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Abstract—This article investigates the problem of information-
based sampling design and path planning for a mobile sensing
network to predict scalar fields of monitored environments. A hier-
archical framework with a built-in Gaussian Markov random field
model is proposed to provide adaptive sampling for efficient field
reconstruction. In the proposed framework, a nonmyopic planner
is operated at a sink to navigate the mobile sensing agents in the
field to the sites that are most informative. Meanwhile, a myopic
planner is carried out on board each agent. A tradeoff between
computationally intensive global optimization and efficient local
greedy search is incorporated into the system. The mobile sensing
agents can be scheduled online through an anytime algorithm to
visit and observe the high-information sites. Experiments on both
synthetic and real-world datasets are used to demonstrate the fea-
sibility and efficiency of the proposed planner in model exploitation
and adaptive sampling for environmental field mapping.

Index Terms—Adaptive sampling, environmental field mapping,
Gaussian Markov random fields (GMRFs), information-driven
planning, mobile sensing networks (MSNs).

I. INTRODUCTION

MOBILE sensing networks (MSNs) can provide unprece-
dented flexibility, efficiency, and effectiveness in infor-

mation gathering. They can improve the performance of an
environmental monitoring process. With the support of mobile
sensing, measurements of the monitored variables over both
spatial and temporal scales can be collected to estimate, interpret,
and reconstruct the environmental field of interest. Due to these
advantages, MSNs have been developed and deployed to provide
in situ measurements and field maps in many environmental
monitoring programs [1]–[3].

When implementing an MSN, owing to the limited number
and mobility of the sensing agents (e.g., mobile sensors or
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vehicles), the sites that can be visited within any period of time
is bounded. Furthermore, the resource constraints of the system
(e.g., power supply [4]) impede its operating life. Quite impor-
tantly, redundant data collections will not lead to information
gain but will use up the system energy and can also exceed the
onboard computational capacity. Therefore, the agents should
take samples at more representative and high-information sites,
to capture and predict the underlying environmental variation
more efficiently and effectively.

The selection of the sampling sites that are more crucial
in making predictions of the spatial field is an experimental
design problem [5]. The design techniques determine the target
sites for data collection by exploiting a statistical model of
the monitored environment. Studies on information-theoretic
sensing have indicated their power on exploiting the sites that
are most informative in a Gaussian random field (GRF) through
a Gaussian process (GP) model [6]. The optimized design of a
GP model has been proven nondeterministic polynomial-time
(NP)-hard [7]. The NP-hard characteristic leads to high compu-
tational complexity as the number of measurements grows. To
promote the computational efficiency, many statistical schemes
have been introduced to approximate the GP model [8], [9].
Although reducing the algorithm complexity of the GPs, these
schemes are still computationally intractable, especially for a
large-scale area.

In MSN-based applications, it is crucial for mobile sens-
ing agents to provide the capabilities of online sampling,
autonomous navigation, and real-time decision-making. There-
fore, the execution process of sampling design and path planning
is required in real time or at least near real time. However, the
NP-hard characteristic of the GP scheme makes it challenging to
achieve online implementation of information-theoretic sensing.
The optimization of a sampling plan in the GP dynamics is
impractical for mobile sensing scenarios, even when a greedy
solution of a discretized space is utilized [10]. This article
motivates the handling of online planning of information-driven
mobile sensing for environmental field mapping. It focuses on
contributing to carry out information-theoretic optimization of
a GRF in an efficient and reliable manner.

The present article proposes a hierarchical planner for an MSN
to gather information adaptively and efficiently for environmen-
tal field mapping. The proposed planner provides a feasible
framework for bridging the gap between global information-
theoretic optimization and shortsighted local greedy planning.
A Gaussian Markov random field (GMRF) model is built in the
proposed framework to represent the underlying field, which
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further determines the information quantities of the sampling
locations. The main structures and contributions of the proposed
algorithm are as follows.

1) The high-level planner designs the target sites that are most
informative in a global and nonmyopic view over the entire
spatial field, which is executed as an anytime algorithm at
the sink to navigate the mobile sensors continuously over
time.

2) The low-level planner searches the high-information loca-
tions locally and myopically while heading to the optimal
sites that are assigned by the higher level planner, which
ensures real-time planning of the mobile sensors.

3) The proposed hierarchical planning framework provides
an online and anytime planning solution by integrating
both computationally intensive global optimization and
fast local greedy search, which addresses the effect of
sequential sampling in the field on the future global opti-
mization at the sink.

The remainder of this article is organized as follows.
Section II introduces the related work in the field of mobile
sensing, experimental design, and information-based planning.
The preliminaries and the problem formulation in this article
are provided in Sections III and IV, respectively. In Section V,
the proposed hierarchical planning framework is presented in
detail. Experimental results using both synthetic and real-world
datasets are presented and discussed in Section VI. The final
section concludes the article.

II. RELATED WORK

GP, a nonparametric Bayesian scheme, has been actively
studied to model underlying environments and to provide es-
timation, interpretation, and prediction of the study area [11].
Conditioned on the measurements, inferring the posterior vari-
able distribution (mean and variance) of the GRF results in
the field scalar map and the prediction uncertainty, which is
known as Gaussian process regression (GPR) or Kriging [12].
However, the GP class is computationally intractable since the
computation dependence is cubic with respect to its covariance
function when factorizing it in making predictions. For more
efficient processing, the GMRF approaches have been intro-
duced to approximate the GPs by designating the Markovian
property into the GRFs [13]. In this manner, the computation
scale mainly depends on sparse precision matrix, which effec-
tively reduces the computational complexity.

For an unknown field, in a pilot study or a prior survey,
exploratory sampling has been studied to observe and learn the
statistical model of the underlying field. A set of model parame-
ters, termed as hyperparameters, is used to represent the specific
model of a stochastic phenomenon. In the literature, many
exploration strategies for mobile agents in a sensing network
have been suggested to estimate uncertain hyperparameters. For
example, Xu et al. proposed a GP scheme with a built-in GMRF
[14] to represent a wide range of physical processes and update
predictive statistics through a sequential field prediction algo-
rithm. Then, Xu et al. [15] developed a Bayesian spatial predictor
to infer the uncertain GMRF hyperparameters through myopic
adaptive sensing. By considering future observations, Nguyen
et al. [16] presented an information-driven adaptive sampling
planner for GP learning and regression. Recently, the work in
[17] further investigated field exploration by incorporating path
integral control and statistical learning with GMRFs.

