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Abstract—The existing intelligent fault diagnosis methods of 

rotor-bearing system mainly focus on vibration analysis under 

steady operation, which has low adaptability to new scenes. In this 

paper, a new framework for rotor-bearing system fault diagnosis 

under varying working conditions is proposed by using a modified 

convolutional neural network (CNN) with transfer learning. First, 

infrared thermal images are collected and used to characterize the 

health condition of rotor-bearing system. Second, modified CNN 

is developed by introducing stochastic pooling and Leaky rectified 

linear unit to overcome the training problems in classical CNN. 

Finally, parameter transfer is used to enable the source modified 

CNN to adapt to the target domain, which solves the problem of 

limited available training data in the target domain. The proposed 

method is applied to analyze thermal images of rotor-bearing 

system collected under different working conditions. The results 

show that the proposed method outperforms other cutting edge 

methods in fault diagnosis of rotor-bearing system. 

 
Index Terms—Rotor-bearing system, Intelligent fault diagnosis, 

Modified CNN, Thermal images, Parameter transfer. 

I. INTRODUCTION 

otating machinery plays an increasing role in electric 

power, manufacturing, transportation, and other industries 

[1, 2]. As a safety-critical part of rotating machinery, various 

faults of rotor-bearing system during its service life may cause 

severe security accidents [3, 4]. Due to automatic detecting 

capability, more and more intelligent fault diagnosis techniques 

have been proposed and applied to health monitoring of 

rotor-bearing system and other industrial equipment [5, 6]. 

A large number of studies have claimed that the diagnosis 

results of different shallow learning models are largely affected 

by the effectiveness of extracted features [7-9]. Recently, more 

and more attention has been paid to deep learning-based 

approaches with automatic feature learning capability, such as 

deep belief network (DBN), stacked auto-encoder (SAE), 

convolutional neural network (CNN), long short-term memory 

(LSTM), etc. Oh et al. [10] classified different faults of rotor 

system using DBN and vibration-imaging. Ma et al. [11] 

employed enhanced DBN for fault classification of gear and 

bearing by fusing vibration and acoustic signals. Abid et al. 

[12] constructed SAE to diagnose bearing faults using the 

extracted multidomain features of vibration signals. Saufi et al. 

[13] designed SAE for fault recognition of gearbox using 

vibration signals of multi-sensors. Pan et al. [14] modified the 

standard CNN to identify faults of motor bearing based on 

noisy vibration data Jia et al. [15] presented new CNN for fault 

detection of planetary gearbox through analysis of transverse 

vibration and torsional vibration. Shao et al. [2] combined DBN 

and CNN for locomotive bearing fault diagnosis based on the 

raw vibration analysis. Through literature review, it can be 

found that most of the existing methods focus on vibration 

analysis of the rotor-bearing. However, vibration analysis has 

the problem of affecting the equipment structures and the 

difficulty in installing sensors [16]. Besides, the processing of 

vibration signals is very complicated due to the long transfer 

path of the signal, changeable working conditions, and strong 

noise in real applications [1, 16]. 

Infrared thermography (IRT) has provided an advanced tool 

for equipment condition monitoring in recent years [17-19]. 

Compared with vibration monitoring, IRT holds unique 

superiorities such as non-contact, simple installation, high 

precision, high sensitivity, etc [16]. Considering the special 

abilities of processing two-dimensional (2D) images, CNNs 

have been gradually used for fault diagnosis of industrial 

equipment using the infrared thermal images in the past few 

years. In 2018 and 2019, Janssens et al. utilized deep CNNs to 

analyze the thermal images for machine fault classification and 

oil-level prediction [20, 21]. In 2019, Jia et al. proposed a new 

fault diagnosis method of rotor-bearing system based on CNN 

and thermal images [16]. In 2019, Nasiri et al. constructed 

CNN for intelligent fault identification of cooling radiator 

using thermal images [22]. 

