solution exchange 164 was approximately 0.7 ml/min in chamber volume of approximately 200 µl.

165 Results were analyzed using Clampfit 10.1 software (Molecular Devices) and OriginPro8
166 (OriginLab Corporation). Pooled data are presented as means ± SEM (n), where n is the number of
167 independent experiments.

168 2.4. Equilibrium simulations of NavMs channel

169 The initial structure of wild type NavMs was taken from the Protein Data Bank (PDB ID: 3ZJZ). 170 Mutation S179D on chain A and embedding in a membrane of 248 POPC molecules was performed 171 using the CHARMM membrane builder [40, 41]. The membrane was bathed on both sides by a 0.14 172 M NaCl solution or a 0.1 M CaCl₂ solution. The size of the simulation box was 102x102x86 Å and 173 the total number of atoms in the four simulated systems was little short of 90000. All acidic 174 residues have been assigned a charge -1e while basic residues have been assigned a charge +1e 175 based an analysis of рКа values with the **PROPKA** program on 176 (server.poissonboltzmann.org/pdb2pqr). All simulations were performed with the NAMD 2.11b2 177 [42] suite of programs using the ff14SB [43] force field for the protein and the Lipid14 force-field [44] 178 for the phospholipids. As already observed in [45] in the absence of harmonic restraints the pore 179 rapidly closes at the cytoplasmic gate. In order to avoid this behavior that likely results from the 180 absence of the Voltage Sensor Domain in the simulated system, harmonic restraints (50 kcal/mol/Å²) 181 were applied to the backbone atoms of the transmembrane helices (residues 131-154 and 194-222) 182 throughout the simulation. The four systems first underwent 10000 steps of conjugate gradient 183 minimization.

184 During equilibration harmonic restraints were applied to non-hydrogen atoms of the protein 185 backbone and side-chains (outside the transmembrane helices; residues 155-193) as well as to the 186 phospholipid heads. An harmonic restraint was also applied to the dihedral angle formed by Carbons 187 8, 9, 10, 11 of oleoyl acid and to the improper dihedral C1 –C3 –C2 –O2 involving the three carbons 188 of the glycerol unit and the hydroxyl oxygen linked to its central carbon. The equilibration was 189 organized in six stages whereby the constraints were gradually released. The values of the force 190 constants used in the six stages can be found in Supplementary table 1. The production run was 191 carried out in the isothermal isobaric (NPT) ensemble for 100 ns (in NaCl solution) or 150 ns (in CaCl2 192 solution). Pressure was kept at 1 atm by the Nose-Hoover Langevin piston method while temperature 193 was kept at 300 K by coupling to a Langevin thermostat with damping coefficient of 1 ps⁻¹. Long-194 range electrostatic interactions were evaluated with the smooth particle mesh Ewald algorithm. For

the short-range non-bonded interactions, we used a cutoff of 12 Å with a switching function at 10.0

196 Å. The integration time step was 2 fs, and the bonds between hydrogen and heavy atoms were fixed 197 to eliminate the most rapid oscillatory motions. The Potential of Mean Force (PMF) was computed 198 using equation $F(z) = -k_B T \log(\rho(z) / \rho_b)$, where k_B is Boltzmann constant, T is the absolute 199 temperature, $\rho(z)$ is the density profile of sodium or calcium ions and ρ_b is the density of these 100 ions in the bulk. Since ion density in the channel is typically higher than in the bulk, the PMF 101 normally has negative values. To avoid a divergence in the logarithmic expression of the PMF, we 102 assigned F(z) = 0 when $\rho(z) = 0$, that is, in the regions of the channel that are never visited by ions.

203 2.5. Current-voltage curves calculation

204 Current-voltage (IV) curves in NavMs were attained using the collective diffusion model 205 introduced in [46], where the time-course Q(t) of the net charge transported across the channel at 206 equilibrium is thought of as an unbiased random walk. The net charge transported in the time interval Δt between two consecutive frames of the trajectory is $\Delta Q = \sum_{z_1 \leq z \leq z_2} \frac{e_i \Delta z_i}{L_z}$, where the sum 207 runs over all ions *i* such that $z_1 \le z \le z_2$, $z_1 = -4.5$ Å and $z_2 = 16.5$ Å are being the axial limits of the 208 209 filter region somewhat extended in the vestibule and central cavity. The use of this extended SF 210 gives us the opportunity to exploit the fluctuations due to ions exploring the vestibule region 211 without entering into the SF as well as the aborted permeation events where the ion crosses the 212 mouth of the SF but is immediately pulled back in due to the attraction of the acidic residues. In 213 the expression Δz_i is the axial displacement of the ion in the time interval Δt and $L_z = z_2 - z_1$ is the length of the SF. The time course of the charge, Q(t), can then be attained as $Q(t) = \sum_{i \in I} \Delta Q(t_i)$. 214

215 Diffusion theory predicts that for sufficiently long times the mean square displacement of the 216 charge $\langle Q^2(t) \rangle$ grows linearly with a slope proportional to the diffusion coefficient, 217 $\langle Q^2(t) \rangle \sim 2D_Q t + Const$. Applying linear response theory, the steady current induced by a small 218 constant voltage *V* can be computed as $I_{steady} = D_Q V / k_B T$. Using such an approach, the linear region 219 of an IV curve can be computed based on the spontaneous ion fluctuations at equilibrium in the 220 absence of any applied electric field.

221 **3. Results**

222 3.1. Experimental Results

To introduce radial asymmetry in the SF of NaChBac two approaches were adopted. First, mixed populations of NaChBac monomers (differing in their amino acid composition and Q_f value of the SF) were co-transfected into CHO cells to generate hetero-tetrameric channels exhibiting radial asymmetry in the SFs. Second, we used a concatenated NavMs tetramer [38] to generate radial asymmetry in the SF by targeted mutation of one of the four repeats.

228 3.1.1. Na⁺/Ca²⁺ selectivity for randomly mixed populations of NaChBac monomers

229 The random assembly of channel tetramers can be demonstrated taking advantage of the 230 different electrophysiological properties of WT NaChBac and the L226P mutant illustrated by the 231 recordings in Supplementary Figure 1. The L226P mutation causes conspicuous alterations in channel 232 gating of NaChBac from depolarization-activated whole-cell currents to non-inactivating 233 hyperpolarization-activated whole-cell currents [47], (Supp. Fig. 1 A and B). The mutation shifts the 234 voltage of maximal current from -10 mV in WT to -180 mV in the mutant (Supp. Fig. 1D), thus currents 235 at -10 mV originating from separate channel populations of WT and L226P homotetramers can be 236 easily separated. The current recordings from CHO cells co-transfected with NaChBac-encoding 237 WT:L226P cDNAs in a ratio 3:1 (Supp. Fig. 1C and E) exhibited unique currents at -10 mV, which can 238 not be explained by the simple addition of whole current traces from homotetramer channels formed 239 from either L226P or wild type NaChBac (note that there is no current at -10 mV from L226P channels), indicating unique heterotetramers are being formed. Assuming that the assembly of
heterotetramers is formed without bias, the proportions of channel types can be determined by
binomial distribution. It is noteworthy that this assumption is in agreement with previous findings
[47, 48] showing no bias for heterotetramer formation in CHO cells expressing a mixture of WT and
G219P mutant NaChBac monomers and dimers.