Another class of research investigates information-based
sensing of a random field using its statistical model structure.
With more a priori knowledge and less uncertainty about the
hyperparameters (through exploration), exploiting the statistical
model can select more crucial sampling sites for field map-
ping. An optimal design can determine a well-performed and
energy-efficient sampling frame, which benefits mobile sensing
in persistent monitoring. In the literature, experimental design
theory has been studied for the development of optimality crite-
ria, primarily focusing on optimizing an information gain that is
determined by an established statistical model. “Alphabetical”
optimality approaches have been studied extensively relying on
the properties of the corresponding information matrices [18].
In addition, conditional entropy (CE) and mutual information
(MI) have been adopted as information-theoretic metrics to
evaluate the high-information sites [19], [20], which quantify
the information gain of a sampling frame in terms of prediction
uncertainty.

In the fields of mobile sensor networks and robotics,
information-based planning tackles the problem of generating
a sampling schedule or trajectory that maximizes the infor-
mation gain through the planned mission. The present article
primarily focuses on online planning of an information-driven
experimental design for MSN-based environmental mapping, by
exploiting the spatial statistical model of the monitored field.
With a similar research motivation, nonmyopic information-
based planning has been investigated to optimize a sampling
frame by integrating the global information over the study area
[21]. In a recent work, Evans et al. [22] planned informative
paths by leveraging a priori knowledge about the GP model of
the spatial field. Ma et al. [23] proposed an information-based
planner for a single robot, which generated the waypoints that
were maximally informative based on the MI criterion.

Maximizing the information-theoretic utility functions in the
GRFs is proven to be NP-hard and impractical even for discrete
cases [24]. Nearly optimal greedy solutions have been proposed
for variants of GP dynamics (e.g., [6], [25]), and still, the
required computational effort is intractable for a large-scale
problem. Also, despite the optimization complexity, many ef-
forts consider the sampling design and the path planning as two
consequential procedures. These planners connect the designed
target sites through a graph-based method [23], [26], which also
suffer from NP-hard complexity. Furthermore, most nonmyopic
approaches calculate the maximally informative sites at once
without considering the data samples from sequential sampling.
When designing a set of target sites for sequential sampling,
the effect of future data samples while traveling towards them
should be taken into account. To tackle these problems, the
present article develops information-based planning for MSN-
based environmental field mapping. In particular, the proposed
hierarchical planner provides an effective and efficient solution
for online planning by integrating nonmyopic and myopic search
in the sensing system.

III. PRELIMINARIES

Some general notations and concepts are presented here. R,
Z, and Z+ denote the set of reals, integers, and positive integers,
respectively. Exp(·), Var(·), and Cov(·) denote the functions of
probabilistic expectation, variance, and covariance of random
variables, respectively. || · || denotes the length of a Euclidean
vector and | · | denotes the determinant of a matrix.
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A. Spatial Field Model in GMRF

In the present article, a spatial field is considered as a two-
dimensional plane A ⊂ R2. The field is discretized into a set
of sampling locations S = {s1, s2, . . . , sN}. Each location is
indexed by n ∈ N := {1, 2, . . . , N} and sn = (s1, s2) ∈ R2.
In the context of GP, a GRF is defined by any finite collection
of random variables at their corresponding locations as

ZS =
(
Z(s1), Z(s2), . . . , Z(sN )

)T ∼ GP(μ,Σ) (1)

where the process ZS is specified by the mean function μ ∈ RN

and the covariance function Σ ∈ RN×N . The elements of the
mean function are the expectations of the random variables. The
elements of the covariance function give the variable covariance,
i.e., Σij = Cov(si, sj), i �= j ∈ N . A covariance function is
symmetric positive-definite and describes the spatial correlation
between different random variables. Matérn class of covariance
functions has been widely studied in GP modeling [27], which
can be expressed as

Σ(si, sj) =
σ2

Γ(ν)2ν−1
(κh)νKν(κh) (2)

where h = ||si − sj || denotes the Euclidean distance between
si and sj , σ2 ∈ R denotes the marginal variance, Γ denotes the
Gamma function, ν denotes the Matérn smoothness, κ denotes
the spatial scale parameter, and Kν(·) denotes the modified
Bessel function. The Matérn class is a generalization of the
radial basis function with additional parameters to smooth the
estimated covariance function. It can yield realistic results to
match physical processes due to its finite differentiability with
respect to finite smoothness [27].

For notation simplicity, the GRF ZS is denoted as
Z = (Z1, Z2, . . . , ZN )T . Let Z−i denote the GRF without the
random variable Zi, i ∈ N , and NEi denote the index set of
neighbors to a sampling location si ∈ S . If the neighbors inNEi

satisfy that p(Zi|Z−i) = p(Zi|ZNEi
), the spatial field follows

the Markovian property and can be modeled as a GMRF. The
GMRF is specified as

Z ∼ GMRF(μ,Q−1) (3)

with the mean function μ ∈ RN and the precision matrix Q ∈
RN×N . The precision matrix is the inverse of the covariance
matrix of the GP, i.e., Q = Σ−1. The elements in Q are nonzero
only for neighbors and diagonal elements, that is, the precision
matrix is sparse. The Matérn kernel can be explicitly solved
to obtain the precision matrix Q in the context of GMRF. By
using the precision matrix Q, there is no need to factorize
the dense covariance function Σ when operating model-based
information-driven optimization. The sparseness of the preci-
sion matrix effectively alleviates the computational complexity.
This process can help achieve the research motivation of online
planning for mobile sensing.

The work in [13] revealed the explicit connection between the
GPs and the GMRFs through the Matérn class. It was proven that,
for any triangulation of the field, the linear fractional stochastic
partial differential equation (SPDE) derived the precision matrix
as the inverse of the Matérn covariance function. To express
the GMRF as the solution of SPDE, an unstructured triangu-
lation is required to construct a finite element representation
for designating the Markovian property of the study field. A
triangular mesh is generally constructed for the studied field
to define the vertices and their neighbors. The generated mesh
forms an undirected graphG = {V, E}, where the verticesv ∈ V
discretize the continuous domain A to an indexed GMRF while

Fig. 1. Triangular mesh of the discretized spatial field A ⊂ R2.

the edges e ∈ E indicate the corresponding neighbors. A trian-
gulation example is shown in Fig. 1. The GMRF model is spec-
ified by the sparse precision matrix in terms of the constructed
graph. The SPDE approach calculates the explicit solution of the
elements of Q corresponding to a Matérn covariance function.
For two-dimensional domains, Q can be obtained as

Q = τ2(κ4C+ 2κ2G+GC−1G) (4)

where the elements of Q are specified by the hyperparameter
vector θ = (τ, κ); the elements of the matrices C and G are
defined by the inner products of piecewise linear basis functions.
More details of (4) are found in [13].

