
Reversible Jump PDMP Samplers for Variable

Selection

Augustin Chevallier, Paul Fearnhead and Matt Sutton∗

July 11, 2022

Abstract

A new class of Markov chain Monte Carlo (MCMC) algorithms, based on simu-

lating piecewise deterministic Markov processes (PDMPs), has recently shown great

promise: they are non-reversible, can mix better than standard MCMC algorithms,

and can use subsampling ideas to speed up computation in big data scenarios. How-

ever, current PDMP samplers can only sample from posterior densities that are dif-

ferentiable almost everywhere, which precludes their use for model choice. Motivated

by variable selection problems, we show how to develop reversible jump PDMP sam-

plers that can jointly explore the discrete space of models and the continuous space

of parameters. Our framework is general: it takes any existing PDMP sampler, and

adds two types of trans-dimensional moves that allow for the addition or removal of

a variable from the model. We show how the rates of these trans-dimensional moves

can be calculated so that the sampler has the correct invariant distribution. We re-

move a variable from a model when the associated parameter is zero, and this means

∗This research was supported by EPSRC grants EP/R018561 and EP/R034710.

1

that the rates of the trans-dimensional moves do not depend on the likelihood. It is,

thus, easy to implement a reversible jump version of any PDMP sampler that can

explore a fixed model.

Keywords: Bayesian Statistics; Bouncy Particle Sampler; Model Choice; Monte Carlo; Zig

Zag Algorithm

1 Introduction

There is currently much interest in developing MCMC algorithms based on simulating

piecewise deterministic Markov processes (PDMPs). These are continuous time Markov

processes that have deterministic dynamics between a set of event times, and the random-

ness in these processes only comes through the random event times and potentially random

transitions at the events (see Davis 1993, for an introduction to PDMPs).

The idea of simulating PDMPs to sample from a target distribution of interest originated

in statistical physics (Peters & de With 2012, Michel et al. 2014), but has recently been

proposed as an alternative to standard MCMC to sample from posterior distributions in

Bayesian Statistics, with algorithms such as the Bouncy Particle Sampler (Bouchard-Côté

et al. 2018) and the ZigZag algorithm (Bierkens & Roberts 2017, Bierkens et al. 2019)

amongst others (Vanetti et al. 2017, Markovic & Sepehri 2018, Wu & Robert 2020, Michel

et al. 2020, Bierkens et al. 2020). See Fearnhead et al. (2018) for an introduction to this

area.

To sample from a density π(θ) most current PDMP samplers introduce a velocity com-

ponent, v, of the same dimension as θ, and have deterministic dynamics that correspond

to a constant velocity model (though see Vanetti et al. 2017, for alternative PDMP al-

gorithms). At the random events the velocity component changes. Algorithms differ in

terms of the event rate and how the velocity changes at each event, but each has a simple

2

recipe for choosing these so that the resulting PDMP has π(θ) as its invariant distribu-

tion. These recipes depend on π(θ) through the gradient of log π(θ), which importantly

means that π(θ) only needs to be known up to proportionality, but also that π(θ) needs

to be differentiable almost everywhere. The advantages of PDMP samplers are that they

are non-reversible, and thus can mix more quickly than standard reversible MCMC algo-

rithms (Diaconis et al. 2000), and, when sampling from posterior distributions, they can

use a small sample of data points at each iteration whilst still targeting the true posterior

distribution (Bierkens et al. 2019).

However, the restriction to sampling from densities that are differentiable means that

current PDMP samplers cannot be used in model choice problems. The aim of this paper

is to address this limitation, with a particular motivation of PDMP samplers that can be

used in variable selection problems that are common in, for example, linear regression and

generalized linear models. We show how to design efficient PDMP samplers which allow

movement between different models.

A simple way to implement PDMP samplers for variable selection problems is to use

continuous spike-and-slab priors on the parameters (Ishwaran & Rao 2005, George & Mc-

Culloch 1993), which, rather than setting some parameters exactly to 0, have priors that

place substantial mass close to 0. With such a prior, the resulting posterior density is

differentiable, and existing PDMP samplers can be used (Goldman et al. 2021). However

such an approach has three disadvantages. First, under such a prior it can be hard to

interpret the results as we do not formally get posterior probabilities on whether certain

variables should be included in the model. Second, they introduce an extra tuning param-

eter to the prior which governs the shape of the spike of the component. Third, as we

show in Section 2.2, using PDMP samplers to sample from the resulting posterior can be

computationally inefficient: the samplers will need to simulate many events so that the

parameters associated to variables that should not be in the model are kept close to 0.

3

We demonstrate how to adapt existing PDMP samplers to variable selection problems.

Specifically they evolve as the PDMP sampler when exploring the posterior associated with

a given model, but with two additional events: if any parameter value hits 0 the PDMP

jumps to the smaller model where the corresponding variable is removed; whilst with some

rate there are events that re-introduce variables into the model. We show in Section 3 how

to calculate the rate and transition for these new types of event so that the sampler has the

correct invariant distribution. To calculate these we need different techniques than those

used for existing PDMP samplers, as we need to account for the behaviour of the process

when parameters hit zero. The techniques we use are most similar to those in Bierkens

et al. (2018), which considers PDMPs with restricted domains. However in that paper the

dynamics at the boundary of the domain could be chosen so that the net flow of probability

at the boundary is zero; whereas we need to balance the probability flow out of a model

which occurs when a parameter hits zero with the flow into the model caused by the events

that re-introduce variables.

Our approach is not the only way of extending PDMP samplers to the variable selection

problem. One could also introduce moves that propose adding or deleting a variable from

the model regardless of the current state of the PDMP. Such ideas have been proposed

for other continuous-time samplers, see Grenander & Miller (1994) or Phillips & Smith

(1996) for their use within jump-diffusion samplers, and Stephens (2000) for their use

within continuous-time Markov jump process samplers. Exactly the same type of moves

between models could be implemented for PDMPs. However we believe our approach,

that only allows removing variables when the corresponding parameter value hits zero, has

important practical advantages. Most importantly, because we add or remove a variable

when its corresponding parameter is 0 the rates of these events do not depend on the

likelihood, but only the prior. This makes simulating these events simple – in fact for

many common priors the rate at which we add a variable will be constant. Thus any PDMP

4

sampler suitable for a fixed model can easily be extended to allow for variable selection.

By comparison the moves and rates described in Grenander & Miller (1994) would involve

rates that depend on the likelihood ratio between the current and new model. Simulating

events with this rate will be challenging, as the rate will vary, in a complicated way, when

the parameter values change. Calculating this rate will be costly as it requires evaluating

the log-likelihood, which is a sum over the data points. Furthermore, most algorithms to

simulate events require bounds on the rates, and calculating good bounds will be problem

specific and potentially difficult. After a preprint of this work appeared (Chevallier et al.

2020), a related method, called the sticky PDMP (Bierkens et al. 2021), has been proposed.

For variable selection problems, the main difference between the two approaches is that the

sticky PDMP sampler remembers the velocity of a component when it is re-added back

into the model, and thus will continue in the same direction as it was moving before that

variable was removed.

The approach we present is generic, in that it can take any current PDMP sampler

and be used to obtain a version that can be applied to the variable selection problem.

We call the new class of samplers reversible jump PDMP samplers, due to the analogy

with reversible jump MCMC (Green 1995), though the class of moves we allow are less

general than those available for standard reversible jump MCMC. We show how to derive

reversible-jump versions of both ZigZag and the Bouncy Particle Sampler in Section 4,

before investigating empirically these algorithms on both logistic regression and robust

linear regression models.

Proofs of all theorems are relegated to the appendix. Code for implementing the new

reversible jump PDMP samplers is available from the R package rjpdmp available from the

Comprehensive R Archive Network (CRAN).

5

2 PDMP Samplers and Model Choice

2.1 Variable Selection

We will consider model selection problems that arise from variable selection. The general

framework is that we have a vector of parameters, θ = (θ1, ..., θd), and each model is

characterised by setting some subset of the θjs to 0. This is a common setting across linear

models, generalised linear models and various extensions.

To make ideas concrete, consider a linear model

Y =
d∑
j=1

Xjθj + ε

where Y is a vector of response variables, each Xj is a vector of covariates, and ε is an

additive noise vector. When d is large it is common to fit such a model under a sparsity

assumption, namely that many of the θjs are 0.

In a Bayesian analysis, such a sparsity assumption is encapsulated in our choice of prior

on θ. To aid interpretation of the variable selection priors it is common to introduce a

latent variable γ = (γ1, ..., γd)
′ where γj = 1 if the covariate Xj is included in the model,

i.e. if θj 6= 0. We let |γ| =
∑
γj be the number of covariates included in the corresponding

model. Indexing θγ as the sub-vector of θ with only the selected variables, any prior can

be written in a hierarchical form where we have a prior on γ, then conditional on γ we

have a prior on θγ , and set all remaining entries of θ to 0.

A special case is where each component of θ is independent of the others. In which case

the prior can be written as

θj ∼ wjgj(θj) + (1− wj)δ0(θj), j = 1, ..., d,

6

where wj ∈ (0, 1) is the prior probability that γj = 1, δ0 is a Dirac measure at zero and

gj(θj) is a distribution that models our prior beliefs for θj conditional on that variable being

included in the model. Bayesian approaches to variable selection that put a probability

mass on θj = 0 in this way will be referred to as Dirac spike and slab methods. Notable

examples of these methods include Mitchell & Beauchamp (1988), Kuo & Mallick (1998),

Geweke (1996), Smith & Kohn (1996) and Bottolo & Richardson (2010).

While this formulation is natural from a modelling perspective, sampling from the

resulting posterior distribution can be challenging, with, for example, MCMC samplers

that use gradient information such as Hamiltonian Monte Carlo (Neal 2011) not being

applicable. To circumvent this issue it is common to use an approximation to this prior

which replaces the point mass at 0 with a density that is peaked around 0, such as

θj ∼ wjN (0, τ 2
j) + (1− wj)N (0, τ 2

j c
2
j), j = 1, ..., d, (1)

where cj is taken small so that N (0, c2
jτ

2
j) approximates the Dirac spike. We will refer to

Bayesian variable selection methods that replace the Dirac in the prior with a continuous

approximation as continuous spike and slab methods.

2.2 PDMP Samplers

Piecewise Deterministic Markov Processes (PDMPs) are an emerging class of non-reversible

continuous-time samplers. We will consider sampling from a distribution with density π(θ)

defined on some space X . Current samplers augment the state to include a velocity vector

and sample from a distribution on E = X × V . In the following, for z ∈ E we will use the

notation z = (θ,v) with θ ∈ X a position and v ∈ V a velocity.

A PDMP can be defined by (i) deterministic dynamics between a set of random event

times; (ii) the state-dependent rate at which events occur, λ(z); and (iii) a probability

7

distribution for the change in state at each event, with density q(z′|z). We will consider

PDMPs whose deterministic trajectories follow a differential equation of the form:

d(θt,vt)

dt
= (vt,Φ(θt,vt))

with Φ : E → V a smooth function. This setting contains the usual PDMP samplers such

as ZigZag (Bierkens et al. 2019), the Bouncy Particle Sampler (Bouchard-Côté et al. 2018),

or the Coordinate Sampler (Wu & Robert 2020).

For example, the ZigZag algorithm to simulate from π(θ) for θ ∈ Rd, would introduce

a velocity vector v ∈ {−1, 1}d, and deterministic dynamics

d(θt,vt)

dt
= (vt, 0),

which are the dynamics of a constant velocity model. For ZigZag, events occur at a rate

that depends on the gradient of π(θ) in each component of the velocity, and at an event

one component of the velocity is switched. The rate at which the jth component of the

velocity, vjt , is switched is just

max

{
0,−vjt

∂

∂θj
log π(θt)

}
.

These rates depend on the target distribution just through the gradient of the log of the

target – which importantly means that we need only know the target distribution up

to proportionality. Algorithm 1 gives computational pseudocode for simulating from the

ZigZag process.

We can apply current PDMPs, such as ZigZag, to the Bayesian variable selection prob-

lem if we use the continuous spike-and-slab prior (1). Realisations of such a sampler are

shown in the left two plots of Figure 1 as we vary how concentrated the spike distribution

8

Algorithm 1: ZigZag algorithm

1 Inputs: initial position, θ, and velocity, v; tmax
2 while t < tmax: do
3 for each i ≤ d do
4 Compute ti the event time associated to the Poisson rate

λi(t) = max
{

0,−vi ∂ log π
∂θi

(θ + tv)
}
.

5 end
6 Set iflip = arg min(ti), tflip = min(ti)
7 Set θ = θ + v(tflip − t)
8 Set viflip = −viflip
9 Set t = tflip

10 end

is. For the more concentrated case, the sampler becomes inefficient as it involves many

switching events when the state variable is close to 0.

Intuitively as we make the variance of the spike component of the prior tend to 0 the

prior converges to a prior with a point mass at 0; furthermore we can observe the output

of our PDMP sampler “converging” to a process shown in the right-hand plot of Figure 1.

Here, rather than the state having periods where it oscillates around 0, it has periods of

time where θj = 0 and thus has many fewer events. This limiting process motivates the

new class of PDMP samplers that we develop.

3 Reversible Jump PDMP Samplers

Let M = (M1,M2, ...) be a set of models indexed by a parameter k. Each model, Mk,

has a corresponding state space X k of dimension dk. For the sake of clarity, we will limit

9

0 20 40 60 80 100

−
1
0

−
5

0
5

1
0

Continuous spike and slab (c = 1/5)

t

θ
(t

)

0 20 40 60 80 100

−
1
0

−
5

0
5

1
0

Continuous spike and slab (c = 1/30)

t

θ
(t

)

0 20 40 60 80 100

−
1
0

−
5

0
5

1
0

Dirac spike and slab

t

θ
(t

)

Figure 1: Sample paths of PDMPs implementing variable selection in 1 dimension. The left
and centre plots show the trajectories for a continuous spike-and-slab prior 0.5N (0, τ 2) +
0.5N (0, τ 2c2) where τ 2 = 16. As c decreases the spike component in the mixture approaches
a Dirac mass. The figure on the right is the limiting process where we set the velocity to
zero allowing the variable to stay fixed at zero.

ourselves to variable selection. In our case X k has a specific form:

X k =
∏
i

Rγki

where we abuse notation by using R0 = {0} and where (γki)i is a sequence of numbers

in {0, 1} representing whether a variable is enabled for model Mk. Let π be the target

posterior defined on X = ∪kX k. We further assume that the restriction of π to each X k

has a density, and denote this by πk(θ). The first ingredient of our sampler is a collection

10

of PDMPs defined for each model. Each PDMP sampler adds a velocity space Vk to the

space X k and samples from the space Ek = X k × Vk. Finally, for each model Mk, the

associated PDMP sampler has an invariant distribution proportional to νk, where

νk(θ,v) = πk(θ)pk(v|θ) (θ,v) ∈ X k × Vk,

for some set of conditional densities pk(v|θ).