245 Using this approach, CHO cells were co-transfected with cDNAs of NaChBac-encoding WT and 246 mutants, with varied Q_f in the SF, in different ratios. Note that the open probabilities and single 247 channel conductances for WT NaChBac (LESWAS) and LEDWAS homotetramers were equivalent 248 (Supp. Fig. 2), and that the whole cell Na⁺ currents from cells expressing homotetramer WT and 249 LEDWAS were similar in magnitude (Figure 1 A and C), consistent with the expression of the channel 250 (i.e. number of channels) being independent of single amino acid mutations introduced into the SF. 251 Figure 1 shows currents recorded from cells transfected with defined mixtures of NaChBac 252 monomers; see Table 1 for probabilities of different charged species assuming the assembly follows 253 a binomial distribution.

254 Whole-cell currents were initially recorded in bath solution containing 140 mM of Na-255 methanesulfonate followed by recordings after complete replacement of bath Na⁺ with 100 mM of 256 Ca-methanesulfonate. Na⁺ permeation appears relatively insensitive to changes in Q_f values between 257 -4e and -8e and equivalent in cells expressing only LESWAS and/or LEDWAS monomers. Focusing 258 on channels exhibiting Q_f values less than -4e, it is interesting to note that despite co-transfection with 259 a 1:1 ratio of LASWAS:LESWAS resulting in an expected only 6.2% of the channels population being 260 homotetramers of LESWAS ($Q_f = -4e$), the Na⁺ current density was approximately 30% of that 261 recorded from cells expressing only LESWAS homotetramers channels (Figure 1 A and C). An 262 equivalent interpretation can be made for measurements of current density from cells transfected 263 with 1:3 ratio of cDNAs encoding LASWAS:LESWAS: sodium current density was equivalent with 264 that recorded from cells expressing only LESWAS homotetramers despite only 32% of the channel 265 population predicted to be homotetrameric LESWAS. It is also interesting to compare the current 266 density of the 3:1 LASWAS:LESWAS expressing cells. Note that these cells are showing about 25% 267 current density compared to LESWAS only cells (5 and 20 pA/pF respectively). If one looks at the 268 binominal predictions, 25% of channels are predicted to have $Q_f = -2e$ and greater and consistent with 269 a $Q_f = -1e$ and 0 being non-conducting (Figure 1C). The simplest explanation of the disproportionately 270 large Na⁺ current in cells expressing mixtures of LESWAS and LASWAS monomers is that functional 271 NaChBac channels possessing a SF with Q_f value less than -4e are functional and able to mediate Na⁺ 272 influx.

273**Table 1.** Probabilities of homo- and hetero-tetramer NaChBac channel formation in CHO cells274co-transfected with 5 μ g (total) of cDNAs encoding for wild type (LESWAS) NaChBac and275mutated NaChBac in which the selectivity filter amino acid sequence was LASWAS or276LEDWAS. Note that Qf values for LASWAS, LESWAS and LEDWAS monomers are 0, -1 and -2277respectively. Probabilities for channel formations were determined by Binomial distribution278P(n,N-n) = C(n,N-n)*p^n*(1-p)^(N-n).

cDNA									
population		LASWAS	LASWAS	LASWAS		LESWAS	LESWAS	LESWAS	
transfected	L <u>A</u> SWAS	LESWAS	LESWAS	LESWAS	LESWAS	LEDWAS	LEDWAS	LEDWAS	LE <u>D</u> WAS
into CHO		(3:1)	(1:1)	(1:3)		(3:1)	(1:1)	(1:3)	
cells									

Probabilities and Q _f values for tetramer formation	Q _f = 0; 100 %	$Q_f = 0;$ 32% $Q_f = -1;$ 42% $Q_f = -2;$ 21% $Q_f = -3;$ 4% $Q_f = -4;$	$Q_f = 0;$ 6.2% $Q_f = -1;$ 25% $Q_f = -2;$ 37% $Q_f = -3;$ 25% $Q_f = -4;$	$Q_f = 0;$ 0.3% $Q_f = -1;$ 4% $Q_f = -2;$ 21% $Q_f = -3;$ 42% $Q_f = -4;$	Q _f = -4; 100%	$Q_{f} = -4;$ 32% $Q_{f} = -5;$ 42% $Q_{f} = -6;$ 21% $Q_{f} = -7;$ 4% $Q_{f} = -8;$	$Q_{f} = -4;$ 6.2% $Q_{f} = -5;$ 25% $Q_{f} = -6;$ 37% $Q_{f} = -7;$ 25% $Q_{f} = -8;$	$Q_f = -4;$ 0.3% $Q_f = -5;$ 4% $Q_f = -6;$ 21% $Q_f = -7;$ 42% $Q_f = -8;$	Q _f = -8; 100%
		Qf=-4; 0.3%	Q _f =-4; 6.2%	Q _f =-4; 32%		Q _f =-8; 0.3%	Q _f =-8; 6.2%	Qf=-8; 32%	

279 Extending this type of analysis to the Ca2+ currents, cells transfected with 1:3 ratio of 280 LESWAS:LEDWAS encoding cDNAs (in which 0.3% of expressed functional channels predicted to 281 be LEDWAS homotetramers: with a $O_f = -8e$) exhibited similar current density for Ca^{2+} influx as that 282 from cells expressing only LEDWAS channels (Figure 1D). Thus, functional NaChBac channels 283 possessing SFs with Q_f value of less than -8e appear to be able to mediate Ca²⁺ influx, with the 284 possibility that a Q_f value of -5e is sufficient for permit Ca²⁺ permeation. This explanation is also 285 consistent with the observation that Ca²⁺ current density is greatest in cells transfected with equal 286 and 1:3 ratios of LESWAS:LEDWAS (Figure 1 B and D). Note that the Na⁺ influx current density 287 remains relatively constant in cells transfected with both LESWAS and LEDWAS encoding cDNAs 288 indicating that the effect of varying Q_f between -4e and -8e was specific to Ca²⁺ current density.

289

Figure 1. Na⁺/Ca²⁺ selectivity for NaChBac monomers mixtures. The voltage-current relations (A and B) and the mean (+/- SEM) whole cell peak current density at -10 mV (C and D) for Na⁺ (A and C) and Ca²⁺ (B and D) in CHO cell transfected with cDNAs encoding for NaChBac channels possessing either wild type selectivity filter (LESWAS/LES) or mutated selectivity filter (LASWAS/LAS or LEDWAS/LED); 5 μ g of total DNA was used per transfection and was composed of either a mixture of types of cDNA at defined ratios as indicated in Table 1 and on the X-axis or was a single cDNA type. Numbers in parentheses indicate the number of replicates.

