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Abstract—In this article, we present a path planning approach
that is capable of generating a feasible trajectory for stable robotic
wheelchair navigation in the environment with slope way. Firstly,
the environment is modeled by a lightweight navigation map, with
which the proposed sampling-based path planning scheme with a
modified extension function can generate a feasible path. Then,
the path is further optimized by the proposed utility function
involving the human comfort and the path cost. To improve the
searching efficiency of an optimal trajectory, we present an adap-
tive weighting Gaussian Mixture Model (GMM) based sampling
strategy. Particularly, the weights of the components in GMM are
adjusted adaptively in the planning process. It is also worth noting
that the proposed sampling-based planning paradigm can indicate
the unsafe regions in the navigation map, which forms a traversable
map and further guarantees the safety of the wheelchair robot
navigation. Furthermore, the effectiveness and the efficiency of the
proposed path planning method are verified in both simulation and
real-world experiments.

Index Terms—Path planning, autonomous vehicle, navigation,
robot motion.

I. INTRODUCTION

THE single passenger vehicle that incorporates robotic
techniques represents a new trend of personal intelligent

transport system [1]. As a representative of such vehicles, the
intelligent wheelchair robot has attracted much attention in
recent years [2], [3]. Unlike the semi-autonomous wheelchair
that sometimes requires the operational skill of the human pilot,
the fully autonomous wheelchair robot can drastically reduce
possible crashes due to lack of operational experience and
incomplete perception of the environment.

Nowadays, fully autonomous wheelchair robots are fre-
quently operating in various environments. These environments
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are typically structured but might contain level grounds with
different heights. Fortunately, more and more environments are
designed and built for wheelchairs. They have, for example,
provided the slope way for the wheelchair to navigate through.
However, it is still challenging for stable wheelchair navigation
to identify the traversable area and reach a target through the
slope safely. This research aims to generate a safe and human-
comfortable path that leads the wheelchair robot to achieve
autonomous navigation in these challenging environments.

For the wheelchair robot navigation, one fundamental and
critical part is a suitable representation of the complex envi-
ronment. Recently, a vast amount of research has been devoted
to developing various maps [4], [5]. Different maps have their
own merits for different applications [6], [7]. However, for
robot navigation in environments with sloped way, these maps
either provide limited information for safe navigation, or are
too redundant and suffer from high computational complexity.
Little work has focused on developing a lightweight map that
can represent terrain traversability and explicitly indicate the
hazardous areas for robot navigation.

With a suitable environment map, path planning strategy is
one key technique for achieving stable robot navigation and has
been well investigated over the past decades [8]–[10]. Generally,
the goal for path planning is to generate a feasible path from the
start location to the desired location regarding the vehicle motion
or energy constraints. However, for the passenger vehicle that
involves multiple subjective evaluation criteria for the navigation
performance, few efforts have been put in improving the vehicle
safety and the human comfort on sloped terrain to achieve stable
wheelchair robot navigation.

In this article, we present a stable navigation strategy for the
wheelchair robot in the environment with slope way. The system
diagram is shown in Fig. 1. In particular, instead of considering
the human comfort in the socially compliant navigation
paradigm [11], we focus on the human comfort that results from
the vehicle stability on the slope. To the best of our knowledge,
this is the first path planning method towards stable wheelchair
navigation considering the human comfort on the sloped terrain.
Our contributions mainly lie in the following aspects:

1) We present a path planning method that can generate a
feasible path with a new vehicle stability measure consid-
ering the human comfort for wheelchair robot navigation
on the slope.

2) With the proposed planning scheme, different terrains can
be efficiently identified, which forms a traversable map
and facilitates safe wheelchair navigation.
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Fig. 1. Schematic diagram of the proposed autonomous navigation scheme.
A traversable map for safe navigation is obtained by using the proposed path
planning module. The human comfort is related to the vehicle stability and the
distance to the hazardous area.

3) An adaptive weighting GMM based approach is proposed
to improve the efficiency of optimal path planning and the
traversable map generation.

The necessity of the proposed framework is corroborated
in both simulation and real-world experiments by comparing
the method with state of the arts. The experimental results
demonstrate that our approach can efficiently find safe and
human-comfortable paths in complex environments.1

The rest of the paper is organized as follows. In Section II, we
review the literature related to our study. Then, the preliminaries
and formulations of this study are given in Section III. The
proposed path planning strategy is introduced in Section IV and
Section V. Experiments and results are reported in Section VI.
Finally, we conclude the study and give the directions of the
future work in Section VII.

II. RELATED WORK

We review the literature on environment representation
method and path planning strategy, which are highly related to
our study and are two key modules for achieving stable robot
navigation on sloped terrain.

A. Environment Representation

It is the precondition for the robot to get an accurate en-
vironment model for stable navigation. Recently, much effort
has been paid towards robustly perceiving the environment,
distinguishing different road terrains (e.g., flat road, slope way),
and evaluating their traversability. In [12], a vision-based terrain
reconstruction method was proposed for building the map of
the environment. Haselich et al. [13] proposed a probabilistic
method to fuse 3D lidar and camera image data for classifying
different road terrains. Santamaria-Navarro et al. [14] proposed
to learn the traversable area from 3D point clouds. These meth-
ods focus more on the terrain classification methods. They gen-
erally partition the terrains into traversable and non-traversable
areas without considering the properties of different terrains
(e.g., slope, roughness). Moreover, the classification results have

1Video demonstration: https://youtu.be/ywjQ8HBC79U

not been wrapped into a suitable map, with which the robot can
plan a feasible path considering the vehicle stability and mobility
on diverse terrains for safe navigation.