Remark 1. For samplers such as ZigZag, pk(dv|θ) is a measure with support on a discrete

set – it places probability mass 1/2k on each of the possible 2k velocities allowed by ZigZag.

By choosing Vk to be the support of pk(dv|θ), pk(dv|θ) still has a density – and integrals

can be interpreted as sums over the support points. This allows us to treat all samplers

within the same framework.

The second ingredient of our reversible jump PDMP sampler is a set of jumps between

models. For our case of variable selection, we only allow adding or removing one variable

at a time. Hence, let

T = {(i, j) | there exists a k such that γik = 1, γjk = 0; and γil = γjl , l 6= k}

be a set of pairs of transitions between models, with these ordered (i, j) such that model

Mj is obtained fromMi by removing one of the variables inMi. For transition i→ j, we

define an active boundary Γi,j = X j × V i ⊂ Ei, a subspace of Ei. Each trajectory passing

through Γi,j has some probability pi,j of jumping to Ej using a deterministic jump function

gi,j : Γi,j → Ej. We assume that the jump function does not change the parameter θ.

So, if a trajectory zt of our process has a left limit at time t, zt− in Γi,j, then with some

probability pi,j, zt = gi,j(zt−) ∈ Ej with θt = θt−. For transition j → i, we introduce a

Poisson rate, βi,j(z), and a jump kernel, Qi,j(·|z), such that if the trajectory is in Ej, then

11

with rate βi,j(zt−), zt is drawn from Qi,j(·|zt−) ∈ Γi,j. We impose symmetry in the jumps

between models so that for any z′ ∼ Qi,j(·|z), gi,j(z
′) = z, i.e. the probability measure

Qi,j(·|z) is supported by g−1
i,j (z).

As an example, for the ZigZag sampler, where velocities are plus or minus 1 in each

component, we could choose the function gi,j(z) that sets the velocity associated with the

variable that is removed from the model to 0 and keeps other components unchanged.

The reverse transition, defined by Qi,j, would then need to sample the velocity component

associated with the added velocity component from {−1, 1}, and leave other components

unchanged. If we have a sampler where the velocity is constrained to lie in the sphere, that

is v · v = 1 we cannot just set a component v to 0, as the resulting velocity will no longer

lie on the sphere. Instead, gi,j could set the appropriate component of v to 0 and then

re-normalise the velocity. The reverse transition could propose a value of the velocity for

the added component, from [−1, 1], and then re-scale the other velocity components.

3.1 Invariant distribution

Let ν =
∑

k νk be a measure on ∪kEk, where νk is the invariant distribution of the base

PDMP restricted to Ek. By construction, the θ-marginal distribution of ν is π and this

section provides sufficient conditions on Qi,j, pi,j and βi,j for ν to be an invariant distribution

of the process.

To get a directly usable conditions on βi,j, pi,j and Qi,j that ensure the target measure is

invariant, some additional notation must be introduced. When jumping from z = (θ,v) ∈
Ej to z′ = (θ,v′) ∈ Ei, the dimension of the velocity vector needs to be increased by one,

but the position is unchanged. (Strictly speaking, the position also increases in dimension

by one, but the additional position variable is set to 0.) Hence g−1
i,j (z) is a one-dimensional

12

manifold, which can be related to a subset, U say, of R by introducing a function

Gi,j : U × Ej → Ei

such that for any α ∈ U , we have Gi,j(α, z) ∈ g−1
i,j ({z}) and for a fixed z ∈ Ej, α 7→

Gi,j(α, z) is a one to one mapping from U to g−1
i,j (z) (similar ideas are seen in reversible

jump MCMC; see Green 1995). For a given z ∈ Ej, it is natural to rewrite the jump kernel

Qi,j in terms of α ∈ U , and henceforth we abuse notation and write Qi,j(·|z) as a density

on U . That is we can simulate the transition from Ej to Ei, by simulating α ∼ Qi,j(·|z)

and then setting z′ = Gi,j(α, z).

So for the ZigZag sampler, where gi,j sets a component of the velocity to 0, g−1
i,j (z), will

be equal to the set of two states that have the same position as z and whose velocities are

identical to that of z except for the component associated with the added variable. The

two velocities in this set would correspond to replacing the velocity of 0 for that component

with either 1 or −1. In this case U would just be the value of the velocity associated with

the added component. We can simulate from the reverse transition by simulating U and

calculating the new velocity from the old state z and U – this mapping defines Gi,j.

Finally, define ni,j to be a normal to the boundary Γi,j and let

νi,j(z) = ν(z)|〈v,ni,j〉| (2)

be an unnormalised density on Γi,j and let ν̄i,j be the pushforward measure on Ej of νi,j

by gi,j:

ν̄i,j(B) =

∫
g−1
i,j (B)

νi,j(z)dz for any B ⊂ Ej measurable. (3)

Informally this is the measure under νi,j associated with values of θ ∈ Γi,j that would be

mapped by gi,j to the set B.

13

For our example of the ZigZag sampler, |〈v,ni,j〉| = 1 as velocities are defined so

that they are ±1 in all directions normal to the boundaries. Thus νi,j(z) is just the un-

normalised density of z under ν(z) restricted to z ∈ Γi,j. The push-forward measure ν̃i,j

for a set B in the space of the smaller model is just the measure under νi,j of all the values

of the state z on the boundary Γi,j of the larger model that would be mapped to B when

we moved model. That is, for a state in B we consider the pair of states that have the

same position and whose velocity is the same except that the velocity of 0 at the removed

component is replaced with 1 or −1, and calculate the measure of all such pairs of states

corresponding to states in B.

We now present our conditions on βi,j, Qi,j and pi,j. It is helpful to consider separately

the cases where the space of velocities is continuous and the case where it is discrete.

Theorem 1. Assume the space of velocities is continuous, that for each k, the base PDMP

on Ek has νk as its invariant distribution, and define λ(z) for z ∈ Ek to be the jump rate

of the base PDMP on Ek. Further assume:

1. the mean jump rate of the base PDMPs is finite, i.e.
∫
λ(z)dν <∞;

2. for all k, πk is in C1, i.e. continuously differentiable, on Xk;

3. for any k, and any v ∈ Vk,
∫
Xk
|∇πk(θ) · v|dθ <∞.

Then the measure ν is invariant if for every (i, j) ∈ T , the following conditions hold

βi,j(z) = pi,j
ν̄i,j(z)

ν(z)
for z ∈ Ej (4)

Qi,j(α|z) =
νi,j(Gi,j(α, z))|JGi,j(α, z)|

ν̄i,j(z)
for z ∈ Ej and α ∈ U, (5)

where JGi,j denotes the Jacobian associated with the transformation Gi,j.

14

Proof. See Supplementary Material.

Intuitively, this result can be understood as a detailed balance condition: we balance

the probability flow for each jump z → z′ from Ei to Ej, with that of the reverse jump

z′ → z.

For discrete velocity spaces the result is slightly simpler, as the Jacobian term is not

required. In this case we replace (5) with the condition

Qi,j(α|z) =
νi,j(Gi,j(α, z))

ν̄i,j(z)
for z ∈ Ej and α ∈ U. (6)

3.2 A Reversible Jump PDMP Algorithm

Pseudo-code outlining how we can simulate the resulting Reversible Jump PDMP is given

in Algorithm 2. In Lines 2 to 12, we loop over possible events – which can either be events

where we jump to a model with an additional active variable, a component of the PDMP

position hitting zero, or events within the base PDMP – and simulate the times for each of

these possible events. In Lines 13 to 17 we calculate when the first of these possible events

occurs and update the process to that time. In Lines 18 to 32 we then update the PDMP

state based on which type of event has occurred.

In this algorithm, the additional computational cost of the reversible jump moves, over

and above the cost of simulating the base PDMP sampler, is proportional to the number

of variables. For each active variable we have to calculate the next time its position hits

0, which involves solving a scalar linear equation. For each inactive variable we need to

simulate the time at which we next introduce the variable. As we show in the next section,

in most cases the rates for these event are simple, often constant, and importantly do not

depend on the likelihood. In practice more efficient implementations than Algorithm 2 will

be possible that re-use previously simulated times of events. For example, if an event does

15

not change the velocity associated with a given variable, then we do not need to recalculate

the time that variable hits 0.

4 Example Samplers

4.1 ZigZag Sampler

We first derive the jump rates and transitions for the ZigZag sampler described in Section

2.2.

We choose gi,j to be the orthogonal projection, that is the projection that sets the

velocity of the disabled variable to 0. Let (i, j) ∈ T be a transition. For any v ∈ V i, we

have |〈v,ni,j〉| = 1, thus from our definition of νi,j(z) in (2)

νi,j(z) = ν(z) = πi(θ)2−|γi|.

For z ∈ Ej, since a velocity component in {−1, 1} is projected to 0, then from (3)

ν̄i,j(z) = 2πi(θ)2−|γi| = πi(θ)2−|γj |.

Since gi,j is the projection that sets to 0 the disabled variable, g−1
i,j (θ,v) = {(θ,v +

ni,j), (θ,v−ni,j)} and denoting the new velocity of the added component by α ∈ {−1, 1},
we chose

Gi,j(α,θ,v) = αni,j + v.

16

Algorithm 2: Reversible-Jump PDMP algorithm

1 Inputs: the initial position, θ, velocity, v, and model i; and tmax
2 while t < tmax: do
3 for each j such that (j, i) ∈ T do
4 Compute τRJj the event time associated to the Poisson rate βi,j(θ + tv,v)

5 end
6 Set τRJ = min τRJj , j = argmin τRJj
7 for each k such that (i, k) ∈ T do

8 Compute τ 0
k = −θk

vk
the intersection of the trajectory with the hyperplane

θk = 0
9 if t0k < 0 then

10 Set τ 0
k = +∞

11 end

12 end
13 Set τ 0 = min τ 0

j , k = argmin τ 0
k

14 Compute τBASE the event time associated to the Poisson rate of the base
PDMP.

15 Set τ evt = min(τRJ , τ 0, τBASE)
16 Set θ = θ + τ evtv
17 Set t = t+ τ evt

18 if τ evt = τBASE then
19 Sample (θ,v) ∼ QBASE(·|(θ,v))
20 end
21 if τ evt = τ 0 then
22 Simulate U , from a uniform on [0, 1]
23 if U < pi,k then
24 Set v = gi,j(v)
25 Set i = k

26 end

27 end
28 if τ evt = τRJ then
29 Sample α ∼ Qi,j(·|(θ,v))
30 Set v = Gi,j(α,θ,v)
31 Set i = j

32 end

33 end

17

Furthermore, we have from the version of Theorem 1 for discrete velocity spaces that

βi,j(z) = pi,j
πi(θ)

πj(θ)
(7)

Qi,j(α|z) = 1/2 for α ∈ {−1, 1}. (8)

For our variable selection problem, the ratio of the posterior density that appears in βi,j

will simplify to the ratio of the priors as the likelihood terms are common and cancel. If we

have independent priors on the parameters for each variable this term will be a constant,

which simplifies the simulation of the events at which we add new variables into our model.

This comment applies also to the rates for the Bouncy Particle Sampler which we derive

next. See the Supplementary Material for pseudocode for simulating from this process.

4.2 Bouncy Particle Sampler

We consider two versions of the Bouncy Particle Sampler. The first version has velocities

on the unit sphere, so

V i = {v ∈ R|γk| such that ‖v‖ = 1}.

Like the ZigZag sampler, the deterministic dynamics are given by a constant velocity

model. The event rate for sampling from a density πk(θ) is

λ(z) = max{0,−v · ∇θ log πk(θ)},

with the velocity reflecting in the normal to log πk(θ) at an event: if nk(x) is the normal

to log πk(θ), then the new velocity is

v′ = v − 2

(
v · nk(x)

nk(x) · nk(x)

)
nk(x).

18

The Bouncy Particle Sampler also often has refresh events, at which a completely new

velocity is sampled.

Extending the Bouncy Particle Sampler to the variable selection problem requires a

more careful analysis than for the ZigZag sampler due to the geometry of the velocity space.

Since velocities lie in the unit sphere, we choose gi,j to be the orthogonal projection followed

by a rescaling. Hence, g−1
i,j (θ,v) = {(θ, αni,j +

√
1− α2v)|α ∈ [−1, 1]} and denoting the

new velocity of the added component by α ∈ [−1, 1], we chose

Gi,j(α,θ,v) = αni,j +
√

1− α2v.

The following proposition states how to choose the jump rate, βi,j and the density for α.

Proposition 1. For the Bouncy Particle Sampler with velocities on the unit sphere, (4)

and (5) are satisfied if, for all (i, j) ∈ T with |γj| > 0:

βi,j(z) = pi,j
πi(θ)

πj(θ)

2Asphere(|γj|)
Asphere(|γi|)

1

|γj|

Qi,j(α|z) =
|α||γj|

√
1− α2

|γj |−2

2
for z ∈ Ej and α ∈ (−1, 1)

with Asphere(|γi|) =
Γ(
|γi|
2

)

2π
|γi|
2

the area of the unit sphere of R|γi|; and if |γj| = 0, where the

Bouncy Particle Sampler and ZigZag are equivalent, we use (7) and (8).