297 3.1.2. Na⁺/Ca²⁺ selectivity for concatenated NavMS channels

298 Although the use of mixed population of cDNAs encoding for NaChBac and it mutants 299 suggested the value of Q_f to be a major determining factor for Na⁺/Ca²⁺ selectivity, the results are 300 subject to the caveat that the whole cell currents result from the cumulative current from unknown 301 but predictable range of different channel types. To address this complication, we attempted to 302 generate a stable concatenation of NaChBac to enable the expression of a homogeneous population 303 of NaChBac mutants; however, we have previously showed [38] the NaChBac oligomer to be 304 unstable and not to remain intact in the plasma membrane. In contrast, an equivalent intact NavMs 305 oligomer could be stably expressed in HEK293T cells [38] and thus enable to generation of a 306 homogeneous population of bacterial channels, in which the Qf value of the SF can be altered in steps 307 of 1e. The SF of eukaryotic CaVs is formed by a ring of glutamates (the EEEE locus) and a conserved 308 aspartate residue in domain II (D2p51 [37]). The D2p51 residue is suggested to form a binding site 309 for a third incoming Ca²⁺ from the extracellular side of the pore and thus bring an additional positive 310 charge to the SF region necessary for the release of a bound Ca²⁺ to the cytosolic side (i.e. a knock-on 311 mechanism [49]. Although direct evidence for the role of the D2p51 in Ca²⁺ permeation remains 312 elusive, replacing the D2p51 residue in Cav1.2 (aka D707) with a neutral amino acid residue 313 significantly reduces the Ca^{2+} binding of the SF [29]. So, to gain further insight into the role of the 314 D2p51 in Ca²⁺ permeation, we used site-directed mutagenesis targeted to repeat I or II in the NavMs 315 oligomer to generate a bacterial NaV with a "EEEED" locus ($Q_f = -5e$) in the SF (Supp. Fig. 3). NavMs 316 has a high homology (45% sequence identity) to NaChBac [28, 45], which should enable comparison 317 to results from NaChBac.

318

324

325

Figure 2. Na⁺/Ca²⁺ selectivity for NavMS concatemer possessing varied Q_f values in their SF. The original recordings representatives of wild-type NavMS (A) and its DI (B) and DII (C) mutants in 140 mM Na⁺ solution (grey traces) and in 100 mM Ca²⁺ solution (black traces). The voltage-current relations (D and E) and the mean (+/- SEM) whole cell peak current density at -10 mV (C and D) for Na⁺ (A and C) and Ca²⁺ (B and D) in HEK 293T cells transfected with cDNAs encoding for either wild type or mutated NavMS. Numbers in parentheses indicate the number of replicates; and in HEK293T

cells transfected with wild type NavMS concatemer (WT) and mutant NavMS concatemer (DI andDII).

The WT NavMs SF is defined by ¹⁷⁷LESWSM¹⁸² and we generated NavMs tetramers (Supp. Fig. 3) with the S179D mutation in either repeat I (mutant DI) or repeat II (mutant DII). Both mutants are therefore expected to carry a charge -5*e* in the SF. Figure 2 shows typical whole cell currents from WT and mutant NavMs in bath solution containing either 140 mM Na⁺ or 100 mM Ca²⁺.

332 In order to make quantitative comparisons between the electrophysiological behavior of 333 NaChBac and NavMs mutants, the peak calcium and sodium currents as well as their ratio are 334 tabulated in Supplementary Table 3 for NaChBac heterotetramer populations and in Supplementary 335 Table 2 for NavMs mutants. The comparison of the data of the two tables shows that the ratio of the 336 peak current densities for Na⁺ and Ca²⁺ in wild type NavMs (0.018) is comparable to that for wild 337 type NaChBac (0.010). The tables also show that the ratio of peak current densities for Ca²⁺ and Na⁺ 338 in the two NavMs mutants with SF charge -5e (0.080 for the DI mutant and (0.097 for the DII mutant) 339 is similar to that for mutant channels formed from the expression of 3LES:1LED mixture of NaChBac 340 (0.054) in CHO cells, which yields the highest probability of occurrence (42%) of heterotetramers with 341 SF charge equal to -5e. Although both data sets support increased Ca²⁺ permeability in -5e mutant 342 bacterial sodium channels, the difference in the Ca²⁺ current magnitude that is evident on comparing 343 NavMs and NaChBac channels clearly indicate that factors other than the value of Qf are important 344 in determining Ca²⁺ permeability.

345 *3.2. Computational Results*

In an attempt to gain molecular level understanding of the different behavior of WT NavMs (Q_f 347 = -4*e*) and its mutant with charge Q_f = -5*e* we ran equilibrium MD simulations in 100 mM solution of 348 CaCl₂ or 140 mM NaCl (for 150 and 100 ns respectively). The initial structure of WT NavMs was taken 349 from the Protein Data Bank (ID: 3ZJZ). Mutation S179D on chain A and embedding in a membrane

of 248 POPC molecules was performed using the CHARMM membrane builder [40, 41].

351

353 Figure 3. MD simulations for WT and mutant NavMS in NaCl 140 mM. (A-B) Potential of mean 354 force of Na⁺ as a function of the axial position in WT NavMS (A) and the mutant with charge $Q_{f}=-5e$ 355 (B). (C-D) Average number of coordinating oxygens per sodium ion in axial bins with thickness of 2.0 356 Å. (C) wild type NavMs; (D) NavMs mutant with $Q_t = -5e$. The distance cutoff to identify sodium-357 chloride interactions was set to 3.5 Å, and for sodium-oxygen to 3.2 Å. Color code is as follows. Blue 358 line: number of coordinating water-provided oxygens; green line: number of coordinating oxygens 359 provided by aspartate and glutamates; red line; number of coordinating oxygens provided by other 360 protein residues; black line: total number of coordinating oxygens; magenta line: number of 361 coordinating chlorides. (EH) Configuration of the selectivity filter of wild type NavMS (E,G) and the 362 mutant with charge $Q_f = -5e$ (F,H). All structures correspond to the last frame of a 100 ns simulation 363 in 0.14 M NaCl. Panels (E,F) show a side view of the SF; panels (G,H) show the top view. Glu178 is 364 shown in red while Asp179 is shown in purple. The backbone of Leu177 is shown in green. Sodium 365 ions are portrayed as blue beads. Panels (E and G) also show the water molecules that mediate the 366 interactions between the resident sodium ion and the protein in wild type NavMS.