Over the years, various kinds of maps are proposed for en-
coding the information of the environment for the navigation
purpose [15]. The 2D grid map [16] that can represent the
obstacles and collision-free areas is widely adopted. However,
it is inadequate for robot navigation in complex environments
with diverse terrains. A hybrid-map with different 2D map layers
was used in [17] for robot navigation in complex environments.
Gu et al. [18] suggested to utilizing a 2.5D map to assess the
traversability of different terrains. Differently, in [5], a 3D mesh
map was ready for online path planning in rough terrain by a map
generation method based on 3D point cloud. More recently, Sock
et al. [19] proposed a traversable map that simply distinguished
different terrains in a probabilistic manner. These methods can
indicate the traversable area in the environment, yet the safe
region for robot navigation is not considered. Based on the 3D
elevation grid map presented in [20], we develop a traversable
map that can clearly indicate the unsafe areas for safe vehicle
navigation.

B. Path Planning Techniques

With different map representations, there are lots of efforts
towards robotic path planning in environments with diverse
terrains. By using a B-cubic patch map, a near-optimal path
planner for rough terrain navigation was proposed in [21], which
adopted a layered control strategy that separated the trajectory
planning and path following. Singh et al. [22] proposed to use a
non-linear time scaling technique to generate an optimal path on
uneven terrain, with a special focus on avoiding possible slip of
the vehicle. These methods are mainly designed for unmanned
vehicles. For passenger vehicles, human comfort should be
particularly emphasized, necessitating the development of path
planners incorporating this factor.

Recently, Morales et al. [11] proposed to involve passenger
comfort in the wheelchair navigation. Furthermore, Guzzi et al.
[23] devoted to planning a comfortable and short path for the
wheelchair robot. However, these methods focus more on the
human comfort in socially compliant navigation. The human
comfort on sloped terrain, which varies with the vehicle sta-
bility, is seldom considered in the literature. Practically, the
vehicle stability analysis on the slope has been well investigated.
The force-angle stability analysis proposed in [24] provided a
measure for possible tip-over of the vehicle subject to internal
or external forces. This measure is widely adopted for mobile
robot or wheelchair stability analysis [25], while it does not take
human comfort into account. In this study, we present a stability
measure that considers human comfort on the slope way.

Our path planning strategy builds upon the recent develop-
ments of the sampling-based path planning method [26], which
are useful tools for incorporating various constraints. Despite
their generality, the applications of these methods in challenging
environments with sloped terrain are far from straightforward. In
light of this challenge, Devaurs et al. [27] introduced a T-RRT*
method, with which a low-cost trajectory on uneven terrain could
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be generated. Nevertheless, vehicle stability constraints are not
involved in this method. Norouzi et al. [28] proposed to incorpo-
rate the vehicle stability into the planning framework while it is
not applicable to the passenger wheelchair navigation involving
human factors. In contrast to the existing sampling-based path
planning methods, the proposed method can generate a feasible
path that improves human comfort on the slope way.

III. PRELIMINARIES

In this study, we aim to plan a safe and human-comfortable
trajectory for the wheelchair robot for its navigation in environ-
ments with slope ways. The developed traversable map for robot
navigation is built on top of the elevation grid map Mg [20],
which is widely used for the 3D environment representation.
For a grid mj ∈ Mg , h(mj) denotes its elevation. We project
the elevation map into a 2D grid map M̆g , where for mj ∈ M̆g ,
h̆(mj) = h(mj). The path planning is performed directly on the
projected 2D map M̆g that further takes into consideration the
vehicle safety.

The path for the robot is denoted as ξ, consisting of a set of
states s ∈ X , where X represents the state space. We denote Xh

as the hazardous area for the vehicle navigation. Specially, for a
state s, the heading of the robot is denoted as

⇀

r and the stability
of the robot is denoted as γ. For robot navigation across different
terrains, given the start state si and the target state st, the total
stability of a trajectory ξ is

Γ(ξ) =
∑
s∈ξ

γ(s). (1)

The human comfort in this study is highly related to the vehicle
stability. The optimal path planning for the wheelchair robot in
the focused environment is then formulated as the problem of
improving the stability of the wheelchair while minimizing the
motion cost. Accordingly, the objective of the wheelchair robot
path planning is given by

min f(Γ(ξ),L(ξ))
s.t. ξ ∈ X

F (ξ) ≤ 0

||ξi − s|| ≥ κ, ∀ξi ∈ ξ, s ∈ Xh, (2)

where f(·) is the objective function with respect to the vehicle
stability on ξ and the path length. L(ξ) is the distance measure
of the trajectory ξ. F (ξ) ≤ 0 ensures that the trajectory satisfies
the robot motion constraints, meaning that the ξ should be a
feasible trajectory for the robot to execute. The trajectory should
keep a distance κ to the hazardous area in the navigation. The
optimization problem is therefore the one that is highly related to
the form of the stability function Γ(·) and the path length L(·).
In particular, the human comfort is the quantity related to the
vehicle stability. As aforementioned, the quantities regarding the
social factors are out of the scope of this study. In what follows,
we detail the vehicle stability analysis concerning the human
comfort and the path generation by using the sampling-based
path planning scheme.

Fig. 2. Wheelchair stability analysis on a slope. (a) Wheelchair on the slope.
(b) Vehicle stability pyramid.