B. Model Learning and Mapping

By performing a sensing mission, the collected observations
y, at their corresponding sampling locationsS, can be utilized to
learn the hyperparameter vector θ of the field model. Marginal
likelihood maximization with cross validation [28] has been
broadly adopted. It estimates the hyperparameter vector by the
derivatives of the logarithmic marginal likelihood log p(Z|θ)
with respect to θ through a gradient-based optimizer, where the
log-likelihood of the GMRF model can be obtained as

log p(Z|θ) = −N
2 log 2π + log |Q(θ)| − 1

2Z
TQ(θ)Z. (5)

For environmental mapping, the entire field A is discretized
into a grid plane I where the physical quantities at the grid
vertices (query locations) i ∈ I interpret the scalar map. With the
sampled data and the field model, the scalar map is inferred by a
regression process. In the GMRF/SPDE method, the predictive
posterior distribution (mean and variance) conditioned on the
samples can be obtained as

Exp(ZI |y) = μ+Q−1
I|SA

TQε(y −Aμ) (6)

Var(ZI |y) = Q−1
I|S = (Q+ATQεA)−1 (7)

whereA is the projector matrix that maps the mesh vertices to the
query locations [29]. Consequently, the field mean Exp(ZI |y)
and the variance Var(ZI |y) indicate the spatial field map and
the estimation uncertainty, respectively.

C. Informative-Theoretic Metric

To adaptively sample the data, the sites that are more signifi-
cant in relation to the information content should be visited. The
MI, an information-theoretic metric, is utilized as a utility func-
tion to evaluate the information content or the “informativeness”
between random variables and find the optimal locations that can
maximally reduce the entropy over the unobserved locations. For
a random variable Zn at a possible sampling location sn and the
random variables Z−n at the remaining locations S\sn, their MI

3



is defined as

MI
(
Zn;Z−n) = H(Z−n)−H(Zn|Z−n) (8)

where the first and second terms represent the entropy and
the conditional entropy of the random variables, respectively.
The entropy of a random variable can be calculated by [6]

H(Z) = −
∫

p(Z) log p(Z)dZ = 1
2 log

(
(2πe)N |Σ|). (9)

Since Q = Σ−1, the general entropy formulation in (9) can
be obtained as

H(Z) = − 1
2 log

(
(2πe)N | Q | ). (10)

Thus, the entropy H(Z−n) and the conditional entropy
H(Zn|Z−n) can be derived, respectively, as

H(Z−n) = − 1
2 log

(
(2πe)N | Q−n | )

H(Zn|Z−n) = − 1
2 log

(
(2πe)N | Qn|−n | ) (11)

where Q can be obtained by the SPDE solver in (4). Conse-
quently, the MI in (8) is obtained as a closed-form expression
for a multivariate GMRF as

MI
(
Zn;Z−n) = − 1

2 log |Q−n|+ 1
2 log |Qn|−n|. (12)

IV. PROBLEM FORMULATION

In the present article, the physical phenomenon of a spatial
field of interest can be specified in the GMRF scheme as

Y = (Y1, Y2, . . . , YN )T = Z+ ε (13)

where Z is a GMRF with mean μ and precision matrix Q,
Z ∼ GMRF(μ,Q−1), and ε is an independent and identically
distributed (i.i.d) noise process with variance σ2

ε .
For an MSN, let the set U = {u1, u2, . . . , uM} represent

M ∈ Z+ mobile sensing agents that are indexed by m ∈
{1, 2, . . . ,M}. Each agent um follows its planned sampling
path pm = (sm,0, sm,1, . . . , sm,Nm

) with a sequence of sam-
pling sites sm,k ∈ S that are indexed by k ∈ {0, 1, 2, . . . , Nm}.
Following a sampling path pm, the agent um takes a data sample
at its current location sm,k where a physical quantity is observed
from a random variable that is expressed as

Ym,k = Zm,k + εm,k. (14)

Let ym,k denote an observation of the random variable Ym,k.
Let S0:T and y0:T denote the set of the sampled locations
and the corresponding measurements from time 0 to time T ,
respectively. LetTc denote the time interval of an overall sensing
cycle, i.e., T ≤ Tc.

The general idea of the proposed planning framework is to
guide each agent to sequentially move toward and sample a
group of target destinations that are globally optimized, mean-
while sampling high-information locations locally along the
sampling trajectory over the travel duration. The informativeness
of the sampling locations is measured by the MI submodular
utility function, whose maximization through greedy searching
is used to derive the global and local optimization design. Given
the sampled data at S0:T , the MI between a possible unsam-
pled site sn ∈ S\S0:T and the remaining unsampled locations
S̄ := S\(S0:T ∪ sn) indicates the target greedy utility, which
can be expressed as

δ = MI
(
Y (sn);YS̄

)
= H(YS̄)−H

(
YS̄ |Y (sn)

)
(15)

where the conditioned random variable YS0:T
is omitted for no-

tational simplicity. Consequently, according to (12), the greedy

utility in (15) can be obtained by the precision matrix of the
GMRF as

δ = 1
2 log

(
det(QS̄|S0:T∪sn)

)− 1
2 log

(
det(QS̄|S0:T

)
)
. (16)

The global optimization is to find the most informative loca-
tion s∗n from the unsampled sites in S\S0:T iteratively. This
is achieved by maximizing the utility function δ over time T ,
under the time constraint Tc. The experimental design problem
is formulated as

s∗n = argmax
sn

δ, subject to sn ∈ S\S0:T , T ≤ Tc. (17)

In the proposed framework, the target destinations are gen-
erated at the sink by exploiting the GMRF model nonmyopi-
cally over the perception field. Concurrently, while heading for
these targets, the agents measure the high-information locations
myopically along the sampling path via a local greedy search.
It is stated that an anytime algorithm can determine increasing
better solutions as the runtime increases. The proposed planner is
designed as an anytime algorithm, which helps online sampling
design and informative path planning in consideration of the
computational efficiency and the prediction performance.