367 In 140 mM NaCl solution WT NavMs SF is stably occupied by a single Na⁺ even if transient 368 events of occupation by a second ion can also be spotted (Suppl. Fig. 4a). $Q_f = -5e$ mutants SF is almost 369 immediately occupied by two Na⁺ ions and, after 40 ns, the filter becomes stably occupied by three 370 sodium ions (Supp. Fig. 4b). The different behavior of the two species is also reflected in the PMF 371 profile (Figure 3 a and b), which is characterized by a single deep minimum centered at z=4-5 Å for 372 WT NavMs, and a minimum split into three sub-basins at z=2.0 Å, z=5.0 Å and z=8-9 Å, 373 corresponding to three different binding regions, for $Q_f = -5e$ mutant. The barriers between sub-374 basins are of the order of 1-2 kcal/mol and can be easily overcome at the simulation temperature, 375 yet sodium ions linger in each binding site for longer than they would in case of a uniform 376 probability distribution of occupancy.

377 The nature of these binding sites can be better characterized analyzing the conformation of the 378 SF in the last frame of the 100 ns simulations (Figure 3 e-h). A notable feature of wild type NavMs is 379 that the side chains of E178 residues do not point toward the center of the channel but they are aligned 380 along the channel wall pointing towards the extracellular side. As a result, the distance between the 381 resident sodium ion and the ε -oxygen of E178 always exceeds 4.0 Å. This means that there are no 382 direct sodium-protein interactions; Na+ interacts with the protein via water molecules in its hydration 383 shell. Indeed, the withdrawn placement of E178 side chains leaves sufficient space in the SF for Na⁺ 384 to fully keep its first hydration shell of six water molecules. In contrast, the conformation of the SF of 385 $Q_f = -5e$ mutant revealed three sodium ions that directly interact with the residues of the SF; 386 specifically, the extracellular one interacting with D179 and E178 both located on chain A, the central 387 one with E178 and the intracellular sodium with the backbone carbonyl group of one of the L177 388 residues. The additional negative charge thus determines an enhanced ability of NavMs mutant to 389 capture sodium ions from the bulk. This, combined with the possibility of a knock-on mechanism 390 deriving from the simultaneous presence of three Na⁺ ions in the SF, possibly explains the larger 391 sodium current density for NavMs channels with $Q_f = -5e$. As a result of this structural arrangement 392 (and in contrast to that for the WT; Figure 3 c) Na⁺ ions accessing the SF of the mutant lose on average 393 3.5 water molecules. However, this loss is compensated by the interactions with oxygens provided 394 by the acidic residues (2 oxygens) and by other protein residues (1 oxygen) such that the total number 395 of coordinating oxygens is maintained equivalent to that for sodium in bulk solution (Figure 3 c, d). 396 Note that the interactions of the resident ions with all other residues of the SF are water mediated.

397 In 100 mM CaCl₂ within the timescale of our simulations no Ca²⁺ gains access to the SF of the WT 398 channel while a single Ca²⁺ enters into the SF of the $Q_f = -5e$ mutant during the early stages of the 399 simulation and thereafter remains locked inside while also repelling other potentially incoming 400 calcium ions (Suppl. Fig. 5 A, B). This pattern is in keeping not only with the behavior of WT and 401 mutant NavMs concatemer, but also with the results of the experiments on mixed populations of 402 NaChBac heterotetramers. In fact, while the calcium peak current of LESWAS homotetramers ($Q_f = -$ 403 4e) is just 0.66 pA/pF, that of the 3LES:1LED population where we expect the highest proportion of 404 channels with $Q_f = -5e$, is tenfold higher (6.0 pA/pF). The seeming mismatch between the currents 405 recorded in experiments and the total block of the Ca²⁺ ion revealed by the simulations is (at least in 406 part) due to the fact that in the latter no electric field was applied. Moreover, experimental recordings 407 are performed on a timescale of hundreds of milliseconds, one million times longer than that covered 408 by simulations, allowing time for slow, activated events of ion permeation. A comparison between 409 our computational results and those by other groups is discussed by Supplementary Figure 5.

410 The position of the ion in the SF revealed by the Potential of Mean Force (PMF) shows that Ca²⁺ 411 ions do visit the vestibule region of the WT channel, but they never enter into the SF (Figure 4 A). The 412 presence of an additional negative charge in the SF (S179D) is sufficient to pull in a Ca²⁺ ion that 413 occupies a binding site centered at z=6.5 Å (Figure 4 B). The PMF minimum corresponding to this 414 binding site has a depth of approximately 7.0 kcal/mol, which, at the simulation temperature of 300 415 K, corresponds to 11.5 kBT. The energy well is thus so deep that a single Ca^{2+} cannot leave the SF. 416 Thus, to be consistent with the experimental recording of Ca^{2+} current (Figure 2 E and G), calcium 417 permeation must involve some sort of knock-on mechanism. The role of the aspartate residue in the 418 SF is immediately highlighted by Figure 4 E-H that shows the configuration of the SF in the last frame 419 of the simulation. The resident calcium ion appears to be directly bonded to D179 and to E178 both 420 located on chain A (Figure 4). The interactions with the other glutamates of the SF are all water421 mediated. In order to better characterize calcium hydration, in Figure 4 C-D we plot the average 422 number of coordinating oxygen atoms per calcium ion in axial bins with thickness of 2.0 Å. Figure 4 423 shows that when a calcium ion enters into the SF the number of hydrating water molecules drops 424 from approximately 8 to 4.5. This dehydration is compensated by an increase in the number of 425 coordinating oxygens provided by aspartate and glutamate residues (approximately 3). So, when 426 Ca²⁺ enters the SF the total number of coordinating oxygens remains roughly unchanged (Figure 4 C, 427 D).

428

429 Figure 4. MD simulations for WT and mutant NavMS in CaCl₂ 100 mM. (A-B) Potential of mean 430 force of Ca²⁺ as a function of the axial position in WT NavMS (A) and the mutant with charge $Q_f = -5e$ 431 (B). (C-D) Average number of coordinating oxygens per calcium ion in axial bins with thickness of 2.0 432 Å. (C) wild type NavMs; (D) NavMs mutant with Q_f = -5*e*. The distance cutoff to identify both calcium-433 chloride and calcium-oxygen interactions was set to 3.5 Å. Color code is as follows. Blue line: number 434 of coordinating water oxygens; green line: number of coordinating oxygens provided by aspartate 435 and glutamates; red line; number of coordinating oxygens provided by other protein residues; black 436 line: total number of coordinating oxygens; magenta line: number of coordinating chlorides. (E-H) 437 Configuration of the selectivity filter of wild type NavMS (E,G) and the mutant with charge $Q_f = -5e$ 438 (F,H). All structures correspond to the last frame of a 150 ns simulation in 0.10 M CaCl₂. Panels (E,F) 439 show a side view of the SF; panels (G,H) show the top view. Glu178 is shown in red while Asp179 is shown in purple. The backbone of Leu177 is shown in green. Calcium ions are portrayed as an orangebeads.