IV. VEHICLE STABILITY ANALYSIS

Firstly, to analyze the stability of the wheelchair robot, the
stability pyramid [24], [29] is utilized. The stability of the
wheelchair inherently indicates the vehicle tip-over risk when it
moves on the slope surface. Without loss of generality, we use
the wheelchair model with four wheels. As shown in Fig. 2(a),
pi(i = 1, 2, 3, 4) represents the Point of Contact (PoC) of the
wheelchair with the slope surface.mc denotes the center of mass
of the integrated human-wheelchair system. Then, the stability
of the wheelchair is primarily analyzed by using the stability
pyramid shown in Fig. 2(b), wherepi(i = 1, 2, 3, 4) is the vector
that connects the mc and the PoC. Denote ai(i = 1, 2, 3, 4) as
the tip-over axis that

ai = pi+1 − pi, i = 1, 2, 3. (3)

Particularly, a4 = p1 − p4. As shown in Fig. 2(b), the tip-over
normal axis, li, which intersects with the mc, is obtained with

li = (I− âiâ
T
i ) · pi+1, i = 1, 2, 3. (4)

In particular, l4 = (I− â4â
T
4 ) · p1. I is a 3 × 3 unit matrix and

âi = ai/||ai|| is the unit vector along ai. The angle between
the gravity vector fg and li is denoted as the stability angle that
is

αi = εicos
−1(f̂g l̂i), i = 1, 2, 3, 4, (5)

where f̂g = fg/||fg|| and l̂i = li/||li||. εi is the symbol that

εi =

{
+1, (̂li × f̂gâi) < 0

−1, otherwise.
(6)

The stability angle is marked in Fig. 2(b) and the minimum
stability angle for the vehicle is given by

η = min(αi), i = 1, 2, 3, 4, (7)

which provides a bottom line for the stability of the vehicle. The
vehicle with η ≤ 0 is extremely unstable and will fall over. To
improve the stability of the wheelchair robot, each stability angle
αi should be kept as large as possible while satisfying η > 0.

In particular, we propose to incorporate the human comfort
into the wheelchair stability evaluation. On the one hand, human
comfort is highly related to vehicle stability. People will feel
uncomfortable if the vehicle has tip-over risk. On the other hand,
human comfort is also related to the heading angles of the vehicle
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on the slope. To illustrate this, we divide the slope way S into
flat surface primitives. For each Si ∈ S shown in Fig. 2(a), the
slope direction

⇀

r is denoted as
Definition 1: Slope Direction (SD): The direction on Si that

leads to increase or decrease of the elevation with the highest
change rate is the Slope Direction, which is the uphill or downhill
direction.

Specially, the yellow arrow in Fig. 2(a) indicates the case when
|∠⇀

r ,
⇀

r | = 0◦, which is the SD. The red arrow indicates the case
when |∠⇀

r ,
⇀

r | = 90◦. Considering the wheelchair user guide2

and the habit of human sitting on the wheelchair that the vehicle
always attempts to climb a slope without lateral rotation, human
will feel uncomfortable when the wheelchair is placed laterally
with respect to SD, i.e. |∠⇀

r ,
⇀

r | → 90◦, |∠⇀

r ,
⇀

r | ∈ [0◦, 90◦],
as demonstrated in [30], [31]. In order to improve the human
comfort, we propose to emphasize the lateral stability in the
vehicle stability function. Correspondingly, we propose a utility
function to measure the wheelchair stability on the slope at
state s:

γ(s) =

4∑
i=1

μiαi, (8)

where the constant μ is used to emphasize the lateral stability
considering the human comfort and it is then determined by

μi =

{
> 1, i = 2 or 4

1, otherwise.
(9)

As shown in Fig. 2, with the design of (8), γ(s) will have
higher value when i = 2 or 4, indicating that the vehicle is
placed laterally with respect to SD and making people feel
unsafe and uncomfortable. Therefore the stability angle α2

and α4 will have greater impact than α1 and α3 in (8). The
γ(s) is independent among different states. Therefore, the total
stability of trajectory ξ for the wheelchair robot to navigate in
the environment with slope way can be calculated by (1) with
respect to η > 0. This quantity is then utilized to generate the
safe and human-comfortable trajectory for the wheelchair by the
sampling-based path planning scheme.

V. SAFE AND HUMAN-COMFORTABLE PATH PLANNING

Based on the analysis of vehicle stability, a sampling-based
planning scheme is proposed to generate a path in the investi-
gated environment, following which the robot could safely travel
through the slope way and reach the desired target. Additionally,
the sampling scheme could help with distinguishing different
terrains, thus further ensuring safe robotic navigation. Moreover,
to improve the planning efficiency, an adaptive weighting GMM
sampling scheme is incorporated into the path planning pipeline.

As typical sampling-based planning schemes, the Rapidly-
exploring Random Tree (RRT) and its variants have manifested
themselves as useful tools for planning feasible and smooth
paths from the robot current location to the goal. The proposed
method builds on top of the variant step size RRT method [26],

2http://www.alas.wales.nhs.uk/wheelchairs

which maintains a tree structure T and consists of a set of key
procedures:

Sampling: A sample point pr yielded by a sample function
Sampler(·) is generated in the collision-free state space X .

Nearest: The point pr searches to get the nearest point pn on
the tree T with the nearest function Nearest(·).

Steering: Moving from pr to pn with a segment ζ with a
Steer(·) function.

Collision checking: The segment ζ is checked through func-
tion collisionCheck(·) to test its feasibility.

Using these functions, the RRT exhibits the general structure
outlined in Algorithm 1. This method is not directly applicable
to the path planning across different terrains. In this study, we
mainly modify the Collision checking and Sampling modules
to get feasible paths in environments with slope ways.

A. Segment Feasibility

Simply conducting segment collision-checking using the
method introduced in [26] is inadequate for planning in the
environment with smooth slope surface. We propose a feasibility
checking process that differs greatly from the standard RRT
pipeline. We take the projected 2D elevation grid mapM̆g as the
input for the planning method to generate the segment ζ for the
tree extension. To verify the feasibility of the segment, we divide
it into a set of small segment elements, i.e., ζ =< l1ζ , l

2
ζ , ..., l

n
ζ >.