The second version of the Bouncy Particle Sampler has velocities in R|γk|, with their

density being standard Gaussian and independent of θ. The dynamics are as previously.

The geometry of this case is simpler and we choose gi,j to be the orthogonal projection of

the velocity. Hence g−1
i,j (θ,v) = {(θ,v + αni,j)|α ∈ R} and we chose

Gi,j(α,θ,v) = αni,j + v.

19

Proposition 2. For the Bouncy Particle Sampler with Gaussian velocities, (4) and (5)

are satisfied if, for all (i, j) ∈ T :

βi,j(z) = pi,j
πi(θ)

πj(θ)

2√
2π

Qi,j(α|z) = 2|α|e−
1
2
α2

for z ∈ Ej and α ∈ R.

5 Simulation Study

In this section we demonstrate the potential advantage of our new samplers compared

to alternative approaches for Bayesian variable selection. To compare between different

samplers we consider the Monte Carlo estimates of the posterior probabilities of inclusion,

the posterior means for the regression coefficients, and the posterior means conditioned on

the model. For a given sampler the statistical efficiency is measured by the mean squared

error of the sampler, denoted by σ2
sampler, and is calculated using R runs of the sampler as

σ2
sampler =

1

R

R∑
i=1

(q̂r − q)2 (9)

where q̂r for r = 1, ..., R are the estimates of a quantity of interest from the R runs, and q

is either the exact posterior quantity of interest, if available, or it is the estimate from an

independent long run of an MCMC method. In multiple dimensions the statistical efficiency

is measured as the median σ2
sampler over all dimensions. To compare the performance of

different samplers we also consider a measure of efficiency relative to a reference sampler.

If we denote the reference sampler by ref, then we define Relative Statistical Efficiency

20

(RSE) and Relative Efficiency (RE) by

RSE =
σ2

ref nref

σ2
sampler nsampler

, RE =
σ2

ref tref

σ2
sampler tsampler

,

where nsampler and nref are the number of iterations of the algorithms and tsampler and tref

are the computation times of the algorithms. The RSE measures the relative efficiency

of the algorithms per iteration whereas the RE measures the efficiency per second. For

interpretation, an RSE or RE value of 2 implies that the sampler is 2 times more efficient

than the reference method. The sensitivity of the methods to the choice of reversible

jump parameters pi,j and regular PDMP tuning parameters is explored empirically in the

Supplementary Material. Based on these results we fixed pi,j = 0.6 for all i and j in all

reversible jump PDMP samplers and implemented BPS with normal velocity distribution

with a fixed refreshment rate of 0.1 that was constant across models. We set this rate to

be 0.1 based on results from some initial tuning runs.

5.1 Logistic regression

First we compare PDMP based samplers with existing MCMC methods for a logistic regres-

sion model with spike and slab priors on the regression coefficients. The MCMC competitors

are a collapsed Gibbs sampler, and two reversible jump samplers. The Gibbs sampler uses

the Polya-Gamma augmentation of Polson et al. (2013) to make efficient moves through

model space. We implemented one reversible jump MCMC sampler using the NIMBLE

software package (de Valpine et al. 2017) using an independent normal proposal for se-

lected variables. The other is a reversible-jump version of HMC, which, at each iteration,

with probability 1/2 uses an HMC move within a model, and otherwise uses a reversible

jump move between models. More details on the samplers are given in the Supplementary

Material.

21

The logistic regression model has a d-dimensional regression parameter θ ∈ Rd, and a

binary response yi ∈ {0, 1} which is distributed as

P (yi = 1|xi,θ) =
exp(

∑d
j=1 xi,jθj)

1 + exp(
∑d

j=1 xi,jθj)

where xi is the d-vector of covariates for observation i. In our simulation study, each vector

xi is simulated from a multivariate normal with mean zero and d× d covariance matrix Σ.

We use a prior that is independent for each θj and where θj ∼ 10
d
N (0, 10)+(1− 10

d
)δ0, which

corresponds to a prior that favors models with 10 selected variables. Data was generated

using this model and the following choices for θ and covariance matrix Σ:

1. A pair of correlated covariates, one of which is in the model: θ = (1, 0, ...0)T with

Σ2,1 = Σ2,1 = 0.9, Σi,i = 1, and Σi,j = 0 otherwise.

2. Structured correlation between all covariates with six active covariates:

θ = (3, 3,−2, 3, 3,−2, 0, ..., 0)T with Σi,j = exp(−|i− j|).

3. No correlation between covariates and six active covariates:

θ = (3, 3,−2, 3, 3,−2, 0, ..., 0)T , with Σi,i = 1 and Σi,j = 0 if i 6= j.

4. Multiple pairs of correlated variables with six active covariates:

θ = (3, 3,−2, 3, 3,−2, 0, ..., 0)T with Σi+d/2,i = Σi,i+d/2 = 0.9 for 1 ≤ i ≤ 6, Σi,i = 1

and Σi,j = 0 otherwise.

These simulation scenarios are analogous to others previously considered in the litera-

ture for linear regression. Scenarios 1 and 3 are are similar to those considered by Wang

et al. (2011) and Zanella & Roberts (2019) while Scenario 2 is similar to one considered by

Yang et al. (2016). Scenario 4 is an extension of Scenario 1 to allow for more correlated

22

variables (and results for a further extension that allows for higher correlation is shown in

the Supplementary Material). We present results for both ZigZag and the Bouncy Parti-

cle Sampler with Gaussian distributed velocities in Tables 1 to 4 (very similar results are

obtained using the Bouncy Particle Sampler with velocities uniformly on the unit sphere).

Across the four scenarios, Gibbs variable selection performs the best in low sample

sizes (n < d). PDMP methods are competitive with Gibbs sampling when the number of

predictors and sample size is comparable and offer substantial efficiency gains for larger

sample sizes. Smaller gains can also be seen when the dimension is increased with fixed

sample size. Both BPS and ZigZag methods offer similar relative efficiencies across the

experiments. The greatest efficiency gains for our PDMP methods are seen in Table 1

with Tables 2, 3 and 4 offering lower gains in performance. This may be due to smaller

models being more likely in Scenario 1, as these require less computational effort for the

PDMP methods since fewer gradient calculations are required to simulate within these

lower dimensional models. RJ-HMC offers improvement to the simpler independent normal

reversible jump sampler for larger sample sizes. While HMC offers better within model

moves it comes at a higher computational cost and no real advantage to moving through

model space.

Unlike the reversible jump approaches, the Gibbs sampler makes efficient moves through

model space. This sampler makes use of marginalisation over the parameter values θ to

more effectively jump between models. However, when the number of observations is

large there is increased computational requirement for sampling the Polya-Gamma random

variables. This results in less efficient overall sampling than the PDMP samplers when n

is large.

The use of subsampling methods for Bayesian variable selection problems is a recently

emerging area (Song et al. 2020, Buchholz et al. 2019). One of the attractions of PDMP

samplers is that they can be implemented in a way where they only access a small subset

23

Table 1: Scenario 1 (pair of correlated variables): Relative efficiencies for methods, against
a Reversible Jump algorithm, for the marginal posterior means (Mean) and marginal pos-
terior probabilities of inclusion (PI). Bold figures show the best performing sampler.

ZigZag BPS Gibbs RJ-HMC

n, d PI Mean PI Mean PI Mean PI Mean

100, 100 0.86 4.77 0.44 4.49 3.82 4.21 0.04 0.62
200, 100 1.58 33.02 0.97 23.94 8.04 8.65 1.28 1.89
400, 100 2.54 47.22 1.56 36.33 10.13 9.75 1.50 1.95
800, 100 4.50 35.82 3.36 29.96 11.87 10.45 1.59 1.58
100, 200 1.29 1.35 1.45 1.79 5.11 4.72 1.34 2.09
200, 200 5.21 46.26 2.71 30.86 12.14 12.75 2.10 2.35
400, 200 10.36 83.95 6.21 53.86 15.64 15.40 2.23 2.65
800, 200 19.03 150.42 14.87 86.04 19.48 19.00 2.49 3.00
100, 400 1.10 1.49 1.71 2.36 3.59 3.72 0.50 1.60
200, 400 16.67 82.93 11.91 50.70 17.57 17.19 3.24 4.01
400, 400 48.39 141.70 30.76 97.78 22.50 23.03 3.93 5.12
800, 400 97.84 203.96 51.61 122.92 22.36 22.26 4.12 5.35

of data at each iteration, whilst still targeting the true posterior. We now investigate how

these ideas work in the variable selection problem, by comparing the efficiency of three

implementations of ZigZag with that of the Gibbs sampler, and see how this depends on

the number of observations. These are ZigZag using the full data, ZigZag using subsampling

with a global bound, and ZigZag with subsampling control variates (see Bierkens et al. 2019,

for details of both subsampling approaches).

Standard application of control variates requires calculation of the gradient at a ref-

erence point using the full likelihood. Due to the trans-dimensional nature of variable

selection problems, a full gradient calculation is not well defined. For this reason we choose

to make use of control variates defined for a fixed model M where the gradient is well de-

fined. These control variates are only used when the sampler is in this model. For certain

problems, such as generalised linear models, an O(n) initial calculation relating to the like-

24

Table 2: Scenario 2 (General correlation): Relative efficiency for methods, against a Re-
versible Jump algorithm, for the marginal posterior means (Mean) and marginal posterior
probabilities of inclusion (PI). Bold figures show the best performing sampler.

ZigZag BPS Gibbs RJ-HMC

n, d PI Mean PI Mean PI Mean PI Mean

100, 100 0.34 0.69 0.27 1.22 1.13 0.87 0.00 0.11
200, 100 0.85 1.12 0.57 1.98 2.07 1.34 0.71 0.29
400, 100 1.63 2.19 1.15 2.96 2.66 2.07 1.32 1.23
800, 100 2.84 5.46 1.87 5.71 2.98 2.47 1.40 1.93
100, 200 0.65 1.15 0.89 1.85 1.65 2.22 0.02 1.58
200, 200 1.46 1.57 1.56 2.44 2.29 1.27 0.74 0.42
400, 200 4.28 5.11 3.61 5.70 4.03 2.81 2.12 2.56
800, 200 7.85 11.10 5.08 10.06 4.98 4.19 2.35 3.13
100, 400 1.34 1.77 1.98 2.83 2.79 2.28 0.10 2.30
200, 400 3.86 3.84 4.69 6.26 4.64 3.07 0.20 1.18
400, 400 14.61 22.55 13.00 27.90 8.35 7.50 3.64 5.71
800, 400 25.26 37.37 19.25 33.03 9.71 8.80 4.20 5.88

lihood can be reused to define control variates for multiple models with certain parameters

set to zero. See the supplementary material for more details.

Results are shown in Figure 2. In this simulation we take the independent prior

θj ∼ 1
15
N (0, 10) + (1 − 1

15
)δ0, favoring models with a single selected variable. Despite

our simplistic implementation, these results indicate that Zig-Zag with control variates is

becoming increasingly efficient relative to Zig-Zag using the full dataset as the number

of samples increases. Furthermore we see evidence of super-efficiency – whilst the com-

putational cost per ESS of the Gibbs sampler is expected to be linear in the number of

observations, the relative efficiency plots suggest that this is sub-linear for ZigZag with

control variates.

25

Table 3: Scenario 3 (No correlation): Relative efficiency for methods, against a Reversible
Jump algorithm, for the marginal posterior means (Mean) and marginal posterior proba-
bilities of inclusion (PI). Bold figures show the best performing sampler.

ZigZag BPS Gibbs RJ-HMC

n, d PI Mean PI Mean PI Mean PI Mean

100, 100 0.45 0.97 0.29 1.70 1.21 1.16 0.01 0.09
200, 100 0.97 1.37 0.59 2.08 2.17 1.50 0.63 0.24
400, 100 1.47 2.13 1.06 2.60 2.51 1.80 1.20 0.88
800, 100 2.85 5.09 1.95 4.87 3.25 2.53 1.45 2.10
100, 200 0.75 0.79 0.91 1.59 1.84 1.65 0.31 0.22
200, 200 1.90 1.72 1.79 2.23 2.82 1.85 1.65 0.94
400, 200 5.62 11.13 4.33 14.84 4.88 3.94 2.08 3.04
800, 200 9.77 17.40 7.47 20.26 5.84 4.75 2.44 3.57
100, 400 1.05 1.48 1.74 2.83 2.11 1.80 0.05 1.98
200, 400 2.36 1.96 3.02 2.63 3.65 2.20 1.89 2.04
400, 400 7.13 8.31 6.77 10.85 5.32 4.08 2.88 4.21
800, 400 24.69 40.56 17.92 31.00 9.40 8.78 3.72 5.59

5.2 Robust regression

As mentioned in the introduction, a common approach to Bayesian variable selection is

to use continuous spike-and-slab priors for each parameter rather than try to sample from

the joint posterior of model and parameters. Such an approach is attractive as it enables

standard gradient-based samplers, such as Hamiltonian Monte Carlo, to be used. We now

compare such an approach, implemented with the popular Stan software (Carpenter et al.

2017), to our PDMP samplers. Our aim is to both investigate the computational efficiencies

of the two approaches and to show the differences in posterior that we obtain from these

different types of prior. Our comparison is based on a robust linear regression model.

In particular, we model the errors in our linear regression model as a mixture of normals

26

Table 4: Scenario 4 (multiple correlated pairs): Relative efficiency for methods, against a
Reversible Jump algorithm, for the marginal posterior means (Mean) and marginal poste-
rior probabilities of inclusion (PI). Bold figures show the best performing sampler.