However, the current CNN-based diagnosis approaches with 

thermal images can only deal with the same working condition 

that is rarely the case in real applications. Also, these methods 

are all based on the availability of a large number of training 

samples which are difficult and expensive to acquire. In 

engineering practice, the operating conditions of equipment 

frequently change, which will result in different distributions of 

the collected samples [23]. In addition, it is challenging to train 

an excellent CNN from scratch only using a few samples [24]. 

Thus, how to enable the CNNs trained with limited thermal 

images to achieve satisfactory fault diagnosis accuracy of 

rotor-bearing system under varying working conditions has 

become an urgent task. 

Transfer learning is considered to have great potential to 

complete different but similar tasks from the source domain to 

the target domain [25, 26]. Parameter transfer, the most widely 

applied transfer learning technique, aims to provide valuable 

parameter knowledge for the target model from a well 

pre-trained model (source model) [24, 27]. With well-located 
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initial parameters and a small number of target samples, the 

target model can be quickly fine-tuned to solve the target task. 

Since 2017, the transfer diagnosis performance of CNNs 

integrated with parameter transfer has been demonstrated by a 

few case studies [24, 26]. Thus, CNN and parameter transfer 

can be investigated for fault diagnosis of rotor-bearing system 

under different working conditions with limited samples. 

In this paper, a modified transfer CNN driven by thermal 

images is proposed to diagnose faults of rotor-bearing system 

under varying working conditions. The results confirm a better 

fault diagnosis performance of the proposed method compared 

with the existing methods. The main contributions of this 

article are as follows: 

1) A new framework for rotor-bearing system fault diagnosis 

under varying working conditions is proposed by using 

CNN with transfer learning. Infrared thermal images are 

collected and used to characterize the health condition of 

rotor-bearing system. 

2) A novel modified CNN model is developed by introducing 

stochastic pooling and Leaky rectified linear unit. It 

overcomes the training problems in classical CNN. 

3) Parameter transfer is used to enable the source modified 

CNN to adapt to the target domain to solve the problem of 

limited available training data in the target domain. 

The remaining of this article is mainly described as follows. 

Section II reviews the brief theory of classical CNN. The 

proposed method is introduced in detail in Section III. Section 

IV presents the case study. Finally, the conclusion summaries 

the paper and proposed future work in Section V.  

II. THE CLASSICAL CNN THEORY 

Among different types of CNN models, the LeNet-5 is the 

most classical with less trainable parameters, more mature 

theory and higher computational efficiency. Besides, LeNet-5 

is specifically designed to process 2D grayscale images, which 

mainly consists of an input layer, two convolutional layers, two 

pooling layers and a fully connected layer, shown in Fig. 1.  

 

 

Fig. 1. Model architecture of the classical CNN. 
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where ( )maxpool   is max pooling, ( )avepool   is average 

pooling, 
,

,

k l

i jf  is the element of the kth output feature map after 

pooling, and PR  is the pooling region with each size of 

P PN N . Transformed by the convolution and pooling layers, 

deep feature maps are finally fed into a fully connected layer 

and a softmax layer for classification. Weights and biases are 

adjusted by stochastic gradient descent (SGD) to minimize the 

errors between the true and predicted labels. 

III. THE PROPOSED METHOD 

A. Modified CNN design 

In this paper, to overcome the problems of the classical 

CNN, modifications of the basic CNN are carried out in two 

aspects: pooling strategy and activation function. 

Max and average operations are the two popular pooling 

strategies in the basic CNN. Some potential information is 

ignored using max pooling since only the strongest feature 

elements are selected. Although average pooling considers all 

the elements, they are always treated equally, reducing the 

contributions of those important elements. Besides, the 

certainties caused by these two pooling strategies are more 

likely to result in over fitting. 