For a segment element ljζ ∈ ζ, let pjs and pje be the start point
and the end point of the segment, respectively. These points pjs
and pje are the grids in map M̆g and the elevation of these two
grids are h̆(pjs) and h̆(pje). Therefore, the gradient of the segment
connecting these two points can be calculated using

∇j =
h̆(pje)− h̆(pjs)

pje − pjs
. (10)

The indicator of ∇j is denoted as δj that is given by

δj =
1

1 + e(|∇j |−τ)∗(+∞)
, (11)

where τ is a threshold determined by the gradeability of the
vehicle. If |∇j | > τ , then δj = 0, meaning the segment is too
steep for the robot to climb. Then, the feasibility of the segment
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ζ is calculated by

φ(ζ) =
n∏

j=1

δj . (12)

In particular, if a segment ζ satisfies that φ(ζ) = 0, then ζ
is strictly unfeasible. Then, the segment will not be used for
extending the tree. Notably, the proposed method devotes to
generating a trajectory that is flat with the least fluctuation. To
this end, we employ a utility function for determining whether
a segment can be accepted or not in a probabilistic manner. The
probability for accepting the segment ζ as a branch of the tree
T is given by

P = φ(ζ)e−λΓ(ζ), (13)

where λ is a predefined parameter in different application cases.
With (13), if a segment is strictly unfeasible, the probability
P = 0 and it will be discarded. While for feasible segments,
the segment indicating higher vehicle stability is of higher
probability to be accepted for extending the tree.

The feasibility checking of a segment to be accepted as the
branch of the tree is depicted in Algorithm 2. Line 2–8 depicts the
checking process of the traversability of the segment. Function
gradient(·) calculates the gradient of the separated segments on
ζ. The segment that fails to past the test will be directly discarded.
If a segment is traversable, we propose to select the segment that
is more safe and stable for the robot to follow as the branch for the
tree extension, as indicated in Line 9–12 in Algorithm 2, where
the function Rand[0, 1] accounts for generating a random point
in [0,1].

Note that the proposed path planning method is built upon
the RRT path planner with the modification of the tree extension
step. Therefore, the proposed method is probabilistic complete,
which is directly inherited from the RRT planner.

B. Traversable Map Generation

As shown in Fig. 3(a)–(b), for 2D navigation, a cost map can
be generated on a 2D grid map by inflating the obstacles. It
clearly indicates the clearance region and ensures safe robotic

Fig. 3. Different maps for navigation. (a) 2D grid map. (b) 2D Cost map. (c)
Elevation map. (d) Traversable map.

navigation in 2D environments. In contrast to the 2D cost map
generation, it is hard to explicitly mark the hazardous areas on the
elevation grid map shown in Fig. 3(c), as the regions with high
elevation values cannot be simply regarded as obstacles. For the
fixed chassis wheelchair robot, the obstacle typically refers to
the object with high edges or steep slopes, such as the staircase
and the steep slope. It is the non-traversable region where the
robot cannot navigate through. The hazardous regions for robot
navigation are identified as the obstacle areas and the traversable
areas that may lead to vehicle tip-over, such as the area near the
edge of the slope way.

To generate a safe traversable map for the wheelchair robot,
we present a traversable map generation method regarding ve-
hicle motion constraints and hazardous areas. The map M̆′

g , as
shown in Fig. 3(d), is generated by exploiting the underlying
properties of failure cases in the segment feasibility test in
(12). Initially, the traversable map is the same with that of the
projected 2D elevation map M̆g shown in Fig. 3(c). Afterword,
the traversable map is generated incrementally along with the
path planning progress.

To illustrate the generation of the traversable map in detail,
we define the unfeasible segment as

Definition 2: Unfeasible Segment (US): The segment ζ sat-
isfies φ(ζ) = 0 is defined as unfeasible segment and is marked
as ζ−.

If the segment is ζ−, as aforementioned, it is regarded as
unfeasible for the robot to follow and will not be added to the
existing tree T . It is worth noting that the segment ζ− implicitly
indicates the region that is untraversable or hazardous in the
map. As shown in Fig. 4, the ζ− lies in the unsafe region.
Therefore, these segments that fail the feasibility test can be
used for generating a traversable map towards safe wheelchair
navigation.

Specifically, we use two endpoints and the midpoint of the
segment ζ− as the hazardous area indicators, which forms the
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Fig. 4. Traversable map generation using the indicators generated by the
sampling-based path planning scheme.

indicator set I =< ζ−s , ζ
−
m, ζ−e >. For a point p̄ ∈ I , the cor-

responding location in the projected elevation map M̆g will
be assigned with a predefined value ν, ν ∈ R−. In addition,
consider the point p̂j in a circular region that satisfies

||p̂j − p̄|| < κ, p̄ ∈ I, (14)

it will also be assigned with the same value ν in map M̆g , as
shown by the orange circles in Fig. 4. The parameter κ is tuned
according to the robot chassis in realistic applications. Note that
there are overlaps among different circles, the elevation value
of a grid under m circles is m ∗ ν. For a sample point pr by the
sampler, if h̆(pr) < ν, then this point will not be considered for
the tree extension.

Moreover, when the hazardous regions are marked on the map,
the edges and nodes of the tree T in these circular regions are
pruned to avoid the possible paths generating in the hazardous
areas. For the point in the indicator set I ( e.g., ζ−s in Fig. 4),
it searches all the nodes on the tree T . If the node nj on the
tree T satisfies ||nj − ζ−s || < κ, ζ−s ∈ I , then the node and the
associated edges are pruned from the tree T .