The assumptions of the formulated problems are clarified
here. First, prior knowledge of an unknown field is learned
through an initial exploratory sampling. Second, the field model
is time-invariant throughout a sensing cycle, while it may be
time-varying in different cycles. Third, the physical quantity at
a location does not vary within a sensing cycle, while it may
vary over different sensing cycles. Fourth, the measurements
and other information can be exchanged between the sink and
the agents by medium access control and a multihop routing
protocol. In the next section, the proposed planning framework
is presented in detail.

V. INFORMATION-BASED HIERARCHICAL PLANNING

To properly carry out the online sensing process, an agent
should make fast decisions of planning. However, agents in the
field generally have limited onboard computational capability,
which hinders the implementation of the global MI maximiza-
tion on it. A sink in an MSN has a superior computational
ability compared to the agents in the network. In the proposed
hierarchical planner, the target sites are generated over time by
the sink and assigned to the mobile sensing agents as their goal
destinations.

Information-theoretic global optimization is computationally
intensive to find an optimal solution under its NP hardness. As a
result, it is practically unable to plan online sampling locations
for mobile agents. Myopic greedy search has been proven to
be computationally efficient with optimally bounded design [6],
which can be developed for online planning of mobile sensing.
Therefore, when seeking for upcoming global target sites at the
sink, the greedy search can be carried out online at the agents
to collect local informative sites. With this idea, a hierarchical
planner is developed to simultaneously operate local informative
sampling while heading to the global optimal sites that are
generated by the global planner.

Specifically, the optimized target sites for an agent um are
generated sequentially over time at the sink, which are pushed
in a queue q(opt)

m := (s(opt)
m,1, s

(opt)
m,2, . . . , s

(opt)
m,j , . . .), and then, as-

signed to the agent. At the same time, the measurement process
starts at the agent’s initial location sm,0 at time t = 0. For
the following time steps, the agent heads to the first target
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Fig. 2. Search for the next sampling location on the local path.

optimal site, which is designated as s(opt)
m,1. During the travel,

the local path is planned on board at the agent by exploit-
ing the local information greedily, which yields a sequence
of local sampling locations starting from sm,0 and ending
at s(opt)

m,1, i.e., pm,1 = (sm,0, sm,1, . . . , s
(opt)
m,1). Subsequently, it

heads to the next target site s(opt)
m,2 from s(opt)

m,1 with its cor-
responding sequence of local sampling locations pm,2. Con-
tinuing in this manner, the information-driven sampling path
can be expressed as pm = (pm,1, pm,2, . . . , pm,j , . . .), where
pm,j = (sm,k = s(opt)

m,j−1, sm,k+1, . . . , sm,k+K = s(opt)
m,j ), k ∈ Z,

K ∈ Z, j ∈ Z+, s(opt)
m,0 = sm,0. For the notational simplicity, the

subscript m is omitted in the remaining sections.

A. Local Greedy Search

The local planner that generates the sampling plan from s(opt)
j−1

to s(opt)
j is introduced in this section. The global planner that

obtains the target s(opt)
j is presented in Section V-B.

Given the starting site s(opt)
j−1 and the destination s(opt)

j , a local
sampling path is planned on board at the agent. The path is
defined by a sequence as pj = (sk, sk+1, . . . , sk+K), where
sk = s(opt)

j−1 , sk+K = s(opt)
j . For any current location s•, the gen-

eration of the next sampling location s•+1 on the local sampling
path is illustrated in Fig. 2 (the dot in the subscript denotes any
location index in the path sequence).

As shown in the figure, the sampling locations are denoted
by red stars. To determine the location of s•+1 given s•, a circle
is first constructed with the point s• as the circle’s center and
a radius of r. There are two intersections between the circle
and the line segment s(opt)

j−1 s
(opt)
j , which are denoted as c1 and

c2, respectively. Their associate distances to the target site s(opt)
j

are obtained as dc1 = ||s(opt)
j − c1|| and dc2 = ||s(opt)

j − c2||,
respectively. Among these two intersections, the point that has
less distance to s

(opt)
j is determined as the target intersection

c•, i.e., c• = argminc∈{c1,c2}(dc1, dc2). Afterward, an arc R is
constructed symmetrically with respect to the line segment s•c•
with a radius of r and an arc angle of 2θ (the green arc in the

figure). The arc is then discretized to a set of points
�

S . Then, the
next sampling location s•+1 is generated by greedily selecting
the point with the maximum MI among the discretized points
on the arc, which can be expressed as

s•+1 = argmax
sn∈

�
S

MI
(
Y (sn);YS�

A
\sn

)
(18)

where
�A defines the surrounding space that is involved by

making this observation; S�A denotes the possible sampling
locations (mesh vertices) within the area

�A . The surrounding

space
�A for s•+1 is indicated in Fig. 2 by the red dash line.

Fig. 3. Execution example of local greedy planning.

The radius r designates the path length between any two
consecutive sampling sites, which also indicates the sampling
resolution in environmental mapping. The mesh size corre-
sponds to the radius r and remains the same in the local search
and the global design. Their relationship is addressed in the
global design in Section V-B. An execution example of the
local planner is shown in Fig. 3. In the figure, the blue and
red stars indicate the discretized potential sampling locations
and the selected locations, respectively. The blue line shows the
planned local sampling path.

Starting at s(opt)
j−1 and heading to the target s(opt)

j , the actions of
a mobile sensing agent are listed as follows.

1) Step 1: Start at the current location s•, take a measurement,
and exchange information with the sink.

2) Step 2: Check the next target s(opt)
j ; if it is located within

the radius r, i.e., ||s•, s(opt)
j || ≤ r, set the site s(opt)

j as the
next sampling location s•+1; otherwise, go to Step 3.

3) Step 3: Construct the arc R, discretize the arc to possible
sampling points, and then, calculate and set the point
corresponding to the maximum MI as the next sampling
location s•+1.

4) Step 4: Move to the next location s•+1; repeat Step 1.
The local planner pseudocode is summarized in Algorithm 1.

B. Global Information-Based Design

As introduced in Section V-A, an agent operates the sampling
mission by visiting the target sites in the order of q(opt) =

(s(opt)
1 , s(opt)

2 , . . . , s(opt)
j , . . .). For the optimal design of the target

sites that are most informative across the entire field, a global
planner is proposed by integrating the overall information at the
sink. These target sites are added to the sampling missions of
the agents in the field.