ZigZag BPS Gibbs RJ-HMC

n, d PI Mean PI Mean PI Mean PI Mean

100, 100 0.43 1.05 0.36 1.84 1.11 1.04 0.01 0.07
200, 100 0.90 1.20 0.69 1.52 2.33 2.49 0.36 0.45
400, 100 1.25 1.40 0.86 1.70 2.17 1.20 0.40 1.34
800, 100 2.15 2.62 1.54 2.43 2.70 1.42 0.19 0.19
100, 200 0.69 1.30 1.11 2.34 1.48 1.67 0.03 0.49
200, 200 1.65 1.90 1.74 2.72 2.60 2.26 0.76 1.74
400, 200 3.41 3.99 3.04 4.96 3.19 2.17 1.82 2.19
800, 200 8.56 13.33 6.25 14.17 5.87 5.02 2.29 3.19
100, 400 1.81 2.96 2.50 6.90 2.92 2.37 0.01 1.30
200, 400 2.71 2.19 3.68 3.55 3.93 2.51 2.17 2.28
400, 400 11.89 15.64 10.31 17.66 7.98 6.79 3.33 4.63
800, 400 19.60 27.23 15.05 27.50 8.58 7.42 3.59 5.18

with different variances. Thus

Y =
d∑
i=1

Xjθj + ε, ε ∼ 1

2
N(0, 1) +

1

2
N(0, 102).

The continuous variable selection prior we consider is the regularised horseshoe (Piironen

& Vehtari 2017a,b)

θj ∼ N(0, τ 2λ̃j), λ̃j =
c2λj

c2 + τ 2λj
, λj ∼ C+(0, 1)

for j = 1, ..., d where C+(0, 1) denotes the half-Cauchy distribution for the standard devi-

ation λj. The regularised horseshoe is a variation of the horseshoe prior (Carvalho et al.

2010) that offers a continuous approximation of a Dirac spike and slab where the slab is

27

Figure 2: Log-log plots of efficiency, relative to the Gibbs sampler, of different samplers as
we vary the number of observations. Plotted are the relative efficiencies for the posterior
mean conditional on model M∗ where M∗ corresponds to the true data generated model.
The dataset was generated with a 15-dimensional regression parameter θ = (1, 1, 0, 0, ..., 0).
The methods run are the Zig-Zag applied to the full dataset (zz, black), Zig-Zag with
subsampling using global bounds (ss, blue), Zig-Zag with control variates (cv, magenta)
and Gibbs sampling (Gibbs, green). All methods were initialised at the location of the
control variate. Methods were given the same computational budget, for details see the
Supplementary Material.

a normal distribution with finite variance c2. The hyper-parameter τ controls the global

shrinkage of the variables towards zero. In Carvalho et al. (2010) it was shown that for

standard linear regression the optimal choice for a fixed value of τ is τ0 = σ d0
(d−d0)

√
n

where

d0 is a the number of nonzero variables in the sparse model and σ is the noise variance.

In line with this, we compare the regularised horseshoe prior with fixed hyper-parameter

28

Figure 3: Dynamics of the samplers on a robust regression example with spike and slab
or horseshoe prior. The top row shows the posterior for θ1 and θ2, bottom row shows the
estimates for θ2 and θ3. The spike and slab distributions are sampled using the reversible
jump PDMP samplers with reversible jump parameter 0.6 and refreshment for the BPS
methods set to 0.5. All methods are shown with 103 samples (red) and the PDMP dynamics
are shown in black. Sampling with the Horseshoe prior was implemented in Stan using
NUTS. Both Stan and PDMP methods were run for the same computing time. To aid
visualisation only the first 30% of the PDMP trajectories are shown.

τ0 = d0
(d−d0)

√
n

against the spike-and-slab prior

θj ∼
d0

d
N(0, c2) +

(
1− d0

d

)
δ0

for j = 1, ..., d. MCMC for the model using a horseshoe prior was performed by Stan’s

29

implementation of NUTS (Hoffman & Gelman 2014).

We first compare the variable selection dynamics for a simple model with d = 4 variables,

n = 120 observations and regression parameter θ = (0.5, 0.5, 0, 0)T . The covariate values

and residuals were generated as independent draws from a standard normal and the prior

expected model size is set to d0 = 1. Example output for the PDMP samplers and the Stan

implementation is shown in Figure 3. The posteriors show the horseshoe prior replicating

the effect of the spike-and-slab through shrinking the coefficients towards zero, but it is not

able to give exact zeros.

We now compare the reversible jump PDMP methods in terms of their sampling effi-

ciency for a higher dimensional problem. The dataset is generated for d = 200 variables and

n = 100 observations with regression parameter θ = (2, 2, 2, 2, 0, 0, 0....0)T . The covariates

for each observation were drawn from an AR(1) process with lag-1 correlation of 0.5. The

residuals were generated from a standard Cauchy distribution.

We ran Stan with the default settings for a burnin of 1000 iterations and then for 16,

32, 64, ..., 2048 iterations. We ran the reversible jump PDMP samplers for the same wall

clock time for both burnin and subsequent iterations. The experiment was repeated 50

times and the resulting boxplots of the posterior mean of θ1 are shown in Figure 4. For

the same computational budget, the reversible jump PDMP methods are able to attain

better performance as can be seen by the lower Monte Carlo variability of their estimates.

However, it is also apparent from this simulation that HMC is less susceptible to local

modes, perhaps due to the horseshoe prior being continuous.

The predictive abilities of the methods are compared in Figure 5. Here an additional n =

100 observations were drawn from the same model and these were used as a hold-out dataset

to validate the posterior predictive ability. The predictive ability is defined in terms of the

Monte Carlo estimate of the mean square prediction performance 1
100

∑100
i=1(yi−xTi θ)2 where

θ is replaced by the samples generated by either Stan or samples given by a discretisation

30

of time for the reversible jump PDMP samplers. The reversible jump PDMP samplers all

give the same predictive performance for large iteration numbers while Stan, which uses a

horseshoe prior, performs slightly worse.

0

1

2

3

2.25

2.30

2.35

2.40

16 32 64 128 256 512 1024 2048

Iterations

E
s
ti
m

a
te

Method

stan

bps_n

bps_s

zz

0

1

2

3

4

16 32 64 128 256 512 1024 2048

Iterations

D
id

n
’t
 f
in

d
 t
h
e
 M

o
d
e

Method

stan

bps_n

bps_s

zz

Figure 4: Sampling efficiency for reversible jump PDMP vs Stan for the robust regression
example. The PDMP samplers are ZigZag (zz), Bouncy Particle Sample with normally dis-
tributed velocities (bps n) and with velocities distributed uniformly on the sphere (bps s).
The top figure shows boxplots of the posterior mean of θ1 for increasing computational
budget, with outliers from the sampler removed for visualisation purposes. These removed
outliers correspond to times that the sampler has become stuck in a local mode where
θ1 = 0. The subplot shows the full results including outliers from the samplers. The Stan
sampler is sampling from a different posterior to the PDMP methods, and this is seen in
the estimates converging to slightly different values; but Monte Carlo efficiency can be as-
sessed by comparing the variability of the estimates. The bottom figure shows the number
of times that the samplers did not find the global mode.

31

Figure 5: Predictive ability of reversible jump PDMP vs Stan for the robust regression
example. The PDMP samplers are ZigZag (zz), Bouncy Particle Sample with normally dis-
tributed velocities (bps n) and with velocities distributed uniformly on the sphere (bps s).
The predictive ability is measured by Monte Carlo estimates of the mean square predictive
performance.

6 Discussion

We have shown how PDMP samplers can be extended so that they can sample from the

joint posterior over model and parameters in variable selection problems. There are a

number of open challenges that stem from this work. As with any MCMC algorithm, the

reversible jump PDMP samplers have tuning parameters. The additional tuning parameters

are the probabilities of moving between models when parameters hit zero. As a default, we

recommend setting these probabilities all to the same value, and our simulation results were

32

based on choosing this value after empirically evaluating the performance of the samplers

on one simple problem. Whilst the samplers mixed well, it is likely that better mixing

could be achieved if more informed choices of tuning parameters were made, and theory

for guiding such choices is needed (e.g. see Sherlock & Thiery 2020, for theory on choosing

the refresh rate of the Bouncy Particle Sampler).

The form of our reversible jump PDMP samplers is based on particular features of

the variable selection problem. In other model choice settings, different trans-dimensional

moves may be needed. The theory we developed should be able to be adapted to give rules

for choosing rates of such moves. For example, in the case of sampling from mixture models

one could introduce moves that remove a component when that component’s weight hits

zero; and when we add a component we simulate new values for the component parameters

from the prior. An advantage of such a construction would be that the rate of adding

or removing components would not depend on the likelihood. Also our trans-dimensional

moves are reversible, that is they balance probability flow from model i to model j by the

flow of probability from model j to model i – it would be interesting to see if non-reversible

trans-dimensional moves could be constructed.

It is likely that the reversible jump PDMP samplers will still struggle in situations

where the posterior is multi-modal with well separated modes. For such cases it would be

interesting to try and incorporate ideas such as tempering (Marinari & Parisi 1992) to allow

for better mixing across modes. Also better mixing may be possible if we could introduce

non-reversibility into exploring models, as in Power & Goldman (2019) and Gagnon &

Maire (2020), though it is difficult to see how to incorporate lifting ideas that introduce

such non-reversibility to our samplers. Finally, whilst we have considered only models with

a finite number of variables, we believe the theory and PDMPs would extend to models

with a countable number of variables, such as for polynomial regression. The challenge

in using such PDMPs will be efficiently sampling when new variables are introduced into

33

the model. If the rate at which each variable is added is simple and we can analytically

calculate the sum of these rates, then this should be possible by simulating when a variable

is added with a rate equal to this sum. At each such event we then simulate which variable

to add.

References

Bierkens, J., Bouchard-Côté, A., Doucet, A., Duncan, A. B., Fearnhead, P., Lienart, T.,

Roberts, G. O. & Vollmer, S. J. (2018), ‘Piecewise deterministic Markov processes for

scalable Monte Carlo on restricted domains’, Statistics & Probability Letters 136, 148–

154.

Bierkens, J., Fearnhead, P. & Roberts, G. (2019), ‘The zig-zag process and super-efficient

sampling for Bayesian analysis of big data’, The Annals of Statistics 47(3), 1288–1320.

Bierkens, J., Grazzi, S., Kamatani, K. & Roberts, G. (2020), The boomerang sampler, in

‘International Conference on Machine Learning’, PMLR, pp. 908–918.

Bierkens, J., Grazzi, S., van der Meulen, F. & Schauer, M. (2021), ‘Sticky PDMP samplers

for sparse and local inference problems’. arXiv:2103.08478.

Bierkens, J., Kamatani, K. & Roberts, G. O. (2022), ‘High-dimensional scaling limits of

piecewise deterministic sampling algorithms’, Annals of Applied Probability To appear.

Bierkens, J. & Roberts, G. (2017), ‘A piecewise deterministic scaling limit of lifted

Metropolis–Hastings in the Curie–Weiss model’, The Annals of Applied Probability

27(2), 846–882.

Bottolo, L. & Richardson, S. (2010), ‘Evolutionary stochastic search for Bayesian model

exploration’, Bayesian Analysis 5, 583–618.

34

Bouchard-Côté, A., Vollmer, S. J. & Doucet, A. (2018), ‘The bouncy particle sampler: A

nonreversible rejection-free Markov chain Monte Carlo method’, Journal of the American

Statistical Association 113(522), 855–867.

Buchholz, A., Ahfock, D. & Richardson, S. (2019), ‘Distributed computation for marginal

likelihood based model choice’, arXiv.1910.04672 .

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,

Brubaker, M., Guo, J., Li, P. & Riddell, A. (2017), ‘Stan: A probabilistic program-

ming language’, Journal of Statistical Software 76(1).

Carvalho, C. M., Polson, N. G. & Scott, J. G. (2010), ‘The horseshoe estimator for sparse

signals’, Biometrika 97(2), 465–480.

Chevallier, A., Fearnhead, P. & Sutton, M. (2020), ‘Reversible jump PDMP samplers for

variable selection’. arXiv:2010.11771.

Chevallier, A., Power, S., Wang, A. & Fearnhead, P. (2021), ‘PDMP Monte Carlo methods

for piecewise-smooth densities’. arXiv.2111.05859.

Chipman, H. A., George, E. I. & McCulloch, R. E. (2001), ‘The practical implementation of

Bayesian model selection (with discussion)’, Model Selection (P. Lahiri ed.) pp. 65–134.

Davis, M. (1993), Markov Models and Optimization, Chapman Hall.

de Valpine, P., Turek, D., Paciorek, C., Anderson-Bergman, C., Temple Lang, D. & Bodik,

R. (2017), ‘Programming with models: writing statistical algorithms for general model

structures with NIMBLE’, Journal of Computational and Graphical Statistics 26, 403–

413.

35

Deligiannidis, G., Paulin, D., Bouchard-Côté, A. & Doucet, A. (2018), ‘Randomized Hamil-

tonian Monte Carlo as scaling limit of the bouncy particle sampler and dimension-free

convergence rates’. arXiv.1808.04299.

Diaconis, P., Holmes, S. & Neal, R. M. (2000), ‘Analysis of a nonreversible Markov chain

sampler’, Annals of Applied Probability 10, 726–752.

Durmus, A., Guillin, A. & Monmarché, P. (2021), ‘Piecewise deterministic Markov pro-

cesses and their invariant measure’, Annales de l’Institut Henri Poincaré, Probabilités et

Statistiques 57(3), 1442–1475.

Fearnhead, P., Bierkens, J., Pollock, M. & Roberts, G. O. (2018), ‘Piecewise deterministic

Markov processes for continuous-time Monte Carlo’, Statistical Science 33(3), 386–412.

Gagnon, P. & Maire, F. (2020), ‘Lifted samplers for partially ordered discrete state-spaces’.

arXiv:2003.05492.

George, E. I. & McCulloch, R. E. (1993), ‘Variable selection via Gibbs sampling’, Journal

of the American Statistical Association 88(423), 881–889.

Geweke, J. (1996), Variable selection and model comparison in regression, in ‘Bayesian

Statistics 5’, Oxford University Press, pp. 609–620.

Goldman, J. V., Sell, T. & Singh, S. S. (2021), ‘Gradient-based Markov chain Monte Carlo

for Bayesian inference with non-differentiable priors’, Journal of the American Statistical

Association pp. 1–12.

Green, P. J. (1995), ‘Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination’, Biometrika 82(4), 711–732.

36

Grenander, U. & Miller, M. I. (1994), ‘Representations of knowledge in complex systems’,

Journal of the Royal Statistical Society: Series B (Methodological) 56(4), 549–581.