The traversable map is generated incrementally along with
the sampling process in the path planning. Conversely, the
successive path planning progress further utilizes the generated
traversable map for trajectory generation. Through multiple path
planning processes, it will be clear to the robot that some areas
in the environment are strictly impassable concerning the robot
gradeability. Notably, the traversable map is reusable once it
is built. Therefore, the robot can directly use the generated
traversable map for the navigation task in the same environment.

C. Optimization of the Trajectory

The objective for the wheelchair path planning takes into
consideration both the vehicle stability and the trajectory length.
The cost function is defined as

f(ξ) = β1Γ(ξ) + β2L(ξ), (15)

whereβ1 andβ2 are predefined constant values in an application.
For trajectory optimization, we propose to follow closely the
concept of the RRT* approach [32] as it can achieve asymptotic
optimality. We have the claim that

Fig. 5. Trajectory optimization. (a) Sample points generation around the nodes
in the generated trajectory. The blue dots represent the new samples. (b) The
solid line indicates the new trajectory generated by the rewire mechanism.

Claim 1: The cost function is admissible with the RRT* path
planning framework.

Proof: Given all states < s1, s2, ...sι > on the trajectory ξ.
We assume that the calculation of the stability between dif-
ferent states are independent, i.e. Γ(ξ) =

∑
γ(s). Γ(ξ) ≥ 0 is

bounded. Note that L(ξ) =
∑

||sj+1 − sj ||, clearly, (15) holds
the optimal substructure property. Denote ζ1 and ζ2 as two path
segments on ξ and ζ1ζ2 as their concatenation. Firstly, f(ζ1ζ2) =
f(ζ1) + f(ζ2), meaning the cost function is additive. Moreover,
Δf(ζ1) ≤ Δf(ζ1ζ2), implying monotonicity. Finally, for our
cost function, the concatenate segments have similar cost. The
cost function must be Lipschitz continuous, i.e., there exists a
K satisfying ||f(ζ1)− f(ζ2)|| ≤ K||ζ1 − ζ2||. Thus, the cost
function in (15) is admissible within the RRT* framework. �

Therefore, the RRT* framework can be used for the optimiza-
tion. Similar to RRT*, the embedded rewire mechanism is used
to change the connections of the tree structure to achieve lower
objective function value with respect to both the vehicle stability
and path length.

Besides, to further improve the efficiency of the optimization
process, we present an adaptive weighting sampling mechanism
that biases the sampling to the area that contributes to improving
the quality of the path. This scheme is enabled when a sparse
nominal path ξ̄ between the start point and the goal point is
found. As the path is found on the tree T , ξ̄ is composed of a
set of nodes N and segments E. The proposed sampling-based
methods aim to sample around the nodes in N . The probability
of getting a sample point x is

P (x) =

k∑
j=1

ωjNj(υj , σj), (16)

whereNj is the normal distribution with meanυj and covariance
σj , wj is the corresponding weight in GMM. k is the number
of normal distributions in GMM, which is also the number of
nodes N in the generated path ξ. Eq. (16) indicates that we draw
points randomly around the nodes in the generated trajectory,
which are shown by the blue points in Fig. 5(a).
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Instead of uniformly sampling points with the same weight
of all the normal distributions in GMM [33], we propose an
adaptive weighting sampling method that biases the sampling to
the areas that benefit to reducing the trajectory objective value
in (15). In a sampling round with the GMM model, we get a set
of sample points Pk =< p1, p2, ..., pk >, where k indicates the
number of nodes in the generated trajectory. In other words,
p1 ∼ pk are the points near the nodes in the trajectory. The
Rewire(·) function is utilized to change the connections of
the nodes on the tree around these sampling points. Through
the rewire mechanism, a point pj ∈ Pk contributes to reducing
the objective function value with f j

δ . Moreover, the mechanism
generates more qj − 1 nodes in the trajectory, as shown in
Fig. 5(b). Temporarily, the weights of the current GMM with
k nodes are adjusted as

wj =
ef

j
δ∑k

j=1 e
fj
δ

. (17)

The higher the f j
δ , the higher the corresponding weight. We

use the ef
j
δ to highlight the impact of a greater f j

δ . In the next
sampling round, for each nodenj ∈ N , it becomes qj new nodes
and there will be qj Gaussian components Nj(υj , σj) around
the node. The corresponding weights of these components in
a new GMM are w′

j = wj/qj . The means and covariances of
the GMM components are kept the same in different sampling
rounds. Totally, in this new GMM sampling model, there will be
k′ =

∑k
j=1 qj components. This model is then used for sampling

in a new round.
By the proposed method, the weights of the GMM compo-

nents are changed adaptively in each sampling round. Specially,
the weight of the GMM component that significantly contributes
to reducing the objective function is enlarged. This process
iterates until an optimal path is found. Intuitively, the sampling
points would bias to the area that greatly contributes to reducing
the objective value of a path, which significantly improves the
searching efficiency for an optimal path.

The proposed trajectory optimization method is detailed in
Algorithm 3. As opposed to the standard RRT* method, we pro-
pose to take the vehicle stability and path cost into consideration.
Moreover, we propose an adaptive weighting GMM sampling

TABLE I
VALUES OF THE PARAMETERS IN THE EXPERIMENTS

Fig. 6. Simulation environment contains a slope way, a staircase, and other
obstacles.

method. As indicated in Line 2, the function Sampling(·)
accounts for generating sample points with the GMM model.
The weights are adjusted in Line 9 in Algorithm 3, which is
used for the next sampling round.

VI. EXPERIMENTS AND RESULTS

The proposed method was validated in both simulation and
real-world experiments by verifying the key components in the
present method and comparing it with other strategies for path
planning in environments with slope way.