In the GMRF model, the optimal design can be derived by
finding the locations that have the maximum MI values. A
greedy algorithm is implemented to find the optimal site among
the potential locations conditioned on the historical sampled
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Fig. 4. Next sampling location scheduled by the local planner.

Fig. 5. Bounded area of possible sampling locations.

locations as well as the designed target sites. The generation
of the next target site s(opt)

j , starting at time t = T , can be
expressed as

s(opt)
j = argmax

sn∈S\(S0:T∪S (opt)
1:j−1)

MI
(
Y (sn);YS\{S0:T∪S (opt)

1:j−1∪sn}
)

(19)

where S (opt)
1:j−1 denotes the set of previous target sites, with

S (opt)
1:j−1 := {s(opt)

1 , s(opt)
2 , . . . , s(opt)

j−1}. It is noted that when exe-

cuting to find the next target site s(opt)
j at the sink, the agents

take more data samples concurrently. For example, while the
sink starts to calculate the next target site s(opt)

j at time t = T ,
the agents continuously make measurements at time steps
t = T + 1, T + 2, . . .. Consequently, the outcome of s(opt)

j that
is derived at time t = T +K > T by (19) does not incorporate
the sequential sampling up to the current time, i.e., S1:T+K .
To solve this problem, a subarea removal strategy is proposed
to consider the on-going measuring process when the sink is
determining the next target site s(opt)

j .
According to the local planner in Section V-A, the sampling

locations are located around the line segment s(opt)
j−1s

(opt)
j . The

following proposition can be established.
Proposition 1: The maximum distance from a sampling loca-

tion s• to the line segment s(opt)
j−1s

(opt)
j is dmax = 2r · sin θ

2 .
Proof: For a local path pj that is planned in Section V-A, it

starts at the target site sk = s(opt)
j−1 and ends at sk+K = s(opt)

j . The
sequential sampling locations can be derived iteratively, given
the current location s•. The auxiliary notations are shown in
Fig. 4, where ω is the angle between s(opt)

j−1s
(opt)
j and s•c•; d•

and d•+1 denote the distance from s• and s•+1 to the line seg-
ment s(opt)

j−1s
(opt)
j , respectively. For ω ≥ 0, the next local sampling

location is expressed as

d•+1 =

{
r · sin(γ − ω) + d•, γ ∈ [0, θ]

r · sin(ω − γ)− d•, γ ∈ [−θ, 0].
d• = r · sinω

(20)

For γ ∈ [0, θ], d•+1 = r · [sin(γ − ω) + sinω]. It is observed
that when γ = θ, ω = θ

2 , the maximum distance is dmax|γ ∈
[0, θ] = 2r · sin θ

2 . For γ ∈ [−θ, 0], d•+1 = r · [sin(ω − γ)−
sinω]. Also, when γ = −θ, ω = 0, the maximum distance
is dmax|γ ∈ [−θ, 0] = r · sin θ. Since dmax|γ ∈ [−θ, 0] = r ·
sin θ = 2r · sin θ

2 · cos θ
2 ≤ dmax|γ ∈ [0, θ], the maximum dis-

tance is obtained by dmax = 2r · sin θ
2 . Fig. 5 shows the scenario

that d•+1 = dmax, where the red dash line in the figure indicates

Fig. 6. Two consecutive sampling locations.

the farthest distance to the central line that a local sampling
location can achieve.

For ω ≤ 0, the sampling location s• locates beneath the line
segment s(opt)

j−1s
(opt)
j . In this case, the results are symmetric to

the previous derivations with respect to the line segment. The
maximum distance is the same, given by dmax = 2r · sin θ

2 . �
Proposition 1 also presents that ωmax = maxω =

arcsin dmax

r = arcsin(2 sin θ
2 ). Now, the following lemma

can be stated.
Lemma 2: For a local sampling path from s(opt)

j−1 to s(opt)
j , the

sampling locations that are scheduled by the local planner are
located within a bounded subarea.

Proof: The result comes directly from Proposition 1. Any
sampling location s• is located at one of the two sides of the line
segment s(opt)

j−1s
(opt)
j within the area, where its maximum distance

to the line segment is dmax = 2r · sin θ
2 . �

Due to the submodularity property of the sampling process
[6], the information in the surrounding area of a sample location
is reduced. Since the measuring process is operated along the
sampling path, the possible information gain in the area near
the local sampling path is reduced. As a result, there is no
need to resample this area. In the global planner, the subarea
near the local sampling path is excluded when selecting the
next target site. The radius r indicates the range of the reduced
informative region if the circle center is sensed. It is defined
as r := max(||e||), e ∈ E , since the edges of the triangular
mesh specify the neighboring spatial correlations. The following
proposition can be stated.

Proposition 3: The informative area that is affected by any two
consecutive sampling locations is bounded, with a minimum dis-
tance dmin = 2r · cos(π6 − θ

2 + ωmax) · sin(π6 − θ
2 ), from the

area boundary to the line segment s(opt)
j−1s

(opt)
j .

Proof: Fig. 6 shows the scenario of any two consecutive
sampling locations, i.e., s• and s•+1. In the figure, γ denotes
the angle between the line segments s•c• and s•s•+1. The red
circles represent the area with reduced information if the two
locations are sampled. v1 and v2 denote the two transect points
of the two circles.

Then, the minimal distances d∗v1
= min dv1

and d∗v2
=

min dv2
can be obtained by simple calculations as follows (the

derivation is given in the Appendix):

d∗v1
= 2r · cos(π6 − θ

2 + ωmax) · sin(π6 − θ
2 )

d∗v2
=

{
d
(1)
v2 = 2r · cos(π6 − θ

2 ) · sin(π6 − θ
2 ) or

d
(2)
v2 = 2r · cos(π6 − θ

2 − ωmax) · sin(π6 − θ
2 ).

(21)

Since ωmax = arcsin(2 sin θ
2 ), it can be determined that

d∗v1
≤ d∗v2

as well as d∗v1
≤ d

(2)
v2 . Therefore, by sampling at

any two consecutive locations, two circles indicate the reduced
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Fig. 7. Dumbbell-shaped area.

information area that they covered, which has a minimum oc-
cupied area. The minimum distance from the area boundary to
the line segment s(opt)

j−1s
(opt)
j is dmin = d∗v1

= 2r · cos(π6 − θ
2 +

ωmax) · sin(π6 − θ
2 ). �

According to Proposition 3, there is a region between any two
consecutive sampling locations, which becomes less informative
after these two positions are observed, no matter where they are
located away from the line segment s(opt)

j−1s
(opt)
j . Therefore, the

following theorem can be stated.
Theorem 4: Any local sampling path from s(opt)

j−1 to s(opt)
j covers

a dumbbell-shaped area A(opt)
j−1,j where the corresponding region

has less information if the sampling mission along the local path
is completed.