As a new subsampling strategy, stochastic pooling can 

address the problems of max and average operations [28] by 

fusing all the feature elements according to their contributions, 

and the sampled probabilities are 
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where 
,i jp  is the probability of element 

,i ja , and SR  is the 

pooling region. In the back-propagation phase, the fused 

element is weighted by the probabilistic form of averaging as 
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In addition to pooling strategy, the activation function also 

has an impact on CNN performance. The gradient vanishing 

and computational complexity are the main limitations of 

sigmoid (Sigm). The neurons of rectified linear unit (ReLU) 

always stop learning when the inputs are negative. Leaky ReLU 

(LReLU) is an enhanced variant of ReLU, which can address 

these problems by giving a small positive value   when the 

inputs are negative, helping neurons continue working [29].  
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By now, the modified CNN has been designed, as shown in 

Fig. 2. In order to improve the training performance, SGD 

algorithm with learning rate decay and momentum are applied 

to update model parameters 
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Fig. 2. The modified CNN using stochastic pooling and LReLU. 
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where t is the epoch number, 1tθ  is the trained parameters of 

the modified CNN, ( )tE θ
 
is the derivative of cross-entropy 

error between the true and predicted labels, t  is learning rate, 

  is decay factor, t  is momentum, mom_epoch  is the 

boundary epoch number. 

 

B. Construction of modified transfer CNN 

As shown in Fig. 3, by introducing parameter transfer into 

the modified CNN, a modified transfer CNN can be constructed 

as follows. (1) Enough source-domain samples are used to 

pre-train a source modified CNN by minimizing cross-entropy 

error between the true and predicted labels according to Eqs. 

(7-9). (2) Prepare a target modified CNN holding the same 

structure and hyperparameters as the source model. (3) Transfer 

all the well-learned weights and biases from the source 

modified CNN to the target. (4) A few target-domain samples 

are used to fine-tune the target modified CNN. During the 

fine-tuning stage, all the weights are adjusted. After these steps, 

the modified transfer CNN can be applied to solve tasks cross 

domains. 
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Fig. 3. Construction of modified transfer CNN. 

C. Procedures of the proposed method 

As shown in Fig. 4, this paper presents modified transfer 

CNN and thermal images for fault diagnosis of rotor-bearing 

system cross working conditions, and the followings are the 

main procedures: 

Step 1: Collect thermal images of rotor-bearing system under 

different working conditions, and they are first translated into 

grayscale images and then divided as the source domain and 

target domain. The source domain contains enough labeled 

samples while the target domain has a few labeled samples. 

Step 2: Stochastic pooling and LReLU are combined to design 

modified CNN. 

Step 3: A source modified CNN model is first well pre-trained 

using enough samples from the source domain. 

Step 4: Transfer all the trained weights and biases provided by 

the source modified CNN to initialize a target modified CNN 

with the same structure and hyperparameters. 

Step 5: Fine-tune the target modified CNN using small samples 

from the target domain to further adjust the weights and biases. 

Step 6: Test the diagnosis performance of the fine-tuned target 

modified CNN using the rest samples from the target domain.  

 

IV. CASE VALIDATION 

A. Thermal images of rotor-bearing system  

In this paper, the experimental data is from the GUNT PT500 

rotating machinery shown in Fig. 5, mainly consists of driven 

motor, rotor shaft, tested bearing, transmission belt, and 

thermal camera (FLIR A5 with a resolution of 320*156 pixels) 

[30]. The thermal camera is installed at 40cm away from the 

fixed rotor shaft.  

In the experiments, eight health conditions of rotor-bearing 

system are created through combining four kinds of bearing 

conditions and two kinds of rotor conditions, shown in Table I. 

Three mass blocks (5g) are placed on a side of a disk fixed on 

the rotating rotor to simulate unbalanced cases, as shown in 

Fig. 6(a). 

As listed in Table II, the thermal images collected under 

steady operation of 2000 rpm and 3000 rpm are employed as 

the source and target domains, respectively. We acquire a total 

of 150 source samples and 104 target samples. It should be 

noted that each target condition only has 2 training 

(fine-tuning) samples. A raw thermal image of condition 3 with 

its region of interest is shown in Fig. 6(b). According to the 

restricted region, the collected thermal image samples of four 

health conditions (Conditions 3, 4, 7, 8) from the source and 

target domains are plotted in Fig. 7. To meet the 2D input forms 

of CNN, all of these thermal images are first translated into the 

grayscale images with sizes of 104*104. 