Hoffman, M. D. & Gelman, A. (2014), ‘The No-U-Turn sampler: adaptively setting

path lengths in Hamiltonian Monte Carlo.’, Journal of Machine Learning Research

15(1), 1593–1623.

Ishwaran, H. & Rao, J. S. (2005), ‘Spike and slab variable selection: frequentist and

Bayesian strategies’, The Annals of Statistics 33(2), 730–773.

Kuo, L. & Mallick, B. K. (1998), ‘Variable selection for regression models’, Sankhya Series

B 60, 65–81.

Marinari, E. & Parisi, G. (1992), ‘Simulated tempering: a new Monte Carlo scheme’, EPL

(Europhysics Letters) 19(6), 451.

Markovic, J. & Sepehri, A. (2018), ‘Bouncy hybrid sampler as a unifying device’,

arXiv:1802.04366 .

Michel, M., Durmus, A. & Sénécal, S. (2020), ‘Forward event-chain Monte Carlo: Fast

sampling by randomness control in irreversible Markov chains’, Journal of Computational

and Graphical Statistics 29, 689–702.

Michel, M., Kapfer, S. C. & Krauth, W. (2014), ‘Generalized event-chain Monte Carlo:

Constructing rejection-free global-balance algorithms from infinitesimal steps’, The Jour-

nal of Chemical Physics 140(5), 054116.

Mitchell, T. J. & Beauchamp, J. J. (1988), ‘Bayesian variable selection in linear regression’,

Journal of the American Statistical Association 83(404), 1023–1032.

37

Neal, R. M. (2011), MCMC using Hamiltonian dynamics, in A. Brooks, A. Gelman, G. L.

Jones & X. Meng, eds, ‘Handbook of Markov chain Monte Carlo’, Chapman & Hall,

pp. 113–162.

Peters, E. A. & de With, G. (2012), ‘Rejection-free Monte Carlo sampling for general

potentials’, Physical Review E 85(2), 026703.

Phillips, D. B. & Smith, A. F. (1996), Bayesian model comparison via jump diffusions,

in W. R. Gilks, S. Richardson & D. Spiegelhalter, eds, ‘Markov chain Monte Carlo in

practice’, Chapman & Hall, CRC, pp. 215–240.

Piironen, J. & Vehtari, A. (2017a), On the hyperprior choice for the global shrinkage

parameter in the horseshoe prior, Vol. 54 of Proceedings of Machine Learning Research,

PMLR, pp. 905–913.

Piironen, J. & Vehtari, A. (2017b), ‘Sparsity information and regularization in the horseshoe

and other shrinkage priors’, Electron. J. Statist. 11(2), 5018–5051.

Polson, N. G., Scott, J. G. & Windle, J. (2013), ‘Bayesian inference for logistic models

using Pólya–Gamma latent variables’, Journal of the American Statistical Association

108(504), 1339–1349.

Power, S. & Goldman, J. V. (2019), ‘Accelerated sampling on discrete spaces with non-

reversible Markov processes’. arXiv:1912.04681.

Sherlock, C. & Thiery, A. H. (2020), ‘A discrete bouncy particle sampler’, Biometrika, to

appear .

Smith, M. & Kohn, R. (1996), ‘Nonparametric regression using Bayesian variable selection’,

Journal of Econometrics 75(2), 317 – 343.

38

Song, Q., Sun, Y., Ye, M. & Liang, F. (2020), ‘Extended stochastic gradient Markov chain

Monte Carlo for large-scale Bayesian variable selection’, Biometrika 107, 997–1004.

Stephens, M. (2000), ‘Bayesian analysis of mixture models with an unknown number of

components-an alternative to reversible jump methods’, Annals of Statistics pp. 40–74.

Vanetti, P., Bouchard-Côté, A., Deligiannidis, G. & Doucet, A. (2017), ‘Piecewise-

Deterministic Markov Chain Monte Carlo’, arXiv:1707.05296 .

Wang, S., Nan, B., Rosset, S. & Zhu, J. (2011), ‘Random lasso’, Ann. Appl. Stat. 5(1), 468–

485.

Wu, C. & Robert, C. P. (2020), ‘Coordinate sampler: a non-reversible Gibbs-like MCMC

sampler’, Statistics and Computing 30(3), 721–730.

Yang, Y., Wainwright, M. J. & Jordan, M. I. (2016), ‘On the computational complexity of

high-dimensional Bayesian variable selection’, Ann. Statist. 44(6), 2497–2532.

Zanella, G. & Roberts, G. (2019), ‘Scalable importance tempering and Bayesian variable

selection’, Journal of the Royal Statistical Society: Series B (Statistical Methodology)

81(3), 489–517.

39

Supplementary Material: Reversible Jump PDMP
Samplers for Variable Selection

A Proofs

A.1 Proof of Theorem 1

To simplify notations, we use z = (θ,v) interchangeably through the proof. We follow

previous papers (Vanetti et al. 2017, Fearnhead et al. 2018, Bierkens et al. 2018) in our

general approach for calculating the invariant distribution of the PDMP, and start by over-

viewing this. We will use the infinitesimal generator of the PDMP, and we let (A,D(A)) be

the infinitesimal generator and it’s domain. Further let Ez denote expectation with respect

to the PDMP process Zt started with initial condition Z0 = z.

Then, by definition of the generator, for functions in the domain, f ∈ D(A),

(Af)(z) = lim
t→0+

Ez{f(Zt)} − f(z)

t
.

So Af can be viewed as the time-derivative of the expectation of f(Zt). If ν(·) is the

invariant distribution of the PDMP, and we start the process from ν, Z0 ∼ ν(·), then

expectations will be constant. This means that∫
(Af)(z)ν(z)dz = 0. (10)

The proof then inverts this argument. Intuitively the idea is that if (10) holds for some

density ν and for sufficiently many functions f then ν must be an invariant density of the

PDMP (in the same way that if two distributions have the same expectation as each other

for a sufficiently large class of functions then those distributions must be identical). Results

1

in, for example, Durmus et al. (2021) and Chevallier et al. (2021) can be used to make this

argument rigorous.

Following this intuition, the outline of the proof is as follows. By applying integration

by parts to (10) we can obtain a sufficient condition on ν(·) for (10) to hold for functions

f in D(A). Below we show that, for the choice of βi,j and Qi,j given in the statement of

the theorem, that this sufficient condition holds for our target distribution, ν(·). The fact

that ν(·) is thus the invariant distribution then follows immediately from the results in

Chevallier et al. (2021).

First we need to define the form of the generator A. The form of the generator for

a PDMP with boundaries is given in Davis (1993), however the definition of boundaries

in Davis (1993) differs slightly from ours. Our process still fits the definition of Davis

(1993): one simply needs to separate each X k in two at the boundary and consider the

two parts as two separated disjoint spaces. So for example, if we have a model with a

single variable then we would need to split the state-space for that variable into two, one

for positive values and one for negative values. More generally, if space Ek corresponds to

a model with dk variables, then we need to separate it into 2dk regions corresponding to

the different combinations of the parameters associated to each variable being positive or

negative.

This has an implication on the function spaces considered. The domain of the generator

will contain only continuous functions, but these need only be continuous on each of the

disjoint spaces. In other words, if we view these functions as defined on the state space E,

they can be discontinuous at the boundaries at 0. In practice, for (θ,v) on a boundary

Γi,j, we consider two “sides” of the boundary and write f(θ+,v) = limt→0,t>0 f(θ + tv,v)

and f(θ−,v) = limt→0,t>0 f(θ − tv,v). Furthermore, points in the entrance boundary

are added to the state space in Davis construction (Davis 1993, p. 57), hence we write

f(θ,v) = f(θ+,v) for (θ,v) ∈ Γi,j × Vi. On the other hand, for points on the exit

2

boundary, i.e. the “θ− side”, the trajectory with velocity v would instantaneously hit the

boundary Γi,j, and this is excluded from the state space. Hence the process can never jump

to the “θ− side”, only reach it (in the limit) through the deterministic dynamic. For a

detailed description of this we refer to the construction found in (Davis 1993, p. 57).

Furthermore, we should add an index to the state space to differentiate between the

different quadrants of Xk (which are now separated in different spaces), but since they do

not overlap, this information is redundant with the position θ, and we drop this index for

clarity.

From Davis (1993) we have that the generator can be written as

Af = v · ∇θf(z) + λ(z)

∫
{f(z′)− f(z)}Q(dz′, z),

where Q denotes the transition kernel at events.

Thus ∫
E

(Af)(z)ν(dz) =
∑
i

∫
Ei

v · ∇θf(z)νi(z)dz

+
∑
i

∫
Ei

λi(z)

∫
{f(z′)− f(z)}Qi(z

′|z)νi(z)dz′dz,

where we have split the integration over E into a sum of the integrals over each Ei, and

then used the definition of the rate and transition density for each Ei.

It is helpful to first consider the behaviour of the PDMP at exploring a single model.

To do this consider a function f of sufficient regularity with bounded support on Ei, that

we can apply integration-by-parts to get:∫
Ei

v · ∇θf(θ,v)νi(θ,v)dθdv = −
∫
Ei

f(θ,v)∇θνi(θ,v) · v dθdv.

3

Furthermore, using Fubini’s theorem with the fact that
∫
|λ(z)|dν <∞:

∫
Ei

λi(z)

∫
Vi

(f(θ,v′)− f(z))Qi(dv
′|z)dν(z) =

∫
Ei

f(z)

[∫
Vi
Qi(v

′|z)λi(θ,v
′)ν(θ,v′)dv′

]
dz

−
∫
Ei

f(z)λi(z)ν(z)dz.

Thus for such a function∫
E

(Af)(z)ν(z)dz =

∫
Ei

(Af)(z)νi(z)dz = −
∫
Ei

f(θ,v)∇θνi(θ,v) · v dθdv

+

∫
Ei

f(z)

[∫
Vi
Qi(v

′, z)λi(θ,v
′)ν(θ,v′)dv′

]
dz −

∫
Ei

f(z)λi(z)ν(z)dz

=

∫
Ei

f(z)

[∫
Vi
Qi(v

′|z)λi(θ,v
′)ν(θ,v′)dv′ − λi(z)ν(z)−∇θν(θ,v) · v

]
dz. (11)

Essentially because of the above argument applied to the generator of the base PDMP

sampler for Ei, our assumption that the base PDMP sampler on Ei leaves νi invariant

means that Qi and λi are such that∫
Vi
Qi(v

′, z)λi(θ,v
′)ν(θ,v′)dv′ − λi(z)ν(z)−∇θν(θ,v) · v = 0,

and thus (11) is 0.

To derive the invariant distribution for the reversible jump PDMP process we need to

consider more general functions f , that are non-zero for multiple model spaces. We can

apply the same approach to re-arrange
∫

(Af)(z)ν(z)dz as above, but now extra boundary

terms will appear when we perform the integration by parts, see e.g. Bierkens et al. (2018)

4

and Theorem 2 of Chevallier et al. (2021). This gives that for all f ∈ D(A):∫
Ei

Af(θ,v)dνi(θ,v) = −
∫
Ei

f(θ,v)∇θνi(θ,v) · v dθdv

+

∫
Ei

f(z)

[∫
Vi
Qi(v

′|z)λi(θ,v
′)ν(θ,v′)dv′

]
dz −

∫
Ei

f(z)λi(z)ν(z)dz

+
∑

j,(i,j)∈T

∫
Γi,j

(f(θ−,v)− f(θ,v))νi(θ,v)|〈v, n(θ)〉|dσ(θ)dv

+
∑

j,(j,i)∈T

∫
Ei

βj,i(θ,v)

∫
Vj

(f(θ,v′)− f(θ,v))Qj,i(dv
′|v)νi(θ,v)dθdv,

where, as defined above, f(θ,v) = limt→0,t>0 f(θ + tv,v) and f(θ−,v) = limt→0,t>0 f(θ −
tv,v) for (θ,v) ∈ Γi,j. The terms of the first two lines are as for the simpler case above,

and the terms in the latter two lines correspond to the boundary terms.

Using (11), we have the terms in the first two lines are zero. Thus, summing over all i,

we get:∫
E

Af(θ,v)dν(θ,v) =
∑

(i,j)∈T

∫
Γi,j

(f(θ−,v)− f(θ,v))νi(θ,v)|〈v, n(θ)〉|dσ(θ)dv

+
∑

(i,j)∈T

∫
Ej

βi,j(θ,v)

∫
Vi

(f(θ,v′)− f(θ,v))Qi,j(dv
′|v)νi(θ,v)dθdv.

To proceed we need to use properties of the domain of the generator, and thus of

functions f that we are considering. These can be obtained by considering the extended

infinitesimal generator of the PDMP, and using the fact that the domain of A is a subset

of the domain of the extended infinitesimal generator. We summarise the key results we

need, though see Davis (1993) for more details.

Denote the extended infinitesimal generator by Af and its domain D(A); these are

given for general PDMPs in Theorem 26.14 of Davis (1993). The behaviour of the PDMP

5

at the boundary is not encoded in the expression Af but in the domain D(A): the domain

includes only the set of functions such that for every z on the boundary,

f(z) =

∫
E

f(z′)Q(dz′, z),

where Q is the jump kernel at the boundary. In our case, the jump at the boundary is

the deterministic projection gi,j with probability pi,j, or crossing the boundary. Hence the

condition becomes

f(θ−,v) = pi,jf(gi,j(θ,v)) + (1− pi,j)f(θ,v)

for (θ,v) ∈ Γi,j.

Hence, since D(A) ⊂ D(A), for f ∈ D(A):∫
Γi,j

(f(θ−,v)− f(θ,v))νi,j(θ,v)dσ(θ)dv = pi,j

∫
Γi,j

(f(gi,j(θ,v))− f(θ,v))νi,j(θ,v)dσ(θ)dv

= pi,j

∫
Ej

f(z)dν̄i,j(z)− pi,j
∫

Γi,j

f(θ,v)νi,j(θ,v)dσ(θ)dv,

where the last equation is obtained by definition of the pushforward measure ν̄i,j. Finally,

using a change the change of variable from z′ = (θ′,v′) to α, z defined as z′ = Gi,j(α, z):∫
Γi,j

f(z′)νi,j(z
′) dz′ =

∫
Ej

∫
U

f(Gi,j(α, z))νi,j(G(α, z))|JGi,j(α, z)| dα dz.