Proof: The result comes directly from Proposition 3. The
minimum reduced information area that is covered by any local
sampling path is bounded in a dumbbell shape with three main
regions, as the dashed line shown in Fig. 7. The two circles at
the two ends respond to the sampled locations s(opt)

j−1 and s(opt)
j .

The middle rectangular region responds to the sampled locations
along the path, which has the minimum distance dmin from the
boundary to the line segment s(opt)

j−1s
(opt)
j . �

When generating the next target site s(opt)
j , the reduced infor-

mation region defined by the previous sampling pathsA(opt)
0:j−1 :=

A(opt)
0,1 ∪ · · · ∪ A(opt)

j−2,j−1 should be removed from the entire space
of interest. This process is defined as the subarea removal (SAR)
strategy. By implementing SAR, the generation of the next target
site sopt

j , starting at time t = T , can be expressed as

s(opt)
j = argmax

sn∈S\–S
MI

(
Y (sn);YS\{–S∪sn}

)
(22)

where –S ⊆ A(opt)
0:j−1 denotes the potential sampling locations

within the removal area A(opt)
0:j−1. After obtaining the target site

s(opt)
j , it is assigned to the agent u∗ for which the last target site of

its sampling mission has the shortest distance to the generated
site s(opt)

j . By following the proposed framework, the high-level
planner at the sink obtains globally informative targets while the
agents in the field carry out local search simultaneously. With
the continuous running of global planning, the perception area of
interest that is left to determine the target sites becomes smaller,
which leads to faster execution of the optimal design over time.
The pseudocode of the proposed nonmyopic planner is given in
Algorithm 2.

VI. NUMERICAL EXPERIMENTS AND DISCUSSION

In this section, the proposed hierarchical planner is studied
through numerical experiments using both synthetic and real-
world datasets to evaluate its algorithm performance.

Fig. 8. Numerically generated spatial field.

A. Synthetic Dataset

The numerically generated spatial field is used in this simu-
lation. The physical quantity of the spatial field is designated on
a grid of size 80 × 80. The mean function is set at μ = 20.
The hyperparameters of the precision matrix are chosen as
θ = (τ, κ) = (1, 0.1) and the noise level is set at σ2

ε = 0.2. With
the present configuration, the marginal standard deviation and
the range of the Matérn covariance function can be obtained as
σ = 3 and ρ = 30, respectively. The generated spatial field is
shown in Fig. 8, which is used as the ground truth.

The spatial field is discretized by a triangle mesh using the
INLA package in R [29]. To design the most informative sites
in the global planner, the spatial field is discretized on the
triangular mesh by approximately 350 vertices of triangles. The
sampling location is selected in each local planning stage out of
ten discretized locations on the arc. Three mobile sensor agents
(M = 3) are assigned to make observations, starting from the
initial locations, which are randomly selected as s1,0 = (18, 27),
s2,0 = (57, 61), s3,0 = (71, 15). The travel distance of the agent
between two consecutive samples is set at r = 3, the agent speed
is set at v = 0.4 m/s, and the tractive effort is set at F = 100 N.
The measurement time at a sampling location is set at tM = 10 s.
The simulation is executed in R on a desktop computer with an
Intel Core i7-6700K 4 GHz processor and 32 GB of RAM.

The proposed information-based hierarchical planner that
incorporates the subarea removal strategy (IHP-SAR) is eval-
uated using the numerically generated scalar field. In addition,
a distributed planner via local greedy searching (LGS) and an
information-based global planner (IGP) for MI optimization,
and a Monte Carlo sampling planner are compared in regard
to algorithm performance of field mapping. The LGS method
operates distributed mobile sensing by exchanging information
among agents in the field without a centralized sink. At each
agent, the received information from other agents is utilized
to update the posterior spatial field model. Afterward, the next
sampling site is generated by finding the sampling location that
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Fig. 9. Mapping results of the proposed IHP-SAR planner at different times (in seconds). (a) 100 s. (b) 300 s. (c) 600 s. (d) 900 s.

Fig. 10. Mapping results of the LGS planner at different times (in seconds). (a) 100 s. (b) 300 s. (c) 600 s. (d) 900 s.

Fig. 11. Mapping results of the IGP planner at different times (in seconds). (a) 100 s. (b) 300 s. (c) 600 s. (d) 900 s.

is the most informative locally. This strategy has been studied
in past works (e.g., [15], [22], [16]) to achieve online planning
for adaptive sampling and field mapping. Specifically, a circular
arc (with the current location as the circle center) is discretized
to multiple points, among which, the most informative site
is selected as the next sampling location. The Monte Carlo
sampling approach directly selects a point randomly on the arc.
The IGP method optimizes the design of the target sites globally
using the GMRF scheme, which ranks all possible sites based
on their MI quantities, and then, selects the best ones as the sites
to be visited. The agents take samples while moving toward the
targets.

Prediction outcomes are updated with time. The resulting
predictions of the spatial field, by implementing the proposed
and the compared algorithms, are shown in Figs. 9–12 (at times
t = 100, 300, 600, and 900 s, respectively). In the figures, the
sampled locations are shown using star markers. The colors
illustrate the physical quantities over the scalar field. As shown,
the resulting predictions become closer to the ground truth as
the time increases.

RMSE is implemented as the measure to evaluate the predic-
tion results, which is defined as

RMSE(t) =
√

1
|I|Σi∈I [Ŷ (i)|y1:t − y(i)]2 (23)

where I represents the set of the grid vertices for spatial inter-
polation, and y(i) captures the ground truth value at a location
i ∈ I . Fig. 13 shows the prediction performance of the RMSE
variation over time and the energy cost. As can be seen, the
trend of the RMSE results reduces gradually with increased
observations over time and energy consumption.