A collective diffusion model approach was adopted to approximate the Ca²⁺ currents [46]. The algorithm relates the spontaneous permeation events at equilibrium with steady currents induced by small voltages. This approach thus, enables estimation of currents from equilibrium simulations; however, as it is based on linear response theory, its predictions are reliable only in a small voltage range. The results of the calculation are summarized in Table 2.

447**Table 2.** Current estimates through linear response theory. The first column shows the NavMs448species analyzed, either the wild type form EEEE with SF charge $Q_f = -4e$ or the mutant EEEED449with an additional negative charge in the SF ($Q_f = -5e$). The second column shows the ion carrying450the current, the third column reports the estimated conductance in pS and the fourth column451lists the estimated current at V = -20 mV. This voltage corresponds to the peak current in the452current-voltage plots determined from whole-cell patch-clamp experiments.

Spacias	Ion	Conductance	e Currents	
species	1011	(pS)	(pA; -20 mV)	
EEEE	Ca ²⁺	1.69	-0.033	
EEEED	Ca ²⁺	4.87	-0.097	
EEEE	Na ⁺	23.06	-0.46	
EEEED	Na+	35.37	-0.70	

453 Notwithstanding the limitations of our calculations, the collective diffusion modelling 454 predictions are in reasonable agreement with the experimental observations (Figure 2). For example, 455 1) whole-cell recordings showed that peak sodium currents increased by approximately 1.5-fold in 456 the $Q_f = -5e$ NavMs channel (-35 to -55 pA/pF); this is mirrored by a 1.5-fold increase in sodium 457 conductance (from 23.06 to 35.37 pS) predicted by linear response theory calculations; 2) experimental 458 measurements of peak calcium currents in the $Q_f = -5e$ mutant are approximately 10 times smaller 459 than that for sodium; this is consistent with the modelling in the $Q_f = -5e$ mutant in which a 7-fold 460 greater sodium (35.37 pS) conductance is predicted compared to that for calcium (4.87 pS); 3) the 461 small finite Ca^{2+} influx predicted in the WT NavMs (Table 2; 1.69 pS) can be observed in the 462 electrophysiological recordings (Figure 2E).

463 4. Discussion and Conclusion.

464 In this work, we engineered radial asymmetry in the bacterial NaChBac and NavMs channels as 465 a first attempt to mimic the features of eukaryotic voltage-gated sodium and calcium channels. It is 466 well known that prokaryotic sodium channels are characterized by a glutamate ring that imparts a 467 charge -4e to the SF and endows the channel with Na⁺ selectivity. It is also well established that an 468 increase in the negative charge of the SF makes the channel progressively more calcium selective. 469 Pioneering studies by the Clapham group for instance, showed that mutating into aspartate either 470 serine of the SF sequence TLESWAS of NaChBac decreases the P_{Na}/P_{Ca} ratio while a mutation of both 471 serines makes the channel completely calcium selective [20]. Using the same strategy, more recently 472 Tang et al. replaced the TLESWSM sequence in the SF of NavAb with TLDDWSD causing a complete 473 shift from sodium to calcium selectivity [21]. It is noteworthy that, due to the tetrameric symmetry of 474 prokaryotic NaVs, in all these studies the charge of the SF was always varied in -4e steps and radial 475 symmetry was maintained. It is thus known that a charge $Q_f = -4e$ is typical of a Na+ selective channel 476 while a charge -8e or -12e leads to calcium selectivity. This change in Qf value is rather course and 477 does not address the fact that the SF of eukaryotic channels is asymmetric. Therefore, it is important 478 to investigate the influence on selectivity of charge changes by -1e steps.

The study of random heteroteramers in our work indicated that channels with SF charge smaller than -4e mediate Na⁺ currents and channels with SF charge in the -4e< Q_f <-8e range conduct Ca²⁺. Furthermore, the study of the NavMs concatemer showed that the presence of an additional negative

 $482 \qquad \text{charge in the SF leads to a significant increase of Na^+ and Ca^{2+} \text{ current.}}$

483 The electrophysiological behavior of NaChBac populations of randomly assembled 484 heterotetramers appears to be in reasonable agreement with the predictions of the Ionic Coulomb 485 Blockade (ICB) model [23-25]. According to this model, ion permeation and selectivity through 486 channels mainly depend on Q_f of the SF. If calcium permeation is plotted as a function of Q_f , a pattern 487 of alternating conductance and stop bands can be observed. In contrast, the same plot for sodium 488 predicts a steep increase in current magnitude up to values in Q_f of <-2e followed by a plateau and 489 the absence of stop bands (Figures 2 and 3, in [25]), consistent with sodium permeation being 490 relatively insensitive to changes in Q_f. Thus, the predictions of the ICB model appear to be compatible 491 with the plot of peak sodium currents in Figure 1C. Furthermore, it is tempting to envisage the pattern 492 of Ca^{2+} current density shown in Figure 1D, as an oscillation in the calcium conductance (i.e. 493 conductance and stop bands) which would repeat over a wider range of Q_f values. The ICB model, 494 however, appears to be less successful in explaining the so called "EEEE paradox", that is, the 495 apparently shared "EEEE" motif in both the sodium selective bacterial NaVs and the calcium selective 496 eukaryotic CaVs. Kaufman et al. tentatively reconciled this inconsistency noting the presence of a 497 conserved aspartate close to the EEEE ring of eukaryotic CaVs, thus redefining the motif as EEEED 498 which raises the SF charge to -5e [36]. Our experiments on the NavMs concatemer go some way 499 towards confirming this prediction, but also highlight that other factors in addition to the value of Q_f 500 are important. The ICB model predicts that a charge -5e allows access of a third Ca²⁺ ion when the SF 501 is already occupied by two resident calcium ions. Our MD simulations, however, show that while no 502 calcium ion gains access to the SF of WT NavMs, only a single Ca^{2+} ion stably occupies the filter of 503 the mutant with charge -5e. This calcium ion is strongly bound to D179 and E178 located on the same 504 subunit and sits in a free energy wall so deep that it cannot leave the SF. At the same time, the resident 505 ion probably exerts an electrostatic repulsion on other potentially incoming Ca²⁺ ions, preventing a 506 knock-on mechanism in a similar fashion as we described for NaChBac [49].