6

Thus:∫
Γi,j

(f(θ−,v)− f(θ,v))νi,j(θ,v)dσ(θ)dv =

pi,j

∫
Ej

f(z)dν̄i,j(z)− pi,j
∫
Ej

∫
U

f(Gi,j(α, z))νi,j(G(α, z))|JGi,j(α, z)| dα dz.

Since Qi,j integrates to 1, we get:∫
Ej

βi,j(θ,v)

∫
Vi

(f(θ,v′)− f(θ,v))Qi,j(dv
′|v)νi(θ,v)dθdv

=

∫
Ej

βi,j(θ,v)

(∫
Vi
f(θ,v′)Qi,j(dv

′|v)− f(θ,v)

)
νi(θ,v)dθdv.

Using the definitions of Gi,j, and the fact that Qi,j(·|v) has support on g−1
i,j ({z}):

∫
Vi
f(θ,v′)Qi,j(dv

′|v) =

∫
U

f(Gi,j(α, z))Qi,j(α|z) dα.

We deduce:∫
E

Afdν =

∫
Ej

βi,j(θ,v)

(∫
U

f(Gi,j(α, z))Qi,j(α|z) dα− f(θ,v)

)
νi(θ,v)dθdv

+ pi,j

∫
Ej

f(z)dν̄i,j(z)− pi,j
∫
Ej

∫
U

f(Gi,j(α, z))νi,j(G(α, z))|JGi,j(α, z)| dα dz.

Since from the assumption of the Theorem

βi,j(z) = pi,j
ν̄i,j(z)

ν(z)
for z ∈ Ej

Qi,j(α|z) =
νi,j(Gi,j(α, z))|JGi,j(α, z)|

ν̄i,j(z)
for z ∈ Ej and α ∈ U

7

we have
∫
E
Afdν = 0 for all f ∈ D(A). That this implies ν is invariant, follows directly

from Theorem 1 of Chevallier et al. (2021).

A.2 Discrete Velocity Spaces

The following is the equivalent to Theorem 1 but for discrete velocity spaces. The only

difference is that in this case we do not need a Jacobian term in the definition of the

transition kernel Qi,j.

Theorem 2. Assume the velocity space is discrete, that the base PDMP on Ek has νk as

its invariant distribution, and that the following conditions hold:

1.
∫
|λ(z)|dν < ∞ where λ is the jump rate of the underlying PDMP without jumps

between models.

2. For all k, πk is C1 on Xk.

3. For any k, and any v ∈ Vk, ∇πk · v is in L1(Leb).

Then the measure ν is invariant if for every (i, j) ∈ T , the following conditions hold

βi,j(z) = pi,j
ν̄i,j(z)

ν(z)
for z ∈ Ej

Qi,j(α|z) =
νi,j(Gi,j(α, z))

ν̄i,j(z)
for z ∈ Ej and α ∈ U.

Proof. The proof is largely the same as the proof of Theorem 1. The only change is how

to treat the change of variable z′ = Gi,j(α, z). First, notice that Gi,j leaves the position

invariant since gi,j leaves the position invariant. Then, since the velocity space is discrete

8

and α 7→ Gi,j(α, z) is a one to one mapping for a fixed z ∈ Ej:∫
Γi,j

f(z′)νi,j(z
′) dz′ =

∫
X j

∑
v′∈Vi

f(θ′,v′)νi,j(θ
′,v′) dθ′

=

∫
X j

∑
v∈Ej

∑
α∈U

f(Gi,j(α, (θ,v))νi,j(Gi,j(α, (θ,v))) dθ.

which we can write in integral form as∫
Γi,j

f(z′)νi,j(z
′)|〈v′,ni,j〉| dz′ =

∫
Ej

∫
U

f(Gi,j(α, (θ,v))νi,j(Gi,j(α, (θ,v))) dαdz.

A.3 Proof of Proposition 1

Proof. Here:

V i = {v ∈ R|γi| such that ‖v‖ = 1}

For z ∈ Ei:
ν(z) = πi(θ)

1

Asphere(|γi|)

with Asphere(|γi|) =
Γ(
|γi|
2

)

2π
|γi|
2

the area of the unit sphere of R|γi|.

In this case we can define Gi,j : (−1, 1)× Ej → Ei such that z′ = (θ′,v′) = Gi,j(α, z),

where z = (θ,v), as θ′ = θ and

v′ =
√

1− α2v + αni,j.

9

Let B ⊂ Vj∫
B

ν̄i,j(θ,v)dv = πi(θ)

∫
g−1
i,j (B)

| < v′,ni,j > |
1

Asphere(|γi|)
dv′

= πi(θ)
1

Asphere(|γi|)

∫
[−1,1]×B

| <
√

1− α2v + αni,j,ni,j > ||JGi,j |dαdv

= 2πi(θ)
1

Asphere(|γi|)

∫
(0,1]×B

α|JGi,j |dαdv,

where the last inequality uses the symmetry of the integral with respect to α, and that

〈v,ni,j〉 = 0 by definition of velocities in Ej.

The determinant of Gi,j must be carefully computed since the velocities lives in the

sphere and not on the full vector space. We get:

|JGi,j(α,v)| =
√

1− α2
|γj |−2

.

Therefore for |γj| > 0:

ν̄i,j(z) = πi(θ)
2

Asphere(|γi|)
.

1

|γj|

Hence for |γj| > 0:

βi,j = pi,j
πi(θ)

πj(θ)

2Asphere(|γj|)
Asphere(|γi|)

1

|γj|
,

and

Qi,j(α|z) =
|α||γj|

√
1− α2

|γj |−2

2
for z ∈ Ej and α ∈ (−1, 1)

For |γj| = 0, BPS and ZigZag are equivalent, thus we use ZigZag rates.

10

A.4 Proof of Proposition 2

Proof. Here:

V i = R|γi|

Therefore, for z ∈ Ei:
ν(z) = πi(θ)

1

(2π)
|γi|
2

e−
1
2
‖v‖2

For (i, j) ∈ T with |γj| > 0, we can define Gi,j : (−1, 1)×Ej → Ei such that z′ = (θ′,v′) =

Gi,j(α, z), where z = (θ,v), as θ′ = θ and

v′ = v + αni,j.

Clearly, we have |JGi,j(α, z)| = 1. Let B ⊂ Vj∫
B

ν̄i,j(θ,v)dv = πi(θ)

∫
g−1
i,j (B)

| < v′,ni,j > |
1

(2π)
|γi|
2

e−
1
2
‖v′‖2dv′

= πi(θ)
1

(2π)
|γi|
2

∫
R×B
| < v + αni,j,ni,j > |e−

1
2
‖v+αni,j‖2|JGi,j |dαdv

= πi(θ)
1

(2π)
|γi|
2

∫
R×B
|α|e−

1
2

(α2+‖v‖2)dαdv

= πi(θ)2
1

(2π)
|γi|
2

∫
B

e−
1
2

(‖v‖2)dv.

Therefore for |γj| > 0:

ν̄i,j(z) = πi(θ)2
1

(2π)
|γi|
2

e−
1
2

(‖v‖2),

11

and

βi,j = pi,j
πi(θ)

πj(θ)

2√
2π

Furthermore, |JGi,j | = 1 thus:

Qi,j(α|z) = 2|α|e−
1
2
α2

for z ∈ Ej and α ∈ R.

B Sensitivity to tuning parameters

B.1 The reversible jump parameter pi,j

Our reversible jump PDMP sampler introduces one additional tuning parameter to any

for the base PDMP sampler. This is the reversible jump parameter pi,j, that specifies the

probability of removing a variable if the variable’s parameter hits 0. Higher values thus

encourage more mixing between models and smaller values encourage more mixing within

models. A similar parameter exists for all reversible jump MCMC algorithms, as we need

to specify the relative proportion of within and between model proposals.

It is natural to fix pi,j to the same value for all pairs i, j. We empirically look at the

sensitivity of our methods to this parameter. To explore this we consider the following

simple spike and slab model:

π(θ) =
d∏
i=1

[sφ(θi) + (1− s)δ0(θi)] (12)

where φ(·) denotes the density of a normal distribution and s ∈ (0, 1) is the probability

12

a variable is included in the model. We consider this simple model as it allows for exact

calculations of posterior marginal means and marginal variable inclusion probabilities.

We will focus on the reversible jump Zig-Zag algorithm, as there are no other tuning

parameters for this algorithm. We consider the spike and slab model with d = 50 variables

and s = 0.2, 0.4, 0.6 and 0.8. For s ≈ 0 or s ≈ 1, only a single model will have high

posterior probability whereas for s ≈ 0.5 many models are likely and searching the model

space will be more challenging.

The reversible jump Zig-Zag was run 100 times using 105 events for each setting of s

with pi,j ∈ {0.2, 0.4, 0.6, 0.8}. Figure 6 shows the average statistical efficiency in terms of

estimating the marginal posterior means and marginal posterior probabilities over these

100 runs. The figure also shows histograms of number of models visited for each simulation

and choice of pi,j.

As expected, we see that the Zig-Zag has a harder time estimating marginal posterior

inclusion probabilities for s ≈ 0.5 and a harder time estimating marginal means when

s ≈ 1. By increasing the parameter pi,j the number of models seen is increased regardless

of the value of s. When pi,j is large more models are visited and the marginal posterior

probabilities are more accurately estimated. However if it is visiting many models the

marginal means are less accurately estimated. For this reason a practitioner may like

to set the value pi,j ≈ 0.8 if efficient model space exploration is desired or pi,j ≈ 0.2 if

efficient parameter space exploration is desired. These simulations all started the process

at stationarity, an additional concern may arise if a good initial starting point is not known.

In this case it makes sense to favor higher pi,j to not get stuck in models with low posterior

probability. In our experiments we fixed pi,j = 0.6 as a rough trade-off between parameter

and model space exploration.

To further check the robustness of this tuning parameter we re-ran the simulations from

the logistic regression example in Section 5.1 using Zig-Zag with pi,j = 0.1, 0.3, 0.6, 0.7 and

13

Figure 6: Effect of pi,j parameter on model and parameter exploration using Reversible
Jump ZigZag. The target has d = 50 variables and s ∈ {0.2, 0.4, 0.6, 0.8} is the probability
of inclusion for each variable. Plots show the Monte Carlo variance against pi,j.

0.9. The tables 5-8 compare the efficiency of Zig-Zag with these parameters relative to Zig-

Zag with parameter pi,j = 0.6. From these tables we see that pi,j = 0.6 gives reasonable

performance across all scenarios. We initialised at the null model for all simulations, causing

the sampler to have an initial model exploration phase. Consequently lower values of pi,j

perform worse as it takes longer to reach model space with high probability.

B.2 The refreshment parameter for RJ-BPS methods

Unlike Zig-Zag the BPS algorithm requires an additional refreshment event to ensure that

it targets the invariant distribution. This refreshment event occurs with a constant rate

14

Table 5: Scenario 1 (pair of correlated variables): Relative efficiency (RE) for methods,
against Zig-Zag with pi,j = 0.6.

pi,j = 0.1 pi,j = 0.3 pi,j = 0.7 pi,j = 0.9

n, d PI Mean PI Mean PI Mean PI Mean
100, 100 0.68 0.28 1.36 0.65 0.89 1.11 0.70 1.09
200, 100 1.63 0.25 2.17 0.58 0.83 0.94 0.60 0.99
400, 100 1.57 0.32 2.09 0.72 0.81 1.03 0.58 1.05
800, 100 0.99 0.28 1.87 0.68 0.81 1.05 0.57 1.01
100, 200 0.38 0.43 0.63 0.61 0.73 0.77 0.80 0.94
200, 200 0.79 0.27 1.49 0.63 0.86 1.02 0.63 1.10
400, 200 0.84 0.30 1.60 0.71 0.83 1.14 0.62 1.22
800, 200 0.78 0.28 1.58 0.64 0.81 1.01 0.57 1.05
100, 400 0.27 0.33 0.62 0.68 1.16 1.13 1.20 1.10
200, 400 0.44 0.26 1.11 0.66 0.87 1.04 0.71 1.07
400, 400 0.30 0.26 0.93 0.72 0.87 1.06 0.71 1.11
800, 400 0.23 0.26 0.64 0.66 0.99 1.14 0.90 1.15

known as the refreshment rate λref . For reversible jump algorithms there is an additional

challenge of needing to specify how the refreshment rate should depend on the model we

are currently exploring. Following from the results on how the optimal refreshment rate

should scale with the dimension of the posterior (Bierkens et al. 2022, Deligiannidis et al.

2018) we will investigate whether and how the refreshment rate should scale with the size

of the model we are exploring.

In answering this we need to be aware of how the speed of BPS scales with dimension,

as this is different for the two versions of BPS that we consider. For BPS with velocities

on the unit sphere, the speed is always 1 regardless of the dimension of the model. For

BPS with a standard normal velocity distribution, the speed scales like
√
d, where d is the

dimension of the model. While this does not change the process’s dynamics this implies a

different asymptotic scaling of the refreshment rate. A constant rate for velocities on the

sphere would be equivalent to scaling the refreshment rate by
√
d for velocities which are

normally distribution.