Fig. 13(a) shows that the LGS and the random sampling can
provide better performance in the initial stage of the sampling
process. This is because these approaches are able to rapidly
issue the sampling sites and start to guide the agents for data
collection. In comparison, the IGP and the proposed IHP-SAR
approaches have to calculate the first target site before the agents
can start to take data samples. As time progresses, the LGS
or random sampling may remain trapped in a small region
for some period of the sampling mission [see Figs. 10(d) and
12(d)]. Without global planning, the LGS method requires more
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Fig. 12. Mapping results of the random sampling at different times (in seconds). (a) 100 s. (b) 300 s. (c) 600 s. (d) 900 s.

Fig. 13. Algorithm performance of the RMSE results.

information exchange among agents to establish the field model
on board each agent. In addition, it operates local greedy search
to ensure online planning for mobile sensing. Thus, this dis-
tributed planner leads to myopic exploration with its degraded
mapping results over time. In comparison, the proposed IHP-
SAR method effectively navigates the mobile agents to globally
informative targets in a nonmyopic manner. The IGP method
covers the targets directly but without searching for the local
high-information locations. In comparison, IHP-SAR achieves
superior prediction results since it provides an online solution by
effectively integrating myopic and nonmyopic information-
based planning.

Energy is consumed over time in the planned sampling mis-
sion. To evaluate the planning performance on resulting energy
consumption, the cost is simulated as W (t) = F · d = F · v · t,
where F denotes the tractive effort of the agent, d denotes the
travel distance, v denotes the agent speed, and t denotes the
travel time duration. In the experiments, at the speed of 0.4 m/s,
the agents carried out the planned mission progressively within
the sensing cycle Tc = 900 s. During the mission operation, the
agents visited more planned sites and traveled longer distance,
which leads to more energy consumption. Fig. 13(b) demon-
strates that the proposed IHP-SAR provides superior prediction
but at a lower energy cost when compared with the other ap-
proaches.

Global design provides nonmyopically designed targets but
intensively requires computational resources. Local search dras-
tically facilitates computational efficiency, yet it leads to myopic
local optimal solution. Accordingly, there is a natural conflict be-
tween computational efficiency and mapping accuracy for online
planning of mobile sensing. To further discuss the experiments,
several metrics are considered, including:

1) δ̄: average utility gain per designed sampling site;
2) N̄ : average number of designed sampling site per 100 s;
3) ΔRMSEt: average RMSE decrease per 100 s;

TABLE I
ALGORITHM PERFORMANCE IN THE EXPERIMENTS

N/A denotes no informative design in random sampling.

Fig. 14. IHP-SAR performance on different agent speeds.

4) ΔRMSEe: average RMSE decrease per kilojoule.
The experimental results of the compared algorithms are given

in Table I. The larger values of the metrics 3 and 4 represent
better online mapping results. As verified in the table, IGP
provides the best utility gain for each designed sample but
obtains the lowest number of target sites. LGS efficiently gen-
erates sampling locations for mobile sensing agents. However,
the utility gain for each sample is the lowest. In comparison,
the proposed IHP-SAR method trades off global planning and
local planning through the developed SAR mechanism. The
experimental results of ΔRMSEt and ΔRMSEe demonstrate
its best performance on reducing mapping error per time as well
as per energy consumption.

To evaluate the algorithm performance corresponding to agent
mobility, experiments are conducted with respect to different
speeds. Specifically, the agent speed v is varied and set to {0.1,
0.2, 0.4, 0.8, 1.6} in units of meter per second (m/s). The results
of the proposed method are shown in Fig. 14. Fig. 14(a) shows
the RMSE results over time under different agent speeds. It
implies that a higher moving speed leads to a better exploration
result for mapping. This is due to the fact that a faster agent can
visit more target sites within a sensing cycle.

In general, more observations at the target sites lead to
more accurate mapping results. However, visiting more sites
consumes more power, as a result of a longer travel distance in
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Fig. 15. IHP-SAR sampling mission at t = 900 s.

TABLE II
TARGET SITES AND THEIR CORRESPONDING ASSIGNMENTS

N/A denotes that the target sites have not been visited within a sensing cycle.

a sensing cycle. To further demonstrate this issue, Fig. 14(b)
provides the final mapping accuracy RMSE(Tc) and energy
consumption W (Tc) after finishing the planned mission, with
respect to different speeds. The speed settings v = 0.1, 0.2,
0.4, 0.8, 1.6 m/s result in associated final error performance
as RMSE(Tc) = 1.89, 1.76, 1.70, 1.62, 1.56, with the energy
consumption as W (Tc) = 16.5, 21.0, 24.6, 27.3, 29.4 kJ,
respectively. The experimental results verify that a higher speed
leads to a lower final RMSE, but costing more energy.

Remark 6: The proposed IHP-SAR algorithm generates the
global design in an anytime planning manner. The processing
time of finding the next target site decreases as the number of
measurements increases.

This remark can be examined through the experimental re-
sults. Fig. 15 and Table II illustrate the operation outcomes by
implementing the proposed approach at time t= 900 s. The fig-
ure shows the order in which the target sites were generated and
their assignment conditions for the three agents. The black dots,
star markers, and the line segments indicate the generated target
sites, sampled locations, and the traveled path, respectively. The
target sites are labeled in the order of their generation time.
Table II summarizes the processing time for generating the target
sites and the planned sampling mission. It is seen that the sites
have been obtained persistently, which could also be interrupted
at any time, providing the associated solutions up to that time.
Also, they were derived increasingly faster, taking 67.62 s for
the first site and reducing to 53.25 s for the last one, because
the size of the potential sites on the mesh decreases over time

Fig. 16. Algorithm runtime for finding global target sites.

TABLE III
HYPERPARAMETERS OF THE REAL-WORLD DATASET

through the SAR strategy. As expected, the planner determines
the most informative site one by one, and the runtime of finding
the next target decreases over time with more data samples.
The experimental results support the concluding statement in
remark 6.

The IGP method and the proposed IHP-SAR method operate
global planning at the sink. The associated overhead to obtain
the global information mainly comes from computational cost.
Their algorithm runtime for finding the global target sites is
compared and shown in Fig. 16. In the figure, x-axis indicates
the global target sites in their generation order; y-axis indicates
their associated execution time per site. As shown in the figure,
the runtime per generated global optimal site of the IGP method
remains relatively unchanged. Within the sensing cycle 900 s,
it generates 14 global informative sites with the average time
cost of 64.15 s. In comparison, the proposed IHP-SAR method
generates 15 optimal sites with the average time cost of 59.86 s.
The proposed method can effectively and increasingly shorten
the execution time for generating global informative sites. At the
mobile agents, the average runtime of IHP-SAR for generating
a local informative site is 1.52 s. This runtime at mobile agents
enables online navigation of mobile sensing.