507 Our experiments and simulations thus suggest that the extra negative charge is effective in the 508 capture of cations from the bulk, but it does not promote permeation. Contrary to that postulated by 509 simplified physical models (in which channel atomic structure is not considered), the charge of the 510 SF is not the only determinant of conduction and selectivity. It is possible that calcium flow in 511 eukaryotic Cavs requires some sort of fine modulation of charge effects. Flood et al. for instance 512 performed an interesting computational study grafting the SF and external vestibular region of the 513 human NaV1.2 channel into the scaffold of the NavRh bacterial channel [35]. Their multi-514 microsecond MD simulations revealed that permeation and selectivity depend on the close interplay 515 of the DEKA and EEDD rings so that the charge of the extended filter region is -5e as in our NavMs 516 mutant. In its protonated state the lysine residue of the DEKA ring acts like a built-in sodium ion 517 involved in the formation of multi-carboxylates/multi-ion complexes. When the charged ammonium 518 group of lysine is in the HFS site, where the electrostatic potential is most negative, it creates a smooth 519 electrostatic environment leading into the cavity, whereas when it is bent toward the central cavity, 520 it creates a zone of high electrostatic potential that cuts the cavity off from the SF. Our recent work 521 [38] showing the possibility to create stable concatemers of the bacterial NavMs channel offers the 522 opportunity to experimentally test these computational predictions by creating a bacterial channel 523 chimera where the SF and vestibule of human Nav1.2 channel are grafted onto the NavMs 524 concatemer.

525 Since no positively charged residue appears to be located close to the SF of eukaryotic CaVs, the 526 fine modulation of the charge might rely on differential protonation of the acidic residues of the 527 EEEED locus. The effect of protonation has been extensively studied through MD simulations. Furini 528 et al. for instance, showed that the glutamate side chains in NavAb can adopt two different 529 orientations pointing either towards the extracellular environment or towards the central cavity [34]. 530 Interestingly, they found that the likelihood of the inwardly directed arrangement increases when 531 E177 residues are protonated. Moreover, the presence of a glutamate residue with the side chain 532 directed to the central cavity increases the energy barrier for translocation of sodium ions. Since E177 533 was observed to adopt an alternative conformation in MD simulations with Ca^{2+} ions [50], it is 534 possible that these protonation-induced configurations also affect selectivity. While the control of the

- 535 protonation state of the filter is a trivial task in MD simulations, it is a challenging endeavor in 536 biophysical experiments.
- 537 This leads us to the methodological aspect of our work. Our study not only tested the importance 538 of SF charge in controlling ion selectivity and permeation, but created new tools extending the use of 539 bacterial channels as models of eukaryotic ones. Indeed the current work is the first one to report 540 experiments on a NaV channel in which the pore region has been mutated to have radial asymmetry 541 and thus it represents an important first step in bridging the major limitation in using bacterial 542 sodium channels to investigate their eukaryotic counterparts. Our methodology will enable to design 543 physical experiments to investigate the mechanisms of fine modulation of charge effects that are 544 likely to occur in asymmetric eukaryotic channels, such as that predicted by Flood et al. [35].
- A further methodological merit of our approach is its relevance to understand the effect of pH on channel permeation and selectivity. In fact, when pH is varied, the four glutamates of the SF are unlikely to be protonated or deprotonated simultaneously. A more probable scenario is that they are protonated or deprotonated one at a time resulting in +1*e* or -1*e* changes in the SF charge [23]. Finally, our combination of molecular dynamics and electrophysiological approaches provided fresh insight into the molecular mechanisms of cation permeation in bacterial sodium channels, and gave insight
- into understanding the molecular mechanism that underlie the function of NaVs and CaVs.
- 552 Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Supplementary Table 553 1. Parameters of NavMs equilibration. Supplementary Table 2. Peak currents ratios of WT and mutant NavMs 554 channels. Supplementary Table 3. Peak currents ratios of NaChBac heterotetramers. Supplementary Figure 1. 555 The tetramer formation via co-transection is proved to be a random process without bias for homo- or hetero-556 tetramer formation. Supplementary Figure 2. The single channel currents recorded from WT NaChBac. 557 Supplementary Figure 3. Schematic representation of NavMs concatemer. Supplementary Figure 4. MD 558 simulations of WT NavMs and its mutant with $Q_f = -5e$ in NaCl 140 mM. Supplementary Figure 5. MD 559 simulations of WT NavMs and its mutant with $Q_f = -5e$ in CaCl₂ 100 mM. Supplementary Figure 6. Current-560 voltage plot calculations: comparison of constant electric field simulations and equilibrium simulations in 561 conjunction with linear response theory.
- 562 Data Availability Statement: Data related to this research is openly available from the University of Warwick
 563 archive at (https://wrap.warwick.ac.uk/143573). Fedorenko, Olena A., Khovanov, Igor A., Roberts, Stephen K.
- and Guardiani, Carlo (2020) Data for Changes in ion selectivity following asymmetrical addition of charge to
- 565 the selectivity filter of bacterial sodium channels [Dataset].
- Author Contributions: Conceptualization, O.A.F., C.G., S.K.R. and I.K.; methodology, O.A.F. and C.G.; formal
 analysis, O.A.F. and C.G.; investigation, O.A.F. and C.G.; writing—original draft preparation, O.A.F. and C.G.;
 writing—review and editing, S.K.R. and I.K. All authors have read and agreed to the published version of the
 manuscript.
- Funding: This research was funded by EPSRC; project: Ionic Coulomb blockade oscillations and the physical origins of permeation, selectivity, and their mutation transformations in biological ion channels (grant numbers: EP/M015831/1 and EP/M016889/1). CG is currently supported by a project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 803213).
- 575 **Acknowledgments:** We are grateful to Dr. Huaping Sun for the generation of the -5*e* NavMs constructs.
- 576 **Conflicts of Interest:** The authors declare no conflict of interest.
- 577 References
- Catterall, W.A. Forty Years of Sodium Channels: Structure, Function, Pharmacology, and Epilepsy. Neurochem Res. 2017, 42(9), 2495-2504. doi: 10.1007/s11064-017-2314-9.
- 580
 2.
 Flucher, B.E. Skeletal muscle CaV1.1 channelopathies. *Pflugers Arch.* 2020, 472(7), 739–754. doi: 10.1007/s00424-020-02368-3.