A. Parameter Setting

The values of the parameters in the experiments are recorded
in Table I. These parameters are tuned according to the analysis
of robot physical properties and trial-and-error experiments. The
experiments were conducted in the environments shown in Fig. 6
and Fig. 13. It is assumed that there is no other dynamic objects
and the light condition is suitable so that the environment model
can be built with little noise.

The parameter τ measures the gradeability of the vehicle for
slope climbing. The vehicle in the real-world cannot climb the
ramp with the slope higher than 0.8 rad and the simulation
vehicle shares the same physical property with the real one.
Therefore, τ is set to 0.8 in both simulation and real-world
experiments. Similarly, the parameter κ is set according to the
chassises of the simulation and real-world vehicle. It is carefully
tuned to ensure the safe distance from the robot to the hazardous
area in the navigation. The parameter λ is determined by trials
with its values starting from 0 in simulation and real-world
environments. The current setting can significantly improve the
path planning efficiency. The parameters μi, β1, β2 are key com-
ponents in the objective function with the weighted sum fashion.
We utilize the method in [34] to tune these parameters. Notably,
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Fig. 7. Different representations of the simulation environment. (a) Elevation
map. The color bar indicates the height. (b) Hazardous map. The color bar
indicates the hazardous level. The area with the color lighter than 0.8 is hazardous
for robot navigation.

we do not set explicit preference to the weights in the object
function, thus β1 and β2 are set with the same value. Instead,
we tune the parameter μi through experiments to highlight the
vehicle stability. Then, these parameters in the objective function
are further tuned in terms of the computational efficiency and
data presentation to arrive at the current version.

B. Simulation Experiments

We built a 5 m×7 m×2 m indoor simulation environment
with slope and staircase using Gazebo3 simulation engine, as
shown in Fig. 6. The slope is 0.3m above the ground and the
horizontal lengths for the slope and staircases are 1.2 m and
0.4 m, respectively. The width of the slope is 2.0 m and the width
of the staircase is 2.2 m. A four-wheel differentially driven robot
is utilized to simulate the wheelchair robot, which is 0.5 m tall
with 0.2 m track. The length and width of the robot are 0.5 m and
0.4 m, respectively. In the simulation engine, the simulated robot
and the environment share the same physical properties with
real ones. Thus, the experimental result can reflect that in the
real world. We use an ASUS laptop with Intel Core i7-6700HQ
at 2 GHz, 16 GB memory for the simulation experiment. The
software is developed using the C++ programming language and
implemented on Ubuntu 14.04 LTS operating system.

1) Traversable Map Generation: The localization strategy
in the experiment is a learning-based camera relocalization
method [35]. For mapping, we use the grid mapping strategy
in [20] to build an elevation map of the environment, which is
shown in Fig. 7(a). However, this map is not directly suitable for
stable wheelchair navigation in the environment with slope way.
Planning with this map can lead to unsafe vehicle navigation
performance attributed to the inconspicuous distinguishment
between the traversable areas and the hazardous areas. With
the elevation map, the state-of-the-art map generation method
in [36] can produce a 3D hazardous map, as shown in Fig. 7(b),
which can explicitly mark the unsafe regions and serve as a
traversable map. We conducted repetitive experiments with this
method and found it took over 5 s to generate this traversable
map, which is time-consuming. Besides, planning with this
complex 3D map is inefficient.

Our method projects the elevation map in Fig. 7(a) into a 2D
elevation map, which is shown in Fig. 8(a). The generation of
the 2D traversable map in a navigation task with the proposed

3http://gazebosim.org

Fig. 8. Incrementally traversable map generation with the proposed path
planning strategy. The orange regions partially indicate the hazardous areas.
Particularly, (f) indicates the final traversable map for slope way navigation in
this task.

method is shown in Fig. 8. A tree is built incrementally to
find a path for the robot, as shown by the blue lines. With the
tree extension process, the unsafe regions can be marked on
the projected grid map. The orange regions in the traversable
map indicate the hazardous areas (see Fig. 7(b)) that the robot
should avoid during this navigation task. With the path planning
process, the orange regions are incrementally generated. Note
that the orange regions gather at the areas that are too steep for
the robot to pass through, while there is no orange region at the
traversable slope areas, implying that our proposed method can
help the robot distinguish the slope from the hazardous areas,
hence avoiding the possible unsafe path leading to vehicle crash
during the navigation task. Fig. 8 shows an example of 2D
traversable map generation process with the given start point
and target point. The traversable map is not complete without
indicating all the hazardous areas but is enough for the safe robot
navigation in this task. Practically, all the hazardous areas can
be marked on the map through multiple turns of path planning
process with different targets. Our method needs only 0.1 s on
average for the 2D traversable map generation. Planning with
the developed traversable map is more efficient than using the
complex 3D hazardous map.

The effectiveness of the proposed method is verified in this
experiment. As shown in Fig. 8, the tree structure can extend
from the start point to the goal point and build the feasible path
shown in Fig. 8(f). Obviously, following the planned trajectory,
the robot can reach the target above the ground through the
slope way instead of the staircase. The planned trajectory can
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Fig. 9. Wheelchair stability on a slope. (a) Stability pyramid on the slope. (b)
Vehicle stability with different rotation angles.

also improve the vehicle stability and keep the vehicle a safe
distance away from the hazardous areas in the navigation.

2) Vehicle Stability Function Evaluation: To evaluate the ef-
fectiveness of the proposed stability function in (8), experiments
were conducted in a simplified environment that is similar to the
simulation environment with slope way, as shown in Fig. 9(a).
The wheelchair on the slope is represented by the stability
pyramid where p1 ∼ p4 represent four PoCs. Initially, the robot
is in the SD direction. The robot was set to rotate at a fixed
point on the slope and the stability values of γ(s) in (8) were
recorded. The higher the stability value γ(s), the more unstable
the vehicle. As a key to achieve the emphasis of lateral direction,
we conducted experiments with different μ in (9). Firstly, we set
μi = 1 for i = 1, 2, 3, 4, meaning that there is no emphasis on
the lateral direction with respect to the SD. Secondly, we record
the stability value for the experiment with the setting of μ > 1.