B. Real-World Dataset

The proposed planning algorithm is also implemented using
a real-world dataset from the Intel Berkeley Research Lab [30]
to evaluate its performance. In the experiment, the indoor tem-
perature is selected as the monitored environmental quantity.
The GPR results, by making use of the observations at the 54
sensor nodes in the dataset, are used as the ground truth of
the perception field. The hyperparameters of the environmental
model may remain the same or vary over time. Table III presents
the examples of the hyperparameter values at different time
stamps, which indicates that the model remains the same in
some time periods but may change in some other time stamps
(as assumed in Section IV). Fig. 17(a) and (b) shows the ground
truth maps of these two models at the time stamp 3630 and 4260,
respectively.

In the experiment, at the initial deployment, an exploration
process utilizing the information-driven approach in the work
of [16] is first implemented to learn the prior knowledge of
the study field. After determining the hyperparameters of the
environmental model, the proposed planner is used to exploit the
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Fig. 17. Mapping results on the real-world dataset.

environment for sampling design and path planning. Three mo-
bile sensing agents are implemented starting at the randomly pre-
determined locations s1,0 = (39, 11), s2,0 = (45, 75), s3,0 =
(6, 70). Each sensing cycle is specified as 15 min. Fig. 17(c)
and (d) shows the predicting maps at the time stamp 3630
and 4260, respectively, by implement the proposed algorithm.
RMSE of the time stamps 3630 and 4260 are 0.2282 and 0.2325,
respectively.

In a real-world application, the environmental phenomena
may vary in two ways: 1) the physical quantities of the mon-
itored parameters may change over time, but the spatial corre-
lations over the underlying field remain and 2) both physical
quantities and spatial correlations may change over time. The
former case indicates that the environmental field model is
time-invariant, which uses the same optimal sampling design
in different sensing cycles. In this case, the agents operate their
sampling missions by following the same designed sampling
frames over multiple sensing cycles. The latter case indicates
that the environmental field model changes and a model updating
process is required. With the measurements from the previous
sensing cycle, the model hyperparameters can be re-estimated to
interpret the variance of the spatial correlation over the random
field. The model updating and information-theoretic planning
can be operated iteratively to handle a time-varying field model.

It is noted that the developed SAR mechanism does not
depend on ongoing local search to operate global design. As
a result, the global planning at the sink will not be affected
by missing data packets from the agents. However, missing data
packets of local collections from the agents may change mapping
results. In addition, missing data packets of sampling targets
from the sink will cause loss of moving goals for local planning.
A check-and-resend mechanism can be implemented to ensure
reliable data transmission. For the case that resending fails due to
a severely poor network circumstance, the agent will complete
the previously assigned mission and stay at the last assigned
target to wait for a new target from the sink.

VII. CONCLUSION

This article proposed a novel hierarchical system framework
to plan an information-based sampling mission, which was
implemented to carry out adaptive sampling for MSN-based

environmental field mapping. The proposed framework
provided an effective hierarchical scheme that integrated
myopic searching and nonmyopic optimization. The local
planner operated onboard planning to plot the high-information
locations along the local sampling path. Concurrently, the
global planner at the sink, with its beneficial characteristics as
an anytime algorithm, determined the subsequent destinations
that were the most informative sites over the entire field. A
subarea removal strategy was introduced in this article to
address the growing set of sequential sampled locations in the
field during the global optimization at the sink. The proposed
hierarchical framework provides a practical solution for online
sampling and field mapping using mobile sensor networks.

APPENDIX

PROOF OF PROPOSITION 3

For ω ∈ [0, ωmax = arcsin(2 sin θ
2 )], γ ∈ [−θ, θ], θ ∈ [0, π

4 ],

the distance from v1 and v2 to the line segment s(opt)
j−1 s

(opt)
j are

expressed, respectively, as

dv1
= r · sin(π3 + ω − γ)− r · sinω

dv2
= r · sin(π3 − ω + γ) + r · sinω. (A.1)

To minimize dv1
, γ∗ = argminγdv1

= max γ = θ. Then, get
the derivative d

dωdv1
to find ω such that dv1

is minimized,
where d

dωdv1
= r · cos(π3 + ω − θ)− r · cosω. Since θ ≤ π

4 <
π
3 , it is observed that d

dωdv1
< 0. Thus, ω∗ = argminωdv1

=
maxω = ωmax. The minimum dv1

is derived as

min dv1
= r · sin(π3 + ωmax − θ)− r · sinωmax

= 2r · cos(π6 − θ
2 + ωmax) · sin(π6 − θ

2 ). (A.2)

Similarly, to minimize dv2
, γ∗ = argminγdv2

= min γ =

−θ. Then, get the derivative d
dωdv2

to findω such that dv2
is min-

imized, where d
dωdv2

= −r · cos(π3 − θ − ω) + r · cosω. The
minimum dv2

can be obtained when

ω =

⎧
⎨

⎩

ω1 = ωmin = 0
ω2 = ωmax = arcsin(2 sin θ

2 )
ω3 = argω(

d
dωdv2

= 0) = π
6 − θ

2 .
(A.3)

Thus, the minimum dv2
can be obtained when

dv2
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
(1)
v2 = r · sin(π3 − θ), ω1 = 0

d
(2)
v2 = r · sin(π3 − θ − ωmax)

+r · sinωmax, ω2 = ωmax

d
(3)
v2 = 2 · r · sin(π6 − θ

2 ), ω3 = π
6 − θ

2 .
(A.4)

It is seen that d
(1)
v2 = r · sin(π3 − θ) = 2r · sin(π6 − θ

2 ) ·
cos(π6 − θ

2 ) < d
(3)
v2 and d

(2)
v2 = 2r · sin(π6 − θ

2 ) · cos(π6 −
θ
2 − ωmax) ≤ d

(3)
v2 . However, the relationship between d

(1)
v2

and d
(2)
v2 is all possible since cos(π6 − θ

2 − ωmax) can be
bigger than, small than, or equal to cos(π6 − θ

2 ). Thus,

min dv2
= min{d(1)v2 , d

(2)
v2 }, i.e.,

min dv2
=

{
2r · cos(π6 − θ

2 ) · sin(π6 − θ
2 ) or

2r · cos(π6 − θ
2 − ωmax) · sin(π6 − θ

2).
(A.5)
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