- 582 Zhang, Q.; Chen, J.; Qin, Y.; Wang, J. and Zhou, L. Mutations in voltage-gated L-type calcium channel: 3. 583 implications in cardiac arrhythmia. Channels (Austin) 2018, 12(1), 201-218. doi: 584 10.1080/19336950.2018.1499368.
- Oyrer, J.; Maljevic, S.; Scheffer, I.E.; Berkovic, S.F.; Petrou, S. and Reid, C.A. Ion Channels in Genetic
 Epilepsy: From Genes and Mechanisms to Disease-Targeted Therapies. *Pharmacol Rev.* 2018, 70(1), 142-173.
 doi: 10.1124/pr.117.014456.
- 5. Catterall, W.A. Structure and regulation of voltage-gated Ca2+ channels. *Annu Rev Cell Dev Biol.* 2000, 16, 521-555. doi: 10.1146/annurev.cellbio.16.1.521.
- 590 6. Tyson, J.R. and Snutch, T.P. Molecular nature of voltage-gated calcium channels: structure and species
 591 comparison. *WIREs Membr Transp Signal* 2013, 2, 181–206. doi.org/10.1002/wmts.91.
- 592 7. Catterall, W.A. and Swanson, T.M. Structural Basis for Pharmacology of Voltage-Gated Sodium and
 593 Calcium Channels. *Mol Pharmacol.* 2015, *88(1)*, 141-150. doi: 10.1124/mol.114.097659.
- Zamponi, G.W.; Striessnig, J.; Koschak, A. and Dolphin, A.C. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. *Pharmacol Rev.* 2015, 67, 821–870. doi:10.1124/pr.114.009654.
- 597 9. Xu, L.; Ding, X.; Wang, T.; Mou, S.; Sun, H. and Hou, T. Voltage-gated sodium channels: structures,
 598 functions, and molecular modeling. *Drug Discov Today* 2019, 24(7), 1389-1397. doi:
 599 10.1016/j.drudis.2019.05.014.
- Wu, J.; Yan, Z.; Li, Z.; Qian, X.; Lu, S.; Dong, M.; Zhou, Q. and Yan, M. Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution. *Nature* 2016, *537*, 191–196. doi: 10.1038/nature19321.
- 602 11. Carpenter, E.P., Beis, K., Cameron, A.D. and Iwata, S. Overcoming the challenges of membrane protein
 603 crystallography. *Curr Opin Struct Biol.* 2008, 18(5), 581-586. doi: 10.1016/j.sbi.2008.07.001.
- Shen, H.; Zhou, Q.; Pan, X.; Li, Z.; Wu, J. and Yan, N. Structure of a eukaryotic voltage-gated sodium
 channel at near-atomic resolution. *Science* 2017, 355(6328):eaal4326. doi: 10.1126/science.aal4326.
- Ren, D.; Navarro, B.; Xu, H.; Yue, L.; Shi, Q. and Clapham, D.E. A prokaryotic voltage-gated sodium channel. *Science* 2001, 294(5550):2372-5. doi: 10.1126/science.1065635.
- Ki Zhang, X.; Ren, W.; DeCaen, P.; Yan, C.; Tao, X.; Tang, L.; Wang, J.; Hasegawa, K.; Kumasaka, T.; He, J.;
 Wang, J.; Clapham, D.E. and Yan, N. Crystal structure of an orthologue of the NaChBac voltage-gated
 sodium channel. *Nature* 2012, *486*(7401), 130-4. doi: 10.1038/nature11054.
- 611 15. Finol-Urdaneta, R.K.; Wang, Y.; Al-Sabi, A.; Zhao, C.; Noskov, S.Y. and French, R.J. Sodium channel
 612 selectivity and conduction: prokaryotes have devised their own molecular strategy. *J Gen Physiol.* 2014,
 613 143(2), 157-71. doi: 10.1085/jgp.201311037.
- 614 16. Catterall, W.A. and Zheng, N. Deciphering voltage-gated Na(+) and Ca(2+) channels by studying 615 prokaryotic ancestors. *Trends Biochem Sci.* **2015**, *40*(9), 526-34. doi: 10.1016/j.tibs.2015.07.002.
- Naylor, C.E.; Bagnéris, C.; DeCaen, P.G.; Sula, A.; Scaglione, A.; Clapham, D.E. and Wallace, B.A. Molecular
 basis of ion permeability in a voltage-gated sodium channel. *EMBO J.* 2016, *35(8)*, 820-30. doi:
 10.15252/embj.201593285.
- Bagneris, C.; DeCaen, P.G.; Naylor, C.E.; Pryde, D.C.; Nobeli, I.; Clapham, D.E. and Wallace, B.A.
 Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. *PNAS USA* 2014, *111*(23), 8428-8433. doi: 10.1073/pnas.1406855111.
- Guardiani, C.; Rodger, P.M.; Fedorenko, O.A.; Roberts, S.K. and Khovanov, I.A. Sodium Binding Sites and
 Permeation Mechanism in the NaChBac Channel: A Molecular Dynamics Study. *J Chemical Theory and Computation* 2017, *13*, 1389-1400. doi.org/10.1021/acs.jctc.6b01035.
- 625 20. Yue, L.; Navarro, B.; Ren, D.; Ramos, A. and Clapham, D.E. The Cation Selectivity Filter of the Bacterial
 626 Sodium Channel, NaChBac. *J Gen Physiol.* 2002, *120*, 845-853. doi.org/10.1085/jgp.20028699.
- Tang, L.; Gamal El-Din, T.M.; Payandeh, J.; Martinez, G.Q.; Heard, T.M.; Scheuer, T.; Zheng, N. and
 Catterall, W.A. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. *Nature* 2014, 505(7481), 56-61. doi: 10.1038/nature12775.
- Guardiani, C.; Fedorenko, O.A.; Khovanov, I.A. and Roberts, S.K. Different roles for aspartates and
 glutamates for cation permeation in bacterial sodium channels. *BBA-Biomembranes* 2019, *1861*(2), 495-503.
 doi.org/10.1016/j.bbamem.2018.11.011.
- 633 23. Fedorenko, O.A.; Kaufman, I.K.; Gibby, W.A.T.; Barabash, M.L.; Luchinsky, D.G.; Roberts, S.K. and
 634 McClintock, P.V.E. Ionic Coulomb blockade and the determinants of selectivity in the NaChBac bacterial
 635 sodium channel. *BBA-Biomembranes* 2020, *1862*(9):183301. doi: 10.1016/j.bbamem.2020.183301.