15

Table 6: Scenario 2 (General correlation): Relative efficiency (RE) for methods, against
Zig-Zag with pi,j = 0.6.

pi,j = 0.1 pi,j = 0.3 pi,j = 0.7 pi,j = 0.9

n, d PI Mean PI Mean PI Mean PI Mean
100, 100 0.25 0.32 0.66 0.79 1.08 1.15 1.00 1.42
200, 100 0.26 0.29 0.77 0.74 0.92 0.98 0.92 1.09
400, 100 0.20 0.28 0.62 0.71 1.00 1.17 0.89 1.14
800, 100 0.15 0.21 0.54 0.60 1.00 0.89 1.00 1.00
100, 200 0.19 0.24 0.61 0.70 0.88 0.92 1.05 1.06
200, 200 0.17 0.22 0.58 0.61 1.04 0.85 1.08 0.99
400, 200 0.16 0.23 0.55 0.69 1.06 0.93 1.24 1.09
800, 200 0.16 0.21 0.46 0.57 1.07 0.98 1.38 0.99
100, 400 0.14 0.13 0.47 0.47 1.10 0.96 1.30 1.06
200, 400 0.16 0.19 0.49 0.58 1.11 1.01 1.29 1.02
400, 400 0.14 0.16 0.47 0.55 1.10 0.98 1.32 1.01
800, 400 0.16 0.16 0.46 0.59 1.20 1.06 1.43 1.01

The choice of optimal refreshment rate is a nuanced problem and may depend on the

posterior functional of interest. Deligiannidis et al. (2018) find that, when using a normal

velocity distribution, scaling the refreshment rate as O(1) is better for low dimensional

summaries; but scaling like o(
√
d) is better for posterior functionals such as the negative

log posterior. They argue that the former, which include posterior means and variances,

are often of primary interest.

We investigated how the refreshment rate should scale with d empirically. Again we

consider the spike and slab prior distribution (12). We will empirically observe the process

for pi,j = 0.6 with s = 0.5 as we increase the dimensionality of the problem.

We consider two choices for refreshment parameter when using the normal velocity

distribution: a constant λref = 1.424 (in line with recommendations from Deligiannidis

et al. 2018, for low-dimensional summaries) and λref = 1.424
√
|Mγ| (in line with the

recommendations from Bierkens et al. 2022). The second choice is equivalent to a fixed

refreshment rate for BPS with velocities uniformly distributed on the sphere. We show

16

Table 7: Scenario 3 (uncorrelated): Relative efficiency (RE) for methods, against Zig-Zag
with pi,j = 0.6.

pi,j = 0.1 pi,j = 0.3 pi,j = 0.7 pi,j = 0.9

n, d PI Mean PI Mean PI Mean PI Mean
100, 100 0.24 0.29 0.65 0.68 0.99 1.00 0.88 1.05
200, 100 0.23 0.28 0.68 0.72 0.93 1.10 0.90 1.11
400, 100 0.20 0.27 0.64 0.66 1.04 1.13 0.95 1.06
800, 100 0.18 0.24 0.61 0.62 1.03 1.03 0.99 1.01
100, 200 0.19 0.23 0.61 0.79 1.05 1.15 1.14 1.08
200, 200 0.16 0.25 0.49 0.58 1.09 1.10 1.06 1.12
400, 200 0.17 0.25 0.56 0.69 1.08 1.04 1.09 0.95
800, 200 0.15 0.23 0.49 0.66 1.06 0.99 1.22 0.98
100, 400 0.12 0.09 0.53 0.64 1.10 1.01 1.36 1.14
200, 400 0.19 0.23 0.52 0.56 1.08 0.94 1.19 0.90
400, 400 0.16 0.22 0.49 0.67 1.20 1.20 1.44 1.18
800, 400 0.16 0.18 0.46 0.54 1.17 1.00 1.42 1.04

plots of the trajectories for the first two components θ1 and θ2 for these different scalings

in Figure 7.

We see empirically that asymptotically constant refreshment with velocities uniform

on the sphere behaves the same as refreshing the Normal velocities with rate scaling as

O(
√
|Mγ|). For higher dimensions scaling the refreshment with the size of the active model

induces random walk like behavior. For this reason we favor BPS with a fixed refreshment

rate.

C Further correlation in logistic regression

Pairs plots and marginal KDEs from a typical run of the logistic regression example Scenario

4 with n = 100 and d = 100 are shown in Figure 8 for the coordinates θ1, θ51, θ2 and θ52.

Simulation 4 was re-run with a higher correlation. This new scenario is specified with:

5. Multiple pairs of correlated variables with six active covariates:

17

Table 8: Scenario 4 (multiple correlated): Relative efficiency (RE) for methods, against
Zig-Zag with pi,j = 0.6.

pi,j = 0.1 pi,j = 0.3 pi,j = 0.7 pi,j = 0.9

n, d PI Mean PI Mean PI Mean PI Mean
100, 100 0.23 0.32 0.70 0.82 1.02 1.07 1.05 1.01
200, 100 0.24 0.27 0.59 0.55 1.01 1.06 0.99 1.10
400, 100 0.21 0.30 0.66 0.64 1.06 1.01 1.10 1.27
800, 100 0.14 0.26 0.49 0.60 1.01 1.00 1.09 1.00
100, 200 0.20 0.25 0.61 0.61 1.11 0.92 1.22 1.06
200, 200 0.20 0.31 0.58 0.66 1.09 0.90 1.13 1.05
400, 200 0.15 0.23 0.49 0.69 1.03 1.03 1.24 1.07
800, 200 0.16 0.22 0.52 0.67 1.22 1.16 1.24 1.16
100, 400 0.15 0.23 0.53 0.80 1.14 1.06 1.31 1.10
200, 400 0.13 0.14 0.49 0.57 1.11 1.00 1.32 1.23
400, 400 0.16 0.19 0.52 0.67 1.15 1.01 1.42 1.11
800, 400 0.14 0.13 0.47 0.56 1.19 1.07 1.45 1.12

θ = (3, 3,−2, 3, 3,−2, 0, ..., 0)T with Σi+d/2,i = Σi,i+d/2 = 0.99 for 1 ≤ i ≤ 6, Σi,i = 1

and Σi,j = 0 otherwise.

Pairs plots and marginal KDEs from a typical run are shown in Figure 9 and perfor-

mance is described in Table 9.

D General implementation details

Inference in Bayesian model selection relies on expectations with respect to a posterior

target distribution, π(θ,γ). The parameters are θ while γ is a vector which indexes the

model with elements γj = 1 if the jth variable is included and γj = 0 otherwise. The

posterior has the form

π(θ,γ) ∝ L(y1:n|θ,γ)π0(θ|γ)π0(γ),

18

Table 9: Scenario 5 (multiple highly correlated pairs): Relative efficiency (RE) for meth-
ods, against a Reversible Jump algorithm, for the marginal posterior means (Mean) and
marginal posterior probabilities of inclusion (PI).

ZigZag BPS Gibbs RJ-HMC

n, d PI Mean PI Mean PI Mean PI Mean

100, 100 0.37 0.93 0.38 2.10 0.84 0.82 0.01 0.05
200, 100 0.89 1.41 0.78 2.02 2.18 1.70 0.04 0.91
400, 100 1.61 2.69 1.40 3.66 2.82 3.07 0.79 1.50
800, 100 2.98 5.82 2.32 6.99 4.25 4.51 0.83 1.04
100, 200 0.60 1.13 1.00 2.42 1.51 1.94 0.02 0.67
200, 200 1.22 1.47 1.55 2.45 2.19 1.60 0.15 1.78
400, 200 4.42 6.79 3.87 9.75 4.53 4.67 1.19 2.26
800, 200 10.05 19.15 6.89 19.81 6.99 8.10 2.26 3.16
100, 400 1.20 1.69 2.01 4.50 2.15 1.64 0.01 2.22
200, 400 4.98 6.55 6.18 11.51 5.26 4.83 0.64 2.24
400, 400 9.90 11.50 9.97 17.03 7.56 7.30 2.74 4.94
800, 400 24.08 36.70 18.25 38.97 9.68 9.83 3.46 5.11

where L(y1:n|θ,γ) defines a likelihood function for observations y1:n, π0(θ|γ) and π0(γ)

denote prior distribution for θ and γ. We abuse notation writing θγ to denote the sub-

vector of θ with only the elements where γj = 1. Moreover, we write π(θγ) for π(θ | γ)

where π(θ | γ) = 0 whenever |θj| > 0 with corresponding γj = 0.

When simulating from the reversible jump PDMP sampler there are two types of events:

normal events for the PDMP sampler within a model γ and model jump events. The

standard PDMP events are taken with respect to π(θ|γ) so rates to sample are given using

the usual Bouncy Particle Sampler or Zig-Zag rates on the conditioned model

λBPS(s) =
(
−vγ · ∇θγ log π(θγ + svγ)

)+
,

λZZi (s) = (−vi∇θi log π(θγ + svγ))+ , for i ∈ {i : γi = 1}.

19

In practice to simulate these events we first bound the rates by a simple function, which

for the examples we consider will be linear in time. We then simulate events from a

Poisson process with this linear-in-time rate, which can be done exactly, and use thinning

to generate the actual events in the PDMP. Derivations of the linear-in-time bounds on the

rates that we use are now given, before we give the rates for jumps between models.

D.1 Rates for logistic and robust regression

Here we give details on simulating rates for the logistic regression example. We will slightly

change notation, and write βγ,γ′ and pγ,γ′ for the rates and probabilities associated with

the moves between models γ and γ ′. Taking a simple independent Gaussian prior the

reintroduction rate simplifies to

βγ,γ′ = pγ,γ′
1√

2πσ2

w

(1− w)
,

where γ and γ ′ are defined as above, and we retain the convention that γ ′ is obtained

from γ by removing one variable from the model. The standard PDMP rates are used for

π(θ|γ) = π(θγ). So to simplify notation we will assume a fixed dimension and write θ

dropping the indexing with γ. The log posterior for both logistic and robust regression can

be written in the form

− log π(θ) =
n∑
i=1

g(ei) +
θTθ

2σ2
. (13)

For logistic regression ei = −xTi θ and g(ei) = − log
(

exp(yi)
1+exp(ei)

)
, and for robust regression

ei = yi − xTi θ and g(ei) = − log
(
exp(−1

2
e2
i) + 1

10
exp(− 1

200
e2
i)
)
. We consider bounding the

event rates for the Bouncy Particle Sampler and ZigZag below.

20

Bouncy Particle Sampler: Let f(θ + tv) = −∇θ log π(θ + tv) the event rate depends

on the quantity

〈v, f(θ + tv)〉 = 〈v,
n∑
i=1

xTi g
′(ei(t)) +

1

σ2
(θ + tv)〉.

where g′(ei(t)) is the derivative of g evaluated evaluated at ei(t) = −xTi (θ+ tv) for logistic

regression and ei(t) = yi − xTi (θ + tv) for robust regression. The in-time derivative of this

quantity is

d

dt
〈v, f(θ + tv)〉 = 〈v,

n∑
i=1

xTi g
′′(ei(t))x

T
i v +

1

σ2
v〉 =

n∑
i=1

g′′(ei(t))(x
T
i v)2 +

1

σ2
vTv.

If the in-time derivative can be bounded by a constant we can simulate using linear rates.

For logistic regression g′′(ei) ≤ 1
4

and for robust regression g′′(ei) < 1. The Bouncy Particle

Sampler rate is bounded by the linear rate

max(0, 〈v, f(θ + tv)〉) ≤ max (0, 〈v, f(θ)〉) + t

(
1

σ2
vTv + c

n∑
i=1

(xTi v)2

)
,

where c is chosen according to the application. Inversion methods for thinning a Poisson

process can be used to simulate the events (Bierkens et al. 2019).

ZigZag: Let f(θ + tv) = − d
dθi

log π(θ + tv) the event rate depends on the quantity

vif(θ + tv) = vi

n∑
i=1

xijg
′(ei(t)) + vi

1

σ2
(θi + tvi),

21

where g′(ei(t)) is defined as in the BPS rate. The in-time derivative of this quantity is

d

dt
vif(θ + tv) = vi

n∑
i=1

xijg
′′(ei(t))x

T
i v + v2

i

1

σ2
=

n∑
i=1

g′′(ei(t))xijvix
T
i v + v2

i

1

σ2
.

Using the same method as before the ZigZag rate is bounded by the linear rate

max(0, vif(θ + tv)) ≤ max(0, vif(θ)) + t

(
v2
i

1

σ2
+

n∑
i=1

|cxijvixTi v|

)
,

where c is chosen according to the application.

D.2 Control variates for multiple models

In this section we note a choice of control variates that can be used across a wide span

of model space. We will describe the idea in context of the logistic and robust regression

examples from the previous section for the Zig-Zag sampler. Similar arguments follow for

constructing control variates for BPS.

We first describe the general form for constructing control variates within a single model.

Suppose the log posterior follows the form of (13). The Zig-Zag sampler has within model

rate λi(θ,v) = max(0, vif(θ)) where,

vif(θ) = vi

n∑
j=1

xijg
′(ej) + vi

1

σ2
θi,

and ej = xTj θ. Let θ∗ be a chosen control variate and e∗j = xTi θ
∗ for j = 1, ..., n. Define

22

Ej for a random index j ∼ Uniform(1, 2, ..., n) as the variable

Ej = nvi(xijg
′(ej)− xijg′(e∗j)) + vi

n∑
j=1

xijg
′(e∗j) + vi

1

σ2
θi, (14)

where expected value of Ej is E[Ej] = vif(θ). Zig-Zag with control variates works by

sampling with stochastic rate λ̃i(θ,v) = max(0, Ej). To facilitate thinning suppose that

the derivatives of g′ are globally and uniformly Lipschitz with constant C, so,

|(xijg′(ej)− xijg′(e∗j))| ≤ ‖ej − e∗j‖2|xij|C

≤ ‖xTj θ − xTj θ∗‖2|xij|C

≤ ‖θ − θ∗‖2‖xTj ‖2|xij|C

for j = 1, ..., n. Let Ci = maxj=1,...,n ‖xTj ‖2|xij|C, thinning may be implemented using the

upperbound,

λ̃i(θ,v) = max(0, nvi(xijg
′(ej)− xijg′(e∗j)) + vi

n∑
j=1

xijg
′(e∗j) + vi

1

σ2
θi)

≤ max

(
0, ‖θ − θ∗‖2Cin+ vi

n∑
j=1

xijg
′(e∗j) + vi

1

σ2
θi

)
.

Over the trajectory θ(t) = θ + tv the rate is bounded by

λ̃i(θ(t),v) ≤ max

(
0, (‖θ − θ∗‖2 + t‖v‖2)Cin+ vi

n∑
j=1

xijg
′(e∗j) + vi

1

σ2
θi

)
.