 

.  
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Fig. 4. The overall framework of the proposed method. 

 

    
 

Fig. 7. Collected thermal images of four health conditions: (a-d) Conditions 3, 4, 7, 8 from the source domain; (e-h) Conditions 3, 4, 7, 8 from the target domain. 

TABLE III 

TRANSFER FAULT DIAGNOSIS RESULTS OF DIFFERENT METHODS 

Diagnosis methods Diagnosis strategies Average diagnosis results  

Method 1 (CNN: LReLU & SP, Proposed method) Supervised learning and parameter transfer  95.55% (7797/8160) 
Method 2 (CNN: LReLU & MP) Supervised learning and parameter transfer 92.52% (7550/8160) 

Method 3 (CNN: LReLU & AP) Supervised learning and parameter transfer 90.17% (7358/8160) 

Method 4 (CNN: ReLU & SP) Supervised learning and parameter transfer 93.66% (7643/8160) 
Method 5 (CNN: ReLU & MP) Supervised learning and parameter transfer 91.48% (7465/8160) 

Method 6 (CNN: ReLU & AP) Supervised learning and parameter transfer 88.93% (7257/8160) 

Method 7 (CNN: Sigm & SP) Supervised learning and parameter transfer 90.12% (7354/8160) 
Method 8 (CNN: Sigm & MP) Supervised learning and parameter transfer 88.95% (7258/8160) 

Method 9 (CNN: Sigm & AP) Supervised learning and parameter transfer 86.83% (7085/8160) 

Method 10 (Basic DBN) Unsupervised learning and parameter transfer 80.36% (6557/8160) 
Method 11 (Basic SAE) Unsupervised learning and parameter transfer 81.68% (6665/8160) 

Remarks: SP: Stochastic pooling; MP: Max pooling; AP: Average pooling.  

 

 
 

Fig. 8. Detailed transfer diagnosis results of different methods. 
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Fig. 5. Diagnosis system of GUNT PT500 rotating machinery.  
 

   
 

Fig. 6. (a) The disc fixed on the rotating rotor with three mass blocks and (b) A 

raw thermal image of condition 3 under steady operation of 2000 rpm. 

TABLE I 

THE EIGHT HEALTH CONDITIONS OF ROTOR-BEARING SYSTEM 

Health conditions of rotor-bearing system Labels of conditions 

Normal bearing and normal rotor Condition 1 (C1) 

Outer race fault of bearing and normal rotor Condition 2 (C2) 
Inner race fault of bearing and normal rotor Condition 3 (C3) 

Ball fault of bearing and normal rotor Condition 4 (C4) 

Normal bearing and unbalanced rotor Condition 5 (C5) 
Outer race fault of bearing and unbalanced rotor Condition 6 (C6) 

Inner race fault of bearing and unbalanced rotor Condition 7 (C7) 

Ball fault of bearing and unbalanced rotor Condition 8 (C8) 

 

TABLE II 

DETAILED INFORMATION OF THE SOURCE AND TARGET DATASETS 

Datasets of the 

thermal images 

Rotating 

speeds 

Health 

conditions 

Sizes of the training/ 

testing samples 

Source domain (S) 2000 rpm Conditions 1 - 8 100*8 / 50*8 

Target domain (T) 3000 rpm Conditions 1 - 8 2*8 / 102*8 

 

 

B. Comparisons with other methods 

In order to prove the feasibility of the modifications in the 

proposed method, several currently popular models are utilized 

for comparisons, including another eight types of CNNs built 

with different pooling strategies and activation functions, and 

two unsupervised deep learning models, i.e., DBN and SAE. 

The diagnosis goals of all the methods are to classify the testing 

samples in the target domain using the deep models pre-trained 

by the source-domain samples. 