Fig. 9(b) describes the stability value varying with vehicle
rotations with different settings. The blue line represents the
stability value of the vehicle when μ = 1. The vehicle is in
the most stable state on the slope when it heads towards to the
slope direction (|∠⇀

r ,
⇀

r |  0◦) or is placed laterally to the slope
(|∠⇀

r ,
⇀

r |  90◦). This is because there is no much difference
between the width and length of the simulated vehicle, thus
the stability is similar in these two cases. However, people
may feel uncomfortable when |∠⇀

r ,
⇀

r |  90◦. When μ > 1,
as shown by the green line and the red line in Fig. 9(b),
the lowest stability value is achieved when the vehicle is in
the slope direction, i.e., |∠⇀

r ,
⇀

r |  0◦. The higher the angle
|∠⇀

r ,
⇀

r |(|∠⇀

r ,
⇀

r | ∈ [0◦, 90◦]), the more unstable the vehicle.
It demonstrates the emphasis on the lateral direction with the
proposed method. Moreover, the higher the value of μ, the
more significant the emphasis. Therefore, the proposed stability
measure with suitableμ can ensure the safety and human comfort
for wheelchair navigation on the slope way.

3) Evaluation of the Trajectory Optimization Method: To
verify the effectiveness of the proposed optimization method,
we compared it with the path planning method adopting the
proposed framework without GMM optimization. As shown in
Fig. 10(a), the cyan line represents the trajectory generated by
the proposed method, while the green and red lines represent
the trajectories generated by the comparative methods. Notably,
with the proposed method, the planner generates a trajectory
that heads towards the slope direction. The stability values γ(s)
of the robot changing with the navigation time along differ-
ent trajectories are recorded in red, green, and cyan lines in

Fig. 10. Vehicle stability evaluation. (a) Slope climbing trajectories. (b) Ve-
hicle stability on different trajectories.

Fig. 11. Comparison of the three methods: the proposed adaptive weighting
GMM sampling method, the uniform sampling method, and the simple GMM
sampling method in four experiments.

Fig. 10(b). The path lengths of the three trajectories are 4.7m,
5.6m, and 6.0m, respectively. The total vehicle stability values
along these trajectories calculated by (1) are 47.3, 54.6, and
32.2, respectively. This figure exhibits that the proposed method
could plan a path with higher stability than the method without
proposed optimization mechanism. With all the methods, the
instability increases when the robot moves on the slope. It is
unstable for the vehicle to climb the slope with large angles
with respect to the SD. Comparatively, the proposed method
drastically helps reduce vehicle instability.

We conducted experiments by comparing the adaptive weight-
ing sampling scheme with the method that uses the uniformly
sampling and the simple GMM sampling. Specially, the simple
GMM sampling strategy uniformly distributes the weights for
the composed normal distributions. The experiments were con-
ducted in the simulation environment and in these experiments,
the robot was assigned with a task to reach a designated target
above the ground through a slope with four different start po-
sitions, A-D, shown in Fig. 6(a). We conducted 20 repetitive
experiments for each experimental scenario. Meanwhile, the
objective value in (15) for each generated trajectory is recorded
during the optimization process, which is specified in Fig. 11.
Generally, in all the four start positions, both the simple GMM
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Fig. 12. Comparison between our method and the T-RRT* method. (a)–(d) record the navigation trajectories at different start points using these two methods.

TABLE II
STATISTICS OF PATH LENGTH [M] AND STABILITY VALUES WITH

DIFFERENT METHODS

method and the adaptive weighting GMM method overwhelm
the uniform sampling method in reducing the objective func-
tion with fewer iterations. Particularly, the proposed adaptive
weighting sampling strategy shows better performance than the
simple GMM method, as shown by the blue lines and the red
lines in Fig. 11. It can achieve higher efficiency in reducing the
objective value even the robustness of these two methods is not
distinguishable. The experimental results demonstrate that by
focusing on sampling in the area that can rapidly reduce the
objective value, the optimization efficiency can be improved.

4) Comparison With Other Path Planning Methods: This
study proposes a path planning approach towards safe and
human-comfortable navigation for the wheelchair robot. To
date, few comparative methods devote to reducing the human
discomfort related to the vehicle stability. The proposed method
is compared with the slope climbing RRT* (T-RRT*) method
[27] that is able to generate a shorter path from the start point
to the goal in uneven terrain environment. Another method for
comparison is the Stable-RRT method proposed in [28] devoted
to planning stable paths for the vehicle. The experiments were
conducted in location A and B in the simulation environment.
The path length (Len.) of the trajectory, together with the stabil-
ity value (Stab.) in (1), are recorded in Table II. Obviously, the
robot shows higher vehicle stability with lower stability value
using the proposed method during the navigation compared
with the T-RRT* and Stable-RRT method in these two cases.
The Stable-RRT method achieves the task with relatively higher
vehicle stability while its path length is longer than the T-RRT*
method.

In particular, the performance of our method and the T-RRT*
method is depicted in Fig. 12. The green lines show trajectories
of the two methods. The T-RRT* method plans the shortest
trajectory to the target, which is similar to the performance
of path planning on even terrain. Comparatively, the proposed
method can plan a path that firstly biases towards the slope
direction and then leads the robot to climb it, which avoids lateral

Fig. 13. Real-world environment settings. The green dots indicate the start
points and the orange dots indicate the target points. (a) Environment 1.
(b) Environment 2.

movement with respect to the slope direction. This can improve
the vehicle stability and human comfort, as indicated in (8). Thus
the trajectories by our method are more safe and stable for robot
navigation.