This requires anO(n) evaluation of
∑n

j=1 xijg
′(e∗j) and calculation of Ci = maxj=1,...,n ‖xTj ‖2|xij|C

which may be computed once prior to running the sampler.

23

To construct control variates that may be used when the sampler is not in model γ

we define nested control variates. A nested control variate may be constructed for any

model γ ′ where |γ| ≤ |γ ′|. For the model γ ′ a nested control variate may be constructed

from θγ by setting θj equal to the corresponding value of θγ and padding the remainder of

the vector with zeros. That is θγ′ has elements θ∗j when γj = γ′j = 1 and 0 when γj = 0

and γ′j = 1. For such a control variate we have e∗j =
∑

i:γi=1 xijθ
∗
i =

∑
i:γ′i=1 xijθ

∗
i and the

computation of vi
∑n

j=1 xijg
′(e∗j) may be reused. The rates for the model γ ′ take the same

form as (14) and may be implemented using the same thinning procedure.

D.3 Rates of jumps between models

Model jump events occur when a parameter, θi, hits a hyper-plane θi = 0 and with proba-

bility pγ,γ′ we jump to model γ ′ where γ′i = 0. The other type of model jump event occurs

when a variable is reintroduced. For each of the deactivated variables (γi = 0), we simulate

a time to reintroduce the variable. The rate to reintroduce the variable in the Bayesian

inference problem is

βγ,γ′ = pγ,γ′
L(y1:n|θγ)π0(θγ)π0(γ)

L(y1:n|θγ′)π0(θγ′)π0(γ ′)
,

where often computational savings are possible since the reintroduced variable will be zero

θi = 0 and it is often the case that L(y1:n|θγ′) = L(y1:n|θγ). In these cases the rate to

reintroduce a variable will only depend on the choice of prior.

Both examples we consider had a Gaussian spike and slab prior, of the form

θγ ∼ N (µγ ,Σγ)

γ ∼ w
∑d
j=1 γj(1− w)d−

∑d
j=1 γj ,

24

for a fixed w. The rate to reintroduce the ith variable, jumping from model γ to γ ′ where

γ ′−i = γ−i with γ′i = 1 and γi = 0 is given by

βγ,γ′ = pγ,γ′
π(θγ)

π(θγ′)

π(γ)

π(γ′)
=
π(θγ)

π(θγ′)

w

(1− w)
.

Denoting Vγ = Σ−1
γ , the ratio simplifies as,

π(θγ)

π(θγ′)
=

|Vγ |1/2 exp
(
−1

2
(θγ − µγ)TVγ(θγ − µγ)

)
√

2π|Vγ′|1/2 exp
(
−1

2
(θγ′ − µγ′)TVγ′(θγ′ − µγ′)

) .
In our examples the prior is independent across components and this ratio simplifies to a

constant. As the prior mean is 0 and, if we denote the prior variance for θi for any active

covariate i as σ2, we have

βγ,γ′ = pγ,γ′
1√

2πσ2

w

(1− w)
.

D.4 Pólya-Gamma Gibbs sampling for logistic regression

The Polya-Gamma Gibbs sampling approach is an auxiliary variable approach for Bayesian

Logistic regression. A Polya-Gamma random variable ω ∼ PG(b, 0), b > 0, with probability

density p(ω) has the property (Polson et al. 2013) that for any ψ ∈ R and a ∈ R

exp(ψ)a

(1 + exp(ψ))b
= 2−b exp

((
a− b

2

)
ψ

)∫ ∞
0

exp(−ωψ
2

2
)p(ω)dω.

Thus the implied conditional distribution for ψ, given auxiliary variable ω, is Gaussian.

The advantage of this approach is that when updating the model γ we can integrate over

the parameters θ yielding much more efficient moves. The updates for the collapsed Gibbs

sampling procedure follow the form:

(1) sample γ ∼ γ | ω;

25

(2) sample θ ∼ θ | ω,γ;

(3) sample ω ∼ ω | θ,γ.

Simulation step 1.

Let π̃(γ | ω) be a density proportional to π(γ | ω) such that

π̃(γ | ω) = π0(γ)

∫
θγ

L(y1:n|θγ ,ω)π0(θγ)dθγ

=
π0(γ)√

det(2πσ2Iγ)

∫
θγ

n∏
i=1

exp

(
(yi − 0.5)(Xγθγ)i −

ωi
2

((Xγθγ)i)
2 − 1

2σ2
θTγθγ

)
dθγ

= π0(γ)

√
det(2πVγ)

det(2πσ2Iγ)
exp(

1

2
κTXγVγX

T
γ κ),

where (Xγθγ)i denotes the ith element of Xγθγ , the matrix Vγ =
(
XT
γ ΩXγ + 1

σ2Iγ
)−1

,

the column vector κ = y1:n − 0.5 and Ω = diag(ω1, ..., ωn).

The update for γ is taken by updating component-wise from the conditionals γj | γ(−j),ω

where γ(−j) = (γ1, ..., γj−1, γj+1, ..., γd). Such a proposal can be implemented using the

relationship (Chipman et al. 2001)

Pr(γj = 1 | γ(−j),ω) =
π̃(γj = 1 | γ(−j),ω)

π̃(γj = 0 | γ(−j),ω)

(
1 +

π̃(γj = 1 | γ(−j),ω)

π̃(γj = 0 | γ(−j),ω)

)−1

.

Simulation step 2.

The conditional for θγ is

θγ |ω,γ ∼ N (mγ ,Σγ),

where Σγ = (XT
γ ΩXγ + 1

σ2Iγ) and mγ = ΣγXγκ.

26

Simulation step 3.

The conditional for ω is ωi|θ,γ ∼ PG (0, (Xγθγ)i) for i = 1, ..., n.

D.5 Reversible Jump HMC

Our reversible jump HMC competitor consists of two moves: model-jump moves and within-

model moves. With probability pm a within-model move takes place otherwise a model-

jump takes place. A within-model move proposes a new value of θ conditional on the current

model using a standard HMC proposal. A model-jump proposal updates the model space by

adding new variables in “birth” moves or deleting variables in “death” moves. Let S denote

the set of selected variables and N be the set of non-selected variables. We considered two

approaches for model space exploration. In the first approach birth or death moves are

performed by randomly selecting a variable from either N or S, respectively, and switching

them to the other set. Specifically a birth move will randomly select from N and reintroduce

the variable placing it into S. The alternative approach consists of iterating through all

variables in a deterministic order and proposing removing any include variable or adding

in any removed variable. When a birth move occurs in either approach the value of the

reintroduced variable is proposed using a univariate random Normal proposal centred at

zero with variance one. After experimentation we found that the second approach had

superior performance and this is the method used in the simulations.

E Computation of relative efficiencies in Section 5.1

In order to compute the relative efficiency we need an estimate of the statistical efficiency

(9). We estimate this quantity using a reference estimate q from an independent 6-hour

run of the Gibbs sampling method for each combination of n, d and Scenario in Tables

1-3 and the results of Figure 2. For the results in Tables 1-3 the quantities of interest

27

are the estimation of the posterior marginal inclusion probabilities π(|θj| > 0) (PPI) and

the marginal posterior means E[θj] (Mean). These two quantities allowed us to see how

efficient the sampler was in terms of exploring both the parameter and model space. For

the simulations in the subsampling comparison (Figure 2) the quantity of interest was

the posterior mean conditioned on being in model γ = (1, 1, 0, 0, ..., 0)). We estimate the

mean square error of these terms by running 100 independent runs of each algorithm and

comparing to the corresponding long Gibbs run. Methods used in Tables 1-4 were initialised

at zero with no variables included in the model. For the subsampling comparison, methods

were initialised at the location of the control variate (the maximum a posterior estimate

using the true nonzero variables γ). For each algorithm in the simulations of Tables 1-4

we use a computational budget of 106 iterations with a maximum run time of 2 minutes.

For the simulations in the subsampling comparison we used a computational budget of 106

iterations with a maximum run time of 15 seconds. Algorithms were then compared on the

basis of relative computational efficiency using RE or relative efficiency per iteration using

RSE. An iteration for the Gibbs sampler is considered to be a full update of all parameters

(i.e. one run of all steps in Section D.4) whereas an iteration of the PDMP methods is

considered to be one simulated event time.

F Reversible Jump Algorithm for ZigZag

Pseudo-code for the reversible jump version of ZigZag is given in Algorithm 3. Lines 2 to

15 calculate the time of each possible event for each variable. If variable i is disabled, the

only event that is possible is to add variable i to the model. If variable i is enabled, then

we can potentially remove variable i at the next time that θi = 0, and we can flip the

velocity vi with the usual ZigZag rate. Lines 16 to 18 calculates the time at which the the

first flip, remove or addition event occurs, and the variable associated with each of these.

28

Lines 19-26 consider which of the three types of event occurs first, and updates the state

according to the event type and variable affected. Finally in Line 37 we update the time.

29

Algorithm 3: ZigZag algorithm for variable selection

1 Inputs: the initial position, θ, velocity, v, and model γ; and tmax; while t < tmax: do
2 for each i ≤ d do
3 if γi = 0 then

/* variable i is disabled */

4 Set tflipi = +∞, tremovei = +∞;
/* Poisson process to enable variable i */

5 Let γ′ = γ and set γ′i = 1 ;

6 Let taddi the event time associated to the Poisson rate βγ′,γ = pγ′,γ
πγ(θ+tv)
πγ′ (θ+tv)

7 else
/* variable i is enabled */

8 Set taddi = +∞ ;

9 Set tflipi the event time associated to the Poisson rate

λi(t) = max
{

0,−vi ∂ log π
∂θi

(θ + tv)
}
.;

10 Let tremovei = −θi/vi the time until intersection with hyperplane θi = 0;
11 if tremovei < 0 then
12 Set tremovei = +∞;
13 end

14 end

15 end

16 Set iflip = arg min(tflipi), tflip = min(tflipi);
17 Set iremove,= arg min(tremovei), tremove = min(tremovei) ;

18 Set iadd = arg min(taddi), tadd = min(taddi);
/* Act on whichever happens first: a flip, adding a variable or

removing a variable */

19 if tflip < tremove and tflip < tadd then
20 Set θ = θ + vtflip;
21 Set viflip = −viflip ;
22 else
23 if tremove < tadd then
24 Let γ′ = γ and set γ′iremove = 0 ;
25 Let u ∼ unif(0, 1) ;
26 if u < pγ,γ′ then
27 Set θ = θ + vtremove;
28 Set viremove = 0;
29 Set γiremove = 0;

30 end

31 else
32 Set θ = θ + vtadd;
33 Set viadd to +1 or −1 with probability 1/2;
34 Set γiadd = 1;

35 end

36 end
37 Set t = t+ min(tflip, tremove, tadd);

38 end

30

Figure 7: Trace plots for BPS for increasing dimension and two different scalings of the
refresh rate for velocities. Top two rows: BPS with normal distribution of velocities (N).
Bottom row: BPS with uniform distribution on the sphere (S).

31

0 2 4 6 8 10 12

0
.0

0
0
.1

0
0
.2

0
0
.3

0

0 2 4 6 8 10 12

−
8

−
4

0
2

4

0 2 4 6 8 10 12

−
2

2
4

6
8

0 2 4 6 8 10 12

−
4

0
2

4
6

8

−8 −6 −4 −2 0 2 4

0
2

4
6

8
1
2

−8 −6 −4 −2 0 2 4

0
1

2
3

4

−8 −6 −4 −2 0 2 4

−
2

2
4

6
8

−8 −6 −4 −2 0 2 4

−
4

0
2

4
6

8

−2 0 2 4 6 8 10

0
2

4
6

8
1
2

−2 0 2 4 6 8 10

−
8

−
4

0
2

4

−4 −2 0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

−2 0 2 4 6 8 10

−
4

0
2

4
6

8

−4 −2 0 2 4 6 8

0
2

4
6

8
1
2

−4 −2 0 2 4 6 8

−
8

−
4

0
2

4

−4 −2 0 2 4 6 8

−
2

2
4

6
8

−4 −2 0 2 4 6 8

0
.0

0
.4

0
.8

1
.2

PDMP
MCMC

Figure 8: Pairs plots of θ1, θ51, θ2 and θ52 for Simulation 4 using Zig-Zag for the PDMP
sampling (black lines and dots) and a Gibbs sampler for the MCMC samples (red lines
and dots). Both samplers were run for the same computational budget and the Zig-Zag
dynamics were discretised to the same sample size as the Gibbs sampler.

32

−5 0 5 10

0
.0

0
.2

0
.4

0
.6

0 5 10

0
5

1
0

0 5 10

−
2

2
4

6
8

0 5 10

−
5

0
5

1
0

0 5 10

0
5

1
0

−5 0 5 10

0
.0

0
.2

0
.4

0
.6

0 5 10

−
2

2
4

6
8

0 5 10

−
5

0
5

1
0

−2 0 2 4 6 8 10

0
5

1
0

−2 0 2 4 6 8 10

0
5

1
0

0 5 10

0
.0

0
.2

0
.4

−2 0 2 4 6 8 10

−
5

0
5

1
0

−5 0 5 10

0
5

1
0

−5 0 5 10

0
5

1
0

−5 0 5 10

−
2

2
4

6
8

−5 0 5 10

0
.0

0
.2

0
.4

0
.6

0
.8

PDMP
MCMC

Figure 9: Pairs plots of θ1, θ51, θ2 and θ52 for Simulation 5 using Zig-Zag for the PDMP
sampling (black lines and dots) and a Gibbs sampler for the MCMC samples (red lines
and dots). Both samplers were run for the same computational budget and the Zig-Zag
dynamics were discretised to the same sample size as the Gibbs sampler.

33

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

Percent of samples

S
a
m

p
le

 θ
1

Stan
BPS

Figure 10: Simulated paths (as in Bouchard-Côté et al. (2018)) comparing the dynamics of
the PDMP sampler with those of Stan. These dynamics correspond to the robust regression
simulation from Figure 3. Both algorithms were run for the same computation time and
the simulated trajectories correspond to the first five percent of samples from each method.

34