Each method is performed for ten repeated runs so as to 

avoid contingency and particularity. The transfer fault 

diagnosis results of various methods are recorded in Table III, 

and the detailed information is available in Fig. 8. Through the 

statistical analysis, the max and mean values of the diagnosis 

results given by the proposed method are 96.20% (785/816) 

and 95.55% (7797/8160, 8160=102*8*10), respectively. The 

average accuracies based on the 10 contrastive methods are 

92.52%, 90.17%, 93.66%, 91.48%, 88.93%, 90.12%, 88.95%, 

86.83%, 80.36% and 81.68%, respectively, and they are all 

lower than the proposed method. 

From Fig. 8, the best diagnosis result of the proposed method 

occurs in the fourth run with the corresponding confusion 

matrix shown in Fig. 9. In Fig. 9, the horizontal X-axis and 

vertical Y-axis refer to the predicted label and true label, 

respectively, and the diagonal elements are the accuracies of 

each state. The precision rate, recall rate, and F-Score of the 

proposed method for the fourth run are calculated in Fig. 10 

according to the following formulas [2] 

Precision
TP

TP FP



                        (10) 

Recall
TP

TP FN



                           (11) 

2 Precision Recall
F-Score

Precision Recall

 



             (12) 

in which TP, FP, and FN denote the sizes of the true positive, 

false positive, and false negative samples, respectively. Every 

individual condition has a corresponding F-Score, and higher 

F-Score represents better classification performance. It can be 

found from Fig. 9 and Fig. 10 that except conditions 2 and 3, 

the F-Score values provided by the proposed method for other 

conditions are very high.  

 

 
 

Fig. 9. Confusion matrix of the proposed method for the fourth run. 

 

 
 

Fig. 10. Precision rate, recall rate, and F-Score of the proposed method for the 

fourth run. 
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According to our experience, two convolutional layers and 

two pooling layers are deep enough in this case study. To strike 

a good balance between testing accuracy and computing time, 

the model architectures of the constructed CNN are given in 

Table V. The other hyper-parameters are selected as follows. 

The initial learning rate is 0.008, initial momentum is 0.5, final 

momentum is 0.95, epoch number is 500, boundary epoch is 8, 

decay factor is 5 and the small positive value of LReLU is 

0.004, which are mainly determined according to experiences 

and experimentations. The number of fine-tuning samples from 

the target domain is set as 2. The relationships between average 

diagnosis accuracies, standard deviations, and the numbers of 

fine-tuning samples are investigated in Fig. 11. It can be clearly 

observed that the diagnosis accuracies and standard deviations 

show respectively steady upward and downward trends as the 

number of target training samples become larger.  

 

TABLE V 
STRUCTURE SETUP OF THE PROPOSED CNN MODEL 

Parameters  Descriptions 

Input feature map 104x104 
Convolution kernels in layer 1 (5x5) x6 

Activation function in layer 1 LReLU 

Stochastic pooling in layer 2 (2x2) x6 
Convolution kernels in layer 3 (5x5) x12 

Activation function in layer 3 LReLU 

Stochastic pooling in layer 4 (2x2) x12 
Softmax layer 8 

 

 
Fig. 11. Transfer diagnosis performance under different fine-tuning samples 

from target domain.  

C. Superiority of infrared thermal images analysis 

The superiority of thermal images over vibration analysis is 

investigated in this section. The piezo-electric accelerometer is 

placed on the side of the support with a sampling frequency of 

32768 Hz. Similar to Section A, working conditions of 2000 

rpm and 3000 rpm are used as the source and target domains. 

Data samples of each health condition constructed by the raw 

vibration signals and time-frequency signals are shown in Fig. 

12 and Fig. 13, respectively. Each raw data sample refers to a 

sequence containing 1024 (32*32) data points without overlap. 

The numbers of the source-domain training samples for each 

health condition are set as 50 (50S), 80 (80S) and 100 (100S), 

respectively, while the samples sizes in the target domain are 

the same as Section A. Based on the transfer diagnosis during 

the ten repeated times, the average diagnosis accuracies of the 

proposed method for three kinds of inputs are listed in Table VI. 