- Kaufman, I.K.; McClintock, P.V.E. and Eisenberg, R.S. Coulomb blockade model of permeation and selectivity in biological ion channels. *New J of Physics* 2015, *17(8)*:083021. doi: 10.1088/1367-2630/17/8/083021.
- Kaufman, I.K.; Fedorenko, O.A.; Luchinsky, D.G.; Gibby, W.A.T.; Roberts, S.K.; McClintock, P.V.E. and
 Eisenberg, R.S. Ionic Coulomb blockade and anomalous mole fraction effect in the NaChBac bacterial ion
 channel and its charge-varied mutants. *EPJ Nonlinear Biomed Phys.* 2017, *5*, 4-12. doi:
 10.1051/epjnbp/2017003.
- 642 26. Payandeh, J.; Scheuer, T.; Zheng, N. and Catterall, W.A. The crystal structure of a voltage-gated sodium
 643 channel. *Nature* 2011, 475(7356), 353-8. doi: 10.1038/nature10238.
- Payandeh, J.; Gamal El-Din, T.M.; Scheuer, T.; Zheng, N. and Catterall, W.A. Crystal structure of a voltagegated sodium channel in two potentially inactivated states. *Nature* 2012, 486(7401), 135-9. doi:
 10.1038/nature11077.
- Bagnéris, C.; Decaen, P.G.; Hall, B.A.; Naylor, C.E.; Clapham, D.E.; Kay, C.W. and Wallace, B.A. Role of the
 C-terminal domain in the structure and function of tetrameric sodium channels. *Nat Commun.* 2013, *4*, 2465.
 doi: 10.1038/ncomms3465.
- Shaya, D.; Findeisen, F.; Abderemane-Ali, F.; Arrigoni, C.; Wong, S.; Nurva, S.R.; Loussouarn, G. and
 Minor, D.L.Jr. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an
 outer ion binding site common to eukaryotic channels. *J Mol Biol.* 2014, 426(2), 467-83. doi:
 10.1016/j.jmb.2013.10.010.
- Bagnéris, C.; Naylor, C.E.; McCusker, E.C. and Wallace, B.A. Structural model of the open-closedinactivated cycle of prokaryotic voltage-gated sodium channels. *J Gen Physiol.* 2015, 145(1), 5-16. doi:
 10.1085/jgp.201411242.
- McCusker, E.C.; Bagnéris, C.; Naylor, C.E. Cole, A.R.; D'Avanzo, N.; Nichols, C.G. and Wallace, B.A.
 Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. *Nat Commun.* 2012, 3, 1102. doi: 10.1038/ncomms2077.
- budev, T. and Lim, C. Why voltage-gated Ca2+ and bacterial Na+ channels with the same EEEE motif in their selectivity filters confer opposite metal selectivity. *Phys Chem Chem Phys.* 2012, 14(36), 12451-6. doi: 10.1039/c2cp00036a.
- Furini, S.; Barbini, P. and Domene, C. Effects of the protonation state of the EEEE motif of a bacterial Na+
 channel on conduction and pore structure. *Biophys J.* 2014, 106(10), 2175–83. doi: 10.1016/j.bpj.2014.04.005.
- Boiteux, C.; Flood, E. and Allen, T.W. Comparison of Permeation Mechanisms in Sodium-Selective Ion
 Channels. *Neurosci Lett.* 2019, 700, 3-8. doi: 10.1016/j.neulet.2018.05.036.
- Flood, E.; Boiteux, C. and Allen, T.W. Selective ion permeation involves complexation with carboxylates
 and lysine in a model human sodium channel. *PLoS Comput Biol.* 2018, 14(9), e1006398. doi:
 10.1371/journal.pcbi.1006398.
- Kaufman, I.K.; Luchinsky, D.G.; Gibby, W.A.T.; McClintock, P.V.E. and Eisenberg, R.S. Putative resolution
 of the EEEE selectivity paradox in L-type Ca2+ and bacterial Na+ biological ion channels. *J Stat Mech.* 2016,
 054027. doi: 10.1088/1742-5468/2016/05/054027.
- 673 37. Cheng, R.C.; Tikhonov, D.B. and Zhorov, B.S. Structural modeling of calcium binding in the selectivity
 674 filter of the L-type calcium channel. *Eur Biophys J* 2010, *39*, 839853.
- Sun, H.; Zheng, Z.; Fedorenko, O.A. and Roberts, S.K. Covalent linkage of bacterial voltage-gated sodium
 channels. *BMC Biophysics*, 2019, 12:1. doi:10.1186/s13628-019-0049-5.
- 877 39. Neher, E. Correction for liquid junction potentials in patch clamp experiments. *Methods Enzymol.* 1992, 207, 123-31. doi: 10.1016/0076-6879(92)07008-c.
- 40. Jo, S.; Kim, T.; Iyer, V.G. and Im, W. CHARMM-GUI: A Web-based Graphical User Interface for CHARMM. *J Comput Chem.* 2008, *29*, 1859-65. doi: 10.1002/jcc.20945.
- 41. Wu, E.L., X. Cheng, S. Jo, H. Rui, K.C. Song, E.M. Davila-Contreras, Y. Qi, J. Lee, V. Monje-Galvan, R.M.
 682 Venable, J.B. Klauda, and W. Im. CHARMM-GUI Membrane Builder Toward Realistic Biological
 683 Membrane Simulations. J. Comput.Chem. 2014, 35:1997-2004.
- 42. Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kale, L.
 and Schulten, K. Scalable Molecular Dynamics with NAMD. *J Comput Chem.* 2005, *26*, 1781-1802. doi: 10.1002/jcc.20289.
- 43. Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E. and Simmerling, C. ff14SB:
 Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. *J Chem Theory*689 *Comput.* 2015, *11(8)*, 3696–3713. doi: 10.1021/acs.jctc.5b00255.

- 690 44. Dickson, C.J.; Madej, B.D.; Skjevik, A.A.; Betz, R.M.; Teigen, K.; Gould, I.R. and Walker, R.C. Lipid14: The
 691 Amber Lipid Force Field. *J Chem Theory Comput.* 2014, *10*(2), 865-879. doi: 10.1021/ct4010307.
- 45. Ulmschneider, M.B.; Bagneris, C.; McCusker, E.C.; DeCaen, P.G.; Delling, M.; Clapham, D.E.;
 Ulmschneider, J.P. and Wallace, B.A. Molecular dynamics of ion transport through the open conformation
 of a bacterial voltage-gated sodium channel. *PNAS USA* 2013, 110(16), 6364-69. doi:
 10.1073/pnas.1214667110.
- 46. Liu, Y. and Zhu, F. Collective diffusion model for ion conduction through microscopic channels. *Biophys J.*2013, 104(2), 368-376. doi: 10.1016/j.bpj.2012.11.3826.
- 47. Zhao, Y.; Scheuer, T. and Catterall, W.A. Reversed voltage-dependent gating of a bacterial sodium channel
 with proline substitutions in the S6 transmembrane segment. *PNAS USA* 2004, 101(51), 17873–78.
 doi:.10.1073/pnas.0408270101.
- 48. Zhao, Y.; Yarov-Yarovoy, V.; Scheuer, T. and Catterall, W.A. A gating hinge in sodium channels; a molecular switch for electrical signaling. *Neuron* 2004, *41*, 859–65. doi:10.1016/S0896-6273(04)00116-3.
- 49. Guardiani, C.; Fedorenko, O.A.; Roberts, S.K. and Khovanov, I.A. On the selectivity of the NaChBac
 704 channel: an integrated computational and experimental analysis of Na+ and Ca2+ permeation. *Physical*705 *Chemistry Chemical Physics*, 2017, 19(44), 29840-54. doi: 10.1039/C7CP05928K.
- Ke, S.; Zangerl, E.M. and A. Stary-Weinzinger. Distinct interactions of Na+ and Ca2+ ions with the selectivity filter of the bacterial sodium channel NavAb. *Biochem Biophys Res Commun.* 2013, 430, 1272-76.
 doi:10.1016/j.bbrc.2012.12.055.
- 709 Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional710 affiliations.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

711