C. Real-World Experiments

We implemented the developed method on a real wheelchair
robot platform. We built a robot prototype with RGB-D and
Lidar sensors for perceiving the environment and localization.
The wheelchair robot is developed with 150 kg payload and
the developed method is implemented on a laptop equipped on
the vehicle. The height, length, and width of the wheelchair are
0.94m, 1.17m, and 0.62m, respectively. We conducted experi-
ments in two realistic environments with slopes, as shown in
Fig. 13. The robot is tasked for reaching the targets above the
ground. In practice, the robot turned itself towards the slope
direction before climbing it by using the proposed method, as
shown in Fig. 14. Then, the robot can successfully reach the
targets through the slope ways.

In the real-world experiments, the slope is wide. For safe
wheelchair navigation and coping with possible turns of the
wheelchair on the slope, there is a stipulation [37] by Americans
with Disabilities Act (ADA) that the clear space for wheelchair
performing 180◦ turn is a circular region with radius of 0.76 m.
The minimum horizontal distance from the vehicle center to
the hazardous region (e.g., slope edge) is 0.76 m, which is a
safe distance for free robot turning. The proposed traversable
map scheme is effective in keeping the safe distance to the
hazardous slope edge during the navigation, as shown in Fig. 14.
We conducted 20 experiments in these environments at two
different start locations and recorded the success rate of the path
planning in Table III. The success here means that the robot
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Fig. 14. Real-world experiments for wheelchair navigation on a slope. The target for the wheelchair robot is above the ground that can be reached through a
slope while keeping a reasonable distance from the hazardous areas. (a)–(e) Environment 1. (f)–(j) Environment 2.

TABLE III
SUCCESS RATE OF THE PROPOSED PLANNING APPROACH

Fig. 15. Real-world experiments with two comparative methods. The colorful
stripe indicates the distance to the hazardous region. (a) Ours. (b) T-RRT*.

can successfully navigate from its current location to the target
above the ground through the slope. As the table shows, the
success rate of the proposed method is higher than 90%, which
exhibits the robustness of the proposed method in real-world
applications. The failure cases are mainly caused by the quality
of the sensor data in the real-world application, which may
make the localization unreliable and deteriorate the navigation
performance [38].

We compared our method with the T-RRT* method in En-
vironment 1. There is no human on the wheelchair in these
experiments for safety purpose. Intuitively, as shown in Fig. 15,
the trajectory planned by our method is more safe for the robot
to follow compared with the T-RRT* method. The colorful
stripe measures the distance from the robot left side to the
edge of the terrain above the ground. The lighter the color,
the higher the risk. With the T-RRT* method, the robot could
move to the hazardous area in close proximity to the terrain
edge. Comparatively, the proposed method ensures the safety
and human comfort for the wheelchair navigation. Details can
be found in the video demonstration.4

4Video demonstration: https://youtu.be/ywjQ8HBC79U

Fig. 16. Real-world experiment at a building entrance. (a) Real-world envi-
ronment. (b) Built environment model indicating environment configurations.
(c) Wheelchair trajectories of three experiments.

The experiments were also conducted at a building entrance
with slope way and staircase. Fig. 16(a) shows the environment
and Fig. 16(b) intuitively indicates the locations of different
accesses. We conducted experiments at three different start
locations. The navigation trajectories at three start locations are
shown in Fig. 16(c). The robot can successfully reach the target
through the slope instead of the staircase by using the developed
method. The curb is too steep for the wheelchair to climb. The
robot could avoid the hazardous areas near the curb and the slope
edge in the navigation.

D. Discussions

The evaluation environments contain slopes and staircases in
our study. The proposed method can be extended for motion
planning in more complex scenarios due to the nature of the
stability analysis method, which provides options for safe and
human-comfortable navigation in more general environments
with different terrains.
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Note that the slope in our experiment setting is wide. However,
it is also common for wheelchair navigation in narrow slopes.
While in this case, the performance of the T-RRT* method and
our method is approximately the same. It is because that the
planning space is constrained and there is no much space for the
trajectory to bias to other directions on the slope. Comparatively,
our proposed features that it is effective on different slopes.

Currently, the proposed method considers the human-comfort
that results from the vehicle stability without considering the
human comfort involves social factors. However, the socially-
aware navigation scheme can be easily integrated into this
framework as the generality of the sampling-based path planning
methods. Besides, the application of the proposed algorithm is
not limited to the wheelchair robot. The proposed navigation
framework can be used in other passenger vehicles.

VII. CONCLUSION AND FUTURE WORK

In this study, a path planning method for the robotic
wheelchair navigation in the environment with slope way is
proposed, with which the robot can climb the slope above the
ground steadily. The effectiveness of each separated module and
the whole framework have been demonstrated by both simula-
tion and real-world experiments. With the suggested objective
function that takes into consideration both the vehicle stability
and the path length, the planner could generate a feasible path
that utmost ensures the vehicle safety and the human comfort. A
sampling strategy ensuring the fast convergence of the proposed
method makes the path planning process more efficient. More-
over, the proposed traversable map generation strategy by using
the sampling-based path planning scheme can incrementally and
successfully generate a traversable map. With this map, the path
planner could plan the safe path that keeps the robot a reasonable
distance from hazardous areas.

In the future, we will consider implementing the proposed
method in more challenging environment scenarios, for ex-
ample, in densely populated dynamic environments. We will
also develop control techniques for more smooth vehicle slope
climbing.
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