Fig. 14 shows the best accuracies using different inputs during 

the ten repeated times. From Table VI, two main conclusions 

are drawn as follows. (1) With the increase of the numbers of 

the source-domain training samples, all of the accuracies based 

on different inputs become higher. (2) The accuracies using 

infrared thermal images (Input 1) are always higher than the 

other two inputs (Input 2 and Input 3).  

 

 

    
 

    
 

    
 

    

Fig. 12. Data samples of each health condition constructed by raw vibration 

signals. (T: Target domain, S: Source domain).  
 

  

    
 

    
 

    

 

    
 

Fig. 13. Data samples of each health condition constructed by time-frequency 

signals. (T: Target domain, S: Source domain).  
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TABLE VI 

AVERAGE TRANSFER DIAGNOSIS ACCURACIES OF THE PROPOSED METHOD 

FOR THREE KINDS OF INPUTS 

Different inputs of the proposed 
CNN model 

Sizes of the source training samples 

50 (50S) 75 (75S) 100 (100S) 

Infrared thermal images (Input 1) 85.18% 91.53% 95.55% 
Raw vibration signals (Input 2) 62.11% 72.93% 79.04% 
Time-frequency images (Input 3) 70.96% 80.26% 86.18% 

 

Fig. 14. The best accuracies using different inputs during the ten repeated times 

D. Limitations of the proposed method 

Despite the proposed method shows better performance for 

transfer fault diagnosis of rotor-bearing system than the basic 

CNN and vibration analysis, we have to admit some limitations 

during the experiments. 

(1) Fluctuation problem. From the detailed results shown in 

Fig. 8, it can be found that the proposed method provides 

different results for each run. Though the average and highest 

accuracies of the proposed method are both larger than others, 

the standard deviation is not. The randomness of the stochastic 

pooling and particularity of the 2 fine-tuned samples randomly 

selected from the target domain is the main reasons for 

fluctuation problems. With the increase of the fine-tuned 

samples from the target domain, the standard deviations will 

become small to a great degree, as shown in Fig. 11. 

(2) Hyper-parameter selection. Although the basic CNN is 

modified by using some skill, more hyper-parameters have to 

be predetermined simultaneously, including the initial learning 

rate, initial momentum, final momentum, boundary epoch, 

decay factor, etc. In this paper, these hyper-parameters are all 

selected by experimentations. Hyper-parameter selection is an 

inherent problem in designing different deep learning models, 

which will more or less be solved with the accumulation of 

experience and knowledge. 

(3) Region of interest for thermal images. From Fig. 6(b), it 

can be observed that the raw thermal images always contain 

heavy background noise, i.e., the unrelated information, which 

will largely affect diagnosis performance. Advanced image 

segmentation techniques can select high-quality regions of 

interest to focus on fault characteristics of rotor-bearing system. 

However, it is carried out manually in this paper. 

V. CONCLUSIONS 

This article focuses on the transfer diagnosis of rotor-bearing 

system faults under different working conditions based on 

advanced monitoring measures. Because of the superiorities of 

non-contact, simple installation, high precision, and high 

sensitivity, infrared thermal images are used to characterize the 

health condition of rotor-bearing system. Stochastic pooling 

and LReLU are combined to improve the performance of the 

basic CNN. Parameter transfer is used to provide good initial 

parameters to enable the designed CNN to adopt new domains 

with limited available training data. 

The proposed method is applied to analyze the thermal 

images of rotor-bearing system collected under different 

working conditions. The comparison results confirm the 

superior performance of the proposed method compared with 

the existing methods in fault diagnosis of rotor-bearing system. 

Deep transfer learning has shown the potential to solve 

practical fault diagnosis tasks with varying working conditions. 

Future work includes the further improvement of the CNN 

model, interpretation of the learned features, and fusion of data 

from multiple sensors to increase the diagnosis accuracy and 

robustness. 
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